1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/profiler/heap-snapshot-generator.h"
6
7 #include <utility>
8
9 #include "src/api/api-inl.h"
10 #include "src/base/optional.h"
11 #include "src/base/vector.h"
12 #include "src/codegen/assembler-inl.h"
13 #include "src/common/globals.h"
14 #include "src/debug/debug.h"
15 #include "src/handles/global-handles.h"
16 #include "src/heap/combined-heap.h"
17 #include "src/heap/safepoint.h"
18 #include "src/numbers/conversions.h"
19 #include "src/objects/allocation-site-inl.h"
20 #include "src/objects/api-callbacks.h"
21 #include "src/objects/cell-inl.h"
22 #include "src/objects/feedback-cell-inl.h"
23 #include "src/objects/hash-table-inl.h"
24 #include "src/objects/js-array-buffer-inl.h"
25 #include "src/objects/js-array-inl.h"
26 #include "src/objects/js-collection-inl.h"
27 #include "src/objects/js-generator-inl.h"
28 #include "src/objects/js-promise-inl.h"
29 #include "src/objects/js-regexp-inl.h"
30 #include "src/objects/js-weak-refs-inl.h"
31 #include "src/objects/literal-objects-inl.h"
32 #include "src/objects/objects-inl.h"
33 #include "src/objects/prototype.h"
34 #include "src/objects/slots-inl.h"
35 #include "src/objects/struct-inl.h"
36 #include "src/objects/transitions-inl.h"
37 #include "src/objects/visitors.h"
38 #include "src/profiler/allocation-tracker.h"
39 #include "src/profiler/heap-profiler.h"
40 #include "src/profiler/heap-snapshot-generator-inl.h"
41
42 namespace v8 {
43 namespace internal {
44
45 #ifdef V8_ENABLE_HEAP_SNAPSHOT_VERIFY
46 class HeapEntryVerifier {
47 public:
HeapEntryVerifier(HeapSnapshotGenerator * generator,HeapObject obj)48 HeapEntryVerifier(HeapSnapshotGenerator* generator, HeapObject obj)
49 : generator_(generator),
50 primary_object_(obj),
51 reference_summary_(
52 ReferenceSummary::SummarizeReferencesFrom(generator->heap(), obj)) {
53 generator->set_verifier(this);
54 }
~HeapEntryVerifier()55 ~HeapEntryVerifier() {
56 CheckAllReferencesWereChecked();
57 generator_->set_verifier(nullptr);
58 }
59
60 // Checks that `host` retains `target`, according to the marking visitor. This
61 // allows us to verify, when adding edges to the snapshot, that they
62 // correspond to real retaining relationships.
CheckStrongReference(HeapObject host,HeapObject target)63 void CheckStrongReference(HeapObject host, HeapObject target) {
64 // All references should be from the current primary object.
65 CHECK_EQ(host, primary_object_);
66
67 checked_objects_.insert(target);
68
69 // Check whether there is a direct strong reference from host to target.
70 if (reference_summary_.strong_references().find(target) !=
71 reference_summary_.strong_references().end()) {
72 return;
73 }
74
75 // There is no direct reference from host to target, but sometimes heap
76 // snapshots include references that skip one, two, or three objects, such
77 // as __proto__ on a JSObject referring to its Map's prototype, or a
78 // property getter that bypasses the property array and accessor info. At
79 // this point, we must check for those indirect references.
80 for (size_t level = 0; level < 3; ++level) {
81 const std::unordered_set<HeapObject, Object::Hasher>& indirect =
82 GetIndirectStrongReferences(level);
83 if (indirect.find(target) != indirect.end()) {
84 return;
85 }
86 }
87
88 FATAL("Could not find any matching reference");
89 }
90
91 // Checks that `host` has a weak reference to `target`, according to the
92 // marking visitor.
CheckWeakReference(HeapObject host,HeapObject target)93 void CheckWeakReference(HeapObject host, HeapObject target) {
94 // All references should be from the current primary object.
95 CHECK_EQ(host, primary_object_);
96
97 checked_objects_.insert(target);
98 CHECK_NE(reference_summary_.weak_references().find(target),
99 reference_summary_.weak_references().end());
100 }
101
102 // Marks the relationship between `host` and `target` as checked, even if the
103 // marking visitor found no such relationship. This is necessary for
104 // ephemerons, where a pair of objects is required to retain the target.
105 // Use this function with care, since it bypasses verification.
MarkReferenceCheckedWithoutChecking(HeapObject host,HeapObject target)106 void MarkReferenceCheckedWithoutChecking(HeapObject host, HeapObject target) {
107 if (host == primary_object_) {
108 checked_objects_.insert(target);
109 }
110 }
111
112 // Verifies that all of the references found by the marking visitor were
113 // checked via a call to CheckStrongReference or CheckWeakReference, or
114 // deliberately skipped via a call to MarkReferenceCheckedWithoutChecking.
115 // This ensures that there aren't retaining relationships found by the marking
116 // visitor which were omitted from the heap snapshot.
CheckAllReferencesWereChecked()117 void CheckAllReferencesWereChecked() {
118 // Both loops below skip pointers to read-only objects, because the heap
119 // snapshot deliberately omits many of those (see IsEssentialObject).
120 // Read-only objects can't ever retain normal read-write objects, so these
121 // are fine to skip.
122 for (HeapObject obj : reference_summary_.strong_references()) {
123 if (!BasicMemoryChunk::FromHeapObject(obj)->InReadOnlySpace()) {
124 CHECK_NE(checked_objects_.find(obj), checked_objects_.end());
125 }
126 }
127 for (HeapObject obj : reference_summary_.weak_references()) {
128 if (!BasicMemoryChunk::FromHeapObject(obj)->InReadOnlySpace()) {
129 CHECK_NE(checked_objects_.find(obj), checked_objects_.end());
130 }
131 }
132 }
133
134 private:
135 const std::unordered_set<HeapObject, Object::Hasher>&
GetIndirectStrongReferences(size_t level)136 GetIndirectStrongReferences(size_t level) {
137 CHECK_GE(indirect_strong_references_.size(), level);
138
139 if (indirect_strong_references_.size() == level) {
140 // Expansion is needed.
141 indirect_strong_references_.resize(level + 1);
142 const std::unordered_set<HeapObject, Object::Hasher>& previous =
143 level == 0 ? reference_summary_.strong_references()
144 : indirect_strong_references_[level - 1];
145 for (HeapObject obj : previous) {
146 if (BasicMemoryChunk::FromHeapObject(obj)->InReadOnlySpace()) {
147 // Marking visitors don't expect to visit objects in read-only space,
148 // and will fail DCHECKs if they are used on those objects. Read-only
149 // objects can never retain anything outside read-only space, so
150 // skipping those objects doesn't weaken verification.
151 continue;
152 }
153
154 // Indirect references should only bypass internal structures, not
155 // user-visible objects or contexts.
156 if (obj.IsJSReceiver() || obj.IsString() || obj.IsContext()) {
157 continue;
158 }
159
160 ReferenceSummary summary =
161 ReferenceSummary::SummarizeReferencesFrom(generator_->heap(), obj);
162 indirect_strong_references_[level].insert(
163 summary.strong_references().begin(),
164 summary.strong_references().end());
165 }
166 }
167
168 return indirect_strong_references_[level];
169 }
170
171 DISALLOW_GARBAGE_COLLECTION(no_gc)
172 HeapSnapshotGenerator* generator_;
173 HeapObject primary_object_;
174
175 // All objects referred to by primary_object_, according to a marking visitor.
176 ReferenceSummary reference_summary_;
177
178 // Objects that have been checked via a call to CheckStrongReference or
179 // CheckWeakReference, or deliberately skipped via a call to
180 // MarkReferenceCheckedWithoutChecking.
181 std::unordered_set<HeapObject, Object::Hasher> checked_objects_;
182
183 // Objects transitively retained by the primary object. The objects in the set
184 // at index i are retained by the primary object via a chain of i+1
185 // intermediate objects.
186 std::vector<std::unordered_set<HeapObject, Object::Hasher>>
187 indirect_strong_references_;
188 };
189 #endif
190
HeapGraphEdge(Type type,const char * name,HeapEntry * from,HeapEntry * to)191 HeapGraphEdge::HeapGraphEdge(Type type, const char* name, HeapEntry* from,
192 HeapEntry* to)
193 : bit_field_(TypeField::encode(type) |
194 FromIndexField::encode(from->index())),
195 to_entry_(to),
196 name_(name) {
197 DCHECK(type == kContextVariable
198 || type == kProperty
199 || type == kInternal
200 || type == kShortcut
201 || type == kWeak);
202 }
203
HeapGraphEdge(Type type,int index,HeapEntry * from,HeapEntry * to)204 HeapGraphEdge::HeapGraphEdge(Type type, int index, HeapEntry* from,
205 HeapEntry* to)
206 : bit_field_(TypeField::encode(type) |
207 FromIndexField::encode(from->index())),
208 to_entry_(to),
209 index_(index) {
210 DCHECK(type == kElement || type == kHidden);
211 }
212
HeapEntry(HeapSnapshot * snapshot,int index,Type type,const char * name,SnapshotObjectId id,size_t self_size,unsigned trace_node_id)213 HeapEntry::HeapEntry(HeapSnapshot* snapshot, int index, Type type,
214 const char* name, SnapshotObjectId id, size_t self_size,
215 unsigned trace_node_id)
216 : type_(type),
217 index_(index),
218 children_count_(0),
219 self_size_(self_size),
220 snapshot_(snapshot),
221 name_(name),
222 id_(id),
223 trace_node_id_(trace_node_id) {
224 DCHECK_GE(index, 0);
225 }
226
VerifyReference(HeapGraphEdge::Type type,HeapEntry * entry,HeapSnapshotGenerator * generator,ReferenceVerification verification)227 void HeapEntry::VerifyReference(HeapGraphEdge::Type type, HeapEntry* entry,
228 HeapSnapshotGenerator* generator,
229 ReferenceVerification verification) {
230 #ifdef V8_ENABLE_HEAP_SNAPSHOT_VERIFY
231 if (verification == kOffHeapPointer || generator->verifier() == nullptr) {
232 // Off-heap pointers are outside the scope of this verification; we just
233 // trust the embedder to provide accurate data. If the verifier is null,
234 // then verification is disabled.
235 return;
236 }
237 if (verification == kCustomWeakPointer) {
238 // The caller declared that this is a weak pointer ignored by the marking
239 // visitor. All we can verify at this point is that the edge type declares
240 // it to be weak.
241 CHECK_EQ(type, HeapGraphEdge::kWeak);
242 return;
243 }
244 Address from_address =
245 reinterpret_cast<Address>(generator->FindHeapThingForHeapEntry(this));
246 Address to_address =
247 reinterpret_cast<Address>(generator->FindHeapThingForHeapEntry(entry));
248 if (from_address == kNullAddress || to_address == kNullAddress) {
249 // One of these entries doesn't correspond to a real heap object.
250 // Verification is not possible.
251 return;
252 }
253 HeapObject from_obj = HeapObject::cast(Object(from_address));
254 HeapObject to_obj = HeapObject::cast(Object(to_address));
255 if (BasicMemoryChunk::FromHeapObject(to_obj)->InReadOnlySpace()) {
256 // We can't verify pointers into read-only space, because marking visitors
257 // might not mark those. For example, every Map has a pointer to the
258 // MetaMap, but marking visitors don't bother with following that link.
259 // Read-only objects are immortal and can never point to things outside of
260 // read-only space, so ignoring these objects is safe from the perspective
261 // of ensuring accurate retaining paths for normal read-write objects.
262 // Therefore, do nothing.
263 } else if (verification == kEphemeron) {
264 // Ephemerons can't be verified because they aren't marked directly by the
265 // marking visitor.
266 generator->verifier()->MarkReferenceCheckedWithoutChecking(from_obj,
267 to_obj);
268 } else if (type == HeapGraphEdge::kWeak) {
269 generator->verifier()->CheckWeakReference(from_obj, to_obj);
270 } else {
271 generator->verifier()->CheckStrongReference(from_obj, to_obj);
272 }
273 #endif
274 }
275
SetNamedReference(HeapGraphEdge::Type type,const char * name,HeapEntry * entry,HeapSnapshotGenerator * generator,ReferenceVerification verification)276 void HeapEntry::SetNamedReference(HeapGraphEdge::Type type, const char* name,
277 HeapEntry* entry,
278 HeapSnapshotGenerator* generator,
279 ReferenceVerification verification) {
280 ++children_count_;
281 snapshot_->edges().emplace_back(type, name, this, entry);
282 VerifyReference(type, entry, generator, verification);
283 }
284
SetIndexedReference(HeapGraphEdge::Type type,int index,HeapEntry * entry,HeapSnapshotGenerator * generator,ReferenceVerification verification)285 void HeapEntry::SetIndexedReference(HeapGraphEdge::Type type, int index,
286 HeapEntry* entry,
287 HeapSnapshotGenerator* generator,
288 ReferenceVerification verification) {
289 ++children_count_;
290 snapshot_->edges().emplace_back(type, index, this, entry);
291 VerifyReference(type, entry, generator, verification);
292 }
293
SetNamedAutoIndexReference(HeapGraphEdge::Type type,const char * description,HeapEntry * child,StringsStorage * names,HeapSnapshotGenerator * generator,ReferenceVerification verification)294 void HeapEntry::SetNamedAutoIndexReference(HeapGraphEdge::Type type,
295 const char* description,
296 HeapEntry* child,
297 StringsStorage* names,
298 HeapSnapshotGenerator* generator,
299 ReferenceVerification verification) {
300 int index = children_count_ + 1;
301 const char* name = description
302 ? names->GetFormatted("%d / %s", index, description)
303 : names->GetName(index);
304 SetNamedReference(type, name, child, generator, verification);
305 }
306
Print(const char * prefix,const char * edge_name,int max_depth,int indent) const307 void HeapEntry::Print(const char* prefix, const char* edge_name, int max_depth,
308 int indent) const {
309 STATIC_ASSERT(sizeof(unsigned) == sizeof(id()));
310 base::OS::Print("%6zu @%6u %*c %s%s: ", self_size(), id(), indent, ' ',
311 prefix, edge_name);
312 if (type() != kString) {
313 base::OS::Print("%s %.40s\n", TypeAsString(), name_);
314 } else {
315 base::OS::Print("\"");
316 const char* c = name_;
317 while (*c && (c - name_) <= 40) {
318 if (*c != '\n')
319 base::OS::Print("%c", *c);
320 else
321 base::OS::Print("\\n");
322 ++c;
323 }
324 base::OS::Print("\"\n");
325 }
326 if (--max_depth == 0) return;
327 for (auto i = children_begin(); i != children_end(); ++i) {
328 HeapGraphEdge& edge = **i;
329 const char* edge_prefix = "";
330 base::EmbeddedVector<char, 64> index;
331 edge_name = index.begin();
332 switch (edge.type()) {
333 case HeapGraphEdge::kContextVariable:
334 edge_prefix = "#";
335 edge_name = edge.name();
336 break;
337 case HeapGraphEdge::kElement:
338 SNPrintF(index, "%d", edge.index());
339 break;
340 case HeapGraphEdge::kInternal:
341 edge_prefix = "$";
342 edge_name = edge.name();
343 break;
344 case HeapGraphEdge::kProperty:
345 edge_name = edge.name();
346 break;
347 case HeapGraphEdge::kHidden:
348 edge_prefix = "$";
349 SNPrintF(index, "%d", edge.index());
350 break;
351 case HeapGraphEdge::kShortcut:
352 edge_prefix = "^";
353 edge_name = edge.name();
354 break;
355 case HeapGraphEdge::kWeak:
356 edge_prefix = "w";
357 edge_name = edge.name();
358 break;
359 default:
360 SNPrintF(index, "!!! unknown edge type: %d ", edge.type());
361 }
362 edge.to()->Print(edge_prefix, edge_name, max_depth, indent + 2);
363 }
364 }
365
TypeAsString() const366 const char* HeapEntry::TypeAsString() const {
367 switch (type()) {
368 case kHidden: return "/hidden/";
369 case kObject: return "/object/";
370 case kClosure: return "/closure/";
371 case kString: return "/string/";
372 case kCode: return "/code/";
373 case kArray: return "/array/";
374 case kRegExp: return "/regexp/";
375 case kHeapNumber: return "/number/";
376 case kNative: return "/native/";
377 case kSynthetic: return "/synthetic/";
378 case kConsString: return "/concatenated string/";
379 case kSlicedString: return "/sliced string/";
380 case kSymbol: return "/symbol/";
381 case kBigInt:
382 return "/bigint/";
383 default: return "???";
384 }
385 }
386
HeapSnapshot(HeapProfiler * profiler,bool global_objects_as_roots,bool capture_numeric_value)387 HeapSnapshot::HeapSnapshot(HeapProfiler* profiler, bool global_objects_as_roots,
388 bool capture_numeric_value)
389 : profiler_(profiler),
390 treat_global_objects_as_roots_(global_objects_as_roots),
391 capture_numeric_value_(capture_numeric_value) {
392 // It is very important to keep objects that form a heap snapshot
393 // as small as possible. Check assumptions about data structure sizes.
394 STATIC_ASSERT(kSystemPointerSize != 4 || sizeof(HeapGraphEdge) == 12);
395 STATIC_ASSERT(kSystemPointerSize != 8 || sizeof(HeapGraphEdge) == 24);
396 STATIC_ASSERT(kSystemPointerSize != 4 || sizeof(HeapEntry) == 32);
397 #if V8_CC_MSVC
398 STATIC_ASSERT(kSystemPointerSize != 8 || sizeof(HeapEntry) == 48);
399 #else // !V8_CC_MSVC
400 STATIC_ASSERT(kSystemPointerSize != 8 || sizeof(HeapEntry) == 40);
401 #endif // !V8_CC_MSVC
402 memset(&gc_subroot_entries_, 0, sizeof(gc_subroot_entries_));
403 }
404
Delete()405 void HeapSnapshot::Delete() {
406 profiler_->RemoveSnapshot(this);
407 }
408
RememberLastJSObjectId()409 void HeapSnapshot::RememberLastJSObjectId() {
410 max_snapshot_js_object_id_ = profiler_->heap_object_map()->last_assigned_id();
411 }
412
AddSyntheticRootEntries()413 void HeapSnapshot::AddSyntheticRootEntries() {
414 AddRootEntry();
415 AddGcRootsEntry();
416 SnapshotObjectId id = HeapObjectsMap::kGcRootsFirstSubrootId;
417 for (int root = 0; root < static_cast<int>(Root::kNumberOfRoots); root++) {
418 AddGcSubrootEntry(static_cast<Root>(root), id);
419 id += HeapObjectsMap::kObjectIdStep;
420 }
421 DCHECK_EQ(HeapObjectsMap::kFirstAvailableObjectId, id);
422 }
423
AddRootEntry()424 void HeapSnapshot::AddRootEntry() {
425 DCHECK_NULL(root_entry_);
426 DCHECK(entries_.empty()); // Root entry must be the first one.
427 root_entry_ = AddEntry(HeapEntry::kSynthetic, "",
428 HeapObjectsMap::kInternalRootObjectId, 0, 0);
429 DCHECK_EQ(1u, entries_.size());
430 DCHECK_EQ(root_entry_, &entries_.front());
431 }
432
AddGcRootsEntry()433 void HeapSnapshot::AddGcRootsEntry() {
434 DCHECK_NULL(gc_roots_entry_);
435 gc_roots_entry_ = AddEntry(HeapEntry::kSynthetic, "(GC roots)",
436 HeapObjectsMap::kGcRootsObjectId, 0, 0);
437 }
438
AddGcSubrootEntry(Root root,SnapshotObjectId id)439 void HeapSnapshot::AddGcSubrootEntry(Root root, SnapshotObjectId id) {
440 DCHECK_NULL(gc_subroot_entries_[static_cast<int>(root)]);
441 gc_subroot_entries_[static_cast<int>(root)] =
442 AddEntry(HeapEntry::kSynthetic, RootVisitor::RootName(root), id, 0, 0);
443 }
444
AddLocation(HeapEntry * entry,int scriptId,int line,int col)445 void HeapSnapshot::AddLocation(HeapEntry* entry, int scriptId, int line,
446 int col) {
447 locations_.emplace_back(entry->index(), scriptId, line, col);
448 }
449
AddEntry(HeapEntry::Type type,const char * name,SnapshotObjectId id,size_t size,unsigned trace_node_id)450 HeapEntry* HeapSnapshot::AddEntry(HeapEntry::Type type,
451 const char* name,
452 SnapshotObjectId id,
453 size_t size,
454 unsigned trace_node_id) {
455 DCHECK(!is_complete());
456 entries_.emplace_back(this, static_cast<int>(entries_.size()), type, name, id,
457 size, trace_node_id);
458 return &entries_.back();
459 }
460
FillChildren()461 void HeapSnapshot::FillChildren() {
462 DCHECK(children().empty());
463 int children_index = 0;
464 for (HeapEntry& entry : entries()) {
465 children_index = entry.set_children_index(children_index);
466 }
467 DCHECK_EQ(edges().size(), static_cast<size_t>(children_index));
468 children().resize(edges().size());
469 for (HeapGraphEdge& edge : edges()) {
470 edge.from()->add_child(&edge);
471 }
472 }
473
GetEntryById(SnapshotObjectId id)474 HeapEntry* HeapSnapshot::GetEntryById(SnapshotObjectId id) {
475 if (entries_by_id_cache_.empty()) {
476 CHECK(is_complete());
477 entries_by_id_cache_.reserve(entries_.size());
478 for (HeapEntry& entry : entries_) {
479 entries_by_id_cache_.emplace(entry.id(), &entry);
480 }
481 }
482 auto it = entries_by_id_cache_.find(id);
483 return it != entries_by_id_cache_.end() ? it->second : nullptr;
484 }
485
Print(int max_depth)486 void HeapSnapshot::Print(int max_depth) {
487 root()->Print("", "", max_depth, 0);
488 }
489
490 // We split IDs on evens for embedder objects (see
491 // HeapObjectsMap::GenerateId) and odds for native objects.
492 const SnapshotObjectId HeapObjectsMap::kInternalRootObjectId = 1;
493 const SnapshotObjectId HeapObjectsMap::kGcRootsObjectId =
494 HeapObjectsMap::kInternalRootObjectId + HeapObjectsMap::kObjectIdStep;
495 const SnapshotObjectId HeapObjectsMap::kGcRootsFirstSubrootId =
496 HeapObjectsMap::kGcRootsObjectId + HeapObjectsMap::kObjectIdStep;
497 const SnapshotObjectId HeapObjectsMap::kFirstAvailableObjectId =
498 HeapObjectsMap::kGcRootsFirstSubrootId +
499 static_cast<int>(Root::kNumberOfRoots) * HeapObjectsMap::kObjectIdStep;
500
HeapObjectsMap(Heap * heap)501 HeapObjectsMap::HeapObjectsMap(Heap* heap)
502 : next_id_(kFirstAvailableObjectId), heap_(heap) {
503 // The dummy element at zero index is needed as entries_map_ cannot hold
504 // an entry with zero value. Otherwise it's impossible to tell if
505 // LookupOrInsert has added a new item or just returning exisiting one
506 // having the value of zero.
507 entries_.emplace_back(0, kNullAddress, 0, true);
508 }
509
MoveObject(Address from,Address to,int object_size)510 bool HeapObjectsMap::MoveObject(Address from, Address to, int object_size) {
511 DCHECK_NE(kNullAddress, to);
512 DCHECK_NE(kNullAddress, from);
513 if (from == to) return false;
514 void* from_value = entries_map_.Remove(reinterpret_cast<void*>(from),
515 ComputeAddressHash(from));
516 if (from_value == nullptr) {
517 // It may occur that some untracked object moves to an address X and there
518 // is a tracked object at that address. In this case we should remove the
519 // entry as we know that the object has died.
520 void* to_value = entries_map_.Remove(reinterpret_cast<void*>(to),
521 ComputeAddressHash(to));
522 if (to_value != nullptr) {
523 int to_entry_info_index =
524 static_cast<int>(reinterpret_cast<intptr_t>(to_value));
525 entries_.at(to_entry_info_index).addr = kNullAddress;
526 }
527 } else {
528 base::HashMap::Entry* to_entry = entries_map_.LookupOrInsert(
529 reinterpret_cast<void*>(to), ComputeAddressHash(to));
530 if (to_entry->value != nullptr) {
531 // We found the existing entry with to address for an old object.
532 // Without this operation we will have two EntryInfo's with the same
533 // value in addr field. It is bad because later at RemoveDeadEntries
534 // one of this entry will be removed with the corresponding entries_map_
535 // entry.
536 int to_entry_info_index =
537 static_cast<int>(reinterpret_cast<intptr_t>(to_entry->value));
538 entries_.at(to_entry_info_index).addr = kNullAddress;
539 }
540 int from_entry_info_index =
541 static_cast<int>(reinterpret_cast<intptr_t>(from_value));
542 entries_.at(from_entry_info_index).addr = to;
543 // Size of an object can change during its life, so to keep information
544 // about the object in entries_ consistent, we have to adjust size when the
545 // object is migrated.
546 if (FLAG_heap_profiler_trace_objects) {
547 PrintF("Move object from %p to %p old size %6d new size %6d\n",
548 reinterpret_cast<void*>(from), reinterpret_cast<void*>(to),
549 entries_.at(from_entry_info_index).size, object_size);
550 }
551 entries_.at(from_entry_info_index).size = object_size;
552 to_entry->value = from_value;
553 }
554 return from_value != nullptr;
555 }
556
557
UpdateObjectSize(Address addr,int size)558 void HeapObjectsMap::UpdateObjectSize(Address addr, int size) {
559 FindOrAddEntry(addr, size, false);
560 }
561
562
FindEntry(Address addr)563 SnapshotObjectId HeapObjectsMap::FindEntry(Address addr) {
564 base::HashMap::Entry* entry = entries_map_.Lookup(
565 reinterpret_cast<void*>(addr), ComputeAddressHash(addr));
566 if (entry == nullptr) return v8::HeapProfiler::kUnknownObjectId;
567 int entry_index = static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
568 EntryInfo& entry_info = entries_.at(entry_index);
569 DCHECK(static_cast<uint32_t>(entries_.size()) > entries_map_.occupancy());
570 return entry_info.id;
571 }
572
573
FindOrAddEntry(Address addr,unsigned int size,bool accessed)574 SnapshotObjectId HeapObjectsMap::FindOrAddEntry(Address addr,
575 unsigned int size,
576 bool accessed) {
577 DCHECK(static_cast<uint32_t>(entries_.size()) > entries_map_.occupancy());
578 base::HashMap::Entry* entry = entries_map_.LookupOrInsert(
579 reinterpret_cast<void*>(addr), ComputeAddressHash(addr));
580 if (entry->value != nullptr) {
581 int entry_index =
582 static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
583 EntryInfo& entry_info = entries_.at(entry_index);
584 entry_info.accessed = accessed;
585 if (FLAG_heap_profiler_trace_objects) {
586 PrintF("Update object size : %p with old size %d and new size %d\n",
587 reinterpret_cast<void*>(addr), entry_info.size, size);
588 }
589 entry_info.size = size;
590 return entry_info.id;
591 }
592 entry->value = reinterpret_cast<void*>(entries_.size());
593 SnapshotObjectId id = get_next_id();
594 entries_.push_back(EntryInfo(id, addr, size, accessed));
595 DCHECK(static_cast<uint32_t>(entries_.size()) > entries_map_.occupancy());
596 return id;
597 }
598
FindMergedNativeEntry(NativeObject addr)599 SnapshotObjectId HeapObjectsMap::FindMergedNativeEntry(NativeObject addr) {
600 auto it = merged_native_entries_map_.find(addr);
601 if (it == merged_native_entries_map_.end())
602 return v8::HeapProfiler::kUnknownObjectId;
603 return entries_[it->second].id;
604 }
605
AddMergedNativeEntry(NativeObject addr,Address canonical_addr)606 void HeapObjectsMap::AddMergedNativeEntry(NativeObject addr,
607 Address canonical_addr) {
608 base::HashMap::Entry* entry =
609 entries_map_.Lookup(reinterpret_cast<void*>(canonical_addr),
610 ComputeAddressHash(canonical_addr));
611 auto result = merged_native_entries_map_.insert(
612 {addr, reinterpret_cast<size_t>(entry->value)});
613 if (!result.second) {
614 result.first->second = reinterpret_cast<size_t>(entry->value);
615 }
616 }
617
StopHeapObjectsTracking()618 void HeapObjectsMap::StopHeapObjectsTracking() { time_intervals_.clear(); }
619
UpdateHeapObjectsMap()620 void HeapObjectsMap::UpdateHeapObjectsMap() {
621 if (FLAG_heap_profiler_trace_objects) {
622 PrintF("Begin HeapObjectsMap::UpdateHeapObjectsMap. map has %d entries.\n",
623 entries_map_.occupancy());
624 }
625 heap_->PreciseCollectAllGarbage(Heap::kNoGCFlags,
626 GarbageCollectionReason::kHeapProfiler);
627 PtrComprCageBase cage_base(heap_->isolate());
628 CombinedHeapObjectIterator iterator(heap_);
629 for (HeapObject obj = iterator.Next(); !obj.is_null();
630 obj = iterator.Next()) {
631 int object_size = obj.Size(cage_base);
632 FindOrAddEntry(obj.address(), object_size);
633 if (FLAG_heap_profiler_trace_objects) {
634 PrintF("Update object : %p %6d. Next address is %p\n",
635 reinterpret_cast<void*>(obj.address()), object_size,
636 reinterpret_cast<void*>(obj.address() + object_size));
637 }
638 }
639 RemoveDeadEntries();
640 if (FLAG_heap_profiler_trace_objects) {
641 PrintF("End HeapObjectsMap::UpdateHeapObjectsMap. map has %d entries.\n",
642 entries_map_.occupancy());
643 }
644 }
645
PushHeapObjectsStats(OutputStream * stream,int64_t * timestamp_us)646 SnapshotObjectId HeapObjectsMap::PushHeapObjectsStats(OutputStream* stream,
647 int64_t* timestamp_us) {
648 UpdateHeapObjectsMap();
649 time_intervals_.emplace_back(next_id_);
650 int prefered_chunk_size = stream->GetChunkSize();
651 std::vector<v8::HeapStatsUpdate> stats_buffer;
652 DCHECK(!entries_.empty());
653 EntryInfo* entry_info = &entries_.front();
654 EntryInfo* end_entry_info = &entries_.back() + 1;
655 for (size_t time_interval_index = 0;
656 time_interval_index < time_intervals_.size(); ++time_interval_index) {
657 TimeInterval& time_interval = time_intervals_[time_interval_index];
658 SnapshotObjectId time_interval_id = time_interval.id;
659 uint32_t entries_size = 0;
660 EntryInfo* start_entry_info = entry_info;
661 while (entry_info < end_entry_info && entry_info->id < time_interval_id) {
662 entries_size += entry_info->size;
663 ++entry_info;
664 }
665 uint32_t entries_count =
666 static_cast<uint32_t>(entry_info - start_entry_info);
667 if (time_interval.count != entries_count ||
668 time_interval.size != entries_size) {
669 stats_buffer.emplace_back(static_cast<uint32_t>(time_interval_index),
670 time_interval.count = entries_count,
671 time_interval.size = entries_size);
672 if (static_cast<int>(stats_buffer.size()) >= prefered_chunk_size) {
673 OutputStream::WriteResult result = stream->WriteHeapStatsChunk(
674 &stats_buffer.front(), static_cast<int>(stats_buffer.size()));
675 if (result == OutputStream::kAbort) return last_assigned_id();
676 stats_buffer.clear();
677 }
678 }
679 }
680 DCHECK(entry_info == end_entry_info);
681 if (!stats_buffer.empty()) {
682 OutputStream::WriteResult result = stream->WriteHeapStatsChunk(
683 &stats_buffer.front(), static_cast<int>(stats_buffer.size()));
684 if (result == OutputStream::kAbort) return last_assigned_id();
685 }
686 stream->EndOfStream();
687 if (timestamp_us) {
688 *timestamp_us =
689 (time_intervals_.back().timestamp - time_intervals_.front().timestamp)
690 .InMicroseconds();
691 }
692 return last_assigned_id();
693 }
694
695
RemoveDeadEntries()696 void HeapObjectsMap::RemoveDeadEntries() {
697 DCHECK(entries_.size() > 0 && entries_.at(0).id == 0 &&
698 entries_.at(0).addr == kNullAddress);
699
700 // Build up temporary reverse map.
701 std::unordered_map<size_t, NativeObject> reverse_merged_native_entries_map;
702 for (const auto& it : merged_native_entries_map_) {
703 auto result =
704 reverse_merged_native_entries_map.emplace(it.second, it.first);
705 DCHECK(result.second);
706 USE(result);
707 }
708
709 size_t first_free_entry = 1;
710 for (size_t i = 1; i < entries_.size(); ++i) {
711 EntryInfo& entry_info = entries_.at(i);
712 auto merged_reverse_it = reverse_merged_native_entries_map.find(i);
713 if (entry_info.accessed) {
714 if (first_free_entry != i) {
715 entries_.at(first_free_entry) = entry_info;
716 }
717 entries_.at(first_free_entry).accessed = false;
718 base::HashMap::Entry* entry =
719 entries_map_.Lookup(reinterpret_cast<void*>(entry_info.addr),
720 ComputeAddressHash(entry_info.addr));
721 DCHECK(entry);
722 entry->value = reinterpret_cast<void*>(first_free_entry);
723 if (merged_reverse_it != reverse_merged_native_entries_map.end()) {
724 auto it = merged_native_entries_map_.find(merged_reverse_it->second);
725 DCHECK_NE(merged_native_entries_map_.end(), it);
726 it->second = first_free_entry;
727 }
728 ++first_free_entry;
729 } else {
730 if (entry_info.addr) {
731 entries_map_.Remove(reinterpret_cast<void*>(entry_info.addr),
732 ComputeAddressHash(entry_info.addr));
733 if (merged_reverse_it != reverse_merged_native_entries_map.end()) {
734 merged_native_entries_map_.erase(merged_reverse_it->second);
735 }
736 }
737 }
738 }
739 entries_.erase(entries_.begin() + first_free_entry, entries_.end());
740
741 DCHECK(static_cast<uint32_t>(entries_.size()) - 1 ==
742 entries_map_.occupancy());
743 }
744
V8HeapExplorer(HeapSnapshot * snapshot,SnapshottingProgressReportingInterface * progress,v8::HeapProfiler::ObjectNameResolver * resolver)745 V8HeapExplorer::V8HeapExplorer(HeapSnapshot* snapshot,
746 SnapshottingProgressReportingInterface* progress,
747 v8::HeapProfiler::ObjectNameResolver* resolver)
748 : heap_(snapshot->profiler()->heap_object_map()->heap()),
749 snapshot_(snapshot),
750 names_(snapshot_->profiler()->names()),
751 heap_object_map_(snapshot_->profiler()->heap_object_map()),
752 progress_(progress),
753 generator_(nullptr),
754 global_object_name_resolver_(resolver) {}
755
AllocateEntry(HeapThing ptr)756 HeapEntry* V8HeapExplorer::AllocateEntry(HeapThing ptr) {
757 return AddEntry(HeapObject::cast(Object(reinterpret_cast<Address>(ptr))));
758 }
759
AllocateEntry(Smi smi)760 HeapEntry* V8HeapExplorer::AllocateEntry(Smi smi) {
761 SnapshotObjectId id = heap_object_map_->get_next_id();
762 HeapEntry* entry =
763 snapshot_->AddEntry(HeapEntry::kHeapNumber, "smi number", id, 0, 0);
764 // XXX: Smis do not appear in CombinedHeapObjectIterator, so we need to
765 // extract the references here
766 ExtractNumberReference(entry, smi);
767 return entry;
768 }
769
ExtractLocation(HeapEntry * entry,HeapObject object)770 void V8HeapExplorer::ExtractLocation(HeapEntry* entry, HeapObject object) {
771 if (object.IsJSFunction()) {
772 JSFunction func = JSFunction::cast(object);
773 ExtractLocationForJSFunction(entry, func);
774
775 } else if (object.IsJSGeneratorObject()) {
776 JSGeneratorObject gen = JSGeneratorObject::cast(object);
777 ExtractLocationForJSFunction(entry, gen.function());
778
779 } else if (object.IsJSObject()) {
780 JSObject obj = JSObject::cast(object);
781 JSFunction maybe_constructor = GetConstructor(heap_->isolate(), obj);
782
783 if (!maybe_constructor.is_null()) {
784 ExtractLocationForJSFunction(entry, maybe_constructor);
785 }
786 }
787 }
788
ExtractLocationForJSFunction(HeapEntry * entry,JSFunction func)789 void V8HeapExplorer::ExtractLocationForJSFunction(HeapEntry* entry,
790 JSFunction func) {
791 if (!func.shared().script().IsScript()) return;
792 Script script = Script::cast(func.shared().script());
793 int scriptId = script.id();
794 int start = func.shared().StartPosition();
795 Script::PositionInfo info;
796 script.GetPositionInfo(start, &info, Script::WITH_OFFSET);
797 snapshot_->AddLocation(entry, scriptId, info.line, info.column);
798 }
799
AddEntry(HeapObject object)800 HeapEntry* V8HeapExplorer::AddEntry(HeapObject object) {
801 if (object.IsJSFunction()) {
802 JSFunction func = JSFunction::cast(object);
803 SharedFunctionInfo shared = func.shared();
804 const char* name = names_->GetName(shared.Name());
805 return AddEntry(object, HeapEntry::kClosure, name);
806 } else if (object.IsJSBoundFunction()) {
807 return AddEntry(object, HeapEntry::kClosure, "native_bind");
808 } else if (object.IsJSRegExp()) {
809 JSRegExp re = JSRegExp::cast(object);
810 return AddEntry(object, HeapEntry::kRegExp, names_->GetName(re.source()));
811 } else if (object.IsJSObject()) {
812 // TODO(v8:12674) Fix and run full gcmole.
813 DisableGCMole no_gcmole;
814 const char* name = names_->GetName(
815 GetConstructorName(heap_->isolate(), JSObject::cast(object)));
816 if (object.IsJSGlobalObject()) {
817 auto it = global_object_tag_map_.find(JSGlobalObject::cast(object));
818 if (it != global_object_tag_map_.end()) {
819 name = names_->GetFormatted("%s / %s", name, it->second);
820 }
821 }
822 return AddEntry(object, HeapEntry::kObject, name);
823 } else if (object.IsString()) {
824 String string = String::cast(object);
825 if (string.IsConsString()) {
826 return AddEntry(object, HeapEntry::kConsString, "(concatenated string)");
827 } else if (string.IsSlicedString()) {
828 return AddEntry(object, HeapEntry::kSlicedString, "(sliced string)");
829 } else {
830 return AddEntry(object, HeapEntry::kString,
831 names_->GetName(String::cast(object)));
832 }
833 } else if (object.IsSymbol()) {
834 if (Symbol::cast(object).is_private())
835 return AddEntry(object, HeapEntry::kHidden, "private symbol");
836 else
837 return AddEntry(object, HeapEntry::kSymbol, "symbol");
838 } else if (object.IsBigInt()) {
839 return AddEntry(object, HeapEntry::kBigInt, "bigint");
840 } else if (object.IsCode()) {
841 return AddEntry(object, HeapEntry::kCode, "");
842 } else if (object.IsSharedFunctionInfo()) {
843 String name = SharedFunctionInfo::cast(object).Name();
844 return AddEntry(object, HeapEntry::kCode, names_->GetName(name));
845 } else if (object.IsScript()) {
846 Object name = Script::cast(object).name();
847 return AddEntry(object, HeapEntry::kCode,
848 name.IsString() ? names_->GetName(String::cast(name)) : "");
849 } else if (object.IsNativeContext()) {
850 return AddEntry(object, HeapEntry::kHidden, "system / NativeContext");
851 } else if (object.IsContext()) {
852 return AddEntry(object, HeapEntry::kObject, "system / Context");
853 } else if (object.IsHeapNumber()) {
854 return AddEntry(object, HeapEntry::kHeapNumber, "heap number");
855 }
856 return AddEntry(object, GetSystemEntryType(object),
857 GetSystemEntryName(object));
858 }
859
AddEntry(HeapObject object,HeapEntry::Type type,const char * name)860 HeapEntry* V8HeapExplorer::AddEntry(HeapObject object, HeapEntry::Type type,
861 const char* name) {
862 if (FLAG_heap_profiler_show_hidden_objects && type == HeapEntry::kHidden) {
863 type = HeapEntry::kNative;
864 }
865 PtrComprCageBase cage_base(isolate());
866 return AddEntry(object.address(), type, name, object.Size(cage_base));
867 }
868
AddEntry(Address address,HeapEntry::Type type,const char * name,size_t size)869 HeapEntry* V8HeapExplorer::AddEntry(Address address,
870 HeapEntry::Type type,
871 const char* name,
872 size_t size) {
873 SnapshotObjectId object_id = heap_object_map_->FindOrAddEntry(
874 address, static_cast<unsigned int>(size));
875 unsigned trace_node_id = 0;
876 if (AllocationTracker* allocation_tracker =
877 snapshot_->profiler()->allocation_tracker()) {
878 trace_node_id =
879 allocation_tracker->address_to_trace()->GetTraceNodeId(address);
880 }
881 return snapshot_->AddEntry(type, name, object_id, size, trace_node_id);
882 }
883
GetSystemEntryName(HeapObject object)884 const char* V8HeapExplorer::GetSystemEntryName(HeapObject object) {
885 if (object.IsMap()) {
886 switch (Map::cast(object).instance_type()) {
887 #define MAKE_STRING_MAP_CASE(instance_type, size, name, Name) \
888 case instance_type: return "system / Map (" #Name ")";
889 STRING_TYPE_LIST(MAKE_STRING_MAP_CASE)
890 #undef MAKE_STRING_MAP_CASE
891 default: return "system / Map";
892 }
893 }
894
895 InstanceType type = object.map().instance_type();
896
897 // Empty string names are special: TagObject can overwrite them, and devtools
898 // will report them as "(internal array)".
899 if (InstanceTypeChecker::IsFixedArray(type) ||
900 InstanceTypeChecker::IsFixedDoubleArray(type) ||
901 InstanceTypeChecker::IsByteArray(type)) {
902 return "";
903 }
904
905 switch (type) {
906 #define MAKE_TORQUE_CASE(Name, TYPE) \
907 case TYPE: \
908 return "system / " #Name;
909 // The following lists include every non-String instance type.
910 // This includes a few types that already have non-"system" names assigned
911 // by AddEntry, but this is a convenient way to avoid manual upkeep here.
912 TORQUE_INSTANCE_CHECKERS_SINGLE_FULLY_DEFINED(MAKE_TORQUE_CASE)
913 TORQUE_INSTANCE_CHECKERS_MULTIPLE_FULLY_DEFINED(MAKE_TORQUE_CASE)
914 TORQUE_INSTANCE_CHECKERS_SINGLE_ONLY_DECLARED(MAKE_TORQUE_CASE)
915 TORQUE_INSTANCE_CHECKERS_MULTIPLE_ONLY_DECLARED(MAKE_TORQUE_CASE)
916 #undef MAKE_TORQUE_CASE
917
918 // Strings were already handled by AddEntry.
919 #define MAKE_STRING_CASE(instance_type, size, name, Name) \
920 case instance_type: \
921 UNREACHABLE();
922 STRING_TYPE_LIST(MAKE_STRING_CASE)
923 #undef MAKE_STRING_CASE
924 }
925 }
926
GetSystemEntryType(HeapObject object)927 HeapEntry::Type V8HeapExplorer::GetSystemEntryType(HeapObject object) {
928 InstanceType type = object.map().instance_type();
929 if (InstanceTypeChecker::IsAllocationSite(type) ||
930 InstanceTypeChecker::IsArrayBoilerplateDescription(type) ||
931 InstanceTypeChecker::IsBytecodeArray(type) ||
932 InstanceTypeChecker::IsClosureFeedbackCellArray(type) ||
933 InstanceTypeChecker::IsCodeDataContainer(type) ||
934 InstanceTypeChecker::IsFeedbackCell(type) ||
935 InstanceTypeChecker::IsFeedbackMetadata(type) ||
936 InstanceTypeChecker::IsFeedbackVector(type) ||
937 InstanceTypeChecker::IsInterpreterData(type) ||
938 InstanceTypeChecker::IsLoadHandler(type) ||
939 InstanceTypeChecker::IsObjectBoilerplateDescription(type) ||
940 InstanceTypeChecker::IsPreparseData(type) ||
941 InstanceTypeChecker::IsRegExpBoilerplateDescription(type) ||
942 InstanceTypeChecker::IsScopeInfo(type) ||
943 InstanceTypeChecker::IsStoreHandler(type) ||
944 InstanceTypeChecker::IsTemplateObjectDescription(type) ||
945 InstanceTypeChecker::IsTurbofanType(type) ||
946 InstanceTypeChecker::IsUncompiledData(type)) {
947 return HeapEntry::kCode;
948 }
949
950 // This check must come second, because some subtypes of FixedArray are
951 // determined above to represent code content.
952 if (InstanceTypeChecker::IsFixedArray(type) ||
953 InstanceTypeChecker::IsFixedDoubleArray(type) ||
954 InstanceTypeChecker::IsByteArray(type)) {
955 return HeapEntry::kArray;
956 }
957
958 return HeapEntry::kHidden;
959 }
960
EstimateObjectsCount()961 uint32_t V8HeapExplorer::EstimateObjectsCount() {
962 CombinedHeapObjectIterator it(heap_, HeapObjectIterator::kFilterUnreachable);
963 uint32_t objects_count = 0;
964 // Avoid overflowing the objects count. In worst case, we will show the same
965 // progress for a longer period of time, but we do not expect to have that
966 // many objects.
967 while (!it.Next().is_null() &&
968 objects_count != std::numeric_limits<uint32_t>::max())
969 ++objects_count;
970 return objects_count;
971 }
972
973 class IndexedReferencesExtractor : public ObjectVisitorWithCageBases {
974 public:
IndexedReferencesExtractor(V8HeapExplorer * generator,HeapObject parent_obj,HeapEntry * parent)975 IndexedReferencesExtractor(V8HeapExplorer* generator, HeapObject parent_obj,
976 HeapEntry* parent)
977 : ObjectVisitorWithCageBases(generator->isolate()),
978 generator_(generator),
979 parent_obj_(parent_obj),
980 parent_start_(parent_obj_.RawMaybeWeakField(0)),
981 parent_end_(
982 parent_obj_.RawMaybeWeakField(parent_obj_.Size(cage_base()))),
983 parent_(parent),
984 next_index_(0) {}
VisitPointers(HeapObject host,ObjectSlot start,ObjectSlot end)985 void VisitPointers(HeapObject host, ObjectSlot start,
986 ObjectSlot end) override {
987 VisitPointers(host, MaybeObjectSlot(start), MaybeObjectSlot(end));
988 }
VisitMapPointer(HeapObject object)989 void VisitMapPointer(HeapObject object) override {
990 VisitSlotImpl(cage_base(), object.map_slot());
991 }
VisitPointers(HeapObject host,MaybeObjectSlot start,MaybeObjectSlot end)992 void VisitPointers(HeapObject host, MaybeObjectSlot start,
993 MaybeObjectSlot end) override {
994 // [start,end) must be a sub-region of [parent_start_, parent_end), i.e.
995 // all the slots must point inside the object.
996 CHECK_LE(parent_start_, start);
997 CHECK_LE(end, parent_end_);
998 for (MaybeObjectSlot slot = start; slot < end; ++slot) {
999 VisitSlotImpl(cage_base(), slot);
1000 }
1001 }
1002
VisitCodePointer(HeapObject host,CodeObjectSlot slot)1003 void VisitCodePointer(HeapObject host, CodeObjectSlot slot) override {
1004 CHECK(V8_EXTERNAL_CODE_SPACE_BOOL);
1005 VisitSlotImpl(code_cage_base(), slot);
1006 }
1007
VisitCodeTarget(Code host,RelocInfo * rinfo)1008 void VisitCodeTarget(Code host, RelocInfo* rinfo) override {
1009 Code target = Code::GetCodeFromTargetAddress(rinfo->target_address());
1010 VisitHeapObjectImpl(target, -1);
1011 }
1012
VisitEmbeddedPointer(Code host,RelocInfo * rinfo)1013 void VisitEmbeddedPointer(Code host, RelocInfo* rinfo) override {
1014 HeapObject object = rinfo->target_object(cage_base());
1015 if (host.IsWeakObject(object)) {
1016 generator_->SetWeakReference(parent_, next_index_++, object, {});
1017 } else {
1018 VisitHeapObjectImpl(object, -1);
1019 }
1020 }
1021
1022 private:
1023 template <typename TSlot>
VisitSlotImpl(PtrComprCageBase cage_base,TSlot slot)1024 V8_INLINE void VisitSlotImpl(PtrComprCageBase cage_base, TSlot slot) {
1025 int field_index =
1026 static_cast<int>(MaybeObjectSlot(slot.address()) - parent_start_);
1027 if (generator_->visited_fields_[field_index]) {
1028 generator_->visited_fields_[field_index] = false;
1029 } else {
1030 HeapObject heap_object;
1031 auto loaded_value = slot.load(cage_base);
1032 if (loaded_value.GetHeapObjectIfStrong(&heap_object)) {
1033 VisitHeapObjectImpl(heap_object, field_index);
1034 } else if (loaded_value.GetHeapObjectIfWeak(&heap_object)) {
1035 generator_->SetWeakReference(parent_, next_index_++, heap_object, {});
1036 }
1037 }
1038 }
1039
VisitHeapObjectImpl(HeapObject heap_object,int field_index)1040 V8_INLINE void VisitHeapObjectImpl(HeapObject heap_object, int field_index) {
1041 DCHECK_LE(-1, field_index);
1042 // The last parameter {field_offset} is only used to check some well-known
1043 // skipped references, so passing -1 * kTaggedSize for objects embedded
1044 // into code is fine.
1045 generator_->SetHiddenReference(parent_obj_, parent_, next_index_++,
1046 heap_object, field_index * kTaggedSize);
1047 }
1048
1049 V8HeapExplorer* generator_;
1050 HeapObject parent_obj_;
1051 MaybeObjectSlot parent_start_;
1052 MaybeObjectSlot parent_end_;
1053 HeapEntry* parent_;
1054 int next_index_;
1055 };
1056
ExtractReferences(HeapEntry * entry,HeapObject obj)1057 void V8HeapExplorer::ExtractReferences(HeapEntry* entry, HeapObject obj) {
1058 if (obj.IsJSGlobalProxy()) {
1059 ExtractJSGlobalProxyReferences(entry, JSGlobalProxy::cast(obj));
1060 } else if (obj.IsJSArrayBuffer()) {
1061 ExtractJSArrayBufferReferences(entry, JSArrayBuffer::cast(obj));
1062 } else if (obj.IsJSObject()) {
1063 if (obj.IsJSWeakSet()) {
1064 ExtractJSWeakCollectionReferences(entry, JSWeakSet::cast(obj));
1065 } else if (obj.IsJSWeakMap()) {
1066 ExtractJSWeakCollectionReferences(entry, JSWeakMap::cast(obj));
1067 } else if (obj.IsJSSet()) {
1068 ExtractJSCollectionReferences(entry, JSSet::cast(obj));
1069 } else if (obj.IsJSMap()) {
1070 ExtractJSCollectionReferences(entry, JSMap::cast(obj));
1071 } else if (obj.IsJSPromise()) {
1072 ExtractJSPromiseReferences(entry, JSPromise::cast(obj));
1073 } else if (obj.IsJSGeneratorObject()) {
1074 ExtractJSGeneratorObjectReferences(entry, JSGeneratorObject::cast(obj));
1075 } else if (obj.IsJSWeakRef()) {
1076 ExtractJSWeakRefReferences(entry, JSWeakRef::cast(obj));
1077 }
1078 ExtractJSObjectReferences(entry, JSObject::cast(obj));
1079 } else if (obj.IsString()) {
1080 ExtractStringReferences(entry, String::cast(obj));
1081 } else if (obj.IsSymbol()) {
1082 ExtractSymbolReferences(entry, Symbol::cast(obj));
1083 } else if (obj.IsMap()) {
1084 ExtractMapReferences(entry, Map::cast(obj));
1085 } else if (obj.IsSharedFunctionInfo()) {
1086 ExtractSharedFunctionInfoReferences(entry, SharedFunctionInfo::cast(obj));
1087 } else if (obj.IsScript()) {
1088 ExtractScriptReferences(entry, Script::cast(obj));
1089 } else if (obj.IsAccessorInfo()) {
1090 ExtractAccessorInfoReferences(entry, AccessorInfo::cast(obj));
1091 } else if (obj.IsAccessorPair()) {
1092 ExtractAccessorPairReferences(entry, AccessorPair::cast(obj));
1093 } else if (obj.IsCode()) {
1094 ExtractCodeReferences(entry, Code::cast(obj));
1095 } else if (obj.IsCell()) {
1096 ExtractCellReferences(entry, Cell::cast(obj));
1097 } else if (obj.IsFeedbackCell()) {
1098 ExtractFeedbackCellReferences(entry, FeedbackCell::cast(obj));
1099 } else if (obj.IsPropertyCell()) {
1100 ExtractPropertyCellReferences(entry, PropertyCell::cast(obj));
1101 } else if (obj.IsAllocationSite()) {
1102 ExtractAllocationSiteReferences(entry, AllocationSite::cast(obj));
1103 } else if (obj.IsArrayBoilerplateDescription()) {
1104 ExtractArrayBoilerplateDescriptionReferences(
1105 entry, ArrayBoilerplateDescription::cast(obj));
1106 } else if (obj.IsRegExpBoilerplateDescription()) {
1107 ExtractRegExpBoilerplateDescriptionReferences(
1108 entry, RegExpBoilerplateDescription::cast(obj));
1109 } else if (obj.IsFeedbackVector()) {
1110 ExtractFeedbackVectorReferences(entry, FeedbackVector::cast(obj));
1111 } else if (obj.IsDescriptorArray()) {
1112 ExtractDescriptorArrayReferences(entry, DescriptorArray::cast(obj));
1113 } else if (obj.IsWeakFixedArray()) {
1114 ExtractWeakArrayReferences(WeakFixedArray::kHeaderSize, entry,
1115 WeakFixedArray::cast(obj));
1116 } else if (obj.IsWeakArrayList()) {
1117 ExtractWeakArrayReferences(WeakArrayList::kHeaderSize, entry,
1118 WeakArrayList::cast(obj));
1119 } else if (obj.IsContext()) {
1120 ExtractContextReferences(entry, Context::cast(obj));
1121 } else if (obj.IsEphemeronHashTable()) {
1122 ExtractEphemeronHashTableReferences(entry, EphemeronHashTable::cast(obj));
1123 } else if (obj.IsFixedArray()) {
1124 ExtractFixedArrayReferences(entry, FixedArray::cast(obj));
1125 } else if (obj.IsWeakCell()) {
1126 ExtractWeakCellReferences(entry, WeakCell::cast(obj));
1127 } else if (obj.IsHeapNumber()) {
1128 if (snapshot_->capture_numeric_value()) {
1129 ExtractNumberReference(entry, obj);
1130 }
1131 } else if (obj.IsBytecodeArray()) {
1132 ExtractBytecodeArrayReferences(entry, BytecodeArray::cast(obj));
1133 } else if (obj.IsScopeInfo()) {
1134 ExtractScopeInfoReferences(entry, ScopeInfo::cast(obj));
1135 }
1136 }
1137
ExtractJSGlobalProxyReferences(HeapEntry * entry,JSGlobalProxy proxy)1138 void V8HeapExplorer::ExtractJSGlobalProxyReferences(HeapEntry* entry,
1139 JSGlobalProxy proxy) {
1140 SetInternalReference(entry, "native_context", proxy.native_context(),
1141 JSGlobalProxy::kNativeContextOffset);
1142 }
1143
ExtractJSObjectReferences(HeapEntry * entry,JSObject js_obj)1144 void V8HeapExplorer::ExtractJSObjectReferences(HeapEntry* entry,
1145 JSObject js_obj) {
1146 HeapObject obj = js_obj;
1147 ExtractPropertyReferences(js_obj, entry);
1148 ExtractElementReferences(js_obj, entry);
1149 ExtractInternalReferences(js_obj, entry);
1150 Isolate* isolate = Isolate::FromHeap(heap_);
1151 PrototypeIterator iter(isolate, js_obj);
1152 ReadOnlyRoots roots(isolate);
1153 SetPropertyReference(entry, roots.proto_string(), iter.GetCurrent());
1154 if (obj.IsJSBoundFunction()) {
1155 JSBoundFunction js_fun = JSBoundFunction::cast(obj);
1156 TagObject(js_fun.bound_arguments(), "(bound arguments)");
1157 SetInternalReference(entry, "bindings", js_fun.bound_arguments(),
1158 JSBoundFunction::kBoundArgumentsOffset);
1159 SetInternalReference(entry, "bound_this", js_fun.bound_this(),
1160 JSBoundFunction::kBoundThisOffset);
1161 SetInternalReference(entry, "bound_function",
1162 js_fun.bound_target_function(),
1163 JSBoundFunction::kBoundTargetFunctionOffset);
1164 FixedArray bindings = js_fun.bound_arguments();
1165 for (int i = 0; i < bindings.length(); i++) {
1166 const char* reference_name = names_->GetFormatted("bound_argument_%d", i);
1167 SetNativeBindReference(entry, reference_name, bindings.get(i));
1168 }
1169 } else if (obj.IsJSFunction()) {
1170 JSFunction js_fun = JSFunction::cast(js_obj);
1171 if (js_fun.has_prototype_slot()) {
1172 Object proto_or_map = js_fun.prototype_or_initial_map(kAcquireLoad);
1173 if (!proto_or_map.IsTheHole(isolate)) {
1174 if (!proto_or_map.IsMap()) {
1175 SetPropertyReference(entry, roots.prototype_string(), proto_or_map,
1176 nullptr,
1177 JSFunction::kPrototypeOrInitialMapOffset);
1178 } else {
1179 SetPropertyReference(entry, roots.prototype_string(),
1180 js_fun.prototype());
1181 SetInternalReference(entry, "initial_map", proto_or_map,
1182 JSFunction::kPrototypeOrInitialMapOffset);
1183 }
1184 }
1185 }
1186 SharedFunctionInfo shared_info = js_fun.shared();
1187 TagObject(js_fun.raw_feedback_cell(), "(function feedback cell)");
1188 SetInternalReference(entry, "feedback_cell", js_fun.raw_feedback_cell(),
1189 JSFunction::kFeedbackCellOffset);
1190 TagObject(shared_info, "(shared function info)");
1191 SetInternalReference(entry, "shared", shared_info,
1192 JSFunction::kSharedFunctionInfoOffset);
1193 TagObject(js_fun.context(), "(context)");
1194 SetInternalReference(entry, "context", js_fun.context(),
1195 JSFunction::kContextOffset);
1196 SetInternalReference(entry, "code", js_fun.code(), JSFunction::kCodeOffset);
1197 } else if (obj.IsJSGlobalObject()) {
1198 JSGlobalObject global_obj = JSGlobalObject::cast(obj);
1199 SetInternalReference(entry, "native_context", global_obj.native_context(),
1200 JSGlobalObject::kNativeContextOffset);
1201 SetInternalReference(entry, "global_proxy", global_obj.global_proxy(),
1202 JSGlobalObject::kGlobalProxyOffset);
1203 STATIC_ASSERT(JSGlobalObject::kHeaderSize - JSObject::kHeaderSize ==
1204 2 * kTaggedSize);
1205 } else if (obj.IsJSArrayBufferView()) {
1206 JSArrayBufferView view = JSArrayBufferView::cast(obj);
1207 SetInternalReference(entry, "buffer", view.buffer(),
1208 JSArrayBufferView::kBufferOffset);
1209 }
1210
1211 TagObject(js_obj.raw_properties_or_hash(), "(object properties)");
1212 SetInternalReference(entry, "properties", js_obj.raw_properties_or_hash(),
1213 JSObject::kPropertiesOrHashOffset);
1214
1215 TagObject(js_obj.elements(), "(object elements)");
1216 SetInternalReference(entry, "elements", js_obj.elements(),
1217 JSObject::kElementsOffset);
1218 }
1219
ExtractStringReferences(HeapEntry * entry,String string)1220 void V8HeapExplorer::ExtractStringReferences(HeapEntry* entry, String string) {
1221 if (string.IsConsString()) {
1222 ConsString cs = ConsString::cast(string);
1223 SetInternalReference(entry, "first", cs.first(), ConsString::kFirstOffset);
1224 SetInternalReference(entry, "second", cs.second(),
1225 ConsString::kSecondOffset);
1226 } else if (string.IsSlicedString()) {
1227 SlicedString ss = SlicedString::cast(string);
1228 SetInternalReference(entry, "parent", ss.parent(),
1229 SlicedString::kParentOffset);
1230 } else if (string.IsThinString()) {
1231 ThinString ts = ThinString::cast(string);
1232 SetInternalReference(entry, "actual", ts.actual(),
1233 ThinString::kActualOffset);
1234 }
1235 }
1236
ExtractSymbolReferences(HeapEntry * entry,Symbol symbol)1237 void V8HeapExplorer::ExtractSymbolReferences(HeapEntry* entry, Symbol symbol) {
1238 SetInternalReference(entry, "name", symbol.description(),
1239 Symbol::kDescriptionOffset);
1240 }
1241
ExtractJSCollectionReferences(HeapEntry * entry,JSCollection collection)1242 void V8HeapExplorer::ExtractJSCollectionReferences(HeapEntry* entry,
1243 JSCollection collection) {
1244 SetInternalReference(entry, "table", collection.table(),
1245 JSCollection::kTableOffset);
1246 }
1247
ExtractJSWeakCollectionReferences(HeapEntry * entry,JSWeakCollection obj)1248 void V8HeapExplorer::ExtractJSWeakCollectionReferences(HeapEntry* entry,
1249 JSWeakCollection obj) {
1250 SetInternalReference(entry, "table", obj.table(),
1251 JSWeakCollection::kTableOffset);
1252 }
1253
ExtractEphemeronHashTableReferences(HeapEntry * entry,EphemeronHashTable table)1254 void V8HeapExplorer::ExtractEphemeronHashTableReferences(
1255 HeapEntry* entry, EphemeronHashTable table) {
1256 for (InternalIndex i : table.IterateEntries()) {
1257 int key_index = EphemeronHashTable::EntryToIndex(i) +
1258 EphemeronHashTable::kEntryKeyIndex;
1259 int value_index = EphemeronHashTable::EntryToValueIndex(i);
1260 Object key = table.get(key_index);
1261 Object value = table.get(value_index);
1262 SetWeakReference(entry, key_index, key, table.OffsetOfElementAt(key_index));
1263 SetWeakReference(entry, value_index, value,
1264 table.OffsetOfElementAt(value_index));
1265 HeapEntry* key_entry = GetEntry(key);
1266 HeapEntry* value_entry = GetEntry(value);
1267 HeapEntry* table_entry = GetEntry(table);
1268 if (key_entry && value_entry && !key.IsUndefined()) {
1269 const char* edge_name = names_->GetFormatted(
1270 "part of key (%s @%u) -> value (%s @%u) pair in WeakMap (table @%u)",
1271 key_entry->name(), key_entry->id(), value_entry->name(),
1272 value_entry->id(), table_entry->id());
1273 key_entry->SetNamedAutoIndexReference(HeapGraphEdge::kInternal, edge_name,
1274 value_entry, names_, generator_,
1275 HeapEntry::kEphemeron);
1276 table_entry->SetNamedAutoIndexReference(
1277 HeapGraphEdge::kInternal, edge_name, value_entry, names_, generator_,
1278 HeapEntry::kEphemeron);
1279 }
1280 }
1281 }
1282
1283 // These static arrays are used to prevent excessive code-size in
1284 // ExtractContextReferences below, which would happen if we called
1285 // SetInternalReference for every native context field in a macro.
1286 static const struct {
1287 int index;
1288 const char* name;
1289 } native_context_names[] = {
1290 #define CONTEXT_FIELD_INDEX_NAME(index, _, name) {Context::index, #name},
1291 NATIVE_CONTEXT_FIELDS(CONTEXT_FIELD_INDEX_NAME)
1292 #undef CONTEXT_FIELD_INDEX_NAME
1293 };
1294
ExtractContextReferences(HeapEntry * entry,Context context)1295 void V8HeapExplorer::ExtractContextReferences(HeapEntry* entry,
1296 Context context) {
1297 DisallowGarbageCollection no_gc;
1298 if (!context.IsNativeContext() && context.is_declaration_context()) {
1299 ScopeInfo scope_info = context.scope_info();
1300 // Add context allocated locals.
1301 for (auto it : ScopeInfo::IterateLocalNames(&scope_info, no_gc)) {
1302 int idx = scope_info.ContextHeaderLength() + it->index();
1303 SetContextReference(entry, it->name(), context.get(idx),
1304 Context::OffsetOfElementAt(idx));
1305 }
1306 if (scope_info.HasContextAllocatedFunctionName()) {
1307 String name = String::cast(scope_info.FunctionName());
1308 int idx = scope_info.FunctionContextSlotIndex(name);
1309 if (idx >= 0) {
1310 SetContextReference(entry, name, context.get(idx),
1311 Context::OffsetOfElementAt(idx));
1312 }
1313 }
1314 }
1315
1316 SetInternalReference(
1317 entry, "scope_info", context.get(Context::SCOPE_INFO_INDEX),
1318 FixedArray::OffsetOfElementAt(Context::SCOPE_INFO_INDEX));
1319 SetInternalReference(entry, "previous", context.get(Context::PREVIOUS_INDEX),
1320 FixedArray::OffsetOfElementAt(Context::PREVIOUS_INDEX));
1321 if (context.has_extension()) {
1322 SetInternalReference(
1323 entry, "extension", context.get(Context::EXTENSION_INDEX),
1324 FixedArray::OffsetOfElementAt(Context::EXTENSION_INDEX));
1325 }
1326
1327 if (context.IsNativeContext()) {
1328 TagObject(context.normalized_map_cache(), "(context norm. map cache)");
1329 TagObject(context.embedder_data(), "(context data)");
1330 for (size_t i = 0; i < arraysize(native_context_names); i++) {
1331 int index = native_context_names[i].index;
1332 const char* name = native_context_names[i].name;
1333 SetInternalReference(entry, name, context.get(index),
1334 FixedArray::OffsetOfElementAt(index));
1335 }
1336
1337 SetWeakReference(entry, "optimized_code_list",
1338 context.get(Context::OPTIMIZED_CODE_LIST),
1339 Context::OffsetOfElementAt(Context::OPTIMIZED_CODE_LIST),
1340 HeapEntry::kCustomWeakPointer);
1341 SetWeakReference(entry, "deoptimized_code_list",
1342 context.get(Context::DEOPTIMIZED_CODE_LIST),
1343 Context::OffsetOfElementAt(Context::DEOPTIMIZED_CODE_LIST),
1344 HeapEntry::kCustomWeakPointer);
1345 STATIC_ASSERT(Context::OPTIMIZED_CODE_LIST == Context::FIRST_WEAK_SLOT);
1346 STATIC_ASSERT(Context::NEXT_CONTEXT_LINK + 1 ==
1347 Context::NATIVE_CONTEXT_SLOTS);
1348 STATIC_ASSERT(Context::FIRST_WEAK_SLOT + 3 ==
1349 Context::NATIVE_CONTEXT_SLOTS);
1350 }
1351 }
1352
ExtractMapReferences(HeapEntry * entry,Map map)1353 void V8HeapExplorer::ExtractMapReferences(HeapEntry* entry, Map map) {
1354 MaybeObject maybe_raw_transitions_or_prototype_info = map.raw_transitions();
1355 HeapObject raw_transitions_or_prototype_info;
1356 if (maybe_raw_transitions_or_prototype_info->GetHeapObjectIfWeak(
1357 &raw_transitions_or_prototype_info)) {
1358 DCHECK(raw_transitions_or_prototype_info.IsMap());
1359 SetWeakReference(entry, "transition", raw_transitions_or_prototype_info,
1360 Map::kTransitionsOrPrototypeInfoOffset);
1361 } else if (maybe_raw_transitions_or_prototype_info->GetHeapObjectIfStrong(
1362 &raw_transitions_or_prototype_info)) {
1363 if (raw_transitions_or_prototype_info.IsTransitionArray()) {
1364 TransitionArray transitions =
1365 TransitionArray::cast(raw_transitions_or_prototype_info);
1366 if (map.CanTransition() && transitions.HasPrototypeTransitions()) {
1367 TagObject(transitions.GetPrototypeTransitions(),
1368 "(prototype transitions)");
1369 }
1370 TagObject(transitions, "(transition array)");
1371 SetInternalReference(entry, "transitions", transitions,
1372 Map::kTransitionsOrPrototypeInfoOffset);
1373 } else if (raw_transitions_or_prototype_info.IsFixedArray()) {
1374 TagObject(raw_transitions_or_prototype_info, "(transition)");
1375 SetInternalReference(entry, "transition",
1376 raw_transitions_or_prototype_info,
1377 Map::kTransitionsOrPrototypeInfoOffset);
1378 } else if (map.is_prototype_map()) {
1379 TagObject(raw_transitions_or_prototype_info, "prototype_info");
1380 SetInternalReference(entry, "prototype_info",
1381 raw_transitions_or_prototype_info,
1382 Map::kTransitionsOrPrototypeInfoOffset);
1383 }
1384 }
1385 DescriptorArray descriptors = map.instance_descriptors();
1386 TagObject(descriptors, "(map descriptors)");
1387 SetInternalReference(entry, "descriptors", descriptors,
1388 Map::kInstanceDescriptorsOffset);
1389 SetInternalReference(entry, "prototype", map.prototype(),
1390 Map::kPrototypeOffset);
1391 if (map.IsContextMap()) {
1392 Object native_context = map.native_context();
1393 TagObject(native_context, "(native context)");
1394 SetInternalReference(entry, "native_context", native_context,
1395 Map::kConstructorOrBackPointerOrNativeContextOffset);
1396 } else {
1397 Object constructor_or_back_pointer = map.constructor_or_back_pointer();
1398 if (constructor_or_back_pointer.IsMap()) {
1399 TagObject(constructor_or_back_pointer, "(back pointer)");
1400 SetInternalReference(entry, "back_pointer", constructor_or_back_pointer,
1401 Map::kConstructorOrBackPointerOrNativeContextOffset);
1402 } else if (constructor_or_back_pointer.IsFunctionTemplateInfo()) {
1403 TagObject(constructor_or_back_pointer, "(constructor function data)");
1404 SetInternalReference(entry, "constructor_function_data",
1405 constructor_or_back_pointer,
1406 Map::kConstructorOrBackPointerOrNativeContextOffset);
1407 } else {
1408 SetInternalReference(entry, "constructor", constructor_or_back_pointer,
1409 Map::kConstructorOrBackPointerOrNativeContextOffset);
1410 }
1411 }
1412 TagObject(map.dependent_code(), "(dependent code)");
1413 SetInternalReference(entry, "dependent_code", map.dependent_code(),
1414 Map::kDependentCodeOffset);
1415 }
1416
ExtractSharedFunctionInfoReferences(HeapEntry * entry,SharedFunctionInfo shared)1417 void V8HeapExplorer::ExtractSharedFunctionInfoReferences(
1418 HeapEntry* entry, SharedFunctionInfo shared) {
1419 std::unique_ptr<char[]> name = shared.DebugNameCStr();
1420 if (name[0] != '\0') {
1421 TagObject(FromCodeT(shared.GetCode()),
1422 names_->GetFormatted("(code for %s)", name.get()));
1423 } else {
1424 TagObject(FromCodeT(shared.GetCode()),
1425 names_->GetFormatted("(%s code)",
1426 CodeKindToString(shared.GetCode().kind())));
1427 }
1428
1429 Object name_or_scope_info = shared.name_or_scope_info(kAcquireLoad);
1430 if (name_or_scope_info.IsScopeInfo()) {
1431 TagObject(name_or_scope_info, "(function scope info)");
1432 }
1433 SetInternalReference(entry, "name_or_scope_info", name_or_scope_info,
1434 SharedFunctionInfo::kNameOrScopeInfoOffset);
1435 SetInternalReference(entry, "script_or_debug_info",
1436 shared.script_or_debug_info(kAcquireLoad),
1437 SharedFunctionInfo::kScriptOrDebugInfoOffset);
1438 SetInternalReference(entry, "function_data",
1439 shared.function_data(kAcquireLoad),
1440 SharedFunctionInfo::kFunctionDataOffset);
1441 SetInternalReference(
1442 entry, "raw_outer_scope_info_or_feedback_metadata",
1443 shared.raw_outer_scope_info_or_feedback_metadata(),
1444 SharedFunctionInfo::kOuterScopeInfoOrFeedbackMetadataOffset);
1445 }
1446
ExtractScriptReferences(HeapEntry * entry,Script script)1447 void V8HeapExplorer::ExtractScriptReferences(HeapEntry* entry, Script script) {
1448 SetInternalReference(entry, "source", script.source(), Script::kSourceOffset);
1449 SetInternalReference(entry, "name", script.name(), Script::kNameOffset);
1450 SetInternalReference(entry, "context_data", script.context_data(),
1451 Script::kContextDataOffset);
1452 TagObject(script.line_ends(), "(script line ends)", HeapEntry::kCode);
1453 SetInternalReference(entry, "line_ends", script.line_ends(),
1454 Script::kLineEndsOffset);
1455 TagObject(script.shared_function_infos(), "(shared function infos)",
1456 HeapEntry::kCode);
1457 TagObject(script.host_defined_options(), "(host-defined options)",
1458 HeapEntry::kCode);
1459 }
1460
ExtractAccessorInfoReferences(HeapEntry * entry,AccessorInfo accessor_info)1461 void V8HeapExplorer::ExtractAccessorInfoReferences(HeapEntry* entry,
1462 AccessorInfo accessor_info) {
1463 SetInternalReference(entry, "name", accessor_info.name(),
1464 AccessorInfo::kNameOffset);
1465 SetInternalReference(entry, "expected_receiver_type",
1466 accessor_info.expected_receiver_type(),
1467 AccessorInfo::kExpectedReceiverTypeOffset);
1468 SetInternalReference(entry, "getter", accessor_info.getter(),
1469 AccessorInfo::kGetterOffset);
1470 SetInternalReference(entry, "setter", accessor_info.setter(),
1471 AccessorInfo::kSetterOffset);
1472 SetInternalReference(entry, "data", accessor_info.data(),
1473 AccessorInfo::kDataOffset);
1474 }
1475
ExtractAccessorPairReferences(HeapEntry * entry,AccessorPair accessors)1476 void V8HeapExplorer::ExtractAccessorPairReferences(HeapEntry* entry,
1477 AccessorPair accessors) {
1478 SetInternalReference(entry, "getter", accessors.getter(),
1479 AccessorPair::kGetterOffset);
1480 SetInternalReference(entry, "setter", accessors.setter(),
1481 AccessorPair::kSetterOffset);
1482 }
1483
ExtractJSWeakRefReferences(HeapEntry * entry,JSWeakRef js_weak_ref)1484 void V8HeapExplorer::ExtractJSWeakRefReferences(HeapEntry* entry,
1485 JSWeakRef js_weak_ref) {
1486 SetWeakReference(entry, "target", js_weak_ref.target(),
1487 JSWeakRef::kTargetOffset);
1488 }
1489
ExtractWeakCellReferences(HeapEntry * entry,WeakCell weak_cell)1490 void V8HeapExplorer::ExtractWeakCellReferences(HeapEntry* entry,
1491 WeakCell weak_cell) {
1492 SetWeakReference(entry, "target", weak_cell.target(),
1493 WeakCell::kTargetOffset);
1494 SetWeakReference(entry, "unregister_token", weak_cell.unregister_token(),
1495 WeakCell::kUnregisterTokenOffset);
1496 }
1497
TagBuiltinCodeObject(CodeT code,const char * name)1498 void V8HeapExplorer::TagBuiltinCodeObject(CodeT code, const char* name) {
1499 TagObject(FromCodeT(code), names_->GetFormatted("(%s builtin)", name));
1500 }
1501
ExtractCodeReferences(HeapEntry * entry,Code code)1502 void V8HeapExplorer::ExtractCodeReferences(HeapEntry* entry, Code code) {
1503 TagObject(code.relocation_info(), "(code relocation info)", HeapEntry::kCode);
1504 SetInternalReference(entry, "relocation_info", code.relocation_info(),
1505 Code::kRelocationInfoOffset);
1506
1507 if (code.kind() == CodeKind::BASELINE) {
1508 TagObject(code.bytecode_or_interpreter_data(), "(interpreter data)");
1509 SetInternalReference(entry, "interpreter_data",
1510 code.bytecode_or_interpreter_data(),
1511 Code::kDeoptimizationDataOrInterpreterDataOffset);
1512 TagObject(code.bytecode_offset_table(), "(bytecode offset table)",
1513 HeapEntry::kCode);
1514 SetInternalReference(entry, "bytecode_offset_table",
1515 code.bytecode_offset_table(),
1516 Code::kPositionTableOffset);
1517 } else {
1518 DeoptimizationData deoptimization_data =
1519 DeoptimizationData::cast(code.deoptimization_data());
1520 TagObject(deoptimization_data, "(code deopt data)", HeapEntry::kCode);
1521 SetInternalReference(entry, "deoptimization_data", deoptimization_data,
1522 Code::kDeoptimizationDataOrInterpreterDataOffset);
1523 if (deoptimization_data.length() > 0) {
1524 TagObject(deoptimization_data.TranslationByteArray(), "(code deopt data)",
1525 HeapEntry::kCode);
1526 TagObject(deoptimization_data.LiteralArray(), "(code deopt data)",
1527 HeapEntry::kCode);
1528 TagObject(deoptimization_data.InliningPositions(), "(code deopt data)",
1529 HeapEntry::kCode);
1530 }
1531 TagObject(code.source_position_table(), "(source position table)",
1532 HeapEntry::kCode);
1533 SetInternalReference(entry, "source_position_table",
1534 code.source_position_table(),
1535 Code::kPositionTableOffset);
1536 }
1537 }
1538
ExtractCellReferences(HeapEntry * entry,Cell cell)1539 void V8HeapExplorer::ExtractCellReferences(HeapEntry* entry, Cell cell) {
1540 SetInternalReference(entry, "value", cell.value(), Cell::kValueOffset);
1541 }
1542
ExtractFeedbackCellReferences(HeapEntry * entry,FeedbackCell feedback_cell)1543 void V8HeapExplorer::ExtractFeedbackCellReferences(HeapEntry* entry,
1544 FeedbackCell feedback_cell) {
1545 TagObject(feedback_cell, "(feedback cell)");
1546 SetInternalReference(entry, "value", feedback_cell.value(),
1547 FeedbackCell::kValueOffset);
1548 }
1549
ExtractPropertyCellReferences(HeapEntry * entry,PropertyCell cell)1550 void V8HeapExplorer::ExtractPropertyCellReferences(HeapEntry* entry,
1551 PropertyCell cell) {
1552 SetInternalReference(entry, "value", cell.value(),
1553 PropertyCell::kValueOffset);
1554 TagObject(cell.dependent_code(), "(dependent code)");
1555 SetInternalReference(entry, "dependent_code", cell.dependent_code(),
1556 PropertyCell::kDependentCodeOffset);
1557 }
1558
ExtractAllocationSiteReferences(HeapEntry * entry,AllocationSite site)1559 void V8HeapExplorer::ExtractAllocationSiteReferences(HeapEntry* entry,
1560 AllocationSite site) {
1561 SetInternalReference(entry, "transition_info",
1562 site.transition_info_or_boilerplate(),
1563 AllocationSite::kTransitionInfoOrBoilerplateOffset);
1564 SetInternalReference(entry, "nested_site", site.nested_site(),
1565 AllocationSite::kNestedSiteOffset);
1566 TagObject(site.dependent_code(), "(dependent code)", HeapEntry::kCode);
1567 SetInternalReference(entry, "dependent_code", site.dependent_code(),
1568 AllocationSite::kDependentCodeOffset);
1569 }
1570
ExtractArrayBoilerplateDescriptionReferences(HeapEntry * entry,ArrayBoilerplateDescription value)1571 void V8HeapExplorer::ExtractArrayBoilerplateDescriptionReferences(
1572 HeapEntry* entry, ArrayBoilerplateDescription value) {
1573 FixedArrayBase constant_elements = value.constant_elements();
1574 SetInternalReference(entry, "constant_elements", constant_elements,
1575 ArrayBoilerplateDescription::kConstantElementsOffset);
1576 TagObject(constant_elements, "(constant elements)", HeapEntry::kCode);
1577 }
1578
ExtractRegExpBoilerplateDescriptionReferences(HeapEntry * entry,RegExpBoilerplateDescription value)1579 void V8HeapExplorer::ExtractRegExpBoilerplateDescriptionReferences(
1580 HeapEntry* entry, RegExpBoilerplateDescription value) {
1581 TagObject(value.data(), "(RegExp data)", HeapEntry::kCode);
1582 }
1583
1584 class JSArrayBufferDataEntryAllocator : public HeapEntriesAllocator {
1585 public:
JSArrayBufferDataEntryAllocator(size_t size,V8HeapExplorer * explorer)1586 JSArrayBufferDataEntryAllocator(size_t size, V8HeapExplorer* explorer)
1587 : size_(size)
1588 , explorer_(explorer) {
1589 }
AllocateEntry(HeapThing ptr)1590 HeapEntry* AllocateEntry(HeapThing ptr) override {
1591 return explorer_->AddEntry(reinterpret_cast<Address>(ptr),
1592 HeapEntry::kNative, "system / JSArrayBufferData",
1593 size_);
1594 }
AllocateEntry(Smi smi)1595 HeapEntry* AllocateEntry(Smi smi) override {
1596 DCHECK(false);
1597 return nullptr;
1598 }
1599
1600 private:
1601 size_t size_;
1602 V8HeapExplorer* explorer_;
1603 };
1604
ExtractJSArrayBufferReferences(HeapEntry * entry,JSArrayBuffer buffer)1605 void V8HeapExplorer::ExtractJSArrayBufferReferences(HeapEntry* entry,
1606 JSArrayBuffer buffer) {
1607 // Setup a reference to a native memory backing_store object.
1608 if (!buffer.backing_store()) return;
1609 size_t data_size = buffer.byte_length();
1610 JSArrayBufferDataEntryAllocator allocator(data_size, this);
1611 HeapEntry* data_entry =
1612 generator_->FindOrAddEntry(buffer.backing_store(), &allocator);
1613 entry->SetNamedReference(HeapGraphEdge::kInternal, "backing_store",
1614 data_entry, generator_, HeapEntry::kOffHeapPointer);
1615 }
1616
ExtractJSPromiseReferences(HeapEntry * entry,JSPromise promise)1617 void V8HeapExplorer::ExtractJSPromiseReferences(HeapEntry* entry,
1618 JSPromise promise) {
1619 SetInternalReference(entry, "reactions_or_result",
1620 promise.reactions_or_result(),
1621 JSPromise::kReactionsOrResultOffset);
1622 }
1623
ExtractJSGeneratorObjectReferences(HeapEntry * entry,JSGeneratorObject generator)1624 void V8HeapExplorer::ExtractJSGeneratorObjectReferences(
1625 HeapEntry* entry, JSGeneratorObject generator) {
1626 SetInternalReference(entry, "function", generator.function(),
1627 JSGeneratorObject::kFunctionOffset);
1628 SetInternalReference(entry, "context", generator.context(),
1629 JSGeneratorObject::kContextOffset);
1630 SetInternalReference(entry, "receiver", generator.receiver(),
1631 JSGeneratorObject::kReceiverOffset);
1632 SetInternalReference(entry, "parameters_and_registers",
1633 generator.parameters_and_registers(),
1634 JSGeneratorObject::kParametersAndRegistersOffset);
1635 }
1636
ExtractFixedArrayReferences(HeapEntry * entry,FixedArray array)1637 void V8HeapExplorer::ExtractFixedArrayReferences(HeapEntry* entry,
1638 FixedArray array) {
1639 for (int i = 0, l = array.length(); i < l; ++i) {
1640 DCHECK(!HasWeakHeapObjectTag(array.get(i)));
1641 SetInternalReference(entry, i, array.get(i), array.OffsetOfElementAt(i));
1642 }
1643 }
1644
ExtractNumberReference(HeapEntry * entry,Object number)1645 void V8HeapExplorer::ExtractNumberReference(HeapEntry* entry, Object number) {
1646 DCHECK(number.IsNumber());
1647
1648 // Must be large enough to fit any double, int, or size_t.
1649 char arr[32];
1650 base::Vector<char> buffer(arr, arraysize(arr));
1651
1652 const char* string;
1653 if (number.IsSmi()) {
1654 int int_value = Smi::ToInt(number);
1655 string = IntToCString(int_value, buffer);
1656 } else {
1657 double double_value = HeapNumber::cast(number).value();
1658 string = DoubleToCString(double_value, buffer);
1659 }
1660
1661 const char* name = names_->GetCopy(string);
1662
1663 SnapshotObjectId id = heap_object_map_->get_next_id();
1664 HeapEntry* child_entry =
1665 snapshot_->AddEntry(HeapEntry::kString, name, id, 0, 0);
1666 entry->SetNamedReference(HeapGraphEdge::kInternal, "value", child_entry,
1667 generator_);
1668 }
1669
ExtractBytecodeArrayReferences(HeapEntry * entry,BytecodeArray bytecode)1670 void V8HeapExplorer::ExtractBytecodeArrayReferences(HeapEntry* entry,
1671 BytecodeArray bytecode) {
1672 RecursivelyTagConstantPool(bytecode.constant_pool(), "(constant pool)",
1673 HeapEntry::kCode, 3);
1674 TagObject(bytecode.handler_table(), "(handler table)", HeapEntry::kCode);
1675 TagObject(bytecode.source_position_table(kAcquireLoad),
1676 "(source position table)", HeapEntry::kCode);
1677 }
1678
ExtractScopeInfoReferences(HeapEntry * entry,ScopeInfo info)1679 void V8HeapExplorer::ExtractScopeInfoReferences(HeapEntry* entry,
1680 ScopeInfo info) {
1681 if (!info.HasInlinedLocalNames()) {
1682 TagObject(info.context_local_names_hashtable(), "(context local names)",
1683 HeapEntry::kCode);
1684 }
1685 }
1686
ExtractFeedbackVectorReferences(HeapEntry * entry,FeedbackVector feedback_vector)1687 void V8HeapExplorer::ExtractFeedbackVectorReferences(
1688 HeapEntry* entry, FeedbackVector feedback_vector) {
1689 MaybeObject code = feedback_vector.maybe_optimized_code();
1690 HeapObject code_heap_object;
1691 if (code->GetHeapObjectIfWeak(&code_heap_object)) {
1692 SetWeakReference(entry, "optimized code", code_heap_object,
1693 FeedbackVector::kMaybeOptimizedCodeOffset);
1694 }
1695 for (int i = 0; i < feedback_vector.length(); ++i) {
1696 MaybeObject maybe_entry = *(feedback_vector.slots_start() + i);
1697 HeapObject entry;
1698 if (maybe_entry.GetHeapObjectIfStrong(&entry) &&
1699 (entry.map(isolate()).instance_type() == WEAK_FIXED_ARRAY_TYPE ||
1700 entry.IsFixedArrayExact())) {
1701 TagObject(entry, "(feedback)", HeapEntry::kCode);
1702 }
1703 }
1704 }
1705
ExtractDescriptorArrayReferences(HeapEntry * entry,DescriptorArray array)1706 void V8HeapExplorer::ExtractDescriptorArrayReferences(HeapEntry* entry,
1707 DescriptorArray array) {
1708 SetInternalReference(entry, "enum_cache", array.enum_cache(),
1709 DescriptorArray::kEnumCacheOffset);
1710 MaybeObjectSlot start = MaybeObjectSlot(array.GetDescriptorSlot(0));
1711 MaybeObjectSlot end = MaybeObjectSlot(
1712 array.GetDescriptorSlot(array.number_of_all_descriptors()));
1713 for (int i = 0; start + i < end; ++i) {
1714 MaybeObjectSlot slot = start + i;
1715 int offset = static_cast<int>(slot.address() - array.address());
1716 MaybeObject object = *slot;
1717 HeapObject heap_object;
1718 if (object->GetHeapObjectIfWeak(&heap_object)) {
1719 SetWeakReference(entry, i, heap_object, offset);
1720 } else if (object->GetHeapObjectIfStrong(&heap_object)) {
1721 SetInternalReference(entry, i, heap_object, offset);
1722 }
1723 }
1724 }
1725
1726 template <typename T>
ExtractWeakArrayReferences(int header_size,HeapEntry * entry,T array)1727 void V8HeapExplorer::ExtractWeakArrayReferences(int header_size,
1728 HeapEntry* entry, T array) {
1729 for (int i = 0; i < array.length(); ++i) {
1730 MaybeObject object = array.Get(i);
1731 HeapObject heap_object;
1732 if (object->GetHeapObjectIfWeak(&heap_object)) {
1733 SetWeakReference(entry, i, heap_object, header_size + i * kTaggedSize);
1734 } else if (object->GetHeapObjectIfStrong(&heap_object)) {
1735 SetInternalReference(entry, i, heap_object,
1736 header_size + i * kTaggedSize);
1737 }
1738 }
1739 }
1740
ExtractPropertyReferences(JSObject js_obj,HeapEntry * entry)1741 void V8HeapExplorer::ExtractPropertyReferences(JSObject js_obj,
1742 HeapEntry* entry) {
1743 Isolate* isolate = js_obj.GetIsolate();
1744 if (js_obj.HasFastProperties()) {
1745 DescriptorArray descs = js_obj.map().instance_descriptors(isolate);
1746 for (InternalIndex i : js_obj.map().IterateOwnDescriptors()) {
1747 PropertyDetails details = descs.GetDetails(i);
1748 switch (details.location()) {
1749 case PropertyLocation::kField: {
1750 if (!snapshot_->capture_numeric_value()) {
1751 Representation r = details.representation();
1752 if (r.IsSmi() || r.IsDouble()) break;
1753 }
1754
1755 Name k = descs.GetKey(i);
1756 FieldIndex field_index = FieldIndex::ForDescriptor(js_obj.map(), i);
1757 Object value = js_obj.RawFastPropertyAt(field_index);
1758 int field_offset =
1759 field_index.is_inobject() ? field_index.offset() : -1;
1760
1761 SetDataOrAccessorPropertyReference(details.kind(), entry, k, value,
1762 nullptr, field_offset);
1763 break;
1764 }
1765 case PropertyLocation::kDescriptor:
1766 SetDataOrAccessorPropertyReference(
1767 details.kind(), entry, descs.GetKey(i), descs.GetStrongValue(i));
1768 break;
1769 }
1770 }
1771 } else if (js_obj.IsJSGlobalObject()) {
1772 // We assume that global objects can only have slow properties.
1773 GlobalDictionary dictionary =
1774 JSGlobalObject::cast(js_obj).global_dictionary(kAcquireLoad);
1775 ReadOnlyRoots roots(isolate);
1776 for (InternalIndex i : dictionary.IterateEntries()) {
1777 if (!dictionary.IsKey(roots, dictionary.KeyAt(i))) continue;
1778 PropertyCell cell = dictionary.CellAt(i);
1779 Name name = cell.name();
1780 Object value = cell.value();
1781 PropertyDetails details = cell.property_details();
1782 SetDataOrAccessorPropertyReference(details.kind(), entry, name, value);
1783 }
1784 } else if (V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL) {
1785 // SwissNameDictionary::IterateEntries creates a Handle, which should not
1786 // leak out of here.
1787 HandleScope scope(isolate);
1788
1789 SwissNameDictionary dictionary = js_obj.property_dictionary_swiss();
1790 ReadOnlyRoots roots(isolate);
1791 for (InternalIndex i : dictionary.IterateEntries()) {
1792 Object k = dictionary.KeyAt(i);
1793 if (!dictionary.IsKey(roots, k)) continue;
1794 Object value = dictionary.ValueAt(i);
1795 PropertyDetails details = dictionary.DetailsAt(i);
1796 SetDataOrAccessorPropertyReference(details.kind(), entry, Name::cast(k),
1797 value);
1798 }
1799 } else {
1800 NameDictionary dictionary = js_obj.property_dictionary();
1801 ReadOnlyRoots roots(isolate);
1802 for (InternalIndex i : dictionary.IterateEntries()) {
1803 Object k = dictionary.KeyAt(i);
1804 if (!dictionary.IsKey(roots, k)) continue;
1805 Object value = dictionary.ValueAt(i);
1806 PropertyDetails details = dictionary.DetailsAt(i);
1807 SetDataOrAccessorPropertyReference(details.kind(), entry, Name::cast(k),
1808 value);
1809 }
1810 }
1811 }
1812
ExtractAccessorPairProperty(HeapEntry * entry,Name key,Object callback_obj,int field_offset)1813 void V8HeapExplorer::ExtractAccessorPairProperty(HeapEntry* entry, Name key,
1814 Object callback_obj,
1815 int field_offset) {
1816 if (!callback_obj.IsAccessorPair()) return;
1817 AccessorPair accessors = AccessorPair::cast(callback_obj);
1818 SetPropertyReference(entry, key, accessors, nullptr, field_offset);
1819 Object getter = accessors.getter();
1820 if (!getter.IsOddball()) {
1821 SetPropertyReference(entry, key, getter, "get %s");
1822 }
1823 Object setter = accessors.setter();
1824 if (!setter.IsOddball()) {
1825 SetPropertyReference(entry, key, setter, "set %s");
1826 }
1827 }
1828
ExtractElementReferences(JSObject js_obj,HeapEntry * entry)1829 void V8HeapExplorer::ExtractElementReferences(JSObject js_obj,
1830 HeapEntry* entry) {
1831 ReadOnlyRoots roots = js_obj.GetReadOnlyRoots();
1832 if (js_obj.HasObjectElements()) {
1833 FixedArray elements = FixedArray::cast(js_obj.elements());
1834 int length = js_obj.IsJSArray() ? Smi::ToInt(JSArray::cast(js_obj).length())
1835 : elements.length();
1836 for (int i = 0; i < length; ++i) {
1837 if (!elements.get(i).IsTheHole(roots)) {
1838 SetElementReference(entry, i, elements.get(i));
1839 }
1840 }
1841 } else if (js_obj.HasDictionaryElements()) {
1842 NumberDictionary dictionary = js_obj.element_dictionary();
1843 for (InternalIndex i : dictionary.IterateEntries()) {
1844 Object k = dictionary.KeyAt(i);
1845 if (!dictionary.IsKey(roots, k)) continue;
1846 DCHECK(k.IsNumber());
1847 uint32_t index = static_cast<uint32_t>(k.Number());
1848 SetElementReference(entry, index, dictionary.ValueAt(i));
1849 }
1850 }
1851 }
1852
ExtractInternalReferences(JSObject js_obj,HeapEntry * entry)1853 void V8HeapExplorer::ExtractInternalReferences(JSObject js_obj,
1854 HeapEntry* entry) {
1855 int length = js_obj.GetEmbedderFieldCount();
1856 for (int i = 0; i < length; ++i) {
1857 Object o = js_obj.GetEmbedderField(i);
1858 SetInternalReference(entry, i, o, js_obj.GetEmbedderFieldOffset(i));
1859 }
1860 }
1861
GetConstructor(Isolate * isolate,JSReceiver receiver)1862 JSFunction V8HeapExplorer::GetConstructor(Isolate* isolate,
1863 JSReceiver receiver) {
1864 DisallowGarbageCollection no_gc;
1865 HandleScope scope(isolate);
1866 MaybeHandle<JSFunction> maybe_constructor =
1867 JSReceiver::GetConstructor(isolate, handle(receiver, isolate));
1868
1869 if (maybe_constructor.is_null()) return JSFunction();
1870
1871 return *maybe_constructor.ToHandleChecked();
1872 }
1873
GetConstructorName(Isolate * isolate,JSObject object)1874 String V8HeapExplorer::GetConstructorName(Isolate* isolate, JSObject object) {
1875 if (object.IsJSFunction()) return ReadOnlyRoots(isolate).closure_string();
1876 DisallowGarbageCollection no_gc;
1877 HandleScope scope(isolate);
1878 return *JSReceiver::GetConstructorName(isolate, handle(object, isolate));
1879 }
1880
GetEntry(Object obj)1881 HeapEntry* V8HeapExplorer::GetEntry(Object obj) {
1882 if (obj.IsHeapObject()) {
1883 return generator_->FindOrAddEntry(reinterpret_cast<void*>(obj.ptr()), this);
1884 }
1885
1886 DCHECK(obj.IsSmi());
1887 if (!snapshot_->capture_numeric_value()) {
1888 return nullptr;
1889 }
1890 return generator_->FindOrAddEntry(Smi::cast(obj), this);
1891 }
1892
1893 class RootsReferencesExtractor : public RootVisitor {
1894 public:
RootsReferencesExtractor(V8HeapExplorer * explorer)1895 explicit RootsReferencesExtractor(V8HeapExplorer* explorer)
1896 : explorer_(explorer), visiting_weak_roots_(false) {}
1897
SetVisitingWeakRoots()1898 void SetVisitingWeakRoots() { visiting_weak_roots_ = true; }
1899
VisitRootPointer(Root root,const char * description,FullObjectSlot object)1900 void VisitRootPointer(Root root, const char* description,
1901 FullObjectSlot object) override {
1902 if (root == Root::kBuiltins) {
1903 explorer_->TagBuiltinCodeObject(CodeT::cast(*object), description);
1904 }
1905 explorer_->SetGcSubrootReference(root, description, visiting_weak_roots_,
1906 *object);
1907 }
1908
VisitRootPointers(Root root,const char * description,FullObjectSlot start,FullObjectSlot end)1909 void VisitRootPointers(Root root, const char* description,
1910 FullObjectSlot start, FullObjectSlot end) override {
1911 for (FullObjectSlot p = start; p < end; ++p) {
1912 DCHECK(!MapWord::IsPacked(p.Relaxed_Load().ptr()));
1913 VisitRootPointer(root, description, p);
1914 }
1915 }
1916
VisitRootPointers(Root root,const char * description,OffHeapObjectSlot start,OffHeapObjectSlot end)1917 void VisitRootPointers(Root root, const char* description,
1918 OffHeapObjectSlot start,
1919 OffHeapObjectSlot end) override {
1920 DCHECK_EQ(root, Root::kStringTable);
1921 PtrComprCageBase cage_base(explorer_->heap_->isolate());
1922 for (OffHeapObjectSlot p = start; p < end; ++p) {
1923 explorer_->SetGcSubrootReference(root, description, visiting_weak_roots_,
1924 p.load(cage_base));
1925 }
1926 }
1927
VisitRunningCode(FullObjectSlot p)1928 void VisitRunningCode(FullObjectSlot p) override {
1929 // Must match behavior in
1930 // MarkCompactCollector::RootMarkingVisitor::VisitRunningCode, which treats
1931 // deoptimization literals in running code as stack roots.
1932 Code code = Code::cast(*p);
1933 if (code.kind() != CodeKind::BASELINE) {
1934 DeoptimizationData deopt_data =
1935 DeoptimizationData::cast(code.deoptimization_data());
1936 if (deopt_data.length() > 0) {
1937 DeoptimizationLiteralArray literals = deopt_data.LiteralArray();
1938 int literals_length = literals.length();
1939 for (int i = 0; i < literals_length; ++i) {
1940 MaybeObject maybe_literal = literals.Get(i);
1941 HeapObject heap_literal;
1942 if (maybe_literal.GetHeapObject(&heap_literal)) {
1943 VisitRootPointer(Root::kStackRoots, nullptr,
1944 FullObjectSlot(&heap_literal));
1945 }
1946 }
1947 }
1948 }
1949
1950 // Finally visit the Code itself.
1951 VisitRootPointer(Root::kStackRoots, nullptr, p);
1952 }
1953
1954 private:
1955 V8HeapExplorer* explorer_;
1956 bool visiting_weak_roots_;
1957 };
1958
IterateAndExtractReferences(HeapSnapshotGenerator * generator)1959 bool V8HeapExplorer::IterateAndExtractReferences(
1960 HeapSnapshotGenerator* generator) {
1961 generator_ = generator;
1962
1963 // Create references to the synthetic roots.
1964 SetRootGcRootsReference();
1965 for (int root = 0; root < static_cast<int>(Root::kNumberOfRoots); root++) {
1966 SetGcRootsReference(static_cast<Root>(root));
1967 }
1968
1969 // Make sure builtin code objects get their builtin tags
1970 // first. Otherwise a particular JSFunction object could set
1971 // its custom name to a generic builtin.
1972 RootsReferencesExtractor extractor(this);
1973 ReadOnlyRoots(heap_).Iterate(&extractor);
1974 heap_->IterateRoots(&extractor, base::EnumSet<SkipRoot>{SkipRoot::kWeak});
1975 // TODO(v8:11800): The heap snapshot generator incorrectly considers the weak
1976 // string tables as strong retainers. Move IterateWeakRoots after
1977 // SetVisitingWeakRoots.
1978 heap_->IterateWeakRoots(&extractor, {});
1979 extractor.SetVisitingWeakRoots();
1980 heap_->IterateWeakGlobalHandles(&extractor);
1981
1982 bool interrupted = false;
1983
1984 CombinedHeapObjectIterator iterator(heap_,
1985 HeapObjectIterator::kFilterUnreachable);
1986 PtrComprCageBase cage_base(heap_->isolate());
1987 // Heap iteration with filtering must be finished in any case.
1988 for (HeapObject obj = iterator.Next(); !obj.is_null();
1989 obj = iterator.Next(), progress_->ProgressStep()) {
1990 if (interrupted) continue;
1991
1992 size_t max_pointer = obj.Size(cage_base) / kTaggedSize;
1993 if (max_pointer > visited_fields_.size()) {
1994 // Clear the current bits.
1995 std::vector<bool>().swap(visited_fields_);
1996 // Reallocate to right size.
1997 visited_fields_.resize(max_pointer, false);
1998 }
1999
2000 #ifdef V8_ENABLE_HEAP_SNAPSHOT_VERIFY
2001 std::unique_ptr<HeapEntryVerifier> verifier;
2002 // MarkingVisitorBase doesn't expect that we will ever visit read-only
2003 // objects, and fails DCHECKs if we attempt to. Read-only objects can
2004 // never retain read-write objects, so there is no risk in skipping
2005 // verification for them.
2006 if (FLAG_heap_snapshot_verify &&
2007 !BasicMemoryChunk::FromHeapObject(obj)->InReadOnlySpace()) {
2008 verifier = std::make_unique<HeapEntryVerifier>(generator, obj);
2009 }
2010 #endif
2011
2012 HeapEntry* entry = GetEntry(obj);
2013 ExtractReferences(entry, obj);
2014 SetInternalReference(entry, "map", obj.map(cage_base),
2015 HeapObject::kMapOffset);
2016 // Extract unvisited fields as hidden references and restore tags
2017 // of visited fields.
2018 IndexedReferencesExtractor refs_extractor(this, obj, entry);
2019 obj.Iterate(cage_base, &refs_extractor);
2020
2021 // Ensure visited_fields_ doesn't leak to the next object.
2022 for (size_t i = 0; i < max_pointer; ++i) {
2023 DCHECK(!visited_fields_[i]);
2024 }
2025
2026 // Extract location for specific object types
2027 ExtractLocation(entry, obj);
2028
2029 if (!progress_->ProgressReport(false)) interrupted = true;
2030 }
2031
2032 generator_ = nullptr;
2033 return interrupted ? false : progress_->ProgressReport(true);
2034 }
2035
IsEssentialObject(Object object)2036 bool V8HeapExplorer::IsEssentialObject(Object object) {
2037 Isolate* isolate = heap_->isolate();
2038 ReadOnlyRoots roots(isolate);
2039 return object.IsHeapObject() && !object.IsOddball(isolate) &&
2040 object != roots.empty_byte_array() &&
2041 object != roots.empty_fixed_array() &&
2042 object != roots.empty_weak_fixed_array() &&
2043 object != roots.empty_descriptor_array() &&
2044 object != roots.fixed_array_map() && object != roots.cell_map() &&
2045 object != roots.global_property_cell_map() &&
2046 object != roots.shared_function_info_map() &&
2047 object != roots.free_space_map() &&
2048 object != roots.one_pointer_filler_map() &&
2049 object != roots.two_pointer_filler_map();
2050 }
2051
IsEssentialHiddenReference(Object parent,int field_offset)2052 bool V8HeapExplorer::IsEssentialHiddenReference(Object parent,
2053 int field_offset) {
2054 if (parent.IsAllocationSite() &&
2055 field_offset == AllocationSite::kWeakNextOffset)
2056 return false;
2057 if (parent.IsCodeDataContainer() &&
2058 field_offset == CodeDataContainer::kNextCodeLinkOffset)
2059 return false;
2060 if (parent.IsContext() &&
2061 field_offset == Context::OffsetOfElementAt(Context::NEXT_CONTEXT_LINK))
2062 return false;
2063 if (parent.IsJSFinalizationRegistry() &&
2064 field_offset == JSFinalizationRegistry::kNextDirtyOffset)
2065 return false;
2066 return true;
2067 }
2068
SetContextReference(HeapEntry * parent_entry,String reference_name,Object child_obj,int field_offset)2069 void V8HeapExplorer::SetContextReference(HeapEntry* parent_entry,
2070 String reference_name,
2071 Object child_obj, int field_offset) {
2072 HeapEntry* child_entry = GetEntry(child_obj);
2073 if (child_entry == nullptr) return;
2074 parent_entry->SetNamedReference(HeapGraphEdge::kContextVariable,
2075 names_->GetName(reference_name), child_entry,
2076 generator_);
2077 MarkVisitedField(field_offset);
2078 }
2079
MarkVisitedField(int offset)2080 void V8HeapExplorer::MarkVisitedField(int offset) {
2081 if (offset < 0) return;
2082 int index = offset / kTaggedSize;
2083 DCHECK(!visited_fields_[index]);
2084 visited_fields_[index] = true;
2085 }
2086
SetNativeBindReference(HeapEntry * parent_entry,const char * reference_name,Object child_obj)2087 void V8HeapExplorer::SetNativeBindReference(HeapEntry* parent_entry,
2088 const char* reference_name,
2089 Object child_obj) {
2090 HeapEntry* child_entry = GetEntry(child_obj);
2091 if (child_entry == nullptr) return;
2092 parent_entry->SetNamedReference(HeapGraphEdge::kShortcut, reference_name,
2093 child_entry, generator_);
2094 }
2095
SetElementReference(HeapEntry * parent_entry,int index,Object child_obj)2096 void V8HeapExplorer::SetElementReference(HeapEntry* parent_entry, int index,
2097 Object child_obj) {
2098 HeapEntry* child_entry = GetEntry(child_obj);
2099 if (child_entry == nullptr) return;
2100 parent_entry->SetIndexedReference(HeapGraphEdge::kElement, index, child_entry,
2101 generator_);
2102 }
2103
SetInternalReference(HeapEntry * parent_entry,const char * reference_name,Object child_obj,int field_offset)2104 void V8HeapExplorer::SetInternalReference(HeapEntry* parent_entry,
2105 const char* reference_name,
2106 Object child_obj, int field_offset) {
2107 if (!IsEssentialObject(child_obj)) {
2108 return;
2109 }
2110 HeapEntry* child_entry = GetEntry(child_obj);
2111 DCHECK_NOT_NULL(child_entry);
2112 parent_entry->SetNamedReference(HeapGraphEdge::kInternal, reference_name,
2113 child_entry, generator_);
2114 MarkVisitedField(field_offset);
2115 }
2116
SetInternalReference(HeapEntry * parent_entry,int index,Object child_obj,int field_offset)2117 void V8HeapExplorer::SetInternalReference(HeapEntry* parent_entry, int index,
2118 Object child_obj, int field_offset) {
2119 if (!IsEssentialObject(child_obj)) {
2120 return;
2121 }
2122 HeapEntry* child_entry = GetEntry(child_obj);
2123 DCHECK_NOT_NULL(child_entry);
2124 parent_entry->SetNamedReference(HeapGraphEdge::kInternal,
2125 names_->GetName(index), child_entry,
2126 generator_);
2127 MarkVisitedField(field_offset);
2128 }
2129
SetHiddenReference(HeapObject parent_obj,HeapEntry * parent_entry,int index,Object child_obj,int field_offset)2130 void V8HeapExplorer::SetHiddenReference(HeapObject parent_obj,
2131 HeapEntry* parent_entry, int index,
2132 Object child_obj, int field_offset) {
2133 DCHECK_EQ(parent_entry, GetEntry(parent_obj));
2134 DCHECK(!MapWord::IsPacked(child_obj.ptr()));
2135 if (!IsEssentialObject(child_obj)) {
2136 return;
2137 }
2138 HeapEntry* child_entry = GetEntry(child_obj);
2139 DCHECK_NOT_NULL(child_entry);
2140 if (IsEssentialHiddenReference(parent_obj, field_offset)) {
2141 parent_entry->SetIndexedReference(HeapGraphEdge::kHidden, index,
2142 child_entry, generator_);
2143 }
2144 }
2145
SetWeakReference(HeapEntry * parent_entry,const char * reference_name,Object child_obj,int field_offset,HeapEntry::ReferenceVerification verification)2146 void V8HeapExplorer::SetWeakReference(
2147 HeapEntry* parent_entry, const char* reference_name, Object child_obj,
2148 int field_offset, HeapEntry::ReferenceVerification verification) {
2149 if (!IsEssentialObject(child_obj)) {
2150 return;
2151 }
2152 HeapEntry* child_entry = GetEntry(child_obj);
2153 DCHECK_NOT_NULL(child_entry);
2154 parent_entry->SetNamedReference(HeapGraphEdge::kWeak, reference_name,
2155 child_entry, generator_, verification);
2156 MarkVisitedField(field_offset);
2157 }
2158
SetWeakReference(HeapEntry * parent_entry,int index,Object child_obj,base::Optional<int> field_offset)2159 void V8HeapExplorer::SetWeakReference(HeapEntry* parent_entry, int index,
2160 Object child_obj,
2161 base::Optional<int> field_offset) {
2162 if (!IsEssentialObject(child_obj)) {
2163 return;
2164 }
2165 HeapEntry* child_entry = GetEntry(child_obj);
2166 DCHECK_NOT_NULL(child_entry);
2167 parent_entry->SetNamedReference(HeapGraphEdge::kWeak,
2168 names_->GetFormatted("%d", index),
2169 child_entry, generator_);
2170 if (field_offset.has_value()) {
2171 MarkVisitedField(*field_offset);
2172 }
2173 }
2174
SetDataOrAccessorPropertyReference(PropertyKind kind,HeapEntry * parent_entry,Name reference_name,Object child_obj,const char * name_format_string,int field_offset)2175 void V8HeapExplorer::SetDataOrAccessorPropertyReference(
2176 PropertyKind kind, HeapEntry* parent_entry, Name reference_name,
2177 Object child_obj, const char* name_format_string, int field_offset) {
2178 if (kind == PropertyKind::kAccessor) {
2179 ExtractAccessorPairProperty(parent_entry, reference_name, child_obj,
2180 field_offset);
2181 } else {
2182 SetPropertyReference(parent_entry, reference_name, child_obj,
2183 name_format_string, field_offset);
2184 }
2185 }
2186
SetPropertyReference(HeapEntry * parent_entry,Name reference_name,Object child_obj,const char * name_format_string,int field_offset)2187 void V8HeapExplorer::SetPropertyReference(HeapEntry* parent_entry,
2188 Name reference_name, Object child_obj,
2189 const char* name_format_string,
2190 int field_offset) {
2191 HeapEntry* child_entry = GetEntry(child_obj);
2192 if (child_entry == nullptr) return;
2193 HeapGraphEdge::Type type =
2194 reference_name.IsSymbol() || String::cast(reference_name).length() > 0
2195 ? HeapGraphEdge::kProperty
2196 : HeapGraphEdge::kInternal;
2197 const char* name =
2198 name_format_string != nullptr && reference_name.IsString()
2199 ? names_->GetFormatted(
2200 name_format_string,
2201 String::cast(reference_name)
2202 .ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL)
2203 .get())
2204 : names_->GetName(reference_name);
2205
2206 parent_entry->SetNamedReference(type, name, child_entry, generator_);
2207 MarkVisitedField(field_offset);
2208 }
2209
SetRootGcRootsReference()2210 void V8HeapExplorer::SetRootGcRootsReference() {
2211 snapshot_->root()->SetIndexedAutoIndexReference(
2212 HeapGraphEdge::kElement, snapshot_->gc_roots(), generator_);
2213 }
2214
SetUserGlobalReference(Object child_obj)2215 void V8HeapExplorer::SetUserGlobalReference(Object child_obj) {
2216 HeapEntry* child_entry = GetEntry(child_obj);
2217 DCHECK_NOT_NULL(child_entry);
2218 snapshot_->root()->SetNamedAutoIndexReference(
2219 HeapGraphEdge::kShortcut, nullptr, child_entry, names_, generator_);
2220 }
2221
SetGcRootsReference(Root root)2222 void V8HeapExplorer::SetGcRootsReference(Root root) {
2223 snapshot_->gc_roots()->SetIndexedAutoIndexReference(
2224 HeapGraphEdge::kElement, snapshot_->gc_subroot(root), generator_);
2225 }
2226
SetGcSubrootReference(Root root,const char * description,bool is_weak,Object child_obj)2227 void V8HeapExplorer::SetGcSubrootReference(Root root, const char* description,
2228 bool is_weak, Object child_obj) {
2229 if (child_obj.IsSmi()) {
2230 // TODO(arenevier): if we handle smis here, the snapshot gets 2 to 3 times
2231 // slower on large heaps. According to perf, The bulk of the extra works
2232 // happens in TemplateHashMapImpl::Probe method, when tyring to get
2233 // names->GetFormatted("%d / %s", index, description)
2234 return;
2235 }
2236 HeapEntry* child_entry = GetEntry(child_obj);
2237 if (child_entry == nullptr) return;
2238 const char* name = GetStrongGcSubrootName(child_obj);
2239 HeapGraphEdge::Type edge_type =
2240 is_weak ? HeapGraphEdge::kWeak : HeapGraphEdge::kInternal;
2241 if (name != nullptr) {
2242 snapshot_->gc_subroot(root)->SetNamedReference(edge_type, name, child_entry,
2243 generator_);
2244 } else {
2245 snapshot_->gc_subroot(root)->SetNamedAutoIndexReference(
2246 edge_type, description, child_entry, names_, generator_);
2247 }
2248
2249 // For full heap snapshots we do not emit user roots but rather rely on
2250 // regular GC roots to retain objects.
2251 if (!snapshot_->treat_global_objects_as_roots()) return;
2252
2253 // Add a shortcut to JS global object reference at snapshot root.
2254 // That allows the user to easily find global objects. They are
2255 // also used as starting points in distance calculations.
2256 if (is_weak || !child_obj.IsNativeContext()) return;
2257
2258 JSGlobalObject global = Context::cast(child_obj).global_object();
2259 if (!global.IsJSGlobalObject()) return;
2260
2261 if (!user_roots_.insert(global).second) return;
2262
2263 SetUserGlobalReference(global);
2264 }
2265
GetStrongGcSubrootName(Object object)2266 const char* V8HeapExplorer::GetStrongGcSubrootName(Object object) {
2267 if (strong_gc_subroot_names_.empty()) {
2268 Isolate* isolate = Isolate::FromHeap(heap_);
2269 for (RootIndex root_index = RootIndex::kFirstStrongOrReadOnlyRoot;
2270 root_index <= RootIndex::kLastStrongOrReadOnlyRoot; ++root_index) {
2271 const char* name = RootsTable::name(root_index);
2272 strong_gc_subroot_names_.emplace(isolate->root(root_index), name);
2273 }
2274 CHECK(!strong_gc_subroot_names_.empty());
2275 }
2276 auto it = strong_gc_subroot_names_.find(object);
2277 return it != strong_gc_subroot_names_.end() ? it->second : nullptr;
2278 }
2279
TagObject(Object obj,const char * tag,base::Optional<HeapEntry::Type> type)2280 void V8HeapExplorer::TagObject(Object obj, const char* tag,
2281 base::Optional<HeapEntry::Type> type) {
2282 if (IsEssentialObject(obj)) {
2283 HeapEntry* entry = GetEntry(obj);
2284 if (entry->name()[0] == '\0') {
2285 entry->set_name(tag);
2286 }
2287 if (type.has_value()) {
2288 entry->set_type(*type);
2289 }
2290 }
2291 }
2292
RecursivelyTagConstantPool(Object obj,const char * tag,HeapEntry::Type type,int recursion_limit)2293 void V8HeapExplorer::RecursivelyTagConstantPool(Object obj, const char* tag,
2294 HeapEntry::Type type,
2295 int recursion_limit) {
2296 --recursion_limit;
2297 if (obj.IsFixedArrayExact(isolate())) {
2298 FixedArray arr = FixedArray::cast(obj);
2299 TagObject(arr, tag, type);
2300 if (recursion_limit <= 0) return;
2301 for (int i = 0; i < arr.length(); ++i) {
2302 RecursivelyTagConstantPool(arr.get(i), tag, type, recursion_limit);
2303 }
2304 } else if (obj.IsNameDictionary(isolate()) ||
2305 obj.IsNumberDictionary(isolate())) {
2306 TagObject(obj, tag, type);
2307 }
2308 }
2309
2310 class GlobalObjectsEnumerator : public RootVisitor {
2311 public:
GlobalObjectsEnumerator(Isolate * isolate)2312 explicit GlobalObjectsEnumerator(Isolate* isolate) : isolate_(isolate) {}
2313
VisitRootPointers(Root root,const char * description,FullObjectSlot start,FullObjectSlot end)2314 void VisitRootPointers(Root root, const char* description,
2315 FullObjectSlot start, FullObjectSlot end) override {
2316 VisitRootPointersImpl(root, description, start, end);
2317 }
2318
VisitRootPointers(Root root,const char * description,OffHeapObjectSlot start,OffHeapObjectSlot end)2319 void VisitRootPointers(Root root, const char* description,
2320 OffHeapObjectSlot start,
2321 OffHeapObjectSlot end) override {
2322 VisitRootPointersImpl(root, description, start, end);
2323 }
2324
count() const2325 int count() const { return static_cast<int>(objects_.size()); }
at(int i)2326 Handle<JSGlobalObject>& at(int i) { return objects_[i]; }
2327
2328 private:
2329 template <typename TSlot>
VisitRootPointersImpl(Root root,const char * description,TSlot start,TSlot end)2330 void VisitRootPointersImpl(Root root, const char* description, TSlot start,
2331 TSlot end) {
2332 for (TSlot p = start; p < end; ++p) {
2333 DCHECK(!MapWord::IsPacked(p.Relaxed_Load(isolate_).ptr()));
2334 Object o = p.load(isolate_);
2335 if (!o.IsNativeContext(isolate_)) continue;
2336 JSObject proxy = Context::cast(o).global_proxy();
2337 if (!proxy.IsJSGlobalProxy(isolate_)) continue;
2338 Object global = proxy.map(isolate_).prototype(isolate_);
2339 if (!global.IsJSGlobalObject(isolate_)) continue;
2340 objects_.push_back(handle(JSGlobalObject::cast(global), isolate_));
2341 }
2342 }
2343
2344 Isolate* isolate_;
2345 std::vector<Handle<JSGlobalObject>> objects_;
2346 };
2347
2348
2349 // Modifies heap. Must not be run during heap traversal.
CollectGlobalObjectsTags()2350 void V8HeapExplorer::CollectGlobalObjectsTags() {
2351 if (!global_object_name_resolver_) return;
2352
2353 Isolate* isolate = Isolate::FromHeap(heap_);
2354 GlobalObjectsEnumerator enumerator(isolate);
2355 isolate->global_handles()->IterateAllRoots(&enumerator);
2356 for (int i = 0, l = enumerator.count(); i < l; ++i) {
2357 Handle<JSGlobalObject> obj = enumerator.at(i);
2358 const char* tag = global_object_name_resolver_->GetName(
2359 Utils::ToLocal(Handle<JSObject>::cast(obj)));
2360 if (tag) {
2361 global_object_tag_pairs_.emplace_back(obj, tag);
2362 }
2363 }
2364 }
2365
MakeGlobalObjectTagMap(const SafepointScope & safepoint_scope)2366 void V8HeapExplorer::MakeGlobalObjectTagMap(
2367 const SafepointScope& safepoint_scope) {
2368 for (const auto& pair : global_object_tag_pairs_) {
2369 global_object_tag_map_.emplace(*pair.first, pair.second);
2370 }
2371 }
2372
2373 class EmbedderGraphImpl : public EmbedderGraph {
2374 public:
2375 struct Edge {
2376 Node* from;
2377 Node* to;
2378 const char* name;
2379 };
2380
2381 class V8NodeImpl : public Node {
2382 public:
V8NodeImpl(Object object)2383 explicit V8NodeImpl(Object object) : object_(object) {}
GetObject()2384 Object GetObject() { return object_; }
2385
2386 // Node overrides.
IsEmbedderNode()2387 bool IsEmbedderNode() override { return false; }
Name()2388 const char* Name() override {
2389 // The name should be retrieved via GetObject().
2390 UNREACHABLE();
2391 }
SizeInBytes()2392 size_t SizeInBytes() override {
2393 // The size should be retrieved via GetObject().
2394 UNREACHABLE();
2395 }
2396
2397 private:
2398 Object object_;
2399 };
2400
V8Node(const v8::Local<v8::Value> & value)2401 Node* V8Node(const v8::Local<v8::Value>& value) final {
2402 Handle<Object> object = v8::Utils::OpenHandle(*value);
2403 DCHECK(!object.is_null());
2404 return AddNode(std::unique_ptr<Node>(new V8NodeImpl(*object)));
2405 }
2406
AddNode(std::unique_ptr<Node> node)2407 Node* AddNode(std::unique_ptr<Node> node) final {
2408 Node* result = node.get();
2409 nodes_.push_back(std::move(node));
2410 return result;
2411 }
2412
AddEdge(Node * from,Node * to,const char * name)2413 void AddEdge(Node* from, Node* to, const char* name) final {
2414 edges_.push_back({from, to, name});
2415 }
2416
nodes()2417 const std::vector<std::unique_ptr<Node>>& nodes() { return nodes_; }
edges()2418 const std::vector<Edge>& edges() { return edges_; }
2419
2420 private:
2421 std::vector<std::unique_ptr<Node>> nodes_;
2422 std::vector<Edge> edges_;
2423 };
2424
2425 class EmbedderGraphEntriesAllocator : public HeapEntriesAllocator {
2426 public:
EmbedderGraphEntriesAllocator(HeapSnapshot * snapshot)2427 explicit EmbedderGraphEntriesAllocator(HeapSnapshot* snapshot)
2428 : snapshot_(snapshot),
2429 names_(snapshot_->profiler()->names()),
2430 heap_object_map_(snapshot_->profiler()->heap_object_map()) {}
2431 HeapEntry* AllocateEntry(HeapThing ptr) override;
2432 HeapEntry* AllocateEntry(Smi smi) override;
2433
2434 private:
2435 HeapSnapshot* snapshot_;
2436 StringsStorage* names_;
2437 HeapObjectsMap* heap_object_map_;
2438 };
2439
2440 namespace {
2441
EmbedderGraphNodeName(StringsStorage * names,EmbedderGraphImpl::Node * node)2442 const char* EmbedderGraphNodeName(StringsStorage* names,
2443 EmbedderGraphImpl::Node* node) {
2444 const char* prefix = node->NamePrefix();
2445 return prefix ? names->GetFormatted("%s %s", prefix, node->Name())
2446 : names->GetCopy(node->Name());
2447 }
2448
EmbedderGraphNodeType(EmbedderGraphImpl::Node * node)2449 HeapEntry::Type EmbedderGraphNodeType(EmbedderGraphImpl::Node* node) {
2450 return node->IsRootNode() ? HeapEntry::kSynthetic : HeapEntry::kNative;
2451 }
2452
2453 // Merges the names of an embedder node and its wrapper node.
2454 // If the wrapper node name contains a tag suffix (part after '/') then the
2455 // result is the embedder node name concatenated with the tag suffix.
2456 // Otherwise, the result is the embedder node name.
MergeNames(StringsStorage * names,const char * embedder_name,const char * wrapper_name)2457 const char* MergeNames(StringsStorage* names, const char* embedder_name,
2458 const char* wrapper_name) {
2459 const char* suffix = strchr(wrapper_name, '/');
2460 return suffix ? names->GetFormatted("%s %s", embedder_name, suffix)
2461 : embedder_name;
2462 }
2463
2464 } // anonymous namespace
2465
AllocateEntry(HeapThing ptr)2466 HeapEntry* EmbedderGraphEntriesAllocator::AllocateEntry(HeapThing ptr) {
2467 EmbedderGraphImpl::Node* node =
2468 reinterpret_cast<EmbedderGraphImpl::Node*>(ptr);
2469 DCHECK(node->IsEmbedderNode());
2470 size_t size = node->SizeInBytes();
2471 Address lookup_address = reinterpret_cast<Address>(node->GetNativeObject());
2472 SnapshotObjectId id =
2473 (lookup_address) ? heap_object_map_->FindOrAddEntry(lookup_address, 0)
2474 : static_cast<SnapshotObjectId>(
2475 reinterpret_cast<uintptr_t>(node) << 1);
2476 auto* heap_entry = snapshot_->AddEntry(EmbedderGraphNodeType(node),
2477 EmbedderGraphNodeName(names_, node),
2478 id, static_cast<int>(size), 0);
2479 heap_entry->set_detachedness(node->GetDetachedness());
2480 return heap_entry;
2481 }
2482
AllocateEntry(Smi smi)2483 HeapEntry* EmbedderGraphEntriesAllocator::AllocateEntry(Smi smi) {
2484 DCHECK(false);
2485 return nullptr;
2486 }
2487
NativeObjectsExplorer(HeapSnapshot * snapshot,SnapshottingProgressReportingInterface * progress)2488 NativeObjectsExplorer::NativeObjectsExplorer(
2489 HeapSnapshot* snapshot, SnapshottingProgressReportingInterface* progress)
2490 : isolate_(
2491 Isolate::FromHeap(snapshot->profiler()->heap_object_map()->heap())),
2492 snapshot_(snapshot),
2493 names_(snapshot_->profiler()->names()),
2494 heap_object_map_(snapshot_->profiler()->heap_object_map()),
2495 embedder_graph_entries_allocator_(
2496 new EmbedderGraphEntriesAllocator(snapshot)) {}
2497
MergeNodeIntoEntry(HeapEntry * entry,EmbedderGraph::Node * original_node,EmbedderGraph::Node * wrapper_node)2498 void NativeObjectsExplorer::MergeNodeIntoEntry(
2499 HeapEntry* entry, EmbedderGraph::Node* original_node,
2500 EmbedderGraph::Node* wrapper_node) {
2501 // The wrapper node may be an embedder node (for testing purposes) or a V8
2502 // node (production code).
2503 if (!wrapper_node->IsEmbedderNode()) {
2504 // For V8 nodes only we can add a lookup.
2505 EmbedderGraphImpl::V8NodeImpl* v8_node =
2506 static_cast<EmbedderGraphImpl::V8NodeImpl*>(wrapper_node);
2507 Object object = v8_node->GetObject();
2508 DCHECK(!object.IsSmi());
2509 if (original_node->GetNativeObject()) {
2510 HeapObject heap_object = HeapObject::cast(object);
2511 heap_object_map_->AddMergedNativeEntry(original_node->GetNativeObject(),
2512 heap_object.address());
2513 DCHECK_EQ(entry->id(), heap_object_map_->FindMergedNativeEntry(
2514 original_node->GetNativeObject()));
2515 }
2516 }
2517 entry->set_detachedness(original_node->GetDetachedness());
2518 entry->set_name(MergeNames(
2519 names_, EmbedderGraphNodeName(names_, original_node), entry->name()));
2520 entry->set_type(EmbedderGraphNodeType(original_node));
2521 DCHECK_GE(entry->self_size() + original_node->SizeInBytes(),
2522 entry->self_size());
2523 entry->add_self_size(original_node->SizeInBytes());
2524 }
2525
EntryForEmbedderGraphNode(EmbedderGraphImpl::Node * node)2526 HeapEntry* NativeObjectsExplorer::EntryForEmbedderGraphNode(
2527 EmbedderGraphImpl::Node* node) {
2528 // Return the entry for the wrapper node if present.
2529 if (node->WrapperNode()) {
2530 node = node->WrapperNode();
2531 }
2532 // Node is EmbedderNode.
2533 if (node->IsEmbedderNode()) {
2534 return generator_->FindOrAddEntry(node,
2535 embedder_graph_entries_allocator_.get());
2536 }
2537 // Node is V8NodeImpl.
2538 Object object =
2539 static_cast<EmbedderGraphImpl::V8NodeImpl*>(node)->GetObject();
2540 if (object.IsSmi()) return nullptr;
2541 auto* entry = generator_->FindEntry(
2542 reinterpret_cast<void*>(Object::cast(object).ptr()));
2543 return entry;
2544 }
2545
IterateAndExtractReferences(HeapSnapshotGenerator * generator)2546 bool NativeObjectsExplorer::IterateAndExtractReferences(
2547 HeapSnapshotGenerator* generator) {
2548 generator_ = generator;
2549
2550 if (FLAG_heap_profiler_use_embedder_graph &&
2551 snapshot_->profiler()->HasBuildEmbedderGraphCallback()) {
2552 v8::HandleScope scope(reinterpret_cast<v8::Isolate*>(isolate_));
2553 DisallowGarbageCollection no_gc;
2554 EmbedderGraphImpl graph;
2555 snapshot_->profiler()->BuildEmbedderGraph(isolate_, &graph);
2556 for (const auto& node : graph.nodes()) {
2557 // Only add embedder nodes as V8 nodes have been added already by the
2558 // V8HeapExplorer.
2559 if (!node->IsEmbedderNode()) continue;
2560
2561 if (auto* entry = EntryForEmbedderGraphNode(node.get())) {
2562 if (node->IsRootNode()) {
2563 snapshot_->root()->SetIndexedAutoIndexReference(
2564 HeapGraphEdge::kElement, entry, generator_,
2565 HeapEntry::kOffHeapPointer);
2566 }
2567 if (node->WrapperNode()) {
2568 MergeNodeIntoEntry(entry, node.get(), node->WrapperNode());
2569 }
2570 }
2571 }
2572 // Fill edges of the graph.
2573 for (const auto& edge : graph.edges()) {
2574 // |from| and |to| can be nullptr if the corresponding node is a V8 node
2575 // pointing to a Smi.
2576 HeapEntry* from = EntryForEmbedderGraphNode(edge.from);
2577 if (!from) continue;
2578 HeapEntry* to = EntryForEmbedderGraphNode(edge.to);
2579 if (!to) continue;
2580 if (edge.name == nullptr) {
2581 from->SetIndexedAutoIndexReference(HeapGraphEdge::kElement, to,
2582 generator_,
2583 HeapEntry::kOffHeapPointer);
2584 } else {
2585 from->SetNamedReference(HeapGraphEdge::kInternal,
2586 names_->GetCopy(edge.name), to, generator_,
2587 HeapEntry::kOffHeapPointer);
2588 }
2589 }
2590 }
2591 generator_ = nullptr;
2592 return true;
2593 }
2594
HeapSnapshotGenerator(HeapSnapshot * snapshot,v8::ActivityControl * control,v8::HeapProfiler::ObjectNameResolver * resolver,Heap * heap)2595 HeapSnapshotGenerator::HeapSnapshotGenerator(
2596 HeapSnapshot* snapshot, v8::ActivityControl* control,
2597 v8::HeapProfiler::ObjectNameResolver* resolver, Heap* heap)
2598 : snapshot_(snapshot),
2599 control_(control),
2600 v8_heap_explorer_(snapshot_, this, resolver),
2601 dom_explorer_(snapshot_, this),
2602 heap_(heap) {}
2603
2604 namespace {
2605 class V8_NODISCARD NullContextForSnapshotScope {
2606 public:
NullContextForSnapshotScope(Isolate * isolate)2607 explicit NullContextForSnapshotScope(Isolate* isolate)
2608 : isolate_(isolate), prev_(isolate->context()) {
2609 isolate_->set_context(Context());
2610 }
~NullContextForSnapshotScope()2611 ~NullContextForSnapshotScope() { isolate_->set_context(prev_); }
2612
2613 private:
2614 Isolate* isolate_;
2615 Context prev_;
2616 };
2617 } // namespace
2618
GenerateSnapshot()2619 bool HeapSnapshotGenerator::GenerateSnapshot() {
2620 Isolate* isolate = Isolate::FromHeap(heap_);
2621 base::Optional<HandleScope> handle_scope(base::in_place, isolate);
2622 v8_heap_explorer_.CollectGlobalObjectsTags();
2623
2624 heap_->CollectAllAvailableGarbage(GarbageCollectionReason::kHeapProfiler);
2625
2626 NullContextForSnapshotScope null_context_scope(isolate);
2627 SafepointScope scope(heap_);
2628 v8_heap_explorer_.MakeGlobalObjectTagMap(scope);
2629 handle_scope.reset();
2630
2631 #ifdef VERIFY_HEAP
2632 Heap* debug_heap = heap_;
2633 if (FLAG_verify_heap) {
2634 debug_heap->Verify();
2635 }
2636 #endif
2637
2638 InitProgressCounter();
2639
2640 #ifdef VERIFY_HEAP
2641 if (FLAG_verify_heap) {
2642 debug_heap->Verify();
2643 }
2644 #endif
2645
2646 snapshot_->AddSyntheticRootEntries();
2647
2648 if (!FillReferences()) return false;
2649
2650 snapshot_->FillChildren();
2651 snapshot_->RememberLastJSObjectId();
2652
2653 progress_counter_ = progress_total_;
2654 if (!ProgressReport(true)) return false;
2655 return true;
2656 }
2657
ProgressStep()2658 void HeapSnapshotGenerator::ProgressStep() {
2659 // Only increment the progress_counter_ until
2660 // equal to progress_total -1 == progress_counter.
2661 // This ensures that intermediate ProgressReport calls will never signal
2662 // that the work is finished (i.e. progress_counter_ == progress_total_).
2663 // Only the forced ProgressReport() at the end of GenerateSnapshot() should,
2664 // after setting progress_counter_ = progress_total_, signal that the
2665 // work is finished because signalling finished twice
2666 // breaks the DevTools frontend.
2667 if (control_ != nullptr && progress_total_ > progress_counter_ + 1) {
2668 ++progress_counter_;
2669 }
2670 }
2671
ProgressReport(bool force)2672 bool HeapSnapshotGenerator::ProgressReport(bool force) {
2673 const int kProgressReportGranularity = 10000;
2674 if (control_ != nullptr &&
2675 (force || progress_counter_ % kProgressReportGranularity == 0)) {
2676 return control_->ReportProgressValue(progress_counter_, progress_total_) ==
2677 v8::ActivityControl::kContinue;
2678 }
2679 return true;
2680 }
2681
InitProgressCounter()2682 void HeapSnapshotGenerator::InitProgressCounter() {
2683 if (control_ == nullptr) return;
2684 progress_total_ = v8_heap_explorer_.EstimateObjectsCount();
2685 progress_counter_ = 0;
2686 }
2687
FillReferences()2688 bool HeapSnapshotGenerator::FillReferences() {
2689 return v8_heap_explorer_.IterateAndExtractReferences(this) &&
2690 dom_explorer_.IterateAndExtractReferences(this);
2691 }
2692
2693 template<int bytes> struct MaxDecimalDigitsIn;
2694 template <>
2695 struct MaxDecimalDigitsIn<1> {
2696 static const int kSigned = 3;
2697 static const int kUnsigned = 3;
2698 };
2699 template<> struct MaxDecimalDigitsIn<4> {
2700 static const int kSigned = 11;
2701 static const int kUnsigned = 10;
2702 };
2703 template<> struct MaxDecimalDigitsIn<8> {
2704 static const int kSigned = 20;
2705 static const int kUnsigned = 20;
2706 };
2707
2708 class OutputStreamWriter {
2709 public:
OutputStreamWriter(v8::OutputStream * stream)2710 explicit OutputStreamWriter(v8::OutputStream* stream)
2711 : stream_(stream),
2712 chunk_size_(stream->GetChunkSize()),
2713 chunk_(chunk_size_),
2714 chunk_pos_(0),
2715 aborted_(false) {
2716 DCHECK_GT(chunk_size_, 0);
2717 }
aborted()2718 bool aborted() { return aborted_; }
AddCharacter(char c)2719 void AddCharacter(char c) {
2720 DCHECK_NE(c, '\0');
2721 DCHECK(chunk_pos_ < chunk_size_);
2722 chunk_[chunk_pos_++] = c;
2723 MaybeWriteChunk();
2724 }
AddString(const char * s)2725 void AddString(const char* s) {
2726 size_t len = strlen(s);
2727 DCHECK_GE(kMaxInt, len);
2728 AddSubstring(s, static_cast<int>(len));
2729 }
AddSubstring(const char * s,int n)2730 void AddSubstring(const char* s, int n) {
2731 if (n <= 0) return;
2732 DCHECK_LE(n, strlen(s));
2733 const char* s_end = s + n;
2734 while (s < s_end) {
2735 int s_chunk_size =
2736 std::min(chunk_size_ - chunk_pos_, static_cast<int>(s_end - s));
2737 DCHECK_GT(s_chunk_size, 0);
2738 MemCopy(chunk_.begin() + chunk_pos_, s, s_chunk_size);
2739 s += s_chunk_size;
2740 chunk_pos_ += s_chunk_size;
2741 MaybeWriteChunk();
2742 }
2743 }
AddNumber(unsigned n)2744 void AddNumber(unsigned n) { AddNumberImpl<unsigned>(n, "%u"); }
Finalize()2745 void Finalize() {
2746 if (aborted_) return;
2747 DCHECK(chunk_pos_ < chunk_size_);
2748 if (chunk_pos_ != 0) {
2749 WriteChunk();
2750 }
2751 stream_->EndOfStream();
2752 }
2753
2754 private:
2755 template<typename T>
AddNumberImpl(T n,const char * format)2756 void AddNumberImpl(T n, const char* format) {
2757 // Buffer for the longest value plus trailing \0
2758 static const int kMaxNumberSize =
2759 MaxDecimalDigitsIn<sizeof(T)>::kUnsigned + 1;
2760 if (chunk_size_ - chunk_pos_ >= kMaxNumberSize) {
2761 int result = SNPrintF(
2762 chunk_.SubVector(chunk_pos_, chunk_size_), format, n);
2763 DCHECK_NE(result, -1);
2764 chunk_pos_ += result;
2765 MaybeWriteChunk();
2766 } else {
2767 base::EmbeddedVector<char, kMaxNumberSize> buffer;
2768 int result = SNPrintF(buffer, format, n);
2769 USE(result);
2770 DCHECK_NE(result, -1);
2771 AddString(buffer.begin());
2772 }
2773 }
MaybeWriteChunk()2774 void MaybeWriteChunk() {
2775 DCHECK(chunk_pos_ <= chunk_size_);
2776 if (chunk_pos_ == chunk_size_) {
2777 WriteChunk();
2778 }
2779 }
WriteChunk()2780 void WriteChunk() {
2781 if (aborted_) return;
2782 if (stream_->WriteAsciiChunk(chunk_.begin(), chunk_pos_) ==
2783 v8::OutputStream::kAbort)
2784 aborted_ = true;
2785 chunk_pos_ = 0;
2786 }
2787
2788 v8::OutputStream* stream_;
2789 int chunk_size_;
2790 base::ScopedVector<char> chunk_;
2791 int chunk_pos_;
2792 bool aborted_;
2793 };
2794
2795
2796 // type, name|index, to_node.
2797 const int HeapSnapshotJSONSerializer::kEdgeFieldsCount = 3;
2798 // type, name, id, self_size, edge_count, trace_node_id, detachedness.
2799 const int HeapSnapshotJSONSerializer::kNodeFieldsCount = 7;
2800
Serialize(v8::OutputStream * stream)2801 void HeapSnapshotJSONSerializer::Serialize(v8::OutputStream* stream) {
2802 if (AllocationTracker* allocation_tracker =
2803 snapshot_->profiler()->allocation_tracker()) {
2804 allocation_tracker->PrepareForSerialization();
2805 }
2806 DCHECK_NULL(writer_);
2807 writer_ = new OutputStreamWriter(stream);
2808 SerializeImpl();
2809 delete writer_;
2810 writer_ = nullptr;
2811 }
2812
2813
SerializeImpl()2814 void HeapSnapshotJSONSerializer::SerializeImpl() {
2815 DCHECK_EQ(0, snapshot_->root()->index());
2816 writer_->AddCharacter('{');
2817 writer_->AddString("\"snapshot\":{");
2818 SerializeSnapshot();
2819 if (writer_->aborted()) return;
2820 writer_->AddString("},\n");
2821 writer_->AddString("\"nodes\":[");
2822 SerializeNodes();
2823 if (writer_->aborted()) return;
2824 writer_->AddString("],\n");
2825 writer_->AddString("\"edges\":[");
2826 SerializeEdges();
2827 if (writer_->aborted()) return;
2828 writer_->AddString("],\n");
2829
2830 writer_->AddString("\"trace_function_infos\":[");
2831 SerializeTraceNodeInfos();
2832 if (writer_->aborted()) return;
2833 writer_->AddString("],\n");
2834 writer_->AddString("\"trace_tree\":[");
2835 SerializeTraceTree();
2836 if (writer_->aborted()) return;
2837 writer_->AddString("],\n");
2838
2839 writer_->AddString("\"samples\":[");
2840 SerializeSamples();
2841 if (writer_->aborted()) return;
2842 writer_->AddString("],\n");
2843
2844 writer_->AddString("\"locations\":[");
2845 SerializeLocations();
2846 if (writer_->aborted()) return;
2847 writer_->AddString("],\n");
2848
2849 writer_->AddString("\"strings\":[");
2850 SerializeStrings();
2851 if (writer_->aborted()) return;
2852 writer_->AddCharacter(']');
2853 writer_->AddCharacter('}');
2854 writer_->Finalize();
2855 }
2856
2857
GetStringId(const char * s)2858 int HeapSnapshotJSONSerializer::GetStringId(const char* s) {
2859 base::HashMap::Entry* cache_entry =
2860 strings_.LookupOrInsert(const_cast<char*>(s), StringHash(s));
2861 if (cache_entry->value == nullptr) {
2862 cache_entry->value = reinterpret_cast<void*>(next_string_id_++);
2863 }
2864 return static_cast<int>(reinterpret_cast<intptr_t>(cache_entry->value));
2865 }
2866
2867
2868 namespace {
2869
2870 template<size_t size> struct ToUnsigned;
2871
2872 template <>
2873 struct ToUnsigned<1> {
2874 using Type = uint8_t;
2875 };
2876
2877 template<> struct ToUnsigned<4> {
2878 using Type = uint32_t;
2879 };
2880
2881 template<> struct ToUnsigned<8> {
2882 using Type = uint64_t;
2883 };
2884
2885 } // namespace
2886
2887 template <typename T>
utoa_impl(T value,const base::Vector<char> & buffer,int buffer_pos)2888 static int utoa_impl(T value, const base::Vector<char>& buffer,
2889 int buffer_pos) {
2890 STATIC_ASSERT(static_cast<T>(-1) > 0); // Check that T is unsigned
2891 int number_of_digits = 0;
2892 T t = value;
2893 do {
2894 ++number_of_digits;
2895 } while (t /= 10);
2896
2897 buffer_pos += number_of_digits;
2898 int result = buffer_pos;
2899 do {
2900 int last_digit = static_cast<int>(value % 10);
2901 buffer[--buffer_pos] = '0' + last_digit;
2902 value /= 10;
2903 } while (value);
2904 return result;
2905 }
2906
2907 template <typename T>
utoa(T value,const base::Vector<char> & buffer,int buffer_pos)2908 static int utoa(T value, const base::Vector<char>& buffer, int buffer_pos) {
2909 typename ToUnsigned<sizeof(value)>::Type unsigned_value = value;
2910 STATIC_ASSERT(sizeof(value) == sizeof(unsigned_value));
2911 return utoa_impl(unsigned_value, buffer, buffer_pos);
2912 }
2913
SerializeEdge(HeapGraphEdge * edge,bool first_edge)2914 void HeapSnapshotJSONSerializer::SerializeEdge(HeapGraphEdge* edge,
2915 bool first_edge) {
2916 // The buffer needs space for 3 unsigned ints, 3 commas, \n and \0
2917 static const int kBufferSize =
2918 MaxDecimalDigitsIn<sizeof(unsigned)>::kUnsigned * 3 + 3 + 2;
2919 base::EmbeddedVector<char, kBufferSize> buffer;
2920 int edge_name_or_index = edge->type() == HeapGraphEdge::kElement
2921 || edge->type() == HeapGraphEdge::kHidden
2922 ? edge->index() : GetStringId(edge->name());
2923 int buffer_pos = 0;
2924 if (!first_edge) {
2925 buffer[buffer_pos++] = ',';
2926 }
2927 buffer_pos = utoa(edge->type(), buffer, buffer_pos);
2928 buffer[buffer_pos++] = ',';
2929 buffer_pos = utoa(edge_name_or_index, buffer, buffer_pos);
2930 buffer[buffer_pos++] = ',';
2931 buffer_pos = utoa(to_node_index(edge->to()), buffer, buffer_pos);
2932 buffer[buffer_pos++] = '\n';
2933 buffer[buffer_pos++] = '\0';
2934 writer_->AddString(buffer.begin());
2935 }
2936
SerializeEdges()2937 void HeapSnapshotJSONSerializer::SerializeEdges() {
2938 std::vector<HeapGraphEdge*>& edges = snapshot_->children();
2939 for (size_t i = 0; i < edges.size(); ++i) {
2940 DCHECK(i == 0 ||
2941 edges[i - 1]->from()->index() <= edges[i]->from()->index());
2942 SerializeEdge(edges[i], i == 0);
2943 if (writer_->aborted()) return;
2944 }
2945 }
2946
SerializeNode(const HeapEntry * entry)2947 void HeapSnapshotJSONSerializer::SerializeNode(const HeapEntry* entry) {
2948 // The buffer needs space for 5 unsigned ints, 1 size_t, 1 uint8_t, 7 commas,
2949 // \n and \0
2950 static const int kBufferSize =
2951 5 * MaxDecimalDigitsIn<sizeof(unsigned)>::kUnsigned +
2952 MaxDecimalDigitsIn<sizeof(size_t)>::kUnsigned +
2953 MaxDecimalDigitsIn<sizeof(uint8_t)>::kUnsigned + 7 + 1 + 1;
2954 base::EmbeddedVector<char, kBufferSize> buffer;
2955 int buffer_pos = 0;
2956 if (to_node_index(entry) != 0) {
2957 buffer[buffer_pos++] = ',';
2958 }
2959 buffer_pos = utoa(entry->type(), buffer, buffer_pos);
2960 buffer[buffer_pos++] = ',';
2961 buffer_pos = utoa(GetStringId(entry->name()), buffer, buffer_pos);
2962 buffer[buffer_pos++] = ',';
2963 buffer_pos = utoa(entry->id(), buffer, buffer_pos);
2964 buffer[buffer_pos++] = ',';
2965 buffer_pos = utoa(entry->self_size(), buffer, buffer_pos);
2966 buffer[buffer_pos++] = ',';
2967 buffer_pos = utoa(entry->children_count(), buffer, buffer_pos);
2968 buffer[buffer_pos++] = ',';
2969 buffer_pos = utoa(entry->trace_node_id(), buffer, buffer_pos);
2970 buffer[buffer_pos++] = ',';
2971 buffer_pos = utoa(entry->detachedness(), buffer, buffer_pos);
2972 buffer[buffer_pos++] = '\n';
2973 buffer[buffer_pos++] = '\0';
2974 writer_->AddString(buffer.begin());
2975 }
2976
SerializeNodes()2977 void HeapSnapshotJSONSerializer::SerializeNodes() {
2978 const std::deque<HeapEntry>& entries = snapshot_->entries();
2979 for (const HeapEntry& entry : entries) {
2980 SerializeNode(&entry);
2981 if (writer_->aborted()) return;
2982 }
2983 }
2984
SerializeSnapshot()2985 void HeapSnapshotJSONSerializer::SerializeSnapshot() {
2986 writer_->AddString("\"meta\":");
2987 // The object describing node serialization layout.
2988 // We use a set of macros to improve readability.
2989
2990 // clang-format off
2991 #define JSON_A(s) "[" s "]"
2992 #define JSON_O(s) "{" s "}"
2993 #define JSON_S(s) "\"" s "\""
2994 writer_->AddString(JSON_O(
2995 JSON_S("node_fields") ":" JSON_A(
2996 JSON_S("type") ","
2997 JSON_S("name") ","
2998 JSON_S("id") ","
2999 JSON_S("self_size") ","
3000 JSON_S("edge_count") ","
3001 JSON_S("trace_node_id") ","
3002 JSON_S("detachedness")) ","
3003 JSON_S("node_types") ":" JSON_A(
3004 JSON_A(
3005 JSON_S("hidden") ","
3006 JSON_S("array") ","
3007 JSON_S("string") ","
3008 JSON_S("object") ","
3009 JSON_S("code") ","
3010 JSON_S("closure") ","
3011 JSON_S("regexp") ","
3012 JSON_S("number") ","
3013 JSON_S("native") ","
3014 JSON_S("synthetic") ","
3015 JSON_S("concatenated string") ","
3016 JSON_S("sliced string") ","
3017 JSON_S("symbol") ","
3018 JSON_S("bigint")) ","
3019 JSON_S("string") ","
3020 JSON_S("number") ","
3021 JSON_S("number") ","
3022 JSON_S("number") ","
3023 JSON_S("number") ","
3024 JSON_S("number")) ","
3025 JSON_S("edge_fields") ":" JSON_A(
3026 JSON_S("type") ","
3027 JSON_S("name_or_index") ","
3028 JSON_S("to_node")) ","
3029 JSON_S("edge_types") ":" JSON_A(
3030 JSON_A(
3031 JSON_S("context") ","
3032 JSON_S("element") ","
3033 JSON_S("property") ","
3034 JSON_S("internal") ","
3035 JSON_S("hidden") ","
3036 JSON_S("shortcut") ","
3037 JSON_S("weak")) ","
3038 JSON_S("string_or_number") ","
3039 JSON_S("node")) ","
3040 JSON_S("trace_function_info_fields") ":" JSON_A(
3041 JSON_S("function_id") ","
3042 JSON_S("name") ","
3043 JSON_S("script_name") ","
3044 JSON_S("script_id") ","
3045 JSON_S("line") ","
3046 JSON_S("column")) ","
3047 JSON_S("trace_node_fields") ":" JSON_A(
3048 JSON_S("id") ","
3049 JSON_S("function_info_index") ","
3050 JSON_S("count") ","
3051 JSON_S("size") ","
3052 JSON_S("children")) ","
3053 JSON_S("sample_fields") ":" JSON_A(
3054 JSON_S("timestamp_us") ","
3055 JSON_S("last_assigned_id")) ","
3056 JSON_S("location_fields") ":" JSON_A(
3057 JSON_S("object_index") ","
3058 JSON_S("script_id") ","
3059 JSON_S("line") ","
3060 JSON_S("column"))));
3061 // clang-format on
3062 #undef JSON_S
3063 #undef JSON_O
3064 #undef JSON_A
3065 writer_->AddString(",\"node_count\":");
3066 writer_->AddNumber(static_cast<unsigned>(snapshot_->entries().size()));
3067 writer_->AddString(",\"edge_count\":");
3068 writer_->AddNumber(static_cast<double>(snapshot_->edges().size()));
3069 writer_->AddString(",\"trace_function_count\":");
3070 uint32_t count = 0;
3071 AllocationTracker* tracker = snapshot_->profiler()->allocation_tracker();
3072 if (tracker) {
3073 count = static_cast<uint32_t>(tracker->function_info_list().size());
3074 }
3075 writer_->AddNumber(count);
3076 }
3077
3078
WriteUChar(OutputStreamWriter * w,unibrow::uchar u)3079 static void WriteUChar(OutputStreamWriter* w, unibrow::uchar u) {
3080 static const char hex_chars[] = "0123456789ABCDEF";
3081 w->AddString("\\u");
3082 w->AddCharacter(hex_chars[(u >> 12) & 0xF]);
3083 w->AddCharacter(hex_chars[(u >> 8) & 0xF]);
3084 w->AddCharacter(hex_chars[(u >> 4) & 0xF]);
3085 w->AddCharacter(hex_chars[u & 0xF]);
3086 }
3087
3088
SerializeTraceTree()3089 void HeapSnapshotJSONSerializer::SerializeTraceTree() {
3090 AllocationTracker* tracker = snapshot_->profiler()->allocation_tracker();
3091 if (!tracker) return;
3092 AllocationTraceTree* traces = tracker->trace_tree();
3093 SerializeTraceNode(traces->root());
3094 }
3095
3096
SerializeTraceNode(AllocationTraceNode * node)3097 void HeapSnapshotJSONSerializer::SerializeTraceNode(AllocationTraceNode* node) {
3098 // The buffer needs space for 4 unsigned ints, 4 commas, [ and \0
3099 const int kBufferSize =
3100 4 * MaxDecimalDigitsIn<sizeof(unsigned)>::kUnsigned + 4 + 1 + 1;
3101 base::EmbeddedVector<char, kBufferSize> buffer;
3102 int buffer_pos = 0;
3103 buffer_pos = utoa(node->id(), buffer, buffer_pos);
3104 buffer[buffer_pos++] = ',';
3105 buffer_pos = utoa(node->function_info_index(), buffer, buffer_pos);
3106 buffer[buffer_pos++] = ',';
3107 buffer_pos = utoa(node->allocation_count(), buffer, buffer_pos);
3108 buffer[buffer_pos++] = ',';
3109 buffer_pos = utoa(node->allocation_size(), buffer, buffer_pos);
3110 buffer[buffer_pos++] = ',';
3111 buffer[buffer_pos++] = '[';
3112 buffer[buffer_pos++] = '\0';
3113 writer_->AddString(buffer.begin());
3114
3115 int i = 0;
3116 for (AllocationTraceNode* child : node->children()) {
3117 if (i++ > 0) {
3118 writer_->AddCharacter(',');
3119 }
3120 SerializeTraceNode(child);
3121 }
3122 writer_->AddCharacter(']');
3123 }
3124
3125
3126 // 0-based position is converted to 1-based during the serialization.
SerializePosition(int position,const base::Vector<char> & buffer,int buffer_pos)3127 static int SerializePosition(int position, const base::Vector<char>& buffer,
3128 int buffer_pos) {
3129 if (position == -1) {
3130 buffer[buffer_pos++] = '0';
3131 } else {
3132 DCHECK_GE(position, 0);
3133 buffer_pos = utoa(static_cast<unsigned>(position + 1), buffer, buffer_pos);
3134 }
3135 return buffer_pos;
3136 }
3137
SerializeTraceNodeInfos()3138 void HeapSnapshotJSONSerializer::SerializeTraceNodeInfos() {
3139 AllocationTracker* tracker = snapshot_->profiler()->allocation_tracker();
3140 if (!tracker) return;
3141 // The buffer needs space for 6 unsigned ints, 6 commas, \n and \0
3142 const int kBufferSize =
3143 6 * MaxDecimalDigitsIn<sizeof(unsigned)>::kUnsigned + 6 + 1 + 1;
3144 base::EmbeddedVector<char, kBufferSize> buffer;
3145 int i = 0;
3146 for (AllocationTracker::FunctionInfo* info : tracker->function_info_list()) {
3147 int buffer_pos = 0;
3148 if (i++ > 0) {
3149 buffer[buffer_pos++] = ',';
3150 }
3151 buffer_pos = utoa(info->function_id, buffer, buffer_pos);
3152 buffer[buffer_pos++] = ',';
3153 buffer_pos = utoa(GetStringId(info->name), buffer, buffer_pos);
3154 buffer[buffer_pos++] = ',';
3155 buffer_pos = utoa(GetStringId(info->script_name), buffer, buffer_pos);
3156 buffer[buffer_pos++] = ',';
3157 // The cast is safe because script id is a non-negative Smi.
3158 buffer_pos = utoa(static_cast<unsigned>(info->script_id), buffer,
3159 buffer_pos);
3160 buffer[buffer_pos++] = ',';
3161 buffer_pos = SerializePosition(info->line, buffer, buffer_pos);
3162 buffer[buffer_pos++] = ',';
3163 buffer_pos = SerializePosition(info->column, buffer, buffer_pos);
3164 buffer[buffer_pos++] = '\n';
3165 buffer[buffer_pos++] = '\0';
3166 writer_->AddString(buffer.begin());
3167 }
3168 }
3169
3170
SerializeSamples()3171 void HeapSnapshotJSONSerializer::SerializeSamples() {
3172 const std::vector<HeapObjectsMap::TimeInterval>& samples =
3173 snapshot_->profiler()->heap_object_map()->samples();
3174 if (samples.empty()) return;
3175 base::TimeTicks start_time = samples[0].timestamp;
3176 // The buffer needs space for 2 unsigned ints, 2 commas, \n and \0
3177 const int kBufferSize = MaxDecimalDigitsIn<sizeof(
3178 base::TimeDelta().InMicroseconds())>::kUnsigned +
3179 MaxDecimalDigitsIn<sizeof(samples[0].id)>::kUnsigned +
3180 2 + 1 + 1;
3181 base::EmbeddedVector<char, kBufferSize> buffer;
3182 int i = 0;
3183 for (const HeapObjectsMap::TimeInterval& sample : samples) {
3184 int buffer_pos = 0;
3185 if (i++ > 0) {
3186 buffer[buffer_pos++] = ',';
3187 }
3188 base::TimeDelta time_delta = sample.timestamp - start_time;
3189 buffer_pos = utoa(time_delta.InMicroseconds(), buffer, buffer_pos);
3190 buffer[buffer_pos++] = ',';
3191 buffer_pos = utoa(sample.last_assigned_id(), buffer, buffer_pos);
3192 buffer[buffer_pos++] = '\n';
3193 buffer[buffer_pos++] = '\0';
3194 writer_->AddString(buffer.begin());
3195 }
3196 }
3197
3198
SerializeString(const unsigned char * s)3199 void HeapSnapshotJSONSerializer::SerializeString(const unsigned char* s) {
3200 writer_->AddCharacter('\n');
3201 writer_->AddCharacter('\"');
3202 for ( ; *s != '\0'; ++s) {
3203 switch (*s) {
3204 case '\b':
3205 writer_->AddString("\\b");
3206 continue;
3207 case '\f':
3208 writer_->AddString("\\f");
3209 continue;
3210 case '\n':
3211 writer_->AddString("\\n");
3212 continue;
3213 case '\r':
3214 writer_->AddString("\\r");
3215 continue;
3216 case '\t':
3217 writer_->AddString("\\t");
3218 continue;
3219 case '\"':
3220 case '\\':
3221 writer_->AddCharacter('\\');
3222 writer_->AddCharacter(*s);
3223 continue;
3224 default:
3225 if (*s > 31 && *s < 128) {
3226 writer_->AddCharacter(*s);
3227 } else if (*s <= 31) {
3228 // Special character with no dedicated literal.
3229 WriteUChar(writer_, *s);
3230 } else {
3231 // Convert UTF-8 into \u UTF-16 literal.
3232 size_t length = 1, cursor = 0;
3233 for ( ; length <= 4 && *(s + length) != '\0'; ++length) { }
3234 unibrow::uchar c = unibrow::Utf8::CalculateValue(s, length, &cursor);
3235 if (c != unibrow::Utf8::kBadChar) {
3236 WriteUChar(writer_, c);
3237 DCHECK_NE(cursor, 0);
3238 s += cursor - 1;
3239 } else {
3240 writer_->AddCharacter('?');
3241 }
3242 }
3243 }
3244 }
3245 writer_->AddCharacter('\"');
3246 }
3247
3248
SerializeStrings()3249 void HeapSnapshotJSONSerializer::SerializeStrings() {
3250 base::ScopedVector<const unsigned char*> sorted_strings(strings_.occupancy() +
3251 1);
3252 for (base::HashMap::Entry* entry = strings_.Start(); entry != nullptr;
3253 entry = strings_.Next(entry)) {
3254 int index = static_cast<int>(reinterpret_cast<uintptr_t>(entry->value));
3255 sorted_strings[index] = reinterpret_cast<const unsigned char*>(entry->key);
3256 }
3257 writer_->AddString("\"<dummy>\"");
3258 for (int i = 1; i < sorted_strings.length(); ++i) {
3259 writer_->AddCharacter(',');
3260 SerializeString(sorted_strings[i]);
3261 if (writer_->aborted()) return;
3262 }
3263 }
3264
SerializeLocation(const SourceLocation & location)3265 void HeapSnapshotJSONSerializer::SerializeLocation(
3266 const SourceLocation& location) {
3267 // The buffer needs space for 4 unsigned ints, 3 commas, \n and \0
3268 static const int kBufferSize =
3269 MaxDecimalDigitsIn<sizeof(unsigned)>::kUnsigned * 4 + 3 + 2;
3270 base::EmbeddedVector<char, kBufferSize> buffer;
3271 int buffer_pos = 0;
3272 buffer_pos = utoa(to_node_index(location.entry_index), buffer, buffer_pos);
3273 buffer[buffer_pos++] = ',';
3274 buffer_pos = utoa(location.scriptId, buffer, buffer_pos);
3275 buffer[buffer_pos++] = ',';
3276 buffer_pos = utoa(location.line, buffer, buffer_pos);
3277 buffer[buffer_pos++] = ',';
3278 buffer_pos = utoa(location.col, buffer, buffer_pos);
3279 buffer[buffer_pos++] = '\n';
3280 buffer[buffer_pos++] = '\0';
3281 writer_->AddString(buffer.begin());
3282 }
3283
SerializeLocations()3284 void HeapSnapshotJSONSerializer::SerializeLocations() {
3285 const std::vector<SourceLocation>& locations = snapshot_->locations();
3286 for (size_t i = 0; i < locations.size(); i++) {
3287 if (i > 0) writer_->AddCharacter(',');
3288 SerializeLocation(locations[i]);
3289 if (writer_->aborted()) return;
3290 }
3291 }
3292
3293 } // namespace internal
3294 } // namespace v8
3295