• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright Joyent, Inc. and other Node contributors.
2 //
3 // Permission is hereby granted, free of charge, to any person obtaining a
4 // copy of this software and associated documentation files (the
5 // "Software"), to deal in the Software without restriction, including
6 // without limitation the rights to use, copy, modify, merge, publish,
7 // distribute, sublicense, and/or sell copies of the Software, and to permit
8 // persons to whom the Software is furnished to do so, subject to the
9 // following conditions:
10 //
11 // The above copyright notice and this permission notice shall be included
12 // in all copies or substantial portions of the Software.
13 //
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
16 // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
17 // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
18 // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
19 // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
20 // USE OR OTHER DEALINGS IN THE SOFTWARE.
21 
22 #ifndef SRC_UTIL_INL_H_
23 #define SRC_UTIL_INL_H_
24 
25 #if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
26 
27 #include <cmath>
28 #include <cstring>
29 #include <locale>
30 #include "util.h"
31 
32 // These are defined by <sys/byteorder.h> or <netinet/in.h> on some systems.
33 // To avoid warnings, undefine them before redefining them.
34 #ifdef BSWAP_2
35 # undef BSWAP_2
36 #endif
37 #ifdef BSWAP_4
38 # undef BSWAP_4
39 #endif
40 #ifdef BSWAP_8
41 # undef BSWAP_8
42 #endif
43 
44 #if defined(_MSC_VER)
45 #include <intrin.h>
46 #define BSWAP_2(x) _byteswap_ushort(x)
47 #define BSWAP_4(x) _byteswap_ulong(x)
48 #define BSWAP_8(x) _byteswap_uint64(x)
49 #else
50 #define BSWAP_2(x) ((x) << 8) | ((x) >> 8)
51 #define BSWAP_4(x)                                                            \
52   (((x) & 0xFF) << 24) |                                                      \
53   (((x) & 0xFF00) << 8) |                                                     \
54   (((x) >> 8) & 0xFF00) |                                                     \
55   (((x) >> 24) & 0xFF)
56 #define BSWAP_8(x)                                                            \
57   (((x) & 0xFF00000000000000ull) >> 56) |                                     \
58   (((x) & 0x00FF000000000000ull) >> 40) |                                     \
59   (((x) & 0x0000FF0000000000ull) >> 24) |                                     \
60   (((x) & 0x000000FF00000000ull) >> 8) |                                      \
61   (((x) & 0x00000000FF000000ull) << 8) |                                      \
62   (((x) & 0x0000000000FF0000ull) << 24) |                                     \
63   (((x) & 0x000000000000FF00ull) << 40) |                                     \
64   (((x) & 0x00000000000000FFull) << 56)
65 #endif
66 
67 #define CHAR_TEST(bits, name, expr)                                           \
68   template <typename T>                                                       \
69   bool name(const T ch) {                                                     \
70     static_assert(sizeof(ch) >= (bits) / 8,                                   \
71                   "Character must be wider than " #bits " bits");             \
72     return (expr);                                                            \
73   }
74 
75 namespace node {
76 
77 template <typename T>
ListNode()78 ListNode<T>::ListNode() : prev_(this), next_(this) {}
79 
80 template <typename T>
~ListNode()81 ListNode<T>::~ListNode() {
82   Remove();
83 }
84 
85 template <typename T>
Remove()86 void ListNode<T>::Remove() {
87   prev_->next_ = next_;
88   next_->prev_ = prev_;
89   prev_ = this;
90   next_ = this;
91 }
92 
93 template <typename T>
IsEmpty()94 bool ListNode<T>::IsEmpty() const {
95   return prev_ == this;
96 }
97 
98 template <typename T, ListNode<T> (T::*M)>
Iterator(ListNode<T> * node)99 ListHead<T, M>::Iterator::Iterator(ListNode<T>* node) : node_(node) {}
100 
101 template <typename T, ListNode<T> (T::*M)>
102 T* ListHead<T, M>::Iterator::operator*() const {
103   return ContainerOf(M, node_);
104 }
105 
106 template <typename T, ListNode<T> (T::*M)>
107 const typename ListHead<T, M>::Iterator&
108 ListHead<T, M>::Iterator::operator++() {
109   node_ = node_->next_;
110   return *this;
111 }
112 
113 template <typename T, ListNode<T> (T::*M)>
114 bool ListHead<T, M>::Iterator::operator!=(const Iterator& that) const {
115   return node_ != that.node_;
116 }
117 
118 template <typename T, ListNode<T> (T::*M)>
~ListHead()119 ListHead<T, M>::~ListHead() {
120   while (IsEmpty() == false)
121     head_.next_->Remove();
122 }
123 
124 template <typename T, ListNode<T> (T::*M)>
PushBack(T * element)125 void ListHead<T, M>::PushBack(T* element) {
126   ListNode<T>* that = &(element->*M);
127   head_.prev_->next_ = that;
128   that->prev_ = head_.prev_;
129   that->next_ = &head_;
130   head_.prev_ = that;
131 }
132 
133 template <typename T, ListNode<T> (T::*M)>
PushFront(T * element)134 void ListHead<T, M>::PushFront(T* element) {
135   ListNode<T>* that = &(element->*M);
136   head_.next_->prev_ = that;
137   that->prev_ = &head_;
138   that->next_ = head_.next_;
139   head_.next_ = that;
140 }
141 
142 template <typename T, ListNode<T> (T::*M)>
IsEmpty()143 bool ListHead<T, M>::IsEmpty() const {
144   return head_.IsEmpty();
145 }
146 
147 template <typename T, ListNode<T> (T::*M)>
PopFront()148 T* ListHead<T, M>::PopFront() {
149   if (IsEmpty())
150     return nullptr;
151   ListNode<T>* node = head_.next_;
152   node->Remove();
153   return ContainerOf(M, node);
154 }
155 
156 template <typename T, ListNode<T> (T::*M)>
begin()157 typename ListHead<T, M>::Iterator ListHead<T, M>::begin() const {
158   return Iterator(head_.next_);
159 }
160 
161 template <typename T, ListNode<T> (T::*M)>
end()162 typename ListHead<T, M>::Iterator ListHead<T, M>::end() const {
163   return Iterator(const_cast<ListNode<T>*>(&head_));
164 }
165 
166 template <typename Inner, typename Outer>
OffsetOf(Inner Outer::* field)167 constexpr uintptr_t OffsetOf(Inner Outer::*field) {
168   return reinterpret_cast<uintptr_t>(&(static_cast<Outer*>(nullptr)->*field));
169 }
170 
171 template <typename Inner, typename Outer>
ContainerOfHelper(Inner Outer::* field,Inner * pointer)172 ContainerOfHelper<Inner, Outer>::ContainerOfHelper(Inner Outer::*field,
173                                                    Inner* pointer)
174     : pointer_(
175         reinterpret_cast<Outer*>(
176             reinterpret_cast<uintptr_t>(pointer) - OffsetOf(field))) {}
177 
178 template <typename Inner, typename Outer>
179 template <typename TypeName>
180 ContainerOfHelper<Inner, Outer>::operator TypeName*() const {
181   return static_cast<TypeName*>(pointer_);
182 }
183 
184 template <typename Inner, typename Outer>
ContainerOf(Inner Outer::* field,Inner * pointer)185 constexpr ContainerOfHelper<Inner, Outer> ContainerOf(Inner Outer::*field,
186                                                       Inner* pointer) {
187   return ContainerOfHelper<Inner, Outer>(field, pointer);
188 }
189 
OneByteString(v8::Isolate * isolate,const char * data,int length)190 inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
191                                            const char* data,
192                                            int length) {
193   return v8::String::NewFromOneByte(isolate,
194                                     reinterpret_cast<const uint8_t*>(data),
195                                     v8::NewStringType::kNormal,
196                                     length).ToLocalChecked();
197 }
198 
OneByteString(v8::Isolate * isolate,const signed char * data,int length)199 inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
200                                            const signed char* data,
201                                            int length) {
202   return v8::String::NewFromOneByte(isolate,
203                                     reinterpret_cast<const uint8_t*>(data),
204                                     v8::NewStringType::kNormal,
205                                     length).ToLocalChecked();
206 }
207 
OneByteString(v8::Isolate * isolate,const unsigned char * data,int length)208 inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
209                                            const unsigned char* data,
210                                            int length) {
211   return v8::String::NewFromOneByte(
212              isolate, data, v8::NewStringType::kNormal, length)
213       .ToLocalChecked();
214 }
215 
SwapBytes16(char * data,size_t nbytes)216 void SwapBytes16(char* data, size_t nbytes) {
217   CHECK_EQ(nbytes % 2, 0);
218 
219 #if defined(_MSC_VER)
220   if (AlignUp(data, sizeof(uint16_t)) == data) {
221     // MSVC has no strict aliasing, and is able to highly optimize this case.
222     uint16_t* data16 = reinterpret_cast<uint16_t*>(data);
223     size_t len16 = nbytes / sizeof(*data16);
224     for (size_t i = 0; i < len16; i++) {
225       data16[i] = BSWAP_2(data16[i]);
226     }
227     return;
228   }
229 #endif
230 
231   uint16_t temp;
232   for (size_t i = 0; i < nbytes; i += sizeof(temp)) {
233     memcpy(&temp, &data[i], sizeof(temp));
234     temp = BSWAP_2(temp);
235     memcpy(&data[i], &temp, sizeof(temp));
236   }
237 }
238 
SwapBytes32(char * data,size_t nbytes)239 void SwapBytes32(char* data, size_t nbytes) {
240   CHECK_EQ(nbytes % 4, 0);
241 
242 #if defined(_MSC_VER)
243   // MSVC has no strict aliasing, and is able to highly optimize this case.
244   if (AlignUp(data, sizeof(uint32_t)) == data) {
245     uint32_t* data32 = reinterpret_cast<uint32_t*>(data);
246     size_t len32 = nbytes / sizeof(*data32);
247     for (size_t i = 0; i < len32; i++) {
248       data32[i] = BSWAP_4(data32[i]);
249     }
250     return;
251   }
252 #endif
253 
254   uint32_t temp;
255   for (size_t i = 0; i < nbytes; i += sizeof(temp)) {
256     memcpy(&temp, &data[i], sizeof(temp));
257     temp = BSWAP_4(temp);
258     memcpy(&data[i], &temp, sizeof(temp));
259   }
260 }
261 
SwapBytes64(char * data,size_t nbytes)262 void SwapBytes64(char* data, size_t nbytes) {
263   CHECK_EQ(nbytes % 8, 0);
264 
265 #if defined(_MSC_VER)
266   if (AlignUp(data, sizeof(uint64_t)) == data) {
267     // MSVC has no strict aliasing, and is able to highly optimize this case.
268     uint64_t* data64 = reinterpret_cast<uint64_t*>(data);
269     size_t len64 = nbytes / sizeof(*data64);
270     for (size_t i = 0; i < len64; i++) {
271       data64[i] = BSWAP_8(data64[i]);
272     }
273     return;
274   }
275 #endif
276 
277   uint64_t temp;
278   for (size_t i = 0; i < nbytes; i += sizeof(temp)) {
279     memcpy(&temp, &data[i], sizeof(temp));
280     temp = BSWAP_8(temp);
281     memcpy(&data[i], &temp, sizeof(temp));
282   }
283 }
284 
ToLower(char c)285 char ToLower(char c) {
286   return std::tolower(c, std::locale::classic());
287 }
288 
ToLower(const std::string & in)289 std::string ToLower(const std::string& in) {
290   std::string out(in.size(), 0);
291   for (size_t i = 0; i < in.size(); ++i)
292     out[i] = ToLower(in[i]);
293   return out;
294 }
295 
ToUpper(char c)296 char ToUpper(char c) {
297   return std::toupper(c, std::locale::classic());
298 }
299 
ToUpper(const std::string & in)300 std::string ToUpper(const std::string& in) {
301   std::string out(in.size(), 0);
302   for (size_t i = 0; i < in.size(); ++i)
303     out[i] = ToUpper(in[i]);
304   return out;
305 }
306 
StringEqualNoCase(const char * a,const char * b)307 bool StringEqualNoCase(const char* a, const char* b) {
308   while (ToLower(*a) == ToLower(*b++)) {
309     if (*a++ == '\0')
310       return true;
311   }
312   return false;
313 }
314 
StringEqualNoCaseN(const char * a,const char * b,size_t length)315 bool StringEqualNoCaseN(const char* a, const char* b, size_t length) {
316   for (size_t i = 0; i < length; i++) {
317     if (ToLower(a[i]) != ToLower(b[i]))
318       return false;
319     if (a[i] == '\0')
320       return true;
321   }
322   return true;
323 }
324 
325 template <typename T>
MultiplyWithOverflowCheck(T a,T b)326 inline T MultiplyWithOverflowCheck(T a, T b) {
327   auto ret = a * b;
328   if (a != 0)
329     CHECK_EQ(b, ret / a);
330 
331   return ret;
332 }
333 
334 // These should be used in our code as opposed to the native
335 // versions as they abstract out some platform and or
336 // compiler version specific functionality.
337 // malloc(0) and realloc(ptr, 0) have implementation-defined behavior in
338 // that the standard allows them to either return a unique pointer or a
339 // nullptr for zero-sized allocation requests.  Normalize by always using
340 // a nullptr.
341 template <typename T>
UncheckedRealloc(T * pointer,size_t n)342 T* UncheckedRealloc(T* pointer, size_t n) {
343   size_t full_size = MultiplyWithOverflowCheck(sizeof(T), n);
344 
345   if (full_size == 0) {
346     free(pointer);
347     return nullptr;
348   }
349 
350   void* allocated = realloc(pointer, full_size);
351 
352   if (UNLIKELY(allocated == nullptr)) {
353     // Tell V8 that memory is low and retry.
354     LowMemoryNotification();
355     allocated = realloc(pointer, full_size);
356   }
357 
358   return static_cast<T*>(allocated);
359 }
360 
361 // As per spec realloc behaves like malloc if passed nullptr.
362 template <typename T>
UncheckedMalloc(size_t n)363 inline T* UncheckedMalloc(size_t n) {
364   return UncheckedRealloc<T>(nullptr, n);
365 }
366 
367 template <typename T>
UncheckedCalloc(size_t n)368 inline T* UncheckedCalloc(size_t n) {
369   if (MultiplyWithOverflowCheck(sizeof(T), n) == 0) return nullptr;
370   return static_cast<T*>(calloc(n, sizeof(T)));
371 }
372 
373 template <typename T>
Realloc(T * pointer,size_t n)374 inline T* Realloc(T* pointer, size_t n) {
375   T* ret = UncheckedRealloc(pointer, n);
376   CHECK_IMPLIES(n > 0, ret != nullptr);
377   return ret;
378 }
379 
380 template <typename T>
Malloc(size_t n)381 inline T* Malloc(size_t n) {
382   T* ret = UncheckedMalloc<T>(n);
383   CHECK_IMPLIES(n > 0, ret != nullptr);
384   return ret;
385 }
386 
387 template <typename T>
Calloc(size_t n)388 inline T* Calloc(size_t n) {
389   T* ret = UncheckedCalloc<T>(n);
390   CHECK_IMPLIES(n > 0, ret != nullptr);
391   return ret;
392 }
393 
394 // Shortcuts for char*.
Malloc(size_t n)395 inline char* Malloc(size_t n) { return Malloc<char>(n); }
Calloc(size_t n)396 inline char* Calloc(size_t n) { return Calloc<char>(n); }
UncheckedMalloc(size_t n)397 inline char* UncheckedMalloc(size_t n) { return UncheckedMalloc<char>(n); }
UncheckedCalloc(size_t n)398 inline char* UncheckedCalloc(size_t n) { return UncheckedCalloc<char>(n); }
399 
400 // This is a helper in the .cc file so including util-inl.h doesn't include more
401 // headers than we really need to.
402 void ThrowErrStringTooLong(v8::Isolate* isolate);
403 
ToV8Value(v8::Local<v8::Context> context,std::string_view str,v8::Isolate * isolate)404 v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
405                                     std::string_view str,
406                                     v8::Isolate* isolate) {
407   if (isolate == nullptr) isolate = context->GetIsolate();
408   if (UNLIKELY(str.size() >= static_cast<size_t>(v8::String::kMaxLength))) {
409     // V8 only has a TODO comment about adding an exception when the maximum
410     // string size is exceeded.
411     ThrowErrStringTooLong(isolate);
412     return v8::MaybeLocal<v8::Value>();
413   }
414 
415   return v8::String::NewFromUtf8(
416              isolate, str.data(), v8::NewStringType::kNormal, str.size())
417       .FromMaybe(v8::Local<v8::String>());
418 }
419 
420 template <typename T>
ToV8Value(v8::Local<v8::Context> context,const std::vector<T> & vec,v8::Isolate * isolate)421 v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
422                                     const std::vector<T>& vec,
423                                     v8::Isolate* isolate) {
424   if (isolate == nullptr) isolate = context->GetIsolate();
425   v8::EscapableHandleScope handle_scope(isolate);
426 
427   MaybeStackBuffer<v8::Local<v8::Value>, 128> arr(vec.size());
428   arr.SetLength(vec.size());
429   for (size_t i = 0; i < vec.size(); ++i) {
430     if (!ToV8Value(context, vec[i], isolate).ToLocal(&arr[i]))
431       return v8::MaybeLocal<v8::Value>();
432   }
433 
434   return handle_scope.Escape(v8::Array::New(isolate, arr.out(), arr.length()));
435 }
436 
437 template <typename T>
ToV8Value(v8::Local<v8::Context> context,const std::set<T> & set,v8::Isolate * isolate)438 v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
439                                     const std::set<T>& set,
440                                     v8::Isolate* isolate) {
441   if (isolate == nullptr) isolate = context->GetIsolate();
442   v8::Local<v8::Set> set_js = v8::Set::New(isolate);
443   v8::HandleScope handle_scope(isolate);
444 
445   for (const T& entry : set) {
446     v8::Local<v8::Value> value;
447     if (!ToV8Value(context, entry, isolate).ToLocal(&value))
448       return {};
449     if (set_js->Add(context, value).IsEmpty())
450       return {};
451   }
452 
453   return set_js;
454 }
455 
456 template <typename T, typename U>
ToV8Value(v8::Local<v8::Context> context,const std::unordered_map<T,U> & map,v8::Isolate * isolate)457 v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
458                                     const std::unordered_map<T, U>& map,
459                                     v8::Isolate* isolate) {
460   if (isolate == nullptr) isolate = context->GetIsolate();
461   v8::EscapableHandleScope handle_scope(isolate);
462 
463   v8::Local<v8::Map> ret = v8::Map::New(isolate);
464   for (const auto& item : map) {
465     v8::Local<v8::Value> first, second;
466     if (!ToV8Value(context, item.first, isolate).ToLocal(&first) ||
467         !ToV8Value(context, item.second, isolate).ToLocal(&second) ||
468         ret->Set(context, first, second).IsEmpty()) {
469       return v8::MaybeLocal<v8::Value>();
470     }
471   }
472 
473   return handle_scope.Escape(ret);
474 }
475 
476 template <typename T, typename >
ToV8Value(v8::Local<v8::Context> context,const T & number,v8::Isolate * isolate)477 v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
478                                     const T& number,
479                                     v8::Isolate* isolate) {
480   if (isolate == nullptr) isolate = context->GetIsolate();
481 
482   using Limits = std::numeric_limits<T>;
483   // Choose Uint32, Int32, or Double depending on range checks.
484   // These checks should all collapse at compile time.
485   if (static_cast<uint32_t>(Limits::max()) <=
486           std::numeric_limits<uint32_t>::max() &&
487       static_cast<uint32_t>(Limits::min()) >=
488           std::numeric_limits<uint32_t>::min() && Limits::is_exact) {
489     return v8::Integer::NewFromUnsigned(isolate, static_cast<uint32_t>(number));
490   }
491 
492   if (static_cast<int32_t>(Limits::max()) <=
493           std::numeric_limits<int32_t>::max() &&
494       static_cast<int32_t>(Limits::min()) >=
495           std::numeric_limits<int32_t>::min() && Limits::is_exact) {
496     return v8::Integer::New(isolate, static_cast<int32_t>(number));
497   }
498 
499   return v8::Number::New(isolate, static_cast<double>(number));
500 }
501 
SlicedArguments(const v8::FunctionCallbackInfo<v8::Value> & args,size_t start)502 SlicedArguments::SlicedArguments(
503     const v8::FunctionCallbackInfo<v8::Value>& args, size_t start) {
504   const size_t length = static_cast<size_t>(args.Length());
505   if (start >= length) return;
506   const size_t size = length - start;
507 
508   AllocateSufficientStorage(size);
509   for (size_t i = 0; i < size; ++i)
510     (*this)[i] = args[i + start];
511 }
512 
513 template <typename T, size_t kStackStorageSize>
AllocateSufficientStorage(size_t storage)514 void MaybeStackBuffer<T, kStackStorageSize>::AllocateSufficientStorage(
515     size_t storage) {
516   CHECK(!IsInvalidated());
517   if (storage > capacity()) {
518     bool was_allocated = IsAllocated();
519     T* allocated_ptr = was_allocated ? buf_ : nullptr;
520     buf_ = Realloc(allocated_ptr, storage);
521     capacity_ = storage;
522     if (!was_allocated && length_ > 0)
523       memcpy(buf_, buf_st_, length_ * sizeof(buf_[0]));
524   }
525 
526   length_ = storage;
527 }
528 
529 template <typename T, size_t S>
ArrayBufferViewContents(v8::Local<v8::Value> value)530 ArrayBufferViewContents<T, S>::ArrayBufferViewContents(
531     v8::Local<v8::Value> value) {
532   DCHECK(value->IsArrayBufferView() || value->IsSharedArrayBuffer() ||
533          value->IsArrayBuffer());
534   ReadValue(value);
535 }
536 
537 template <typename T, size_t S>
ArrayBufferViewContents(v8::Local<v8::Object> value)538 ArrayBufferViewContents<T, S>::ArrayBufferViewContents(
539     v8::Local<v8::Object> value) {
540   CHECK(value->IsArrayBufferView());
541   Read(value.As<v8::ArrayBufferView>());
542 }
543 
544 template <typename T, size_t S>
ArrayBufferViewContents(v8::Local<v8::ArrayBufferView> abv)545 ArrayBufferViewContents<T, S>::ArrayBufferViewContents(
546     v8::Local<v8::ArrayBufferView> abv) {
547   Read(abv);
548 }
549 
550 template <typename T, size_t S>
Read(v8::Local<v8::ArrayBufferView> abv)551 void ArrayBufferViewContents<T, S>::Read(v8::Local<v8::ArrayBufferView> abv) {
552   static_assert(sizeof(T) == 1, "Only supports one-byte data at the moment");
553   length_ = abv->ByteLength();
554   if (length_ > sizeof(stack_storage_) || abv->HasBuffer()) {
555     data_ = static_cast<T*>(abv->Buffer()->Data()) + abv->ByteOffset();
556   } else {
557     abv->CopyContents(stack_storage_, sizeof(stack_storage_));
558     data_ = stack_storage_;
559   }
560 }
561 
562 template <typename T, size_t S>
ReadValue(v8::Local<v8::Value> buf)563 void ArrayBufferViewContents<T, S>::ReadValue(v8::Local<v8::Value> buf) {
564   static_assert(sizeof(T) == 1, "Only supports one-byte data at the moment");
565   DCHECK(buf->IsArrayBufferView() || buf->IsSharedArrayBuffer() ||
566          buf->IsArrayBuffer());
567 
568   if (buf->IsArrayBufferView()) {
569     Read(buf.As<v8::ArrayBufferView>());
570   } else if (buf->IsArrayBuffer()) {
571     auto ab = buf.As<v8::ArrayBuffer>();
572     length_ = ab->ByteLength();
573     data_ = static_cast<T*>(ab->Data());
574     was_detached_ = ab->WasDetached();
575   } else {
576     CHECK(buf->IsSharedArrayBuffer());
577     auto sab = buf.As<v8::SharedArrayBuffer>();
578     length_ = sab->ByteLength();
579     data_ = static_cast<T*>(sab->Data());
580   }
581 }
582 
583 // ECMA262 20.1.2.5
IsSafeJsInt(v8::Local<v8::Value> v)584 inline bool IsSafeJsInt(v8::Local<v8::Value> v) {
585   if (!v->IsNumber()) return false;
586   double v_d = v.As<v8::Number>()->Value();
587   if (std::isnan(v_d)) return false;
588   if (std::isinf(v_d)) return false;
589   if (std::trunc(v_d) != v_d) return false;  // not int
590   if (std::abs(v_d) <= static_cast<double>(kMaxSafeJsInteger)) return true;
591   return false;
592 }
593 
HashImpl(std::string_view str)594 constexpr size_t FastStringKey::HashImpl(std::string_view str) {
595   // Low-quality hash (djb2), but just fine for current use cases.
596   size_t h = 5381;
597   for (const char c : str) {
598     h = h * 33 + c;
599   }
600   return h;
601 }
602 
operator()603 constexpr size_t FastStringKey::Hash::operator()(
604     const FastStringKey& key) const {
605   return key.cached_hash_;
606 }
607 
608 constexpr bool FastStringKey::operator==(const FastStringKey& other) const {
609   return name_ == other.name_;
610 }
611 
FastStringKey(std::string_view name)612 constexpr FastStringKey::FastStringKey(std::string_view name)
613     : name_(name), cached_hash_(HashImpl(name)) {}
614 
as_string_view()615 constexpr std::string_view FastStringKey::as_string_view() const {
616   return name_;
617 }
618 
619 }  // namespace node
620 
621 #endif  // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
622 
623 #endif  // SRC_UTIL_INL_H_
624