1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/base/internal/sysinfo.h"
16
17 #include "absl/base/attributes.h"
18
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <fcntl.h>
23 #include <pthread.h>
24 #include <sys/stat.h>
25 #include <sys/types.h>
26 #include <unistd.h>
27 #endif
28
29 #ifdef __linux__
30 #include <sys/syscall.h>
31 #endif
32
33 #if defined(__APPLE__) || defined(__FreeBSD__)
34 #include <sys/sysctl.h>
35 #endif
36
37 #if defined(__myriad2__)
38 #include <rtems.h>
39 #endif
40
41 #include <string.h>
42
43 #include <cassert>
44 #include <cstdint>
45 #include <cstdio>
46 #include <cstdlib>
47 #include <ctime>
48 #include <limits>
49 #include <thread> // NOLINT(build/c++11)
50 #include <utility>
51 #include <vector>
52
53 #include "absl/base/call_once.h"
54 #include "absl/base/config.h"
55 #include "absl/base/internal/raw_logging.h"
56 #include "absl/base/internal/spinlock.h"
57 #include "absl/base/internal/unscaledcycleclock.h"
58 #include "absl/base/thread_annotations.h"
59
60 namespace absl {
61 ABSL_NAMESPACE_BEGIN
62 namespace base_internal {
63
64 namespace {
65
66 #if defined(_WIN32)
67
68 // Returns number of bits set in `bitMask`
Win32CountSetBits(ULONG_PTR bitMask)69 DWORD Win32CountSetBits(ULONG_PTR bitMask) {
70 for (DWORD bitSetCount = 0; ; ++bitSetCount) {
71 if (bitMask == 0) return bitSetCount;
72 bitMask &= bitMask - 1;
73 }
74 }
75
76 // Returns the number of logical CPUs using GetLogicalProcessorInformation(), or
77 // 0 if the number of processors is not available or can not be computed.
78 // https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getlogicalprocessorinformation
Win32NumCPUs()79 int Win32NumCPUs() {
80 #pragma comment(lib, "kernel32.lib")
81 using Info = SYSTEM_LOGICAL_PROCESSOR_INFORMATION;
82
83 DWORD info_size = sizeof(Info);
84 Info* info(static_cast<Info*>(malloc(info_size)));
85 if (info == nullptr) return 0;
86
87 bool success = GetLogicalProcessorInformation(info, &info_size);
88 if (!success && GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
89 free(info);
90 info = static_cast<Info*>(malloc(info_size));
91 if (info == nullptr) return 0;
92 success = GetLogicalProcessorInformation(info, &info_size);
93 }
94
95 DWORD logicalProcessorCount = 0;
96 if (success) {
97 Info* ptr = info;
98 DWORD byteOffset = 0;
99 while (byteOffset + sizeof(Info) <= info_size) {
100 switch (ptr->Relationship) {
101 case RelationProcessorCore:
102 logicalProcessorCount += Win32CountSetBits(ptr->ProcessorMask);
103 break;
104
105 case RelationNumaNode:
106 case RelationCache:
107 case RelationProcessorPackage:
108 // Ignore other entries
109 break;
110
111 default:
112 // Ignore unknown entries
113 break;
114 }
115 byteOffset += sizeof(Info);
116 ptr++;
117 }
118 }
119 free(info);
120 return logicalProcessorCount;
121 }
122
123 #endif
124
125 } // namespace
126
127
GetNumCPUs()128 static int GetNumCPUs() {
129 #if defined(__myriad2__)
130 return 1;
131 #elif defined(_WIN32)
132 const unsigned hardware_concurrency = Win32NumCPUs();
133 return hardware_concurrency ? hardware_concurrency : 1;
134 #else
135 // Other possibilities:
136 // - Read /sys/devices/system/cpu/online and use cpumask_parse()
137 // - sysconf(_SC_NPROCESSORS_ONLN)
138 return std::thread::hardware_concurrency();
139 #endif
140 }
141
142 #if defined(_WIN32)
143
GetNominalCPUFrequency()144 static double GetNominalCPUFrequency() {
145 #if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP) && \
146 !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
147 // UWP apps don't have access to the registry and currently don't provide an
148 // API informing about CPU nominal frequency.
149 return 1.0;
150 #else
151 #pragma comment(lib, "advapi32.lib") // For Reg* functions.
152 HKEY key;
153 // Use the Reg* functions rather than the SH functions because shlwapi.dll
154 // pulls in gdi32.dll which makes process destruction much more costly.
155 if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,
156 "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0,
157 KEY_READ, &key) == ERROR_SUCCESS) {
158 DWORD type = 0;
159 DWORD data = 0;
160 DWORD data_size = sizeof(data);
161 auto result = RegQueryValueExA(key, "~MHz", 0, &type,
162 reinterpret_cast<LPBYTE>(&data), &data_size);
163 RegCloseKey(key);
164 if (result == ERROR_SUCCESS && type == REG_DWORD &&
165 data_size == sizeof(data)) {
166 return data * 1e6; // Value is MHz.
167 }
168 }
169 return 1.0;
170 #endif // WINAPI_PARTITION_APP && !WINAPI_PARTITION_DESKTOP
171 }
172
173 #elif defined(CTL_HW) && defined(HW_CPU_FREQ)
174
GetNominalCPUFrequency()175 static double GetNominalCPUFrequency() {
176 unsigned freq;
177 size_t size = sizeof(freq);
178 int mib[2] = {CTL_HW, HW_CPU_FREQ};
179 if (sysctl(mib, 2, &freq, &size, nullptr, 0) == 0) {
180 return static_cast<double>(freq);
181 }
182 return 1.0;
183 }
184
185 #else
186
187 // Helper function for reading a long from a file. Returns true if successful
188 // and the memory location pointed to by value is set to the value read.
ReadLongFromFile(const char * file,long * value)189 static bool ReadLongFromFile(const char *file, long *value) {
190 bool ret = false;
191 int fd = open(file, O_RDONLY);
192 if (fd != -1) {
193 char line[1024];
194 char *err;
195 memset(line, '\0', sizeof(line));
196 int len = read(fd, line, sizeof(line) - 1);
197 if (len <= 0) {
198 ret = false;
199 } else {
200 const long temp_value = strtol(line, &err, 10);
201 if (line[0] != '\0' && (*err == '\n' || *err == '\0')) {
202 *value = temp_value;
203 ret = true;
204 }
205 }
206 close(fd);
207 }
208 return ret;
209 }
210
211 #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)
212
213 // Reads a monotonic time source and returns a value in
214 // nanoseconds. The returned value uses an arbitrary epoch, not the
215 // Unix epoch.
ReadMonotonicClockNanos()216 static int64_t ReadMonotonicClockNanos() {
217 struct timespec t;
218 #ifdef CLOCK_MONOTONIC_RAW
219 int rc = clock_gettime(CLOCK_MONOTONIC_RAW, &t);
220 #else
221 int rc = clock_gettime(CLOCK_MONOTONIC, &t);
222 #endif
223 if (rc != 0) {
224 perror("clock_gettime() failed");
225 abort();
226 }
227 return int64_t{t.tv_sec} * 1000000000 + t.tv_nsec;
228 }
229
230 class UnscaledCycleClockWrapperForInitializeFrequency {
231 public:
Now()232 static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); }
233 };
234
235 struct TimeTscPair {
236 int64_t time; // From ReadMonotonicClockNanos().
237 int64_t tsc; // From UnscaledCycleClock::Now().
238 };
239
240 // Returns a pair of values (monotonic kernel time, TSC ticks) that
241 // approximately correspond to each other. This is accomplished by
242 // doing several reads and picking the reading with the lowest
243 // latency. This approach is used to minimize the probability that
244 // our thread was preempted between clock reads.
GetTimeTscPair()245 static TimeTscPair GetTimeTscPair() {
246 int64_t best_latency = std::numeric_limits<int64_t>::max();
247 TimeTscPair best;
248 for (int i = 0; i < 10; ++i) {
249 int64_t t0 = ReadMonotonicClockNanos();
250 int64_t tsc = UnscaledCycleClockWrapperForInitializeFrequency::Now();
251 int64_t t1 = ReadMonotonicClockNanos();
252 int64_t latency = t1 - t0;
253 if (latency < best_latency) {
254 best_latency = latency;
255 best.time = t0;
256 best.tsc = tsc;
257 }
258 }
259 return best;
260 }
261
262 // Measures and returns the TSC frequency by taking a pair of
263 // measurements approximately `sleep_nanoseconds` apart.
MeasureTscFrequencyWithSleep(int sleep_nanoseconds)264 static double MeasureTscFrequencyWithSleep(int sleep_nanoseconds) {
265 auto t0 = GetTimeTscPair();
266 struct timespec ts;
267 ts.tv_sec = 0;
268 ts.tv_nsec = sleep_nanoseconds;
269 while (nanosleep(&ts, &ts) != 0 && errno == EINTR) {}
270 auto t1 = GetTimeTscPair();
271 double elapsed_ticks = t1.tsc - t0.tsc;
272 double elapsed_time = (t1.time - t0.time) * 1e-9;
273 return elapsed_ticks / elapsed_time;
274 }
275
276 // Measures and returns the TSC frequency by calling
277 // MeasureTscFrequencyWithSleep(), doubling the sleep interval until the
278 // frequency measurement stabilizes.
MeasureTscFrequency()279 static double MeasureTscFrequency() {
280 double last_measurement = -1.0;
281 int sleep_nanoseconds = 1000000; // 1 millisecond.
282 for (int i = 0; i < 8; ++i) {
283 double measurement = MeasureTscFrequencyWithSleep(sleep_nanoseconds);
284 if (measurement * 0.99 < last_measurement &&
285 last_measurement < measurement * 1.01) {
286 // Use the current measurement if it is within 1% of the
287 // previous measurement.
288 return measurement;
289 }
290 last_measurement = measurement;
291 sleep_nanoseconds *= 2;
292 }
293 return last_measurement;
294 }
295
296 #endif // ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY
297
GetNominalCPUFrequency()298 static double GetNominalCPUFrequency() {
299 long freq = 0;
300
301 // Google's production kernel has a patch to export the TSC
302 // frequency through sysfs. If the kernel is exporting the TSC
303 // frequency use that. There are issues where cpuinfo_max_freq
304 // cannot be relied on because the BIOS may be exporting an invalid
305 // p-state (on x86) or p-states may be used to put the processor in
306 // a new mode (turbo mode). Essentially, those frequencies cannot
307 // always be relied upon. The same reasons apply to /proc/cpuinfo as
308 // well.
309 if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq)) {
310 return freq * 1e3; // Value is kHz.
311 }
312
313 #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)
314 // On these platforms, the TSC frequency is the nominal CPU
315 // frequency. But without having the kernel export it directly
316 // though /sys/devices/system/cpu/cpu0/tsc_freq_khz, there is no
317 // other way to reliably get the TSC frequency, so we have to
318 // measure it ourselves. Some CPUs abuse cpuinfo_max_freq by
319 // exporting "fake" frequencies for implementing new features. For
320 // example, Intel's turbo mode is enabled by exposing a p-state
321 // value with a higher frequency than that of the real TSC
322 // rate. Because of this, we prefer to measure the TSC rate
323 // ourselves on i386 and x86-64.
324 return MeasureTscFrequency();
325 #else
326
327 // If CPU scaling is in effect, we want to use the *maximum*
328 // frequency, not whatever CPU speed some random processor happens
329 // to be using now.
330 if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq",
331 &freq)) {
332 return freq * 1e3; // Value is kHz.
333 }
334
335 return 1.0;
336 #endif // !ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY
337 }
338
339 #endif
340
341 ABSL_CONST_INIT static once_flag init_num_cpus_once;
342 ABSL_CONST_INIT static int num_cpus = 0;
343
344 // NumCPUs() may be called before main() and before malloc is properly
345 // initialized, therefore this must not allocate memory.
NumCPUs()346 int NumCPUs() {
347 base_internal::LowLevelCallOnce(
348 &init_num_cpus_once, []() { num_cpus = GetNumCPUs(); });
349 return num_cpus;
350 }
351
352 // A default frequency of 0.0 might be dangerous if it is used in division.
353 ABSL_CONST_INIT static once_flag init_nominal_cpu_frequency_once;
354 ABSL_CONST_INIT static double nominal_cpu_frequency = 1.0;
355
356 // NominalCPUFrequency() may be called before main() and before malloc is
357 // properly initialized, therefore this must not allocate memory.
NominalCPUFrequency()358 double NominalCPUFrequency() {
359 base_internal::LowLevelCallOnce(
360 &init_nominal_cpu_frequency_once,
361 []() { nominal_cpu_frequency = GetNominalCPUFrequency(); });
362 return nominal_cpu_frequency;
363 }
364
365 #if defined(_WIN32)
366
GetTID()367 pid_t GetTID() {
368 return pid_t{GetCurrentThreadId()};
369 }
370
371 #elif defined(__linux__)
372
373 #ifndef SYS_gettid
374 #define SYS_gettid __NR_gettid
375 #endif
376
GetTID()377 pid_t GetTID() {
378 return syscall(SYS_gettid);
379 }
380
381 #elif defined(__akaros__)
382
GetTID()383 pid_t GetTID() {
384 // Akaros has a concept of "vcore context", which is the state the program
385 // is forced into when we need to make a user-level scheduling decision, or
386 // run a signal handler. This is analogous to the interrupt context that a
387 // CPU might enter if it encounters some kind of exception.
388 //
389 // There is no current thread context in vcore context, but we need to give
390 // a reasonable answer if asked for a thread ID (e.g., in a signal handler).
391 // Thread 0 always exists, so if we are in vcore context, we return that.
392 //
393 // Otherwise, we know (since we are using pthreads) that the uthread struct
394 // current_uthread is pointing to is the first element of a
395 // struct pthread_tcb, so we extract and return the thread ID from that.
396 //
397 // TODO(dcross): Akaros anticipates moving the thread ID to the uthread
398 // structure at some point. We should modify this code to remove the cast
399 // when that happens.
400 if (in_vcore_context())
401 return 0;
402 return reinterpret_cast<struct pthread_tcb *>(current_uthread)->id;
403 }
404
405 #elif defined(__myriad2__)
406
GetTID()407 pid_t GetTID() {
408 uint32_t tid;
409 rtems_task_ident(RTEMS_SELF, 0, &tid);
410 return tid;
411 }
412
413 #else
414
415 // Fallback implementation of GetTID using pthread_getspecific.
416 ABSL_CONST_INIT static once_flag tid_once;
417 ABSL_CONST_INIT static pthread_key_t tid_key;
418 ABSL_CONST_INIT static absl::base_internal::SpinLock tid_lock(
419 absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
420
421 // We set a bit per thread in this array to indicate that an ID is in
422 // use. ID 0 is unused because it is the default value returned by
423 // pthread_getspecific().
424 ABSL_CONST_INIT static std::vector<uint32_t> *tid_array
425 ABSL_GUARDED_BY(tid_lock) = nullptr;
426 static constexpr int kBitsPerWord = 32; // tid_array is uint32_t.
427
428 // Returns the TID to tid_array.
FreeTID(void * v)429 static void FreeTID(void *v) {
430 intptr_t tid = reinterpret_cast<intptr_t>(v);
431 int word = tid / kBitsPerWord;
432 uint32_t mask = ~(1u << (tid % kBitsPerWord));
433 absl::base_internal::SpinLockHolder lock(&tid_lock);
434 assert(0 <= word && static_cast<size_t>(word) < tid_array->size());
435 (*tid_array)[word] &= mask;
436 }
437
InitGetTID()438 static void InitGetTID() {
439 if (pthread_key_create(&tid_key, FreeTID) != 0) {
440 // The logging system calls GetTID() so it can't be used here.
441 perror("pthread_key_create failed");
442 abort();
443 }
444
445 // Initialize tid_array.
446 absl::base_internal::SpinLockHolder lock(&tid_lock);
447 tid_array = new std::vector<uint32_t>(1);
448 (*tid_array)[0] = 1; // ID 0 is never-allocated.
449 }
450
451 // Return a per-thread small integer ID from pthread's thread-specific data.
GetTID()452 pid_t GetTID() {
453 absl::call_once(tid_once, InitGetTID);
454
455 intptr_t tid = reinterpret_cast<intptr_t>(pthread_getspecific(tid_key));
456 if (tid != 0) {
457 return tid;
458 }
459
460 int bit; // tid_array[word] = 1u << bit;
461 size_t word;
462 {
463 // Search for the first unused ID.
464 absl::base_internal::SpinLockHolder lock(&tid_lock);
465 // First search for a word in the array that is not all ones.
466 word = 0;
467 while (word < tid_array->size() && ~(*tid_array)[word] == 0) {
468 ++word;
469 }
470 if (word == tid_array->size()) {
471 tid_array->push_back(0); // No space left, add kBitsPerWord more IDs.
472 }
473 // Search for a zero bit in the word.
474 bit = 0;
475 while (bit < kBitsPerWord && (((*tid_array)[word] >> bit) & 1) != 0) {
476 ++bit;
477 }
478 tid = (word * kBitsPerWord) + bit;
479 (*tid_array)[word] |= 1u << bit; // Mark the TID as allocated.
480 }
481
482 if (pthread_setspecific(tid_key, reinterpret_cast<void *>(tid)) != 0) {
483 perror("pthread_setspecific failed");
484 abort();
485 }
486
487 return static_cast<pid_t>(tid);
488 }
489
490 #endif
491
492 // GetCachedTID() caches the thread ID in thread-local storage (which is a
493 // userspace construct) to avoid unnecessary system calls. Without this caching,
494 // it can take roughly 98ns, while it takes roughly 1ns with this caching.
GetCachedTID()495 pid_t GetCachedTID() {
496 #ifdef ABSL_HAVE_THREAD_LOCAL
497 static thread_local pid_t thread_id = GetTID();
498 return thread_id;
499 #else
500 return GetTID();
501 #endif // ABSL_HAVE_THREAD_LOCAL
502 }
503
504 } // namespace base_internal
505 ABSL_NAMESPACE_END
506 } // namespace absl
507