1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_V8_PLATFORM_H_
6 #define V8_V8_PLATFORM_H_
7
8 #include <stddef.h>
9 #include <stdint.h>
10 #include <stdlib.h> // For abort.
11 #include <memory>
12 #include <string>
13
14 #include "v8config.h" // NOLINT(build/include_directory)
15
16 namespace v8 {
17
18 class Isolate;
19
20 // Valid priorities supported by the task scheduling infrastructure.
21 enum class TaskPriority : uint8_t {
22 /**
23 * Best effort tasks are not critical for performance of the application. The
24 * platform implementation should preempt such tasks if higher priority tasks
25 * arrive.
26 */
27 kBestEffort,
28 /**
29 * User visible tasks are long running background tasks that will
30 * improve performance and memory usage of the application upon completion.
31 * Example: background compilation and garbage collection.
32 */
33 kUserVisible,
34 /**
35 * User blocking tasks are highest priority tasks that block the execution
36 * thread (e.g. major garbage collection). They must be finished as soon as
37 * possible.
38 */
39 kUserBlocking,
40 };
41
42 /**
43 * A Task represents a unit of work.
44 */
45 class Task {
46 public:
47 virtual ~Task() = default;
48
49 virtual void Run() = 0;
50 };
51
52 /**
53 * An IdleTask represents a unit of work to be performed in idle time.
54 * The Run method is invoked with an argument that specifies the deadline in
55 * seconds returned by MonotonicallyIncreasingTime().
56 * The idle task is expected to complete by this deadline.
57 */
58 class IdleTask {
59 public:
60 virtual ~IdleTask() = default;
61 virtual void Run(double deadline_in_seconds) = 0;
62 };
63
64 /**
65 * A TaskRunner allows scheduling of tasks. The TaskRunner may still be used to
66 * post tasks after the isolate gets destructed, but these tasks may not get
67 * executed anymore. All tasks posted to a given TaskRunner will be invoked in
68 * sequence. Tasks can be posted from any thread.
69 */
70 class TaskRunner {
71 public:
72 /**
73 * Schedules a task to be invoked by this TaskRunner. The TaskRunner
74 * implementation takes ownership of |task|.
75 */
76 virtual void PostTask(std::unique_ptr<Task> task) = 0;
77
78 /**
79 * Schedules a task to be invoked by this TaskRunner. The TaskRunner
80 * implementation takes ownership of |task|. The |task| cannot be nested
81 * within other task executions.
82 *
83 * Tasks which shouldn't be interleaved with JS execution must be posted with
84 * |PostNonNestableTask| or |PostNonNestableDelayedTask|. This is because the
85 * embedder may process tasks in a callback which is called during JS
86 * execution.
87 *
88 * In particular, tasks which execute JS must be non-nestable, since JS
89 * execution is not allowed to nest.
90 *
91 * Requires that |TaskRunner::NonNestableTasksEnabled()| is true.
92 */
PostNonNestableTask(std::unique_ptr<Task> task)93 virtual void PostNonNestableTask(std::unique_ptr<Task> task) {}
94
95 /**
96 * Schedules a task to be invoked by this TaskRunner. The task is scheduled
97 * after the given number of seconds |delay_in_seconds|. The TaskRunner
98 * implementation takes ownership of |task|.
99 */
100 virtual void PostDelayedTask(std::unique_ptr<Task> task,
101 double delay_in_seconds) = 0;
102
103 /**
104 * Schedules a task to be invoked by this TaskRunner. The task is scheduled
105 * after the given number of seconds |delay_in_seconds|. The TaskRunner
106 * implementation takes ownership of |task|. The |task| cannot be nested
107 * within other task executions.
108 *
109 * Tasks which shouldn't be interleaved with JS execution must be posted with
110 * |PostNonNestableTask| or |PostNonNestableDelayedTask|. This is because the
111 * embedder may process tasks in a callback which is called during JS
112 * execution.
113 *
114 * In particular, tasks which execute JS must be non-nestable, since JS
115 * execution is not allowed to nest.
116 *
117 * Requires that |TaskRunner::NonNestableDelayedTasksEnabled()| is true.
118 */
PostNonNestableDelayedTask(std::unique_ptr<Task> task,double delay_in_seconds)119 virtual void PostNonNestableDelayedTask(std::unique_ptr<Task> task,
120 double delay_in_seconds) {}
121
122 /**
123 * Schedules an idle task to be invoked by this TaskRunner. The task is
124 * scheduled when the embedder is idle. Requires that
125 * |TaskRunner::IdleTasksEnabled()| is true. Idle tasks may be reordered
126 * relative to other task types and may be starved for an arbitrarily long
127 * time if no idle time is available. The TaskRunner implementation takes
128 * ownership of |task|.
129 */
130 virtual void PostIdleTask(std::unique_ptr<IdleTask> task) = 0;
131
132 /**
133 * Returns true if idle tasks are enabled for this TaskRunner.
134 */
135 virtual bool IdleTasksEnabled() = 0;
136
137 /**
138 * Returns true if non-nestable tasks are enabled for this TaskRunner.
139 */
NonNestableTasksEnabled()140 virtual bool NonNestableTasksEnabled() const { return false; }
141
142 /**
143 * Returns true if non-nestable delayed tasks are enabled for this TaskRunner.
144 */
NonNestableDelayedTasksEnabled()145 virtual bool NonNestableDelayedTasksEnabled() const { return false; }
146
147 TaskRunner() = default;
148 virtual ~TaskRunner() = default;
149
150 TaskRunner(const TaskRunner&) = delete;
151 TaskRunner& operator=(const TaskRunner&) = delete;
152 };
153
154 /**
155 * Delegate that's passed to Job's worker task, providing an entry point to
156 * communicate with the scheduler.
157 */
158 class JobDelegate {
159 public:
160 /**
161 * Returns true if this thread should return from the worker task on the
162 * current thread ASAP. Workers should periodically invoke ShouldYield (or
163 * YieldIfNeeded()) as often as is reasonable.
164 */
165 virtual bool ShouldYield() = 0;
166
167 /**
168 * Notifies the scheduler that max concurrency was increased, and the number
169 * of worker should be adjusted accordingly. See Platform::PostJob() for more
170 * details.
171 */
172 virtual void NotifyConcurrencyIncrease() = 0;
173
174 /**
175 * Returns a task_id unique among threads currently running this job, such
176 * that GetTaskId() < worker count. To achieve this, the same task_id may be
177 * reused by a different thread after a worker_task returns.
178 */
179 virtual uint8_t GetTaskId() = 0;
180
181 /**
182 * Returns true if the current task is called from the thread currently
183 * running JobHandle::Join().
184 */
185 virtual bool IsJoiningThread() const = 0;
186 };
187
188 /**
189 * Handle returned when posting a Job. Provides methods to control execution of
190 * the posted Job.
191 */
192 class JobHandle {
193 public:
194 virtual ~JobHandle() = default;
195
196 /**
197 * Notifies the scheduler that max concurrency was increased, and the number
198 * of worker should be adjusted accordingly. See Platform::PostJob() for more
199 * details.
200 */
201 virtual void NotifyConcurrencyIncrease() = 0;
202
203 /**
204 * Contributes to the job on this thread. Doesn't return until all tasks have
205 * completed and max concurrency becomes 0. When Join() is called and max
206 * concurrency reaches 0, it should not increase again. This also promotes
207 * this Job's priority to be at least as high as the calling thread's
208 * priority.
209 */
210 virtual void Join() = 0;
211
212 /**
213 * Forces all existing workers to yield ASAP. Waits until they have all
214 * returned from the Job's callback before returning.
215 */
216 virtual void Cancel() = 0;
217
218 /*
219 * Forces all existing workers to yield ASAP but doesn’t wait for them.
220 * Warning, this is dangerous if the Job's callback is bound to or has access
221 * to state which may be deleted after this call.
222 */
223 virtual void CancelAndDetach() = 0;
224
225 /**
226 * Returns true if there's any work pending or any worker running.
227 */
228 virtual bool IsActive() = 0;
229
230 /**
231 * Returns true if associated with a Job and other methods may be called.
232 * Returns false after Join() or Cancel() was called. This may return true
233 * even if no workers are running and IsCompleted() returns true
234 */
235 virtual bool IsValid() = 0;
236
237 /**
238 * Returns true if job priority can be changed.
239 */
UpdatePriorityEnabled()240 virtual bool UpdatePriorityEnabled() const { return false; }
241
242 /**
243 * Update this Job's priority.
244 */
UpdatePriority(TaskPriority new_priority)245 virtual void UpdatePriority(TaskPriority new_priority) {}
246 };
247
248 /**
249 * A JobTask represents work to run in parallel from Platform::PostJob().
250 */
251 class JobTask {
252 public:
253 virtual ~JobTask() = default;
254
255 virtual void Run(JobDelegate* delegate) = 0;
256
257 /**
258 * Controls the maximum number of threads calling Run() concurrently, given
259 * the number of threads currently assigned to this job and executing Run().
260 * Run() is only invoked if the number of threads previously running Run() was
261 * less than the value returned. Since GetMaxConcurrency() is a leaf function,
262 * it must not call back any JobHandle methods.
263 */
264 virtual size_t GetMaxConcurrency(size_t worker_count) const = 0;
265 };
266
267 /**
268 * The interface represents complex arguments to trace events.
269 */
270 class ConvertableToTraceFormat {
271 public:
272 virtual ~ConvertableToTraceFormat() = default;
273
274 /**
275 * Append the class info to the provided |out| string. The appended
276 * data must be a valid JSON object. Strings must be properly quoted, and
277 * escaped. There is no processing applied to the content after it is
278 * appended.
279 */
280 virtual void AppendAsTraceFormat(std::string* out) const = 0;
281 };
282
283 /**
284 * V8 Tracing controller.
285 *
286 * Can be implemented by an embedder to record trace events from V8.
287 */
288 class TracingController {
289 public:
290 virtual ~TracingController() = default;
291
292 // In Perfetto mode, trace events are written using Perfetto's Track Event
293 // API directly without going through the embedder. However, it is still
294 // possible to observe tracing being enabled and disabled.
295 #if !defined(V8_USE_PERFETTO)
296 /**
297 * Called by TRACE_EVENT* macros, don't call this directly.
298 * The name parameter is a category group for example:
299 * TRACE_EVENT0("v8,parse", "V8.Parse")
300 * The pointer returned points to a value with zero or more of the bits
301 * defined in CategoryGroupEnabledFlags.
302 **/
GetCategoryGroupEnabled(const char * name)303 virtual const uint8_t* GetCategoryGroupEnabled(const char* name) {
304 static uint8_t no = 0;
305 return &no;
306 }
307
308 /**
309 * Adds a trace event to the platform tracing system. These function calls are
310 * usually the result of a TRACE_* macro from trace_event_common.h when
311 * tracing and the category of the particular trace are enabled. It is not
312 * advisable to call these functions on their own; they are really only meant
313 * to be used by the trace macros. The returned handle can be used by
314 * UpdateTraceEventDuration to update the duration of COMPLETE events.
315 */
AddTraceEvent(char phase,const uint8_t * category_enabled_flag,const char * name,const char * scope,uint64_t id,uint64_t bind_id,int32_t num_args,const char ** arg_names,const uint8_t * arg_types,const uint64_t * arg_values,std::unique_ptr<ConvertableToTraceFormat> * arg_convertables,unsigned int flags)316 virtual uint64_t AddTraceEvent(
317 char phase, const uint8_t* category_enabled_flag, const char* name,
318 const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
319 const char** arg_names, const uint8_t* arg_types,
320 const uint64_t* arg_values,
321 std::unique_ptr<ConvertableToTraceFormat>* arg_convertables,
322 unsigned int flags) {
323 return 0;
324 }
AddTraceEventWithTimestamp(char phase,const uint8_t * category_enabled_flag,const char * name,const char * scope,uint64_t id,uint64_t bind_id,int32_t num_args,const char ** arg_names,const uint8_t * arg_types,const uint64_t * arg_values,std::unique_ptr<ConvertableToTraceFormat> * arg_convertables,unsigned int flags,int64_t timestamp)325 virtual uint64_t AddTraceEventWithTimestamp(
326 char phase, const uint8_t* category_enabled_flag, const char* name,
327 const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
328 const char** arg_names, const uint8_t* arg_types,
329 const uint64_t* arg_values,
330 std::unique_ptr<ConvertableToTraceFormat>* arg_convertables,
331 unsigned int flags, int64_t timestamp) {
332 return 0;
333 }
334
335 /**
336 * Sets the duration field of a COMPLETE trace event. It must be called with
337 * the handle returned from AddTraceEvent().
338 **/
UpdateTraceEventDuration(const uint8_t * category_enabled_flag,const char * name,uint64_t handle)339 virtual void UpdateTraceEventDuration(const uint8_t* category_enabled_flag,
340 const char* name, uint64_t handle) {}
341 #endif // !defined(V8_USE_PERFETTO)
342
343 class TraceStateObserver {
344 public:
345 virtual ~TraceStateObserver() = default;
346 virtual void OnTraceEnabled() = 0;
347 virtual void OnTraceDisabled() = 0;
348 };
349
350 /** Adds tracing state change observer. */
AddTraceStateObserver(TraceStateObserver *)351 virtual void AddTraceStateObserver(TraceStateObserver*) {}
352
353 /** Removes tracing state change observer. */
RemoveTraceStateObserver(TraceStateObserver *)354 virtual void RemoveTraceStateObserver(TraceStateObserver*) {}
355 };
356
357 /**
358 * A V8 memory page allocator.
359 *
360 * Can be implemented by an embedder to manage large host OS allocations.
361 */
362 class PageAllocator {
363 public:
364 virtual ~PageAllocator() = default;
365
366 /**
367 * Gets the page granularity for AllocatePages and FreePages. Addresses and
368 * lengths for those calls should be multiples of AllocatePageSize().
369 */
370 virtual size_t AllocatePageSize() = 0;
371
372 /**
373 * Gets the page granularity for SetPermissions and ReleasePages. Addresses
374 * and lengths for those calls should be multiples of CommitPageSize().
375 */
376 virtual size_t CommitPageSize() = 0;
377
378 /**
379 * Sets the random seed so that GetRandomMmapAddr() will generate repeatable
380 * sequences of random mmap addresses.
381 */
382 virtual void SetRandomMmapSeed(int64_t seed) = 0;
383
384 /**
385 * Returns a randomized address, suitable for memory allocation under ASLR.
386 * The address will be aligned to AllocatePageSize.
387 */
388 virtual void* GetRandomMmapAddr() = 0;
389
390 /**
391 * Memory permissions.
392 */
393 enum Permission {
394 kNoAccess,
395 kRead,
396 kReadWrite,
397 kReadWriteExecute,
398 kReadExecute,
399 // Set this when reserving memory that will later require kReadWriteExecute
400 // permissions. The resulting behavior is platform-specific, currently
401 // this is used to set the MAP_JIT flag on Apple Silicon.
402 // TODO(jkummerow): Remove this when Wasm has a platform-independent
403 // w^x implementation.
404 // TODO(saelo): Remove this once all JIT pages are allocated through the
405 // VirtualAddressSpace API.
406 kNoAccessWillJitLater
407 };
408
409 /**
410 * Allocates memory in range with the given alignment and permission.
411 */
412 virtual void* AllocatePages(void* address, size_t length, size_t alignment,
413 Permission permissions) = 0;
414
415 /**
416 * Frees memory in a range that was allocated by a call to AllocatePages.
417 */
418 virtual bool FreePages(void* address, size_t length) = 0;
419
420 /**
421 * Releases memory in a range that was allocated by a call to AllocatePages.
422 */
423 virtual bool ReleasePages(void* address, size_t length,
424 size_t new_length) = 0;
425
426 /**
427 * Sets permissions on pages in an allocated range.
428 */
429 virtual bool SetPermissions(void* address, size_t length,
430 Permission permissions) = 0;
431
432 /**
433 * Frees memory in the given [address, address + size) range. address and size
434 * should be operating system page-aligned. The next write to this
435 * memory area brings the memory transparently back. This should be treated as
436 * a hint to the OS that the pages are no longer needed. It does not guarantee
437 * that the pages will be discarded immediately or at all.
438 */
DiscardSystemPages(void * address,size_t size)439 virtual bool DiscardSystemPages(void* address, size_t size) { return true; }
440
441 /**
442 * Decommits any wired memory pages in the given range, allowing the OS to
443 * reclaim them, and marks the region as inacessible (kNoAccess). The address
444 * range stays reserved and can be accessed again later by changing its
445 * permissions. However, in that case the memory content is guaranteed to be
446 * zero-initialized again. The memory must have been previously allocated by a
447 * call to AllocatePages. Returns true on success, false otherwise.
448 */
449 virtual bool DecommitPages(void* address, size_t size) = 0;
450
451 /**
452 * INTERNAL ONLY: This interface has not been stabilised and may change
453 * without notice from one release to another without being deprecated first.
454 */
455 class SharedMemoryMapping {
456 public:
457 // Implementations are expected to free the shared memory mapping in the
458 // destructor.
459 virtual ~SharedMemoryMapping() = default;
460 virtual void* GetMemory() const = 0;
461 };
462
463 /**
464 * INTERNAL ONLY: This interface has not been stabilised and may change
465 * without notice from one release to another without being deprecated first.
466 */
467 class SharedMemory {
468 public:
469 // Implementations are expected to free the shared memory in the destructor.
470 virtual ~SharedMemory() = default;
471 virtual std::unique_ptr<SharedMemoryMapping> RemapTo(
472 void* new_address) const = 0;
473 virtual void* GetMemory() const = 0;
474 virtual size_t GetSize() const = 0;
475 };
476
477 /**
478 * INTERNAL ONLY: This interface has not been stabilised and may change
479 * without notice from one release to another without being deprecated first.
480 *
481 * Reserve pages at a fixed address returning whether the reservation is
482 * possible. The reserved memory is detached from the PageAllocator and so
483 * should not be freed by it. It's intended for use with
484 * SharedMemory::RemapTo, where ~SharedMemoryMapping would free the memory.
485 */
ReserveForSharedMemoryMapping(void * address,size_t size)486 virtual bool ReserveForSharedMemoryMapping(void* address, size_t size) {
487 return false;
488 }
489
490 /**
491 * INTERNAL ONLY: This interface has not been stabilised and may change
492 * without notice from one release to another without being deprecated first.
493 *
494 * Allocates shared memory pages. Not all PageAllocators need support this and
495 * so this method need not be overridden.
496 * Allocates a new read-only shared memory region of size |length| and copies
497 * the memory at |original_address| into it.
498 */
AllocateSharedPages(size_t length,const void * original_address)499 virtual std::unique_ptr<SharedMemory> AllocateSharedPages(
500 size_t length, const void* original_address) {
501 return {};
502 }
503
504 /**
505 * INTERNAL ONLY: This interface has not been stabilised and may change
506 * without notice from one release to another without being deprecated first.
507 *
508 * If not overridden and changed to return true, V8 will not attempt to call
509 * AllocateSharedPages or RemapSharedPages. If overridden, AllocateSharedPages
510 * and RemapSharedPages must also be overridden.
511 */
CanAllocateSharedPages()512 virtual bool CanAllocateSharedPages() { return false; }
513 };
514
515 // Opaque type representing a handle to a shared memory region.
516 using PlatformSharedMemoryHandle = intptr_t;
517 static constexpr PlatformSharedMemoryHandle kInvalidSharedMemoryHandle = -1;
518
519 // Conversion routines from the platform-dependent shared memory identifiers
520 // into the opaque PlatformSharedMemoryHandle type. These use the underlying
521 // types (e.g. unsigned int) instead of the typedef'd ones (e.g. mach_port_t)
522 // to avoid pulling in large OS header files into this header file. Instead,
523 // the users of these routines are expected to include the respecitve OS
524 // headers in addition to this one.
525 #if V8_OS_MACOS
526 // Convert between a shared memory handle and a mach_port_t referencing a memory
527 // entry object.
SharedMemoryHandleFromMachMemoryEntry(unsigned int port)528 inline PlatformSharedMemoryHandle SharedMemoryHandleFromMachMemoryEntry(
529 unsigned int port) {
530 return static_cast<PlatformSharedMemoryHandle>(port);
531 }
MachMemoryEntryFromSharedMemoryHandle(PlatformSharedMemoryHandle handle)532 inline unsigned int MachMemoryEntryFromSharedMemoryHandle(
533 PlatformSharedMemoryHandle handle) {
534 return static_cast<unsigned int>(handle);
535 }
536 #elif V8_OS_FUCHSIA
537 // Convert between a shared memory handle and a zx_handle_t to a VMO.
SharedMemoryHandleFromVMO(uint32_t handle)538 inline PlatformSharedMemoryHandle SharedMemoryHandleFromVMO(uint32_t handle) {
539 return static_cast<PlatformSharedMemoryHandle>(handle);
540 }
VMOFromSharedMemoryHandle(PlatformSharedMemoryHandle handle)541 inline uint32_t VMOFromSharedMemoryHandle(PlatformSharedMemoryHandle handle) {
542 return static_cast<uint32_t>(handle);
543 }
544 #elif V8_OS_WIN
545 // Convert between a shared memory handle and a Windows HANDLE to a file mapping
546 // object.
SharedMemoryHandleFromFileMapping(void * handle)547 inline PlatformSharedMemoryHandle SharedMemoryHandleFromFileMapping(
548 void* handle) {
549 return reinterpret_cast<PlatformSharedMemoryHandle>(handle);
550 }
FileMappingFromSharedMemoryHandle(PlatformSharedMemoryHandle handle)551 inline void* FileMappingFromSharedMemoryHandle(
552 PlatformSharedMemoryHandle handle) {
553 return reinterpret_cast<void*>(handle);
554 }
555 #else
556 // Convert between a shared memory handle and a file descriptor.
SharedMemoryHandleFromFileDescriptor(int fd)557 inline PlatformSharedMemoryHandle SharedMemoryHandleFromFileDescriptor(int fd) {
558 return static_cast<PlatformSharedMemoryHandle>(fd);
559 }
FileDescriptorFromSharedMemoryHandle(PlatformSharedMemoryHandle handle)560 inline int FileDescriptorFromSharedMemoryHandle(
561 PlatformSharedMemoryHandle handle) {
562 return static_cast<int>(handle);
563 }
564 #endif
565
566 /**
567 * Possible permissions for memory pages.
568 */
569 enum class PagePermissions {
570 kNoAccess,
571 kRead,
572 kReadWrite,
573 kReadWriteExecute,
574 kReadExecute,
575 };
576
577 /**
578 * Class to manage a virtual memory address space.
579 *
580 * This class represents a contiguous region of virtual address space in which
581 * sub-spaces and (private or shared) memory pages can be allocated, freed, and
582 * modified. This interface is meant to eventually replace the PageAllocator
583 * interface, and can be used as an alternative in the meantime.
584 *
585 * This API is not yet stable and may change without notice!
586 */
587 class VirtualAddressSpace {
588 public:
589 using Address = uintptr_t;
590
VirtualAddressSpace(size_t page_size,size_t allocation_granularity,Address base,size_t size,PagePermissions max_page_permissions)591 VirtualAddressSpace(size_t page_size, size_t allocation_granularity,
592 Address base, size_t size,
593 PagePermissions max_page_permissions)
594 : page_size_(page_size),
595 allocation_granularity_(allocation_granularity),
596 base_(base),
597 size_(size),
598 max_page_permissions_(max_page_permissions) {}
599
600 virtual ~VirtualAddressSpace() = default;
601
602 /**
603 * The page size used inside this space. Guaranteed to be a power of two.
604 * Used as granularity for all page-related operations except for allocation,
605 * which use the allocation_granularity(), see below.
606 *
607 * \returns the page size in bytes.
608 */
page_size()609 size_t page_size() const { return page_size_; }
610
611 /**
612 * The granularity of page allocations and, by extension, of subspace
613 * allocations. This is guaranteed to be a power of two and a multiple of the
614 * page_size(). In practice, this is equal to the page size on most OSes, but
615 * on Windows it is usually 64KB, while the page size is 4KB.
616 *
617 * \returns the allocation granularity in bytes.
618 */
allocation_granularity()619 size_t allocation_granularity() const { return allocation_granularity_; }
620
621 /**
622 * The base address of the address space managed by this instance.
623 *
624 * \returns the base address of this address space.
625 */
base()626 Address base() const { return base_; }
627
628 /**
629 * The size of the address space managed by this instance.
630 *
631 * \returns the size of this address space in bytes.
632 */
size()633 size_t size() const { return size_; }
634
635 /**
636 * The maximum page permissions that pages allocated inside this space can
637 * obtain.
638 *
639 * \returns the maximum page permissions.
640 */
max_page_permissions()641 PagePermissions max_page_permissions() const { return max_page_permissions_; }
642
643 /**
644 * Sets the random seed so that GetRandomPageAddress() will generate
645 * repeatable sequences of random addresses.
646 *
647 * \param The seed for the PRNG.
648 */
649 virtual void SetRandomSeed(int64_t seed) = 0;
650
651 /**
652 * Returns a random address inside this address space, suitable for page
653 * allocations hints.
654 *
655 * \returns a random address aligned to allocation_granularity().
656 */
657 virtual Address RandomPageAddress() = 0;
658
659 /**
660 * Allocates private memory pages with the given alignment and permissions.
661 *
662 * \param hint If nonzero, the allocation is attempted to be placed at the
663 * given address first. If that fails, the allocation is attempted to be
664 * placed elsewhere, possibly nearby, but that is not guaranteed. Specifying
665 * zero for the hint always causes this function to choose a random address.
666 * The hint, if specified, must be aligned to the specified alignment.
667 *
668 * \param size The size of the allocation in bytes. Must be a multiple of the
669 * allocation_granularity().
670 *
671 * \param alignment The alignment of the allocation in bytes. Must be a
672 * multiple of the allocation_granularity() and should be a power of two.
673 *
674 * \param permissions The page permissions of the newly allocated pages.
675 *
676 * \returns the start address of the allocated pages on success, zero on
677 * failure.
678 */
679 static constexpr Address kNoHint = 0;
680 virtual V8_WARN_UNUSED_RESULT Address
681 AllocatePages(Address hint, size_t size, size_t alignment,
682 PagePermissions permissions) = 0;
683
684 /**
685 * Frees previously allocated pages.
686 *
687 * This function will terminate the process on failure as this implies a bug
688 * in the client. As such, there is no return value.
689 *
690 * \param address The start address of the pages to free. This address must
691 * have been obtained through a call to AllocatePages.
692 *
693 * \param size The size in bytes of the region to free. This must match the
694 * size passed to AllocatePages when the pages were allocated.
695 */
696 virtual void FreePages(Address address, size_t size) = 0;
697
698 /**
699 * Sets permissions of all allocated pages in the given range.
700 *
701 * \param address The start address of the range. Must be aligned to
702 * page_size().
703 *
704 * \param size The size in bytes of the range. Must be a multiple
705 * of page_size().
706 *
707 * \param permissions The new permissions for the range.
708 *
709 * \returns true on success, false otherwise.
710 */
711 virtual V8_WARN_UNUSED_RESULT bool SetPagePermissions(
712 Address address, size_t size, PagePermissions permissions) = 0;
713
714 /**
715 * Creates a guard region at the specified address.
716 *
717 * Guard regions are guaranteed to cause a fault when accessed and generally
718 * do not count towards any memory consumption limits. Further, allocating
719 * guard regions can usually not fail in subspaces if the region does not
720 * overlap with another region, subspace, or page allocation.
721 *
722 * \param address The start address of the guard region. Must be aligned to
723 * the allocation_granularity().
724 *
725 * \param size The size of the guard region in bytes. Must be a multiple of
726 * the allocation_granularity().
727 *
728 * \returns true on success, false otherwise.
729 */
730 virtual V8_WARN_UNUSED_RESULT bool AllocateGuardRegion(Address address,
731 size_t size) = 0;
732
733 /**
734 * Frees an existing guard region.
735 *
736 * This function will terminate the process on failure as this implies a bug
737 * in the client. As such, there is no return value.
738 *
739 * \param address The start address of the guard region to free. This address
740 * must have previously been used as address parameter in a successful
741 * invocation of AllocateGuardRegion.
742 *
743 * \param size The size in bytes of the guard region to free. This must match
744 * the size passed to AllocateGuardRegion when the region was created.
745 */
746 virtual void FreeGuardRegion(Address address, size_t size) = 0;
747
748 /**
749 * Allocates shared memory pages with the given permissions.
750 *
751 * \param hint Placement hint. See AllocatePages.
752 *
753 * \param size The size of the allocation in bytes. Must be a multiple of the
754 * allocation_granularity().
755 *
756 * \param permissions The page permissions of the newly allocated pages.
757 *
758 * \param handle A platform-specific handle to a shared memory object. See
759 * the SharedMemoryHandleFromX routines above for ways to obtain these.
760 *
761 * \param offset The offset in the shared memory object at which the mapping
762 * should start. Must be a multiple of the allocation_granularity().
763 *
764 * \returns the start address of the allocated pages on success, zero on
765 * failure.
766 */
767 virtual V8_WARN_UNUSED_RESULT Address
768 AllocateSharedPages(Address hint, size_t size, PagePermissions permissions,
769 PlatformSharedMemoryHandle handle, uint64_t offset) = 0;
770
771 /**
772 * Frees previously allocated shared pages.
773 *
774 * This function will terminate the process on failure as this implies a bug
775 * in the client. As such, there is no return value.
776 *
777 * \param address The start address of the pages to free. This address must
778 * have been obtained through a call to AllocateSharedPages.
779 *
780 * \param size The size in bytes of the region to free. This must match the
781 * size passed to AllocateSharedPages when the pages were allocated.
782 */
783 virtual void FreeSharedPages(Address address, size_t size) = 0;
784
785 /**
786 * Whether this instance can allocate subspaces or not.
787 *
788 * \returns true if subspaces can be allocated, false if not.
789 */
790 virtual bool CanAllocateSubspaces() = 0;
791
792 /*
793 * Allocate a subspace.
794 *
795 * The address space of a subspace stays reserved in the parent space for the
796 * lifetime of the subspace. As such, it is guaranteed that page allocations
797 * on the parent space cannot end up inside a subspace.
798 *
799 * \param hint Hints where the subspace should be allocated. See
800 * AllocatePages() for more details.
801 *
802 * \param size The size in bytes of the subspace. Must be a multiple of the
803 * allocation_granularity().
804 *
805 * \param alignment The alignment of the subspace in bytes. Must be a multiple
806 * of the allocation_granularity() and should be a power of two.
807 *
808 * \param max_page_permissions The maximum permissions that pages allocated in
809 * the subspace can obtain.
810 *
811 * \returns a new subspace or nullptr on failure.
812 */
813 virtual std::unique_ptr<VirtualAddressSpace> AllocateSubspace(
814 Address hint, size_t size, size_t alignment,
815 PagePermissions max_page_permissions) = 0;
816
817 //
818 // TODO(v8) maybe refactor the methods below before stabilizing the API. For
819 // example by combining them into some form of page operation method that
820 // takes a command enum as parameter.
821 //
822
823 /**
824 * Frees memory in the given [address, address + size) range. address and
825 * size should be aligned to the page_size(). The next write to this memory
826 * area brings the memory transparently back. This should be treated as a
827 * hint to the OS that the pages are no longer needed. It does not guarantee
828 * that the pages will be discarded immediately or at all.
829 *
830 * \returns true on success, false otherwise. Since this method is only a
831 * hint, a successful invocation does not imply that pages have been removed.
832 */
DiscardSystemPages(Address address,size_t size)833 virtual V8_WARN_UNUSED_RESULT bool DiscardSystemPages(Address address,
834 size_t size) {
835 return true;
836 }
837 /**
838 * Decommits any wired memory pages in the given range, allowing the OS to
839 * reclaim them, and marks the region as inacessible (kNoAccess). The address
840 * range stays reserved and can be accessed again later by changing its
841 * permissions. However, in that case the memory content is guaranteed to be
842 * zero-initialized again. The memory must have been previously allocated by a
843 * call to AllocatePages.
844 *
845 * \returns true on success, false otherwise.
846 */
847 virtual V8_WARN_UNUSED_RESULT bool DecommitPages(Address address,
848 size_t size) = 0;
849
850 private:
851 const size_t page_size_;
852 const size_t allocation_granularity_;
853 const Address base_;
854 const size_t size_;
855 const PagePermissions max_page_permissions_;
856 };
857
858 /**
859 * V8 Allocator used for allocating zone backings.
860 */
861 class ZoneBackingAllocator {
862 public:
863 using MallocFn = void* (*)(size_t);
864 using FreeFn = void (*)(void*);
865
GetMallocFn()866 virtual MallocFn GetMallocFn() const { return ::malloc; }
GetFreeFn()867 virtual FreeFn GetFreeFn() const { return ::free; }
868 };
869
870 /**
871 * Observer used by V8 to notify the embedder about entering/leaving sections
872 * with high throughput of malloc/free operations.
873 */
874 class HighAllocationThroughputObserver {
875 public:
EnterSection()876 virtual void EnterSection() {}
LeaveSection()877 virtual void LeaveSection() {}
878 };
879
880 /**
881 * V8 Platform abstraction layer.
882 *
883 * The embedder has to provide an implementation of this interface before
884 * initializing the rest of V8.
885 */
886 class Platform {
887 public:
888 virtual ~Platform() = default;
889
890 /**
891 * Allows the embedder to manage memory page allocations.
892 */
GetPageAllocator()893 virtual PageAllocator* GetPageAllocator() {
894 // TODO(bbudge) Make this abstract after all embedders implement this.
895 return nullptr;
896 }
897
898 /**
899 * Allows the embedder to specify a custom allocator used for zones.
900 */
GetZoneBackingAllocator()901 virtual ZoneBackingAllocator* GetZoneBackingAllocator() {
902 static ZoneBackingAllocator default_allocator;
903 return &default_allocator;
904 }
905
906 /**
907 * Enables the embedder to respond in cases where V8 can't allocate large
908 * blocks of memory. V8 retries the failed allocation once after calling this
909 * method. On success, execution continues; otherwise V8 exits with a fatal
910 * error.
911 * Embedder overrides of this function must NOT call back into V8.
912 */
OnCriticalMemoryPressure()913 virtual void OnCriticalMemoryPressure() {
914 // TODO(bbudge) Remove this when embedders override the following method.
915 // See crbug.com/634547.
916 }
917
918 /**
919 * Enables the embedder to respond in cases where V8 can't allocate large
920 * memory regions. The |length| parameter is the amount of memory needed.
921 * Returns true if memory is now available. Returns false if no memory could
922 * be made available. V8 will retry allocations until this method returns
923 * false.
924 *
925 * Embedder overrides of this function must NOT call back into V8.
926 */
OnCriticalMemoryPressure(size_t length)927 virtual bool OnCriticalMemoryPressure(size_t length) { return false; }
928
929 /**
930 * Gets the number of worker threads used by
931 * Call(BlockingTask)OnWorkerThread(). This can be used to estimate the number
932 * of tasks a work package should be split into. A return value of 0 means
933 * that there are no worker threads available. Note that a value of 0 won't
934 * prohibit V8 from posting tasks using |CallOnWorkerThread|.
935 */
936 virtual int NumberOfWorkerThreads() = 0;
937
938 /**
939 * Returns a TaskRunner which can be used to post a task on the foreground.
940 * The TaskRunner's NonNestableTasksEnabled() must be true. This function
941 * should only be called from a foreground thread.
942 */
943 virtual std::shared_ptr<v8::TaskRunner> GetForegroundTaskRunner(
944 Isolate* isolate) = 0;
945
946 /**
947 * Schedules a task to be invoked on a worker thread.
948 */
949 virtual void CallOnWorkerThread(std::unique_ptr<Task> task) = 0;
950
951 /**
952 * Schedules a task that blocks the main thread to be invoked with
953 * high-priority on a worker thread.
954 */
CallBlockingTaskOnWorkerThread(std::unique_ptr<Task> task)955 virtual void CallBlockingTaskOnWorkerThread(std::unique_ptr<Task> task) {
956 // Embedders may optionally override this to process these tasks in a high
957 // priority pool.
958 CallOnWorkerThread(std::move(task));
959 }
960
961 /**
962 * Schedules a task to be invoked with low-priority on a worker thread.
963 */
CallLowPriorityTaskOnWorkerThread(std::unique_ptr<Task> task)964 virtual void CallLowPriorityTaskOnWorkerThread(std::unique_ptr<Task> task) {
965 // Embedders may optionally override this to process these tasks in a low
966 // priority pool.
967 CallOnWorkerThread(std::move(task));
968 }
969
970 /**
971 * Schedules a task to be invoked on a worker thread after |delay_in_seconds|
972 * expires.
973 */
974 virtual void CallDelayedOnWorkerThread(std::unique_ptr<Task> task,
975 double delay_in_seconds) = 0;
976
977 /**
978 * Returns true if idle tasks are enabled for the given |isolate|.
979 */
IdleTasksEnabled(Isolate * isolate)980 virtual bool IdleTasksEnabled(Isolate* isolate) { return false; }
981
982 /**
983 * Posts |job_task| to run in parallel. Returns a JobHandle associated with
984 * the Job, which can be joined or canceled.
985 * This avoids degenerate cases:
986 * - Calling CallOnWorkerThread() for each work item, causing significant
987 * overhead.
988 * - Fixed number of CallOnWorkerThread() calls that split the work and might
989 * run for a long time. This is problematic when many components post
990 * "num cores" tasks and all expect to use all the cores. In these cases,
991 * the scheduler lacks context to be fair to multiple same-priority requests
992 * and/or ability to request lower priority work to yield when high priority
993 * work comes in.
994 * A canonical implementation of |job_task| looks like:
995 * class MyJobTask : public JobTask {
996 * public:
997 * MyJobTask(...) : worker_queue_(...) {}
998 * // JobTask:
999 * void Run(JobDelegate* delegate) override {
1000 * while (!delegate->ShouldYield()) {
1001 * // Smallest unit of work.
1002 * auto work_item = worker_queue_.TakeWorkItem(); // Thread safe.
1003 * if (!work_item) return;
1004 * ProcessWork(work_item);
1005 * }
1006 * }
1007 *
1008 * size_t GetMaxConcurrency() const override {
1009 * return worker_queue_.GetSize(); // Thread safe.
1010 * }
1011 * };
1012 * auto handle = PostJob(TaskPriority::kUserVisible,
1013 * std::make_unique<MyJobTask>(...));
1014 * handle->Join();
1015 *
1016 * PostJob() and methods of the returned JobHandle/JobDelegate, must never be
1017 * called while holding a lock that could be acquired by JobTask::Run or
1018 * JobTask::GetMaxConcurrency -- that could result in a deadlock. This is
1019 * because [1] JobTask::GetMaxConcurrency may be invoked while holding
1020 * internal lock (A), hence JobTask::GetMaxConcurrency can only use a lock (B)
1021 * if that lock is *never* held while calling back into JobHandle from any
1022 * thread (A=>B/B=>A deadlock) and [2] JobTask::Run or
1023 * JobTask::GetMaxConcurrency may be invoked synchronously from JobHandle
1024 * (B=>JobHandle::foo=>B deadlock).
1025 *
1026 * A sufficient PostJob() implementation that uses the default Job provided in
1027 * libplatform looks like:
1028 * std::unique_ptr<JobHandle> PostJob(
1029 * TaskPriority priority, std::unique_ptr<JobTask> job_task) override {
1030 * return v8::platform::NewDefaultJobHandle(
1031 * this, priority, std::move(job_task), NumberOfWorkerThreads());
1032 * }
1033 */
1034 virtual std::unique_ptr<JobHandle> PostJob(
1035 TaskPriority priority, std::unique_ptr<JobTask> job_task) = 0;
1036
1037 /**
1038 * Monotonically increasing time in seconds from an arbitrary fixed point in
1039 * the past. This function is expected to return at least
1040 * millisecond-precision values. For this reason,
1041 * it is recommended that the fixed point be no further in the past than
1042 * the epoch.
1043 **/
1044 virtual double MonotonicallyIncreasingTime() = 0;
1045
1046 /**
1047 * Current wall-clock time in milliseconds since epoch.
1048 * This function is expected to return at least millisecond-precision values.
1049 */
1050 virtual double CurrentClockTimeMillis() = 0;
1051
1052 typedef void (*StackTracePrinter)();
1053
1054 /**
1055 * Returns a function pointer that print a stack trace of the current stack
1056 * on invocation. Disables printing of the stack trace if nullptr.
1057 */
GetStackTracePrinter()1058 virtual StackTracePrinter GetStackTracePrinter() { return nullptr; }
1059
1060 /**
1061 * Returns an instance of a v8::TracingController. This must be non-nullptr.
1062 */
1063 virtual TracingController* GetTracingController() = 0;
1064
1065 /**
1066 * Tells the embedder to generate and upload a crashdump during an unexpected
1067 * but non-critical scenario.
1068 */
DumpWithoutCrashing()1069 virtual void DumpWithoutCrashing() {}
1070
1071 /**
1072 * Allows the embedder to observe sections with high throughput allocation
1073 * operations.
1074 */
1075 virtual HighAllocationThroughputObserver*
GetHighAllocationThroughputObserver()1076 GetHighAllocationThroughputObserver() {
1077 static HighAllocationThroughputObserver default_observer;
1078 return &default_observer;
1079 }
1080
1081 protected:
1082 /**
1083 * Default implementation of current wall-clock time in milliseconds
1084 * since epoch. Useful for implementing |CurrentClockTimeMillis| if
1085 * nothing special needed.
1086 */
1087 V8_EXPORT static double SystemClockTimeMillis();
1088 };
1089
1090 } // namespace v8
1091
1092 #endif // V8_V8_PLATFORM_H_
1093