• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_V8_PLATFORM_H_
6 #define V8_V8_PLATFORM_H_
7 
8 #include <stddef.h>
9 #include <stdint.h>
10 #include <stdlib.h>  // For abort.
11 #include <memory>
12 #include <string>
13 
14 #include "v8config.h"  // NOLINT(build/include_directory)
15 
16 namespace v8 {
17 
18 class Isolate;
19 
20 // Valid priorities supported by the task scheduling infrastructure.
21 enum class TaskPriority : uint8_t {
22   /**
23    * Best effort tasks are not critical for performance of the application. The
24    * platform implementation should preempt such tasks if higher priority tasks
25    * arrive.
26    */
27   kBestEffort,
28   /**
29    * User visible tasks are long running background tasks that will
30    * improve performance and memory usage of the application upon completion.
31    * Example: background compilation and garbage collection.
32    */
33   kUserVisible,
34   /**
35    * User blocking tasks are highest priority tasks that block the execution
36    * thread (e.g. major garbage collection). They must be finished as soon as
37    * possible.
38    */
39   kUserBlocking,
40 };
41 
42 /**
43  * A Task represents a unit of work.
44  */
45 class Task {
46  public:
47   virtual ~Task() = default;
48 
49   virtual void Run() = 0;
50 };
51 
52 /**
53  * An IdleTask represents a unit of work to be performed in idle time.
54  * The Run method is invoked with an argument that specifies the deadline in
55  * seconds returned by MonotonicallyIncreasingTime().
56  * The idle task is expected to complete by this deadline.
57  */
58 class IdleTask {
59  public:
60   virtual ~IdleTask() = default;
61   virtual void Run(double deadline_in_seconds) = 0;
62 };
63 
64 /**
65  * A TaskRunner allows scheduling of tasks. The TaskRunner may still be used to
66  * post tasks after the isolate gets destructed, but these tasks may not get
67  * executed anymore. All tasks posted to a given TaskRunner will be invoked in
68  * sequence. Tasks can be posted from any thread.
69  */
70 class TaskRunner {
71  public:
72   /**
73    * Schedules a task to be invoked by this TaskRunner. The TaskRunner
74    * implementation takes ownership of |task|.
75    */
76   virtual void PostTask(std::unique_ptr<Task> task) = 0;
77 
78   /**
79    * Schedules a task to be invoked by this TaskRunner. The TaskRunner
80    * implementation takes ownership of |task|. The |task| cannot be nested
81    * within other task executions.
82    *
83    * Tasks which shouldn't be interleaved with JS execution must be posted with
84    * |PostNonNestableTask| or |PostNonNestableDelayedTask|. This is because the
85    * embedder may process tasks in a callback which is called during JS
86    * execution.
87    *
88    * In particular, tasks which execute JS must be non-nestable, since JS
89    * execution is not allowed to nest.
90    *
91    * Requires that |TaskRunner::NonNestableTasksEnabled()| is true.
92    */
PostNonNestableTask(std::unique_ptr<Task> task)93   virtual void PostNonNestableTask(std::unique_ptr<Task> task) {}
94 
95   /**
96    * Schedules a task to be invoked by this TaskRunner. The task is scheduled
97    * after the given number of seconds |delay_in_seconds|. The TaskRunner
98    * implementation takes ownership of |task|.
99    */
100   virtual void PostDelayedTask(std::unique_ptr<Task> task,
101                                double delay_in_seconds) = 0;
102 
103   /**
104    * Schedules a task to be invoked by this TaskRunner. The task is scheduled
105    * after the given number of seconds |delay_in_seconds|. The TaskRunner
106    * implementation takes ownership of |task|. The |task| cannot be nested
107    * within other task executions.
108    *
109    * Tasks which shouldn't be interleaved with JS execution must be posted with
110    * |PostNonNestableTask| or |PostNonNestableDelayedTask|. This is because the
111    * embedder may process tasks in a callback which is called during JS
112    * execution.
113    *
114    * In particular, tasks which execute JS must be non-nestable, since JS
115    * execution is not allowed to nest.
116    *
117    * Requires that |TaskRunner::NonNestableDelayedTasksEnabled()| is true.
118    */
PostNonNestableDelayedTask(std::unique_ptr<Task> task,double delay_in_seconds)119   virtual void PostNonNestableDelayedTask(std::unique_ptr<Task> task,
120                                           double delay_in_seconds) {}
121 
122   /**
123    * Schedules an idle task to be invoked by this TaskRunner. The task is
124    * scheduled when the embedder is idle. Requires that
125    * |TaskRunner::IdleTasksEnabled()| is true. Idle tasks may be reordered
126    * relative to other task types and may be starved for an arbitrarily long
127    * time if no idle time is available. The TaskRunner implementation takes
128    * ownership of |task|.
129    */
130   virtual void PostIdleTask(std::unique_ptr<IdleTask> task) = 0;
131 
132   /**
133    * Returns true if idle tasks are enabled for this TaskRunner.
134    */
135   virtual bool IdleTasksEnabled() = 0;
136 
137   /**
138    * Returns true if non-nestable tasks are enabled for this TaskRunner.
139    */
NonNestableTasksEnabled()140   virtual bool NonNestableTasksEnabled() const { return false; }
141 
142   /**
143    * Returns true if non-nestable delayed tasks are enabled for this TaskRunner.
144    */
NonNestableDelayedTasksEnabled()145   virtual bool NonNestableDelayedTasksEnabled() const { return false; }
146 
147   TaskRunner() = default;
148   virtual ~TaskRunner() = default;
149 
150   TaskRunner(const TaskRunner&) = delete;
151   TaskRunner& operator=(const TaskRunner&) = delete;
152 };
153 
154 /**
155  * Delegate that's passed to Job's worker task, providing an entry point to
156  * communicate with the scheduler.
157  */
158 class JobDelegate {
159  public:
160   /**
161    * Returns true if this thread should return from the worker task on the
162    * current thread ASAP. Workers should periodically invoke ShouldYield (or
163    * YieldIfNeeded()) as often as is reasonable.
164    */
165   virtual bool ShouldYield() = 0;
166 
167   /**
168    * Notifies the scheduler that max concurrency was increased, and the number
169    * of worker should be adjusted accordingly. See Platform::PostJob() for more
170    * details.
171    */
172   virtual void NotifyConcurrencyIncrease() = 0;
173 
174   /**
175    * Returns a task_id unique among threads currently running this job, such
176    * that GetTaskId() < worker count. To achieve this, the same task_id may be
177    * reused by a different thread after a worker_task returns.
178    */
179   virtual uint8_t GetTaskId() = 0;
180 
181   /**
182    * Returns true if the current task is called from the thread currently
183    * running JobHandle::Join().
184    */
185   virtual bool IsJoiningThread() const = 0;
186 };
187 
188 /**
189  * Handle returned when posting a Job. Provides methods to control execution of
190  * the posted Job.
191  */
192 class JobHandle {
193  public:
194   virtual ~JobHandle() = default;
195 
196   /**
197    * Notifies the scheduler that max concurrency was increased, and the number
198    * of worker should be adjusted accordingly. See Platform::PostJob() for more
199    * details.
200    */
201   virtual void NotifyConcurrencyIncrease() = 0;
202 
203   /**
204    * Contributes to the job on this thread. Doesn't return until all tasks have
205    * completed and max concurrency becomes 0. When Join() is called and max
206    * concurrency reaches 0, it should not increase again. This also promotes
207    * this Job's priority to be at least as high as the calling thread's
208    * priority.
209    */
210   virtual void Join() = 0;
211 
212   /**
213    * Forces all existing workers to yield ASAP. Waits until they have all
214    * returned from the Job's callback before returning.
215    */
216   virtual void Cancel() = 0;
217 
218   /*
219    * Forces all existing workers to yield ASAP but doesn’t wait for them.
220    * Warning, this is dangerous if the Job's callback is bound to or has access
221    * to state which may be deleted after this call.
222    */
223   virtual void CancelAndDetach() = 0;
224 
225   /**
226    * Returns true if there's any work pending or any worker running.
227    */
228   virtual bool IsActive() = 0;
229 
230   /**
231    * Returns true if associated with a Job and other methods may be called.
232    * Returns false after Join() or Cancel() was called. This may return true
233    * even if no workers are running and IsCompleted() returns true
234    */
235   virtual bool IsValid() = 0;
236 
237   /**
238    * Returns true if job priority can be changed.
239    */
UpdatePriorityEnabled()240   virtual bool UpdatePriorityEnabled() const { return false; }
241 
242   /**
243    *  Update this Job's priority.
244    */
UpdatePriority(TaskPriority new_priority)245   virtual void UpdatePriority(TaskPriority new_priority) {}
246 };
247 
248 /**
249  * A JobTask represents work to run in parallel from Platform::PostJob().
250  */
251 class JobTask {
252  public:
253   virtual ~JobTask() = default;
254 
255   virtual void Run(JobDelegate* delegate) = 0;
256 
257   /**
258    * Controls the maximum number of threads calling Run() concurrently, given
259    * the number of threads currently assigned to this job and executing Run().
260    * Run() is only invoked if the number of threads previously running Run() was
261    * less than the value returned. Since GetMaxConcurrency() is a leaf function,
262    * it must not call back any JobHandle methods.
263    */
264   virtual size_t GetMaxConcurrency(size_t worker_count) const = 0;
265 };
266 
267 /**
268  * The interface represents complex arguments to trace events.
269  */
270 class ConvertableToTraceFormat {
271  public:
272   virtual ~ConvertableToTraceFormat() = default;
273 
274   /**
275    * Append the class info to the provided |out| string. The appended
276    * data must be a valid JSON object. Strings must be properly quoted, and
277    * escaped. There is no processing applied to the content after it is
278    * appended.
279    */
280   virtual void AppendAsTraceFormat(std::string* out) const = 0;
281 };
282 
283 /**
284  * V8 Tracing controller.
285  *
286  * Can be implemented by an embedder to record trace events from V8.
287  */
288 class TracingController {
289  public:
290   virtual ~TracingController() = default;
291 
292   // In Perfetto mode, trace events are written using Perfetto's Track Event
293   // API directly without going through the embedder. However, it is still
294   // possible to observe tracing being enabled and disabled.
295 #if !defined(V8_USE_PERFETTO)
296   /**
297    * Called by TRACE_EVENT* macros, don't call this directly.
298    * The name parameter is a category group for example:
299    * TRACE_EVENT0("v8,parse", "V8.Parse")
300    * The pointer returned points to a value with zero or more of the bits
301    * defined in CategoryGroupEnabledFlags.
302    **/
GetCategoryGroupEnabled(const char * name)303   virtual const uint8_t* GetCategoryGroupEnabled(const char* name) {
304     static uint8_t no = 0;
305     return &no;
306   }
307 
308   /**
309    * Adds a trace event to the platform tracing system. These function calls are
310    * usually the result of a TRACE_* macro from trace_event_common.h when
311    * tracing and the category of the particular trace are enabled. It is not
312    * advisable to call these functions on their own; they are really only meant
313    * to be used by the trace macros. The returned handle can be used by
314    * UpdateTraceEventDuration to update the duration of COMPLETE events.
315    */
AddTraceEvent(char phase,const uint8_t * category_enabled_flag,const char * name,const char * scope,uint64_t id,uint64_t bind_id,int32_t num_args,const char ** arg_names,const uint8_t * arg_types,const uint64_t * arg_values,std::unique_ptr<ConvertableToTraceFormat> * arg_convertables,unsigned int flags)316   virtual uint64_t AddTraceEvent(
317       char phase, const uint8_t* category_enabled_flag, const char* name,
318       const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
319       const char** arg_names, const uint8_t* arg_types,
320       const uint64_t* arg_values,
321       std::unique_ptr<ConvertableToTraceFormat>* arg_convertables,
322       unsigned int flags) {
323     return 0;
324   }
AddTraceEventWithTimestamp(char phase,const uint8_t * category_enabled_flag,const char * name,const char * scope,uint64_t id,uint64_t bind_id,int32_t num_args,const char ** arg_names,const uint8_t * arg_types,const uint64_t * arg_values,std::unique_ptr<ConvertableToTraceFormat> * arg_convertables,unsigned int flags,int64_t timestamp)325   virtual uint64_t AddTraceEventWithTimestamp(
326       char phase, const uint8_t* category_enabled_flag, const char* name,
327       const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
328       const char** arg_names, const uint8_t* arg_types,
329       const uint64_t* arg_values,
330       std::unique_ptr<ConvertableToTraceFormat>* arg_convertables,
331       unsigned int flags, int64_t timestamp) {
332     return 0;
333   }
334 
335   /**
336    * Sets the duration field of a COMPLETE trace event. It must be called with
337    * the handle returned from AddTraceEvent().
338    **/
UpdateTraceEventDuration(const uint8_t * category_enabled_flag,const char * name,uint64_t handle)339   virtual void UpdateTraceEventDuration(const uint8_t* category_enabled_flag,
340                                         const char* name, uint64_t handle) {}
341 #endif  // !defined(V8_USE_PERFETTO)
342 
343   class TraceStateObserver {
344    public:
345     virtual ~TraceStateObserver() = default;
346     virtual void OnTraceEnabled() = 0;
347     virtual void OnTraceDisabled() = 0;
348   };
349 
350   /** Adds tracing state change observer. */
AddTraceStateObserver(TraceStateObserver *)351   virtual void AddTraceStateObserver(TraceStateObserver*) {}
352 
353   /** Removes tracing state change observer. */
RemoveTraceStateObserver(TraceStateObserver *)354   virtual void RemoveTraceStateObserver(TraceStateObserver*) {}
355 };
356 
357 /**
358  * A V8 memory page allocator.
359  *
360  * Can be implemented by an embedder to manage large host OS allocations.
361  */
362 class PageAllocator {
363  public:
364   virtual ~PageAllocator() = default;
365 
366   /**
367    * Gets the page granularity for AllocatePages and FreePages. Addresses and
368    * lengths for those calls should be multiples of AllocatePageSize().
369    */
370   virtual size_t AllocatePageSize() = 0;
371 
372   /**
373    * Gets the page granularity for SetPermissions and ReleasePages. Addresses
374    * and lengths for those calls should be multiples of CommitPageSize().
375    */
376   virtual size_t CommitPageSize() = 0;
377 
378   /**
379    * Sets the random seed so that GetRandomMmapAddr() will generate repeatable
380    * sequences of random mmap addresses.
381    */
382   virtual void SetRandomMmapSeed(int64_t seed) = 0;
383 
384   /**
385    * Returns a randomized address, suitable for memory allocation under ASLR.
386    * The address will be aligned to AllocatePageSize.
387    */
388   virtual void* GetRandomMmapAddr() = 0;
389 
390   /**
391    * Memory permissions.
392    */
393   enum Permission {
394     kNoAccess,
395     kRead,
396     kReadWrite,
397     kReadWriteExecute,
398     kReadExecute,
399     // Set this when reserving memory that will later require kReadWriteExecute
400     // permissions. The resulting behavior is platform-specific, currently
401     // this is used to set the MAP_JIT flag on Apple Silicon.
402     // TODO(jkummerow): Remove this when Wasm has a platform-independent
403     // w^x implementation.
404     // TODO(saelo): Remove this once all JIT pages are allocated through the
405     // VirtualAddressSpace API.
406     kNoAccessWillJitLater
407   };
408 
409   /**
410    * Allocates memory in range with the given alignment and permission.
411    */
412   virtual void* AllocatePages(void* address, size_t length, size_t alignment,
413                               Permission permissions) = 0;
414 
415   /**
416    * Frees memory in a range that was allocated by a call to AllocatePages.
417    */
418   virtual bool FreePages(void* address, size_t length) = 0;
419 
420   /**
421    * Releases memory in a range that was allocated by a call to AllocatePages.
422    */
423   virtual bool ReleasePages(void* address, size_t length,
424                             size_t new_length) = 0;
425 
426   /**
427    * Sets permissions on pages in an allocated range.
428    */
429   virtual bool SetPermissions(void* address, size_t length,
430                               Permission permissions) = 0;
431 
432   /**
433    * Frees memory in the given [address, address + size) range. address and size
434    * should be operating system page-aligned. The next write to this
435    * memory area brings the memory transparently back. This should be treated as
436    * a hint to the OS that the pages are no longer needed. It does not guarantee
437    * that the pages will be discarded immediately or at all.
438    */
DiscardSystemPages(void * address,size_t size)439   virtual bool DiscardSystemPages(void* address, size_t size) { return true; }
440 
441   /**
442    * Decommits any wired memory pages in the given range, allowing the OS to
443    * reclaim them, and marks the region as inacessible (kNoAccess). The address
444    * range stays reserved and can be accessed again later by changing its
445    * permissions. However, in that case the memory content is guaranteed to be
446    * zero-initialized again. The memory must have been previously allocated by a
447    * call to AllocatePages. Returns true on success, false otherwise.
448    */
449   virtual bool DecommitPages(void* address, size_t size) = 0;
450 
451   /**
452    * INTERNAL ONLY: This interface has not been stabilised and may change
453    * without notice from one release to another without being deprecated first.
454    */
455   class SharedMemoryMapping {
456    public:
457     // Implementations are expected to free the shared memory mapping in the
458     // destructor.
459     virtual ~SharedMemoryMapping() = default;
460     virtual void* GetMemory() const = 0;
461   };
462 
463   /**
464    * INTERNAL ONLY: This interface has not been stabilised and may change
465    * without notice from one release to another without being deprecated first.
466    */
467   class SharedMemory {
468    public:
469     // Implementations are expected to free the shared memory in the destructor.
470     virtual ~SharedMemory() = default;
471     virtual std::unique_ptr<SharedMemoryMapping> RemapTo(
472         void* new_address) const = 0;
473     virtual void* GetMemory() const = 0;
474     virtual size_t GetSize() const = 0;
475   };
476 
477   /**
478    * INTERNAL ONLY: This interface has not been stabilised and may change
479    * without notice from one release to another without being deprecated first.
480    *
481    * Reserve pages at a fixed address returning whether the reservation is
482    * possible. The reserved memory is detached from the PageAllocator and so
483    * should not be freed by it. It's intended for use with
484    * SharedMemory::RemapTo, where ~SharedMemoryMapping would free the memory.
485    */
ReserveForSharedMemoryMapping(void * address,size_t size)486   virtual bool ReserveForSharedMemoryMapping(void* address, size_t size) {
487     return false;
488   }
489 
490   /**
491    * INTERNAL ONLY: This interface has not been stabilised and may change
492    * without notice from one release to another without being deprecated first.
493    *
494    * Allocates shared memory pages. Not all PageAllocators need support this and
495    * so this method need not be overridden.
496    * Allocates a new read-only shared memory region of size |length| and copies
497    * the memory at |original_address| into it.
498    */
AllocateSharedPages(size_t length,const void * original_address)499   virtual std::unique_ptr<SharedMemory> AllocateSharedPages(
500       size_t length, const void* original_address) {
501     return {};
502   }
503 
504   /**
505    * INTERNAL ONLY: This interface has not been stabilised and may change
506    * without notice from one release to another without being deprecated first.
507    *
508    * If not overridden and changed to return true, V8 will not attempt to call
509    * AllocateSharedPages or RemapSharedPages. If overridden, AllocateSharedPages
510    * and RemapSharedPages must also be overridden.
511    */
CanAllocateSharedPages()512   virtual bool CanAllocateSharedPages() { return false; }
513 };
514 
515 // Opaque type representing a handle to a shared memory region.
516 using PlatformSharedMemoryHandle = intptr_t;
517 static constexpr PlatformSharedMemoryHandle kInvalidSharedMemoryHandle = -1;
518 
519 // Conversion routines from the platform-dependent shared memory identifiers
520 // into the opaque PlatformSharedMemoryHandle type. These use the underlying
521 // types (e.g. unsigned int) instead of the typedef'd ones (e.g. mach_port_t)
522 // to avoid pulling in large OS header files into this header file. Instead,
523 // the users of these routines are expected to include the respecitve OS
524 // headers in addition to this one.
525 #if V8_OS_MACOS
526 // Convert between a shared memory handle and a mach_port_t referencing a memory
527 // entry object.
SharedMemoryHandleFromMachMemoryEntry(unsigned int port)528 inline PlatformSharedMemoryHandle SharedMemoryHandleFromMachMemoryEntry(
529     unsigned int port) {
530   return static_cast<PlatformSharedMemoryHandle>(port);
531 }
MachMemoryEntryFromSharedMemoryHandle(PlatformSharedMemoryHandle handle)532 inline unsigned int MachMemoryEntryFromSharedMemoryHandle(
533     PlatformSharedMemoryHandle handle) {
534   return static_cast<unsigned int>(handle);
535 }
536 #elif V8_OS_FUCHSIA
537 // Convert between a shared memory handle and a zx_handle_t to a VMO.
SharedMemoryHandleFromVMO(uint32_t handle)538 inline PlatformSharedMemoryHandle SharedMemoryHandleFromVMO(uint32_t handle) {
539   return static_cast<PlatformSharedMemoryHandle>(handle);
540 }
VMOFromSharedMemoryHandle(PlatformSharedMemoryHandle handle)541 inline uint32_t VMOFromSharedMemoryHandle(PlatformSharedMemoryHandle handle) {
542   return static_cast<uint32_t>(handle);
543 }
544 #elif V8_OS_WIN
545 // Convert between a shared memory handle and a Windows HANDLE to a file mapping
546 // object.
SharedMemoryHandleFromFileMapping(void * handle)547 inline PlatformSharedMemoryHandle SharedMemoryHandleFromFileMapping(
548     void* handle) {
549   return reinterpret_cast<PlatformSharedMemoryHandle>(handle);
550 }
FileMappingFromSharedMemoryHandle(PlatformSharedMemoryHandle handle)551 inline void* FileMappingFromSharedMemoryHandle(
552     PlatformSharedMemoryHandle handle) {
553   return reinterpret_cast<void*>(handle);
554 }
555 #else
556 // Convert between a shared memory handle and a file descriptor.
SharedMemoryHandleFromFileDescriptor(int fd)557 inline PlatformSharedMemoryHandle SharedMemoryHandleFromFileDescriptor(int fd) {
558   return static_cast<PlatformSharedMemoryHandle>(fd);
559 }
FileDescriptorFromSharedMemoryHandle(PlatformSharedMemoryHandle handle)560 inline int FileDescriptorFromSharedMemoryHandle(
561     PlatformSharedMemoryHandle handle) {
562   return static_cast<int>(handle);
563 }
564 #endif
565 
566 /**
567  * Possible permissions for memory pages.
568  */
569 enum class PagePermissions {
570   kNoAccess,
571   kRead,
572   kReadWrite,
573   kReadWriteExecute,
574   kReadExecute,
575 };
576 
577 /**
578  * Class to manage a virtual memory address space.
579  *
580  * This class represents a contiguous region of virtual address space in which
581  * sub-spaces and (private or shared) memory pages can be allocated, freed, and
582  * modified. This interface is meant to eventually replace the PageAllocator
583  * interface, and can be used as an alternative in the meantime.
584  *
585  * This API is not yet stable and may change without notice!
586  */
587 class VirtualAddressSpace {
588  public:
589   using Address = uintptr_t;
590 
VirtualAddressSpace(size_t page_size,size_t allocation_granularity,Address base,size_t size,PagePermissions max_page_permissions)591   VirtualAddressSpace(size_t page_size, size_t allocation_granularity,
592                       Address base, size_t size,
593                       PagePermissions max_page_permissions)
594       : page_size_(page_size),
595         allocation_granularity_(allocation_granularity),
596         base_(base),
597         size_(size),
598         max_page_permissions_(max_page_permissions) {}
599 
600   virtual ~VirtualAddressSpace() = default;
601 
602   /**
603    * The page size used inside this space. Guaranteed to be a power of two.
604    * Used as granularity for all page-related operations except for allocation,
605    * which use the allocation_granularity(), see below.
606    *
607    * \returns the page size in bytes.
608    */
page_size()609   size_t page_size() const { return page_size_; }
610 
611   /**
612    * The granularity of page allocations and, by extension, of subspace
613    * allocations. This is guaranteed to be a power of two and a multiple of the
614    * page_size(). In practice, this is equal to the page size on most OSes, but
615    * on Windows it is usually 64KB, while the page size is 4KB.
616    *
617    * \returns the allocation granularity in bytes.
618    */
allocation_granularity()619   size_t allocation_granularity() const { return allocation_granularity_; }
620 
621   /**
622    * The base address of the address space managed by this instance.
623    *
624    * \returns the base address of this address space.
625    */
base()626   Address base() const { return base_; }
627 
628   /**
629    * The size of the address space managed by this instance.
630    *
631    * \returns the size of this address space in bytes.
632    */
size()633   size_t size() const { return size_; }
634 
635   /**
636    * The maximum page permissions that pages allocated inside this space can
637    * obtain.
638    *
639    * \returns the maximum page permissions.
640    */
max_page_permissions()641   PagePermissions max_page_permissions() const { return max_page_permissions_; }
642 
643   /**
644    * Sets the random seed so that GetRandomPageAddress() will generate
645    * repeatable sequences of random addresses.
646    *
647    * \param The seed for the PRNG.
648    */
649   virtual void SetRandomSeed(int64_t seed) = 0;
650 
651   /**
652    * Returns a random address inside this address space, suitable for page
653    * allocations hints.
654    *
655    * \returns a random address aligned to allocation_granularity().
656    */
657   virtual Address RandomPageAddress() = 0;
658 
659   /**
660    * Allocates private memory pages with the given alignment and permissions.
661    *
662    * \param hint If nonzero, the allocation is attempted to be placed at the
663    * given address first. If that fails, the allocation is attempted to be
664    * placed elsewhere, possibly nearby, but that is not guaranteed. Specifying
665    * zero for the hint always causes this function to choose a random address.
666    * The hint, if specified, must be aligned to the specified alignment.
667    *
668    * \param size The size of the allocation in bytes. Must be a multiple of the
669    * allocation_granularity().
670    *
671    * \param alignment The alignment of the allocation in bytes. Must be a
672    * multiple of the allocation_granularity() and should be a power of two.
673    *
674    * \param permissions The page permissions of the newly allocated pages.
675    *
676    * \returns the start address of the allocated pages on success, zero on
677    * failure.
678    */
679   static constexpr Address kNoHint = 0;
680   virtual V8_WARN_UNUSED_RESULT Address
681   AllocatePages(Address hint, size_t size, size_t alignment,
682                 PagePermissions permissions) = 0;
683 
684   /**
685    * Frees previously allocated pages.
686    *
687    * This function will terminate the process on failure as this implies a bug
688    * in the client. As such, there is no return value.
689    *
690    * \param address The start address of the pages to free. This address must
691    * have been obtained through a call to AllocatePages.
692    *
693    * \param size The size in bytes of the region to free. This must match the
694    * size passed to AllocatePages when the pages were allocated.
695    */
696   virtual void FreePages(Address address, size_t size) = 0;
697 
698   /**
699    * Sets permissions of all allocated pages in the given range.
700    *
701    * \param address The start address of the range. Must be aligned to
702    * page_size().
703    *
704    * \param size The size in bytes of the range. Must be a multiple
705    * of page_size().
706    *
707    * \param permissions The new permissions for the range.
708    *
709    * \returns true on success, false otherwise.
710    */
711   virtual V8_WARN_UNUSED_RESULT bool SetPagePermissions(
712       Address address, size_t size, PagePermissions permissions) = 0;
713 
714   /**
715    * Creates a guard region at the specified address.
716    *
717    * Guard regions are guaranteed to cause a fault when accessed and generally
718    * do not count towards any memory consumption limits. Further, allocating
719    * guard regions can usually not fail in subspaces if the region does not
720    * overlap with another region, subspace, or page allocation.
721    *
722    * \param address The start address of the guard region. Must be aligned to
723    * the allocation_granularity().
724    *
725    * \param size The size of the guard region in bytes. Must be a multiple of
726    * the allocation_granularity().
727    *
728    * \returns true on success, false otherwise.
729    */
730   virtual V8_WARN_UNUSED_RESULT bool AllocateGuardRegion(Address address,
731                                                          size_t size) = 0;
732 
733   /**
734    * Frees an existing guard region.
735    *
736    * This function will terminate the process on failure as this implies a bug
737    * in the client. As such, there is no return value.
738    *
739    * \param address The start address of the guard region to free. This address
740    * must have previously been used as address parameter in a successful
741    * invocation of AllocateGuardRegion.
742    *
743    * \param size The size in bytes of the guard region to free. This must match
744    * the size passed to AllocateGuardRegion when the region was created.
745    */
746   virtual void FreeGuardRegion(Address address, size_t size) = 0;
747 
748   /**
749    * Allocates shared memory pages with the given permissions.
750    *
751    * \param hint Placement hint. See AllocatePages.
752    *
753    * \param size The size of the allocation in bytes. Must be a multiple of the
754    * allocation_granularity().
755    *
756    * \param permissions The page permissions of the newly allocated pages.
757    *
758    * \param handle A platform-specific handle to a shared memory object. See
759    * the SharedMemoryHandleFromX routines above for ways to obtain these.
760    *
761    * \param offset The offset in the shared memory object at which the mapping
762    * should start. Must be a multiple of the allocation_granularity().
763    *
764    * \returns the start address of the allocated pages on success, zero on
765    * failure.
766    */
767   virtual V8_WARN_UNUSED_RESULT Address
768   AllocateSharedPages(Address hint, size_t size, PagePermissions permissions,
769                       PlatformSharedMemoryHandle handle, uint64_t offset) = 0;
770 
771   /**
772    * Frees previously allocated shared pages.
773    *
774    * This function will terminate the process on failure as this implies a bug
775    * in the client. As such, there is no return value.
776    *
777    * \param address The start address of the pages to free. This address must
778    * have been obtained through a call to AllocateSharedPages.
779    *
780    * \param size The size in bytes of the region to free. This must match the
781    * size passed to AllocateSharedPages when the pages were allocated.
782    */
783   virtual void FreeSharedPages(Address address, size_t size) = 0;
784 
785   /**
786    * Whether this instance can allocate subspaces or not.
787    *
788    * \returns true if subspaces can be allocated, false if not.
789    */
790   virtual bool CanAllocateSubspaces() = 0;
791 
792   /*
793    * Allocate a subspace.
794    *
795    * The address space of a subspace stays reserved in the parent space for the
796    * lifetime of the subspace. As such, it is guaranteed that page allocations
797    * on the parent space cannot end up inside a subspace.
798    *
799    * \param hint Hints where the subspace should be allocated. See
800    * AllocatePages() for more details.
801    *
802    * \param size The size in bytes of the subspace. Must be a multiple of the
803    * allocation_granularity().
804    *
805    * \param alignment The alignment of the subspace in bytes. Must be a multiple
806    * of the allocation_granularity() and should be a power of two.
807    *
808    * \param max_page_permissions The maximum permissions that pages allocated in
809    * the subspace can obtain.
810    *
811    * \returns a new subspace or nullptr on failure.
812    */
813   virtual std::unique_ptr<VirtualAddressSpace> AllocateSubspace(
814       Address hint, size_t size, size_t alignment,
815       PagePermissions max_page_permissions) = 0;
816 
817   //
818   // TODO(v8) maybe refactor the methods below before stabilizing the API. For
819   // example by combining them into some form of page operation method that
820   // takes a command enum as parameter.
821   //
822 
823   /**
824    * Frees memory in the given [address, address + size) range. address and
825    * size should be aligned to the page_size(). The next write to this memory
826    * area brings the memory transparently back. This should be treated as a
827    * hint to the OS that the pages are no longer needed. It does not guarantee
828    * that the pages will be discarded immediately or at all.
829    *
830    * \returns true on success, false otherwise. Since this method is only a
831    * hint, a successful invocation does not imply that pages have been removed.
832    */
DiscardSystemPages(Address address,size_t size)833   virtual V8_WARN_UNUSED_RESULT bool DiscardSystemPages(Address address,
834                                                         size_t size) {
835     return true;
836   }
837   /**
838    * Decommits any wired memory pages in the given range, allowing the OS to
839    * reclaim them, and marks the region as inacessible (kNoAccess). The address
840    * range stays reserved and can be accessed again later by changing its
841    * permissions. However, in that case the memory content is guaranteed to be
842    * zero-initialized again. The memory must have been previously allocated by a
843    * call to AllocatePages.
844    *
845    * \returns true on success, false otherwise.
846    */
847   virtual V8_WARN_UNUSED_RESULT bool DecommitPages(Address address,
848                                                    size_t size) = 0;
849 
850  private:
851   const size_t page_size_;
852   const size_t allocation_granularity_;
853   const Address base_;
854   const size_t size_;
855   const PagePermissions max_page_permissions_;
856 };
857 
858 /**
859  * V8 Allocator used for allocating zone backings.
860  */
861 class ZoneBackingAllocator {
862  public:
863   using MallocFn = void* (*)(size_t);
864   using FreeFn = void (*)(void*);
865 
GetMallocFn()866   virtual MallocFn GetMallocFn() const { return ::malloc; }
GetFreeFn()867   virtual FreeFn GetFreeFn() const { return ::free; }
868 };
869 
870 /**
871  * Observer used by V8 to notify the embedder about entering/leaving sections
872  * with high throughput of malloc/free operations.
873  */
874 class HighAllocationThroughputObserver {
875  public:
EnterSection()876   virtual void EnterSection() {}
LeaveSection()877   virtual void LeaveSection() {}
878 };
879 
880 /**
881  * V8 Platform abstraction layer.
882  *
883  * The embedder has to provide an implementation of this interface before
884  * initializing the rest of V8.
885  */
886 class Platform {
887  public:
888   virtual ~Platform() = default;
889 
890   /**
891    * Allows the embedder to manage memory page allocations.
892    */
GetPageAllocator()893   virtual PageAllocator* GetPageAllocator() {
894     // TODO(bbudge) Make this abstract after all embedders implement this.
895     return nullptr;
896   }
897 
898   /**
899    * Allows the embedder to specify a custom allocator used for zones.
900    */
GetZoneBackingAllocator()901   virtual ZoneBackingAllocator* GetZoneBackingAllocator() {
902     static ZoneBackingAllocator default_allocator;
903     return &default_allocator;
904   }
905 
906   /**
907    * Enables the embedder to respond in cases where V8 can't allocate large
908    * blocks of memory. V8 retries the failed allocation once after calling this
909    * method. On success, execution continues; otherwise V8 exits with a fatal
910    * error.
911    * Embedder overrides of this function must NOT call back into V8.
912    */
OnCriticalMemoryPressure()913   virtual void OnCriticalMemoryPressure() {
914     // TODO(bbudge) Remove this when embedders override the following method.
915     // See crbug.com/634547.
916   }
917 
918   /**
919    * Enables the embedder to respond in cases where V8 can't allocate large
920    * memory regions. The |length| parameter is the amount of memory needed.
921    * Returns true if memory is now available. Returns false if no memory could
922    * be made available. V8 will retry allocations until this method returns
923    * false.
924    *
925    * Embedder overrides of this function must NOT call back into V8.
926    */
OnCriticalMemoryPressure(size_t length)927   virtual bool OnCriticalMemoryPressure(size_t length) { return false; }
928 
929   /**
930    * Gets the number of worker threads used by
931    * Call(BlockingTask)OnWorkerThread(). This can be used to estimate the number
932    * of tasks a work package should be split into. A return value of 0 means
933    * that there are no worker threads available. Note that a value of 0 won't
934    * prohibit V8 from posting tasks using |CallOnWorkerThread|.
935    */
936   virtual int NumberOfWorkerThreads() = 0;
937 
938   /**
939    * Returns a TaskRunner which can be used to post a task on the foreground.
940    * The TaskRunner's NonNestableTasksEnabled() must be true. This function
941    * should only be called from a foreground thread.
942    */
943   virtual std::shared_ptr<v8::TaskRunner> GetForegroundTaskRunner(
944       Isolate* isolate) = 0;
945 
946   /**
947    * Schedules a task to be invoked on a worker thread.
948    */
949   virtual void CallOnWorkerThread(std::unique_ptr<Task> task) = 0;
950 
951   /**
952    * Schedules a task that blocks the main thread to be invoked with
953    * high-priority on a worker thread.
954    */
CallBlockingTaskOnWorkerThread(std::unique_ptr<Task> task)955   virtual void CallBlockingTaskOnWorkerThread(std::unique_ptr<Task> task) {
956     // Embedders may optionally override this to process these tasks in a high
957     // priority pool.
958     CallOnWorkerThread(std::move(task));
959   }
960 
961   /**
962    * Schedules a task to be invoked with low-priority on a worker thread.
963    */
CallLowPriorityTaskOnWorkerThread(std::unique_ptr<Task> task)964   virtual void CallLowPriorityTaskOnWorkerThread(std::unique_ptr<Task> task) {
965     // Embedders may optionally override this to process these tasks in a low
966     // priority pool.
967     CallOnWorkerThread(std::move(task));
968   }
969 
970   /**
971    * Schedules a task to be invoked on a worker thread after |delay_in_seconds|
972    * expires.
973    */
974   virtual void CallDelayedOnWorkerThread(std::unique_ptr<Task> task,
975                                          double delay_in_seconds) = 0;
976 
977   /**
978    * Returns true if idle tasks are enabled for the given |isolate|.
979    */
IdleTasksEnabled(Isolate * isolate)980   virtual bool IdleTasksEnabled(Isolate* isolate) { return false; }
981 
982   /**
983    * Posts |job_task| to run in parallel. Returns a JobHandle associated with
984    * the Job, which can be joined or canceled.
985    * This avoids degenerate cases:
986    * - Calling CallOnWorkerThread() for each work item, causing significant
987    *   overhead.
988    * - Fixed number of CallOnWorkerThread() calls that split the work and might
989    *   run for a long time. This is problematic when many components post
990    *   "num cores" tasks and all expect to use all the cores. In these cases,
991    *   the scheduler lacks context to be fair to multiple same-priority requests
992    *   and/or ability to request lower priority work to yield when high priority
993    *   work comes in.
994    * A canonical implementation of |job_task| looks like:
995    * class MyJobTask : public JobTask {
996    *  public:
997    *   MyJobTask(...) : worker_queue_(...) {}
998    *   // JobTask:
999    *   void Run(JobDelegate* delegate) override {
1000    *     while (!delegate->ShouldYield()) {
1001    *       // Smallest unit of work.
1002    *       auto work_item = worker_queue_.TakeWorkItem(); // Thread safe.
1003    *       if (!work_item) return;
1004    *       ProcessWork(work_item);
1005    *     }
1006    *   }
1007    *
1008    *   size_t GetMaxConcurrency() const override {
1009    *     return worker_queue_.GetSize(); // Thread safe.
1010    *   }
1011    * };
1012    * auto handle = PostJob(TaskPriority::kUserVisible,
1013    *                       std::make_unique<MyJobTask>(...));
1014    * handle->Join();
1015    *
1016    * PostJob() and methods of the returned JobHandle/JobDelegate, must never be
1017    * called while holding a lock that could be acquired by JobTask::Run or
1018    * JobTask::GetMaxConcurrency -- that could result in a deadlock. This is
1019    * because [1] JobTask::GetMaxConcurrency may be invoked while holding
1020    * internal lock (A), hence JobTask::GetMaxConcurrency can only use a lock (B)
1021    * if that lock is *never* held while calling back into JobHandle from any
1022    * thread (A=>B/B=>A deadlock) and [2] JobTask::Run or
1023    * JobTask::GetMaxConcurrency may be invoked synchronously from JobHandle
1024    * (B=>JobHandle::foo=>B deadlock).
1025    *
1026    * A sufficient PostJob() implementation that uses the default Job provided in
1027    * libplatform looks like:
1028    *  std::unique_ptr<JobHandle> PostJob(
1029    *      TaskPriority priority, std::unique_ptr<JobTask> job_task) override {
1030    *    return v8::platform::NewDefaultJobHandle(
1031    *        this, priority, std::move(job_task), NumberOfWorkerThreads());
1032    * }
1033    */
1034   virtual std::unique_ptr<JobHandle> PostJob(
1035       TaskPriority priority, std::unique_ptr<JobTask> job_task) = 0;
1036 
1037   /**
1038    * Monotonically increasing time in seconds from an arbitrary fixed point in
1039    * the past. This function is expected to return at least
1040    * millisecond-precision values. For this reason,
1041    * it is recommended that the fixed point be no further in the past than
1042    * the epoch.
1043    **/
1044   virtual double MonotonicallyIncreasingTime() = 0;
1045 
1046   /**
1047    * Current wall-clock time in milliseconds since epoch.
1048    * This function is expected to return at least millisecond-precision values.
1049    */
1050   virtual double CurrentClockTimeMillis() = 0;
1051 
1052   typedef void (*StackTracePrinter)();
1053 
1054   /**
1055    * Returns a function pointer that print a stack trace of the current stack
1056    * on invocation. Disables printing of the stack trace if nullptr.
1057    */
GetStackTracePrinter()1058   virtual StackTracePrinter GetStackTracePrinter() { return nullptr; }
1059 
1060   /**
1061    * Returns an instance of a v8::TracingController. This must be non-nullptr.
1062    */
1063   virtual TracingController* GetTracingController() = 0;
1064 
1065   /**
1066    * Tells the embedder to generate and upload a crashdump during an unexpected
1067    * but non-critical scenario.
1068    */
DumpWithoutCrashing()1069   virtual void DumpWithoutCrashing() {}
1070 
1071   /**
1072    * Allows the embedder to observe sections with high throughput allocation
1073    * operations.
1074    */
1075   virtual HighAllocationThroughputObserver*
GetHighAllocationThroughputObserver()1076   GetHighAllocationThroughputObserver() {
1077     static HighAllocationThroughputObserver default_observer;
1078     return &default_observer;
1079   }
1080 
1081  protected:
1082   /**
1083    * Default implementation of current wall-clock time in milliseconds
1084    * since epoch. Useful for implementing |CurrentClockTimeMillis| if
1085    * nothing special needed.
1086    */
1087   V8_EXPORT static double SystemClockTimeMillis();
1088 };
1089 
1090 }  // namespace v8
1091 
1092 #endif  // V8_V8_PLATFORM_H_
1093