• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // PLEASE READ BEFORE CHANGING THIS FILE!
6 //
7 // This file implements the support code for the out of bounds trap handler.
8 // Nothing in here actually runs in the trap handler, but the code here
9 // manipulates data structures used by the trap handler so we still need to be
10 // careful. In order to minimize this risk, here are some rules to follow.
11 //
12 // 1. Avoid introducing new external dependencies. The files in src/trap-handler
13 //    should be as self-contained as possible to make it easy to audit the code.
14 //
15 // 2. Any changes must be reviewed by someone from the crash reporting
16 //    or security team. See OWNERS for suggested reviewers.
17 //
18 // For more information, see https://goo.gl/yMeyUY.
19 //
20 // For the code that runs in the trap handler itself, see handler-inside.cc.
21 
22 #include <stddef.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26 
27 #include <atomic>
28 #include <limits>
29 
30 #include "src/trap-handler/trap-handler-internal.h"
31 #include "src/trap-handler/trap-handler.h"
32 
33 namespace {
34 size_t gNextCodeObject = 0;
35 
36 #ifdef ENABLE_SLOW_DCHECKS
37 constexpr bool kEnableSlowChecks = true;
38 #else
39 constexpr bool kEnableSlowChecks = false;
40 #endif
41 }  // namespace
42 
43 namespace v8 {
44 namespace internal {
45 namespace trap_handler {
46 
47 constexpr size_t kInitialCodeObjectSize = 1024;
48 constexpr size_t kCodeObjectGrowthFactor = 2;
49 
HandlerDataSize(size_t num_protected_instructions)50 constexpr size_t HandlerDataSize(size_t num_protected_instructions) {
51   return offsetof(CodeProtectionInfo, instructions) +
52          num_protected_instructions * sizeof(ProtectedInstructionData);
53 }
54 
55 namespace {
56 #ifdef DEBUG
IsDisjoint(const CodeProtectionInfo * a,const CodeProtectionInfo * b)57 bool IsDisjoint(const CodeProtectionInfo* a, const CodeProtectionInfo* b) {
58   if (a == nullptr || b == nullptr) {
59     return true;
60   }
61   return a->base >= b->base + b->size || b->base >= a->base + a->size;
62 }
63 #endif
64 
65 // Verify that the code range does not overlap any that have already been
66 // registered.
VerifyCodeRangeIsDisjoint(const CodeProtectionInfo * code_info)67 void VerifyCodeRangeIsDisjoint(const CodeProtectionInfo* code_info) {
68   for (size_t i = 0; i < gNumCodeObjects; ++i) {
69     TH_DCHECK(IsDisjoint(code_info, gCodeObjects[i].code_info));
70   }
71 }
72 
ValidateCodeObjects()73 void ValidateCodeObjects() {
74   // Sanity-check the code objects
75   for (unsigned i = 0; i < gNumCodeObjects; ++i) {
76     const auto* data = gCodeObjects[i].code_info;
77 
78     if (data == nullptr) continue;
79 
80     // Do some sanity checks on the protected instruction data
81     for (unsigned j = 0; j < data->num_protected_instructions; ++j) {
82       TH_DCHECK(data->instructions[j].instr_offset >= 0);
83       TH_DCHECK(data->instructions[j].instr_offset < data->size);
84       TH_DCHECK(data->instructions[j].landing_offset >= 0);
85       TH_DCHECK(data->instructions[j].landing_offset < data->size);
86       TH_DCHECK(data->instructions[j].landing_offset >
87                 data->instructions[j].instr_offset);
88     }
89   }
90 
91   // Check the validity of the free list.
92 #ifdef DEBUG
93   size_t free_count = 0;
94   for (size_t i = gNextCodeObject; i != gNumCodeObjects;
95        i = gCodeObjects[i].next_free) {
96     TH_DCHECK(i < gNumCodeObjects);
97     ++free_count;
98     // This check will fail if we encounter a cycle.
99     TH_DCHECK(free_count <= gNumCodeObjects);
100   }
101 
102   // Check that all free entries are reachable via the free list.
103   size_t free_count2 = 0;
104   for (size_t i = 0; i < gNumCodeObjects; ++i) {
105     if (gCodeObjects[i].code_info == nullptr) {
106       ++free_count2;
107     }
108   }
109   TH_DCHECK(free_count == free_count2);
110 #endif
111 }
112 }  // namespace
113 
CreateHandlerData(uintptr_t base,size_t size,size_t num_protected_instructions,const ProtectedInstructionData * protected_instructions)114 CodeProtectionInfo* CreateHandlerData(
115     uintptr_t base, size_t size, size_t num_protected_instructions,
116     const ProtectedInstructionData* protected_instructions) {
117   const size_t alloc_size = HandlerDataSize(num_protected_instructions);
118   CodeProtectionInfo* data =
119       reinterpret_cast<CodeProtectionInfo*>(malloc(alloc_size));
120 
121   if (data == nullptr) {
122     return nullptr;
123   }
124 
125   data->base = base;
126   data->size = size;
127   data->num_protected_instructions = num_protected_instructions;
128 
129   memcpy(data->instructions, protected_instructions,
130          num_protected_instructions * sizeof(ProtectedInstructionData));
131 
132   return data;
133 }
134 
RegisterHandlerData(uintptr_t base,size_t size,size_t num_protected_instructions,const ProtectedInstructionData * protected_instructions)135 int RegisterHandlerData(
136     uintptr_t base, size_t size, size_t num_protected_instructions,
137     const ProtectedInstructionData* protected_instructions) {
138   CodeProtectionInfo* data = CreateHandlerData(
139       base, size, num_protected_instructions, protected_instructions);
140 
141   if (data == nullptr) {
142     abort();
143   }
144 
145   MetadataLock lock;
146 
147   if (kEnableSlowChecks) {
148     VerifyCodeRangeIsDisjoint(data);
149   }
150 
151   size_t i = gNextCodeObject;
152 
153   // Explicitly convert std::numeric_limits<int>::max() to unsigned to avoid
154   // compiler warnings about signed/unsigned comparisons. We aren't worried
155   // about sign extension because we know std::numeric_limits<int>::max() is
156   // positive.
157   const size_t int_max = std::numeric_limits<int>::max();
158 
159   // We didn't find an opening in the available space, so grow.
160   if (i == gNumCodeObjects) {
161     size_t new_size = gNumCodeObjects > 0
162                           ? gNumCodeObjects * kCodeObjectGrowthFactor
163                           : kInitialCodeObjectSize;
164 
165     // Because we must return an int, there is no point in allocating space for
166     // more objects than can fit in an int.
167     if (new_size > int_max) {
168       new_size = int_max;
169     }
170     if (new_size == gNumCodeObjects) {
171       free(data);
172       return kInvalidIndex;
173     }
174 
175     // Now that we know our new size is valid, we can go ahead and realloc the
176     // array.
177     gCodeObjects = static_cast<CodeProtectionInfoListEntry*>(
178         realloc(gCodeObjects, sizeof(*gCodeObjects) * new_size));
179 
180     if (gCodeObjects == nullptr) {
181       abort();
182     }
183 
184     memset(gCodeObjects + gNumCodeObjects, 0,
185            sizeof(*gCodeObjects) * (new_size - gNumCodeObjects));
186     for (size_t j = gNumCodeObjects; j < new_size; ++j) {
187       gCodeObjects[j].next_free = j + 1;
188     }
189     gNumCodeObjects = new_size;
190   }
191 
192   TH_DCHECK(gCodeObjects[i].code_info == nullptr);
193 
194   // Find out where the next entry should go.
195   gNextCodeObject = gCodeObjects[i].next_free;
196 
197   if (i <= int_max) {
198     gCodeObjects[i].code_info = data;
199 
200     if (kEnableSlowChecks) {
201       ValidateCodeObjects();
202     }
203 
204     return static_cast<int>(i);
205   } else {
206     free(data);
207     return kInvalidIndex;
208   }
209 }
210 
ReleaseHandlerData(int index)211 void ReleaseHandlerData(int index) {
212   if (index == kInvalidIndex) {
213     return;
214   }
215   TH_DCHECK(index >= 0);
216 
217   // Remove the data from the global list if it's there.
218   CodeProtectionInfo* data = nullptr;
219   {
220     MetadataLock lock;
221 
222     data = gCodeObjects[index].code_info;
223     gCodeObjects[index].code_info = nullptr;
224 
225     gCodeObjects[index].next_free = gNextCodeObject;
226     gNextCodeObject = index;
227 
228     if (kEnableSlowChecks) {
229       ValidateCodeObjects();
230     }
231   }
232   // TODO(eholk): on debug builds, ensure there are no more copies in
233   // the list.
234   TH_DCHECK(data);  // make sure we're releasing legitimate handler data.
235   free(data);
236 }
237 
GetThreadInWasmThreadLocalAddress()238 int* GetThreadInWasmThreadLocalAddress() { return &g_thread_in_wasm_code; }
239 
GetRecoveredTrapCount()240 size_t GetRecoveredTrapCount() {
241   return gRecoveredTrapCount.load(std::memory_order_relaxed);
242 }
243 
244 #if !V8_TRAP_HANDLER_SUPPORTED
245 // This version is provided for systems that do not support trap handlers.
246 // Otherwise, the correct one should be implemented in the appropriate
247 // platform-specific handler-outside.cc.
RegisterDefaultTrapHandler()248 bool RegisterDefaultTrapHandler() { return false; }
249 
RemoveTrapHandler()250 void RemoveTrapHandler() {}
251 #endif
252 
253 bool g_is_trap_handler_enabled{false};
254 std::atomic<bool> g_can_enable_trap_handler{true};
255 
EnableTrapHandler(bool use_v8_handler)256 bool EnableTrapHandler(bool use_v8_handler) {
257   // We should only enable the trap handler once, and before any call to
258   // {IsTrapHandlerEnabled}. Enabling the trap handler late can lead to problems
259   // because code or objects might have been generated under the assumption that
260   // trap handlers are disabled.
261   bool can_enable =
262       g_can_enable_trap_handler.exchange(false, std::memory_order_relaxed);
263   // EnableTrapHandler called twice, or after IsTrapHandlerEnabled.
264   TH_CHECK(can_enable);
265 
266   if (!V8_TRAP_HANDLER_SUPPORTED) {
267     return false;
268   }
269   if (use_v8_handler) {
270     g_is_trap_handler_enabled = RegisterDefaultTrapHandler();
271     return g_is_trap_handler_enabled;
272   }
273   g_is_trap_handler_enabled = true;
274   return true;
275 }
276 
277 }  // namespace trap_handler
278 }  // namespace internal
279 }  // namespace v8
280