1 //===- InstCombinePHI.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitPHINode function.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/CommandLine.h"
20 #include "llvm/Transforms/Utils/Local.h"
21 using namespace llvm;
22 using namespace llvm::PatternMatch;
23
24 #define DEBUG_TYPE "instcombine"
25
26 static cl::opt<unsigned>
27 MaxNumPhis("instcombine-max-num-phis", cl::init(512),
28 cl::desc("Maximum number phis to handle in intptr/ptrint folding"));
29
30 /// The PHI arguments will be folded into a single operation with a PHI node
31 /// as input. The debug location of the single operation will be the merged
32 /// locations of the original PHI node arguments.
PHIArgMergedDebugLoc(Instruction * Inst,PHINode & PN)33 void InstCombiner::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) {
34 auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
35 Inst->setDebugLoc(FirstInst->getDebugLoc());
36 // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc
37 // will be inefficient.
38 assert(!isa<CallInst>(Inst));
39
40 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
41 auto *I = cast<Instruction>(PN.getIncomingValue(i));
42 Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc());
43 }
44 }
45
46 // Replace Integer typed PHI PN if the PHI's value is used as a pointer value.
47 // If there is an existing pointer typed PHI that produces the same value as PN,
48 // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new
49 // PHI node:
50 //
51 // Case-1:
52 // bb1:
53 // int_init = PtrToInt(ptr_init)
54 // br label %bb2
55 // bb2:
56 // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
57 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
58 // ptr_val2 = IntToPtr(int_val)
59 // ...
60 // use(ptr_val2)
61 // ptr_val_inc = ...
62 // inc_val_inc = PtrToInt(ptr_val_inc)
63 //
64 // ==>
65 // bb1:
66 // br label %bb2
67 // bb2:
68 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
69 // ...
70 // use(ptr_val)
71 // ptr_val_inc = ...
72 //
73 // Case-2:
74 // bb1:
75 // int_ptr = BitCast(ptr_ptr)
76 // int_init = Load(int_ptr)
77 // br label %bb2
78 // bb2:
79 // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2]
80 // ptr_val2 = IntToPtr(int_val)
81 // ...
82 // use(ptr_val2)
83 // ptr_val_inc = ...
84 // inc_val_inc = PtrToInt(ptr_val_inc)
85 // ==>
86 // bb1:
87 // ptr_init = Load(ptr_ptr)
88 // br label %bb2
89 // bb2:
90 // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2]
91 // ...
92 // use(ptr_val)
93 // ptr_val_inc = ...
94 // ...
95 //
FoldIntegerTypedPHI(PHINode & PN)96 Instruction *InstCombiner::FoldIntegerTypedPHI(PHINode &PN) {
97 if (!PN.getType()->isIntegerTy())
98 return nullptr;
99 if (!PN.hasOneUse())
100 return nullptr;
101
102 auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back());
103 if (!IntToPtr)
104 return nullptr;
105
106 // Check if the pointer is actually used as pointer:
107 auto HasPointerUse = [](Instruction *IIP) {
108 for (User *U : IIP->users()) {
109 Value *Ptr = nullptr;
110 if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) {
111 Ptr = LoadI->getPointerOperand();
112 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
113 Ptr = SI->getPointerOperand();
114 } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) {
115 Ptr = GI->getPointerOperand();
116 }
117
118 if (Ptr && Ptr == IIP)
119 return true;
120 }
121 return false;
122 };
123
124 if (!HasPointerUse(IntToPtr))
125 return nullptr;
126
127 if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) !=
128 DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType()))
129 return nullptr;
130
131 SmallVector<Value *, 4> AvailablePtrVals;
132 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
133 Value *Arg = PN.getIncomingValue(i);
134
135 // First look backward:
136 if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) {
137 AvailablePtrVals.emplace_back(PI->getOperand(0));
138 continue;
139 }
140
141 // Next look forward:
142 Value *ArgIntToPtr = nullptr;
143 for (User *U : Arg->users()) {
144 if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() &&
145 (DT.dominates(cast<Instruction>(U), PN.getIncomingBlock(i)) ||
146 cast<Instruction>(U)->getParent() == PN.getIncomingBlock(i))) {
147 ArgIntToPtr = U;
148 break;
149 }
150 }
151
152 if (ArgIntToPtr) {
153 AvailablePtrVals.emplace_back(ArgIntToPtr);
154 continue;
155 }
156
157 // If Arg is defined by a PHI, allow it. This will also create
158 // more opportunities iteratively.
159 if (isa<PHINode>(Arg)) {
160 AvailablePtrVals.emplace_back(Arg);
161 continue;
162 }
163
164 // For a single use integer load:
165 auto *LoadI = dyn_cast<LoadInst>(Arg);
166 if (!LoadI)
167 return nullptr;
168
169 if (!LoadI->hasOneUse())
170 return nullptr;
171
172 // Push the integer typed Load instruction into the available
173 // value set, and fix it up later when the pointer typed PHI
174 // is synthesized.
175 AvailablePtrVals.emplace_back(LoadI);
176 }
177
178 // Now search for a matching PHI
179 auto *BB = PN.getParent();
180 assert(AvailablePtrVals.size() == PN.getNumIncomingValues() &&
181 "Not enough available ptr typed incoming values");
182 PHINode *MatchingPtrPHI = nullptr;
183 unsigned NumPhis = 0;
184 for (auto II = BB->begin(); II != BB->end(); II++, NumPhis++) {
185 // FIXME: consider handling this in AggressiveInstCombine
186 PHINode *PtrPHI = dyn_cast<PHINode>(II);
187 if (!PtrPHI)
188 break;
189 if (NumPhis > MaxNumPhis)
190 return nullptr;
191 if (PtrPHI == &PN || PtrPHI->getType() != IntToPtr->getType())
192 continue;
193 MatchingPtrPHI = PtrPHI;
194 for (unsigned i = 0; i != PtrPHI->getNumIncomingValues(); ++i) {
195 if (AvailablePtrVals[i] !=
196 PtrPHI->getIncomingValueForBlock(PN.getIncomingBlock(i))) {
197 MatchingPtrPHI = nullptr;
198 break;
199 }
200 }
201
202 if (MatchingPtrPHI)
203 break;
204 }
205
206 if (MatchingPtrPHI) {
207 assert(MatchingPtrPHI->getType() == IntToPtr->getType() &&
208 "Phi's Type does not match with IntToPtr");
209 // The PtrToCast + IntToPtr will be simplified later
210 return CastInst::CreateBitOrPointerCast(MatchingPtrPHI,
211 IntToPtr->getOperand(0)->getType());
212 }
213
214 // If it requires a conversion for every PHI operand, do not do it.
215 if (all_of(AvailablePtrVals, [&](Value *V) {
216 return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V);
217 }))
218 return nullptr;
219
220 // If any of the operand that requires casting is a terminator
221 // instruction, do not do it. Similarly, do not do the transform if the value
222 // is PHI in a block with no insertion point, for example, a catchswitch
223 // block, since we will not be able to insert a cast after the PHI.
224 if (any_of(AvailablePtrVals, [&](Value *V) {
225 if (V->getType() == IntToPtr->getType())
226 return false;
227 auto *Inst = dyn_cast<Instruction>(V);
228 if (!Inst)
229 return false;
230 if (Inst->isTerminator())
231 return true;
232 auto *BB = Inst->getParent();
233 if (isa<PHINode>(Inst) && BB->getFirstInsertionPt() == BB->end())
234 return true;
235 return false;
236 }))
237 return nullptr;
238
239 PHINode *NewPtrPHI = PHINode::Create(
240 IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr");
241
242 InsertNewInstBefore(NewPtrPHI, PN);
243 SmallDenseMap<Value *, Instruction *> Casts;
244 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
245 auto *IncomingBB = PN.getIncomingBlock(i);
246 auto *IncomingVal = AvailablePtrVals[i];
247
248 if (IncomingVal->getType() == IntToPtr->getType()) {
249 NewPtrPHI->addIncoming(IncomingVal, IncomingBB);
250 continue;
251 }
252
253 #ifndef NDEBUG
254 LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal);
255 assert((isa<PHINode>(IncomingVal) ||
256 IncomingVal->getType()->isPointerTy() ||
257 (LoadI && LoadI->hasOneUse())) &&
258 "Can not replace LoadInst with multiple uses");
259 #endif
260 // Need to insert a BitCast.
261 // For an integer Load instruction with a single use, the load + IntToPtr
262 // cast will be simplified into a pointer load:
263 // %v = load i64, i64* %a.ip, align 8
264 // %v.cast = inttoptr i64 %v to float **
265 // ==>
266 // %v.ptrp = bitcast i64 * %a.ip to float **
267 // %v.cast = load float *, float ** %v.ptrp, align 8
268 Instruction *&CI = Casts[IncomingVal];
269 if (!CI) {
270 CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(),
271 IncomingVal->getName() + ".ptr");
272 if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) {
273 BasicBlock::iterator InsertPos(IncomingI);
274 InsertPos++;
275 BasicBlock *BB = IncomingI->getParent();
276 if (isa<PHINode>(IncomingI))
277 InsertPos = BB->getFirstInsertionPt();
278 assert(InsertPos != BB->end() && "should have checked above");
279 InsertNewInstBefore(CI, *InsertPos);
280 } else {
281 auto *InsertBB = &IncomingBB->getParent()->getEntryBlock();
282 InsertNewInstBefore(CI, *InsertBB->getFirstInsertionPt());
283 }
284 }
285 NewPtrPHI->addIncoming(CI, IncomingBB);
286 }
287
288 // The PtrToCast + IntToPtr will be simplified later
289 return CastInst::CreateBitOrPointerCast(NewPtrPHI,
290 IntToPtr->getOperand(0)->getType());
291 }
292
293 /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
294 /// adds all have a single use, turn this into a phi and a single binop.
FoldPHIArgBinOpIntoPHI(PHINode & PN)295 Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
296 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
297 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
298 unsigned Opc = FirstInst->getOpcode();
299 Value *LHSVal = FirstInst->getOperand(0);
300 Value *RHSVal = FirstInst->getOperand(1);
301
302 Type *LHSType = LHSVal->getType();
303 Type *RHSType = RHSVal->getType();
304
305 // Scan to see if all operands are the same opcode, and all have one use.
306 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
307 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
308 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
309 // Verify type of the LHS matches so we don't fold cmp's of different
310 // types.
311 I->getOperand(0)->getType() != LHSType ||
312 I->getOperand(1)->getType() != RHSType)
313 return nullptr;
314
315 // If they are CmpInst instructions, check their predicates
316 if (CmpInst *CI = dyn_cast<CmpInst>(I))
317 if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
318 return nullptr;
319
320 // Keep track of which operand needs a phi node.
321 if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
322 if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
323 }
324
325 // If both LHS and RHS would need a PHI, don't do this transformation,
326 // because it would increase the number of PHIs entering the block,
327 // which leads to higher register pressure. This is especially
328 // bad when the PHIs are in the header of a loop.
329 if (!LHSVal && !RHSVal)
330 return nullptr;
331
332 // Otherwise, this is safe to transform!
333
334 Value *InLHS = FirstInst->getOperand(0);
335 Value *InRHS = FirstInst->getOperand(1);
336 PHINode *NewLHS = nullptr, *NewRHS = nullptr;
337 if (!LHSVal) {
338 NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
339 FirstInst->getOperand(0)->getName() + ".pn");
340 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
341 InsertNewInstBefore(NewLHS, PN);
342 LHSVal = NewLHS;
343 }
344
345 if (!RHSVal) {
346 NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
347 FirstInst->getOperand(1)->getName() + ".pn");
348 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
349 InsertNewInstBefore(NewRHS, PN);
350 RHSVal = NewRHS;
351 }
352
353 // Add all operands to the new PHIs.
354 if (NewLHS || NewRHS) {
355 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
356 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
357 if (NewLHS) {
358 Value *NewInLHS = InInst->getOperand(0);
359 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
360 }
361 if (NewRHS) {
362 Value *NewInRHS = InInst->getOperand(1);
363 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
364 }
365 }
366 }
367
368 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
369 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
370 LHSVal, RHSVal);
371 PHIArgMergedDebugLoc(NewCI, PN);
372 return NewCI;
373 }
374
375 BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
376 BinaryOperator *NewBinOp =
377 BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
378
379 NewBinOp->copyIRFlags(PN.getIncomingValue(0));
380
381 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i)
382 NewBinOp->andIRFlags(PN.getIncomingValue(i));
383
384 PHIArgMergedDebugLoc(NewBinOp, PN);
385 return NewBinOp;
386 }
387
FoldPHIArgGEPIntoPHI(PHINode & PN)388 Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
389 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
390
391 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
392 FirstInst->op_end());
393 // This is true if all GEP bases are allocas and if all indices into them are
394 // constants.
395 bool AllBasePointersAreAllocas = true;
396
397 // We don't want to replace this phi if the replacement would require
398 // more than one phi, which leads to higher register pressure. This is
399 // especially bad when the PHIs are in the header of a loop.
400 bool NeededPhi = false;
401
402 bool AllInBounds = true;
403
404 // Scan to see if all operands are the same opcode, and all have one use.
405 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
406 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
407 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
408 GEP->getNumOperands() != FirstInst->getNumOperands())
409 return nullptr;
410
411 AllInBounds &= GEP->isInBounds();
412
413 // Keep track of whether or not all GEPs are of alloca pointers.
414 if (AllBasePointersAreAllocas &&
415 (!isa<AllocaInst>(GEP->getOperand(0)) ||
416 !GEP->hasAllConstantIndices()))
417 AllBasePointersAreAllocas = false;
418
419 // Compare the operand lists.
420 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
421 if (FirstInst->getOperand(op) == GEP->getOperand(op))
422 continue;
423
424 // Don't merge two GEPs when two operands differ (introducing phi nodes)
425 // if one of the PHIs has a constant for the index. The index may be
426 // substantially cheaper to compute for the constants, so making it a
427 // variable index could pessimize the path. This also handles the case
428 // for struct indices, which must always be constant.
429 if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
430 isa<ConstantInt>(GEP->getOperand(op)))
431 return nullptr;
432
433 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
434 return nullptr;
435
436 // If we already needed a PHI for an earlier operand, and another operand
437 // also requires a PHI, we'd be introducing more PHIs than we're
438 // eliminating, which increases register pressure on entry to the PHI's
439 // block.
440 if (NeededPhi)
441 return nullptr;
442
443 FixedOperands[op] = nullptr; // Needs a PHI.
444 NeededPhi = true;
445 }
446 }
447
448 // If all of the base pointers of the PHI'd GEPs are from allocas, don't
449 // bother doing this transformation. At best, this will just save a bit of
450 // offset calculation, but all the predecessors will have to materialize the
451 // stack address into a register anyway. We'd actually rather *clone* the
452 // load up into the predecessors so that we have a load of a gep of an alloca,
453 // which can usually all be folded into the load.
454 if (AllBasePointersAreAllocas)
455 return nullptr;
456
457 // Otherwise, this is safe to transform. Insert PHI nodes for each operand
458 // that is variable.
459 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
460
461 bool HasAnyPHIs = false;
462 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
463 if (FixedOperands[i]) continue; // operand doesn't need a phi.
464 Value *FirstOp = FirstInst->getOperand(i);
465 PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
466 FirstOp->getName()+".pn");
467 InsertNewInstBefore(NewPN, PN);
468
469 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
470 OperandPhis[i] = NewPN;
471 FixedOperands[i] = NewPN;
472 HasAnyPHIs = true;
473 }
474
475
476 // Add all operands to the new PHIs.
477 if (HasAnyPHIs) {
478 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
479 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
480 BasicBlock *InBB = PN.getIncomingBlock(i);
481
482 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
483 if (PHINode *OpPhi = OperandPhis[op])
484 OpPhi->addIncoming(InGEP->getOperand(op), InBB);
485 }
486 }
487
488 Value *Base = FixedOperands[0];
489 GetElementPtrInst *NewGEP =
490 GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
491 makeArrayRef(FixedOperands).slice(1));
492 if (AllInBounds) NewGEP->setIsInBounds();
493 PHIArgMergedDebugLoc(NewGEP, PN);
494 return NewGEP;
495 }
496
497
498 /// Return true if we know that it is safe to sink the load out of the block
499 /// that defines it. This means that it must be obvious the value of the load is
500 /// not changed from the point of the load to the end of the block it is in.
501 ///
502 /// Finally, it is safe, but not profitable, to sink a load targeting a
503 /// non-address-taken alloca. Doing so will cause us to not promote the alloca
504 /// to a register.
isSafeAndProfitableToSinkLoad(LoadInst * L)505 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
506 BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end();
507
508 for (++BBI; BBI != E; ++BBI)
509 if (BBI->mayWriteToMemory())
510 return false;
511
512 // Check for non-address taken alloca. If not address-taken already, it isn't
513 // profitable to do this xform.
514 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
515 bool isAddressTaken = false;
516 for (User *U : AI->users()) {
517 if (isa<LoadInst>(U)) continue;
518 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
519 // If storing TO the alloca, then the address isn't taken.
520 if (SI->getOperand(1) == AI) continue;
521 }
522 isAddressTaken = true;
523 break;
524 }
525
526 if (!isAddressTaken && AI->isStaticAlloca())
527 return false;
528 }
529
530 // If this load is a load from a GEP with a constant offset from an alloca,
531 // then we don't want to sink it. In its present form, it will be
532 // load [constant stack offset]. Sinking it will cause us to have to
533 // materialize the stack addresses in each predecessor in a register only to
534 // do a shared load from register in the successor.
535 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
536 if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
537 if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
538 return false;
539
540 return true;
541 }
542
FoldPHIArgLoadIntoPHI(PHINode & PN)543 Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
544 LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
545
546 // FIXME: This is overconservative; this transform is allowed in some cases
547 // for atomic operations.
548 if (FirstLI->isAtomic())
549 return nullptr;
550
551 // When processing loads, we need to propagate two bits of information to the
552 // sunk load: whether it is volatile, and what its alignment is. We currently
553 // don't sink loads when some have their alignment specified and some don't.
554 // visitLoadInst will propagate an alignment onto the load when TD is around,
555 // and if TD isn't around, we can't handle the mixed case.
556 bool isVolatile = FirstLI->isVolatile();
557 MaybeAlign LoadAlignment(FirstLI->getAlignment());
558 unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
559
560 // We can't sink the load if the loaded value could be modified between the
561 // load and the PHI.
562 if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
563 !isSafeAndProfitableToSinkLoad(FirstLI))
564 return nullptr;
565
566 // If the PHI is of volatile loads and the load block has multiple
567 // successors, sinking it would remove a load of the volatile value from
568 // the path through the other successor.
569 if (isVolatile &&
570 FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
571 return nullptr;
572
573 // Check to see if all arguments are the same operation.
574 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
575 LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
576 if (!LI || !LI->hasOneUse())
577 return nullptr;
578
579 // We can't sink the load if the loaded value could be modified between
580 // the load and the PHI.
581 if (LI->isVolatile() != isVolatile ||
582 LI->getParent() != PN.getIncomingBlock(i) ||
583 LI->getPointerAddressSpace() != LoadAddrSpace ||
584 !isSafeAndProfitableToSinkLoad(LI))
585 return nullptr;
586
587 // If some of the loads have an alignment specified but not all of them,
588 // we can't do the transformation.
589 if ((LoadAlignment.hasValue()) != (LI->getAlignment() != 0))
590 return nullptr;
591
592 LoadAlignment = std::min(LoadAlignment, MaybeAlign(LI->getAlignment()));
593
594 // If the PHI is of volatile loads and the load block has multiple
595 // successors, sinking it would remove a load of the volatile value from
596 // the path through the other successor.
597 if (isVolatile &&
598 LI->getParent()->getTerminator()->getNumSuccessors() != 1)
599 return nullptr;
600 }
601
602 // Okay, they are all the same operation. Create a new PHI node of the
603 // correct type, and PHI together all of the LHS's of the instructions.
604 PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
605 PN.getNumIncomingValues(),
606 PN.getName()+".in");
607
608 Value *InVal = FirstLI->getOperand(0);
609 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
610 LoadInst *NewLI =
611 new LoadInst(FirstLI->getType(), NewPN, "", isVolatile, LoadAlignment);
612
613 unsigned KnownIDs[] = {
614 LLVMContext::MD_tbaa,
615 LLVMContext::MD_range,
616 LLVMContext::MD_invariant_load,
617 LLVMContext::MD_alias_scope,
618 LLVMContext::MD_noalias,
619 LLVMContext::MD_nonnull,
620 LLVMContext::MD_align,
621 LLVMContext::MD_dereferenceable,
622 LLVMContext::MD_dereferenceable_or_null,
623 LLVMContext::MD_access_group,
624 };
625
626 for (unsigned ID : KnownIDs)
627 NewLI->setMetadata(ID, FirstLI->getMetadata(ID));
628
629 // Add all operands to the new PHI and combine TBAA metadata.
630 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
631 LoadInst *LI = cast<LoadInst>(PN.getIncomingValue(i));
632 combineMetadata(NewLI, LI, KnownIDs, true);
633 Value *NewInVal = LI->getOperand(0);
634 if (NewInVal != InVal)
635 InVal = nullptr;
636 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
637 }
638
639 if (InVal) {
640 // The new PHI unions all of the same values together. This is really
641 // common, so we handle it intelligently here for compile-time speed.
642 NewLI->setOperand(0, InVal);
643 delete NewPN;
644 } else {
645 InsertNewInstBefore(NewPN, PN);
646 }
647
648 // If this was a volatile load that we are merging, make sure to loop through
649 // and mark all the input loads as non-volatile. If we don't do this, we will
650 // insert a new volatile load and the old ones will not be deletable.
651 if (isVolatile)
652 for (Value *IncValue : PN.incoming_values())
653 cast<LoadInst>(IncValue)->setVolatile(false);
654
655 PHIArgMergedDebugLoc(NewLI, PN);
656 return NewLI;
657 }
658
659 /// TODO: This function could handle other cast types, but then it might
660 /// require special-casing a cast from the 'i1' type. See the comment in
661 /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
FoldPHIArgZextsIntoPHI(PHINode & Phi)662 Instruction *InstCombiner::FoldPHIArgZextsIntoPHI(PHINode &Phi) {
663 // We cannot create a new instruction after the PHI if the terminator is an
664 // EHPad because there is no valid insertion point.
665 if (Instruction *TI = Phi.getParent()->getTerminator())
666 if (TI->isEHPad())
667 return nullptr;
668
669 // Early exit for the common case of a phi with two operands. These are
670 // handled elsewhere. See the comment below where we check the count of zexts
671 // and constants for more details.
672 unsigned NumIncomingValues = Phi.getNumIncomingValues();
673 if (NumIncomingValues < 3)
674 return nullptr;
675
676 // Find the narrower type specified by the first zext.
677 Type *NarrowType = nullptr;
678 for (Value *V : Phi.incoming_values()) {
679 if (auto *Zext = dyn_cast<ZExtInst>(V)) {
680 NarrowType = Zext->getSrcTy();
681 break;
682 }
683 }
684 if (!NarrowType)
685 return nullptr;
686
687 // Walk the phi operands checking that we only have zexts or constants that
688 // we can shrink for free. Store the new operands for the new phi.
689 SmallVector<Value *, 4> NewIncoming;
690 unsigned NumZexts = 0;
691 unsigned NumConsts = 0;
692 for (Value *V : Phi.incoming_values()) {
693 if (auto *Zext = dyn_cast<ZExtInst>(V)) {
694 // All zexts must be identical and have one use.
695 if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUse())
696 return nullptr;
697 NewIncoming.push_back(Zext->getOperand(0));
698 NumZexts++;
699 } else if (auto *C = dyn_cast<Constant>(V)) {
700 // Make sure that constants can fit in the new type.
701 Constant *Trunc = ConstantExpr::getTrunc(C, NarrowType);
702 if (ConstantExpr::getZExt(Trunc, C->getType()) != C)
703 return nullptr;
704 NewIncoming.push_back(Trunc);
705 NumConsts++;
706 } else {
707 // If it's not a cast or a constant, bail out.
708 return nullptr;
709 }
710 }
711
712 // The more common cases of a phi with no constant operands or just one
713 // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi()
714 // respectively. foldOpIntoPhi() wants to do the opposite transform that is
715 // performed here. It tries to replicate a cast in the phi operand's basic
716 // block to expose other folding opportunities. Thus, InstCombine will
717 // infinite loop without this check.
718 if (NumConsts == 0 || NumZexts < 2)
719 return nullptr;
720
721 // All incoming values are zexts or constants that are safe to truncate.
722 // Create a new phi node of the narrow type, phi together all of the new
723 // operands, and zext the result back to the original type.
724 PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
725 Phi.getName() + ".shrunk");
726 for (unsigned i = 0; i != NumIncomingValues; ++i)
727 NewPhi->addIncoming(NewIncoming[i], Phi.getIncomingBlock(i));
728
729 InsertNewInstBefore(NewPhi, Phi);
730 return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
731 }
732
733 /// If all operands to a PHI node are the same "unary" operator and they all are
734 /// only used by the PHI, PHI together their inputs, and do the operation once,
735 /// to the result of the PHI.
FoldPHIArgOpIntoPHI(PHINode & PN)736 Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
737 // We cannot create a new instruction after the PHI if the terminator is an
738 // EHPad because there is no valid insertion point.
739 if (Instruction *TI = PN.getParent()->getTerminator())
740 if (TI->isEHPad())
741 return nullptr;
742
743 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
744
745 if (isa<GetElementPtrInst>(FirstInst))
746 return FoldPHIArgGEPIntoPHI(PN);
747 if (isa<LoadInst>(FirstInst))
748 return FoldPHIArgLoadIntoPHI(PN);
749
750 // Scan the instruction, looking for input operations that can be folded away.
751 // If all input operands to the phi are the same instruction (e.g. a cast from
752 // the same type or "+42") we can pull the operation through the PHI, reducing
753 // code size and simplifying code.
754 Constant *ConstantOp = nullptr;
755 Type *CastSrcTy = nullptr;
756
757 if (isa<CastInst>(FirstInst)) {
758 CastSrcTy = FirstInst->getOperand(0)->getType();
759
760 // Be careful about transforming integer PHIs. We don't want to pessimize
761 // the code by turning an i32 into an i1293.
762 if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
763 if (!shouldChangeType(PN.getType(), CastSrcTy))
764 return nullptr;
765 }
766 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
767 // Can fold binop, compare or shift here if the RHS is a constant,
768 // otherwise call FoldPHIArgBinOpIntoPHI.
769 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
770 if (!ConstantOp)
771 return FoldPHIArgBinOpIntoPHI(PN);
772 } else {
773 return nullptr; // Cannot fold this operation.
774 }
775
776 // Check to see if all arguments are the same operation.
777 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
778 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
779 if (!I || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
780 return nullptr;
781 if (CastSrcTy) {
782 if (I->getOperand(0)->getType() != CastSrcTy)
783 return nullptr; // Cast operation must match.
784 } else if (I->getOperand(1) != ConstantOp) {
785 return nullptr;
786 }
787 }
788
789 // Okay, they are all the same operation. Create a new PHI node of the
790 // correct type, and PHI together all of the LHS's of the instructions.
791 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
792 PN.getNumIncomingValues(),
793 PN.getName()+".in");
794
795 Value *InVal = FirstInst->getOperand(0);
796 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
797
798 // Add all operands to the new PHI.
799 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
800 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
801 if (NewInVal != InVal)
802 InVal = nullptr;
803 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
804 }
805
806 Value *PhiVal;
807 if (InVal) {
808 // The new PHI unions all of the same values together. This is really
809 // common, so we handle it intelligently here for compile-time speed.
810 PhiVal = InVal;
811 delete NewPN;
812 } else {
813 InsertNewInstBefore(NewPN, PN);
814 PhiVal = NewPN;
815 }
816
817 // Insert and return the new operation.
818 if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
819 CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
820 PN.getType());
821 PHIArgMergedDebugLoc(NewCI, PN);
822 return NewCI;
823 }
824
825 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
826 BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
827 BinOp->copyIRFlags(PN.getIncomingValue(0));
828
829 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i)
830 BinOp->andIRFlags(PN.getIncomingValue(i));
831
832 PHIArgMergedDebugLoc(BinOp, PN);
833 return BinOp;
834 }
835
836 CmpInst *CIOp = cast<CmpInst>(FirstInst);
837 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
838 PhiVal, ConstantOp);
839 PHIArgMergedDebugLoc(NewCI, PN);
840 return NewCI;
841 }
842
843 /// Return true if this PHI node is only used by a PHI node cycle that is dead.
DeadPHICycle(PHINode * PN,SmallPtrSetImpl<PHINode * > & PotentiallyDeadPHIs)844 static bool DeadPHICycle(PHINode *PN,
845 SmallPtrSetImpl<PHINode*> &PotentiallyDeadPHIs) {
846 if (PN->use_empty()) return true;
847 if (!PN->hasOneUse()) return false;
848
849 // Remember this node, and if we find the cycle, return.
850 if (!PotentiallyDeadPHIs.insert(PN).second)
851 return true;
852
853 // Don't scan crazily complex things.
854 if (PotentiallyDeadPHIs.size() == 16)
855 return false;
856
857 if (PHINode *PU = dyn_cast<PHINode>(PN->user_back()))
858 return DeadPHICycle(PU, PotentiallyDeadPHIs);
859
860 return false;
861 }
862
863 /// Return true if this phi node is always equal to NonPhiInVal.
864 /// This happens with mutually cyclic phi nodes like:
865 /// z = some value; x = phi (y, z); y = phi (x, z)
PHIsEqualValue(PHINode * PN,Value * NonPhiInVal,SmallPtrSetImpl<PHINode * > & ValueEqualPHIs)866 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
867 SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) {
868 // See if we already saw this PHI node.
869 if (!ValueEqualPHIs.insert(PN).second)
870 return true;
871
872 // Don't scan crazily complex things.
873 if (ValueEqualPHIs.size() == 16)
874 return false;
875
876 // Scan the operands to see if they are either phi nodes or are equal to
877 // the value.
878 for (Value *Op : PN->incoming_values()) {
879 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
880 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
881 return false;
882 } else if (Op != NonPhiInVal)
883 return false;
884 }
885
886 return true;
887 }
888
889 /// Return an existing non-zero constant if this phi node has one, otherwise
890 /// return constant 1.
GetAnyNonZeroConstInt(PHINode & PN)891 static ConstantInt *GetAnyNonZeroConstInt(PHINode &PN) {
892 assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi");
893 for (Value *V : PN.operands())
894 if (auto *ConstVA = dyn_cast<ConstantInt>(V))
895 if (!ConstVA->isZero())
896 return ConstVA;
897 return ConstantInt::get(cast<IntegerType>(PN.getType()), 1);
898 }
899
900 namespace {
901 struct PHIUsageRecord {
902 unsigned PHIId; // The ID # of the PHI (something determinstic to sort on)
903 unsigned Shift; // The amount shifted.
904 Instruction *Inst; // The trunc instruction.
905
PHIUsageRecord__anon9025d27f0411::PHIUsageRecord906 PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
907 : PHIId(pn), Shift(Sh), Inst(User) {}
908
operator <__anon9025d27f0411::PHIUsageRecord909 bool operator<(const PHIUsageRecord &RHS) const {
910 if (PHIId < RHS.PHIId) return true;
911 if (PHIId > RHS.PHIId) return false;
912 if (Shift < RHS.Shift) return true;
913 if (Shift > RHS.Shift) return false;
914 return Inst->getType()->getPrimitiveSizeInBits() <
915 RHS.Inst->getType()->getPrimitiveSizeInBits();
916 }
917 };
918
919 struct LoweredPHIRecord {
920 PHINode *PN; // The PHI that was lowered.
921 unsigned Shift; // The amount shifted.
922 unsigned Width; // The width extracted.
923
LoweredPHIRecord__anon9025d27f0411::LoweredPHIRecord924 LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
925 : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
926
927 // Ctor form used by DenseMap.
LoweredPHIRecord__anon9025d27f0411::LoweredPHIRecord928 LoweredPHIRecord(PHINode *pn, unsigned Sh)
929 : PN(pn), Shift(Sh), Width(0) {}
930 };
931 }
932
933 namespace llvm {
934 template<>
935 struct DenseMapInfo<LoweredPHIRecord> {
getEmptyKeyllvm::DenseMapInfo936 static inline LoweredPHIRecord getEmptyKey() {
937 return LoweredPHIRecord(nullptr, 0);
938 }
getTombstoneKeyllvm::DenseMapInfo939 static inline LoweredPHIRecord getTombstoneKey() {
940 return LoweredPHIRecord(nullptr, 1);
941 }
getHashValuellvm::DenseMapInfo942 static unsigned getHashValue(const LoweredPHIRecord &Val) {
943 return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
944 (Val.Width>>3);
945 }
isEqualllvm::DenseMapInfo946 static bool isEqual(const LoweredPHIRecord &LHS,
947 const LoweredPHIRecord &RHS) {
948 return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
949 LHS.Width == RHS.Width;
950 }
951 };
952 }
953
954
955 /// This is an integer PHI and we know that it has an illegal type: see if it is
956 /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
957 /// the various pieces being extracted. This sort of thing is introduced when
958 /// SROA promotes an aggregate to large integer values.
959 ///
960 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
961 /// inttoptr. We should produce new PHIs in the right type.
962 ///
SliceUpIllegalIntegerPHI(PHINode & FirstPhi)963 Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
964 // PHIUsers - Keep track of all of the truncated values extracted from a set
965 // of PHIs, along with their offset. These are the things we want to rewrite.
966 SmallVector<PHIUsageRecord, 16> PHIUsers;
967
968 // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
969 // nodes which are extracted from. PHIsToSlice is a set we use to avoid
970 // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
971 // check the uses of (to ensure they are all extracts).
972 SmallVector<PHINode*, 8> PHIsToSlice;
973 SmallPtrSet<PHINode*, 8> PHIsInspected;
974
975 PHIsToSlice.push_back(&FirstPhi);
976 PHIsInspected.insert(&FirstPhi);
977
978 for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
979 PHINode *PN = PHIsToSlice[PHIId];
980
981 // Scan the input list of the PHI. If any input is an invoke, and if the
982 // input is defined in the predecessor, then we won't be split the critical
983 // edge which is required to insert a truncate. Because of this, we have to
984 // bail out.
985 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
986 InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
987 if (!II) continue;
988 if (II->getParent() != PN->getIncomingBlock(i))
989 continue;
990
991 // If we have a phi, and if it's directly in the predecessor, then we have
992 // a critical edge where we need to put the truncate. Since we can't
993 // split the edge in instcombine, we have to bail out.
994 return nullptr;
995 }
996
997 for (User *U : PN->users()) {
998 Instruction *UserI = cast<Instruction>(U);
999
1000 // If the user is a PHI, inspect its uses recursively.
1001 if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
1002 if (PHIsInspected.insert(UserPN).second)
1003 PHIsToSlice.push_back(UserPN);
1004 continue;
1005 }
1006
1007 // Truncates are always ok.
1008 if (isa<TruncInst>(UserI)) {
1009 PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
1010 continue;
1011 }
1012
1013 // Otherwise it must be a lshr which can only be used by one trunc.
1014 if (UserI->getOpcode() != Instruction::LShr ||
1015 !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
1016 !isa<ConstantInt>(UserI->getOperand(1)))
1017 return nullptr;
1018
1019 // Bail on out of range shifts.
1020 unsigned SizeInBits = UserI->getType()->getScalarSizeInBits();
1021 if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits))
1022 return nullptr;
1023
1024 unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
1025 PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
1026 }
1027 }
1028
1029 // If we have no users, they must be all self uses, just nuke the PHI.
1030 if (PHIUsers.empty())
1031 return replaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
1032
1033 // If this phi node is transformable, create new PHIs for all the pieces
1034 // extracted out of it. First, sort the users by their offset and size.
1035 array_pod_sort(PHIUsers.begin(), PHIUsers.end());
1036
1037 LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
1038 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) dbgs()
1039 << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] << '\n';);
1040
1041 // PredValues - This is a temporary used when rewriting PHI nodes. It is
1042 // hoisted out here to avoid construction/destruction thrashing.
1043 DenseMap<BasicBlock*, Value*> PredValues;
1044
1045 // ExtractedVals - Each new PHI we introduce is saved here so we don't
1046 // introduce redundant PHIs.
1047 DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
1048
1049 for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
1050 unsigned PHIId = PHIUsers[UserI].PHIId;
1051 PHINode *PN = PHIsToSlice[PHIId];
1052 unsigned Offset = PHIUsers[UserI].Shift;
1053 Type *Ty = PHIUsers[UserI].Inst->getType();
1054
1055 PHINode *EltPHI;
1056
1057 // If we've already lowered a user like this, reuse the previously lowered
1058 // value.
1059 if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
1060
1061 // Otherwise, Create the new PHI node for this user.
1062 EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
1063 PN->getName()+".off"+Twine(Offset), PN);
1064 assert(EltPHI->getType() != PN->getType() &&
1065 "Truncate didn't shrink phi?");
1066
1067 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1068 BasicBlock *Pred = PN->getIncomingBlock(i);
1069 Value *&PredVal = PredValues[Pred];
1070
1071 // If we already have a value for this predecessor, reuse it.
1072 if (PredVal) {
1073 EltPHI->addIncoming(PredVal, Pred);
1074 continue;
1075 }
1076
1077 // Handle the PHI self-reuse case.
1078 Value *InVal = PN->getIncomingValue(i);
1079 if (InVal == PN) {
1080 PredVal = EltPHI;
1081 EltPHI->addIncoming(PredVal, Pred);
1082 continue;
1083 }
1084
1085 if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
1086 // If the incoming value was a PHI, and if it was one of the PHIs we
1087 // already rewrote it, just use the lowered value.
1088 if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
1089 PredVal = Res;
1090 EltPHI->addIncoming(PredVal, Pred);
1091 continue;
1092 }
1093 }
1094
1095 // Otherwise, do an extract in the predecessor.
1096 Builder.SetInsertPoint(Pred->getTerminator());
1097 Value *Res = InVal;
1098 if (Offset)
1099 Res = Builder.CreateLShr(Res, ConstantInt::get(InVal->getType(),
1100 Offset), "extract");
1101 Res = Builder.CreateTrunc(Res, Ty, "extract.t");
1102 PredVal = Res;
1103 EltPHI->addIncoming(Res, Pred);
1104
1105 // If the incoming value was a PHI, and if it was one of the PHIs we are
1106 // rewriting, we will ultimately delete the code we inserted. This
1107 // means we need to revisit that PHI to make sure we extract out the
1108 // needed piece.
1109 if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
1110 if (PHIsInspected.count(OldInVal)) {
1111 unsigned RefPHIId =
1112 find(PHIsToSlice, OldInVal) - PHIsToSlice.begin();
1113 PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
1114 cast<Instruction>(Res)));
1115 ++UserE;
1116 }
1117 }
1118 PredValues.clear();
1119
1120 LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": "
1121 << *EltPHI << '\n');
1122 ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
1123 }
1124
1125 // Replace the use of this piece with the PHI node.
1126 replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
1127 }
1128
1129 // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
1130 // with undefs.
1131 Value *Undef = UndefValue::get(FirstPhi.getType());
1132 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
1133 replaceInstUsesWith(*PHIsToSlice[i], Undef);
1134 return replaceInstUsesWith(FirstPhi, Undef);
1135 }
1136
1137 // PHINode simplification
1138 //
visitPHINode(PHINode & PN)1139 Instruction *InstCombiner::visitPHINode(PHINode &PN) {
1140 if (Value *V = SimplifyInstruction(&PN, SQ.getWithInstruction(&PN)))
1141 return replaceInstUsesWith(PN, V);
1142
1143 if (Instruction *Result = FoldPHIArgZextsIntoPHI(PN))
1144 return Result;
1145
1146 // If all PHI operands are the same operation, pull them through the PHI,
1147 // reducing code size.
1148 if (isa<Instruction>(PN.getIncomingValue(0)) &&
1149 isa<Instruction>(PN.getIncomingValue(1)) &&
1150 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
1151 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
1152 // FIXME: The hasOneUse check will fail for PHIs that use the value more
1153 // than themselves more than once.
1154 PN.getIncomingValue(0)->hasOneUse())
1155 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
1156 return Result;
1157
1158 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
1159 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
1160 // PHI)... break the cycle.
1161 if (PN.hasOneUse()) {
1162 if (Instruction *Result = FoldIntegerTypedPHI(PN))
1163 return Result;
1164
1165 Instruction *PHIUser = cast<Instruction>(PN.user_back());
1166 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
1167 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
1168 PotentiallyDeadPHIs.insert(&PN);
1169 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
1170 return replaceInstUsesWith(PN, UndefValue::get(PN.getType()));
1171 }
1172
1173 // If this phi has a single use, and if that use just computes a value for
1174 // the next iteration of a loop, delete the phi. This occurs with unused
1175 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
1176 // common case here is good because the only other things that catch this
1177 // are induction variable analysis (sometimes) and ADCE, which is only run
1178 // late.
1179 if (PHIUser->hasOneUse() &&
1180 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
1181 PHIUser->user_back() == &PN) {
1182 return replaceInstUsesWith(PN, UndefValue::get(PN.getType()));
1183 }
1184 // When a PHI is used only to be compared with zero, it is safe to replace
1185 // an incoming value proved as known nonzero with any non-zero constant.
1186 // For example, in the code below, the incoming value %v can be replaced
1187 // with any non-zero constant based on the fact that the PHI is only used to
1188 // be compared with zero and %v is a known non-zero value:
1189 // %v = select %cond, 1, 2
1190 // %p = phi [%v, BB] ...
1191 // icmp eq, %p, 0
1192 auto *CmpInst = dyn_cast<ICmpInst>(PHIUser);
1193 // FIXME: To be simple, handle only integer type for now.
1194 if (CmpInst && isa<IntegerType>(PN.getType()) && CmpInst->isEquality() &&
1195 match(CmpInst->getOperand(1), m_Zero())) {
1196 ConstantInt *NonZeroConst = nullptr;
1197 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1198 Instruction *CtxI = PN.getIncomingBlock(i)->getTerminator();
1199 Value *VA = PN.getIncomingValue(i);
1200 if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) {
1201 if (!NonZeroConst)
1202 NonZeroConst = GetAnyNonZeroConstInt(PN);
1203 PN.setIncomingValue(i, NonZeroConst);
1204 }
1205 }
1206 }
1207 }
1208
1209 // We sometimes end up with phi cycles that non-obviously end up being the
1210 // same value, for example:
1211 // z = some value; x = phi (y, z); y = phi (x, z)
1212 // where the phi nodes don't necessarily need to be in the same block. Do a
1213 // quick check to see if the PHI node only contains a single non-phi value, if
1214 // so, scan to see if the phi cycle is actually equal to that value.
1215 {
1216 unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
1217 // Scan for the first non-phi operand.
1218 while (InValNo != NumIncomingVals &&
1219 isa<PHINode>(PN.getIncomingValue(InValNo)))
1220 ++InValNo;
1221
1222 if (InValNo != NumIncomingVals) {
1223 Value *NonPhiInVal = PN.getIncomingValue(InValNo);
1224
1225 // Scan the rest of the operands to see if there are any conflicts, if so
1226 // there is no need to recursively scan other phis.
1227 for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
1228 Value *OpVal = PN.getIncomingValue(InValNo);
1229 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
1230 break;
1231 }
1232
1233 // If we scanned over all operands, then we have one unique value plus
1234 // phi values. Scan PHI nodes to see if they all merge in each other or
1235 // the value.
1236 if (InValNo == NumIncomingVals) {
1237 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
1238 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
1239 return replaceInstUsesWith(PN, NonPhiInVal);
1240 }
1241 }
1242 }
1243
1244 // If there are multiple PHIs, sort their operands so that they all list
1245 // the blocks in the same order. This will help identical PHIs be eliminated
1246 // by other passes. Other passes shouldn't depend on this for correctness
1247 // however.
1248 PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
1249 if (&PN != FirstPN)
1250 for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
1251 BasicBlock *BBA = PN.getIncomingBlock(i);
1252 BasicBlock *BBB = FirstPN->getIncomingBlock(i);
1253 if (BBA != BBB) {
1254 Value *VA = PN.getIncomingValue(i);
1255 unsigned j = PN.getBasicBlockIndex(BBB);
1256 Value *VB = PN.getIncomingValue(j);
1257 PN.setIncomingBlock(i, BBB);
1258 PN.setIncomingValue(i, VB);
1259 PN.setIncomingBlock(j, BBA);
1260 PN.setIncomingValue(j, VA);
1261 // NOTE: Instcombine normally would want us to "return &PN" if we
1262 // modified any of the operands of an instruction. However, since we
1263 // aren't adding or removing uses (just rearranging them) we don't do
1264 // this in this case.
1265 }
1266 }
1267
1268 // If this is an integer PHI and we know that it has an illegal type, see if
1269 // it is only used by trunc or trunc(lshr) operations. If so, we split the
1270 // PHI into the various pieces being extracted. This sort of thing is
1271 // introduced when SROA promotes an aggregate to a single large integer type.
1272 if (PN.getType()->isIntegerTy() &&
1273 !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
1274 if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
1275 return Res;
1276
1277 return nullptr;
1278 }
1279