1 // Copyright 2021 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Barrett division, finding the inverse with Newton's method.
6 // Reference: "Fast Division of Large Integers" by Karl Hasselström,
7 // found at https://treskal.com/s/masters-thesis.pdf
8
9 // Many thanks to Karl Wiberg, k@w5.se, for both writing up an
10 // understandable theoretical description of the algorithm and privately
11 // providing a demo implementation, on which the implementation in this file is
12 // based.
13
14 #include <algorithm>
15
16 #include "src/bigint/bigint-internal.h"
17 #include "src/bigint/digit-arithmetic.h"
18 #include "src/bigint/div-helpers.h"
19 #include "src/bigint/vector-arithmetic.h"
20
21 namespace v8 {
22 namespace bigint {
23
24 namespace {
25
DcheckIntegerPartRange(Digits X,digit_t min,digit_t max)26 void DcheckIntegerPartRange(Digits X, digit_t min, digit_t max) {
27 #if DEBUG
28 digit_t integer_part = X.msd();
29 DCHECK(integer_part >= min);
30 DCHECK(integer_part <= max);
31 #else
32 USE(X);
33 USE(min);
34 USE(max);
35 #endif
36 }
37
38 } // namespace
39
40 // Z := (the fractional part of) 1/V, via naive division.
41 // See comments at {Invert} and {InvertNewton} below for details.
InvertBasecase(RWDigits Z,Digits V,RWDigits scratch)42 void ProcessorImpl::InvertBasecase(RWDigits Z, Digits V, RWDigits scratch) {
43 DCHECK(Z.len() > V.len());
44 DCHECK(V.len() > 0);
45 DCHECK(scratch.len() >= 2 * V.len());
46 int n = V.len();
47 RWDigits X(scratch, 0, 2 * n);
48 digit_t borrow = 0;
49 int i = 0;
50 for (; i < n; i++) X[i] = 0;
51 for (; i < 2 * n; i++) X[i] = digit_sub2(0, V[i - n], borrow, &borrow);
52 DCHECK(borrow == 1);
53 RWDigits R(nullptr, 0); // We don't need the remainder.
54 if (n < kBurnikelThreshold) {
55 DivideSchoolbook(Z, R, X, V);
56 } else {
57 DivideBurnikelZiegler(Z, R, X, V);
58 }
59 }
60
61 // This is Algorithm 4.2 from the paper.
62 // Computes the inverse of V, shifted by kDigitBits * 2 * V.len, accurate to
63 // V.len+1 digits. The V.len low digits of the result digits will be written
64 // to Z, plus there is an implicit top digit with value 1.
65 // Needs InvertNewtonScratchSpace(V.len) of scratch space.
66 // The result is either correct or off by one (about half the time it is
67 // correct, half the time it is one too much, and in the corner case where V is
68 // minimal and the implicit top digit would have to be 2 it is one too little).
69 // Barrett's division algorithm can handle that, so we don't care.
InvertNewton(RWDigits Z,Digits V,RWDigits scratch)70 void ProcessorImpl::InvertNewton(RWDigits Z, Digits V, RWDigits scratch) {
71 const int vn = V.len();
72 DCHECK(Z.len() >= vn);
73 DCHECK(scratch.len() >= InvertNewtonScratchSpace(vn));
74 const int kSOffset = 0;
75 const int kWOffset = 0; // S and W can share their scratch space.
76 const int kUOffset = vn + kInvertNewtonExtraSpace;
77
78 // The base case won't work otherwise.
79 DCHECK(V.len() >= 3);
80
81 constexpr int kBasecasePrecision = kNewtonInversionThreshold - 1;
82 // V must have more digits than the basecase.
83 DCHECK(V.len() > kBasecasePrecision);
84 DCHECK(IsBitNormalized(V));
85
86 // Step (1): Setup.
87 // Calculate precision required at each step.
88 // {k} is the number of fraction bits for the current iteration.
89 int k = vn * kDigitBits;
90 int target_fraction_bits[8 * sizeof(vn)]; // "k_i" in the paper.
91 int iteration = -1; // "i" in the paper, except inverted to run downwards.
92 while (k > kBasecasePrecision * kDigitBits) {
93 iteration++;
94 target_fraction_bits[iteration] = k;
95 k = DIV_CEIL(k, 2);
96 }
97 // At this point, k <= kBasecasePrecision*kDigitBits is the number of
98 // fraction bits to use in the base case. {iteration} is the highest index
99 // in use for f[].
100
101 // Step (2): Initial approximation.
102 int initial_digits = DIV_CEIL(k + 1, kDigitBits);
103 Digits top_part_of_v(V, vn - initial_digits, initial_digits);
104 InvertBasecase(Z, top_part_of_v, scratch);
105 Z[initial_digits] = Z[initial_digits] + 1; // Implicit top digit.
106 // From now on, we'll keep Z.len updated to the part that's already computed.
107 Z.set_len(initial_digits + 1);
108
109 // Step (3): Precision doubling loop.
110 while (true) {
111 DcheckIntegerPartRange(Z, 1, 2);
112
113 // (3b): S = Z^2
114 RWDigits S(scratch, kSOffset, 2 * Z.len());
115 Multiply(S, Z, Z);
116 if (should_terminate()) return;
117 S.TrimOne(); // Top digit of S is unused.
118 DcheckIntegerPartRange(S, 1, 4);
119
120 // (3c): T = V, truncated so that at least 2k+3 fraction bits remain.
121 int fraction_digits = DIV_CEIL(2 * k + 3, kDigitBits);
122 int t_len = std::min(V.len(), fraction_digits);
123 Digits T(V, V.len() - t_len, t_len);
124
125 // (3d): U = T * S, truncated so that at least 2k+1 fraction bits remain
126 // (U has one integer digit, which might be zero).
127 fraction_digits = DIV_CEIL(2 * k + 1, kDigitBits);
128 RWDigits U(scratch, kUOffset, S.len() + T.len());
129 DCHECK(U.len() > fraction_digits);
130 Multiply(U, S, T);
131 if (should_terminate()) return;
132 U = U + (U.len() - (1 + fraction_digits));
133 DcheckIntegerPartRange(U, 0, 3);
134
135 // (3e): W = 2 * Z, padded with "0" fraction bits so that it has the
136 // same number of fraction bits as U.
137 DCHECK(U.len() >= Z.len());
138 RWDigits W(scratch, kWOffset, U.len());
139 int padding_digits = U.len() - Z.len();
140 for (int i = 0; i < padding_digits; i++) W[i] = 0;
141 LeftShift(W + padding_digits, Z, 1);
142 DcheckIntegerPartRange(W, 2, 4);
143
144 // (3f): Z = W - U.
145 // This check is '<=' instead of '<' because U's top digit is its
146 // integer part, and we want vn fraction digits.
147 if (U.len() <= vn) {
148 // Normal subtraction.
149 // This is not the last iteration.
150 DCHECK(iteration > 0);
151 Z.set_len(U.len());
152 digit_t borrow = SubtractAndReturnBorrow(Z, W, U);
153 DCHECK(borrow == 0);
154 USE(borrow);
155 DcheckIntegerPartRange(Z, 1, 2);
156 } else {
157 // Truncate some least significant digits so that we get vn
158 // fraction digits, and compute the integer digit separately.
159 // This is the last iteration.
160 DCHECK(iteration == 0);
161 Z.set_len(vn);
162 Digits W_part(W, W.len() - vn - 1, vn);
163 Digits U_part(U, U.len() - vn - 1, vn);
164 digit_t borrow = SubtractAndReturnBorrow(Z, W_part, U_part);
165 digit_t integer_part = W.msd() - U.msd() - borrow;
166 DCHECK(integer_part == 1 || integer_part == 2);
167 if (integer_part == 2) {
168 // This is the rare case where the correct result would be 2.0, but
169 // since we can't express that by returning only the fractional part
170 // with an implicit 1-digit, we have to return [1.]9999... instead.
171 for (int i = 0; i < Z.len(); i++) Z[i] = ~digit_t{0};
172 }
173 break;
174 }
175 // (3g, 3h): Update local variables and loop.
176 k = target_fraction_bits[iteration];
177 iteration--;
178 }
179 }
180
181 // Computes the inverse of V, shifted by kDigitBits * 2 * V.len, accurate to
182 // V.len+1 digits. The V.len low digits of the result digits will be written
183 // to Z, plus there is an implicit top digit with value 1.
184 // (Corner case: if V is minimal, the implicit digit should be 2; in that case
185 // we return one less than the correct answer. DivideBarrett can handle that.)
186 // Needs InvertScratchSpace(V.len) digits of scratch space.
Invert(RWDigits Z,Digits V,RWDigits scratch)187 void ProcessorImpl::Invert(RWDigits Z, Digits V, RWDigits scratch) {
188 DCHECK(Z.len() > V.len());
189 DCHECK(V.len() >= 1);
190 DCHECK(IsBitNormalized(V));
191 DCHECK(scratch.len() >= InvertScratchSpace(V.len()));
192
193 int vn = V.len();
194 if (vn >= kNewtonInversionThreshold) {
195 return InvertNewton(Z, V, scratch);
196 }
197 if (vn == 1) {
198 digit_t d = V[0];
199 digit_t dummy_remainder;
200 Z[0] = digit_div(~d, ~digit_t{0}, d, &dummy_remainder);
201 Z[1] = 0;
202 } else {
203 InvertBasecase(Z, V, scratch);
204 if (Z[vn] == 1) {
205 for (int i = 0; i < vn; i++) Z[i] = ~digit_t{0};
206 Z[vn] = 0;
207 }
208 }
209 }
210
211 // This is algorithm 3.5 from the paper.
212 // Computes Q(uotient) and R(emainder) for A/B using I, which is a
213 // precomputed approximation of 1/B (e.g. with Invert() above).
214 // Needs DivideBarrettScratchSpace(A.len) scratch space.
DivideBarrett(RWDigits Q,RWDigits R,Digits A,Digits B,Digits I,RWDigits scratch)215 void ProcessorImpl::DivideBarrett(RWDigits Q, RWDigits R, Digits A, Digits B,
216 Digits I, RWDigits scratch) {
217 DCHECK(Q.len() > A.len() - B.len());
218 DCHECK(R.len() >= B.len());
219 DCHECK(A.len() > B.len()); // Careful: This is *not* '>=' !
220 DCHECK(A.len() <= 2 * B.len());
221 DCHECK(B.len() > 0);
222 DCHECK(IsBitNormalized(B));
223 DCHECK(I.len() == A.len() - B.len());
224 DCHECK(scratch.len() >= DivideBarrettScratchSpace(A.len()));
225
226 int orig_q_len = Q.len();
227
228 // (1): A1 = A with B.len fewer digits.
229 Digits A1 = A + B.len();
230 DCHECK(A1.len() == I.len());
231
232 // (2): Q = A1*I with I.len fewer digits.
233 // {I} has an implicit high digit with value 1, so we add {A1} to the high
234 // part of the multiplication result.
235 RWDigits K(scratch, 0, 2 * I.len());
236 Multiply(K, A1, I);
237 if (should_terminate()) return;
238 Q.set_len(I.len() + 1);
239 Add(Q, K + I.len(), A1);
240 // K is no longer used, can re-use {scratch} for P.
241
242 // (3): R = A - B*Q (approximate remainder).
243 RWDigits P(scratch, 0, A.len() + 1);
244 Multiply(P, B, Q);
245 if (should_terminate()) return;
246 digit_t borrow = SubtractAndReturnBorrow(R, A, Digits(P, 0, B.len()));
247 // R may be allocated wider than B, zero out any extra digits if so.
248 for (int i = B.len(); i < R.len(); i++) R[i] = 0;
249 digit_t r_high = A[B.len()] - P[B.len()] - borrow;
250
251 // Adjust R and Q so that they become the correct remainder and quotient.
252 // The number of iterations is guaranteed to be at most some very small
253 // constant, unless the caller gave us a bad approximate quotient.
254 if (r_high >> (kDigitBits - 1) == 1) {
255 // (5b): R < 0, so R += B
256 digit_t q_sub = 0;
257 do {
258 r_high += AddAndReturnCarry(R, R, B);
259 q_sub++;
260 DCHECK(q_sub <= 5);
261 } while (r_high != 0);
262 Subtract(Q, q_sub);
263 } else {
264 digit_t q_add = 0;
265 while (r_high != 0 || GreaterThanOrEqual(R, B)) {
266 // (5c): R >= B, so R -= B
267 r_high -= SubtractAndReturnBorrow(R, R, B);
268 q_add++;
269 DCHECK(q_add <= 5);
270 }
271 Add(Q, q_add);
272 }
273 // (5a): Return.
274 int final_q_len = Q.len();
275 Q.set_len(orig_q_len);
276 for (int i = final_q_len; i < orig_q_len; i++) Q[i] = 0;
277 }
278
279 // Computes Q(uotient) and R(emainder) for A/B, using Barrett division.
DivideBarrett(RWDigits Q,RWDigits R,Digits A,Digits B)280 void ProcessorImpl::DivideBarrett(RWDigits Q, RWDigits R, Digits A, Digits B) {
281 DCHECK(Q.len() > A.len() - B.len());
282 DCHECK(R.len() >= B.len());
283 DCHECK(A.len() > B.len()); // Careful: This is *not* '>=' !
284 DCHECK(B.len() > 0);
285
286 // Normalize B, and shift A by the same amount.
287 ShiftedDigits b_normalized(B);
288 ShiftedDigits a_normalized(A, b_normalized.shift());
289 // Keep the code below more concise.
290 B = b_normalized;
291 A = a_normalized;
292
293 // The core DivideBarrett function above only supports A having at most
294 // twice as many digits as B. We generalize this to arbitrary inputs
295 // similar to Burnikel-Ziegler division by performing a t-by-1 division
296 // of B-sized chunks. It's easy to special-case the situation where we
297 // don't need to bother.
298 int barrett_dividend_length = A.len() <= 2 * B.len() ? A.len() : 2 * B.len();
299 int i_len = barrett_dividend_length - B.len();
300 ScratchDigits I(i_len + 1); // +1 is for temporary use by Invert().
301 int scratch_len =
302 std::max(InvertScratchSpace(i_len),
303 DivideBarrettScratchSpace(barrett_dividend_length));
304 ScratchDigits scratch(scratch_len);
305 Invert(I, Digits(B, B.len() - i_len, i_len), scratch);
306 if (should_terminate()) return;
307 I.TrimOne();
308 DCHECK(I.len() == i_len);
309 if (A.len() > 2 * B.len()) {
310 // This follows the variable names and and algorithmic steps of
311 // DivideBurnikelZiegler().
312 int n = B.len(); // Chunk length.
313 // (5): {t} is the number of B-sized chunks of A.
314 int t = DIV_CEIL(A.len(), n);
315 DCHECK(t >= 3);
316 // (6)/(7): Z is used for the current 2-chunk block to be divided by B,
317 // initialized to the two topmost chunks of A.
318 int z_len = n * 2;
319 ScratchDigits Z(z_len);
320 PutAt(Z, A + n * (t - 2), z_len);
321 // (8): For i from t-2 downto 0 do
322 int qi_len = n + 1;
323 ScratchDigits Qi(qi_len);
324 ScratchDigits Ri(n);
325 // First iteration unrolled and specialized.
326 {
327 int i = t - 2;
328 DivideBarrett(Qi, Ri, Z, B, I, scratch);
329 if (should_terminate()) return;
330 RWDigits target = Q + n * i;
331 // In the first iteration, all qi_len = n + 1 digits may be used.
332 int to_copy = std::min(qi_len, target.len());
333 for (int j = 0; j < to_copy; j++) target[j] = Qi[j];
334 for (int j = to_copy; j < target.len(); j++) target[j] = 0;
335 #if DEBUG
336 for (int j = to_copy; j < Qi.len(); j++) {
337 DCHECK(Qi[j] == 0);
338 }
339 #endif
340 }
341 // Now loop over any remaining iterations.
342 for (int i = t - 3; i >= 0; i--) {
343 // (8b): If i > 0, set Z_(i-1) = [Ri, A_(i-1)].
344 // (De-duped with unrolled first iteration, hence reading A_(i).)
345 PutAt(Z + n, Ri, n);
346 PutAt(Z, A + n * i, n);
347 // (8a): Compute Qi, Ri such that Zi = B*Qi + Ri.
348 DivideBarrett(Qi, Ri, Z, B, I, scratch);
349 DCHECK(Qi[qi_len - 1] == 0);
350 if (should_terminate()) return;
351 // (9): Return Q = [Q_(t-2), ..., Q_0]...
352 PutAt(Q + n * i, Qi, n);
353 }
354 Ri.Normalize();
355 DCHECK(Ri.len() <= R.len());
356 // (9): ...and R = R_0 * 2^(-leading_zeros).
357 RightShift(R, Ri, b_normalized.shift());
358 } else {
359 DivideBarrett(Q, R, A, B, I, scratch);
360 if (should_terminate()) return;
361 RightShift(R, R, b_normalized.shift());
362 }
363 }
364
365 } // namespace bigint
366 } // namespace v8
367