• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* LzmaDec.c -- LZMA Decoder
2 2021-04-01 : Igor Pavlov : Public domain */
3 
4 #include "Precomp.h"
5 
6 #include <string.h>
7 
8 /* #include "CpuArch.h" */
9 #include "LzmaDec.h"
10 
11 #define kNumTopBits 24
12 #define kTopValue ((UInt32)1 << kNumTopBits)
13 
14 #define kNumBitModelTotalBits 11
15 #define kBitModelTotal (1 << kNumBitModelTotalBits)
16 
17 #define RC_INIT_SIZE 5
18 
19 #ifndef _LZMA_DEC_OPT
20 
21 #define kNumMoveBits 5
22 #define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
23 
24 #define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound)
25 #define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
26 #define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
27 #define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
28   { UPDATE_0(p); i = (i + i); A0; } else \
29   { UPDATE_1(p); i = (i + i) + 1; A1; }
30 
31 #define TREE_GET_BIT(probs, i) { GET_BIT2(probs + i, i, ;, ;); }
32 
33 #define REV_BIT(p, i, A0, A1) IF_BIT_0(p + i) \
34   { UPDATE_0(p + i); A0; } else \
35   { UPDATE_1(p + i); A1; }
36 #define REV_BIT_VAR(  p, i, m) REV_BIT(p, i, i += m; m += m, m += m; i += m; )
37 #define REV_BIT_CONST(p, i, m) REV_BIT(p, i, i += m;       , i += m * 2; )
38 #define REV_BIT_LAST( p, i, m) REV_BIT(p, i, i -= m        , ; )
39 
40 #define TREE_DECODE(probs, limit, i) \
41   { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
42 
43 /* #define _LZMA_SIZE_OPT */
44 
45 #ifdef _LZMA_SIZE_OPT
46 #define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
47 #else
48 #define TREE_6_DECODE(probs, i) \
49   { i = 1; \
50   TREE_GET_BIT(probs, i); \
51   TREE_GET_BIT(probs, i); \
52   TREE_GET_BIT(probs, i); \
53   TREE_GET_BIT(probs, i); \
54   TREE_GET_BIT(probs, i); \
55   TREE_GET_BIT(probs, i); \
56   i -= 0x40; }
57 #endif
58 
59 #define NORMAL_LITER_DEC TREE_GET_BIT(prob, symbol)
60 #define MATCHED_LITER_DEC \
61   matchByte += matchByte; \
62   bit = offs; \
63   offs &= matchByte; \
64   probLit = prob + (offs + bit + symbol); \
65   GET_BIT2(probLit, symbol, offs ^= bit; , ;)
66 
67 #endif // _LZMA_DEC_OPT
68 
69 
70 #define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_INPUT_EOF; range <<= 8; code = (code << 8) | (*buf++); }
71 
72 #define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound)
73 #define UPDATE_0_CHECK range = bound;
74 #define UPDATE_1_CHECK range -= bound; code -= bound;
75 #define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
76   { UPDATE_0_CHECK; i = (i + i); A0; } else \
77   { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
78 #define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
79 #define TREE_DECODE_CHECK(probs, limit, i) \
80   { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
81 
82 
83 #define REV_BIT_CHECK(p, i, m) IF_BIT_0_CHECK(p + i) \
84   { UPDATE_0_CHECK; i += m; m += m; } else \
85   { UPDATE_1_CHECK; m += m; i += m; }
86 
87 
88 #define kNumPosBitsMax 4
89 #define kNumPosStatesMax (1 << kNumPosBitsMax)
90 
91 #define kLenNumLowBits 3
92 #define kLenNumLowSymbols (1 << kLenNumLowBits)
93 #define kLenNumHighBits 8
94 #define kLenNumHighSymbols (1 << kLenNumHighBits)
95 
96 #define LenLow 0
97 #define LenHigh (LenLow + 2 * (kNumPosStatesMax << kLenNumLowBits))
98 #define kNumLenProbs (LenHigh + kLenNumHighSymbols)
99 
100 #define LenChoice LenLow
101 #define LenChoice2 (LenLow + (1 << kLenNumLowBits))
102 
103 #define kNumStates 12
104 #define kNumStates2 16
105 #define kNumLitStates 7
106 
107 #define kStartPosModelIndex 4
108 #define kEndPosModelIndex 14
109 #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
110 
111 #define kNumPosSlotBits 6
112 #define kNumLenToPosStates 4
113 
114 #define kNumAlignBits 4
115 #define kAlignTableSize (1 << kNumAlignBits)
116 
117 #define kMatchMinLen 2
118 #define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols * 2 + kLenNumHighSymbols)
119 
120 #define kMatchSpecLen_Error_Data (1 << 9)
121 #define kMatchSpecLen_Error_Fail (kMatchSpecLen_Error_Data - 1)
122 
123 /* External ASM code needs same CLzmaProb array layout. So don't change it. */
124 
125 /* (probs_1664) is faster and better for code size at some platforms */
126 /*
127 #ifdef MY_CPU_X86_OR_AMD64
128 */
129 #define kStartOffset 1664
130 #define GET_PROBS p->probs_1664
131 /*
132 #define GET_PROBS p->probs + kStartOffset
133 #else
134 #define kStartOffset 0
135 #define GET_PROBS p->probs
136 #endif
137 */
138 
139 #define SpecPos (-kStartOffset)
140 #define IsRep0Long (SpecPos + kNumFullDistances)
141 #define RepLenCoder (IsRep0Long + (kNumStates2 << kNumPosBitsMax))
142 #define LenCoder (RepLenCoder + kNumLenProbs)
143 #define IsMatch (LenCoder + kNumLenProbs)
144 #define Align (IsMatch + (kNumStates2 << kNumPosBitsMax))
145 #define IsRep (Align + kAlignTableSize)
146 #define IsRepG0 (IsRep + kNumStates)
147 #define IsRepG1 (IsRepG0 + kNumStates)
148 #define IsRepG2 (IsRepG1 + kNumStates)
149 #define PosSlot (IsRepG2 + kNumStates)
150 #define Literal (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
151 #define NUM_BASE_PROBS (Literal + kStartOffset)
152 
153 #if Align != 0 && kStartOffset != 0
154   #error Stop_Compiling_Bad_LZMA_kAlign
155 #endif
156 
157 #if NUM_BASE_PROBS != 1984
158   #error Stop_Compiling_Bad_LZMA_PROBS
159 #endif
160 
161 
162 #define LZMA_LIT_SIZE 0x300
163 
164 #define LzmaProps_GetNumProbs(p) (NUM_BASE_PROBS + ((UInt32)LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
165 
166 
167 #define CALC_POS_STATE(processedPos, pbMask) (((processedPos) & (pbMask)) << 4)
168 #define COMBINED_PS_STATE (posState + state)
169 #define GET_LEN_STATE (posState)
170 
171 #define LZMA_DIC_MIN (1 << 12)
172 
173 /*
174 p->remainLen : shows status of LZMA decoder:
175     < kMatchSpecLenStart  : the number of bytes to be copied with (p->rep0) offset
176     = kMatchSpecLenStart  : the LZMA stream was finished with end mark
177     = kMatchSpecLenStart + 1  : need init range coder
178     = kMatchSpecLenStart + 2  : need init range coder and state
179     = kMatchSpecLen_Error_Fail                : Internal Code Failure
180     = kMatchSpecLen_Error_Data + [0 ... 273]  : LZMA Data Error
181 */
182 
183 /* ---------- LZMA_DECODE_REAL ---------- */
184 /*
185 LzmaDec_DecodeReal_3() can be implemented in external ASM file.
186 3 - is the code compatibility version of that function for check at link time.
187 */
188 
189 #define LZMA_DECODE_REAL LzmaDec_DecodeReal_3
190 
191 /*
192 LZMA_DECODE_REAL()
193 In:
194   RangeCoder is normalized
195   if (p->dicPos == limit)
196   {
197     LzmaDec_TryDummy() was called before to exclude LITERAL and MATCH-REP cases.
198     So first symbol can be only MATCH-NON-REP. And if that MATCH-NON-REP symbol
199     is not END_OF_PAYALOAD_MARKER, then the function doesn't write any byte to dictionary,
200     the function returns SZ_OK, and the caller can use (p->remainLen) and (p->reps[0]) later.
201   }
202 
203 Processing:
204   The first LZMA symbol will be decoded in any case.
205   All main checks for limits are at the end of main loop,
206   It decodes additional LZMA-symbols while (p->buf < bufLimit && dicPos < limit),
207   RangeCoder is still without last normalization when (p->buf < bufLimit) is being checked.
208   But if (p->buf < bufLimit), the caller provided at least (LZMA_REQUIRED_INPUT_MAX + 1) bytes for
209   next iteration  before limit (bufLimit + LZMA_REQUIRED_INPUT_MAX),
210   that is enough for worst case LZMA symbol with one additional RangeCoder normalization for one bit.
211   So that function never reads bufLimit [LZMA_REQUIRED_INPUT_MAX] byte.
212 
213 Out:
214   RangeCoder is normalized
215   Result:
216     SZ_OK - OK
217       p->remainLen:
218         < kMatchSpecLenStart : the number of bytes to be copied with (p->reps[0]) offset
219         = kMatchSpecLenStart : the LZMA stream was finished with end mark
220 
221     SZ_ERROR_DATA - error, when the MATCH-Symbol refers out of dictionary
222       p->remainLen : undefined
223       p->reps[*]    : undefined
224 */
225 
226 
227 #ifdef _LZMA_DEC_OPT
228 
229 int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit);
230 
231 #else
232 
233 static
LZMA_DECODE_REAL(CLzmaDec * p,SizeT limit,const Byte * bufLimit)234 int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
235 {
236   CLzmaProb *probs = GET_PROBS;
237   unsigned state = (unsigned)p->state;
238   UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
239   unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
240   unsigned lc = p->prop.lc;
241   unsigned lpMask = ((unsigned)0x100 << p->prop.lp) - ((unsigned)0x100 >> lc);
242 
243   Byte *dic = p->dic;
244   SizeT dicBufSize = p->dicBufSize;
245   SizeT dicPos = p->dicPos;
246 
247   UInt32 processedPos = p->processedPos;
248   UInt32 checkDicSize = p->checkDicSize;
249   unsigned len = 0;
250 
251   const Byte *buf = p->buf;
252   UInt32 range = p->range;
253   UInt32 code = p->code;
254 
255   do
256   {
257     CLzmaProb *prob;
258     UInt32 bound;
259     unsigned ttt;
260     unsigned posState = CALC_POS_STATE(processedPos, pbMask);
261 
262     prob = probs + IsMatch + COMBINED_PS_STATE;
263     IF_BIT_0(prob)
264     {
265       unsigned symbol;
266       UPDATE_0(prob);
267       prob = probs + Literal;
268       if (processedPos != 0 || checkDicSize != 0)
269         prob += (UInt32)3 * ((((processedPos << 8) + dic[(dicPos == 0 ? dicBufSize : dicPos) - 1]) & lpMask) << lc);
270       processedPos++;
271 
272       if (state < kNumLitStates)
273       {
274         state -= (state < 4) ? state : 3;
275         symbol = 1;
276         #ifdef _LZMA_SIZE_OPT
277         do { NORMAL_LITER_DEC } while (symbol < 0x100);
278         #else
279         NORMAL_LITER_DEC
280         NORMAL_LITER_DEC
281         NORMAL_LITER_DEC
282         NORMAL_LITER_DEC
283         NORMAL_LITER_DEC
284         NORMAL_LITER_DEC
285         NORMAL_LITER_DEC
286         NORMAL_LITER_DEC
287         #endif
288       }
289       else
290       {
291         unsigned matchByte = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
292         unsigned offs = 0x100;
293         state -= (state < 10) ? 3 : 6;
294         symbol = 1;
295         #ifdef _LZMA_SIZE_OPT
296         do
297         {
298           unsigned bit;
299           CLzmaProb *probLit;
300           MATCHED_LITER_DEC
301         }
302         while (symbol < 0x100);
303         #else
304         {
305           unsigned bit;
306           CLzmaProb *probLit;
307           MATCHED_LITER_DEC
308           MATCHED_LITER_DEC
309           MATCHED_LITER_DEC
310           MATCHED_LITER_DEC
311           MATCHED_LITER_DEC
312           MATCHED_LITER_DEC
313           MATCHED_LITER_DEC
314           MATCHED_LITER_DEC
315         }
316         #endif
317       }
318 
319       dic[dicPos++] = (Byte)symbol;
320       continue;
321     }
322 
323     {
324       UPDATE_1(prob);
325       prob = probs + IsRep + state;
326       IF_BIT_0(prob)
327       {
328         UPDATE_0(prob);
329         state += kNumStates;
330         prob = probs + LenCoder;
331       }
332       else
333       {
334         UPDATE_1(prob);
335         prob = probs + IsRepG0 + state;
336         IF_BIT_0(prob)
337         {
338           UPDATE_0(prob);
339           prob = probs + IsRep0Long + COMBINED_PS_STATE;
340           IF_BIT_0(prob)
341           {
342             UPDATE_0(prob);
343 
344             // that case was checked before with kBadRepCode
345             // if (checkDicSize == 0 && processedPos == 0) { len = kMatchSpecLen_Error_Data + 1; break; }
346             // The caller doesn't allow (dicPos == limit) case here
347             // so we don't need the following check:
348             // if (dicPos == limit) { state = state < kNumLitStates ? 9 : 11; len = 1; break; }
349 
350             dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
351             dicPos++;
352             processedPos++;
353             state = state < kNumLitStates ? 9 : 11;
354             continue;
355           }
356           UPDATE_1(prob);
357         }
358         else
359         {
360           UInt32 distance;
361           UPDATE_1(prob);
362           prob = probs + IsRepG1 + state;
363           IF_BIT_0(prob)
364           {
365             UPDATE_0(prob);
366             distance = rep1;
367           }
368           else
369           {
370             UPDATE_1(prob);
371             prob = probs + IsRepG2 + state;
372             IF_BIT_0(prob)
373             {
374               UPDATE_0(prob);
375               distance = rep2;
376             }
377             else
378             {
379               UPDATE_1(prob);
380               distance = rep3;
381               rep3 = rep2;
382             }
383             rep2 = rep1;
384           }
385           rep1 = rep0;
386           rep0 = distance;
387         }
388         state = state < kNumLitStates ? 8 : 11;
389         prob = probs + RepLenCoder;
390       }
391 
392       #ifdef _LZMA_SIZE_OPT
393       {
394         unsigned lim, offset;
395         CLzmaProb *probLen = prob + LenChoice;
396         IF_BIT_0(probLen)
397         {
398           UPDATE_0(probLen);
399           probLen = prob + LenLow + GET_LEN_STATE;
400           offset = 0;
401           lim = (1 << kLenNumLowBits);
402         }
403         else
404         {
405           UPDATE_1(probLen);
406           probLen = prob + LenChoice2;
407           IF_BIT_0(probLen)
408           {
409             UPDATE_0(probLen);
410             probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
411             offset = kLenNumLowSymbols;
412             lim = (1 << kLenNumLowBits);
413           }
414           else
415           {
416             UPDATE_1(probLen);
417             probLen = prob + LenHigh;
418             offset = kLenNumLowSymbols * 2;
419             lim = (1 << kLenNumHighBits);
420           }
421         }
422         TREE_DECODE(probLen, lim, len);
423         len += offset;
424       }
425       #else
426       {
427         CLzmaProb *probLen = prob + LenChoice;
428         IF_BIT_0(probLen)
429         {
430           UPDATE_0(probLen);
431           probLen = prob + LenLow + GET_LEN_STATE;
432           len = 1;
433           TREE_GET_BIT(probLen, len);
434           TREE_GET_BIT(probLen, len);
435           TREE_GET_BIT(probLen, len);
436           len -= 8;
437         }
438         else
439         {
440           UPDATE_1(probLen);
441           probLen = prob + LenChoice2;
442           IF_BIT_0(probLen)
443           {
444             UPDATE_0(probLen);
445             probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
446             len = 1;
447             TREE_GET_BIT(probLen, len);
448             TREE_GET_BIT(probLen, len);
449             TREE_GET_BIT(probLen, len);
450           }
451           else
452           {
453             UPDATE_1(probLen);
454             probLen = prob + LenHigh;
455             TREE_DECODE(probLen, (1 << kLenNumHighBits), len);
456             len += kLenNumLowSymbols * 2;
457           }
458         }
459       }
460       #endif
461 
462       if (state >= kNumStates)
463       {
464         UInt32 distance;
465         prob = probs + PosSlot +
466             ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
467         TREE_6_DECODE(prob, distance);
468         if (distance >= kStartPosModelIndex)
469         {
470           unsigned posSlot = (unsigned)distance;
471           unsigned numDirectBits = (unsigned)(((distance >> 1) - 1));
472           distance = (2 | (distance & 1));
473           if (posSlot < kEndPosModelIndex)
474           {
475             distance <<= numDirectBits;
476             prob = probs + SpecPos;
477             {
478               UInt32 m = 1;
479               distance++;
480               do
481               {
482                 REV_BIT_VAR(prob, distance, m);
483               }
484               while (--numDirectBits);
485               distance -= m;
486             }
487           }
488           else
489           {
490             numDirectBits -= kNumAlignBits;
491             do
492             {
493               NORMALIZE
494               range >>= 1;
495 
496               {
497                 UInt32 t;
498                 code -= range;
499                 t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
500                 distance = (distance << 1) + (t + 1);
501                 code += range & t;
502               }
503               /*
504               distance <<= 1;
505               if (code >= range)
506               {
507                 code -= range;
508                 distance |= 1;
509               }
510               */
511             }
512             while (--numDirectBits);
513             prob = probs + Align;
514             distance <<= kNumAlignBits;
515             {
516               unsigned i = 1;
517               REV_BIT_CONST(prob, i, 1);
518               REV_BIT_CONST(prob, i, 2);
519               REV_BIT_CONST(prob, i, 4);
520               REV_BIT_LAST (prob, i, 8);
521               distance |= i;
522             }
523             if (distance == (UInt32)0xFFFFFFFF)
524             {
525               len = kMatchSpecLenStart;
526               state -= kNumStates;
527               break;
528             }
529           }
530         }
531 
532         rep3 = rep2;
533         rep2 = rep1;
534         rep1 = rep0;
535         rep0 = distance + 1;
536         state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
537         if (distance >= (checkDicSize == 0 ? processedPos: checkDicSize))
538         {
539           len += kMatchSpecLen_Error_Data + kMatchMinLen;
540           // len = kMatchSpecLen_Error_Data;
541           // len += kMatchMinLen;
542           break;
543         }
544       }
545 
546       len += kMatchMinLen;
547 
548       {
549         SizeT rem;
550         unsigned curLen;
551         SizeT pos;
552 
553         if ((rem = limit - dicPos) == 0)
554         {
555           /*
556           We stop decoding and return SZ_OK, and we can resume decoding later.
557           Any error conditions can be tested later in caller code.
558           For more strict mode we can stop decoding with error
559           // len += kMatchSpecLen_Error_Data;
560           */
561           break;
562         }
563 
564         curLen = ((rem < len) ? (unsigned)rem : len);
565         pos = dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0);
566 
567         processedPos += (UInt32)curLen;
568 
569         len -= curLen;
570         if (curLen <= dicBufSize - pos)
571         {
572           Byte *dest = dic + dicPos;
573           ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
574           const Byte *lim = dest + curLen;
575           dicPos += (SizeT)curLen;
576           do
577             *(dest) = (Byte)*(dest + src);
578           while (++dest != lim);
579         }
580         else
581         {
582           do
583           {
584             dic[dicPos++] = dic[pos];
585             if (++pos == dicBufSize)
586               pos = 0;
587           }
588           while (--curLen != 0);
589         }
590       }
591     }
592   }
593   while (dicPos < limit && buf < bufLimit);
594 
595   NORMALIZE;
596 
597   p->buf = buf;
598   p->range = range;
599   p->code = code;
600   p->remainLen = (UInt32)len; // & (kMatchSpecLen_Error_Data - 1); // we can write real length for error matches too.
601   p->dicPos = dicPos;
602   p->processedPos = processedPos;
603   p->reps[0] = rep0;
604   p->reps[1] = rep1;
605   p->reps[2] = rep2;
606   p->reps[3] = rep3;
607   p->state = (UInt32)state;
608   if (len >= kMatchSpecLen_Error_Data)
609     return SZ_ERROR_DATA;
610   return SZ_OK;
611 }
612 #endif
613 
614 
615 
LzmaDec_WriteRem(CLzmaDec * p,SizeT limit)616 static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
617 {
618   unsigned len = (unsigned)p->remainLen;
619   if (len == 0 /* || len >= kMatchSpecLenStart */)
620     return;
621   {
622     SizeT dicPos = p->dicPos;
623     Byte *dic;
624     SizeT dicBufSize;
625     SizeT rep0;   /* we use SizeT to avoid the BUG of VC14 for AMD64 */
626     {
627       SizeT rem = limit - dicPos;
628       if (rem < len)
629       {
630         len = (unsigned)(rem);
631         if (len == 0)
632           return;
633       }
634     }
635 
636     if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
637       p->checkDicSize = p->prop.dicSize;
638 
639     p->processedPos += (UInt32)len;
640     p->remainLen -= (UInt32)len;
641     dic = p->dic;
642     rep0 = p->reps[0];
643     dicBufSize = p->dicBufSize;
644     do
645     {
646       dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
647       dicPos++;
648     }
649     while (--len);
650     p->dicPos = dicPos;
651   }
652 }
653 
654 
655 /*
656 At staring of new stream we have one of the following symbols:
657   - Literal        - is allowed
658   - Non-Rep-Match  - is allowed only if it's end marker symbol
659   - Rep-Match      - is not allowed
660 We use early check of (RangeCoder:Code) over kBadRepCode to simplify main decoding code
661 */
662 
663 #define kRange0 0xFFFFFFFF
664 #define kBound0 ((kRange0 >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1))
665 #define kBadRepCode (kBound0 + (((kRange0 - kBound0) >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1)))
666 #if kBadRepCode != (0xC0000000 - 0x400)
667   #error Stop_Compiling_Bad_LZMA_Check
668 #endif
669 
670 
671 /*
672 LzmaDec_DecodeReal2():
673   It calls LZMA_DECODE_REAL() and it adjusts limit according (p->checkDicSize).
674 
675 We correct (p->checkDicSize) after LZMA_DECODE_REAL() and in LzmaDec_WriteRem(),
676 and we support the following state of (p->checkDicSize):
677   if (total_processed < p->prop.dicSize) then
678   {
679     (total_processed == p->processedPos)
680     (p->checkDicSize == 0)
681   }
682   else
683     (p->checkDicSize == p->prop.dicSize)
684 */
685 
LzmaDec_DecodeReal2(CLzmaDec * p,SizeT limit,const Byte * bufLimit)686 static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
687 {
688   if (p->checkDicSize == 0)
689   {
690     UInt32 rem = p->prop.dicSize - p->processedPos;
691     if (limit - p->dicPos > rem)
692       limit = p->dicPos + rem;
693   }
694   {
695     int res = LZMA_DECODE_REAL(p, limit, bufLimit);
696     if (p->checkDicSize == 0 && p->processedPos >= p->prop.dicSize)
697       p->checkDicSize = p->prop.dicSize;
698     return res;
699   }
700 }
701 
702 
703 
704 typedef enum
705 {
706   DUMMY_INPUT_EOF, /* need more input data */
707   DUMMY_LIT,
708   DUMMY_MATCH,
709   DUMMY_REP
710 } ELzmaDummy;
711 
712 
713 #define IS_DUMMY_END_MARKER_POSSIBLE(dummyRes) ((dummyRes) == DUMMY_MATCH)
714 
LzmaDec_TryDummy(const CLzmaDec * p,const Byte * buf,const Byte ** bufOut)715 static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, const Byte **bufOut)
716 {
717   UInt32 range = p->range;
718   UInt32 code = p->code;
719   const Byte *bufLimit = *bufOut;
720   const CLzmaProb *probs = GET_PROBS;
721   unsigned state = (unsigned)p->state;
722   ELzmaDummy res;
723 
724   for (;;)
725   {
726     const CLzmaProb *prob;
727     UInt32 bound;
728     unsigned ttt;
729     unsigned posState = CALC_POS_STATE(p->processedPos, ((unsigned)1 << p->prop.pb) - 1);
730 
731     prob = probs + IsMatch + COMBINED_PS_STATE;
732     IF_BIT_0_CHECK(prob)
733     {
734       UPDATE_0_CHECK
735 
736       prob = probs + Literal;
737       if (p->checkDicSize != 0 || p->processedPos != 0)
738         prob += ((UInt32)LZMA_LIT_SIZE *
739             ((((p->processedPos) & (((unsigned)1 << (p->prop.lp)) - 1)) << p->prop.lc) +
740             ((unsigned)p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
741 
742       if (state < kNumLitStates)
743       {
744         unsigned symbol = 1;
745         do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
746       }
747       else
748       {
749         unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
750             (p->dicPos < p->reps[0] ? p->dicBufSize : 0)];
751         unsigned offs = 0x100;
752         unsigned symbol = 1;
753         do
754         {
755           unsigned bit;
756           const CLzmaProb *probLit;
757           matchByte += matchByte;
758           bit = offs;
759           offs &= matchByte;
760           probLit = prob + (offs + bit + symbol);
761           GET_BIT2_CHECK(probLit, symbol, offs ^= bit; , ; )
762         }
763         while (symbol < 0x100);
764       }
765       res = DUMMY_LIT;
766     }
767     else
768     {
769       unsigned len;
770       UPDATE_1_CHECK;
771 
772       prob = probs + IsRep + state;
773       IF_BIT_0_CHECK(prob)
774       {
775         UPDATE_0_CHECK;
776         state = 0;
777         prob = probs + LenCoder;
778         res = DUMMY_MATCH;
779       }
780       else
781       {
782         UPDATE_1_CHECK;
783         res = DUMMY_REP;
784         prob = probs + IsRepG0 + state;
785         IF_BIT_0_CHECK(prob)
786         {
787           UPDATE_0_CHECK;
788           prob = probs + IsRep0Long + COMBINED_PS_STATE;
789           IF_BIT_0_CHECK(prob)
790           {
791             UPDATE_0_CHECK;
792             break;
793           }
794           else
795           {
796             UPDATE_1_CHECK;
797           }
798         }
799         else
800         {
801           UPDATE_1_CHECK;
802           prob = probs + IsRepG1 + state;
803           IF_BIT_0_CHECK(prob)
804           {
805             UPDATE_0_CHECK;
806           }
807           else
808           {
809             UPDATE_1_CHECK;
810             prob = probs + IsRepG2 + state;
811             IF_BIT_0_CHECK(prob)
812             {
813               UPDATE_0_CHECK;
814             }
815             else
816             {
817               UPDATE_1_CHECK;
818             }
819           }
820         }
821         state = kNumStates;
822         prob = probs + RepLenCoder;
823       }
824       {
825         unsigned limit, offset;
826         const CLzmaProb *probLen = prob + LenChoice;
827         IF_BIT_0_CHECK(probLen)
828         {
829           UPDATE_0_CHECK;
830           probLen = prob + LenLow + GET_LEN_STATE;
831           offset = 0;
832           limit = 1 << kLenNumLowBits;
833         }
834         else
835         {
836           UPDATE_1_CHECK;
837           probLen = prob + LenChoice2;
838           IF_BIT_0_CHECK(probLen)
839           {
840             UPDATE_0_CHECK;
841             probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
842             offset = kLenNumLowSymbols;
843             limit = 1 << kLenNumLowBits;
844           }
845           else
846           {
847             UPDATE_1_CHECK;
848             probLen = prob + LenHigh;
849             offset = kLenNumLowSymbols * 2;
850             limit = 1 << kLenNumHighBits;
851           }
852         }
853         TREE_DECODE_CHECK(probLen, limit, len);
854         len += offset;
855       }
856 
857       if (state < 4)
858       {
859         unsigned posSlot;
860         prob = probs + PosSlot +
861             ((len < kNumLenToPosStates - 1 ? len : kNumLenToPosStates - 1) <<
862             kNumPosSlotBits);
863         TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
864         if (posSlot >= kStartPosModelIndex)
865         {
866           unsigned numDirectBits = ((posSlot >> 1) - 1);
867 
868           if (posSlot < kEndPosModelIndex)
869           {
870             prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits);
871           }
872           else
873           {
874             numDirectBits -= kNumAlignBits;
875             do
876             {
877               NORMALIZE_CHECK
878               range >>= 1;
879               code -= range & (((code - range) >> 31) - 1);
880               /* if (code >= range) code -= range; */
881             }
882             while (--numDirectBits);
883             prob = probs + Align;
884             numDirectBits = kNumAlignBits;
885           }
886           {
887             unsigned i = 1;
888             unsigned m = 1;
889             do
890             {
891               REV_BIT_CHECK(prob, i, m);
892             }
893             while (--numDirectBits);
894           }
895         }
896       }
897     }
898     break;
899   }
900   NORMALIZE_CHECK;
901 
902   *bufOut = buf;
903   return res;
904 }
905 
906 void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState);
LzmaDec_InitDicAndState(CLzmaDec * p,BoolInt initDic,BoolInt initState)907 void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState)
908 {
909   p->remainLen = kMatchSpecLenStart + 1;
910   p->tempBufSize = 0;
911 
912   if (initDic)
913   {
914     p->processedPos = 0;
915     p->checkDicSize = 0;
916     p->remainLen = kMatchSpecLenStart + 2;
917   }
918   if (initState)
919     p->remainLen = kMatchSpecLenStart + 2;
920 }
921 
LzmaDec_Init(CLzmaDec * p)922 void LzmaDec_Init(CLzmaDec *p)
923 {
924   p->dicPos = 0;
925   LzmaDec_InitDicAndState(p, True, True);
926 }
927 
928 
929 /*
930 LZMA supports optional end_marker.
931 So the decoder can lookahead for one additional LZMA-Symbol to check end_marker.
932 That additional LZMA-Symbol can require up to LZMA_REQUIRED_INPUT_MAX bytes in input stream.
933 When the decoder reaches dicLimit, it looks (finishMode) parameter:
934   if (finishMode == LZMA_FINISH_ANY), the decoder doesn't lookahead
935   if (finishMode != LZMA_FINISH_ANY), the decoder lookahead, if end_marker is possible for current position
936 
937 When the decoder lookahead, and the lookahead symbol is not end_marker, we have two ways:
938   1) Strict mode (default) : the decoder returns SZ_ERROR_DATA.
939   2) The relaxed mode (alternative mode) : we could return SZ_OK, and the caller
940      must check (status) value. The caller can show the error,
941      if the end of stream is expected, and the (status) is noit
942      LZMA_STATUS_FINISHED_WITH_MARK or LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK.
943 */
944 
945 
946 #define RETURN__NOT_FINISHED__FOR_FINISH \
947   *status = LZMA_STATUS_NOT_FINISHED; \
948   return SZ_ERROR_DATA; // for strict mode
949   // return SZ_OK; // for relaxed mode
950 
951 
LzmaDec_DecodeToDic(CLzmaDec * p,SizeT dicLimit,const Byte * src,SizeT * srcLen,ELzmaFinishMode finishMode,ELzmaStatus * status)952 SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
953     ELzmaFinishMode finishMode, ELzmaStatus *status)
954 {
955   SizeT inSize = *srcLen;
956   (*srcLen) = 0;
957   *status = LZMA_STATUS_NOT_SPECIFIED;
958 
959   if (p->remainLen > kMatchSpecLenStart)
960   {
961     if (p->remainLen > kMatchSpecLenStart + 2)
962       return p->remainLen == kMatchSpecLen_Error_Fail ? SZ_ERROR_FAIL : SZ_ERROR_DATA;
963 
964     for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
965       p->tempBuf[p->tempBufSize++] = *src++;
966     if (p->tempBufSize != 0 && p->tempBuf[0] != 0)
967       return SZ_ERROR_DATA;
968     if (p->tempBufSize < RC_INIT_SIZE)
969     {
970       *status = LZMA_STATUS_NEEDS_MORE_INPUT;
971       return SZ_OK;
972     }
973     p->code =
974         ((UInt32)p->tempBuf[1] << 24)
975       | ((UInt32)p->tempBuf[2] << 16)
976       | ((UInt32)p->tempBuf[3] << 8)
977       | ((UInt32)p->tempBuf[4]);
978 
979     if (p->checkDicSize == 0
980         && p->processedPos == 0
981         && p->code >= kBadRepCode)
982       return SZ_ERROR_DATA;
983 
984     p->range = 0xFFFFFFFF;
985     p->tempBufSize = 0;
986 
987     if (p->remainLen > kMatchSpecLenStart + 1)
988     {
989       SizeT numProbs = LzmaProps_GetNumProbs(&p->prop);
990       SizeT i;
991       CLzmaProb *probs = p->probs;
992       for (i = 0; i < numProbs; i++)
993         probs[i] = kBitModelTotal >> 1;
994       p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
995       p->state = 0;
996     }
997 
998     p->remainLen = 0;
999   }
1000 
1001   for (;;)
1002   {
1003     if (p->remainLen == kMatchSpecLenStart)
1004     {
1005       if (p->code != 0)
1006         return SZ_ERROR_DATA;
1007       *status = LZMA_STATUS_FINISHED_WITH_MARK;
1008       return SZ_OK;
1009     }
1010 
1011     LzmaDec_WriteRem(p, dicLimit);
1012 
1013     {
1014       // (p->remainLen == 0 || p->dicPos == dicLimit)
1015 
1016       int checkEndMarkNow = 0;
1017 
1018       if (p->dicPos >= dicLimit)
1019       {
1020         if (p->remainLen == 0 && p->code == 0)
1021         {
1022           *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
1023           return SZ_OK;
1024         }
1025         if (finishMode == LZMA_FINISH_ANY)
1026         {
1027           *status = LZMA_STATUS_NOT_FINISHED;
1028           return SZ_OK;
1029         }
1030         if (p->remainLen != 0)
1031         {
1032           RETURN__NOT_FINISHED__FOR_FINISH;
1033         }
1034         checkEndMarkNow = 1;
1035       }
1036 
1037       // (p->remainLen == 0)
1038 
1039       if (p->tempBufSize == 0)
1040       {
1041         const Byte *bufLimit;
1042         int dummyProcessed = -1;
1043 
1044         if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
1045         {
1046           const Byte *bufOut = src + inSize;
1047 
1048           ELzmaDummy dummyRes = LzmaDec_TryDummy(p, src, &bufOut);
1049 
1050           if (dummyRes == DUMMY_INPUT_EOF)
1051           {
1052             size_t i;
1053             if (inSize >= LZMA_REQUIRED_INPUT_MAX)
1054               break;
1055             (*srcLen) += inSize;
1056             p->tempBufSize = (unsigned)inSize;
1057             for (i = 0; i < inSize; i++)
1058               p->tempBuf[i] = src[i];
1059             *status = LZMA_STATUS_NEEDS_MORE_INPUT;
1060             return SZ_OK;
1061           }
1062 
1063           dummyProcessed = (int)(bufOut - src);
1064           if ((unsigned)dummyProcessed > LZMA_REQUIRED_INPUT_MAX)
1065             break;
1066 
1067           if (checkEndMarkNow && !IS_DUMMY_END_MARKER_POSSIBLE(dummyRes))
1068           {
1069             unsigned i;
1070             (*srcLen) += (unsigned)dummyProcessed;
1071             p->tempBufSize = (unsigned)dummyProcessed;
1072             for (i = 0; i < (unsigned)dummyProcessed; i++)
1073               p->tempBuf[i] = src[i];
1074             // p->remainLen = kMatchSpecLen_Error_Data;
1075             RETURN__NOT_FINISHED__FOR_FINISH;
1076           }
1077 
1078           bufLimit = src;
1079           // we will decode only one iteration
1080         }
1081         else
1082           bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
1083 
1084         p->buf = src;
1085 
1086         {
1087           int res = LzmaDec_DecodeReal2(p, dicLimit, bufLimit);
1088 
1089           SizeT processed = (SizeT)(p->buf - src);
1090 
1091           if (dummyProcessed < 0)
1092           {
1093             if (processed > inSize)
1094               break;
1095           }
1096           else if ((unsigned)dummyProcessed != processed)
1097             break;
1098 
1099           src += processed;
1100           inSize -= processed;
1101           (*srcLen) += processed;
1102 
1103           if (res != SZ_OK)
1104           {
1105             p->remainLen = kMatchSpecLen_Error_Data;
1106             return SZ_ERROR_DATA;
1107           }
1108         }
1109         continue;
1110       }
1111 
1112       {
1113         // we have some data in (p->tempBuf)
1114         // in strict mode: tempBufSize is not enough for one Symbol decoding.
1115         // in relaxed mode: tempBufSize not larger than required for one Symbol decoding.
1116 
1117         unsigned rem = p->tempBufSize;
1118         unsigned ahead = 0;
1119         int dummyProcessed = -1;
1120 
1121         while (rem < LZMA_REQUIRED_INPUT_MAX && ahead < inSize)
1122           p->tempBuf[rem++] = src[ahead++];
1123 
1124         // ahead - the size of new data copied from (src) to (p->tempBuf)
1125         // rem   - the size of temp buffer including new data from (src)
1126 
1127         if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
1128         {
1129           const Byte *bufOut = p->tempBuf + rem;
1130 
1131           ELzmaDummy dummyRes = LzmaDec_TryDummy(p, p->tempBuf, &bufOut);
1132 
1133           if (dummyRes == DUMMY_INPUT_EOF)
1134           {
1135             if (rem >= LZMA_REQUIRED_INPUT_MAX)
1136               break;
1137             p->tempBufSize = rem;
1138             (*srcLen) += (SizeT)ahead;
1139             *status = LZMA_STATUS_NEEDS_MORE_INPUT;
1140             return SZ_OK;
1141           }
1142 
1143           dummyProcessed = (int)(bufOut - p->tempBuf);
1144 
1145           if ((unsigned)dummyProcessed < p->tempBufSize)
1146             break;
1147 
1148           if (checkEndMarkNow && !IS_DUMMY_END_MARKER_POSSIBLE(dummyRes))
1149           {
1150             (*srcLen) += (unsigned)dummyProcessed - p->tempBufSize;
1151             p->tempBufSize = (unsigned)dummyProcessed;
1152             // p->remainLen = kMatchSpecLen_Error_Data;
1153             RETURN__NOT_FINISHED__FOR_FINISH;
1154           }
1155         }
1156 
1157         p->buf = p->tempBuf;
1158 
1159         {
1160           // we decode one symbol from (p->tempBuf) here, so the (bufLimit) is equal to (p->buf)
1161           int res = LzmaDec_DecodeReal2(p, dicLimit, p->buf);
1162 
1163           SizeT processed = (SizeT)(p->buf - p->tempBuf);
1164           rem = p->tempBufSize;
1165 
1166           if (dummyProcessed < 0)
1167           {
1168             if (processed > LZMA_REQUIRED_INPUT_MAX)
1169               break;
1170             if (processed < rem)
1171               break;
1172           }
1173           else if ((unsigned)dummyProcessed != processed)
1174             break;
1175 
1176           processed -= rem;
1177 
1178           src += processed;
1179           inSize -= processed;
1180           (*srcLen) += processed;
1181           p->tempBufSize = 0;
1182 
1183           if (res != SZ_OK)
1184           {
1185             p->remainLen = kMatchSpecLen_Error_Data;
1186             return SZ_ERROR_DATA;
1187           }
1188         }
1189       }
1190     }
1191   }
1192 
1193   /*  Some unexpected error: internal error of code, memory corruption or hardware failure */
1194   p->remainLen = kMatchSpecLen_Error_Fail;
1195   return SZ_ERROR_FAIL;
1196 }
1197 
1198 
1199 
LzmaDec_DecodeToBuf(CLzmaDec * p,Byte * dest,SizeT * destLen,const Byte * src,SizeT * srcLen,ELzmaFinishMode finishMode,ELzmaStatus * status)1200 SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
1201 {
1202   SizeT outSize = *destLen;
1203   SizeT inSize = *srcLen;
1204   *srcLen = *destLen = 0;
1205   for (;;)
1206   {
1207     SizeT inSizeCur = inSize, outSizeCur, dicPos;
1208     ELzmaFinishMode curFinishMode;
1209     SRes res;
1210     if (p->dicPos == p->dicBufSize)
1211       p->dicPos = 0;
1212     dicPos = p->dicPos;
1213     if (outSize > p->dicBufSize - dicPos)
1214     {
1215       outSizeCur = p->dicBufSize;
1216       curFinishMode = LZMA_FINISH_ANY;
1217     }
1218     else
1219     {
1220       outSizeCur = dicPos + outSize;
1221       curFinishMode = finishMode;
1222     }
1223 
1224     res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
1225     src += inSizeCur;
1226     inSize -= inSizeCur;
1227     *srcLen += inSizeCur;
1228     outSizeCur = p->dicPos - dicPos;
1229     memcpy(dest, p->dic + dicPos, outSizeCur);
1230     dest += outSizeCur;
1231     outSize -= outSizeCur;
1232     *destLen += outSizeCur;
1233     if (res != 0)
1234       return res;
1235     if (outSizeCur == 0 || outSize == 0)
1236       return SZ_OK;
1237   }
1238 }
1239 
LzmaDec_FreeProbs(CLzmaDec * p,ISzAllocPtr alloc)1240 void LzmaDec_FreeProbs(CLzmaDec *p, ISzAllocPtr alloc)
1241 {
1242   ISzAlloc_Free(alloc, p->probs);
1243   p->probs = NULL;
1244 }
1245 
LzmaDec_FreeDict(CLzmaDec * p,ISzAllocPtr alloc)1246 static void LzmaDec_FreeDict(CLzmaDec *p, ISzAllocPtr alloc)
1247 {
1248   ISzAlloc_Free(alloc, p->dic);
1249   p->dic = NULL;
1250 }
1251 
LzmaDec_Free(CLzmaDec * p,ISzAllocPtr alloc)1252 void LzmaDec_Free(CLzmaDec *p, ISzAllocPtr alloc)
1253 {
1254   LzmaDec_FreeProbs(p, alloc);
1255   LzmaDec_FreeDict(p, alloc);
1256 }
1257 
LzmaProps_Decode(CLzmaProps * p,const Byte * data,unsigned size)1258 SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
1259 {
1260   UInt32 dicSize;
1261   Byte d;
1262 
1263   if (size < LZMA_PROPS_SIZE)
1264     return SZ_ERROR_UNSUPPORTED;
1265   else
1266     dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
1267 
1268   if (dicSize < LZMA_DIC_MIN)
1269     dicSize = LZMA_DIC_MIN;
1270   p->dicSize = dicSize;
1271 
1272   d = data[0];
1273   if (d >= (9 * 5 * 5))
1274     return SZ_ERROR_UNSUPPORTED;
1275 
1276   p->lc = (Byte)(d % 9);
1277   d /= 9;
1278   p->pb = (Byte)(d / 5);
1279   p->lp = (Byte)(d % 5);
1280 
1281   return SZ_OK;
1282 }
1283 
LzmaDec_AllocateProbs2(CLzmaDec * p,const CLzmaProps * propNew,ISzAllocPtr alloc)1284 static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAllocPtr alloc)
1285 {
1286   UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
1287   if (!p->probs || numProbs != p->numProbs)
1288   {
1289     LzmaDec_FreeProbs(p, alloc);
1290     p->probs = (CLzmaProb *)ISzAlloc_Alloc(alloc, numProbs * sizeof(CLzmaProb));
1291     if (!p->probs)
1292       return SZ_ERROR_MEM;
1293     p->probs_1664 = p->probs + 1664;
1294     p->numProbs = numProbs;
1295   }
1296   return SZ_OK;
1297 }
1298 
LzmaDec_AllocateProbs(CLzmaDec * p,const Byte * props,unsigned propsSize,ISzAllocPtr alloc)1299 SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
1300 {
1301   CLzmaProps propNew;
1302   RINOK(LzmaProps_Decode(&propNew, props, propsSize));
1303   RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
1304   p->prop = propNew;
1305   return SZ_OK;
1306 }
1307 
LzmaDec_Allocate(CLzmaDec * p,const Byte * props,unsigned propsSize,ISzAllocPtr alloc)1308 SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
1309 {
1310   CLzmaProps propNew;
1311   SizeT dicBufSize;
1312   RINOK(LzmaProps_Decode(&propNew, props, propsSize));
1313   RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
1314 
1315   {
1316     UInt32 dictSize = propNew.dicSize;
1317     SizeT mask = ((UInt32)1 << 12) - 1;
1318          if (dictSize >= ((UInt32)1 << 30)) mask = ((UInt32)1 << 22) - 1;
1319     else if (dictSize >= ((UInt32)1 << 22)) mask = ((UInt32)1 << 20) - 1;;
1320     dicBufSize = ((SizeT)dictSize + mask) & ~mask;
1321     if (dicBufSize < dictSize)
1322       dicBufSize = dictSize;
1323   }
1324 
1325   if (!p->dic || dicBufSize != p->dicBufSize)
1326   {
1327     LzmaDec_FreeDict(p, alloc);
1328     p->dic = (Byte *)ISzAlloc_Alloc(alloc, dicBufSize);
1329     if (!p->dic)
1330     {
1331       LzmaDec_FreeProbs(p, alloc);
1332       return SZ_ERROR_MEM;
1333     }
1334   }
1335   p->dicBufSize = dicBufSize;
1336   p->prop = propNew;
1337   return SZ_OK;
1338 }
1339 
LzmaDecode(Byte * dest,SizeT * destLen,const Byte * src,SizeT * srcLen,const Byte * propData,unsigned propSize,ELzmaFinishMode finishMode,ELzmaStatus * status,ISzAllocPtr alloc)1340 SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
1341     const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
1342     ELzmaStatus *status, ISzAllocPtr alloc)
1343 {
1344   CLzmaDec p;
1345   SRes res;
1346   SizeT outSize = *destLen, inSize = *srcLen;
1347   *destLen = *srcLen = 0;
1348   *status = LZMA_STATUS_NOT_SPECIFIED;
1349   if (inSize < RC_INIT_SIZE)
1350     return SZ_ERROR_INPUT_EOF;
1351   LzmaDec_Construct(&p);
1352   RINOK(LzmaDec_AllocateProbs(&p, propData, propSize, alloc));
1353   p.dic = dest;
1354   p.dicBufSize = outSize;
1355   LzmaDec_Init(&p);
1356   *srcLen = inSize;
1357   res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
1358   *destLen = p.dicPos;
1359   if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
1360     res = SZ_ERROR_INPUT_EOF;
1361   LzmaDec_FreeProbs(&p, alloc);
1362   return res;
1363 }
1364