• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2021 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/bigint/bigint-internal.h"
6 #include "src/bigint/digit-arithmetic.h"
7 #include "src/bigint/vector-arithmetic.h"
8 
9 namespace v8 {
10 namespace bigint {
11 
12 // Z := X * y, where y is a single digit.
MultiplySingle(RWDigits Z,Digits X,digit_t y)13 void ProcessorImpl::MultiplySingle(RWDigits Z, Digits X, digit_t y) {
14   DCHECK(y != 0);
15   digit_t carry = 0;
16   digit_t high = 0;
17   for (int i = 0; i < X.len(); i++) {
18     digit_t new_high;
19     digit_t low = digit_mul(X[i], y, &new_high);
20     Z[i] = digit_add3(low, high, carry, &carry);
21     high = new_high;
22   }
23   AddWorkEstimate(X.len());
24   Z[X.len()] = carry + high;
25   for (int i = X.len() + 1; i < Z.len(); i++) Z[i] = 0;
26 }
27 
28 #define BODY(min, max)                              \
29   for (int j = min; j <= max; j++) {                \
30     digit_t high;                                   \
31     digit_t low = digit_mul(X[j], Y[i - j], &high); \
32     digit_t carrybit;                               \
33     zi = digit_add2(zi, low, &carrybit);            \
34     carry += carrybit;                              \
35     next = digit_add2(next, high, &carrybit);       \
36     next_carry += carrybit;                         \
37   }                                                 \
38   Z[i] = zi
39 
40 // Z := X * Y.
41 // O(n²) "schoolbook" multiplication algorithm. Optimized to minimize
42 // bounds and overflow checks: rather than looping over X for every digit
43 // of Y (or vice versa), we loop over Z. The {BODY} macro above is what
44 // computes one of Z's digits as a sum of the products of relevant digits
45 // of X and Y. This yields a nearly 2x improvement compared to more obvious
46 // implementations.
47 // This method is *highly* performance sensitive even for the advanced
48 // algorithms, which use this as the base case of their recursive calls.
MultiplySchoolbook(RWDigits Z,Digits X,Digits Y)49 void ProcessorImpl::MultiplySchoolbook(RWDigits Z, Digits X, Digits Y) {
50   DCHECK(IsDigitNormalized(X));
51   DCHECK(IsDigitNormalized(Y));
52   DCHECK(X.len() >= Y.len());
53   DCHECK(Z.len() >= X.len() + Y.len());
54   if (X.len() == 0 || Y.len() == 0) return Z.Clear();
55   digit_t next, next_carry = 0, carry = 0;
56   // Unrolled first iteration: it's trivial.
57   Z[0] = digit_mul(X[0], Y[0], &next);
58   int i = 1;
59   // Unrolled second iteration: a little less setup.
60   if (i < Y.len()) {
61     digit_t zi = next;
62     next = 0;
63     BODY(0, 1);
64     i++;
65   }
66   // Main part: since X.len() >= Y.len() > i, no bounds checks are needed.
67   for (; i < Y.len(); i++) {
68     digit_t zi = digit_add2(next, carry, &carry);
69     next = next_carry + carry;
70     carry = 0;
71     next_carry = 0;
72     BODY(0, i);
73     AddWorkEstimate(i);
74   }
75   // Last part: i exceeds Y now, we have to be careful about bounds.
76   int loop_end = X.len() + Y.len() - 2;
77   for (; i <= loop_end; i++) {
78     int max_x_index = std::min(i, X.len() - 1);
79     int max_y_index = Y.len() - 1;
80     int min_x_index = i - max_y_index;
81     digit_t zi = digit_add2(next, carry, &carry);
82     next = next_carry + carry;
83     carry = 0;
84     next_carry = 0;
85     BODY(min_x_index, max_x_index);
86     AddWorkEstimate(max_x_index - min_x_index);
87   }
88   // Write the last digit, and zero out any extra space in Z.
89   Z[i++] = digit_add2(next, carry, &carry);
90   DCHECK(carry == 0);
91   for (; i < Z.len(); i++) Z[i] = 0;
92 }
93 
94 #undef BODY
95 
96 }  // namespace bigint
97 }  // namespace v8
98