1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 const struct ethtool_ops *ops);
76
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
79 #define NET_RX_DROP 1 /* packet dropped */
80
81 #define MAX_NEST_DEV 8
82
83 /*
84 * Transmit return codes: transmit return codes originate from three different
85 * namespaces:
86 *
87 * - qdisc return codes
88 * - driver transmit return codes
89 * - errno values
90 *
91 * Drivers are allowed to return any one of those in their hard_start_xmit()
92 * function. Real network devices commonly used with qdiscs should only return
93 * the driver transmit return codes though - when qdiscs are used, the actual
94 * transmission happens asynchronously, so the value is not propagated to
95 * higher layers. Virtual network devices transmit synchronously; in this case
96 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97 * others are propagated to higher layers.
98 */
99
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS 0x00
102 #define NET_XMIT_DROP 0x01 /* skb dropped */
103 #define NET_XMIT_CN 0x02 /* congestion notification */
104 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
105
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107 * indicates that the device will soon be dropping packets, or already drops
108 * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK 0xf0
114
115 enum netdev_tx {
116 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
117 NETDEV_TX_OK = 0x00, /* driver took care of packet */
118 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121
122 /*
123 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125 */
dev_xmit_complete(int rc)126 static inline bool dev_xmit_complete(int rc)
127 {
128 /*
129 * Positive cases with an skb consumed by a driver:
130 * - successful transmission (rc == NETDEV_TX_OK)
131 * - error while transmitting (rc < 0)
132 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 */
134 if (likely(rc < NET_XMIT_MASK))
135 return true;
136
137 return false;
138 }
139
140 /*
141 * Compute the worst-case header length according to the protocols
142 * used.
143 */
144
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 # define LL_MAX_HEADER 128
150 # else
151 # define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163
164 /*
165 * Old network device statistics. Fields are native words
166 * (unsigned long) so they can be read and written atomically.
167 */
168
169 #define NET_DEV_STAT(FIELD) \
170 union { \
171 unsigned long FIELD; \
172 atomic_long_t __##FIELD; \
173 }
174
175 struct net_device_stats {
176 NET_DEV_STAT(rx_packets);
177 NET_DEV_STAT(tx_packets);
178 NET_DEV_STAT(rx_bytes);
179 NET_DEV_STAT(tx_bytes);
180 NET_DEV_STAT(rx_errors);
181 NET_DEV_STAT(tx_errors);
182 NET_DEV_STAT(rx_dropped);
183 NET_DEV_STAT(tx_dropped);
184 NET_DEV_STAT(multicast);
185 NET_DEV_STAT(collisions);
186 NET_DEV_STAT(rx_length_errors);
187 NET_DEV_STAT(rx_over_errors);
188 NET_DEV_STAT(rx_crc_errors);
189 NET_DEV_STAT(rx_frame_errors);
190 NET_DEV_STAT(rx_fifo_errors);
191 NET_DEV_STAT(rx_missed_errors);
192 NET_DEV_STAT(tx_aborted_errors);
193 NET_DEV_STAT(tx_carrier_errors);
194 NET_DEV_STAT(tx_fifo_errors);
195 NET_DEV_STAT(tx_heartbeat_errors);
196 NET_DEV_STAT(tx_window_errors);
197 NET_DEV_STAT(rx_compressed);
198 NET_DEV_STAT(tx_compressed);
199 };
200 #undef NET_DEV_STAT
201
202
203 #include <linux/cache.h>
204 #include <linux/skbuff.h>
205
206 #ifdef CONFIG_RPS
207 #include <linux/static_key.h>
208 extern struct static_key_false rps_needed;
209 extern struct static_key_false rfs_needed;
210 #endif
211
212 struct neighbour;
213 struct neigh_parms;
214 struct sk_buff;
215
216 struct netdev_hw_addr {
217 struct list_head list;
218 unsigned char addr[MAX_ADDR_LEN];
219 unsigned char type;
220 #define NETDEV_HW_ADDR_T_LAN 1
221 #define NETDEV_HW_ADDR_T_SAN 2
222 #define NETDEV_HW_ADDR_T_UNICAST 3
223 #define NETDEV_HW_ADDR_T_MULTICAST 4
224 bool global_use;
225 int sync_cnt;
226 int refcount;
227 int synced;
228 struct rcu_head rcu_head;
229 };
230
231 struct netdev_hw_addr_list {
232 struct list_head list;
233 int count;
234 };
235
236 #define netdev_hw_addr_list_count(l) ((l)->count)
237 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
238 #define netdev_hw_addr_list_for_each(ha, l) \
239 list_for_each_entry(ha, &(l)->list, list)
240
241 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
242 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
243 #define netdev_for_each_uc_addr(ha, dev) \
244 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
245
246 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
247 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
248 #define netdev_for_each_mc_addr(ha, dev) \
249 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
250
251 struct hh_cache {
252 unsigned int hh_len;
253 seqlock_t hh_lock;
254
255 /* cached hardware header; allow for machine alignment needs. */
256 #define HH_DATA_MOD 16
257 #define HH_DATA_OFF(__len) \
258 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
259 #define HH_DATA_ALIGN(__len) \
260 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
261 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
262 };
263
264 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
265 * Alternative is:
266 * dev->hard_header_len ? (dev->hard_header_len +
267 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
268 *
269 * We could use other alignment values, but we must maintain the
270 * relationship HH alignment <= LL alignment.
271 */
272 #define LL_RESERVED_SPACE(dev) \
273 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
274 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
275 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
276 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
277 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
278
279 struct header_ops {
280 int (*create) (struct sk_buff *skb, struct net_device *dev,
281 unsigned short type, const void *daddr,
282 const void *saddr, unsigned int len);
283 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
284 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
285 void (*cache_update)(struct hh_cache *hh,
286 const struct net_device *dev,
287 const unsigned char *haddr);
288 bool (*validate)(const char *ll_header, unsigned int len);
289 __be16 (*parse_protocol)(const struct sk_buff *skb);
290 };
291
292 /* These flag bits are private to the generic network queueing
293 * layer; they may not be explicitly referenced by any other
294 * code.
295 */
296
297 enum netdev_state_t {
298 __LINK_STATE_START,
299 __LINK_STATE_PRESENT,
300 __LINK_STATE_NOCARRIER,
301 __LINK_STATE_LINKWATCH_PENDING,
302 __LINK_STATE_DORMANT,
303 __LINK_STATE_TESTING,
304 };
305
306
307 /*
308 * This structure holds boot-time configured netdevice settings. They
309 * are then used in the device probing.
310 */
311 struct netdev_boot_setup {
312 char name[IFNAMSIZ];
313 struct ifmap map;
314 };
315 #define NETDEV_BOOT_SETUP_MAX 8
316
317 int __init netdev_boot_setup(char *str);
318
319 struct gro_list {
320 struct list_head list;
321 int count;
322 };
323
324 /*
325 * size of gro hash buckets, must less than bit number of
326 * napi_struct::gro_bitmask
327 */
328 #define GRO_HASH_BUCKETS 8
329
330 /*
331 * Structure for NAPI scheduling similar to tasklet but with weighting
332 */
333 struct napi_struct {
334 /* The poll_list must only be managed by the entity which
335 * changes the state of the NAPI_STATE_SCHED bit. This means
336 * whoever atomically sets that bit can add this napi_struct
337 * to the per-CPU poll_list, and whoever clears that bit
338 * can remove from the list right before clearing the bit.
339 */
340 struct list_head poll_list;
341
342 unsigned long state;
343 int weight;
344 int defer_hard_irqs_count;
345 unsigned long gro_bitmask;
346 int (*poll)(struct napi_struct *, int);
347 #ifdef CONFIG_NETPOLL
348 int poll_owner;
349 #endif
350 struct net_device *dev;
351 struct gro_list gro_hash[GRO_HASH_BUCKETS];
352 struct sk_buff *skb;
353 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
354 int rx_count; /* length of rx_list */
355 struct hrtimer timer;
356 struct list_head dev_list;
357 struct hlist_node napi_hash_node;
358 unsigned int napi_id;
359 };
360
361 enum {
362 NAPI_STATE_SCHED, /* Poll is scheduled */
363 NAPI_STATE_MISSED, /* reschedule a napi */
364 NAPI_STATE_DISABLE, /* Disable pending */
365 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
366 NAPI_STATE_LISTED, /* NAPI added to system lists */
367 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
368 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
369 };
370
371 enum {
372 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
373 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
374 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
375 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
376 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED),
377 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
378 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
379 };
380
381 enum gro_result {
382 GRO_MERGED,
383 GRO_MERGED_FREE,
384 GRO_HELD,
385 GRO_NORMAL,
386 GRO_DROP,
387 GRO_CONSUMED,
388 };
389 typedef enum gro_result gro_result_t;
390
391 /*
392 * enum rx_handler_result - Possible return values for rx_handlers.
393 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
394 * further.
395 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
396 * case skb->dev was changed by rx_handler.
397 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
398 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
399 *
400 * rx_handlers are functions called from inside __netif_receive_skb(), to do
401 * special processing of the skb, prior to delivery to protocol handlers.
402 *
403 * Currently, a net_device can only have a single rx_handler registered. Trying
404 * to register a second rx_handler will return -EBUSY.
405 *
406 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
407 * To unregister a rx_handler on a net_device, use
408 * netdev_rx_handler_unregister().
409 *
410 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
411 * do with the skb.
412 *
413 * If the rx_handler consumed the skb in some way, it should return
414 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
415 * the skb to be delivered in some other way.
416 *
417 * If the rx_handler changed skb->dev, to divert the skb to another
418 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
419 * new device will be called if it exists.
420 *
421 * If the rx_handler decides the skb should be ignored, it should return
422 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
423 * are registered on exact device (ptype->dev == skb->dev).
424 *
425 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
426 * delivered, it should return RX_HANDLER_PASS.
427 *
428 * A device without a registered rx_handler will behave as if rx_handler
429 * returned RX_HANDLER_PASS.
430 */
431
432 enum rx_handler_result {
433 RX_HANDLER_CONSUMED,
434 RX_HANDLER_ANOTHER,
435 RX_HANDLER_EXACT,
436 RX_HANDLER_PASS,
437 };
438 typedef enum rx_handler_result rx_handler_result_t;
439 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
440
441 void __napi_schedule(struct napi_struct *n);
442 void __napi_schedule_irqoff(struct napi_struct *n);
443
napi_disable_pending(struct napi_struct * n)444 static inline bool napi_disable_pending(struct napi_struct *n)
445 {
446 return test_bit(NAPI_STATE_DISABLE, &n->state);
447 }
448
449 bool napi_schedule_prep(struct napi_struct *n);
450
451 /**
452 * napi_schedule - schedule NAPI poll
453 * @n: NAPI context
454 *
455 * Schedule NAPI poll routine to be called if it is not already
456 * running.
457 */
napi_schedule(struct napi_struct * n)458 static inline void napi_schedule(struct napi_struct *n)
459 {
460 if (napi_schedule_prep(n))
461 __napi_schedule(n);
462 }
463
464 /**
465 * napi_schedule_irqoff - schedule NAPI poll
466 * @n: NAPI context
467 *
468 * Variant of napi_schedule(), assuming hard irqs are masked.
469 */
napi_schedule_irqoff(struct napi_struct * n)470 static inline void napi_schedule_irqoff(struct napi_struct *n)
471 {
472 if (napi_schedule_prep(n))
473 __napi_schedule_irqoff(n);
474 }
475
476 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
napi_reschedule(struct napi_struct * napi)477 static inline bool napi_reschedule(struct napi_struct *napi)
478 {
479 if (napi_schedule_prep(napi)) {
480 __napi_schedule(napi);
481 return true;
482 }
483 return false;
484 }
485
486 bool napi_complete_done(struct napi_struct *n, int work_done);
487 /**
488 * napi_complete - NAPI processing complete
489 * @n: NAPI context
490 *
491 * Mark NAPI processing as complete.
492 * Consider using napi_complete_done() instead.
493 * Return false if device should avoid rearming interrupts.
494 */
napi_complete(struct napi_struct * n)495 static inline bool napi_complete(struct napi_struct *n)
496 {
497 return napi_complete_done(n, 0);
498 }
499
500 /**
501 * napi_disable - prevent NAPI from scheduling
502 * @n: NAPI context
503 *
504 * Stop NAPI from being scheduled on this context.
505 * Waits till any outstanding processing completes.
506 */
507 void napi_disable(struct napi_struct *n);
508
509 /**
510 * napi_enable - enable NAPI scheduling
511 * @n: NAPI context
512 *
513 * Resume NAPI from being scheduled on this context.
514 * Must be paired with napi_disable.
515 */
napi_enable(struct napi_struct * n)516 static inline void napi_enable(struct napi_struct *n)
517 {
518 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
519 smp_mb__before_atomic();
520 clear_bit(NAPI_STATE_SCHED, &n->state);
521 clear_bit(NAPI_STATE_NPSVC, &n->state);
522 }
523
524 /**
525 * napi_synchronize - wait until NAPI is not running
526 * @n: NAPI context
527 *
528 * Wait until NAPI is done being scheduled on this context.
529 * Waits till any outstanding processing completes but
530 * does not disable future activations.
531 */
napi_synchronize(const struct napi_struct * n)532 static inline void napi_synchronize(const struct napi_struct *n)
533 {
534 if (IS_ENABLED(CONFIG_SMP))
535 while (test_bit(NAPI_STATE_SCHED, &n->state))
536 msleep(1);
537 else
538 barrier();
539 }
540
541 /**
542 * napi_if_scheduled_mark_missed - if napi is running, set the
543 * NAPIF_STATE_MISSED
544 * @n: NAPI context
545 *
546 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
547 * NAPI is scheduled.
548 **/
napi_if_scheduled_mark_missed(struct napi_struct * n)549 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
550 {
551 unsigned long val, new;
552
553 do {
554 val = READ_ONCE(n->state);
555 if (val & NAPIF_STATE_DISABLE)
556 return true;
557
558 if (!(val & NAPIF_STATE_SCHED))
559 return false;
560
561 new = val | NAPIF_STATE_MISSED;
562 } while (cmpxchg(&n->state, val, new) != val);
563
564 return true;
565 }
566
567 enum netdev_queue_state_t {
568 __QUEUE_STATE_DRV_XOFF,
569 __QUEUE_STATE_STACK_XOFF,
570 __QUEUE_STATE_FROZEN,
571 };
572
573 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
574 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
575 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
576
577 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
578 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
579 QUEUE_STATE_FROZEN)
580 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
581 QUEUE_STATE_FROZEN)
582
583 /*
584 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
585 * netif_tx_* functions below are used to manipulate this flag. The
586 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
587 * queue independently. The netif_xmit_*stopped functions below are called
588 * to check if the queue has been stopped by the driver or stack (either
589 * of the XOFF bits are set in the state). Drivers should not need to call
590 * netif_xmit*stopped functions, they should only be using netif_tx_*.
591 */
592
593 struct netdev_queue {
594 /*
595 * read-mostly part
596 */
597 struct net_device *dev;
598 struct Qdisc __rcu *qdisc;
599 struct Qdisc *qdisc_sleeping;
600 #ifdef CONFIG_SYSFS
601 struct kobject kobj;
602 #endif
603 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
604 int numa_node;
605 #endif
606 unsigned long tx_maxrate;
607 /*
608 * Number of TX timeouts for this queue
609 * (/sys/class/net/DEV/Q/trans_timeout)
610 */
611 unsigned long trans_timeout;
612
613 /* Subordinate device that the queue has been assigned to */
614 struct net_device *sb_dev;
615 #ifdef CONFIG_XDP_SOCKETS
616 struct xsk_buff_pool *pool;
617 #endif
618 /*
619 * write-mostly part
620 */
621 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
622 int xmit_lock_owner;
623 /*
624 * Time (in jiffies) of last Tx
625 */
626 unsigned long trans_start;
627
628 unsigned long state;
629
630 #ifdef CONFIG_BQL
631 struct dql dql;
632 #endif
633 } ____cacheline_aligned_in_smp;
634
635 extern int sysctl_fb_tunnels_only_for_init_net;
636 extern int sysctl_devconf_inherit_init_net;
637
638 /*
639 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
640 * == 1 : For initns only
641 * == 2 : For none.
642 */
net_has_fallback_tunnels(const struct net * net)643 static inline bool net_has_fallback_tunnels(const struct net *net)
644 {
645 #if IS_ENABLED(CONFIG_SYSCTL)
646 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
647
648 return !fb_tunnels_only_for_init_net ||
649 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
650 #else
651 return true;
652 #endif
653 }
654
net_inherit_devconf(void)655 static inline int net_inherit_devconf(void)
656 {
657 #if IS_ENABLED(CONFIG_SYSCTL)
658 return READ_ONCE(sysctl_devconf_inherit_init_net);
659 #else
660 return 0;
661 #endif
662 }
663
netdev_queue_numa_node_read(const struct netdev_queue * q)664 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
665 {
666 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
667 return q->numa_node;
668 #else
669 return NUMA_NO_NODE;
670 #endif
671 }
672
netdev_queue_numa_node_write(struct netdev_queue * q,int node)673 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
674 {
675 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
676 q->numa_node = node;
677 #endif
678 }
679
680 #ifdef CONFIG_RPS
681 /*
682 * This structure holds an RPS map which can be of variable length. The
683 * map is an array of CPUs.
684 */
685 struct rps_map {
686 unsigned int len;
687 struct rcu_head rcu;
688 u16 cpus[];
689 };
690 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
691
692 /*
693 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
694 * tail pointer for that CPU's input queue at the time of last enqueue, and
695 * a hardware filter index.
696 */
697 struct rps_dev_flow {
698 u16 cpu;
699 u16 filter;
700 unsigned int last_qtail;
701 };
702 #define RPS_NO_FILTER 0xffff
703
704 /*
705 * The rps_dev_flow_table structure contains a table of flow mappings.
706 */
707 struct rps_dev_flow_table {
708 unsigned int mask;
709 struct rcu_head rcu;
710 struct rps_dev_flow flows[];
711 };
712 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
713 ((_num) * sizeof(struct rps_dev_flow)))
714
715 /*
716 * The rps_sock_flow_table contains mappings of flows to the last CPU
717 * on which they were processed by the application (set in recvmsg).
718 * Each entry is a 32bit value. Upper part is the high-order bits
719 * of flow hash, lower part is CPU number.
720 * rps_cpu_mask is used to partition the space, depending on number of
721 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
722 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
723 * meaning we use 32-6=26 bits for the hash.
724 */
725 struct rps_sock_flow_table {
726 u32 mask;
727
728 u32 ents[] ____cacheline_aligned_in_smp;
729 };
730 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
731
732 #define RPS_NO_CPU 0xffff
733
734 extern u32 rps_cpu_mask;
735 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
736
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)737 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
738 u32 hash)
739 {
740 if (table && hash) {
741 unsigned int index = hash & table->mask;
742 u32 val = hash & ~rps_cpu_mask;
743
744 /* We only give a hint, preemption can change CPU under us */
745 val |= raw_smp_processor_id();
746
747 /* The following WRITE_ONCE() is paired with the READ_ONCE()
748 * here, and another one in get_rps_cpu().
749 */
750 if (READ_ONCE(table->ents[index]) != val)
751 WRITE_ONCE(table->ents[index], val);
752 }
753 }
754
755 #ifdef CONFIG_RFS_ACCEL
756 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
757 u16 filter_id);
758 #endif
759 #endif /* CONFIG_RPS */
760
761 /* This structure contains an instance of an RX queue. */
762 struct netdev_rx_queue {
763 #ifdef CONFIG_RPS
764 struct rps_map __rcu *rps_map;
765 struct rps_dev_flow_table __rcu *rps_flow_table;
766 #endif
767 struct kobject kobj;
768 struct net_device *dev;
769 struct xdp_rxq_info xdp_rxq;
770 #ifdef CONFIG_XDP_SOCKETS
771 struct xsk_buff_pool *pool;
772 #endif
773 } ____cacheline_aligned_in_smp;
774
775 /*
776 * RX queue sysfs structures and functions.
777 */
778 struct rx_queue_attribute {
779 struct attribute attr;
780 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
781 ssize_t (*store)(struct netdev_rx_queue *queue,
782 const char *buf, size_t len);
783 };
784
785 #ifdef CONFIG_XPS
786 /*
787 * This structure holds an XPS map which can be of variable length. The
788 * map is an array of queues.
789 */
790 struct xps_map {
791 unsigned int len;
792 unsigned int alloc_len;
793 struct rcu_head rcu;
794 u16 queues[];
795 };
796 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
797 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
798 - sizeof(struct xps_map)) / sizeof(u16))
799
800 /*
801 * This structure holds all XPS maps for device. Maps are indexed by CPU.
802 */
803 struct xps_dev_maps {
804 struct rcu_head rcu;
805 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
806 };
807
808 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
809 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
810
811 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
812 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
813
814 #endif /* CONFIG_XPS */
815
816 #define TC_MAX_QUEUE 16
817 #define TC_BITMASK 15
818 /* HW offloaded queuing disciplines txq count and offset maps */
819 struct netdev_tc_txq {
820 u16 count;
821 u16 offset;
822 };
823
824 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
825 /*
826 * This structure is to hold information about the device
827 * configured to run FCoE protocol stack.
828 */
829 struct netdev_fcoe_hbainfo {
830 char manufacturer[64];
831 char serial_number[64];
832 char hardware_version[64];
833 char driver_version[64];
834 char optionrom_version[64];
835 char firmware_version[64];
836 char model[256];
837 char model_description[256];
838 };
839 #endif
840
841 #define MAX_PHYS_ITEM_ID_LEN 32
842
843 /* This structure holds a unique identifier to identify some
844 * physical item (port for example) used by a netdevice.
845 */
846 struct netdev_phys_item_id {
847 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
848 unsigned char id_len;
849 };
850
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)851 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
852 struct netdev_phys_item_id *b)
853 {
854 return a->id_len == b->id_len &&
855 memcmp(a->id, b->id, a->id_len) == 0;
856 }
857
858 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
859 struct sk_buff *skb,
860 struct net_device *sb_dev);
861
862 enum tc_setup_type {
863 TC_SETUP_QDISC_MQPRIO,
864 TC_SETUP_CLSU32,
865 TC_SETUP_CLSFLOWER,
866 TC_SETUP_CLSMATCHALL,
867 TC_SETUP_CLSBPF,
868 TC_SETUP_BLOCK,
869 TC_SETUP_QDISC_CBS,
870 TC_SETUP_QDISC_RED,
871 TC_SETUP_QDISC_PRIO,
872 TC_SETUP_QDISC_MQ,
873 TC_SETUP_QDISC_ETF,
874 TC_SETUP_ROOT_QDISC,
875 TC_SETUP_QDISC_GRED,
876 TC_SETUP_QDISC_TAPRIO,
877 TC_SETUP_FT,
878 TC_SETUP_QDISC_ETS,
879 TC_SETUP_QDISC_TBF,
880 TC_SETUP_QDISC_FIFO,
881 };
882
883 /* These structures hold the attributes of bpf state that are being passed
884 * to the netdevice through the bpf op.
885 */
886 enum bpf_netdev_command {
887 /* Set or clear a bpf program used in the earliest stages of packet
888 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
889 * is responsible for calling bpf_prog_put on any old progs that are
890 * stored. In case of error, the callee need not release the new prog
891 * reference, but on success it takes ownership and must bpf_prog_put
892 * when it is no longer used.
893 */
894 XDP_SETUP_PROG,
895 XDP_SETUP_PROG_HW,
896 /* BPF program for offload callbacks, invoked at program load time. */
897 BPF_OFFLOAD_MAP_ALLOC,
898 BPF_OFFLOAD_MAP_FREE,
899 XDP_SETUP_XSK_POOL,
900 };
901
902 struct bpf_prog_offload_ops;
903 struct netlink_ext_ack;
904 struct xdp_umem;
905 struct xdp_dev_bulk_queue;
906 struct bpf_xdp_link;
907
908 enum bpf_xdp_mode {
909 XDP_MODE_SKB = 0,
910 XDP_MODE_DRV = 1,
911 XDP_MODE_HW = 2,
912 __MAX_XDP_MODE
913 };
914
915 struct bpf_xdp_entity {
916 struct bpf_prog *prog;
917 struct bpf_xdp_link *link;
918 };
919
920 struct netdev_bpf {
921 enum bpf_netdev_command command;
922 union {
923 /* XDP_SETUP_PROG */
924 struct {
925 u32 flags;
926 struct bpf_prog *prog;
927 struct netlink_ext_ack *extack;
928 };
929 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
930 struct {
931 struct bpf_offloaded_map *offmap;
932 };
933 /* XDP_SETUP_XSK_POOL */
934 struct {
935 struct xsk_buff_pool *pool;
936 u16 queue_id;
937 } xsk;
938 };
939 };
940
941 /* Flags for ndo_xsk_wakeup. */
942 #define XDP_WAKEUP_RX (1 << 0)
943 #define XDP_WAKEUP_TX (1 << 1)
944
945 #ifdef CONFIG_XFRM_OFFLOAD
946 struct xfrmdev_ops {
947 int (*xdo_dev_state_add) (struct xfrm_state *x);
948 void (*xdo_dev_state_delete) (struct xfrm_state *x);
949 void (*xdo_dev_state_free) (struct xfrm_state *x);
950 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
951 struct xfrm_state *x);
952 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
953 };
954 #endif
955
956 struct dev_ifalias {
957 struct rcu_head rcuhead;
958 char ifalias[];
959 };
960
961 struct devlink;
962 struct tlsdev_ops;
963
964 struct netdev_name_node {
965 struct hlist_node hlist;
966 struct list_head list;
967 struct net_device *dev;
968 const char *name;
969 };
970
971 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
972 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
973
974 struct netdev_net_notifier {
975 struct list_head list;
976 struct notifier_block *nb;
977 };
978
979 /*
980 * This structure defines the management hooks for network devices.
981 * The following hooks can be defined; unless noted otherwise, they are
982 * optional and can be filled with a null pointer.
983 *
984 * int (*ndo_init)(struct net_device *dev);
985 * This function is called once when a network device is registered.
986 * The network device can use this for any late stage initialization
987 * or semantic validation. It can fail with an error code which will
988 * be propagated back to register_netdev.
989 *
990 * void (*ndo_uninit)(struct net_device *dev);
991 * This function is called when device is unregistered or when registration
992 * fails. It is not called if init fails.
993 *
994 * int (*ndo_open)(struct net_device *dev);
995 * This function is called when a network device transitions to the up
996 * state.
997 *
998 * int (*ndo_stop)(struct net_device *dev);
999 * This function is called when a network device transitions to the down
1000 * state.
1001 *
1002 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1003 * struct net_device *dev);
1004 * Called when a packet needs to be transmitted.
1005 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
1006 * the queue before that can happen; it's for obsolete devices and weird
1007 * corner cases, but the stack really does a non-trivial amount
1008 * of useless work if you return NETDEV_TX_BUSY.
1009 * Required; cannot be NULL.
1010 *
1011 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1012 * struct net_device *dev
1013 * netdev_features_t features);
1014 * Called by core transmit path to determine if device is capable of
1015 * performing offload operations on a given packet. This is to give
1016 * the device an opportunity to implement any restrictions that cannot
1017 * be otherwise expressed by feature flags. The check is called with
1018 * the set of features that the stack has calculated and it returns
1019 * those the driver believes to be appropriate.
1020 *
1021 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1022 * struct net_device *sb_dev);
1023 * Called to decide which queue to use when device supports multiple
1024 * transmit queues.
1025 *
1026 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1027 * This function is called to allow device receiver to make
1028 * changes to configuration when multicast or promiscuous is enabled.
1029 *
1030 * void (*ndo_set_rx_mode)(struct net_device *dev);
1031 * This function is called device changes address list filtering.
1032 * If driver handles unicast address filtering, it should set
1033 * IFF_UNICAST_FLT in its priv_flags.
1034 *
1035 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1036 * This function is called when the Media Access Control address
1037 * needs to be changed. If this interface is not defined, the
1038 * MAC address can not be changed.
1039 *
1040 * int (*ndo_validate_addr)(struct net_device *dev);
1041 * Test if Media Access Control address is valid for the device.
1042 *
1043 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1044 * Called when a user requests an ioctl which can't be handled by
1045 * the generic interface code. If not defined ioctls return
1046 * not supported error code.
1047 *
1048 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1049 * Used to set network devices bus interface parameters. This interface
1050 * is retained for legacy reasons; new devices should use the bus
1051 * interface (PCI) for low level management.
1052 *
1053 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1054 * Called when a user wants to change the Maximum Transfer Unit
1055 * of a device.
1056 *
1057 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1058 * Callback used when the transmitter has not made any progress
1059 * for dev->watchdog ticks.
1060 *
1061 * void (*ndo_get_stats64)(struct net_device *dev,
1062 * struct rtnl_link_stats64 *storage);
1063 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1064 * Called when a user wants to get the network device usage
1065 * statistics. Drivers must do one of the following:
1066 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1067 * rtnl_link_stats64 structure passed by the caller.
1068 * 2. Define @ndo_get_stats to update a net_device_stats structure
1069 * (which should normally be dev->stats) and return a pointer to
1070 * it. The structure may be changed asynchronously only if each
1071 * field is written atomically.
1072 * 3. Update dev->stats asynchronously and atomically, and define
1073 * neither operation.
1074 *
1075 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1076 * Return true if this device supports offload stats of this attr_id.
1077 *
1078 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1079 * void *attr_data)
1080 * Get statistics for offload operations by attr_id. Write it into the
1081 * attr_data pointer.
1082 *
1083 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1084 * If device supports VLAN filtering this function is called when a
1085 * VLAN id is registered.
1086 *
1087 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1088 * If device supports VLAN filtering this function is called when a
1089 * VLAN id is unregistered.
1090 *
1091 * void (*ndo_poll_controller)(struct net_device *dev);
1092 *
1093 * SR-IOV management functions.
1094 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1095 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1096 * u8 qos, __be16 proto);
1097 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1098 * int max_tx_rate);
1099 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1100 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1101 * int (*ndo_get_vf_config)(struct net_device *dev,
1102 * int vf, struct ifla_vf_info *ivf);
1103 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1104 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1105 * struct nlattr *port[]);
1106 *
1107 * Enable or disable the VF ability to query its RSS Redirection Table and
1108 * Hash Key. This is needed since on some devices VF share this information
1109 * with PF and querying it may introduce a theoretical security risk.
1110 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1111 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1112 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1113 * void *type_data);
1114 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1115 * This is always called from the stack with the rtnl lock held and netif
1116 * tx queues stopped. This allows the netdevice to perform queue
1117 * management safely.
1118 *
1119 * Fiber Channel over Ethernet (FCoE) offload functions.
1120 * int (*ndo_fcoe_enable)(struct net_device *dev);
1121 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1122 * so the underlying device can perform whatever needed configuration or
1123 * initialization to support acceleration of FCoE traffic.
1124 *
1125 * int (*ndo_fcoe_disable)(struct net_device *dev);
1126 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1127 * so the underlying device can perform whatever needed clean-ups to
1128 * stop supporting acceleration of FCoE traffic.
1129 *
1130 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1131 * struct scatterlist *sgl, unsigned int sgc);
1132 * Called when the FCoE Initiator wants to initialize an I/O that
1133 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1134 * perform necessary setup and returns 1 to indicate the device is set up
1135 * successfully to perform DDP on this I/O, otherwise this returns 0.
1136 *
1137 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1138 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1139 * indicated by the FC exchange id 'xid', so the underlying device can
1140 * clean up and reuse resources for later DDP requests.
1141 *
1142 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1143 * struct scatterlist *sgl, unsigned int sgc);
1144 * Called when the FCoE Target wants to initialize an I/O that
1145 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1146 * perform necessary setup and returns 1 to indicate the device is set up
1147 * successfully to perform DDP on this I/O, otherwise this returns 0.
1148 *
1149 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1150 * struct netdev_fcoe_hbainfo *hbainfo);
1151 * Called when the FCoE Protocol stack wants information on the underlying
1152 * device. This information is utilized by the FCoE protocol stack to
1153 * register attributes with Fiber Channel management service as per the
1154 * FC-GS Fabric Device Management Information(FDMI) specification.
1155 *
1156 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1157 * Called when the underlying device wants to override default World Wide
1158 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1159 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1160 * protocol stack to use.
1161 *
1162 * RFS acceleration.
1163 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1164 * u16 rxq_index, u32 flow_id);
1165 * Set hardware filter for RFS. rxq_index is the target queue index;
1166 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1167 * Return the filter ID on success, or a negative error code.
1168 *
1169 * Slave management functions (for bridge, bonding, etc).
1170 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1171 * Called to make another netdev an underling.
1172 *
1173 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1174 * Called to release previously enslaved netdev.
1175 *
1176 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1177 * struct sk_buff *skb,
1178 * bool all_slaves);
1179 * Get the xmit slave of master device. If all_slaves is true, function
1180 * assume all the slaves can transmit.
1181 *
1182 * Feature/offload setting functions.
1183 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1184 * netdev_features_t features);
1185 * Adjusts the requested feature flags according to device-specific
1186 * constraints, and returns the resulting flags. Must not modify
1187 * the device state.
1188 *
1189 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1190 * Called to update device configuration to new features. Passed
1191 * feature set might be less than what was returned by ndo_fix_features()).
1192 * Must return >0 or -errno if it changed dev->features itself.
1193 *
1194 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1195 * struct net_device *dev,
1196 * const unsigned char *addr, u16 vid, u16 flags,
1197 * struct netlink_ext_ack *extack);
1198 * Adds an FDB entry to dev for addr.
1199 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1200 * struct net_device *dev,
1201 * const unsigned char *addr, u16 vid)
1202 * Deletes the FDB entry from dev coresponding to addr.
1203 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1204 * struct net_device *dev, struct net_device *filter_dev,
1205 * int *idx)
1206 * Used to add FDB entries to dump requests. Implementers should add
1207 * entries to skb and update idx with the number of entries.
1208 *
1209 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1210 * u16 flags, struct netlink_ext_ack *extack)
1211 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1212 * struct net_device *dev, u32 filter_mask,
1213 * int nlflags)
1214 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1215 * u16 flags);
1216 *
1217 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1218 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1219 * which do not represent real hardware may define this to allow their
1220 * userspace components to manage their virtual carrier state. Devices
1221 * that determine carrier state from physical hardware properties (eg
1222 * network cables) or protocol-dependent mechanisms (eg
1223 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1224 *
1225 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1226 * struct netdev_phys_item_id *ppid);
1227 * Called to get ID of physical port of this device. If driver does
1228 * not implement this, it is assumed that the hw is not able to have
1229 * multiple net devices on single physical port.
1230 *
1231 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1232 * struct netdev_phys_item_id *ppid)
1233 * Called to get the parent ID of the physical port of this device.
1234 *
1235 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1236 * struct udp_tunnel_info *ti);
1237 * Called by UDP tunnel to notify a driver about the UDP port and socket
1238 * address family that a UDP tunnel is listnening to. It is called only
1239 * when a new port starts listening. The operation is protected by the
1240 * RTNL.
1241 *
1242 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1243 * struct udp_tunnel_info *ti);
1244 * Called by UDP tunnel to notify the driver about a UDP port and socket
1245 * address family that the UDP tunnel is not listening to anymore. The
1246 * operation is protected by the RTNL.
1247 *
1248 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1249 * struct net_device *dev)
1250 * Called by upper layer devices to accelerate switching or other
1251 * station functionality into hardware. 'pdev is the lowerdev
1252 * to use for the offload and 'dev' is the net device that will
1253 * back the offload. Returns a pointer to the private structure
1254 * the upper layer will maintain.
1255 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1256 * Called by upper layer device to delete the station created
1257 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1258 * the station and priv is the structure returned by the add
1259 * operation.
1260 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1261 * int queue_index, u32 maxrate);
1262 * Called when a user wants to set a max-rate limitation of specific
1263 * TX queue.
1264 * int (*ndo_get_iflink)(const struct net_device *dev);
1265 * Called to get the iflink value of this device.
1266 * void (*ndo_change_proto_down)(struct net_device *dev,
1267 * bool proto_down);
1268 * This function is used to pass protocol port error state information
1269 * to the switch driver. The switch driver can react to the proto_down
1270 * by doing a phys down on the associated switch port.
1271 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1272 * This function is used to get egress tunnel information for given skb.
1273 * This is useful for retrieving outer tunnel header parameters while
1274 * sampling packet.
1275 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1276 * This function is used to specify the headroom that the skb must
1277 * consider when allocation skb during packet reception. Setting
1278 * appropriate rx headroom value allows avoiding skb head copy on
1279 * forward. Setting a negative value resets the rx headroom to the
1280 * default value.
1281 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1282 * This function is used to set or query state related to XDP on the
1283 * netdevice and manage BPF offload. See definition of
1284 * enum bpf_netdev_command for details.
1285 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1286 * u32 flags);
1287 * This function is used to submit @n XDP packets for transmit on a
1288 * netdevice. Returns number of frames successfully transmitted, frames
1289 * that got dropped are freed/returned via xdp_return_frame().
1290 * Returns negative number, means general error invoking ndo, meaning
1291 * no frames were xmit'ed and core-caller will free all frames.
1292 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1293 * This function is used to wake up the softirq, ksoftirqd or kthread
1294 * responsible for sending and/or receiving packets on a specific
1295 * queue id bound to an AF_XDP socket. The flags field specifies if
1296 * only RX, only Tx, or both should be woken up using the flags
1297 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1298 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1299 * Get devlink port instance associated with a given netdev.
1300 * Called with a reference on the netdevice and devlink locks only,
1301 * rtnl_lock is not held.
1302 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1303 * int cmd);
1304 * Add, change, delete or get information on an IPv4 tunnel.
1305 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1306 * If a device is paired with a peer device, return the peer instance.
1307 * The caller must be under RCU read context.
1308 */
1309 struct net_device_ops {
1310 int (*ndo_init)(struct net_device *dev);
1311 void (*ndo_uninit)(struct net_device *dev);
1312 int (*ndo_open)(struct net_device *dev);
1313 int (*ndo_stop)(struct net_device *dev);
1314 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1315 struct net_device *dev);
1316 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1317 struct net_device *dev,
1318 netdev_features_t features);
1319 u16 (*ndo_select_queue)(struct net_device *dev,
1320 struct sk_buff *skb,
1321 struct net_device *sb_dev);
1322 void (*ndo_change_rx_flags)(struct net_device *dev,
1323 int flags);
1324 void (*ndo_set_rx_mode)(struct net_device *dev);
1325 int (*ndo_set_mac_address)(struct net_device *dev,
1326 void *addr);
1327 int (*ndo_validate_addr)(struct net_device *dev);
1328 int (*ndo_do_ioctl)(struct net_device *dev,
1329 struct ifreq *ifr, int cmd);
1330 int (*ndo_set_config)(struct net_device *dev,
1331 struct ifmap *map);
1332 int (*ndo_change_mtu)(struct net_device *dev,
1333 int new_mtu);
1334 int (*ndo_neigh_setup)(struct net_device *dev,
1335 struct neigh_parms *);
1336 void (*ndo_tx_timeout) (struct net_device *dev,
1337 unsigned int txqueue);
1338
1339 void (*ndo_get_stats64)(struct net_device *dev,
1340 struct rtnl_link_stats64 *storage);
1341 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1342 int (*ndo_get_offload_stats)(int attr_id,
1343 const struct net_device *dev,
1344 void *attr_data);
1345 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1346
1347 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1348 __be16 proto, u16 vid);
1349 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1350 __be16 proto, u16 vid);
1351 #ifdef CONFIG_NET_POLL_CONTROLLER
1352 void (*ndo_poll_controller)(struct net_device *dev);
1353 int (*ndo_netpoll_setup)(struct net_device *dev,
1354 struct netpoll_info *info);
1355 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1356 #endif
1357 int (*ndo_set_vf_mac)(struct net_device *dev,
1358 int queue, u8 *mac);
1359 int (*ndo_set_vf_vlan)(struct net_device *dev,
1360 int queue, u16 vlan,
1361 u8 qos, __be16 proto);
1362 int (*ndo_set_vf_rate)(struct net_device *dev,
1363 int vf, int min_tx_rate,
1364 int max_tx_rate);
1365 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1366 int vf, bool setting);
1367 int (*ndo_set_vf_trust)(struct net_device *dev,
1368 int vf, bool setting);
1369 int (*ndo_get_vf_config)(struct net_device *dev,
1370 int vf,
1371 struct ifla_vf_info *ivf);
1372 int (*ndo_set_vf_link_state)(struct net_device *dev,
1373 int vf, int link_state);
1374 int (*ndo_get_vf_stats)(struct net_device *dev,
1375 int vf,
1376 struct ifla_vf_stats
1377 *vf_stats);
1378 int (*ndo_set_vf_port)(struct net_device *dev,
1379 int vf,
1380 struct nlattr *port[]);
1381 int (*ndo_get_vf_port)(struct net_device *dev,
1382 int vf, struct sk_buff *skb);
1383 int (*ndo_get_vf_guid)(struct net_device *dev,
1384 int vf,
1385 struct ifla_vf_guid *node_guid,
1386 struct ifla_vf_guid *port_guid);
1387 int (*ndo_set_vf_guid)(struct net_device *dev,
1388 int vf, u64 guid,
1389 int guid_type);
1390 int (*ndo_set_vf_rss_query_en)(
1391 struct net_device *dev,
1392 int vf, bool setting);
1393 int (*ndo_setup_tc)(struct net_device *dev,
1394 enum tc_setup_type type,
1395 void *type_data);
1396 #if IS_ENABLED(CONFIG_FCOE)
1397 int (*ndo_fcoe_enable)(struct net_device *dev);
1398 int (*ndo_fcoe_disable)(struct net_device *dev);
1399 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1400 u16 xid,
1401 struct scatterlist *sgl,
1402 unsigned int sgc);
1403 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1404 u16 xid);
1405 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1406 u16 xid,
1407 struct scatterlist *sgl,
1408 unsigned int sgc);
1409 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1410 struct netdev_fcoe_hbainfo *hbainfo);
1411 #endif
1412
1413 #if IS_ENABLED(CONFIG_LIBFCOE)
1414 #define NETDEV_FCOE_WWNN 0
1415 #define NETDEV_FCOE_WWPN 1
1416 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1417 u64 *wwn, int type);
1418 #endif
1419
1420 #ifdef CONFIG_RFS_ACCEL
1421 int (*ndo_rx_flow_steer)(struct net_device *dev,
1422 const struct sk_buff *skb,
1423 u16 rxq_index,
1424 u32 flow_id);
1425 #endif
1426 int (*ndo_add_slave)(struct net_device *dev,
1427 struct net_device *slave_dev,
1428 struct netlink_ext_ack *extack);
1429 int (*ndo_del_slave)(struct net_device *dev,
1430 struct net_device *slave_dev);
1431 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1432 struct sk_buff *skb,
1433 bool all_slaves);
1434 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1435 netdev_features_t features);
1436 int (*ndo_set_features)(struct net_device *dev,
1437 netdev_features_t features);
1438 int (*ndo_neigh_construct)(struct net_device *dev,
1439 struct neighbour *n);
1440 void (*ndo_neigh_destroy)(struct net_device *dev,
1441 struct neighbour *n);
1442
1443 int (*ndo_fdb_add)(struct ndmsg *ndm,
1444 struct nlattr *tb[],
1445 struct net_device *dev,
1446 const unsigned char *addr,
1447 u16 vid,
1448 u16 flags,
1449 struct netlink_ext_ack *extack);
1450 int (*ndo_fdb_del)(struct ndmsg *ndm,
1451 struct nlattr *tb[],
1452 struct net_device *dev,
1453 const unsigned char *addr,
1454 u16 vid);
1455 int (*ndo_fdb_dump)(struct sk_buff *skb,
1456 struct netlink_callback *cb,
1457 struct net_device *dev,
1458 struct net_device *filter_dev,
1459 int *idx);
1460 int (*ndo_fdb_get)(struct sk_buff *skb,
1461 struct nlattr *tb[],
1462 struct net_device *dev,
1463 const unsigned char *addr,
1464 u16 vid, u32 portid, u32 seq,
1465 struct netlink_ext_ack *extack);
1466 int (*ndo_bridge_setlink)(struct net_device *dev,
1467 struct nlmsghdr *nlh,
1468 u16 flags,
1469 struct netlink_ext_ack *extack);
1470 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1471 u32 pid, u32 seq,
1472 struct net_device *dev,
1473 u32 filter_mask,
1474 int nlflags);
1475 int (*ndo_bridge_dellink)(struct net_device *dev,
1476 struct nlmsghdr *nlh,
1477 u16 flags);
1478 int (*ndo_change_carrier)(struct net_device *dev,
1479 bool new_carrier);
1480 int (*ndo_get_phys_port_id)(struct net_device *dev,
1481 struct netdev_phys_item_id *ppid);
1482 int (*ndo_get_port_parent_id)(struct net_device *dev,
1483 struct netdev_phys_item_id *ppid);
1484 int (*ndo_get_phys_port_name)(struct net_device *dev,
1485 char *name, size_t len);
1486 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1487 struct udp_tunnel_info *ti);
1488 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1489 struct udp_tunnel_info *ti);
1490 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1491 struct net_device *dev);
1492 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1493 void *priv);
1494
1495 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1496 int queue_index,
1497 u32 maxrate);
1498 int (*ndo_get_iflink)(const struct net_device *dev);
1499 int (*ndo_change_proto_down)(struct net_device *dev,
1500 bool proto_down);
1501 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1502 struct sk_buff *skb);
1503 void (*ndo_set_rx_headroom)(struct net_device *dev,
1504 int needed_headroom);
1505 int (*ndo_bpf)(struct net_device *dev,
1506 struct netdev_bpf *bpf);
1507 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1508 struct xdp_frame **xdp,
1509 u32 flags);
1510 int (*ndo_xsk_wakeup)(struct net_device *dev,
1511 u32 queue_id, u32 flags);
1512 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1513 int (*ndo_tunnel_ctl)(struct net_device *dev,
1514 struct ip_tunnel_parm *p, int cmd);
1515 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev);
1516 };
1517
1518 /**
1519 * enum net_device_priv_flags - &struct net_device priv_flags
1520 *
1521 * These are the &struct net_device, they are only set internally
1522 * by drivers and used in the kernel. These flags are invisible to
1523 * userspace; this means that the order of these flags can change
1524 * during any kernel release.
1525 *
1526 * You should have a pretty good reason to be extending these flags.
1527 *
1528 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1529 * @IFF_EBRIDGE: Ethernet bridging device
1530 * @IFF_BONDING: bonding master or slave
1531 * @IFF_ISATAP: ISATAP interface (RFC4214)
1532 * @IFF_WAN_HDLC: WAN HDLC device
1533 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1534 * release skb->dst
1535 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1536 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1537 * @IFF_MACVLAN_PORT: device used as macvlan port
1538 * @IFF_BRIDGE_PORT: device used as bridge port
1539 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1540 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1541 * @IFF_UNICAST_FLT: Supports unicast filtering
1542 * @IFF_TEAM_PORT: device used as team port
1543 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1544 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1545 * change when it's running
1546 * @IFF_MACVLAN: Macvlan device
1547 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1548 * underlying stacked devices
1549 * @IFF_L3MDEV_MASTER: device is an L3 master device
1550 * @IFF_NO_QUEUE: device can run without qdisc attached
1551 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1552 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1553 * @IFF_TEAM: device is a team device
1554 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1555 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1556 * entity (i.e. the master device for bridged veth)
1557 * @IFF_MACSEC: device is a MACsec device
1558 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1559 * @IFF_FAILOVER: device is a failover master device
1560 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1561 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1562 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1563 */
1564 enum netdev_priv_flags {
1565 IFF_802_1Q_VLAN = 1<<0,
1566 IFF_EBRIDGE = 1<<1,
1567 IFF_BONDING = 1<<2,
1568 IFF_ISATAP = 1<<3,
1569 IFF_WAN_HDLC = 1<<4,
1570 IFF_XMIT_DST_RELEASE = 1<<5,
1571 IFF_DONT_BRIDGE = 1<<6,
1572 IFF_DISABLE_NETPOLL = 1<<7,
1573 IFF_MACVLAN_PORT = 1<<8,
1574 IFF_BRIDGE_PORT = 1<<9,
1575 IFF_OVS_DATAPATH = 1<<10,
1576 IFF_TX_SKB_SHARING = 1<<11,
1577 IFF_UNICAST_FLT = 1<<12,
1578 IFF_TEAM_PORT = 1<<13,
1579 IFF_SUPP_NOFCS = 1<<14,
1580 IFF_LIVE_ADDR_CHANGE = 1<<15,
1581 IFF_MACVLAN = 1<<16,
1582 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1583 IFF_L3MDEV_MASTER = 1<<18,
1584 IFF_NO_QUEUE = 1<<19,
1585 IFF_OPENVSWITCH = 1<<20,
1586 IFF_L3MDEV_SLAVE = 1<<21,
1587 IFF_TEAM = 1<<22,
1588 IFF_RXFH_CONFIGURED = 1<<23,
1589 IFF_PHONY_HEADROOM = 1<<24,
1590 IFF_MACSEC = 1<<25,
1591 IFF_NO_RX_HANDLER = 1<<26,
1592 IFF_FAILOVER = 1<<27,
1593 IFF_FAILOVER_SLAVE = 1<<28,
1594 IFF_L3MDEV_RX_HANDLER = 1<<29,
1595 IFF_LIVE_RENAME_OK = 1<<30,
1596 };
1597
1598 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1599 #define IFF_EBRIDGE IFF_EBRIDGE
1600 #define IFF_BONDING IFF_BONDING
1601 #define IFF_ISATAP IFF_ISATAP
1602 #define IFF_WAN_HDLC IFF_WAN_HDLC
1603 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1604 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1605 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1606 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1607 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1608 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1609 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1610 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1611 #define IFF_TEAM_PORT IFF_TEAM_PORT
1612 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1613 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1614 #define IFF_MACVLAN IFF_MACVLAN
1615 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1616 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1617 #define IFF_NO_QUEUE IFF_NO_QUEUE
1618 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1619 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1620 #define IFF_TEAM IFF_TEAM
1621 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1622 #define IFF_MACSEC IFF_MACSEC
1623 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1624 #define IFF_FAILOVER IFF_FAILOVER
1625 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1626 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1627 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1628
1629 /* Specifies the type of the struct net_device::ml_priv pointer */
1630 enum netdev_ml_priv_type {
1631 ML_PRIV_NONE,
1632 ML_PRIV_CAN,
1633 };
1634
1635 /**
1636 * struct net_device - The DEVICE structure.
1637 *
1638 * Actually, this whole structure is a big mistake. It mixes I/O
1639 * data with strictly "high-level" data, and it has to know about
1640 * almost every data structure used in the INET module.
1641 *
1642 * @name: This is the first field of the "visible" part of this structure
1643 * (i.e. as seen by users in the "Space.c" file). It is the name
1644 * of the interface.
1645 *
1646 * @name_node: Name hashlist node
1647 * @ifalias: SNMP alias
1648 * @mem_end: Shared memory end
1649 * @mem_start: Shared memory start
1650 * @base_addr: Device I/O address
1651 * @irq: Device IRQ number
1652 *
1653 * @state: Generic network queuing layer state, see netdev_state_t
1654 * @dev_list: The global list of network devices
1655 * @napi_list: List entry used for polling NAPI devices
1656 * @unreg_list: List entry when we are unregistering the
1657 * device; see the function unregister_netdev
1658 * @close_list: List entry used when we are closing the device
1659 * @ptype_all: Device-specific packet handlers for all protocols
1660 * @ptype_specific: Device-specific, protocol-specific packet handlers
1661 *
1662 * @adj_list: Directly linked devices, like slaves for bonding
1663 * @features: Currently active device features
1664 * @hw_features: User-changeable features
1665 *
1666 * @wanted_features: User-requested features
1667 * @vlan_features: Mask of features inheritable by VLAN devices
1668 *
1669 * @hw_enc_features: Mask of features inherited by encapsulating devices
1670 * This field indicates what encapsulation
1671 * offloads the hardware is capable of doing,
1672 * and drivers will need to set them appropriately.
1673 *
1674 * @mpls_features: Mask of features inheritable by MPLS
1675 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1676 *
1677 * @ifindex: interface index
1678 * @group: The group the device belongs to
1679 *
1680 * @stats: Statistics struct, which was left as a legacy, use
1681 * rtnl_link_stats64 instead
1682 *
1683 * @rx_dropped: Dropped packets by core network,
1684 * do not use this in drivers
1685 * @tx_dropped: Dropped packets by core network,
1686 * do not use this in drivers
1687 * @rx_nohandler: nohandler dropped packets by core network on
1688 * inactive devices, do not use this in drivers
1689 * @carrier_up_count: Number of times the carrier has been up
1690 * @carrier_down_count: Number of times the carrier has been down
1691 *
1692 * @wireless_handlers: List of functions to handle Wireless Extensions,
1693 * instead of ioctl,
1694 * see <net/iw_handler.h> for details.
1695 * @wireless_data: Instance data managed by the core of wireless extensions
1696 *
1697 * @netdev_ops: Includes several pointers to callbacks,
1698 * if one wants to override the ndo_*() functions
1699 * @ethtool_ops: Management operations
1700 * @l3mdev_ops: Layer 3 master device operations
1701 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1702 * discovery handling. Necessary for e.g. 6LoWPAN.
1703 * @xfrmdev_ops: Transformation offload operations
1704 * @tlsdev_ops: Transport Layer Security offload operations
1705 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1706 * of Layer 2 headers.
1707 *
1708 * @flags: Interface flags (a la BSD)
1709 * @priv_flags: Like 'flags' but invisible to userspace,
1710 * see if.h for the definitions
1711 * @gflags: Global flags ( kept as legacy )
1712 * @padded: How much padding added by alloc_netdev()
1713 * @operstate: RFC2863 operstate
1714 * @link_mode: Mapping policy to operstate
1715 * @if_port: Selectable AUI, TP, ...
1716 * @dma: DMA channel
1717 * @mtu: Interface MTU value
1718 * @min_mtu: Interface Minimum MTU value
1719 * @max_mtu: Interface Maximum MTU value
1720 * @type: Interface hardware type
1721 * @hard_header_len: Maximum hardware header length.
1722 * @min_header_len: Minimum hardware header length
1723 *
1724 * @needed_headroom: Extra headroom the hardware may need, but not in all
1725 * cases can this be guaranteed
1726 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1727 * cases can this be guaranteed. Some cases also use
1728 * LL_MAX_HEADER instead to allocate the skb
1729 *
1730 * interface address info:
1731 *
1732 * @perm_addr: Permanent hw address
1733 * @addr_assign_type: Hw address assignment type
1734 * @addr_len: Hardware address length
1735 * @upper_level: Maximum depth level of upper devices.
1736 * @lower_level: Maximum depth level of lower devices.
1737 * @neigh_priv_len: Used in neigh_alloc()
1738 * @dev_id: Used to differentiate devices that share
1739 * the same link layer address
1740 * @dev_port: Used to differentiate devices that share
1741 * the same function
1742 * @addr_list_lock: XXX: need comments on this one
1743 * @name_assign_type: network interface name assignment type
1744 * @uc_promisc: Counter that indicates promiscuous mode
1745 * has been enabled due to the need to listen to
1746 * additional unicast addresses in a device that
1747 * does not implement ndo_set_rx_mode()
1748 * @uc: unicast mac addresses
1749 * @mc: multicast mac addresses
1750 * @dev_addrs: list of device hw addresses
1751 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1752 * @promiscuity: Number of times the NIC is told to work in
1753 * promiscuous mode; if it becomes 0 the NIC will
1754 * exit promiscuous mode
1755 * @allmulti: Counter, enables or disables allmulticast mode
1756 *
1757 * @vlan_info: VLAN info
1758 * @dsa_ptr: dsa specific data
1759 * @tipc_ptr: TIPC specific data
1760 * @atalk_ptr: AppleTalk link
1761 * @ip_ptr: IPv4 specific data
1762 * @dn_ptr: DECnet specific data
1763 * @ip6_ptr: IPv6 specific data
1764 * @ax25_ptr: AX.25 specific data
1765 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1766 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1767 * device struct
1768 * @mpls_ptr: mpls_dev struct pointer
1769 *
1770 * @dev_addr: Hw address (before bcast,
1771 * because most packets are unicast)
1772 *
1773 * @_rx: Array of RX queues
1774 * @num_rx_queues: Number of RX queues
1775 * allocated at register_netdev() time
1776 * @real_num_rx_queues: Number of RX queues currently active in device
1777 * @xdp_prog: XDP sockets filter program pointer
1778 * @gro_flush_timeout: timeout for GRO layer in NAPI
1779 * @napi_defer_hard_irqs: If not zero, provides a counter that would
1780 * allow to avoid NIC hard IRQ, on busy queues.
1781 *
1782 * @rx_handler: handler for received packets
1783 * @rx_handler_data: XXX: need comments on this one
1784 * @miniq_ingress: ingress/clsact qdisc specific data for
1785 * ingress processing
1786 * @ingress_queue: XXX: need comments on this one
1787 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1788 * @broadcast: hw bcast address
1789 *
1790 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1791 * indexed by RX queue number. Assigned by driver.
1792 * This must only be set if the ndo_rx_flow_steer
1793 * operation is defined
1794 * @index_hlist: Device index hash chain
1795 *
1796 * @_tx: Array of TX queues
1797 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1798 * @real_num_tx_queues: Number of TX queues currently active in device
1799 * @qdisc: Root qdisc from userspace point of view
1800 * @tx_queue_len: Max frames per queue allowed
1801 * @tx_global_lock: XXX: need comments on this one
1802 * @xdp_bulkq: XDP device bulk queue
1803 * @xps_cpus_map: all CPUs map for XPS device
1804 * @xps_rxqs_map: all RXQs map for XPS device
1805 *
1806 * @xps_maps: XXX: need comments on this one
1807 * @miniq_egress: clsact qdisc specific data for
1808 * egress processing
1809 * @qdisc_hash: qdisc hash table
1810 * @watchdog_timeo: Represents the timeout that is used by
1811 * the watchdog (see dev_watchdog())
1812 * @watchdog_timer: List of timers
1813 *
1814 * @proto_down_reason: reason a netdev interface is held down
1815 * @pcpu_refcnt: Number of references to this device
1816 * @todo_list: Delayed register/unregister
1817 * @link_watch_list: XXX: need comments on this one
1818 *
1819 * @reg_state: Register/unregister state machine
1820 * @dismantle: Device is going to be freed
1821 * @rtnl_link_state: This enum represents the phases of creating
1822 * a new link
1823 *
1824 * @needs_free_netdev: Should unregister perform free_netdev?
1825 * @priv_destructor: Called from unregister
1826 * @npinfo: XXX: need comments on this one
1827 * @nd_net: Network namespace this network device is inside
1828 *
1829 * @ml_priv: Mid-layer private
1830 * @ml_priv_type: Mid-layer private type
1831 * @lstats: Loopback statistics
1832 * @tstats: Tunnel statistics
1833 * @dstats: Dummy statistics
1834 * @vstats: Virtual ethernet statistics
1835 *
1836 * @garp_port: GARP
1837 * @mrp_port: MRP
1838 *
1839 * @dev: Class/net/name entry
1840 * @sysfs_groups: Space for optional device, statistics and wireless
1841 * sysfs groups
1842 *
1843 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1844 * @rtnl_link_ops: Rtnl_link_ops
1845 *
1846 * @gso_max_size: Maximum size of generic segmentation offload
1847 * @gso_max_segs: Maximum number of segments that can be passed to the
1848 * NIC for GSO
1849 *
1850 * @dcbnl_ops: Data Center Bridging netlink ops
1851 * @num_tc: Number of traffic classes in the net device
1852 * @tc_to_txq: XXX: need comments on this one
1853 * @prio_tc_map: XXX: need comments on this one
1854 *
1855 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1856 *
1857 * @priomap: XXX: need comments on this one
1858 * @phydev: Physical device may attach itself
1859 * for hardware timestamping
1860 * @sfp_bus: attached &struct sfp_bus structure.
1861 *
1862 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1863 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1864 *
1865 * @proto_down: protocol port state information can be sent to the
1866 * switch driver and used to set the phys state of the
1867 * switch port.
1868 *
1869 * @wol_enabled: Wake-on-LAN is enabled
1870 *
1871 * @net_notifier_list: List of per-net netdev notifier block
1872 * that follow this device when it is moved
1873 * to another network namespace.
1874 *
1875 * @macsec_ops: MACsec offloading ops
1876 *
1877 * @udp_tunnel_nic_info: static structure describing the UDP tunnel
1878 * offload capabilities of the device
1879 * @udp_tunnel_nic: UDP tunnel offload state
1880 * @xdp_state: stores info on attached XDP BPF programs
1881 *
1882 * @nested_level: Used as as a parameter of spin_lock_nested() of
1883 * dev->addr_list_lock.
1884 * @unlink_list: As netif_addr_lock() can be called recursively,
1885 * keep a list of interfaces to be deleted.
1886 *
1887 * FIXME: cleanup struct net_device such that network protocol info
1888 * moves out.
1889 */
1890
1891 struct net_device {
1892 char name[IFNAMSIZ];
1893 struct netdev_name_node *name_node;
1894 struct dev_ifalias __rcu *ifalias;
1895 /*
1896 * I/O specific fields
1897 * FIXME: Merge these and struct ifmap into one
1898 */
1899 unsigned long mem_end;
1900 unsigned long mem_start;
1901 unsigned long base_addr;
1902 int irq;
1903
1904 /*
1905 * Some hardware also needs these fields (state,dev_list,
1906 * napi_list,unreg_list,close_list) but they are not
1907 * part of the usual set specified in Space.c.
1908 */
1909
1910 unsigned long state;
1911
1912 struct list_head dev_list;
1913 struct list_head napi_list;
1914 struct list_head unreg_list;
1915 struct list_head close_list;
1916 struct list_head ptype_all;
1917 struct list_head ptype_specific;
1918
1919 struct {
1920 struct list_head upper;
1921 struct list_head lower;
1922 } adj_list;
1923
1924 netdev_features_t features;
1925 netdev_features_t hw_features;
1926 netdev_features_t wanted_features;
1927 netdev_features_t vlan_features;
1928 netdev_features_t hw_enc_features;
1929 netdev_features_t mpls_features;
1930 netdev_features_t gso_partial_features;
1931
1932 int ifindex;
1933 int group;
1934
1935 struct net_device_stats stats;
1936
1937 atomic_long_t rx_dropped;
1938 atomic_long_t tx_dropped;
1939 atomic_long_t rx_nohandler;
1940
1941 /* Stats to monitor link on/off, flapping */
1942 atomic_t carrier_up_count;
1943 atomic_t carrier_down_count;
1944
1945 #ifdef CONFIG_WIRELESS_EXT
1946 const struct iw_handler_def *wireless_handlers;
1947 struct iw_public_data *wireless_data;
1948 #endif
1949 const struct net_device_ops *netdev_ops;
1950 const struct ethtool_ops *ethtool_ops;
1951 #ifdef CONFIG_NET_L3_MASTER_DEV
1952 const struct l3mdev_ops *l3mdev_ops;
1953 #endif
1954 #if IS_ENABLED(CONFIG_IPV6)
1955 const struct ndisc_ops *ndisc_ops;
1956 #endif
1957
1958 #ifdef CONFIG_XFRM_OFFLOAD
1959 const struct xfrmdev_ops *xfrmdev_ops;
1960 #endif
1961
1962 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1963 const struct tlsdev_ops *tlsdev_ops;
1964 #endif
1965
1966 const struct header_ops *header_ops;
1967
1968 unsigned int flags;
1969 unsigned int priv_flags;
1970
1971 unsigned short gflags;
1972 unsigned short padded;
1973
1974 unsigned char operstate;
1975 unsigned char link_mode;
1976
1977 unsigned char if_port;
1978 unsigned char dma;
1979
1980 /* Note : dev->mtu is often read without holding a lock.
1981 * Writers usually hold RTNL.
1982 * It is recommended to use READ_ONCE() to annotate the reads,
1983 * and to use WRITE_ONCE() to annotate the writes.
1984 */
1985 unsigned int mtu;
1986 unsigned int min_mtu;
1987 unsigned int max_mtu;
1988 unsigned short type;
1989 unsigned short hard_header_len;
1990 unsigned char min_header_len;
1991 unsigned char name_assign_type;
1992
1993 unsigned short needed_headroom;
1994 unsigned short needed_tailroom;
1995
1996 /* Interface address info. */
1997 unsigned char perm_addr[MAX_ADDR_LEN];
1998 unsigned char addr_assign_type;
1999 unsigned char addr_len;
2000 unsigned char upper_level;
2001 unsigned char lower_level;
2002
2003 unsigned short neigh_priv_len;
2004 unsigned short dev_id;
2005 unsigned short dev_port;
2006 spinlock_t addr_list_lock;
2007
2008 struct netdev_hw_addr_list uc;
2009 struct netdev_hw_addr_list mc;
2010 struct netdev_hw_addr_list dev_addrs;
2011
2012 #ifdef CONFIG_SYSFS
2013 struct kset *queues_kset;
2014 #endif
2015 #ifdef CONFIG_LOCKDEP
2016 struct list_head unlink_list;
2017 #endif
2018 unsigned int promiscuity;
2019 unsigned int allmulti;
2020 bool uc_promisc;
2021 #ifdef CONFIG_LOCKDEP
2022 unsigned char nested_level;
2023 #endif
2024
2025
2026 /* Protocol-specific pointers */
2027
2028 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2029 struct vlan_info __rcu *vlan_info;
2030 #endif
2031 #if IS_ENABLED(CONFIG_NET_DSA)
2032 struct dsa_port *dsa_ptr;
2033 #endif
2034 #if IS_ENABLED(CONFIG_TIPC)
2035 struct tipc_bearer __rcu *tipc_ptr;
2036 #endif
2037 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2038 void *atalk_ptr;
2039 #endif
2040 struct in_device __rcu *ip_ptr;
2041 #if IS_ENABLED(CONFIG_DECNET)
2042 struct dn_dev __rcu *dn_ptr;
2043 #endif
2044 struct inet6_dev __rcu *ip6_ptr;
2045 #if IS_ENABLED(CONFIG_NEWIP)
2046 struct ninet_dev __rcu *nip_ptr; /* NIP */
2047 #endif
2048 #if IS_ENABLED(CONFIG_AX25)
2049 void *ax25_ptr;
2050 #endif
2051 struct wireless_dev *ieee80211_ptr;
2052 struct wpan_dev *ieee802154_ptr;
2053 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2054 struct mpls_dev __rcu *mpls_ptr;
2055 #endif
2056
2057 /*
2058 * Cache lines mostly used on receive path (including eth_type_trans())
2059 */
2060 /* Interface address info used in eth_type_trans() */
2061 unsigned char *dev_addr;
2062
2063 struct netdev_rx_queue *_rx;
2064 unsigned int num_rx_queues;
2065 unsigned int real_num_rx_queues;
2066
2067 struct bpf_prog __rcu *xdp_prog;
2068 unsigned long gro_flush_timeout;
2069 int napi_defer_hard_irqs;
2070 rx_handler_func_t __rcu *rx_handler;
2071 void __rcu *rx_handler_data;
2072
2073 #ifdef CONFIG_NET_CLS_ACT
2074 struct mini_Qdisc __rcu *miniq_ingress;
2075 #endif
2076 struct netdev_queue __rcu *ingress_queue;
2077 #ifdef CONFIG_NETFILTER_INGRESS
2078 struct nf_hook_entries __rcu *nf_hooks_ingress;
2079 #endif
2080
2081 unsigned char broadcast[MAX_ADDR_LEN];
2082 #ifdef CONFIG_RFS_ACCEL
2083 struct cpu_rmap *rx_cpu_rmap;
2084 #endif
2085 struct hlist_node index_hlist;
2086
2087 /*
2088 * Cache lines mostly used on transmit path
2089 */
2090 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2091 unsigned int num_tx_queues;
2092 unsigned int real_num_tx_queues;
2093 struct Qdisc __rcu *qdisc;
2094 unsigned int tx_queue_len;
2095 spinlock_t tx_global_lock;
2096
2097 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2098
2099 #ifdef CONFIG_XPS
2100 struct xps_dev_maps __rcu *xps_cpus_map;
2101 struct xps_dev_maps __rcu *xps_rxqs_map;
2102 #endif
2103 #ifdef CONFIG_NET_CLS_ACT
2104 struct mini_Qdisc __rcu *miniq_egress;
2105 #endif
2106
2107 #ifdef CONFIG_NET_SCHED
2108 DECLARE_HASHTABLE (qdisc_hash, 4);
2109 #endif
2110 /* These may be needed for future network-power-down code. */
2111 struct timer_list watchdog_timer;
2112 int watchdog_timeo;
2113
2114 u32 proto_down_reason;
2115
2116 struct list_head todo_list;
2117 int __percpu *pcpu_refcnt;
2118
2119 struct list_head link_watch_list;
2120
2121 enum { NETREG_UNINITIALIZED=0,
2122 NETREG_REGISTERED, /* completed register_netdevice */
2123 NETREG_UNREGISTERING, /* called unregister_netdevice */
2124 NETREG_UNREGISTERED, /* completed unregister todo */
2125 NETREG_RELEASED, /* called free_netdev */
2126 NETREG_DUMMY, /* dummy device for NAPI poll */
2127 } reg_state:8;
2128
2129 bool dismantle;
2130
2131 enum {
2132 RTNL_LINK_INITIALIZED,
2133 RTNL_LINK_INITIALIZING,
2134 } rtnl_link_state:16;
2135
2136 bool needs_free_netdev;
2137 void (*priv_destructor)(struct net_device *dev);
2138
2139 #ifdef CONFIG_NETPOLL
2140 struct netpoll_info __rcu *npinfo;
2141 #endif
2142
2143 possible_net_t nd_net;
2144
2145 /* mid-layer private */
2146 void *ml_priv;
2147 enum netdev_ml_priv_type ml_priv_type;
2148
2149 union {
2150 struct pcpu_lstats __percpu *lstats;
2151 struct pcpu_sw_netstats __percpu *tstats;
2152 struct pcpu_dstats __percpu *dstats;
2153 };
2154
2155 #if IS_ENABLED(CONFIG_GARP)
2156 struct garp_port __rcu *garp_port;
2157 #endif
2158 #if IS_ENABLED(CONFIG_MRP)
2159 struct mrp_port __rcu *mrp_port;
2160 #endif
2161
2162 struct device dev;
2163 const struct attribute_group *sysfs_groups[4];
2164 const struct attribute_group *sysfs_rx_queue_group;
2165
2166 const struct rtnl_link_ops *rtnl_link_ops;
2167
2168 /* for setting kernel sock attribute on TCP connection setup */
2169 #define GSO_MAX_SIZE 65536
2170 unsigned int gso_max_size;
2171 #define GSO_MAX_SEGS 65535
2172 u16 gso_max_segs;
2173
2174 #ifdef CONFIG_DCB
2175 const struct dcbnl_rtnl_ops *dcbnl_ops;
2176 #endif
2177 s16 num_tc;
2178 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2179 u8 prio_tc_map[TC_BITMASK + 1];
2180
2181 #if IS_ENABLED(CONFIG_FCOE)
2182 unsigned int fcoe_ddp_xid;
2183 #endif
2184 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2185 struct netprio_map __rcu *priomap;
2186 #endif
2187 struct phy_device *phydev;
2188 struct sfp_bus *sfp_bus;
2189 struct lock_class_key *qdisc_tx_busylock;
2190 struct lock_class_key *qdisc_running_key;
2191 bool proto_down;
2192 unsigned wol_enabled:1;
2193
2194 struct list_head net_notifier_list;
2195
2196 #if IS_ENABLED(CONFIG_MACSEC)
2197 /* MACsec management functions */
2198 const struct macsec_ops *macsec_ops;
2199 #endif
2200 const struct udp_tunnel_nic_info *udp_tunnel_nic_info;
2201 struct udp_tunnel_nic *udp_tunnel_nic;
2202
2203 /* protected by rtnl_lock */
2204 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE];
2205 };
2206 #define to_net_dev(d) container_of(d, struct net_device, dev)
2207
netif_elide_gro(const struct net_device * dev)2208 static inline bool netif_elide_gro(const struct net_device *dev)
2209 {
2210 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2211 return true;
2212 return false;
2213 }
2214
2215 #define NETDEV_ALIGN 32
2216
2217 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2218 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2219 {
2220 return dev->prio_tc_map[prio & TC_BITMASK];
2221 }
2222
2223 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2224 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2225 {
2226 if (tc >= dev->num_tc)
2227 return -EINVAL;
2228
2229 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2230 return 0;
2231 }
2232
2233 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2234 void netdev_reset_tc(struct net_device *dev);
2235 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2236 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2237
2238 static inline
netdev_get_num_tc(struct net_device * dev)2239 int netdev_get_num_tc(struct net_device *dev)
2240 {
2241 return dev->num_tc;
2242 }
2243
net_prefetch(void * p)2244 static inline void net_prefetch(void *p)
2245 {
2246 prefetch(p);
2247 #if L1_CACHE_BYTES < 128
2248 prefetch((u8 *)p + L1_CACHE_BYTES);
2249 #endif
2250 }
2251
net_prefetchw(void * p)2252 static inline void net_prefetchw(void *p)
2253 {
2254 prefetchw(p);
2255 #if L1_CACHE_BYTES < 128
2256 prefetchw((u8 *)p + L1_CACHE_BYTES);
2257 #endif
2258 }
2259
2260 void netdev_unbind_sb_channel(struct net_device *dev,
2261 struct net_device *sb_dev);
2262 int netdev_bind_sb_channel_queue(struct net_device *dev,
2263 struct net_device *sb_dev,
2264 u8 tc, u16 count, u16 offset);
2265 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2266 static inline int netdev_get_sb_channel(struct net_device *dev)
2267 {
2268 return max_t(int, -dev->num_tc, 0);
2269 }
2270
2271 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2272 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2273 unsigned int index)
2274 {
2275 return &dev->_tx[index];
2276 }
2277
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2278 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2279 const struct sk_buff *skb)
2280 {
2281 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2282 }
2283
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2284 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2285 void (*f)(struct net_device *,
2286 struct netdev_queue *,
2287 void *),
2288 void *arg)
2289 {
2290 unsigned int i;
2291
2292 for (i = 0; i < dev->num_tx_queues; i++)
2293 f(dev, &dev->_tx[i], arg);
2294 }
2295
2296 #define netdev_lockdep_set_classes(dev) \
2297 { \
2298 static struct lock_class_key qdisc_tx_busylock_key; \
2299 static struct lock_class_key qdisc_running_key; \
2300 static struct lock_class_key qdisc_xmit_lock_key; \
2301 static struct lock_class_key dev_addr_list_lock_key; \
2302 unsigned int i; \
2303 \
2304 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2305 (dev)->qdisc_running_key = &qdisc_running_key; \
2306 lockdep_set_class(&(dev)->addr_list_lock, \
2307 &dev_addr_list_lock_key); \
2308 for (i = 0; i < (dev)->num_tx_queues; i++) \
2309 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2310 &qdisc_xmit_lock_key); \
2311 }
2312
2313 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2314 struct net_device *sb_dev);
2315 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2316 struct sk_buff *skb,
2317 struct net_device *sb_dev);
2318
2319 /* returns the headroom that the master device needs to take in account
2320 * when forwarding to this dev
2321 */
netdev_get_fwd_headroom(struct net_device * dev)2322 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2323 {
2324 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2325 }
2326
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2327 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2328 {
2329 if (dev->netdev_ops->ndo_set_rx_headroom)
2330 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2331 }
2332
2333 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2334 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2335 {
2336 netdev_set_rx_headroom(dev, -1);
2337 }
2338
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2339 static inline void *netdev_get_ml_priv(struct net_device *dev,
2340 enum netdev_ml_priv_type type)
2341 {
2342 if (dev->ml_priv_type != type)
2343 return NULL;
2344
2345 return dev->ml_priv;
2346 }
2347
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2348 static inline void netdev_set_ml_priv(struct net_device *dev,
2349 void *ml_priv,
2350 enum netdev_ml_priv_type type)
2351 {
2352 WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2353 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2354 dev->ml_priv_type, type);
2355 WARN(!dev->ml_priv_type && dev->ml_priv,
2356 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2357
2358 dev->ml_priv = ml_priv;
2359 dev->ml_priv_type = type;
2360 }
2361
2362 /*
2363 * Net namespace inlines
2364 */
2365 static inline
dev_net(const struct net_device * dev)2366 struct net *dev_net(const struct net_device *dev)
2367 {
2368 return read_pnet(&dev->nd_net);
2369 }
2370
2371 static inline
dev_net_set(struct net_device * dev,struct net * net)2372 void dev_net_set(struct net_device *dev, struct net *net)
2373 {
2374 write_pnet(&dev->nd_net, net);
2375 }
2376
2377 /**
2378 * netdev_priv - access network device private data
2379 * @dev: network device
2380 *
2381 * Get network device private data
2382 */
netdev_priv(const struct net_device * dev)2383 static inline void *netdev_priv(const struct net_device *dev)
2384 {
2385 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2386 }
2387
2388 /* Set the sysfs physical device reference for the network logical device
2389 * if set prior to registration will cause a symlink during initialization.
2390 */
2391 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2392
2393 /* Set the sysfs device type for the network logical device to allow
2394 * fine-grained identification of different network device types. For
2395 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2396 */
2397 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2398
2399 /* Default NAPI poll() weight
2400 * Device drivers are strongly advised to not use bigger value
2401 */
2402 #define NAPI_POLL_WEIGHT 64
2403
2404 /**
2405 * netif_napi_add - initialize a NAPI context
2406 * @dev: network device
2407 * @napi: NAPI context
2408 * @poll: polling function
2409 * @weight: default weight
2410 *
2411 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2412 * *any* of the other NAPI-related functions.
2413 */
2414 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2415 int (*poll)(struct napi_struct *, int), int weight);
2416
2417 /**
2418 * netif_tx_napi_add - initialize a NAPI context
2419 * @dev: network device
2420 * @napi: NAPI context
2421 * @poll: polling function
2422 * @weight: default weight
2423 *
2424 * This variant of netif_napi_add() should be used from drivers using NAPI
2425 * to exclusively poll a TX queue.
2426 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2427 */
netif_tx_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2428 static inline void netif_tx_napi_add(struct net_device *dev,
2429 struct napi_struct *napi,
2430 int (*poll)(struct napi_struct *, int),
2431 int weight)
2432 {
2433 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2434 netif_napi_add(dev, napi, poll, weight);
2435 }
2436
2437 /**
2438 * __netif_napi_del - remove a NAPI context
2439 * @napi: NAPI context
2440 *
2441 * Warning: caller must observe RCU grace period before freeing memory
2442 * containing @napi. Drivers might want to call this helper to combine
2443 * all the needed RCU grace periods into a single one.
2444 */
2445 void __netif_napi_del(struct napi_struct *napi);
2446
2447 /**
2448 * netif_napi_del - remove a NAPI context
2449 * @napi: NAPI context
2450 *
2451 * netif_napi_del() removes a NAPI context from the network device NAPI list
2452 */
netif_napi_del(struct napi_struct * napi)2453 static inline void netif_napi_del(struct napi_struct *napi)
2454 {
2455 __netif_napi_del(napi);
2456 synchronize_net();
2457 }
2458
2459 struct napi_gro_cb {
2460 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2461 void *frag0;
2462
2463 /* Length of frag0. */
2464 unsigned int frag0_len;
2465
2466 /* This indicates where we are processing relative to skb->data. */
2467 int data_offset;
2468
2469 /* This is non-zero if the packet cannot be merged with the new skb. */
2470 u16 flush;
2471
2472 /* Save the IP ID here and check when we get to the transport layer */
2473 u16 flush_id;
2474
2475 /* Number of segments aggregated. */
2476 u16 count;
2477
2478 /* Start offset for remote checksum offload */
2479 u16 gro_remcsum_start;
2480
2481 /* jiffies when first packet was created/queued */
2482 unsigned long age;
2483
2484 /* Used in ipv6_gro_receive() and foo-over-udp */
2485 u16 proto;
2486
2487 /* This is non-zero if the packet may be of the same flow. */
2488 u8 same_flow:1;
2489
2490 /* Used in tunnel GRO receive */
2491 u8 encap_mark:1;
2492
2493 /* GRO checksum is valid */
2494 u8 csum_valid:1;
2495
2496 /* Number of checksums via CHECKSUM_UNNECESSARY */
2497 u8 csum_cnt:3;
2498
2499 /* Free the skb? */
2500 u8 free:2;
2501 #define NAPI_GRO_FREE 1
2502 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2503
2504 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2505 u8 is_ipv6:1;
2506
2507 /* Used in GRE, set in fou/gue_gro_receive */
2508 u8 is_fou:1;
2509
2510 /* Used to determine if flush_id can be ignored */
2511 u8 is_atomic:1;
2512
2513 /* Number of gro_receive callbacks this packet already went through */
2514 u8 recursion_counter:4;
2515
2516 /* GRO is done by frag_list pointer chaining. */
2517 u8 is_flist:1;
2518
2519 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2520 __wsum csum;
2521
2522 /* used in skb_gro_receive() slow path */
2523 struct sk_buff *last;
2524 };
2525
2526 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2527
2528 #define GRO_RECURSION_LIMIT 15
gro_recursion_inc_test(struct sk_buff * skb)2529 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2530 {
2531 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2532 }
2533
2534 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
call_gro_receive(gro_receive_t cb,struct list_head * head,struct sk_buff * skb)2535 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2536 struct list_head *head,
2537 struct sk_buff *skb)
2538 {
2539 if (unlikely(gro_recursion_inc_test(skb))) {
2540 NAPI_GRO_CB(skb)->flush |= 1;
2541 return NULL;
2542 }
2543
2544 return cb(head, skb);
2545 }
2546
2547 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2548 struct sk_buff *);
call_gro_receive_sk(gro_receive_sk_t cb,struct sock * sk,struct list_head * head,struct sk_buff * skb)2549 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2550 struct sock *sk,
2551 struct list_head *head,
2552 struct sk_buff *skb)
2553 {
2554 if (unlikely(gro_recursion_inc_test(skb))) {
2555 NAPI_GRO_CB(skb)->flush |= 1;
2556 return NULL;
2557 }
2558
2559 return cb(sk, head, skb);
2560 }
2561
2562 struct packet_type {
2563 __be16 type; /* This is really htons(ether_type). */
2564 bool ignore_outgoing;
2565 struct net_device *dev; /* NULL is wildcarded here */
2566 int (*func) (struct sk_buff *,
2567 struct net_device *,
2568 struct packet_type *,
2569 struct net_device *);
2570 void (*list_func) (struct list_head *,
2571 struct packet_type *,
2572 struct net_device *);
2573 bool (*id_match)(struct packet_type *ptype,
2574 struct sock *sk);
2575 struct net *af_packet_net;
2576 void *af_packet_priv;
2577 struct list_head list;
2578 };
2579
2580 struct offload_callbacks {
2581 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2582 netdev_features_t features);
2583 struct sk_buff *(*gro_receive)(struct list_head *head,
2584 struct sk_buff *skb);
2585 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2586 };
2587
2588 struct packet_offload {
2589 __be16 type; /* This is really htons(ether_type). */
2590 u16 priority;
2591 struct offload_callbacks callbacks;
2592 struct list_head list;
2593 };
2594
2595 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2596 struct pcpu_sw_netstats {
2597 u64 rx_packets;
2598 u64 rx_bytes;
2599 u64 tx_packets;
2600 u64 tx_bytes;
2601 struct u64_stats_sync syncp;
2602 } __aligned(4 * sizeof(u64));
2603
2604 struct pcpu_lstats {
2605 u64_stats_t packets;
2606 u64_stats_t bytes;
2607 struct u64_stats_sync syncp;
2608 } __aligned(2 * sizeof(u64));
2609
2610 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2611
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2612 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2613 {
2614 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2615
2616 u64_stats_update_begin(&tstats->syncp);
2617 tstats->rx_bytes += len;
2618 tstats->rx_packets++;
2619 u64_stats_update_end(&tstats->syncp);
2620 }
2621
dev_lstats_add(struct net_device * dev,unsigned int len)2622 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2623 {
2624 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2625
2626 u64_stats_update_begin(&lstats->syncp);
2627 u64_stats_add(&lstats->bytes, len);
2628 u64_stats_inc(&lstats->packets);
2629 u64_stats_update_end(&lstats->syncp);
2630 }
2631
2632 #define __netdev_alloc_pcpu_stats(type, gfp) \
2633 ({ \
2634 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2635 if (pcpu_stats) { \
2636 int __cpu; \
2637 for_each_possible_cpu(__cpu) { \
2638 typeof(type) *stat; \
2639 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2640 u64_stats_init(&stat->syncp); \
2641 } \
2642 } \
2643 pcpu_stats; \
2644 })
2645
2646 #define netdev_alloc_pcpu_stats(type) \
2647 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2648
2649 enum netdev_lag_tx_type {
2650 NETDEV_LAG_TX_TYPE_UNKNOWN,
2651 NETDEV_LAG_TX_TYPE_RANDOM,
2652 NETDEV_LAG_TX_TYPE_BROADCAST,
2653 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2654 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2655 NETDEV_LAG_TX_TYPE_HASH,
2656 };
2657
2658 enum netdev_lag_hash {
2659 NETDEV_LAG_HASH_NONE,
2660 NETDEV_LAG_HASH_L2,
2661 NETDEV_LAG_HASH_L34,
2662 NETDEV_LAG_HASH_L23,
2663 NETDEV_LAG_HASH_E23,
2664 NETDEV_LAG_HASH_E34,
2665 NETDEV_LAG_HASH_UNKNOWN,
2666 };
2667
2668 struct netdev_lag_upper_info {
2669 enum netdev_lag_tx_type tx_type;
2670 enum netdev_lag_hash hash_type;
2671 };
2672
2673 struct netdev_lag_lower_state_info {
2674 u8 link_up : 1,
2675 tx_enabled : 1;
2676 };
2677
2678 #include <linux/notifier.h>
2679
2680 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2681 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2682 * adding new types.
2683 */
2684 enum netdev_cmd {
2685 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2686 NETDEV_DOWN,
2687 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2688 detected a hardware crash and restarted
2689 - we can use this eg to kick tcp sessions
2690 once done */
2691 NETDEV_CHANGE, /* Notify device state change */
2692 NETDEV_REGISTER,
2693 NETDEV_UNREGISTER,
2694 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2695 NETDEV_CHANGEADDR, /* notify after the address change */
2696 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2697 NETDEV_GOING_DOWN,
2698 NETDEV_CHANGENAME,
2699 NETDEV_FEAT_CHANGE,
2700 NETDEV_BONDING_FAILOVER,
2701 NETDEV_PRE_UP,
2702 NETDEV_PRE_TYPE_CHANGE,
2703 NETDEV_POST_TYPE_CHANGE,
2704 NETDEV_POST_INIT,
2705 NETDEV_RELEASE,
2706 NETDEV_NOTIFY_PEERS,
2707 NETDEV_JOIN,
2708 NETDEV_CHANGEUPPER,
2709 NETDEV_RESEND_IGMP,
2710 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2711 NETDEV_CHANGEINFODATA,
2712 NETDEV_BONDING_INFO,
2713 NETDEV_PRECHANGEUPPER,
2714 NETDEV_CHANGELOWERSTATE,
2715 NETDEV_UDP_TUNNEL_PUSH_INFO,
2716 NETDEV_UDP_TUNNEL_DROP_INFO,
2717 NETDEV_CHANGE_TX_QUEUE_LEN,
2718 NETDEV_CVLAN_FILTER_PUSH_INFO,
2719 NETDEV_CVLAN_FILTER_DROP_INFO,
2720 NETDEV_SVLAN_FILTER_PUSH_INFO,
2721 NETDEV_SVLAN_FILTER_DROP_INFO,
2722 };
2723 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2724
2725 int register_netdevice_notifier(struct notifier_block *nb);
2726 int unregister_netdevice_notifier(struct notifier_block *nb);
2727 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2728 int unregister_netdevice_notifier_net(struct net *net,
2729 struct notifier_block *nb);
2730 int register_netdevice_notifier_dev_net(struct net_device *dev,
2731 struct notifier_block *nb,
2732 struct netdev_net_notifier *nn);
2733 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2734 struct notifier_block *nb,
2735 struct netdev_net_notifier *nn);
2736
2737 struct netdev_notifier_info {
2738 struct net_device *dev;
2739 struct netlink_ext_ack *extack;
2740 };
2741
2742 struct netdev_notifier_info_ext {
2743 struct netdev_notifier_info info; /* must be first */
2744 union {
2745 u32 mtu;
2746 } ext;
2747 };
2748
2749 struct netdev_notifier_change_info {
2750 struct netdev_notifier_info info; /* must be first */
2751 unsigned int flags_changed;
2752 };
2753
2754 struct netdev_notifier_changeupper_info {
2755 struct netdev_notifier_info info; /* must be first */
2756 struct net_device *upper_dev; /* new upper dev */
2757 bool master; /* is upper dev master */
2758 bool linking; /* is the notification for link or unlink */
2759 void *upper_info; /* upper dev info */
2760 };
2761
2762 struct netdev_notifier_changelowerstate_info {
2763 struct netdev_notifier_info info; /* must be first */
2764 void *lower_state_info; /* is lower dev state */
2765 };
2766
2767 struct netdev_notifier_pre_changeaddr_info {
2768 struct netdev_notifier_info info; /* must be first */
2769 const unsigned char *dev_addr;
2770 };
2771
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2772 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2773 struct net_device *dev)
2774 {
2775 info->dev = dev;
2776 info->extack = NULL;
2777 }
2778
2779 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2780 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2781 {
2782 return info->dev;
2783 }
2784
2785 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2786 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2787 {
2788 return info->extack;
2789 }
2790
2791 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2792
2793
2794 extern rwlock_t dev_base_lock; /* Device list lock */
2795
2796 #define for_each_netdev(net, d) \
2797 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2798 #define for_each_netdev_reverse(net, d) \
2799 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2800 #define for_each_netdev_rcu(net, d) \
2801 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2802 #define for_each_netdev_safe(net, d, n) \
2803 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2804 #define for_each_netdev_continue(net, d) \
2805 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2806 #define for_each_netdev_continue_reverse(net, d) \
2807 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2808 dev_list)
2809 #define for_each_netdev_continue_rcu(net, d) \
2810 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2811 #define for_each_netdev_in_bond_rcu(bond, slave) \
2812 for_each_netdev_rcu(&init_net, slave) \
2813 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2814 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2815
next_net_device(struct net_device * dev)2816 static inline struct net_device *next_net_device(struct net_device *dev)
2817 {
2818 struct list_head *lh;
2819 struct net *net;
2820
2821 net = dev_net(dev);
2822 lh = dev->dev_list.next;
2823 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2824 }
2825
next_net_device_rcu(struct net_device * dev)2826 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2827 {
2828 struct list_head *lh;
2829 struct net *net;
2830
2831 net = dev_net(dev);
2832 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2833 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2834 }
2835
first_net_device(struct net * net)2836 static inline struct net_device *first_net_device(struct net *net)
2837 {
2838 return list_empty(&net->dev_base_head) ? NULL :
2839 net_device_entry(net->dev_base_head.next);
2840 }
2841
first_net_device_rcu(struct net * net)2842 static inline struct net_device *first_net_device_rcu(struct net *net)
2843 {
2844 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2845
2846 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2847 }
2848
2849 int netdev_boot_setup_check(struct net_device *dev);
2850 unsigned long netdev_boot_base(const char *prefix, int unit);
2851 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2852 const char *hwaddr);
2853 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2854 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2855 void dev_add_pack(struct packet_type *pt);
2856 void dev_remove_pack(struct packet_type *pt);
2857 void __dev_remove_pack(struct packet_type *pt);
2858 void dev_add_offload(struct packet_offload *po);
2859 void dev_remove_offload(struct packet_offload *po);
2860
2861 int dev_get_iflink(const struct net_device *dev);
2862 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2863 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2864 unsigned short mask);
2865 struct net_device *dev_get_by_name(struct net *net, const char *name);
2866 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2867 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2868 int dev_alloc_name(struct net_device *dev, const char *name);
2869 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2870 void dev_close(struct net_device *dev);
2871 void dev_close_many(struct list_head *head, bool unlink);
2872 void dev_disable_lro(struct net_device *dev);
2873 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2874 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2875 struct net_device *sb_dev);
2876 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2877 struct net_device *sb_dev);
2878
2879 int dev_queue_xmit(struct sk_buff *skb);
2880 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2881 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2882
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)2883 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2884 {
2885 int ret;
2886
2887 ret = __dev_direct_xmit(skb, queue_id);
2888 if (!dev_xmit_complete(ret))
2889 kfree_skb(skb);
2890 return ret;
2891 }
2892
2893 int register_netdevice(struct net_device *dev);
2894 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2895 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2896 static inline void unregister_netdevice(struct net_device *dev)
2897 {
2898 unregister_netdevice_queue(dev, NULL);
2899 }
2900
2901 int netdev_refcnt_read(const struct net_device *dev);
2902 void free_netdev(struct net_device *dev);
2903 void netdev_freemem(struct net_device *dev);
2904 int init_dummy_netdev(struct net_device *dev);
2905
2906 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2907 struct sk_buff *skb,
2908 bool all_slaves);
2909 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2910 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2911 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2912 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2913 int netdev_get_name(struct net *net, char *name, int ifindex);
2914 int dev_restart(struct net_device *dev);
2915 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2916 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2917
skb_gro_offset(const struct sk_buff * skb)2918 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2919 {
2920 return NAPI_GRO_CB(skb)->data_offset;
2921 }
2922
skb_gro_len(const struct sk_buff * skb)2923 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2924 {
2925 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2926 }
2927
skb_gro_pull(struct sk_buff * skb,unsigned int len)2928 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2929 {
2930 NAPI_GRO_CB(skb)->data_offset += len;
2931 }
2932
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2933 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2934 unsigned int offset)
2935 {
2936 return NAPI_GRO_CB(skb)->frag0 + offset;
2937 }
2938
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2939 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2940 {
2941 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2942 }
2943
skb_gro_frag0_invalidate(struct sk_buff * skb)2944 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2945 {
2946 NAPI_GRO_CB(skb)->frag0 = NULL;
2947 NAPI_GRO_CB(skb)->frag0_len = 0;
2948 }
2949
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2950 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2951 unsigned int offset)
2952 {
2953 if (!pskb_may_pull(skb, hlen))
2954 return NULL;
2955
2956 skb_gro_frag0_invalidate(skb);
2957 return skb->data + offset;
2958 }
2959
skb_gro_network_header(struct sk_buff * skb)2960 static inline void *skb_gro_network_header(struct sk_buff *skb)
2961 {
2962 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2963 skb_network_offset(skb);
2964 }
2965
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2966 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2967 const void *start, unsigned int len)
2968 {
2969 if (NAPI_GRO_CB(skb)->csum_valid)
2970 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2971 csum_partial(start, len, 0));
2972 }
2973
2974 /* GRO checksum functions. These are logical equivalents of the normal
2975 * checksum functions (in skbuff.h) except that they operate on the GRO
2976 * offsets and fields in sk_buff.
2977 */
2978
2979 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2980
skb_at_gro_remcsum_start(struct sk_buff * skb)2981 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2982 {
2983 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2984 }
2985
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2986 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2987 bool zero_okay,
2988 __sum16 check)
2989 {
2990 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2991 skb_checksum_start_offset(skb) <
2992 skb_gro_offset(skb)) &&
2993 !skb_at_gro_remcsum_start(skb) &&
2994 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2995 (!zero_okay || check));
2996 }
2997
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)2998 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2999 __wsum psum)
3000 {
3001 if (NAPI_GRO_CB(skb)->csum_valid &&
3002 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
3003 return 0;
3004
3005 NAPI_GRO_CB(skb)->csum = psum;
3006
3007 return __skb_gro_checksum_complete(skb);
3008 }
3009
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)3010 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
3011 {
3012 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
3013 /* Consume a checksum from CHECKSUM_UNNECESSARY */
3014 NAPI_GRO_CB(skb)->csum_cnt--;
3015 } else {
3016 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
3017 * verified a new top level checksum or an encapsulated one
3018 * during GRO. This saves work if we fallback to normal path.
3019 */
3020 __skb_incr_checksum_unnecessary(skb);
3021 }
3022 }
3023
3024 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
3025 compute_pseudo) \
3026 ({ \
3027 __sum16 __ret = 0; \
3028 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
3029 __ret = __skb_gro_checksum_validate_complete(skb, \
3030 compute_pseudo(skb, proto)); \
3031 if (!__ret) \
3032 skb_gro_incr_csum_unnecessary(skb); \
3033 __ret; \
3034 })
3035
3036 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
3037 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3038
3039 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
3040 compute_pseudo) \
3041 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3042
3043 #define skb_gro_checksum_simple_validate(skb) \
3044 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3045
__skb_gro_checksum_convert_check(struct sk_buff * skb)3046 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3047 {
3048 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3049 !NAPI_GRO_CB(skb)->csum_valid);
3050 }
3051
__skb_gro_checksum_convert(struct sk_buff * skb,__wsum pseudo)3052 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3053 __wsum pseudo)
3054 {
3055 NAPI_GRO_CB(skb)->csum = ~pseudo;
3056 NAPI_GRO_CB(skb)->csum_valid = 1;
3057 }
3058
3059 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \
3060 do { \
3061 if (__skb_gro_checksum_convert_check(skb)) \
3062 __skb_gro_checksum_convert(skb, \
3063 compute_pseudo(skb, proto)); \
3064 } while (0)
3065
3066 struct gro_remcsum {
3067 int offset;
3068 __wsum delta;
3069 };
3070
skb_gro_remcsum_init(struct gro_remcsum * grc)3071 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3072 {
3073 grc->offset = 0;
3074 grc->delta = 0;
3075 }
3076
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,unsigned int off,size_t hdrlen,int start,int offset,struct gro_remcsum * grc,bool nopartial)3077 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3078 unsigned int off, size_t hdrlen,
3079 int start, int offset,
3080 struct gro_remcsum *grc,
3081 bool nopartial)
3082 {
3083 __wsum delta;
3084 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3085
3086 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3087
3088 if (!nopartial) {
3089 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3090 return ptr;
3091 }
3092
3093 ptr = skb_gro_header_fast(skb, off);
3094 if (skb_gro_header_hard(skb, off + plen)) {
3095 ptr = skb_gro_header_slow(skb, off + plen, off);
3096 if (!ptr)
3097 return NULL;
3098 }
3099
3100 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3101 start, offset);
3102
3103 /* Adjust skb->csum since we changed the packet */
3104 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3105
3106 grc->offset = off + hdrlen + offset;
3107 grc->delta = delta;
3108
3109 return ptr;
3110 }
3111
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)3112 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3113 struct gro_remcsum *grc)
3114 {
3115 void *ptr;
3116 size_t plen = grc->offset + sizeof(u16);
3117
3118 if (!grc->delta)
3119 return;
3120
3121 ptr = skb_gro_header_fast(skb, grc->offset);
3122 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3123 ptr = skb_gro_header_slow(skb, plen, grc->offset);
3124 if (!ptr)
3125 return;
3126 }
3127
3128 remcsum_unadjust((__sum16 *)ptr, grc->delta);
3129 }
3130
3131 #ifdef CONFIG_XFRM_OFFLOAD
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)3132 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3133 {
3134 if (PTR_ERR(pp) != -EINPROGRESS)
3135 NAPI_GRO_CB(skb)->flush |= flush;
3136 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)3137 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3138 struct sk_buff *pp,
3139 int flush,
3140 struct gro_remcsum *grc)
3141 {
3142 if (PTR_ERR(pp) != -EINPROGRESS) {
3143 NAPI_GRO_CB(skb)->flush |= flush;
3144 skb_gro_remcsum_cleanup(skb, grc);
3145 skb->remcsum_offload = 0;
3146 }
3147 }
3148 #else
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)3149 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3150 {
3151 NAPI_GRO_CB(skb)->flush |= flush;
3152 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)3153 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3154 struct sk_buff *pp,
3155 int flush,
3156 struct gro_remcsum *grc)
3157 {
3158 NAPI_GRO_CB(skb)->flush |= flush;
3159 skb_gro_remcsum_cleanup(skb, grc);
3160 skb->remcsum_offload = 0;
3161 }
3162 #endif
3163
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3164 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3165 unsigned short type,
3166 const void *daddr, const void *saddr,
3167 unsigned int len)
3168 {
3169 if (!dev->header_ops || !dev->header_ops->create)
3170 return 0;
3171
3172 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3173 }
3174
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3175 static inline int dev_parse_header(const struct sk_buff *skb,
3176 unsigned char *haddr)
3177 {
3178 const struct net_device *dev = skb->dev;
3179
3180 if (!dev->header_ops || !dev->header_ops->parse)
3181 return 0;
3182 return dev->header_ops->parse(skb, haddr);
3183 }
3184
dev_parse_header_protocol(const struct sk_buff * skb)3185 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3186 {
3187 const struct net_device *dev = skb->dev;
3188
3189 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3190 return 0;
3191 return dev->header_ops->parse_protocol(skb);
3192 }
3193
3194 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3195 static inline bool dev_validate_header(const struct net_device *dev,
3196 char *ll_header, int len)
3197 {
3198 if (likely(len >= dev->hard_header_len))
3199 return true;
3200 if (len < dev->min_header_len)
3201 return false;
3202
3203 if (capable(CAP_SYS_RAWIO)) {
3204 memset(ll_header + len, 0, dev->hard_header_len - len);
3205 return true;
3206 }
3207
3208 if (dev->header_ops && dev->header_ops->validate)
3209 return dev->header_ops->validate(ll_header, len);
3210
3211 return false;
3212 }
3213
dev_has_header(const struct net_device * dev)3214 static inline bool dev_has_header(const struct net_device *dev)
3215 {
3216 return dev->header_ops && dev->header_ops->create;
3217 }
3218
3219 #ifdef CONFIG_NET_FLOW_LIMIT
3220 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
3221 struct sd_flow_limit {
3222 u64 count;
3223 unsigned int num_buckets;
3224 unsigned int history_head;
3225 u16 history[FLOW_LIMIT_HISTORY];
3226 u8 buckets[];
3227 };
3228
3229 extern int netdev_flow_limit_table_len;
3230 #endif /* CONFIG_NET_FLOW_LIMIT */
3231
3232 /*
3233 * Incoming packets are placed on per-CPU queues
3234 */
3235 struct softnet_data {
3236 struct list_head poll_list;
3237 struct sk_buff_head process_queue;
3238
3239 /* stats */
3240 unsigned int processed;
3241 unsigned int time_squeeze;
3242 unsigned int received_rps;
3243 #ifdef CONFIG_RPS
3244 struct softnet_data *rps_ipi_list;
3245 #endif
3246 #ifdef CONFIG_NET_FLOW_LIMIT
3247 struct sd_flow_limit __rcu *flow_limit;
3248 #endif
3249 struct Qdisc *output_queue;
3250 struct Qdisc **output_queue_tailp;
3251 struct sk_buff *completion_queue;
3252 #ifdef CONFIG_XFRM_OFFLOAD
3253 struct sk_buff_head xfrm_backlog;
3254 #endif
3255 /* written and read only by owning cpu: */
3256 struct {
3257 u16 recursion;
3258 u8 more;
3259 } xmit;
3260 #ifdef CONFIG_RPS
3261 /* input_queue_head should be written by cpu owning this struct,
3262 * and only read by other cpus. Worth using a cache line.
3263 */
3264 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3265
3266 /* Elements below can be accessed between CPUs for RPS/RFS */
3267 call_single_data_t csd ____cacheline_aligned_in_smp;
3268 struct softnet_data *rps_ipi_next;
3269 unsigned int cpu;
3270 unsigned int input_queue_tail;
3271 #endif
3272 unsigned int dropped;
3273 struct sk_buff_head input_pkt_queue;
3274 struct napi_struct backlog;
3275
3276 };
3277
input_queue_head_incr(struct softnet_data * sd)3278 static inline void input_queue_head_incr(struct softnet_data *sd)
3279 {
3280 #ifdef CONFIG_RPS
3281 sd->input_queue_head++;
3282 #endif
3283 }
3284
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3285 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3286 unsigned int *qtail)
3287 {
3288 #ifdef CONFIG_RPS
3289 *qtail = ++sd->input_queue_tail;
3290 #endif
3291 }
3292
3293 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3294
dev_recursion_level(void)3295 static inline int dev_recursion_level(void)
3296 {
3297 return this_cpu_read(softnet_data.xmit.recursion);
3298 }
3299
3300 #define XMIT_RECURSION_LIMIT 8
dev_xmit_recursion(void)3301 static inline bool dev_xmit_recursion(void)
3302 {
3303 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3304 XMIT_RECURSION_LIMIT);
3305 }
3306
dev_xmit_recursion_inc(void)3307 static inline void dev_xmit_recursion_inc(void)
3308 {
3309 __this_cpu_inc(softnet_data.xmit.recursion);
3310 }
3311
dev_xmit_recursion_dec(void)3312 static inline void dev_xmit_recursion_dec(void)
3313 {
3314 __this_cpu_dec(softnet_data.xmit.recursion);
3315 }
3316
3317 void __netif_schedule(struct Qdisc *q);
3318 void netif_schedule_queue(struct netdev_queue *txq);
3319
netif_tx_schedule_all(struct net_device * dev)3320 static inline void netif_tx_schedule_all(struct net_device *dev)
3321 {
3322 unsigned int i;
3323
3324 for (i = 0; i < dev->num_tx_queues; i++)
3325 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3326 }
3327
netif_tx_start_queue(struct netdev_queue * dev_queue)3328 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3329 {
3330 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3331 }
3332
3333 /**
3334 * netif_start_queue - allow transmit
3335 * @dev: network device
3336 *
3337 * Allow upper layers to call the device hard_start_xmit routine.
3338 */
netif_start_queue(struct net_device * dev)3339 static inline void netif_start_queue(struct net_device *dev)
3340 {
3341 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3342 }
3343
netif_tx_start_all_queues(struct net_device * dev)3344 static inline void netif_tx_start_all_queues(struct net_device *dev)
3345 {
3346 unsigned int i;
3347
3348 for (i = 0; i < dev->num_tx_queues; i++) {
3349 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3350 netif_tx_start_queue(txq);
3351 }
3352 }
3353
3354 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3355
3356 /**
3357 * netif_wake_queue - restart transmit
3358 * @dev: network device
3359 *
3360 * Allow upper layers to call the device hard_start_xmit routine.
3361 * Used for flow control when transmit resources are available.
3362 */
netif_wake_queue(struct net_device * dev)3363 static inline void netif_wake_queue(struct net_device *dev)
3364 {
3365 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3366 }
3367
netif_tx_wake_all_queues(struct net_device * dev)3368 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3369 {
3370 unsigned int i;
3371
3372 for (i = 0; i < dev->num_tx_queues; i++) {
3373 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3374 netif_tx_wake_queue(txq);
3375 }
3376 }
3377
netif_tx_stop_queue(struct netdev_queue * dev_queue)3378 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3379 {
3380 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3381 }
3382
3383 /**
3384 * netif_stop_queue - stop transmitted packets
3385 * @dev: network device
3386 *
3387 * Stop upper layers calling the device hard_start_xmit routine.
3388 * Used for flow control when transmit resources are unavailable.
3389 */
netif_stop_queue(struct net_device * dev)3390 static inline void netif_stop_queue(struct net_device *dev)
3391 {
3392 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3393 }
3394
3395 void netif_tx_stop_all_queues(struct net_device *dev);
3396
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3397 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3398 {
3399 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3400 }
3401
3402 /**
3403 * netif_queue_stopped - test if transmit queue is flowblocked
3404 * @dev: network device
3405 *
3406 * Test if transmit queue on device is currently unable to send.
3407 */
netif_queue_stopped(const struct net_device * dev)3408 static inline bool netif_queue_stopped(const struct net_device *dev)
3409 {
3410 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3411 }
3412
netif_xmit_stopped(const struct netdev_queue * dev_queue)3413 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3414 {
3415 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3416 }
3417
3418 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3419 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3420 {
3421 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3422 }
3423
3424 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3425 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3426 {
3427 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3428 }
3429
3430 /**
3431 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3432 * @dev_queue: pointer to transmit queue
3433 *
3434 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3435 * to give appropriate hint to the CPU.
3436 */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3437 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3438 {
3439 #ifdef CONFIG_BQL
3440 prefetchw(&dev_queue->dql.num_queued);
3441 #endif
3442 }
3443
3444 /**
3445 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3446 * @dev_queue: pointer to transmit queue
3447 *
3448 * BQL enabled drivers might use this helper in their TX completion path,
3449 * to give appropriate hint to the CPU.
3450 */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3451 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3452 {
3453 #ifdef CONFIG_BQL
3454 prefetchw(&dev_queue->dql.limit);
3455 #endif
3456 }
3457
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3458 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3459 unsigned int bytes)
3460 {
3461 #ifdef CONFIG_BQL
3462 dql_queued(&dev_queue->dql, bytes);
3463
3464 if (likely(dql_avail(&dev_queue->dql) >= 0))
3465 return;
3466
3467 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3468
3469 /*
3470 * The XOFF flag must be set before checking the dql_avail below,
3471 * because in netdev_tx_completed_queue we update the dql_completed
3472 * before checking the XOFF flag.
3473 */
3474 smp_mb();
3475
3476 /* check again in case another CPU has just made room avail */
3477 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3478 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3479 #endif
3480 }
3481
3482 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3483 * that they should not test BQL status themselves.
3484 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3485 * skb of a batch.
3486 * Returns true if the doorbell must be used to kick the NIC.
3487 */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3488 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3489 unsigned int bytes,
3490 bool xmit_more)
3491 {
3492 if (xmit_more) {
3493 #ifdef CONFIG_BQL
3494 dql_queued(&dev_queue->dql, bytes);
3495 #endif
3496 return netif_tx_queue_stopped(dev_queue);
3497 }
3498 netdev_tx_sent_queue(dev_queue, bytes);
3499 return true;
3500 }
3501
3502 /**
3503 * netdev_sent_queue - report the number of bytes queued to hardware
3504 * @dev: network device
3505 * @bytes: number of bytes queued to the hardware device queue
3506 *
3507 * Report the number of bytes queued for sending/completion to the network
3508 * device hardware queue. @bytes should be a good approximation and should
3509 * exactly match netdev_completed_queue() @bytes
3510 */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3511 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3512 {
3513 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3514 }
3515
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3516 static inline bool __netdev_sent_queue(struct net_device *dev,
3517 unsigned int bytes,
3518 bool xmit_more)
3519 {
3520 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3521 xmit_more);
3522 }
3523
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3524 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3525 unsigned int pkts, unsigned int bytes)
3526 {
3527 #ifdef CONFIG_BQL
3528 if (unlikely(!bytes))
3529 return;
3530
3531 dql_completed(&dev_queue->dql, bytes);
3532
3533 /*
3534 * Without the memory barrier there is a small possiblity that
3535 * netdev_tx_sent_queue will miss the update and cause the queue to
3536 * be stopped forever
3537 */
3538 smp_mb();
3539
3540 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3541 return;
3542
3543 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3544 netif_schedule_queue(dev_queue);
3545 #endif
3546 }
3547
3548 /**
3549 * netdev_completed_queue - report bytes and packets completed by device
3550 * @dev: network device
3551 * @pkts: actual number of packets sent over the medium
3552 * @bytes: actual number of bytes sent over the medium
3553 *
3554 * Report the number of bytes and packets transmitted by the network device
3555 * hardware queue over the physical medium, @bytes must exactly match the
3556 * @bytes amount passed to netdev_sent_queue()
3557 */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3558 static inline void netdev_completed_queue(struct net_device *dev,
3559 unsigned int pkts, unsigned int bytes)
3560 {
3561 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3562 }
3563
netdev_tx_reset_queue(struct netdev_queue * q)3564 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3565 {
3566 #ifdef CONFIG_BQL
3567 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3568 dql_reset(&q->dql);
3569 #endif
3570 }
3571
3572 /**
3573 * netdev_reset_queue - reset the packets and bytes count of a network device
3574 * @dev_queue: network device
3575 *
3576 * Reset the bytes and packet count of a network device and clear the
3577 * software flow control OFF bit for this network device
3578 */
netdev_reset_queue(struct net_device * dev_queue)3579 static inline void netdev_reset_queue(struct net_device *dev_queue)
3580 {
3581 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3582 }
3583
3584 /**
3585 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3586 * @dev: network device
3587 * @queue_index: given tx queue index
3588 *
3589 * Returns 0 if given tx queue index >= number of device tx queues,
3590 * otherwise returns the originally passed tx queue index.
3591 */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3592 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3593 {
3594 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3595 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3596 dev->name, queue_index,
3597 dev->real_num_tx_queues);
3598 return 0;
3599 }
3600
3601 return queue_index;
3602 }
3603
3604 /**
3605 * netif_running - test if up
3606 * @dev: network device
3607 *
3608 * Test if the device has been brought up.
3609 */
netif_running(const struct net_device * dev)3610 static inline bool netif_running(const struct net_device *dev)
3611 {
3612 return test_bit(__LINK_STATE_START, &dev->state);
3613 }
3614
3615 /*
3616 * Routines to manage the subqueues on a device. We only need start,
3617 * stop, and a check if it's stopped. All other device management is
3618 * done at the overall netdevice level.
3619 * Also test the device if we're multiqueue.
3620 */
3621
3622 /**
3623 * netif_start_subqueue - allow sending packets on subqueue
3624 * @dev: network device
3625 * @queue_index: sub queue index
3626 *
3627 * Start individual transmit queue of a device with multiple transmit queues.
3628 */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3629 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3630 {
3631 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3632
3633 netif_tx_start_queue(txq);
3634 }
3635
3636 /**
3637 * netif_stop_subqueue - stop sending packets on subqueue
3638 * @dev: network device
3639 * @queue_index: sub queue index
3640 *
3641 * Stop individual transmit queue of a device with multiple transmit queues.
3642 */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3643 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3644 {
3645 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3646 netif_tx_stop_queue(txq);
3647 }
3648
3649 /**
3650 * netif_subqueue_stopped - test status of subqueue
3651 * @dev: network device
3652 * @queue_index: sub queue index
3653 *
3654 * Check individual transmit queue of a device with multiple transmit queues.
3655 */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3656 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3657 u16 queue_index)
3658 {
3659 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3660
3661 return netif_tx_queue_stopped(txq);
3662 }
3663
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3664 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3665 struct sk_buff *skb)
3666 {
3667 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3668 }
3669
3670 /**
3671 * netif_wake_subqueue - allow sending packets on subqueue
3672 * @dev: network device
3673 * @queue_index: sub queue index
3674 *
3675 * Resume individual transmit queue of a device with multiple transmit queues.
3676 */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3677 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3678 {
3679 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3680
3681 netif_tx_wake_queue(txq);
3682 }
3683
3684 #ifdef CONFIG_XPS
3685 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3686 u16 index);
3687 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3688 u16 index, bool is_rxqs_map);
3689
3690 /**
3691 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3692 * @j: CPU/Rx queue index
3693 * @mask: bitmask of all cpus/rx queues
3694 * @nr_bits: number of bits in the bitmask
3695 *
3696 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3697 */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3698 static inline bool netif_attr_test_mask(unsigned long j,
3699 const unsigned long *mask,
3700 unsigned int nr_bits)
3701 {
3702 cpu_max_bits_warn(j, nr_bits);
3703 return test_bit(j, mask);
3704 }
3705
3706 /**
3707 * netif_attr_test_online - Test for online CPU/Rx queue
3708 * @j: CPU/Rx queue index
3709 * @online_mask: bitmask for CPUs/Rx queues that are online
3710 * @nr_bits: number of bits in the bitmask
3711 *
3712 * Returns true if a CPU/Rx queue is online.
3713 */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3714 static inline bool netif_attr_test_online(unsigned long j,
3715 const unsigned long *online_mask,
3716 unsigned int nr_bits)
3717 {
3718 cpu_max_bits_warn(j, nr_bits);
3719
3720 if (online_mask)
3721 return test_bit(j, online_mask);
3722
3723 return (j < nr_bits);
3724 }
3725
3726 /**
3727 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3728 * @n: CPU/Rx queue index
3729 * @srcp: the cpumask/Rx queue mask pointer
3730 * @nr_bits: number of bits in the bitmask
3731 *
3732 * Returns >= nr_bits if no further CPUs/Rx queues set.
3733 */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3734 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3735 unsigned int nr_bits)
3736 {
3737 /* -1 is a legal arg here. */
3738 if (n != -1)
3739 cpu_max_bits_warn(n, nr_bits);
3740
3741 if (srcp)
3742 return find_next_bit(srcp, nr_bits, n + 1);
3743
3744 return n + 1;
3745 }
3746
3747 /**
3748 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3749 * @n: CPU/Rx queue index
3750 * @src1p: the first CPUs/Rx queues mask pointer
3751 * @src2p: the second CPUs/Rx queues mask pointer
3752 * @nr_bits: number of bits in the bitmask
3753 *
3754 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3755 */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3756 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3757 const unsigned long *src2p,
3758 unsigned int nr_bits)
3759 {
3760 /* -1 is a legal arg here. */
3761 if (n != -1)
3762 cpu_max_bits_warn(n, nr_bits);
3763
3764 if (src1p && src2p)
3765 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3766 else if (src1p)
3767 return find_next_bit(src1p, nr_bits, n + 1);
3768 else if (src2p)
3769 return find_next_bit(src2p, nr_bits, n + 1);
3770
3771 return n + 1;
3772 }
3773 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3774 static inline int netif_set_xps_queue(struct net_device *dev,
3775 const struct cpumask *mask,
3776 u16 index)
3777 {
3778 return 0;
3779 }
3780
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)3781 static inline int __netif_set_xps_queue(struct net_device *dev,
3782 const unsigned long *mask,
3783 u16 index, bool is_rxqs_map)
3784 {
3785 return 0;
3786 }
3787 #endif
3788
3789 /**
3790 * netif_is_multiqueue - test if device has multiple transmit queues
3791 * @dev: network device
3792 *
3793 * Check if device has multiple transmit queues
3794 */
netif_is_multiqueue(const struct net_device * dev)3795 static inline bool netif_is_multiqueue(const struct net_device *dev)
3796 {
3797 return dev->num_tx_queues > 1;
3798 }
3799
3800 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3801
3802 #ifdef CONFIG_SYSFS
3803 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3804 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3805 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3806 unsigned int rxqs)
3807 {
3808 dev->real_num_rx_queues = rxqs;
3809 return 0;
3810 }
3811 #endif
3812
3813 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3814 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3815 {
3816 return dev->_rx + rxq;
3817 }
3818
3819 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3820 static inline unsigned int get_netdev_rx_queue_index(
3821 struct netdev_rx_queue *queue)
3822 {
3823 struct net_device *dev = queue->dev;
3824 int index = queue - dev->_rx;
3825
3826 BUG_ON(index >= dev->num_rx_queues);
3827 return index;
3828 }
3829 #endif
3830
3831 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3832 int netif_get_num_default_rss_queues(void);
3833
3834 enum skb_free_reason {
3835 SKB_REASON_CONSUMED,
3836 SKB_REASON_DROPPED,
3837 };
3838
3839 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3840 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3841
3842 /*
3843 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3844 * interrupt context or with hardware interrupts being disabled.
3845 * (in_irq() || irqs_disabled())
3846 *
3847 * We provide four helpers that can be used in following contexts :
3848 *
3849 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3850 * replacing kfree_skb(skb)
3851 *
3852 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3853 * Typically used in place of consume_skb(skb) in TX completion path
3854 *
3855 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3856 * replacing kfree_skb(skb)
3857 *
3858 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3859 * and consumed a packet. Used in place of consume_skb(skb)
3860 */
dev_kfree_skb_irq(struct sk_buff * skb)3861 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3862 {
3863 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3864 }
3865
dev_consume_skb_irq(struct sk_buff * skb)3866 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3867 {
3868 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3869 }
3870
dev_kfree_skb_any(struct sk_buff * skb)3871 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3872 {
3873 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3874 }
3875
dev_consume_skb_any(struct sk_buff * skb)3876 static inline void dev_consume_skb_any(struct sk_buff *skb)
3877 {
3878 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3879 }
3880
3881 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3882 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3883 int netif_rx(struct sk_buff *skb);
3884 int netif_rx_ni(struct sk_buff *skb);
3885 int netif_rx_any_context(struct sk_buff *skb);
3886 int netif_receive_skb(struct sk_buff *skb);
3887 int netif_receive_skb_core(struct sk_buff *skb);
3888 void netif_receive_skb_list(struct list_head *head);
3889 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3890 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3891 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3892 gro_result_t napi_gro_frags(struct napi_struct *napi);
3893 struct packet_offload *gro_find_receive_by_type(__be16 type);
3894 struct packet_offload *gro_find_complete_by_type(__be16 type);
3895
napi_free_frags(struct napi_struct * napi)3896 static inline void napi_free_frags(struct napi_struct *napi)
3897 {
3898 kfree_skb(napi->skb);
3899 napi->skb = NULL;
3900 }
3901
3902 bool netdev_is_rx_handler_busy(struct net_device *dev);
3903 int netdev_rx_handler_register(struct net_device *dev,
3904 rx_handler_func_t *rx_handler,
3905 void *rx_handler_data);
3906 void netdev_rx_handler_unregister(struct net_device *dev);
3907
3908 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3909 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3910 {
3911 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3912 }
3913 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3914 bool *need_copyout);
3915 int dev_ifconf(struct net *net, struct ifconf *, int);
3916 int dev_ethtool(struct net *net, struct ifreq *);
3917 unsigned int dev_get_flags(const struct net_device *);
3918 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3919 struct netlink_ext_ack *extack);
3920 int dev_change_flags(struct net_device *dev, unsigned int flags,
3921 struct netlink_ext_ack *extack);
3922 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3923 unsigned int gchanges);
3924 int dev_change_name(struct net_device *, const char *);
3925 int dev_set_alias(struct net_device *, const char *, size_t);
3926 int dev_get_alias(const struct net_device *, char *, size_t);
3927 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3928 int __dev_set_mtu(struct net_device *, int);
3929 int dev_validate_mtu(struct net_device *dev, int mtu,
3930 struct netlink_ext_ack *extack);
3931 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3932 struct netlink_ext_ack *extack);
3933 int dev_set_mtu(struct net_device *, int);
3934 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3935 void dev_set_group(struct net_device *, int);
3936 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3937 struct netlink_ext_ack *extack);
3938 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3939 struct netlink_ext_ack *extack);
3940 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3941 struct netlink_ext_ack *extack);
3942 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3943 int dev_change_carrier(struct net_device *, bool new_carrier);
3944 int dev_get_phys_port_id(struct net_device *dev,
3945 struct netdev_phys_item_id *ppid);
3946 int dev_get_phys_port_name(struct net_device *dev,
3947 char *name, size_t len);
3948 int dev_get_port_parent_id(struct net_device *dev,
3949 struct netdev_phys_item_id *ppid, bool recurse);
3950 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3951 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3952 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3953 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3954 u32 value);
3955 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3956 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3957 struct netdev_queue *txq, int *ret);
3958
3959 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3960 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3961 int fd, int expected_fd, u32 flags);
3962 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3963 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3964
3965 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3966
3967 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3968 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3969 bool is_skb_forwardable(const struct net_device *dev,
3970 const struct sk_buff *skb);
3971
____dev_forward_skb(struct net_device * dev,struct sk_buff * skb)3972 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3973 struct sk_buff *skb)
3974 {
3975 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3976 unlikely(!is_skb_forwardable(dev, skb))) {
3977 atomic_long_inc(&dev->rx_dropped);
3978 kfree_skb(skb);
3979 return NET_RX_DROP;
3980 }
3981
3982 skb_scrub_packet(skb, true);
3983 skb->priority = 0;
3984 return 0;
3985 }
3986
3987 bool dev_nit_active(struct net_device *dev);
3988 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3989
3990 extern int netdev_budget;
3991 extern unsigned int netdev_budget_usecs;
3992
3993 /* Called by rtnetlink.c:rtnl_unlock() */
3994 void netdev_run_todo(void);
3995
3996 /**
3997 * dev_put - release reference to device
3998 * @dev: network device
3999 *
4000 * Release reference to device to allow it to be freed.
4001 */
dev_put(struct net_device * dev)4002 static inline void dev_put(struct net_device *dev)
4003 {
4004 if (dev)
4005 this_cpu_dec(*dev->pcpu_refcnt);
4006 }
4007
4008 /**
4009 * dev_hold - get reference to device
4010 * @dev: network device
4011 *
4012 * Hold reference to device to keep it from being freed.
4013 */
dev_hold(struct net_device * dev)4014 static inline void dev_hold(struct net_device *dev)
4015 {
4016 if (dev)
4017 this_cpu_inc(*dev->pcpu_refcnt);
4018 }
4019
4020 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4021 * and _off may be called from IRQ context, but it is caller
4022 * who is responsible for serialization of these calls.
4023 *
4024 * The name carrier is inappropriate, these functions should really be
4025 * called netif_lowerlayer_*() because they represent the state of any
4026 * kind of lower layer not just hardware media.
4027 */
4028
4029 void linkwatch_init_dev(struct net_device *dev);
4030 void linkwatch_fire_event(struct net_device *dev);
4031 void linkwatch_forget_dev(struct net_device *dev);
4032
4033 /**
4034 * netif_carrier_ok - test if carrier present
4035 * @dev: network device
4036 *
4037 * Check if carrier is present on device
4038 */
netif_carrier_ok(const struct net_device * dev)4039 static inline bool netif_carrier_ok(const struct net_device *dev)
4040 {
4041 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4042 }
4043
4044 unsigned long dev_trans_start(struct net_device *dev);
4045
4046 void __netdev_watchdog_up(struct net_device *dev);
4047
4048 void netif_carrier_on(struct net_device *dev);
4049
4050 void netif_carrier_off(struct net_device *dev);
4051
4052 /**
4053 * netif_dormant_on - mark device as dormant.
4054 * @dev: network device
4055 *
4056 * Mark device as dormant (as per RFC2863).
4057 *
4058 * The dormant state indicates that the relevant interface is not
4059 * actually in a condition to pass packets (i.e., it is not 'up') but is
4060 * in a "pending" state, waiting for some external event. For "on-
4061 * demand" interfaces, this new state identifies the situation where the
4062 * interface is waiting for events to place it in the up state.
4063 */
netif_dormant_on(struct net_device * dev)4064 static inline void netif_dormant_on(struct net_device *dev)
4065 {
4066 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4067 linkwatch_fire_event(dev);
4068 }
4069
4070 /**
4071 * netif_dormant_off - set device as not dormant.
4072 * @dev: network device
4073 *
4074 * Device is not in dormant state.
4075 */
netif_dormant_off(struct net_device * dev)4076 static inline void netif_dormant_off(struct net_device *dev)
4077 {
4078 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4079 linkwatch_fire_event(dev);
4080 }
4081
4082 /**
4083 * netif_dormant - test if device is dormant
4084 * @dev: network device
4085 *
4086 * Check if device is dormant.
4087 */
netif_dormant(const struct net_device * dev)4088 static inline bool netif_dormant(const struct net_device *dev)
4089 {
4090 return test_bit(__LINK_STATE_DORMANT, &dev->state);
4091 }
4092
4093
4094 /**
4095 * netif_testing_on - mark device as under test.
4096 * @dev: network device
4097 *
4098 * Mark device as under test (as per RFC2863).
4099 *
4100 * The testing state indicates that some test(s) must be performed on
4101 * the interface. After completion, of the test, the interface state
4102 * will change to up, dormant, or down, as appropriate.
4103 */
netif_testing_on(struct net_device * dev)4104 static inline void netif_testing_on(struct net_device *dev)
4105 {
4106 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4107 linkwatch_fire_event(dev);
4108 }
4109
4110 /**
4111 * netif_testing_off - set device as not under test.
4112 * @dev: network device
4113 *
4114 * Device is not in testing state.
4115 */
netif_testing_off(struct net_device * dev)4116 static inline void netif_testing_off(struct net_device *dev)
4117 {
4118 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4119 linkwatch_fire_event(dev);
4120 }
4121
4122 /**
4123 * netif_testing - test if device is under test
4124 * @dev: network device
4125 *
4126 * Check if device is under test
4127 */
netif_testing(const struct net_device * dev)4128 static inline bool netif_testing(const struct net_device *dev)
4129 {
4130 return test_bit(__LINK_STATE_TESTING, &dev->state);
4131 }
4132
4133
4134 /**
4135 * netif_oper_up - test if device is operational
4136 * @dev: network device
4137 *
4138 * Check if carrier is operational
4139 */
netif_oper_up(const struct net_device * dev)4140 static inline bool netif_oper_up(const struct net_device *dev)
4141 {
4142 return (dev->operstate == IF_OPER_UP ||
4143 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4144 }
4145
4146 /**
4147 * netif_device_present - is device available or removed
4148 * @dev: network device
4149 *
4150 * Check if device has not been removed from system.
4151 */
netif_device_present(struct net_device * dev)4152 static inline bool netif_device_present(struct net_device *dev)
4153 {
4154 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4155 }
4156
4157 void netif_device_detach(struct net_device *dev);
4158
4159 void netif_device_attach(struct net_device *dev);
4160
4161 /*
4162 * Network interface message level settings
4163 */
4164
4165 enum {
4166 NETIF_MSG_DRV_BIT,
4167 NETIF_MSG_PROBE_BIT,
4168 NETIF_MSG_LINK_BIT,
4169 NETIF_MSG_TIMER_BIT,
4170 NETIF_MSG_IFDOWN_BIT,
4171 NETIF_MSG_IFUP_BIT,
4172 NETIF_MSG_RX_ERR_BIT,
4173 NETIF_MSG_TX_ERR_BIT,
4174 NETIF_MSG_TX_QUEUED_BIT,
4175 NETIF_MSG_INTR_BIT,
4176 NETIF_MSG_TX_DONE_BIT,
4177 NETIF_MSG_RX_STATUS_BIT,
4178 NETIF_MSG_PKTDATA_BIT,
4179 NETIF_MSG_HW_BIT,
4180 NETIF_MSG_WOL_BIT,
4181
4182 /* When you add a new bit above, update netif_msg_class_names array
4183 * in net/ethtool/common.c
4184 */
4185 NETIF_MSG_CLASS_COUNT,
4186 };
4187 /* Both ethtool_ops interface and internal driver implementation use u32 */
4188 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4189
4190 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4191 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4192
4193 #define NETIF_MSG_DRV __NETIF_MSG(DRV)
4194 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4195 #define NETIF_MSG_LINK __NETIF_MSG(LINK)
4196 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4197 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4198 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4199 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4200 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4201 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4202 #define NETIF_MSG_INTR __NETIF_MSG(INTR)
4203 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4204 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4205 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4206 #define NETIF_MSG_HW __NETIF_MSG(HW)
4207 #define NETIF_MSG_WOL __NETIF_MSG(WOL)
4208
4209 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4210 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4211 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4212 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4213 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4214 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4215 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4216 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4217 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4218 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4219 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4220 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4221 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4222 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4223 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4224
netif_msg_init(int debug_value,int default_msg_enable_bits)4225 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4226 {
4227 /* use default */
4228 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4229 return default_msg_enable_bits;
4230 if (debug_value == 0) /* no output */
4231 return 0;
4232 /* set low N bits */
4233 return (1U << debug_value) - 1;
4234 }
4235
__netif_tx_lock(struct netdev_queue * txq,int cpu)4236 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4237 {
4238 spin_lock(&txq->_xmit_lock);
4239 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4240 WRITE_ONCE(txq->xmit_lock_owner, cpu);
4241 }
4242
__netif_tx_acquire(struct netdev_queue * txq)4243 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4244 {
4245 __acquire(&txq->_xmit_lock);
4246 return true;
4247 }
4248
__netif_tx_release(struct netdev_queue * txq)4249 static inline void __netif_tx_release(struct netdev_queue *txq)
4250 {
4251 __release(&txq->_xmit_lock);
4252 }
4253
__netif_tx_lock_bh(struct netdev_queue * txq)4254 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4255 {
4256 spin_lock_bh(&txq->_xmit_lock);
4257 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4258 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4259 }
4260
__netif_tx_trylock(struct netdev_queue * txq)4261 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4262 {
4263 bool ok = spin_trylock(&txq->_xmit_lock);
4264
4265 if (likely(ok)) {
4266 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4267 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4268 }
4269 return ok;
4270 }
4271
__netif_tx_unlock(struct netdev_queue * txq)4272 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4273 {
4274 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4275 WRITE_ONCE(txq->xmit_lock_owner, -1);
4276 spin_unlock(&txq->_xmit_lock);
4277 }
4278
__netif_tx_unlock_bh(struct netdev_queue * txq)4279 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4280 {
4281 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4282 WRITE_ONCE(txq->xmit_lock_owner, -1);
4283 spin_unlock_bh(&txq->_xmit_lock);
4284 }
4285
txq_trans_update(struct netdev_queue * txq)4286 static inline void txq_trans_update(struct netdev_queue *txq)
4287 {
4288 if (txq->xmit_lock_owner != -1)
4289 txq->trans_start = jiffies;
4290 }
4291
4292 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4293 static inline void netif_trans_update(struct net_device *dev)
4294 {
4295 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4296
4297 if (txq->trans_start != jiffies)
4298 txq->trans_start = jiffies;
4299 }
4300
4301 /**
4302 * netif_tx_lock - grab network device transmit lock
4303 * @dev: network device
4304 *
4305 * Get network device transmit lock
4306 */
netif_tx_lock(struct net_device * dev)4307 static inline void netif_tx_lock(struct net_device *dev)
4308 {
4309 unsigned int i;
4310 int cpu;
4311
4312 spin_lock(&dev->tx_global_lock);
4313 cpu = smp_processor_id();
4314 for (i = 0; i < dev->num_tx_queues; i++) {
4315 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4316
4317 /* We are the only thread of execution doing a
4318 * freeze, but we have to grab the _xmit_lock in
4319 * order to synchronize with threads which are in
4320 * the ->hard_start_xmit() handler and already
4321 * checked the frozen bit.
4322 */
4323 __netif_tx_lock(txq, cpu);
4324 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4325 __netif_tx_unlock(txq);
4326 }
4327 }
4328
netif_tx_lock_bh(struct net_device * dev)4329 static inline void netif_tx_lock_bh(struct net_device *dev)
4330 {
4331 local_bh_disable();
4332 netif_tx_lock(dev);
4333 }
4334
netif_tx_unlock(struct net_device * dev)4335 static inline void netif_tx_unlock(struct net_device *dev)
4336 {
4337 unsigned int i;
4338
4339 for (i = 0; i < dev->num_tx_queues; i++) {
4340 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4341
4342 /* No need to grab the _xmit_lock here. If the
4343 * queue is not stopped for another reason, we
4344 * force a schedule.
4345 */
4346 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4347 netif_schedule_queue(txq);
4348 }
4349 spin_unlock(&dev->tx_global_lock);
4350 }
4351
netif_tx_unlock_bh(struct net_device * dev)4352 static inline void netif_tx_unlock_bh(struct net_device *dev)
4353 {
4354 netif_tx_unlock(dev);
4355 local_bh_enable();
4356 }
4357
4358 #define HARD_TX_LOCK(dev, txq, cpu) { \
4359 if ((dev->features & NETIF_F_LLTX) == 0) { \
4360 __netif_tx_lock(txq, cpu); \
4361 } else { \
4362 __netif_tx_acquire(txq); \
4363 } \
4364 }
4365
4366 #define HARD_TX_TRYLOCK(dev, txq) \
4367 (((dev->features & NETIF_F_LLTX) == 0) ? \
4368 __netif_tx_trylock(txq) : \
4369 __netif_tx_acquire(txq))
4370
4371 #define HARD_TX_UNLOCK(dev, txq) { \
4372 if ((dev->features & NETIF_F_LLTX) == 0) { \
4373 __netif_tx_unlock(txq); \
4374 } else { \
4375 __netif_tx_release(txq); \
4376 } \
4377 }
4378
netif_tx_disable(struct net_device * dev)4379 static inline void netif_tx_disable(struct net_device *dev)
4380 {
4381 unsigned int i;
4382 int cpu;
4383
4384 local_bh_disable();
4385 cpu = smp_processor_id();
4386 spin_lock(&dev->tx_global_lock);
4387 for (i = 0; i < dev->num_tx_queues; i++) {
4388 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4389
4390 __netif_tx_lock(txq, cpu);
4391 netif_tx_stop_queue(txq);
4392 __netif_tx_unlock(txq);
4393 }
4394 spin_unlock(&dev->tx_global_lock);
4395 local_bh_enable();
4396 }
4397
netif_addr_lock(struct net_device * dev)4398 static inline void netif_addr_lock(struct net_device *dev)
4399 {
4400 unsigned char nest_level = 0;
4401
4402 #ifdef CONFIG_LOCKDEP
4403 nest_level = dev->nested_level;
4404 #endif
4405 spin_lock_nested(&dev->addr_list_lock, nest_level);
4406 }
4407
netif_addr_lock_bh(struct net_device * dev)4408 static inline void netif_addr_lock_bh(struct net_device *dev)
4409 {
4410 unsigned char nest_level = 0;
4411
4412 #ifdef CONFIG_LOCKDEP
4413 nest_level = dev->nested_level;
4414 #endif
4415 local_bh_disable();
4416 spin_lock_nested(&dev->addr_list_lock, nest_level);
4417 }
4418
netif_addr_unlock(struct net_device * dev)4419 static inline void netif_addr_unlock(struct net_device *dev)
4420 {
4421 spin_unlock(&dev->addr_list_lock);
4422 }
4423
netif_addr_unlock_bh(struct net_device * dev)4424 static inline void netif_addr_unlock_bh(struct net_device *dev)
4425 {
4426 spin_unlock_bh(&dev->addr_list_lock);
4427 }
4428
4429 /*
4430 * dev_addrs walker. Should be used only for read access. Call with
4431 * rcu_read_lock held.
4432 */
4433 #define for_each_dev_addr(dev, ha) \
4434 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4435
4436 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4437
4438 void ether_setup(struct net_device *dev);
4439
4440 /* Support for loadable net-drivers */
4441 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4442 unsigned char name_assign_type,
4443 void (*setup)(struct net_device *),
4444 unsigned int txqs, unsigned int rxqs);
4445 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4446 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4447
4448 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4449 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4450 count)
4451
4452 int register_netdev(struct net_device *dev);
4453 void unregister_netdev(struct net_device *dev);
4454
4455 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4456
4457 /* General hardware address lists handling functions */
4458 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4459 struct netdev_hw_addr_list *from_list, int addr_len);
4460 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4461 struct netdev_hw_addr_list *from_list, int addr_len);
4462 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4463 struct net_device *dev,
4464 int (*sync)(struct net_device *, const unsigned char *),
4465 int (*unsync)(struct net_device *,
4466 const unsigned char *));
4467 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4468 struct net_device *dev,
4469 int (*sync)(struct net_device *,
4470 const unsigned char *, int),
4471 int (*unsync)(struct net_device *,
4472 const unsigned char *, int));
4473 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4474 struct net_device *dev,
4475 int (*unsync)(struct net_device *,
4476 const unsigned char *, int));
4477 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4478 struct net_device *dev,
4479 int (*unsync)(struct net_device *,
4480 const unsigned char *));
4481 void __hw_addr_init(struct netdev_hw_addr_list *list);
4482
4483 /* Functions used for device addresses handling */
4484 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4485 unsigned char addr_type);
4486 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4487 unsigned char addr_type);
4488 void dev_addr_flush(struct net_device *dev);
4489 int dev_addr_init(struct net_device *dev);
4490
4491 /* Functions used for unicast addresses handling */
4492 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4493 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4494 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4495 int dev_uc_sync(struct net_device *to, struct net_device *from);
4496 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4497 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4498 void dev_uc_flush(struct net_device *dev);
4499 void dev_uc_init(struct net_device *dev);
4500
4501 /**
4502 * __dev_uc_sync - Synchonize device's unicast list
4503 * @dev: device to sync
4504 * @sync: function to call if address should be added
4505 * @unsync: function to call if address should be removed
4506 *
4507 * Add newly added addresses to the interface, and release
4508 * addresses that have been deleted.
4509 */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4510 static inline int __dev_uc_sync(struct net_device *dev,
4511 int (*sync)(struct net_device *,
4512 const unsigned char *),
4513 int (*unsync)(struct net_device *,
4514 const unsigned char *))
4515 {
4516 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4517 }
4518
4519 /**
4520 * __dev_uc_unsync - Remove synchronized addresses from device
4521 * @dev: device to sync
4522 * @unsync: function to call if address should be removed
4523 *
4524 * Remove all addresses that were added to the device by dev_uc_sync().
4525 */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4526 static inline void __dev_uc_unsync(struct net_device *dev,
4527 int (*unsync)(struct net_device *,
4528 const unsigned char *))
4529 {
4530 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4531 }
4532
4533 /* Functions used for multicast addresses handling */
4534 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4535 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4536 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4537 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4538 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4539 int dev_mc_sync(struct net_device *to, struct net_device *from);
4540 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4541 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4542 void dev_mc_flush(struct net_device *dev);
4543 void dev_mc_init(struct net_device *dev);
4544
4545 /**
4546 * __dev_mc_sync - Synchonize device's multicast list
4547 * @dev: device to sync
4548 * @sync: function to call if address should be added
4549 * @unsync: function to call if address should be removed
4550 *
4551 * Add newly added addresses to the interface, and release
4552 * addresses that have been deleted.
4553 */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4554 static inline int __dev_mc_sync(struct net_device *dev,
4555 int (*sync)(struct net_device *,
4556 const unsigned char *),
4557 int (*unsync)(struct net_device *,
4558 const unsigned char *))
4559 {
4560 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4561 }
4562
4563 /**
4564 * __dev_mc_unsync - Remove synchronized addresses from device
4565 * @dev: device to sync
4566 * @unsync: function to call if address should be removed
4567 *
4568 * Remove all addresses that were added to the device by dev_mc_sync().
4569 */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4570 static inline void __dev_mc_unsync(struct net_device *dev,
4571 int (*unsync)(struct net_device *,
4572 const unsigned char *))
4573 {
4574 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4575 }
4576
4577 /* Functions used for secondary unicast and multicast support */
4578 void dev_set_rx_mode(struct net_device *dev);
4579 void __dev_set_rx_mode(struct net_device *dev);
4580 int dev_set_promiscuity(struct net_device *dev, int inc);
4581 int dev_set_allmulti(struct net_device *dev, int inc);
4582 void netdev_state_change(struct net_device *dev);
4583 void netdev_notify_peers(struct net_device *dev);
4584 void netdev_features_change(struct net_device *dev);
4585 /* Load a device via the kmod */
4586 void dev_load(struct net *net, const char *name);
4587 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4588 struct rtnl_link_stats64 *storage);
4589 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4590 const struct net_device_stats *netdev_stats);
4591 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4592 const struct pcpu_sw_netstats __percpu *netstats);
4593
4594 extern int netdev_max_backlog;
4595 extern int netdev_tstamp_prequeue;
4596 extern int weight_p;
4597 extern int dev_weight_rx_bias;
4598 extern int dev_weight_tx_bias;
4599 extern int dev_rx_weight;
4600 extern int dev_tx_weight;
4601 extern int gro_normal_batch;
4602
4603 enum {
4604 NESTED_SYNC_IMM_BIT,
4605 NESTED_SYNC_TODO_BIT,
4606 };
4607
4608 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit))
4609 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4610
4611 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM)
4612 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO)
4613
4614 struct netdev_nested_priv {
4615 unsigned char flags;
4616 void *data;
4617 };
4618
4619 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4620 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4621 struct list_head **iter);
4622 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4623 struct list_head **iter);
4624
4625 #ifdef CONFIG_LOCKDEP
4626 static LIST_HEAD(net_unlink_list);
4627
net_unlink_todo(struct net_device * dev)4628 static inline void net_unlink_todo(struct net_device *dev)
4629 {
4630 if (list_empty(&dev->unlink_list))
4631 list_add_tail(&dev->unlink_list, &net_unlink_list);
4632 }
4633 #endif
4634
4635 /* iterate through upper list, must be called under RCU read lock */
4636 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4637 for (iter = &(dev)->adj_list.upper, \
4638 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4639 updev; \
4640 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4641
4642 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4643 int (*fn)(struct net_device *upper_dev,
4644 struct netdev_nested_priv *priv),
4645 struct netdev_nested_priv *priv);
4646
4647 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4648 struct net_device *upper_dev);
4649
4650 bool netdev_has_any_upper_dev(struct net_device *dev);
4651
4652 void *netdev_lower_get_next_private(struct net_device *dev,
4653 struct list_head **iter);
4654 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4655 struct list_head **iter);
4656
4657 #define netdev_for_each_lower_private(dev, priv, iter) \
4658 for (iter = (dev)->adj_list.lower.next, \
4659 priv = netdev_lower_get_next_private(dev, &(iter)); \
4660 priv; \
4661 priv = netdev_lower_get_next_private(dev, &(iter)))
4662
4663 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4664 for (iter = &(dev)->adj_list.lower, \
4665 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4666 priv; \
4667 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4668
4669 void *netdev_lower_get_next(struct net_device *dev,
4670 struct list_head **iter);
4671
4672 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4673 for (iter = (dev)->adj_list.lower.next, \
4674 ldev = netdev_lower_get_next(dev, &(iter)); \
4675 ldev; \
4676 ldev = netdev_lower_get_next(dev, &(iter)))
4677
4678 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4679 struct list_head **iter);
4680 int netdev_walk_all_lower_dev(struct net_device *dev,
4681 int (*fn)(struct net_device *lower_dev,
4682 struct netdev_nested_priv *priv),
4683 struct netdev_nested_priv *priv);
4684 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4685 int (*fn)(struct net_device *lower_dev,
4686 struct netdev_nested_priv *priv),
4687 struct netdev_nested_priv *priv);
4688
4689 void *netdev_adjacent_get_private(struct list_head *adj_list);
4690 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4691 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4692 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4693 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4694 struct netlink_ext_ack *extack);
4695 int netdev_master_upper_dev_link(struct net_device *dev,
4696 struct net_device *upper_dev,
4697 void *upper_priv, void *upper_info,
4698 struct netlink_ext_ack *extack);
4699 void netdev_upper_dev_unlink(struct net_device *dev,
4700 struct net_device *upper_dev);
4701 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4702 struct net_device *new_dev,
4703 struct net_device *dev,
4704 struct netlink_ext_ack *extack);
4705 void netdev_adjacent_change_commit(struct net_device *old_dev,
4706 struct net_device *new_dev,
4707 struct net_device *dev);
4708 void netdev_adjacent_change_abort(struct net_device *old_dev,
4709 struct net_device *new_dev,
4710 struct net_device *dev);
4711 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4712 void *netdev_lower_dev_get_private(struct net_device *dev,
4713 struct net_device *lower_dev);
4714 void netdev_lower_state_changed(struct net_device *lower_dev,
4715 void *lower_state_info);
4716
4717 /* RSS keys are 40 or 52 bytes long */
4718 #define NETDEV_RSS_KEY_LEN 52
4719 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4720 void netdev_rss_key_fill(void *buffer, size_t len);
4721
4722 int skb_checksum_help(struct sk_buff *skb);
4723 int skb_crc32c_csum_help(struct sk_buff *skb);
4724 int skb_csum_hwoffload_help(struct sk_buff *skb,
4725 const netdev_features_t features);
4726
4727 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4728 netdev_features_t features, bool tx_path);
4729 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4730 netdev_features_t features);
4731
4732 struct netdev_bonding_info {
4733 ifslave slave;
4734 ifbond master;
4735 };
4736
4737 struct netdev_notifier_bonding_info {
4738 struct netdev_notifier_info info; /* must be first */
4739 struct netdev_bonding_info bonding_info;
4740 };
4741
4742 void netdev_bonding_info_change(struct net_device *dev,
4743 struct netdev_bonding_info *bonding_info);
4744
4745 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4746 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4747 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)4748 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4749 const void *data)
4750 {
4751 }
4752 #endif
4753
4754 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4755 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4756 {
4757 return __skb_gso_segment(skb, features, true);
4758 }
4759 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4760
can_checksum_protocol(netdev_features_t features,__be16 protocol)4761 static inline bool can_checksum_protocol(netdev_features_t features,
4762 __be16 protocol)
4763 {
4764 if (protocol == htons(ETH_P_FCOE))
4765 return !!(features & NETIF_F_FCOE_CRC);
4766
4767 /* Assume this is an IP checksum (not SCTP CRC) */
4768
4769 if (features & NETIF_F_HW_CSUM) {
4770 /* Can checksum everything */
4771 return true;
4772 }
4773
4774 switch (protocol) {
4775 case htons(ETH_P_IP):
4776 return !!(features & NETIF_F_IP_CSUM);
4777 case htons(ETH_P_IPV6):
4778 return !!(features & NETIF_F_IPV6_CSUM);
4779 default:
4780 return false;
4781 }
4782 }
4783
4784 #ifdef CONFIG_BUG
4785 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4786 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4787 static inline void netdev_rx_csum_fault(struct net_device *dev,
4788 struct sk_buff *skb)
4789 {
4790 }
4791 #endif
4792 /* rx skb timestamps */
4793 void net_enable_timestamp(void);
4794 void net_disable_timestamp(void);
4795
4796 #ifdef CONFIG_PROC_FS
4797 int __init dev_proc_init(void);
4798 #else
4799 #define dev_proc_init() 0
4800 #endif
4801
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4802 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4803 struct sk_buff *skb, struct net_device *dev,
4804 bool more)
4805 {
4806 __this_cpu_write(softnet_data.xmit.more, more);
4807 return ops->ndo_start_xmit(skb, dev);
4808 }
4809
netdev_xmit_more(void)4810 static inline bool netdev_xmit_more(void)
4811 {
4812 return __this_cpu_read(softnet_data.xmit.more);
4813 }
4814
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4815 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4816 struct netdev_queue *txq, bool more)
4817 {
4818 const struct net_device_ops *ops = dev->netdev_ops;
4819 netdev_tx_t rc;
4820
4821 rc = __netdev_start_xmit(ops, skb, dev, more);
4822 if (rc == NETDEV_TX_OK)
4823 txq_trans_update(txq);
4824
4825 return rc;
4826 }
4827
4828 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4829 const void *ns);
4830 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4831 const void *ns);
4832
4833 extern const struct kobj_ns_type_operations net_ns_type_operations;
4834
4835 const char *netdev_drivername(const struct net_device *dev);
4836
4837 void linkwatch_run_queue(void);
4838
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4839 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4840 netdev_features_t f2)
4841 {
4842 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4843 if (f1 & NETIF_F_HW_CSUM)
4844 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4845 else
4846 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4847 }
4848
4849 return f1 & f2;
4850 }
4851
netdev_get_wanted_features(struct net_device * dev)4852 static inline netdev_features_t netdev_get_wanted_features(
4853 struct net_device *dev)
4854 {
4855 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4856 }
4857 netdev_features_t netdev_increment_features(netdev_features_t all,
4858 netdev_features_t one, netdev_features_t mask);
4859
4860 /* Allow TSO being used on stacked device :
4861 * Performing the GSO segmentation before last device
4862 * is a performance improvement.
4863 */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4864 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4865 netdev_features_t mask)
4866 {
4867 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4868 }
4869
4870 int __netdev_update_features(struct net_device *dev);
4871 void netdev_update_features(struct net_device *dev);
4872 void netdev_change_features(struct net_device *dev);
4873
4874 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4875 struct net_device *dev);
4876
4877 netdev_features_t passthru_features_check(struct sk_buff *skb,
4878 struct net_device *dev,
4879 netdev_features_t features);
4880 netdev_features_t netif_skb_features(struct sk_buff *skb);
4881
net_gso_ok(netdev_features_t features,int gso_type)4882 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4883 {
4884 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4885
4886 /* check flags correspondence */
4887 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4888 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4889 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4890 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4891 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4892 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4893 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4894 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4895 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4896 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4897 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4898 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4899 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4900 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4901 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4902 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4903 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4904 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4905 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4906
4907 return (features & feature) == feature;
4908 }
4909
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4910 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4911 {
4912 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4913 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4914 }
4915
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4916 static inline bool netif_needs_gso(struct sk_buff *skb,
4917 netdev_features_t features)
4918 {
4919 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4920 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4921 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4922 }
4923
netif_set_gso_max_size(struct net_device * dev,unsigned int size)4924 static inline void netif_set_gso_max_size(struct net_device *dev,
4925 unsigned int size)
4926 {
4927 dev->gso_max_size = size;
4928 }
4929
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4930 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4931 int pulled_hlen, u16 mac_offset,
4932 int mac_len)
4933 {
4934 skb->protocol = protocol;
4935 skb->encapsulation = 1;
4936 skb_push(skb, pulled_hlen);
4937 skb_reset_transport_header(skb);
4938 skb->mac_header = mac_offset;
4939 skb->network_header = skb->mac_header + mac_len;
4940 skb->mac_len = mac_len;
4941 }
4942
netif_is_macsec(const struct net_device * dev)4943 static inline bool netif_is_macsec(const struct net_device *dev)
4944 {
4945 return dev->priv_flags & IFF_MACSEC;
4946 }
4947
netif_is_macvlan(const struct net_device * dev)4948 static inline bool netif_is_macvlan(const struct net_device *dev)
4949 {
4950 return dev->priv_flags & IFF_MACVLAN;
4951 }
4952
netif_is_macvlan_port(const struct net_device * dev)4953 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4954 {
4955 return dev->priv_flags & IFF_MACVLAN_PORT;
4956 }
4957
netif_is_bond_master(const struct net_device * dev)4958 static inline bool netif_is_bond_master(const struct net_device *dev)
4959 {
4960 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4961 }
4962
netif_is_bond_slave(const struct net_device * dev)4963 static inline bool netif_is_bond_slave(const struct net_device *dev)
4964 {
4965 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4966 }
4967
netif_supports_nofcs(struct net_device * dev)4968 static inline bool netif_supports_nofcs(struct net_device *dev)
4969 {
4970 return dev->priv_flags & IFF_SUPP_NOFCS;
4971 }
4972
netif_has_l3_rx_handler(const struct net_device * dev)4973 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4974 {
4975 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4976 }
4977
netif_is_l3_master(const struct net_device * dev)4978 static inline bool netif_is_l3_master(const struct net_device *dev)
4979 {
4980 return dev->priv_flags & IFF_L3MDEV_MASTER;
4981 }
4982
netif_is_l3_slave(const struct net_device * dev)4983 static inline bool netif_is_l3_slave(const struct net_device *dev)
4984 {
4985 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4986 }
4987
netif_is_bridge_master(const struct net_device * dev)4988 static inline bool netif_is_bridge_master(const struct net_device *dev)
4989 {
4990 return dev->priv_flags & IFF_EBRIDGE;
4991 }
4992
netif_is_bridge_port(const struct net_device * dev)4993 static inline bool netif_is_bridge_port(const struct net_device *dev)
4994 {
4995 return dev->priv_flags & IFF_BRIDGE_PORT;
4996 }
4997
netif_is_ovs_master(const struct net_device * dev)4998 static inline bool netif_is_ovs_master(const struct net_device *dev)
4999 {
5000 return dev->priv_flags & IFF_OPENVSWITCH;
5001 }
5002
netif_is_ovs_port(const struct net_device * dev)5003 static inline bool netif_is_ovs_port(const struct net_device *dev)
5004 {
5005 return dev->priv_flags & IFF_OVS_DATAPATH;
5006 }
5007
netif_is_any_bridge_port(const struct net_device * dev)5008 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5009 {
5010 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5011 }
5012
netif_is_team_master(const struct net_device * dev)5013 static inline bool netif_is_team_master(const struct net_device *dev)
5014 {
5015 return dev->priv_flags & IFF_TEAM;
5016 }
5017
netif_is_team_port(const struct net_device * dev)5018 static inline bool netif_is_team_port(const struct net_device *dev)
5019 {
5020 return dev->priv_flags & IFF_TEAM_PORT;
5021 }
5022
netif_is_lag_master(const struct net_device * dev)5023 static inline bool netif_is_lag_master(const struct net_device *dev)
5024 {
5025 return netif_is_bond_master(dev) || netif_is_team_master(dev);
5026 }
5027
netif_is_lag_port(const struct net_device * dev)5028 static inline bool netif_is_lag_port(const struct net_device *dev)
5029 {
5030 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5031 }
5032
netif_is_rxfh_configured(const struct net_device * dev)5033 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5034 {
5035 return dev->priv_flags & IFF_RXFH_CONFIGURED;
5036 }
5037
netif_is_failover(const struct net_device * dev)5038 static inline bool netif_is_failover(const struct net_device *dev)
5039 {
5040 return dev->priv_flags & IFF_FAILOVER;
5041 }
5042
netif_is_failover_slave(const struct net_device * dev)5043 static inline bool netif_is_failover_slave(const struct net_device *dev)
5044 {
5045 return dev->priv_flags & IFF_FAILOVER_SLAVE;
5046 }
5047
5048 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5049 static inline void netif_keep_dst(struct net_device *dev)
5050 {
5051 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5052 }
5053
5054 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5055 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5056 {
5057 /* TODO: reserve and use an additional IFF bit, if we get more users */
5058 return dev->priv_flags & IFF_MACSEC;
5059 }
5060
5061 extern struct pernet_operations __net_initdata loopback_net_ops;
5062
5063 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5064
5065 /* netdev_printk helpers, similar to dev_printk */
5066
netdev_name(const struct net_device * dev)5067 static inline const char *netdev_name(const struct net_device *dev)
5068 {
5069 if (!dev->name[0] || strchr(dev->name, '%'))
5070 return "(unnamed net_device)";
5071 return dev->name;
5072 }
5073
netdev_unregistering(const struct net_device * dev)5074 static inline bool netdev_unregistering(const struct net_device *dev)
5075 {
5076 return dev->reg_state == NETREG_UNREGISTERING;
5077 }
5078
netdev_reg_state(const struct net_device * dev)5079 static inline const char *netdev_reg_state(const struct net_device *dev)
5080 {
5081 switch (dev->reg_state) {
5082 case NETREG_UNINITIALIZED: return " (uninitialized)";
5083 case NETREG_REGISTERED: return "";
5084 case NETREG_UNREGISTERING: return " (unregistering)";
5085 case NETREG_UNREGISTERED: return " (unregistered)";
5086 case NETREG_RELEASED: return " (released)";
5087 case NETREG_DUMMY: return " (dummy)";
5088 }
5089
5090 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5091 return " (unknown)";
5092 }
5093
5094 __printf(3, 4) __cold
5095 void netdev_printk(const char *level, const struct net_device *dev,
5096 const char *format, ...);
5097 __printf(2, 3) __cold
5098 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5099 __printf(2, 3) __cold
5100 void netdev_alert(const struct net_device *dev, const char *format, ...);
5101 __printf(2, 3) __cold
5102 void netdev_crit(const struct net_device *dev, const char *format, ...);
5103 __printf(2, 3) __cold
5104 void netdev_err(const struct net_device *dev, const char *format, ...);
5105 __printf(2, 3) __cold
5106 void netdev_warn(const struct net_device *dev, const char *format, ...);
5107 __printf(2, 3) __cold
5108 void netdev_notice(const struct net_device *dev, const char *format, ...);
5109 __printf(2, 3) __cold
5110 void netdev_info(const struct net_device *dev, const char *format, ...);
5111
5112 #define netdev_level_once(level, dev, fmt, ...) \
5113 do { \
5114 static bool __print_once __read_mostly; \
5115 \
5116 if (!__print_once) { \
5117 __print_once = true; \
5118 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
5119 } \
5120 } while (0)
5121
5122 #define netdev_emerg_once(dev, fmt, ...) \
5123 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5124 #define netdev_alert_once(dev, fmt, ...) \
5125 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5126 #define netdev_crit_once(dev, fmt, ...) \
5127 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5128 #define netdev_err_once(dev, fmt, ...) \
5129 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5130 #define netdev_warn_once(dev, fmt, ...) \
5131 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5132 #define netdev_notice_once(dev, fmt, ...) \
5133 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5134 #define netdev_info_once(dev, fmt, ...) \
5135 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5136
5137 #define MODULE_ALIAS_NETDEV(device) \
5138 MODULE_ALIAS("netdev-" device)
5139
5140 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5141 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5142 #define netdev_dbg(__dev, format, args...) \
5143 do { \
5144 dynamic_netdev_dbg(__dev, format, ##args); \
5145 } while (0)
5146 #elif defined(DEBUG)
5147 #define netdev_dbg(__dev, format, args...) \
5148 netdev_printk(KERN_DEBUG, __dev, format, ##args)
5149 #else
5150 #define netdev_dbg(__dev, format, args...) \
5151 ({ \
5152 if (0) \
5153 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5154 })
5155 #endif
5156
5157 #if defined(VERBOSE_DEBUG)
5158 #define netdev_vdbg netdev_dbg
5159 #else
5160
5161 #define netdev_vdbg(dev, format, args...) \
5162 ({ \
5163 if (0) \
5164 netdev_printk(KERN_DEBUG, dev, format, ##args); \
5165 0; \
5166 })
5167 #endif
5168
5169 /*
5170 * netdev_WARN() acts like dev_printk(), but with the key difference
5171 * of using a WARN/WARN_ON to get the message out, including the
5172 * file/line information and a backtrace.
5173 */
5174 #define netdev_WARN(dev, format, args...) \
5175 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
5176 netdev_reg_state(dev), ##args)
5177
5178 #define netdev_WARN_ONCE(dev, format, args...) \
5179 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
5180 netdev_reg_state(dev), ##args)
5181
5182 /* netif printk helpers, similar to netdev_printk */
5183
5184 #define netif_printk(priv, type, level, dev, fmt, args...) \
5185 do { \
5186 if (netif_msg_##type(priv)) \
5187 netdev_printk(level, (dev), fmt, ##args); \
5188 } while (0)
5189
5190 #define netif_level(level, priv, type, dev, fmt, args...) \
5191 do { \
5192 if (netif_msg_##type(priv)) \
5193 netdev_##level(dev, fmt, ##args); \
5194 } while (0)
5195
5196 #define netif_emerg(priv, type, dev, fmt, args...) \
5197 netif_level(emerg, priv, type, dev, fmt, ##args)
5198 #define netif_alert(priv, type, dev, fmt, args...) \
5199 netif_level(alert, priv, type, dev, fmt, ##args)
5200 #define netif_crit(priv, type, dev, fmt, args...) \
5201 netif_level(crit, priv, type, dev, fmt, ##args)
5202 #define netif_err(priv, type, dev, fmt, args...) \
5203 netif_level(err, priv, type, dev, fmt, ##args)
5204 #define netif_warn(priv, type, dev, fmt, args...) \
5205 netif_level(warn, priv, type, dev, fmt, ##args)
5206 #define netif_notice(priv, type, dev, fmt, args...) \
5207 netif_level(notice, priv, type, dev, fmt, ##args)
5208 #define netif_info(priv, type, dev, fmt, args...) \
5209 netif_level(info, priv, type, dev, fmt, ##args)
5210
5211 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5212 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5213 #define netif_dbg(priv, type, netdev, format, args...) \
5214 do { \
5215 if (netif_msg_##type(priv)) \
5216 dynamic_netdev_dbg(netdev, format, ##args); \
5217 } while (0)
5218 #elif defined(DEBUG)
5219 #define netif_dbg(priv, type, dev, format, args...) \
5220 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5221 #else
5222 #define netif_dbg(priv, type, dev, format, args...) \
5223 ({ \
5224 if (0) \
5225 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5226 0; \
5227 })
5228 #endif
5229
5230 /* if @cond then downgrade to debug, else print at @level */
5231 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
5232 do { \
5233 if (cond) \
5234 netif_dbg(priv, type, netdev, fmt, ##args); \
5235 else \
5236 netif_ ## level(priv, type, netdev, fmt, ##args); \
5237 } while (0)
5238
5239 #if defined(VERBOSE_DEBUG)
5240 #define netif_vdbg netif_dbg
5241 #else
5242 #define netif_vdbg(priv, type, dev, format, args...) \
5243 ({ \
5244 if (0) \
5245 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5246 0; \
5247 })
5248 #endif
5249
5250 /*
5251 * The list of packet types we will receive (as opposed to discard)
5252 * and the routines to invoke.
5253 *
5254 * Why 16. Because with 16 the only overlap we get on a hash of the
5255 * low nibble of the protocol value is RARP/SNAP/X.25.
5256 *
5257 * 0800 IP
5258 * 0001 802.3
5259 * 0002 AX.25
5260 * 0004 802.2
5261 * 8035 RARP
5262 * 0005 SNAP
5263 * 0805 X.25
5264 * 0806 ARP
5265 * 8137 IPX
5266 * 0009 Localtalk
5267 * 86DD IPv6
5268 */
5269 #define PTYPE_HASH_SIZE (16)
5270 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5271
5272 extern struct net_device *blackhole_netdev;
5273
5274 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5275 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5276 #define DEV_STATS_ADD(DEV, FIELD, VAL) \
5277 atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5278
5279 #endif /* _LINUX_NETDEVICE_H */
5280