• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 
52 struct netpoll_info;
53 struct device;
54 struct phy_device;
55 struct dsa_port;
56 struct ip_tunnel_parm;
57 struct macsec_context;
58 struct macsec_ops;
59 
60 struct sfp_bus;
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct udp_tunnel_nic_info;
69 struct udp_tunnel_nic;
70 struct bpf_prog;
71 struct xdp_buff;
72 
73 void synchronize_net(void);
74 void netdev_set_default_ethtool_ops(struct net_device *dev,
75 				    const struct ethtool_ops *ops);
76 
77 /* Backlog congestion levels */
78 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
79 #define NET_RX_DROP		1	/* packet dropped */
80 
81 #define MAX_NEST_DEV 8
82 
83 /*
84  * Transmit return codes: transmit return codes originate from three different
85  * namespaces:
86  *
87  * - qdisc return codes
88  * - driver transmit return codes
89  * - errno values
90  *
91  * Drivers are allowed to return any one of those in their hard_start_xmit()
92  * function. Real network devices commonly used with qdiscs should only return
93  * the driver transmit return codes though - when qdiscs are used, the actual
94  * transmission happens asynchronously, so the value is not propagated to
95  * higher layers. Virtual network devices transmit synchronously; in this case
96  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97  * others are propagated to higher layers.
98  */
99 
100 /* qdisc ->enqueue() return codes. */
101 #define NET_XMIT_SUCCESS	0x00
102 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
103 #define NET_XMIT_CN		0x02	/* congestion notification	*/
104 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
105 
106 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107  * indicates that the device will soon be dropping packets, or already drops
108  * some packets of the same priority; prompting us to send less aggressively. */
109 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
110 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111 
112 /* Driver transmit return codes */
113 #define NETDEV_TX_MASK		0xf0
114 
115 enum netdev_tx {
116 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
117 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
118 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
119 };
120 typedef enum netdev_tx netdev_tx_t;
121 
122 /*
123  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125  */
dev_xmit_complete(int rc)126 static inline bool dev_xmit_complete(int rc)
127 {
128 	/*
129 	 * Positive cases with an skb consumed by a driver:
130 	 * - successful transmission (rc == NETDEV_TX_OK)
131 	 * - error while transmitting (rc < 0)
132 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 	 */
134 	if (likely(rc < NET_XMIT_MASK))
135 		return true;
136 
137 	return false;
138 }
139 
140 /*
141  *	Compute the worst-case header length according to the protocols
142  *	used.
143  */
144 
145 #if defined(CONFIG_HYPERV_NET)
146 # define LL_MAX_HEADER 128
147 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #else
154 # define LL_MAX_HEADER 32
155 #endif
156 
157 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159 #define MAX_HEADER LL_MAX_HEADER
160 #else
161 #define MAX_HEADER (LL_MAX_HEADER + 48)
162 #endif
163 
164 /*
165  *	Old network device statistics. Fields are native words
166  *	(unsigned long) so they can be read and written atomically.
167  */
168 
169 #define NET_DEV_STAT(FIELD)			\
170 	union {					\
171 		unsigned long FIELD;		\
172 		atomic_long_t __##FIELD;	\
173 	}
174 
175 struct net_device_stats {
176 	NET_DEV_STAT(rx_packets);
177 	NET_DEV_STAT(tx_packets);
178 	NET_DEV_STAT(rx_bytes);
179 	NET_DEV_STAT(tx_bytes);
180 	NET_DEV_STAT(rx_errors);
181 	NET_DEV_STAT(tx_errors);
182 	NET_DEV_STAT(rx_dropped);
183 	NET_DEV_STAT(tx_dropped);
184 	NET_DEV_STAT(multicast);
185 	NET_DEV_STAT(collisions);
186 	NET_DEV_STAT(rx_length_errors);
187 	NET_DEV_STAT(rx_over_errors);
188 	NET_DEV_STAT(rx_crc_errors);
189 	NET_DEV_STAT(rx_frame_errors);
190 	NET_DEV_STAT(rx_fifo_errors);
191 	NET_DEV_STAT(rx_missed_errors);
192 	NET_DEV_STAT(tx_aborted_errors);
193 	NET_DEV_STAT(tx_carrier_errors);
194 	NET_DEV_STAT(tx_fifo_errors);
195 	NET_DEV_STAT(tx_heartbeat_errors);
196 	NET_DEV_STAT(tx_window_errors);
197 	NET_DEV_STAT(rx_compressed);
198 	NET_DEV_STAT(tx_compressed);
199 };
200 #undef NET_DEV_STAT
201 
202 
203 #include <linux/cache.h>
204 #include <linux/skbuff.h>
205 
206 #ifdef CONFIG_RPS
207 #include <linux/static_key.h>
208 extern struct static_key_false rps_needed;
209 extern struct static_key_false rfs_needed;
210 #endif
211 
212 struct neighbour;
213 struct neigh_parms;
214 struct sk_buff;
215 
216 struct netdev_hw_addr {
217 	struct list_head	list;
218 	unsigned char		addr[MAX_ADDR_LEN];
219 	unsigned char		type;
220 #define NETDEV_HW_ADDR_T_LAN		1
221 #define NETDEV_HW_ADDR_T_SAN		2
222 #define NETDEV_HW_ADDR_T_UNICAST	3
223 #define NETDEV_HW_ADDR_T_MULTICAST	4
224 	bool			global_use;
225 	int			sync_cnt;
226 	int			refcount;
227 	int			synced;
228 	struct rcu_head		rcu_head;
229 };
230 
231 struct netdev_hw_addr_list {
232 	struct list_head	list;
233 	int			count;
234 };
235 
236 #define netdev_hw_addr_list_count(l) ((l)->count)
237 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
238 #define netdev_hw_addr_list_for_each(ha, l) \
239 	list_for_each_entry(ha, &(l)->list, list)
240 
241 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
242 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
243 #define netdev_for_each_uc_addr(ha, dev) \
244 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
245 
246 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
247 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
248 #define netdev_for_each_mc_addr(ha, dev) \
249 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
250 
251 struct hh_cache {
252 	unsigned int	hh_len;
253 	seqlock_t	hh_lock;
254 
255 	/* cached hardware header; allow for machine alignment needs.        */
256 #define HH_DATA_MOD	16
257 #define HH_DATA_OFF(__len) \
258 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
259 #define HH_DATA_ALIGN(__len) \
260 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
261 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
262 };
263 
264 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
265  * Alternative is:
266  *   dev->hard_header_len ? (dev->hard_header_len +
267  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
268  *
269  * We could use other alignment values, but we must maintain the
270  * relationship HH alignment <= LL alignment.
271  */
272 #define LL_RESERVED_SPACE(dev) \
273 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
274 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
275 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
276 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
277 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
278 
279 struct header_ops {
280 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
281 			   unsigned short type, const void *daddr,
282 			   const void *saddr, unsigned int len);
283 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
284 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
285 	void	(*cache_update)(struct hh_cache *hh,
286 				const struct net_device *dev,
287 				const unsigned char *haddr);
288 	bool	(*validate)(const char *ll_header, unsigned int len);
289 	__be16	(*parse_protocol)(const struct sk_buff *skb);
290 };
291 
292 /* These flag bits are private to the generic network queueing
293  * layer; they may not be explicitly referenced by any other
294  * code.
295  */
296 
297 enum netdev_state_t {
298 	__LINK_STATE_START,
299 	__LINK_STATE_PRESENT,
300 	__LINK_STATE_NOCARRIER,
301 	__LINK_STATE_LINKWATCH_PENDING,
302 	__LINK_STATE_DORMANT,
303 	__LINK_STATE_TESTING,
304 };
305 
306 
307 /*
308  * This structure holds boot-time configured netdevice settings. They
309  * are then used in the device probing.
310  */
311 struct netdev_boot_setup {
312 	char name[IFNAMSIZ];
313 	struct ifmap map;
314 };
315 #define NETDEV_BOOT_SETUP_MAX 8
316 
317 int __init netdev_boot_setup(char *str);
318 
319 struct gro_list {
320 	struct list_head	list;
321 	int			count;
322 };
323 
324 /*
325  * size of gro hash buckets, must less than bit number of
326  * napi_struct::gro_bitmask
327  */
328 #define GRO_HASH_BUCKETS	8
329 
330 /*
331  * Structure for NAPI scheduling similar to tasklet but with weighting
332  */
333 struct napi_struct {
334 	/* The poll_list must only be managed by the entity which
335 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
336 	 * whoever atomically sets that bit can add this napi_struct
337 	 * to the per-CPU poll_list, and whoever clears that bit
338 	 * can remove from the list right before clearing the bit.
339 	 */
340 	struct list_head	poll_list;
341 
342 	unsigned long		state;
343 	int			weight;
344 	int			defer_hard_irqs_count;
345 	unsigned long		gro_bitmask;
346 	int			(*poll)(struct napi_struct *, int);
347 #ifdef CONFIG_NETPOLL
348 	int			poll_owner;
349 #endif
350 	struct net_device	*dev;
351 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
352 	struct sk_buff		*skb;
353 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
354 	int			rx_count; /* length of rx_list */
355 	struct hrtimer		timer;
356 	struct list_head	dev_list;
357 	struct hlist_node	napi_hash_node;
358 	unsigned int		napi_id;
359 };
360 
361 enum {
362 	NAPI_STATE_SCHED,	/* Poll is scheduled */
363 	NAPI_STATE_MISSED,	/* reschedule a napi */
364 	NAPI_STATE_DISABLE,	/* Disable pending */
365 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
366 	NAPI_STATE_LISTED,	/* NAPI added to system lists */
367 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
368 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
369 };
370 
371 enum {
372 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
373 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
374 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
375 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
376 	NAPIF_STATE_LISTED	 = BIT(NAPI_STATE_LISTED),
377 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
378 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
379 };
380 
381 enum gro_result {
382 	GRO_MERGED,
383 	GRO_MERGED_FREE,
384 	GRO_HELD,
385 	GRO_NORMAL,
386 	GRO_DROP,
387 	GRO_CONSUMED,
388 };
389 typedef enum gro_result gro_result_t;
390 
391 /*
392  * enum rx_handler_result - Possible return values for rx_handlers.
393  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
394  * further.
395  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
396  * case skb->dev was changed by rx_handler.
397  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
398  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
399  *
400  * rx_handlers are functions called from inside __netif_receive_skb(), to do
401  * special processing of the skb, prior to delivery to protocol handlers.
402  *
403  * Currently, a net_device can only have a single rx_handler registered. Trying
404  * to register a second rx_handler will return -EBUSY.
405  *
406  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
407  * To unregister a rx_handler on a net_device, use
408  * netdev_rx_handler_unregister().
409  *
410  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
411  * do with the skb.
412  *
413  * If the rx_handler consumed the skb in some way, it should return
414  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
415  * the skb to be delivered in some other way.
416  *
417  * If the rx_handler changed skb->dev, to divert the skb to another
418  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
419  * new device will be called if it exists.
420  *
421  * If the rx_handler decides the skb should be ignored, it should return
422  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
423  * are registered on exact device (ptype->dev == skb->dev).
424  *
425  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
426  * delivered, it should return RX_HANDLER_PASS.
427  *
428  * A device without a registered rx_handler will behave as if rx_handler
429  * returned RX_HANDLER_PASS.
430  */
431 
432 enum rx_handler_result {
433 	RX_HANDLER_CONSUMED,
434 	RX_HANDLER_ANOTHER,
435 	RX_HANDLER_EXACT,
436 	RX_HANDLER_PASS,
437 };
438 typedef enum rx_handler_result rx_handler_result_t;
439 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
440 
441 void __napi_schedule(struct napi_struct *n);
442 void __napi_schedule_irqoff(struct napi_struct *n);
443 
napi_disable_pending(struct napi_struct * n)444 static inline bool napi_disable_pending(struct napi_struct *n)
445 {
446 	return test_bit(NAPI_STATE_DISABLE, &n->state);
447 }
448 
449 bool napi_schedule_prep(struct napi_struct *n);
450 
451 /**
452  *	napi_schedule - schedule NAPI poll
453  *	@n: NAPI context
454  *
455  * Schedule NAPI poll routine to be called if it is not already
456  * running.
457  */
napi_schedule(struct napi_struct * n)458 static inline void napi_schedule(struct napi_struct *n)
459 {
460 	if (napi_schedule_prep(n))
461 		__napi_schedule(n);
462 }
463 
464 /**
465  *	napi_schedule_irqoff - schedule NAPI poll
466  *	@n: NAPI context
467  *
468  * Variant of napi_schedule(), assuming hard irqs are masked.
469  */
napi_schedule_irqoff(struct napi_struct * n)470 static inline void napi_schedule_irqoff(struct napi_struct *n)
471 {
472 	if (napi_schedule_prep(n))
473 		__napi_schedule_irqoff(n);
474 }
475 
476 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)477 static inline bool napi_reschedule(struct napi_struct *napi)
478 {
479 	if (napi_schedule_prep(napi)) {
480 		__napi_schedule(napi);
481 		return true;
482 	}
483 	return false;
484 }
485 
486 bool napi_complete_done(struct napi_struct *n, int work_done);
487 /**
488  *	napi_complete - NAPI processing complete
489  *	@n: NAPI context
490  *
491  * Mark NAPI processing as complete.
492  * Consider using napi_complete_done() instead.
493  * Return false if device should avoid rearming interrupts.
494  */
napi_complete(struct napi_struct * n)495 static inline bool napi_complete(struct napi_struct *n)
496 {
497 	return napi_complete_done(n, 0);
498 }
499 
500 /**
501  *	napi_disable - prevent NAPI from scheduling
502  *	@n: NAPI context
503  *
504  * Stop NAPI from being scheduled on this context.
505  * Waits till any outstanding processing completes.
506  */
507 void napi_disable(struct napi_struct *n);
508 
509 /**
510  *	napi_enable - enable NAPI scheduling
511  *	@n: NAPI context
512  *
513  * Resume NAPI from being scheduled on this context.
514  * Must be paired with napi_disable.
515  */
napi_enable(struct napi_struct * n)516 static inline void napi_enable(struct napi_struct *n)
517 {
518 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
519 	smp_mb__before_atomic();
520 	clear_bit(NAPI_STATE_SCHED, &n->state);
521 	clear_bit(NAPI_STATE_NPSVC, &n->state);
522 }
523 
524 /**
525  *	napi_synchronize - wait until NAPI is not running
526  *	@n: NAPI context
527  *
528  * Wait until NAPI is done being scheduled on this context.
529  * Waits till any outstanding processing completes but
530  * does not disable future activations.
531  */
napi_synchronize(const struct napi_struct * n)532 static inline void napi_synchronize(const struct napi_struct *n)
533 {
534 	if (IS_ENABLED(CONFIG_SMP))
535 		while (test_bit(NAPI_STATE_SCHED, &n->state))
536 			msleep(1);
537 	else
538 		barrier();
539 }
540 
541 /**
542  *	napi_if_scheduled_mark_missed - if napi is running, set the
543  *	NAPIF_STATE_MISSED
544  *	@n: NAPI context
545  *
546  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
547  * NAPI is scheduled.
548  **/
napi_if_scheduled_mark_missed(struct napi_struct * n)549 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
550 {
551 	unsigned long val, new;
552 
553 	do {
554 		val = READ_ONCE(n->state);
555 		if (val & NAPIF_STATE_DISABLE)
556 			return true;
557 
558 		if (!(val & NAPIF_STATE_SCHED))
559 			return false;
560 
561 		new = val | NAPIF_STATE_MISSED;
562 	} while (cmpxchg(&n->state, val, new) != val);
563 
564 	return true;
565 }
566 
567 enum netdev_queue_state_t {
568 	__QUEUE_STATE_DRV_XOFF,
569 	__QUEUE_STATE_STACK_XOFF,
570 	__QUEUE_STATE_FROZEN,
571 };
572 
573 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
574 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
575 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
576 
577 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
578 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
579 					QUEUE_STATE_FROZEN)
580 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
581 					QUEUE_STATE_FROZEN)
582 
583 /*
584  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
585  * netif_tx_* functions below are used to manipulate this flag.  The
586  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
587  * queue independently.  The netif_xmit_*stopped functions below are called
588  * to check if the queue has been stopped by the driver or stack (either
589  * of the XOFF bits are set in the state).  Drivers should not need to call
590  * netif_xmit*stopped functions, they should only be using netif_tx_*.
591  */
592 
593 struct netdev_queue {
594 /*
595  * read-mostly part
596  */
597 	struct net_device	*dev;
598 	struct Qdisc __rcu	*qdisc;
599 	struct Qdisc		*qdisc_sleeping;
600 #ifdef CONFIG_SYSFS
601 	struct kobject		kobj;
602 #endif
603 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
604 	int			numa_node;
605 #endif
606 	unsigned long		tx_maxrate;
607 	/*
608 	 * Number of TX timeouts for this queue
609 	 * (/sys/class/net/DEV/Q/trans_timeout)
610 	 */
611 	unsigned long		trans_timeout;
612 
613 	/* Subordinate device that the queue has been assigned to */
614 	struct net_device	*sb_dev;
615 #ifdef CONFIG_XDP_SOCKETS
616 	struct xsk_buff_pool    *pool;
617 #endif
618 /*
619  * write-mostly part
620  */
621 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
622 	int			xmit_lock_owner;
623 	/*
624 	 * Time (in jiffies) of last Tx
625 	 */
626 	unsigned long		trans_start;
627 
628 	unsigned long		state;
629 
630 #ifdef CONFIG_BQL
631 	struct dql		dql;
632 #endif
633 } ____cacheline_aligned_in_smp;
634 
635 extern int sysctl_fb_tunnels_only_for_init_net;
636 extern int sysctl_devconf_inherit_init_net;
637 
638 /*
639  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
640  *                                     == 1 : For initns only
641  *                                     == 2 : For none.
642  */
net_has_fallback_tunnels(const struct net * net)643 static inline bool net_has_fallback_tunnels(const struct net *net)
644 {
645 #if IS_ENABLED(CONFIG_SYSCTL)
646 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
647 
648 	return !fb_tunnels_only_for_init_net ||
649 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
650 #else
651 	return true;
652 #endif
653 }
654 
net_inherit_devconf(void)655 static inline int net_inherit_devconf(void)
656 {
657 #if IS_ENABLED(CONFIG_SYSCTL)
658 	return READ_ONCE(sysctl_devconf_inherit_init_net);
659 #else
660 	return 0;
661 #endif
662 }
663 
netdev_queue_numa_node_read(const struct netdev_queue * q)664 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
665 {
666 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
667 	return q->numa_node;
668 #else
669 	return NUMA_NO_NODE;
670 #endif
671 }
672 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)673 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
674 {
675 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
676 	q->numa_node = node;
677 #endif
678 }
679 
680 #ifdef CONFIG_RPS
681 /*
682  * This structure holds an RPS map which can be of variable length.  The
683  * map is an array of CPUs.
684  */
685 struct rps_map {
686 	unsigned int len;
687 	struct rcu_head rcu;
688 	u16 cpus[];
689 };
690 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
691 
692 /*
693  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
694  * tail pointer for that CPU's input queue at the time of last enqueue, and
695  * a hardware filter index.
696  */
697 struct rps_dev_flow {
698 	u16 cpu;
699 	u16 filter;
700 	unsigned int last_qtail;
701 };
702 #define RPS_NO_FILTER 0xffff
703 
704 /*
705  * The rps_dev_flow_table structure contains a table of flow mappings.
706  */
707 struct rps_dev_flow_table {
708 	unsigned int mask;
709 	struct rcu_head rcu;
710 	struct rps_dev_flow flows[];
711 };
712 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
713     ((_num) * sizeof(struct rps_dev_flow)))
714 
715 /*
716  * The rps_sock_flow_table contains mappings of flows to the last CPU
717  * on which they were processed by the application (set in recvmsg).
718  * Each entry is a 32bit value. Upper part is the high-order bits
719  * of flow hash, lower part is CPU number.
720  * rps_cpu_mask is used to partition the space, depending on number of
721  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
722  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
723  * meaning we use 32-6=26 bits for the hash.
724  */
725 struct rps_sock_flow_table {
726 	u32	mask;
727 
728 	u32	ents[] ____cacheline_aligned_in_smp;
729 };
730 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
731 
732 #define RPS_NO_CPU 0xffff
733 
734 extern u32 rps_cpu_mask;
735 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
736 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)737 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
738 					u32 hash)
739 {
740 	if (table && hash) {
741 		unsigned int index = hash & table->mask;
742 		u32 val = hash & ~rps_cpu_mask;
743 
744 		/* We only give a hint, preemption can change CPU under us */
745 		val |= raw_smp_processor_id();
746 
747 		/* The following WRITE_ONCE() is paired with the READ_ONCE()
748 		 * here, and another one in get_rps_cpu().
749 		 */
750 		if (READ_ONCE(table->ents[index]) != val)
751 			WRITE_ONCE(table->ents[index], val);
752 	}
753 }
754 
755 #ifdef CONFIG_RFS_ACCEL
756 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
757 			 u16 filter_id);
758 #endif
759 #endif /* CONFIG_RPS */
760 
761 /* This structure contains an instance of an RX queue. */
762 struct netdev_rx_queue {
763 #ifdef CONFIG_RPS
764 	struct rps_map __rcu		*rps_map;
765 	struct rps_dev_flow_table __rcu	*rps_flow_table;
766 #endif
767 	struct kobject			kobj;
768 	struct net_device		*dev;
769 	struct xdp_rxq_info		xdp_rxq;
770 #ifdef CONFIG_XDP_SOCKETS
771 	struct xsk_buff_pool            *pool;
772 #endif
773 } ____cacheline_aligned_in_smp;
774 
775 /*
776  * RX queue sysfs structures and functions.
777  */
778 struct rx_queue_attribute {
779 	struct attribute attr;
780 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
781 	ssize_t (*store)(struct netdev_rx_queue *queue,
782 			 const char *buf, size_t len);
783 };
784 
785 #ifdef CONFIG_XPS
786 /*
787  * This structure holds an XPS map which can be of variable length.  The
788  * map is an array of queues.
789  */
790 struct xps_map {
791 	unsigned int len;
792 	unsigned int alloc_len;
793 	struct rcu_head rcu;
794 	u16 queues[];
795 };
796 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
797 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
798        - sizeof(struct xps_map)) / sizeof(u16))
799 
800 /*
801  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
802  */
803 struct xps_dev_maps {
804 	struct rcu_head rcu;
805 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
806 };
807 
808 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
809 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
810 
811 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
812 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
813 
814 #endif /* CONFIG_XPS */
815 
816 #define TC_MAX_QUEUE	16
817 #define TC_BITMASK	15
818 /* HW offloaded queuing disciplines txq count and offset maps */
819 struct netdev_tc_txq {
820 	u16 count;
821 	u16 offset;
822 };
823 
824 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
825 /*
826  * This structure is to hold information about the device
827  * configured to run FCoE protocol stack.
828  */
829 struct netdev_fcoe_hbainfo {
830 	char	manufacturer[64];
831 	char	serial_number[64];
832 	char	hardware_version[64];
833 	char	driver_version[64];
834 	char	optionrom_version[64];
835 	char	firmware_version[64];
836 	char	model[256];
837 	char	model_description[256];
838 };
839 #endif
840 
841 #define MAX_PHYS_ITEM_ID_LEN 32
842 
843 /* This structure holds a unique identifier to identify some
844  * physical item (port for example) used by a netdevice.
845  */
846 struct netdev_phys_item_id {
847 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
848 	unsigned char id_len;
849 };
850 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)851 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
852 					    struct netdev_phys_item_id *b)
853 {
854 	return a->id_len == b->id_len &&
855 	       memcmp(a->id, b->id, a->id_len) == 0;
856 }
857 
858 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
859 				       struct sk_buff *skb,
860 				       struct net_device *sb_dev);
861 
862 enum tc_setup_type {
863 	TC_SETUP_QDISC_MQPRIO,
864 	TC_SETUP_CLSU32,
865 	TC_SETUP_CLSFLOWER,
866 	TC_SETUP_CLSMATCHALL,
867 	TC_SETUP_CLSBPF,
868 	TC_SETUP_BLOCK,
869 	TC_SETUP_QDISC_CBS,
870 	TC_SETUP_QDISC_RED,
871 	TC_SETUP_QDISC_PRIO,
872 	TC_SETUP_QDISC_MQ,
873 	TC_SETUP_QDISC_ETF,
874 	TC_SETUP_ROOT_QDISC,
875 	TC_SETUP_QDISC_GRED,
876 	TC_SETUP_QDISC_TAPRIO,
877 	TC_SETUP_FT,
878 	TC_SETUP_QDISC_ETS,
879 	TC_SETUP_QDISC_TBF,
880 	TC_SETUP_QDISC_FIFO,
881 };
882 
883 /* These structures hold the attributes of bpf state that are being passed
884  * to the netdevice through the bpf op.
885  */
886 enum bpf_netdev_command {
887 	/* Set or clear a bpf program used in the earliest stages of packet
888 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
889 	 * is responsible for calling bpf_prog_put on any old progs that are
890 	 * stored. In case of error, the callee need not release the new prog
891 	 * reference, but on success it takes ownership and must bpf_prog_put
892 	 * when it is no longer used.
893 	 */
894 	XDP_SETUP_PROG,
895 	XDP_SETUP_PROG_HW,
896 	/* BPF program for offload callbacks, invoked at program load time. */
897 	BPF_OFFLOAD_MAP_ALLOC,
898 	BPF_OFFLOAD_MAP_FREE,
899 	XDP_SETUP_XSK_POOL,
900 };
901 
902 struct bpf_prog_offload_ops;
903 struct netlink_ext_ack;
904 struct xdp_umem;
905 struct xdp_dev_bulk_queue;
906 struct bpf_xdp_link;
907 
908 enum bpf_xdp_mode {
909 	XDP_MODE_SKB = 0,
910 	XDP_MODE_DRV = 1,
911 	XDP_MODE_HW = 2,
912 	__MAX_XDP_MODE
913 };
914 
915 struct bpf_xdp_entity {
916 	struct bpf_prog *prog;
917 	struct bpf_xdp_link *link;
918 };
919 
920 struct netdev_bpf {
921 	enum bpf_netdev_command command;
922 	union {
923 		/* XDP_SETUP_PROG */
924 		struct {
925 			u32 flags;
926 			struct bpf_prog *prog;
927 			struct netlink_ext_ack *extack;
928 		};
929 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
930 		struct {
931 			struct bpf_offloaded_map *offmap;
932 		};
933 		/* XDP_SETUP_XSK_POOL */
934 		struct {
935 			struct xsk_buff_pool *pool;
936 			u16 queue_id;
937 		} xsk;
938 	};
939 };
940 
941 /* Flags for ndo_xsk_wakeup. */
942 #define XDP_WAKEUP_RX (1 << 0)
943 #define XDP_WAKEUP_TX (1 << 1)
944 
945 #ifdef CONFIG_XFRM_OFFLOAD
946 struct xfrmdev_ops {
947 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
948 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
949 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
950 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
951 				       struct xfrm_state *x);
952 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
953 };
954 #endif
955 
956 struct dev_ifalias {
957 	struct rcu_head rcuhead;
958 	char ifalias[];
959 };
960 
961 struct devlink;
962 struct tlsdev_ops;
963 
964 struct netdev_name_node {
965 	struct hlist_node hlist;
966 	struct list_head list;
967 	struct net_device *dev;
968 	const char *name;
969 };
970 
971 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
972 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
973 
974 struct netdev_net_notifier {
975 	struct list_head list;
976 	struct notifier_block *nb;
977 };
978 
979 /*
980  * This structure defines the management hooks for network devices.
981  * The following hooks can be defined; unless noted otherwise, they are
982  * optional and can be filled with a null pointer.
983  *
984  * int (*ndo_init)(struct net_device *dev);
985  *     This function is called once when a network device is registered.
986  *     The network device can use this for any late stage initialization
987  *     or semantic validation. It can fail with an error code which will
988  *     be propagated back to register_netdev.
989  *
990  * void (*ndo_uninit)(struct net_device *dev);
991  *     This function is called when device is unregistered or when registration
992  *     fails. It is not called if init fails.
993  *
994  * int (*ndo_open)(struct net_device *dev);
995  *     This function is called when a network device transitions to the up
996  *     state.
997  *
998  * int (*ndo_stop)(struct net_device *dev);
999  *     This function is called when a network device transitions to the down
1000  *     state.
1001  *
1002  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1003  *                               struct net_device *dev);
1004  *	Called when a packet needs to be transmitted.
1005  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1006  *	the queue before that can happen; it's for obsolete devices and weird
1007  *	corner cases, but the stack really does a non-trivial amount
1008  *	of useless work if you return NETDEV_TX_BUSY.
1009  *	Required; cannot be NULL.
1010  *
1011  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1012  *					   struct net_device *dev
1013  *					   netdev_features_t features);
1014  *	Called by core transmit path to determine if device is capable of
1015  *	performing offload operations on a given packet. This is to give
1016  *	the device an opportunity to implement any restrictions that cannot
1017  *	be otherwise expressed by feature flags. The check is called with
1018  *	the set of features that the stack has calculated and it returns
1019  *	those the driver believes to be appropriate.
1020  *
1021  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1022  *                         struct net_device *sb_dev);
1023  *	Called to decide which queue to use when device supports multiple
1024  *	transmit queues.
1025  *
1026  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1027  *	This function is called to allow device receiver to make
1028  *	changes to configuration when multicast or promiscuous is enabled.
1029  *
1030  * void (*ndo_set_rx_mode)(struct net_device *dev);
1031  *	This function is called device changes address list filtering.
1032  *	If driver handles unicast address filtering, it should set
1033  *	IFF_UNICAST_FLT in its priv_flags.
1034  *
1035  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1036  *	This function  is called when the Media Access Control address
1037  *	needs to be changed. If this interface is not defined, the
1038  *	MAC address can not be changed.
1039  *
1040  * int (*ndo_validate_addr)(struct net_device *dev);
1041  *	Test if Media Access Control address is valid for the device.
1042  *
1043  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1044  *	Called when a user requests an ioctl which can't be handled by
1045  *	the generic interface code. If not defined ioctls return
1046  *	not supported error code.
1047  *
1048  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1049  *	Used to set network devices bus interface parameters. This interface
1050  *	is retained for legacy reasons; new devices should use the bus
1051  *	interface (PCI) for low level management.
1052  *
1053  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1054  *	Called when a user wants to change the Maximum Transfer Unit
1055  *	of a device.
1056  *
1057  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1058  *	Callback used when the transmitter has not made any progress
1059  *	for dev->watchdog ticks.
1060  *
1061  * void (*ndo_get_stats64)(struct net_device *dev,
1062  *                         struct rtnl_link_stats64 *storage);
1063  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1064  *	Called when a user wants to get the network device usage
1065  *	statistics. Drivers must do one of the following:
1066  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1067  *	   rtnl_link_stats64 structure passed by the caller.
1068  *	2. Define @ndo_get_stats to update a net_device_stats structure
1069  *	   (which should normally be dev->stats) and return a pointer to
1070  *	   it. The structure may be changed asynchronously only if each
1071  *	   field is written atomically.
1072  *	3. Update dev->stats asynchronously and atomically, and define
1073  *	   neither operation.
1074  *
1075  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1076  *	Return true if this device supports offload stats of this attr_id.
1077  *
1078  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1079  *	void *attr_data)
1080  *	Get statistics for offload operations by attr_id. Write it into the
1081  *	attr_data pointer.
1082  *
1083  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1084  *	If device supports VLAN filtering this function is called when a
1085  *	VLAN id is registered.
1086  *
1087  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1088  *	If device supports VLAN filtering this function is called when a
1089  *	VLAN id is unregistered.
1090  *
1091  * void (*ndo_poll_controller)(struct net_device *dev);
1092  *
1093  *	SR-IOV management functions.
1094  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1095  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1096  *			  u8 qos, __be16 proto);
1097  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1098  *			  int max_tx_rate);
1099  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1100  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1101  * int (*ndo_get_vf_config)(struct net_device *dev,
1102  *			    int vf, struct ifla_vf_info *ivf);
1103  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1104  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1105  *			  struct nlattr *port[]);
1106  *
1107  *      Enable or disable the VF ability to query its RSS Redirection Table and
1108  *      Hash Key. This is needed since on some devices VF share this information
1109  *      with PF and querying it may introduce a theoretical security risk.
1110  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1111  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1112  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1113  *		       void *type_data);
1114  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1115  *	This is always called from the stack with the rtnl lock held and netif
1116  *	tx queues stopped. This allows the netdevice to perform queue
1117  *	management safely.
1118  *
1119  *	Fiber Channel over Ethernet (FCoE) offload functions.
1120  * int (*ndo_fcoe_enable)(struct net_device *dev);
1121  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1122  *	so the underlying device can perform whatever needed configuration or
1123  *	initialization to support acceleration of FCoE traffic.
1124  *
1125  * int (*ndo_fcoe_disable)(struct net_device *dev);
1126  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1127  *	so the underlying device can perform whatever needed clean-ups to
1128  *	stop supporting acceleration of FCoE traffic.
1129  *
1130  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1131  *			     struct scatterlist *sgl, unsigned int sgc);
1132  *	Called when the FCoE Initiator wants to initialize an I/O that
1133  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1134  *	perform necessary setup and returns 1 to indicate the device is set up
1135  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1136  *
1137  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1138  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1139  *	indicated by the FC exchange id 'xid', so the underlying device can
1140  *	clean up and reuse resources for later DDP requests.
1141  *
1142  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1143  *			      struct scatterlist *sgl, unsigned int sgc);
1144  *	Called when the FCoE Target wants to initialize an I/O that
1145  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1146  *	perform necessary setup and returns 1 to indicate the device is set up
1147  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1148  *
1149  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1150  *			       struct netdev_fcoe_hbainfo *hbainfo);
1151  *	Called when the FCoE Protocol stack wants information on the underlying
1152  *	device. This information is utilized by the FCoE protocol stack to
1153  *	register attributes with Fiber Channel management service as per the
1154  *	FC-GS Fabric Device Management Information(FDMI) specification.
1155  *
1156  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1157  *	Called when the underlying device wants to override default World Wide
1158  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1159  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1160  *	protocol stack to use.
1161  *
1162  *	RFS acceleration.
1163  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1164  *			    u16 rxq_index, u32 flow_id);
1165  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1166  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1167  *	Return the filter ID on success, or a negative error code.
1168  *
1169  *	Slave management functions (for bridge, bonding, etc).
1170  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1171  *	Called to make another netdev an underling.
1172  *
1173  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1174  *	Called to release previously enslaved netdev.
1175  *
1176  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1177  *					    struct sk_buff *skb,
1178  *					    bool all_slaves);
1179  *	Get the xmit slave of master device. If all_slaves is true, function
1180  *	assume all the slaves can transmit.
1181  *
1182  *      Feature/offload setting functions.
1183  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1184  *		netdev_features_t features);
1185  *	Adjusts the requested feature flags according to device-specific
1186  *	constraints, and returns the resulting flags. Must not modify
1187  *	the device state.
1188  *
1189  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1190  *	Called to update device configuration to new features. Passed
1191  *	feature set might be less than what was returned by ndo_fix_features()).
1192  *	Must return >0 or -errno if it changed dev->features itself.
1193  *
1194  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1195  *		      struct net_device *dev,
1196  *		      const unsigned char *addr, u16 vid, u16 flags,
1197  *		      struct netlink_ext_ack *extack);
1198  *	Adds an FDB entry to dev for addr.
1199  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1200  *		      struct net_device *dev,
1201  *		      const unsigned char *addr, u16 vid)
1202  *	Deletes the FDB entry from dev coresponding to addr.
1203  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1204  *		       struct net_device *dev, struct net_device *filter_dev,
1205  *		       int *idx)
1206  *	Used to add FDB entries to dump requests. Implementers should add
1207  *	entries to skb and update idx with the number of entries.
1208  *
1209  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1210  *			     u16 flags, struct netlink_ext_ack *extack)
1211  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1212  *			     struct net_device *dev, u32 filter_mask,
1213  *			     int nlflags)
1214  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1215  *			     u16 flags);
1216  *
1217  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1218  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1219  *	which do not represent real hardware may define this to allow their
1220  *	userspace components to manage their virtual carrier state. Devices
1221  *	that determine carrier state from physical hardware properties (eg
1222  *	network cables) or protocol-dependent mechanisms (eg
1223  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1224  *
1225  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1226  *			       struct netdev_phys_item_id *ppid);
1227  *	Called to get ID of physical port of this device. If driver does
1228  *	not implement this, it is assumed that the hw is not able to have
1229  *	multiple net devices on single physical port.
1230  *
1231  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1232  *				 struct netdev_phys_item_id *ppid)
1233  *	Called to get the parent ID of the physical port of this device.
1234  *
1235  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1236  *			      struct udp_tunnel_info *ti);
1237  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1238  *	address family that a UDP tunnel is listnening to. It is called only
1239  *	when a new port starts listening. The operation is protected by the
1240  *	RTNL.
1241  *
1242  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1243  *			      struct udp_tunnel_info *ti);
1244  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1245  *	address family that the UDP tunnel is not listening to anymore. The
1246  *	operation is protected by the RTNL.
1247  *
1248  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1249  *				 struct net_device *dev)
1250  *	Called by upper layer devices to accelerate switching or other
1251  *	station functionality into hardware. 'pdev is the lowerdev
1252  *	to use for the offload and 'dev' is the net device that will
1253  *	back the offload. Returns a pointer to the private structure
1254  *	the upper layer will maintain.
1255  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1256  *	Called by upper layer device to delete the station created
1257  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1258  *	the station and priv is the structure returned by the add
1259  *	operation.
1260  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1261  *			     int queue_index, u32 maxrate);
1262  *	Called when a user wants to set a max-rate limitation of specific
1263  *	TX queue.
1264  * int (*ndo_get_iflink)(const struct net_device *dev);
1265  *	Called to get the iflink value of this device.
1266  * void (*ndo_change_proto_down)(struct net_device *dev,
1267  *				 bool proto_down);
1268  *	This function is used to pass protocol port error state information
1269  *	to the switch driver. The switch driver can react to the proto_down
1270  *      by doing a phys down on the associated switch port.
1271  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1272  *	This function is used to get egress tunnel information for given skb.
1273  *	This is useful for retrieving outer tunnel header parameters while
1274  *	sampling packet.
1275  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1276  *	This function is used to specify the headroom that the skb must
1277  *	consider when allocation skb during packet reception. Setting
1278  *	appropriate rx headroom value allows avoiding skb head copy on
1279  *	forward. Setting a negative value resets the rx headroom to the
1280  *	default value.
1281  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1282  *	This function is used to set or query state related to XDP on the
1283  *	netdevice and manage BPF offload. See definition of
1284  *	enum bpf_netdev_command for details.
1285  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1286  *			u32 flags);
1287  *	This function is used to submit @n XDP packets for transmit on a
1288  *	netdevice. Returns number of frames successfully transmitted, frames
1289  *	that got dropped are freed/returned via xdp_return_frame().
1290  *	Returns negative number, means general error invoking ndo, meaning
1291  *	no frames were xmit'ed and core-caller will free all frames.
1292  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1293  *      This function is used to wake up the softirq, ksoftirqd or kthread
1294  *	responsible for sending and/or receiving packets on a specific
1295  *	queue id bound to an AF_XDP socket. The flags field specifies if
1296  *	only RX, only Tx, or both should be woken up using the flags
1297  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1298  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1299  *	Get devlink port instance associated with a given netdev.
1300  *	Called with a reference on the netdevice and devlink locks only,
1301  *	rtnl_lock is not held.
1302  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1303  *			 int cmd);
1304  *	Add, change, delete or get information on an IPv4 tunnel.
1305  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1306  *	If a device is paired with a peer device, return the peer instance.
1307  *	The caller must be under RCU read context.
1308  */
1309 struct net_device_ops {
1310 	int			(*ndo_init)(struct net_device *dev);
1311 	void			(*ndo_uninit)(struct net_device *dev);
1312 	int			(*ndo_open)(struct net_device *dev);
1313 	int			(*ndo_stop)(struct net_device *dev);
1314 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1315 						  struct net_device *dev);
1316 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1317 						      struct net_device *dev,
1318 						      netdev_features_t features);
1319 	u16			(*ndo_select_queue)(struct net_device *dev,
1320 						    struct sk_buff *skb,
1321 						    struct net_device *sb_dev);
1322 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1323 						       int flags);
1324 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1325 	int			(*ndo_set_mac_address)(struct net_device *dev,
1326 						       void *addr);
1327 	int			(*ndo_validate_addr)(struct net_device *dev);
1328 	int			(*ndo_do_ioctl)(struct net_device *dev,
1329 					        struct ifreq *ifr, int cmd);
1330 	int			(*ndo_set_config)(struct net_device *dev,
1331 					          struct ifmap *map);
1332 	int			(*ndo_change_mtu)(struct net_device *dev,
1333 						  int new_mtu);
1334 	int			(*ndo_neigh_setup)(struct net_device *dev,
1335 						   struct neigh_parms *);
1336 	void			(*ndo_tx_timeout) (struct net_device *dev,
1337 						   unsigned int txqueue);
1338 
1339 	void			(*ndo_get_stats64)(struct net_device *dev,
1340 						   struct rtnl_link_stats64 *storage);
1341 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1342 	int			(*ndo_get_offload_stats)(int attr_id,
1343 							 const struct net_device *dev,
1344 							 void *attr_data);
1345 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1346 
1347 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1348 						       __be16 proto, u16 vid);
1349 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1350 						        __be16 proto, u16 vid);
1351 #ifdef CONFIG_NET_POLL_CONTROLLER
1352 	void                    (*ndo_poll_controller)(struct net_device *dev);
1353 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1354 						     struct netpoll_info *info);
1355 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1356 #endif
1357 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1358 						  int queue, u8 *mac);
1359 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1360 						   int queue, u16 vlan,
1361 						   u8 qos, __be16 proto);
1362 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1363 						   int vf, int min_tx_rate,
1364 						   int max_tx_rate);
1365 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1366 						       int vf, bool setting);
1367 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1368 						    int vf, bool setting);
1369 	int			(*ndo_get_vf_config)(struct net_device *dev,
1370 						     int vf,
1371 						     struct ifla_vf_info *ivf);
1372 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1373 							 int vf, int link_state);
1374 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1375 						    int vf,
1376 						    struct ifla_vf_stats
1377 						    *vf_stats);
1378 	int			(*ndo_set_vf_port)(struct net_device *dev,
1379 						   int vf,
1380 						   struct nlattr *port[]);
1381 	int			(*ndo_get_vf_port)(struct net_device *dev,
1382 						   int vf, struct sk_buff *skb);
1383 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1384 						   int vf,
1385 						   struct ifla_vf_guid *node_guid,
1386 						   struct ifla_vf_guid *port_guid);
1387 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1388 						   int vf, u64 guid,
1389 						   int guid_type);
1390 	int			(*ndo_set_vf_rss_query_en)(
1391 						   struct net_device *dev,
1392 						   int vf, bool setting);
1393 	int			(*ndo_setup_tc)(struct net_device *dev,
1394 						enum tc_setup_type type,
1395 						void *type_data);
1396 #if IS_ENABLED(CONFIG_FCOE)
1397 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1398 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1399 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1400 						      u16 xid,
1401 						      struct scatterlist *sgl,
1402 						      unsigned int sgc);
1403 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1404 						     u16 xid);
1405 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1406 						       u16 xid,
1407 						       struct scatterlist *sgl,
1408 						       unsigned int sgc);
1409 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1410 							struct netdev_fcoe_hbainfo *hbainfo);
1411 #endif
1412 
1413 #if IS_ENABLED(CONFIG_LIBFCOE)
1414 #define NETDEV_FCOE_WWNN 0
1415 #define NETDEV_FCOE_WWPN 1
1416 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1417 						    u64 *wwn, int type);
1418 #endif
1419 
1420 #ifdef CONFIG_RFS_ACCEL
1421 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1422 						     const struct sk_buff *skb,
1423 						     u16 rxq_index,
1424 						     u32 flow_id);
1425 #endif
1426 	int			(*ndo_add_slave)(struct net_device *dev,
1427 						 struct net_device *slave_dev,
1428 						 struct netlink_ext_ack *extack);
1429 	int			(*ndo_del_slave)(struct net_device *dev,
1430 						 struct net_device *slave_dev);
1431 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1432 						      struct sk_buff *skb,
1433 						      bool all_slaves);
1434 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1435 						    netdev_features_t features);
1436 	int			(*ndo_set_features)(struct net_device *dev,
1437 						    netdev_features_t features);
1438 	int			(*ndo_neigh_construct)(struct net_device *dev,
1439 						       struct neighbour *n);
1440 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1441 						     struct neighbour *n);
1442 
1443 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1444 					       struct nlattr *tb[],
1445 					       struct net_device *dev,
1446 					       const unsigned char *addr,
1447 					       u16 vid,
1448 					       u16 flags,
1449 					       struct netlink_ext_ack *extack);
1450 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1451 					       struct nlattr *tb[],
1452 					       struct net_device *dev,
1453 					       const unsigned char *addr,
1454 					       u16 vid);
1455 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1456 						struct netlink_callback *cb,
1457 						struct net_device *dev,
1458 						struct net_device *filter_dev,
1459 						int *idx);
1460 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1461 					       struct nlattr *tb[],
1462 					       struct net_device *dev,
1463 					       const unsigned char *addr,
1464 					       u16 vid, u32 portid, u32 seq,
1465 					       struct netlink_ext_ack *extack);
1466 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1467 						      struct nlmsghdr *nlh,
1468 						      u16 flags,
1469 						      struct netlink_ext_ack *extack);
1470 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1471 						      u32 pid, u32 seq,
1472 						      struct net_device *dev,
1473 						      u32 filter_mask,
1474 						      int nlflags);
1475 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1476 						      struct nlmsghdr *nlh,
1477 						      u16 flags);
1478 	int			(*ndo_change_carrier)(struct net_device *dev,
1479 						      bool new_carrier);
1480 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1481 							struct netdev_phys_item_id *ppid);
1482 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1483 							  struct netdev_phys_item_id *ppid);
1484 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1485 							  char *name, size_t len);
1486 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1487 						      struct udp_tunnel_info *ti);
1488 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1489 						      struct udp_tunnel_info *ti);
1490 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1491 							struct net_device *dev);
1492 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1493 							void *priv);
1494 
1495 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1496 						      int queue_index,
1497 						      u32 maxrate);
1498 	int			(*ndo_get_iflink)(const struct net_device *dev);
1499 	int			(*ndo_change_proto_down)(struct net_device *dev,
1500 							 bool proto_down);
1501 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1502 						       struct sk_buff *skb);
1503 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1504 						       int needed_headroom);
1505 	int			(*ndo_bpf)(struct net_device *dev,
1506 					   struct netdev_bpf *bpf);
1507 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1508 						struct xdp_frame **xdp,
1509 						u32 flags);
1510 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1511 						  u32 queue_id, u32 flags);
1512 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1513 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1514 						  struct ip_tunnel_parm *p, int cmd);
1515 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1516 };
1517 
1518 /**
1519  * enum net_device_priv_flags - &struct net_device priv_flags
1520  *
1521  * These are the &struct net_device, they are only set internally
1522  * by drivers and used in the kernel. These flags are invisible to
1523  * userspace; this means that the order of these flags can change
1524  * during any kernel release.
1525  *
1526  * You should have a pretty good reason to be extending these flags.
1527  *
1528  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1529  * @IFF_EBRIDGE: Ethernet bridging device
1530  * @IFF_BONDING: bonding master or slave
1531  * @IFF_ISATAP: ISATAP interface (RFC4214)
1532  * @IFF_WAN_HDLC: WAN HDLC device
1533  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1534  *	release skb->dst
1535  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1536  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1537  * @IFF_MACVLAN_PORT: device used as macvlan port
1538  * @IFF_BRIDGE_PORT: device used as bridge port
1539  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1540  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1541  * @IFF_UNICAST_FLT: Supports unicast filtering
1542  * @IFF_TEAM_PORT: device used as team port
1543  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1544  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1545  *	change when it's running
1546  * @IFF_MACVLAN: Macvlan device
1547  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1548  *	underlying stacked devices
1549  * @IFF_L3MDEV_MASTER: device is an L3 master device
1550  * @IFF_NO_QUEUE: device can run without qdisc attached
1551  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1552  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1553  * @IFF_TEAM: device is a team device
1554  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1555  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1556  *	entity (i.e. the master device for bridged veth)
1557  * @IFF_MACSEC: device is a MACsec device
1558  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1559  * @IFF_FAILOVER: device is a failover master device
1560  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1561  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1562  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1563  */
1564 enum netdev_priv_flags {
1565 	IFF_802_1Q_VLAN			= 1<<0,
1566 	IFF_EBRIDGE			= 1<<1,
1567 	IFF_BONDING			= 1<<2,
1568 	IFF_ISATAP			= 1<<3,
1569 	IFF_WAN_HDLC			= 1<<4,
1570 	IFF_XMIT_DST_RELEASE		= 1<<5,
1571 	IFF_DONT_BRIDGE			= 1<<6,
1572 	IFF_DISABLE_NETPOLL		= 1<<7,
1573 	IFF_MACVLAN_PORT		= 1<<8,
1574 	IFF_BRIDGE_PORT			= 1<<9,
1575 	IFF_OVS_DATAPATH		= 1<<10,
1576 	IFF_TX_SKB_SHARING		= 1<<11,
1577 	IFF_UNICAST_FLT			= 1<<12,
1578 	IFF_TEAM_PORT			= 1<<13,
1579 	IFF_SUPP_NOFCS			= 1<<14,
1580 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1581 	IFF_MACVLAN			= 1<<16,
1582 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1583 	IFF_L3MDEV_MASTER		= 1<<18,
1584 	IFF_NO_QUEUE			= 1<<19,
1585 	IFF_OPENVSWITCH			= 1<<20,
1586 	IFF_L3MDEV_SLAVE		= 1<<21,
1587 	IFF_TEAM			= 1<<22,
1588 	IFF_RXFH_CONFIGURED		= 1<<23,
1589 	IFF_PHONY_HEADROOM		= 1<<24,
1590 	IFF_MACSEC			= 1<<25,
1591 	IFF_NO_RX_HANDLER		= 1<<26,
1592 	IFF_FAILOVER			= 1<<27,
1593 	IFF_FAILOVER_SLAVE		= 1<<28,
1594 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1595 	IFF_LIVE_RENAME_OK		= 1<<30,
1596 };
1597 
1598 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1599 #define IFF_EBRIDGE			IFF_EBRIDGE
1600 #define IFF_BONDING			IFF_BONDING
1601 #define IFF_ISATAP			IFF_ISATAP
1602 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1603 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1604 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1605 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1606 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1607 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1608 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1609 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1610 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1611 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1612 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1613 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1614 #define IFF_MACVLAN			IFF_MACVLAN
1615 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1616 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1617 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1618 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1619 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1620 #define IFF_TEAM			IFF_TEAM
1621 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1622 #define IFF_MACSEC			IFF_MACSEC
1623 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1624 #define IFF_FAILOVER			IFF_FAILOVER
1625 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1626 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1627 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1628 
1629 /* Specifies the type of the struct net_device::ml_priv pointer */
1630 enum netdev_ml_priv_type {
1631 	ML_PRIV_NONE,
1632 	ML_PRIV_CAN,
1633 };
1634 
1635 /**
1636  *	struct net_device - The DEVICE structure.
1637  *
1638  *	Actually, this whole structure is a big mistake.  It mixes I/O
1639  *	data with strictly "high-level" data, and it has to know about
1640  *	almost every data structure used in the INET module.
1641  *
1642  *	@name:	This is the first field of the "visible" part of this structure
1643  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1644  *		of the interface.
1645  *
1646  *	@name_node:	Name hashlist node
1647  *	@ifalias:	SNMP alias
1648  *	@mem_end:	Shared memory end
1649  *	@mem_start:	Shared memory start
1650  *	@base_addr:	Device I/O address
1651  *	@irq:		Device IRQ number
1652  *
1653  *	@state:		Generic network queuing layer state, see netdev_state_t
1654  *	@dev_list:	The global list of network devices
1655  *	@napi_list:	List entry used for polling NAPI devices
1656  *	@unreg_list:	List entry  when we are unregistering the
1657  *			device; see the function unregister_netdev
1658  *	@close_list:	List entry used when we are closing the device
1659  *	@ptype_all:     Device-specific packet handlers for all protocols
1660  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1661  *
1662  *	@adj_list:	Directly linked devices, like slaves for bonding
1663  *	@features:	Currently active device features
1664  *	@hw_features:	User-changeable features
1665  *
1666  *	@wanted_features:	User-requested features
1667  *	@vlan_features:		Mask of features inheritable by VLAN devices
1668  *
1669  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1670  *				This field indicates what encapsulation
1671  *				offloads the hardware is capable of doing,
1672  *				and drivers will need to set them appropriately.
1673  *
1674  *	@mpls_features:	Mask of features inheritable by MPLS
1675  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1676  *
1677  *	@ifindex:	interface index
1678  *	@group:		The group the device belongs to
1679  *
1680  *	@stats:		Statistics struct, which was left as a legacy, use
1681  *			rtnl_link_stats64 instead
1682  *
1683  *	@rx_dropped:	Dropped packets by core network,
1684  *			do not use this in drivers
1685  *	@tx_dropped:	Dropped packets by core network,
1686  *			do not use this in drivers
1687  *	@rx_nohandler:	nohandler dropped packets by core network on
1688  *			inactive devices, do not use this in drivers
1689  *	@carrier_up_count:	Number of times the carrier has been up
1690  *	@carrier_down_count:	Number of times the carrier has been down
1691  *
1692  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1693  *				instead of ioctl,
1694  *				see <net/iw_handler.h> for details.
1695  *	@wireless_data:	Instance data managed by the core of wireless extensions
1696  *
1697  *	@netdev_ops:	Includes several pointers to callbacks,
1698  *			if one wants to override the ndo_*() functions
1699  *	@ethtool_ops:	Management operations
1700  *	@l3mdev_ops:	Layer 3 master device operations
1701  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1702  *			discovery handling. Necessary for e.g. 6LoWPAN.
1703  *	@xfrmdev_ops:	Transformation offload operations
1704  *	@tlsdev_ops:	Transport Layer Security offload operations
1705  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1706  *			of Layer 2 headers.
1707  *
1708  *	@flags:		Interface flags (a la BSD)
1709  *	@priv_flags:	Like 'flags' but invisible to userspace,
1710  *			see if.h for the definitions
1711  *	@gflags:	Global flags ( kept as legacy )
1712  *	@padded:	How much padding added by alloc_netdev()
1713  *	@operstate:	RFC2863 operstate
1714  *	@link_mode:	Mapping policy to operstate
1715  *	@if_port:	Selectable AUI, TP, ...
1716  *	@dma:		DMA channel
1717  *	@mtu:		Interface MTU value
1718  *	@min_mtu:	Interface Minimum MTU value
1719  *	@max_mtu:	Interface Maximum MTU value
1720  *	@type:		Interface hardware type
1721  *	@hard_header_len: Maximum hardware header length.
1722  *	@min_header_len:  Minimum hardware header length
1723  *
1724  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1725  *			  cases can this be guaranteed
1726  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1727  *			  cases can this be guaranteed. Some cases also use
1728  *			  LL_MAX_HEADER instead to allocate the skb
1729  *
1730  *	interface address info:
1731  *
1732  * 	@perm_addr:		Permanent hw address
1733  * 	@addr_assign_type:	Hw address assignment type
1734  * 	@addr_len:		Hardware address length
1735  *	@upper_level:		Maximum depth level of upper devices.
1736  *	@lower_level:		Maximum depth level of lower devices.
1737  *	@neigh_priv_len:	Used in neigh_alloc()
1738  * 	@dev_id:		Used to differentiate devices that share
1739  * 				the same link layer address
1740  * 	@dev_port:		Used to differentiate devices that share
1741  * 				the same function
1742  *	@addr_list_lock:	XXX: need comments on this one
1743  *	@name_assign_type:	network interface name assignment type
1744  *	@uc_promisc:		Counter that indicates promiscuous mode
1745  *				has been enabled due to the need to listen to
1746  *				additional unicast addresses in a device that
1747  *				does not implement ndo_set_rx_mode()
1748  *	@uc:			unicast mac addresses
1749  *	@mc:			multicast mac addresses
1750  *	@dev_addrs:		list of device hw addresses
1751  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1752  *	@promiscuity:		Number of times the NIC is told to work in
1753  *				promiscuous mode; if it becomes 0 the NIC will
1754  *				exit promiscuous mode
1755  *	@allmulti:		Counter, enables or disables allmulticast mode
1756  *
1757  *	@vlan_info:	VLAN info
1758  *	@dsa_ptr:	dsa specific data
1759  *	@tipc_ptr:	TIPC specific data
1760  *	@atalk_ptr:	AppleTalk link
1761  *	@ip_ptr:	IPv4 specific data
1762  *	@dn_ptr:	DECnet specific data
1763  *	@ip6_ptr:	IPv6 specific data
1764  *	@ax25_ptr:	AX.25 specific data
1765  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1766  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1767  *			 device struct
1768  *	@mpls_ptr:	mpls_dev struct pointer
1769  *
1770  *	@dev_addr:	Hw address (before bcast,
1771  *			because most packets are unicast)
1772  *
1773  *	@_rx:			Array of RX queues
1774  *	@num_rx_queues:		Number of RX queues
1775  *				allocated at register_netdev() time
1776  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1777  *	@xdp_prog:		XDP sockets filter program pointer
1778  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1779  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1780  *				allow to avoid NIC hard IRQ, on busy queues.
1781  *
1782  *	@rx_handler:		handler for received packets
1783  *	@rx_handler_data: 	XXX: need comments on this one
1784  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1785  *				ingress processing
1786  *	@ingress_queue:		XXX: need comments on this one
1787  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1788  *	@broadcast:		hw bcast address
1789  *
1790  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1791  *			indexed by RX queue number. Assigned by driver.
1792  *			This must only be set if the ndo_rx_flow_steer
1793  *			operation is defined
1794  *	@index_hlist:		Device index hash chain
1795  *
1796  *	@_tx:			Array of TX queues
1797  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1798  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1799  *	@qdisc:			Root qdisc from userspace point of view
1800  *	@tx_queue_len:		Max frames per queue allowed
1801  *	@tx_global_lock: 	XXX: need comments on this one
1802  *	@xdp_bulkq:		XDP device bulk queue
1803  *	@xps_cpus_map:		all CPUs map for XPS device
1804  *	@xps_rxqs_map:		all RXQs map for XPS device
1805  *
1806  *	@xps_maps:	XXX: need comments on this one
1807  *	@miniq_egress:		clsact qdisc specific data for
1808  *				egress processing
1809  *	@qdisc_hash:		qdisc hash table
1810  *	@watchdog_timeo:	Represents the timeout that is used by
1811  *				the watchdog (see dev_watchdog())
1812  *	@watchdog_timer:	List of timers
1813  *
1814  *	@proto_down_reason:	reason a netdev interface is held down
1815  *	@pcpu_refcnt:		Number of references to this device
1816  *	@todo_list:		Delayed register/unregister
1817  *	@link_watch_list:	XXX: need comments on this one
1818  *
1819  *	@reg_state:		Register/unregister state machine
1820  *	@dismantle:		Device is going to be freed
1821  *	@rtnl_link_state:	This enum represents the phases of creating
1822  *				a new link
1823  *
1824  *	@needs_free_netdev:	Should unregister perform free_netdev?
1825  *	@priv_destructor:	Called from unregister
1826  *	@npinfo:		XXX: need comments on this one
1827  * 	@nd_net:		Network namespace this network device is inside
1828  *
1829  * 	@ml_priv:	Mid-layer private
1830  *	@ml_priv_type:  Mid-layer private type
1831  * 	@lstats:	Loopback statistics
1832  * 	@tstats:	Tunnel statistics
1833  * 	@dstats:	Dummy statistics
1834  * 	@vstats:	Virtual ethernet statistics
1835  *
1836  *	@garp_port:	GARP
1837  *	@mrp_port:	MRP
1838  *
1839  *	@dev:		Class/net/name entry
1840  *	@sysfs_groups:	Space for optional device, statistics and wireless
1841  *			sysfs groups
1842  *
1843  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1844  *	@rtnl_link_ops:	Rtnl_link_ops
1845  *
1846  *	@gso_max_size:	Maximum size of generic segmentation offload
1847  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1848  *			NIC for GSO
1849  *
1850  *	@dcbnl_ops:	Data Center Bridging netlink ops
1851  *	@num_tc:	Number of traffic classes in the net device
1852  *	@tc_to_txq:	XXX: need comments on this one
1853  *	@prio_tc_map:	XXX: need comments on this one
1854  *
1855  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1856  *
1857  *	@priomap:	XXX: need comments on this one
1858  *	@phydev:	Physical device may attach itself
1859  *			for hardware timestamping
1860  *	@sfp_bus:	attached &struct sfp_bus structure.
1861  *
1862  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1863  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1864  *
1865  *	@proto_down:	protocol port state information can be sent to the
1866  *			switch driver and used to set the phys state of the
1867  *			switch port.
1868  *
1869  *	@wol_enabled:	Wake-on-LAN is enabled
1870  *
1871  *	@net_notifier_list:	List of per-net netdev notifier block
1872  *				that follow this device when it is moved
1873  *				to another network namespace.
1874  *
1875  *	@macsec_ops:    MACsec offloading ops
1876  *
1877  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1878  *				offload capabilities of the device
1879  *	@udp_tunnel_nic:	UDP tunnel offload state
1880  *	@xdp_state:		stores info on attached XDP BPF programs
1881  *
1882  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1883  *			dev->addr_list_lock.
1884  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1885  *			keep a list of interfaces to be deleted.
1886  *
1887  *	FIXME: cleanup struct net_device such that network protocol info
1888  *	moves out.
1889  */
1890 
1891 struct net_device {
1892 	char			name[IFNAMSIZ];
1893 	struct netdev_name_node	*name_node;
1894 	struct dev_ifalias	__rcu *ifalias;
1895 	/*
1896 	 *	I/O specific fields
1897 	 *	FIXME: Merge these and struct ifmap into one
1898 	 */
1899 	unsigned long		mem_end;
1900 	unsigned long		mem_start;
1901 	unsigned long		base_addr;
1902 	int			irq;
1903 
1904 	/*
1905 	 *	Some hardware also needs these fields (state,dev_list,
1906 	 *	napi_list,unreg_list,close_list) but they are not
1907 	 *	part of the usual set specified in Space.c.
1908 	 */
1909 
1910 	unsigned long		state;
1911 
1912 	struct list_head	dev_list;
1913 	struct list_head	napi_list;
1914 	struct list_head	unreg_list;
1915 	struct list_head	close_list;
1916 	struct list_head	ptype_all;
1917 	struct list_head	ptype_specific;
1918 
1919 	struct {
1920 		struct list_head upper;
1921 		struct list_head lower;
1922 	} adj_list;
1923 
1924 	netdev_features_t	features;
1925 	netdev_features_t	hw_features;
1926 	netdev_features_t	wanted_features;
1927 	netdev_features_t	vlan_features;
1928 	netdev_features_t	hw_enc_features;
1929 	netdev_features_t	mpls_features;
1930 	netdev_features_t	gso_partial_features;
1931 
1932 	int			ifindex;
1933 	int			group;
1934 
1935 	struct net_device_stats	stats;
1936 
1937 	atomic_long_t		rx_dropped;
1938 	atomic_long_t		tx_dropped;
1939 	atomic_long_t		rx_nohandler;
1940 
1941 	/* Stats to monitor link on/off, flapping */
1942 	atomic_t		carrier_up_count;
1943 	atomic_t		carrier_down_count;
1944 
1945 #ifdef CONFIG_WIRELESS_EXT
1946 	const struct iw_handler_def *wireless_handlers;
1947 	struct iw_public_data	*wireless_data;
1948 #endif
1949 	const struct net_device_ops *netdev_ops;
1950 	const struct ethtool_ops *ethtool_ops;
1951 #ifdef CONFIG_NET_L3_MASTER_DEV
1952 	const struct l3mdev_ops	*l3mdev_ops;
1953 #endif
1954 #if IS_ENABLED(CONFIG_IPV6)
1955 	const struct ndisc_ops *ndisc_ops;
1956 #endif
1957 
1958 #ifdef CONFIG_XFRM_OFFLOAD
1959 	const struct xfrmdev_ops *xfrmdev_ops;
1960 #endif
1961 
1962 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1963 	const struct tlsdev_ops *tlsdev_ops;
1964 #endif
1965 
1966 	const struct header_ops *header_ops;
1967 
1968 	unsigned int		flags;
1969 	unsigned int		priv_flags;
1970 
1971 	unsigned short		gflags;
1972 	unsigned short		padded;
1973 
1974 	unsigned char		operstate;
1975 	unsigned char		link_mode;
1976 
1977 	unsigned char		if_port;
1978 	unsigned char		dma;
1979 
1980 	/* Note : dev->mtu is often read without holding a lock.
1981 	 * Writers usually hold RTNL.
1982 	 * It is recommended to use READ_ONCE() to annotate the reads,
1983 	 * and to use WRITE_ONCE() to annotate the writes.
1984 	 */
1985 	unsigned int		mtu;
1986 	unsigned int		min_mtu;
1987 	unsigned int		max_mtu;
1988 	unsigned short		type;
1989 	unsigned short		hard_header_len;
1990 	unsigned char		min_header_len;
1991 	unsigned char		name_assign_type;
1992 
1993 	unsigned short		needed_headroom;
1994 	unsigned short		needed_tailroom;
1995 
1996 	/* Interface address info. */
1997 	unsigned char		perm_addr[MAX_ADDR_LEN];
1998 	unsigned char		addr_assign_type;
1999 	unsigned char		addr_len;
2000 	unsigned char		upper_level;
2001 	unsigned char		lower_level;
2002 
2003 	unsigned short		neigh_priv_len;
2004 	unsigned short          dev_id;
2005 	unsigned short          dev_port;
2006 	spinlock_t		addr_list_lock;
2007 
2008 	struct netdev_hw_addr_list	uc;
2009 	struct netdev_hw_addr_list	mc;
2010 	struct netdev_hw_addr_list	dev_addrs;
2011 
2012 #ifdef CONFIG_SYSFS
2013 	struct kset		*queues_kset;
2014 #endif
2015 #ifdef CONFIG_LOCKDEP
2016 	struct list_head	unlink_list;
2017 #endif
2018 	unsigned int		promiscuity;
2019 	unsigned int		allmulti;
2020 	bool			uc_promisc;
2021 #ifdef CONFIG_LOCKDEP
2022 	unsigned char		nested_level;
2023 #endif
2024 
2025 
2026 	/* Protocol-specific pointers */
2027 
2028 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2029 	struct vlan_info __rcu	*vlan_info;
2030 #endif
2031 #if IS_ENABLED(CONFIG_NET_DSA)
2032 	struct dsa_port		*dsa_ptr;
2033 #endif
2034 #if IS_ENABLED(CONFIG_TIPC)
2035 	struct tipc_bearer __rcu *tipc_ptr;
2036 #endif
2037 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2038 	void 			*atalk_ptr;
2039 #endif
2040 	struct in_device __rcu	*ip_ptr;
2041 #if IS_ENABLED(CONFIG_DECNET)
2042 	struct dn_dev __rcu     *dn_ptr;
2043 #endif
2044 	struct inet6_dev __rcu	*ip6_ptr;
2045 #if IS_ENABLED(CONFIG_NEWIP)
2046 	struct ninet_dev __rcu	*nip_ptr; /* NIP */
2047 #endif
2048 #if IS_ENABLED(CONFIG_AX25)
2049 	void			*ax25_ptr;
2050 #endif
2051 	struct wireless_dev	*ieee80211_ptr;
2052 	struct wpan_dev		*ieee802154_ptr;
2053 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2054 	struct mpls_dev __rcu	*mpls_ptr;
2055 #endif
2056 
2057 /*
2058  * Cache lines mostly used on receive path (including eth_type_trans())
2059  */
2060 	/* Interface address info used in eth_type_trans() */
2061 	unsigned char		*dev_addr;
2062 
2063 	struct netdev_rx_queue	*_rx;
2064 	unsigned int		num_rx_queues;
2065 	unsigned int		real_num_rx_queues;
2066 
2067 	struct bpf_prog __rcu	*xdp_prog;
2068 	unsigned long		gro_flush_timeout;
2069 	int			napi_defer_hard_irqs;
2070 	rx_handler_func_t __rcu	*rx_handler;
2071 	void __rcu		*rx_handler_data;
2072 
2073 #ifdef CONFIG_NET_CLS_ACT
2074 	struct mini_Qdisc __rcu	*miniq_ingress;
2075 #endif
2076 	struct netdev_queue __rcu *ingress_queue;
2077 #ifdef CONFIG_NETFILTER_INGRESS
2078 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2079 #endif
2080 
2081 	unsigned char		broadcast[MAX_ADDR_LEN];
2082 #ifdef CONFIG_RFS_ACCEL
2083 	struct cpu_rmap		*rx_cpu_rmap;
2084 #endif
2085 	struct hlist_node	index_hlist;
2086 
2087 /*
2088  * Cache lines mostly used on transmit path
2089  */
2090 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2091 	unsigned int		num_tx_queues;
2092 	unsigned int		real_num_tx_queues;
2093 	struct Qdisc __rcu	*qdisc;
2094 	unsigned int		tx_queue_len;
2095 	spinlock_t		tx_global_lock;
2096 
2097 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2098 
2099 #ifdef CONFIG_XPS
2100 	struct xps_dev_maps __rcu *xps_cpus_map;
2101 	struct xps_dev_maps __rcu *xps_rxqs_map;
2102 #endif
2103 #ifdef CONFIG_NET_CLS_ACT
2104 	struct mini_Qdisc __rcu	*miniq_egress;
2105 #endif
2106 
2107 #ifdef CONFIG_NET_SCHED
2108 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2109 #endif
2110 	/* These may be needed for future network-power-down code. */
2111 	struct timer_list	watchdog_timer;
2112 	int			watchdog_timeo;
2113 
2114 	u32                     proto_down_reason;
2115 
2116 	struct list_head	todo_list;
2117 	int __percpu		*pcpu_refcnt;
2118 
2119 	struct list_head	link_watch_list;
2120 
2121 	enum { NETREG_UNINITIALIZED=0,
2122 	       NETREG_REGISTERED,	/* completed register_netdevice */
2123 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2124 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2125 	       NETREG_RELEASED,		/* called free_netdev */
2126 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2127 	} reg_state:8;
2128 
2129 	bool dismantle;
2130 
2131 	enum {
2132 		RTNL_LINK_INITIALIZED,
2133 		RTNL_LINK_INITIALIZING,
2134 	} rtnl_link_state:16;
2135 
2136 	bool needs_free_netdev;
2137 	void (*priv_destructor)(struct net_device *dev);
2138 
2139 #ifdef CONFIG_NETPOLL
2140 	struct netpoll_info __rcu	*npinfo;
2141 #endif
2142 
2143 	possible_net_t			nd_net;
2144 
2145 	/* mid-layer private */
2146 	void				*ml_priv;
2147 	enum netdev_ml_priv_type	ml_priv_type;
2148 
2149 	union {
2150 		struct pcpu_lstats __percpu		*lstats;
2151 		struct pcpu_sw_netstats __percpu	*tstats;
2152 		struct pcpu_dstats __percpu		*dstats;
2153 	};
2154 
2155 #if IS_ENABLED(CONFIG_GARP)
2156 	struct garp_port __rcu	*garp_port;
2157 #endif
2158 #if IS_ENABLED(CONFIG_MRP)
2159 	struct mrp_port __rcu	*mrp_port;
2160 #endif
2161 
2162 	struct device		dev;
2163 	const struct attribute_group *sysfs_groups[4];
2164 	const struct attribute_group *sysfs_rx_queue_group;
2165 
2166 	const struct rtnl_link_ops *rtnl_link_ops;
2167 
2168 	/* for setting kernel sock attribute on TCP connection setup */
2169 #define GSO_MAX_SIZE		65536
2170 	unsigned int		gso_max_size;
2171 #define GSO_MAX_SEGS		65535
2172 	u16			gso_max_segs;
2173 
2174 #ifdef CONFIG_DCB
2175 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2176 #endif
2177 	s16			num_tc;
2178 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2179 	u8			prio_tc_map[TC_BITMASK + 1];
2180 
2181 #if IS_ENABLED(CONFIG_FCOE)
2182 	unsigned int		fcoe_ddp_xid;
2183 #endif
2184 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2185 	struct netprio_map __rcu *priomap;
2186 #endif
2187 	struct phy_device	*phydev;
2188 	struct sfp_bus		*sfp_bus;
2189 	struct lock_class_key	*qdisc_tx_busylock;
2190 	struct lock_class_key	*qdisc_running_key;
2191 	bool			proto_down;
2192 	unsigned		wol_enabled:1;
2193 
2194 	struct list_head	net_notifier_list;
2195 
2196 #if IS_ENABLED(CONFIG_MACSEC)
2197 	/* MACsec management functions */
2198 	const struct macsec_ops *macsec_ops;
2199 #endif
2200 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2201 	struct udp_tunnel_nic	*udp_tunnel_nic;
2202 
2203 	/* protected by rtnl_lock */
2204 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2205 };
2206 #define to_net_dev(d) container_of(d, struct net_device, dev)
2207 
netif_elide_gro(const struct net_device * dev)2208 static inline bool netif_elide_gro(const struct net_device *dev)
2209 {
2210 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2211 		return true;
2212 	return false;
2213 }
2214 
2215 #define	NETDEV_ALIGN		32
2216 
2217 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2218 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2219 {
2220 	return dev->prio_tc_map[prio & TC_BITMASK];
2221 }
2222 
2223 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2224 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2225 {
2226 	if (tc >= dev->num_tc)
2227 		return -EINVAL;
2228 
2229 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2230 	return 0;
2231 }
2232 
2233 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2234 void netdev_reset_tc(struct net_device *dev);
2235 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2236 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2237 
2238 static inline
netdev_get_num_tc(struct net_device * dev)2239 int netdev_get_num_tc(struct net_device *dev)
2240 {
2241 	return dev->num_tc;
2242 }
2243 
net_prefetch(void * p)2244 static inline void net_prefetch(void *p)
2245 {
2246 	prefetch(p);
2247 #if L1_CACHE_BYTES < 128
2248 	prefetch((u8 *)p + L1_CACHE_BYTES);
2249 #endif
2250 }
2251 
net_prefetchw(void * p)2252 static inline void net_prefetchw(void *p)
2253 {
2254 	prefetchw(p);
2255 #if L1_CACHE_BYTES < 128
2256 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2257 #endif
2258 }
2259 
2260 void netdev_unbind_sb_channel(struct net_device *dev,
2261 			      struct net_device *sb_dev);
2262 int netdev_bind_sb_channel_queue(struct net_device *dev,
2263 				 struct net_device *sb_dev,
2264 				 u8 tc, u16 count, u16 offset);
2265 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2266 static inline int netdev_get_sb_channel(struct net_device *dev)
2267 {
2268 	return max_t(int, -dev->num_tc, 0);
2269 }
2270 
2271 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2272 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2273 					 unsigned int index)
2274 {
2275 	return &dev->_tx[index];
2276 }
2277 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2278 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2279 						    const struct sk_buff *skb)
2280 {
2281 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2282 }
2283 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2284 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2285 					    void (*f)(struct net_device *,
2286 						      struct netdev_queue *,
2287 						      void *),
2288 					    void *arg)
2289 {
2290 	unsigned int i;
2291 
2292 	for (i = 0; i < dev->num_tx_queues; i++)
2293 		f(dev, &dev->_tx[i], arg);
2294 }
2295 
2296 #define netdev_lockdep_set_classes(dev)				\
2297 {								\
2298 	static struct lock_class_key qdisc_tx_busylock_key;	\
2299 	static struct lock_class_key qdisc_running_key;		\
2300 	static struct lock_class_key qdisc_xmit_lock_key;	\
2301 	static struct lock_class_key dev_addr_list_lock_key;	\
2302 	unsigned int i;						\
2303 								\
2304 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2305 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2306 	lockdep_set_class(&(dev)->addr_list_lock,		\
2307 			  &dev_addr_list_lock_key);		\
2308 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2309 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2310 				  &qdisc_xmit_lock_key);	\
2311 }
2312 
2313 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2314 		     struct net_device *sb_dev);
2315 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2316 					 struct sk_buff *skb,
2317 					 struct net_device *sb_dev);
2318 
2319 /* returns the headroom that the master device needs to take in account
2320  * when forwarding to this dev
2321  */
netdev_get_fwd_headroom(struct net_device * dev)2322 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2323 {
2324 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2325 }
2326 
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2327 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2328 {
2329 	if (dev->netdev_ops->ndo_set_rx_headroom)
2330 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2331 }
2332 
2333 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2334 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2335 {
2336 	netdev_set_rx_headroom(dev, -1);
2337 }
2338 
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2339 static inline void *netdev_get_ml_priv(struct net_device *dev,
2340 				       enum netdev_ml_priv_type type)
2341 {
2342 	if (dev->ml_priv_type != type)
2343 		return NULL;
2344 
2345 	return dev->ml_priv;
2346 }
2347 
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2348 static inline void netdev_set_ml_priv(struct net_device *dev,
2349 				      void *ml_priv,
2350 				      enum netdev_ml_priv_type type)
2351 {
2352 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2353 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2354 	     dev->ml_priv_type, type);
2355 	WARN(!dev->ml_priv_type && dev->ml_priv,
2356 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2357 
2358 	dev->ml_priv = ml_priv;
2359 	dev->ml_priv_type = type;
2360 }
2361 
2362 /*
2363  * Net namespace inlines
2364  */
2365 static inline
dev_net(const struct net_device * dev)2366 struct net *dev_net(const struct net_device *dev)
2367 {
2368 	return read_pnet(&dev->nd_net);
2369 }
2370 
2371 static inline
dev_net_set(struct net_device * dev,struct net * net)2372 void dev_net_set(struct net_device *dev, struct net *net)
2373 {
2374 	write_pnet(&dev->nd_net, net);
2375 }
2376 
2377 /**
2378  *	netdev_priv - access network device private data
2379  *	@dev: network device
2380  *
2381  * Get network device private data
2382  */
netdev_priv(const struct net_device * dev)2383 static inline void *netdev_priv(const struct net_device *dev)
2384 {
2385 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2386 }
2387 
2388 /* Set the sysfs physical device reference for the network logical device
2389  * if set prior to registration will cause a symlink during initialization.
2390  */
2391 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2392 
2393 /* Set the sysfs device type for the network logical device to allow
2394  * fine-grained identification of different network device types. For
2395  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2396  */
2397 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2398 
2399 /* Default NAPI poll() weight
2400  * Device drivers are strongly advised to not use bigger value
2401  */
2402 #define NAPI_POLL_WEIGHT 64
2403 
2404 /**
2405  *	netif_napi_add - initialize a NAPI context
2406  *	@dev:  network device
2407  *	@napi: NAPI context
2408  *	@poll: polling function
2409  *	@weight: default weight
2410  *
2411  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2412  * *any* of the other NAPI-related functions.
2413  */
2414 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2415 		    int (*poll)(struct napi_struct *, int), int weight);
2416 
2417 /**
2418  *	netif_tx_napi_add - initialize a NAPI context
2419  *	@dev:  network device
2420  *	@napi: NAPI context
2421  *	@poll: polling function
2422  *	@weight: default weight
2423  *
2424  * This variant of netif_napi_add() should be used from drivers using NAPI
2425  * to exclusively poll a TX queue.
2426  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2427  */
netif_tx_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2428 static inline void netif_tx_napi_add(struct net_device *dev,
2429 				     struct napi_struct *napi,
2430 				     int (*poll)(struct napi_struct *, int),
2431 				     int weight)
2432 {
2433 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2434 	netif_napi_add(dev, napi, poll, weight);
2435 }
2436 
2437 /**
2438  *  __netif_napi_del - remove a NAPI context
2439  *  @napi: NAPI context
2440  *
2441  * Warning: caller must observe RCU grace period before freeing memory
2442  * containing @napi. Drivers might want to call this helper to combine
2443  * all the needed RCU grace periods into a single one.
2444  */
2445 void __netif_napi_del(struct napi_struct *napi);
2446 
2447 /**
2448  *  netif_napi_del - remove a NAPI context
2449  *  @napi: NAPI context
2450  *
2451  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2452  */
netif_napi_del(struct napi_struct * napi)2453 static inline void netif_napi_del(struct napi_struct *napi)
2454 {
2455 	__netif_napi_del(napi);
2456 	synchronize_net();
2457 }
2458 
2459 struct napi_gro_cb {
2460 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2461 	void	*frag0;
2462 
2463 	/* Length of frag0. */
2464 	unsigned int frag0_len;
2465 
2466 	/* This indicates where we are processing relative to skb->data. */
2467 	int	data_offset;
2468 
2469 	/* This is non-zero if the packet cannot be merged with the new skb. */
2470 	u16	flush;
2471 
2472 	/* Save the IP ID here and check when we get to the transport layer */
2473 	u16	flush_id;
2474 
2475 	/* Number of segments aggregated. */
2476 	u16	count;
2477 
2478 	/* Start offset for remote checksum offload */
2479 	u16	gro_remcsum_start;
2480 
2481 	/* jiffies when first packet was created/queued */
2482 	unsigned long age;
2483 
2484 	/* Used in ipv6_gro_receive() and foo-over-udp */
2485 	u16	proto;
2486 
2487 	/* This is non-zero if the packet may be of the same flow. */
2488 	u8	same_flow:1;
2489 
2490 	/* Used in tunnel GRO receive */
2491 	u8	encap_mark:1;
2492 
2493 	/* GRO checksum is valid */
2494 	u8	csum_valid:1;
2495 
2496 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2497 	u8	csum_cnt:3;
2498 
2499 	/* Free the skb? */
2500 	u8	free:2;
2501 #define NAPI_GRO_FREE		  1
2502 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2503 
2504 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2505 	u8	is_ipv6:1;
2506 
2507 	/* Used in GRE, set in fou/gue_gro_receive */
2508 	u8	is_fou:1;
2509 
2510 	/* Used to determine if flush_id can be ignored */
2511 	u8	is_atomic:1;
2512 
2513 	/* Number of gro_receive callbacks this packet already went through */
2514 	u8 recursion_counter:4;
2515 
2516 	/* GRO is done by frag_list pointer chaining. */
2517 	u8	is_flist:1;
2518 
2519 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2520 	__wsum	csum;
2521 
2522 	/* used in skb_gro_receive() slow path */
2523 	struct sk_buff *last;
2524 };
2525 
2526 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2527 
2528 #define GRO_RECURSION_LIMIT 15
gro_recursion_inc_test(struct sk_buff * skb)2529 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2530 {
2531 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2532 }
2533 
2534 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
call_gro_receive(gro_receive_t cb,struct list_head * head,struct sk_buff * skb)2535 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2536 					       struct list_head *head,
2537 					       struct sk_buff *skb)
2538 {
2539 	if (unlikely(gro_recursion_inc_test(skb))) {
2540 		NAPI_GRO_CB(skb)->flush |= 1;
2541 		return NULL;
2542 	}
2543 
2544 	return cb(head, skb);
2545 }
2546 
2547 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2548 					    struct sk_buff *);
call_gro_receive_sk(gro_receive_sk_t cb,struct sock * sk,struct list_head * head,struct sk_buff * skb)2549 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2550 						  struct sock *sk,
2551 						  struct list_head *head,
2552 						  struct sk_buff *skb)
2553 {
2554 	if (unlikely(gro_recursion_inc_test(skb))) {
2555 		NAPI_GRO_CB(skb)->flush |= 1;
2556 		return NULL;
2557 	}
2558 
2559 	return cb(sk, head, skb);
2560 }
2561 
2562 struct packet_type {
2563 	__be16			type;	/* This is really htons(ether_type). */
2564 	bool			ignore_outgoing;
2565 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2566 	int			(*func) (struct sk_buff *,
2567 					 struct net_device *,
2568 					 struct packet_type *,
2569 					 struct net_device *);
2570 	void			(*list_func) (struct list_head *,
2571 					      struct packet_type *,
2572 					      struct net_device *);
2573 	bool			(*id_match)(struct packet_type *ptype,
2574 					    struct sock *sk);
2575 	struct net		*af_packet_net;
2576 	void			*af_packet_priv;
2577 	struct list_head	list;
2578 };
2579 
2580 struct offload_callbacks {
2581 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2582 						netdev_features_t features);
2583 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2584 						struct sk_buff *skb);
2585 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2586 };
2587 
2588 struct packet_offload {
2589 	__be16			 type;	/* This is really htons(ether_type). */
2590 	u16			 priority;
2591 	struct offload_callbacks callbacks;
2592 	struct list_head	 list;
2593 };
2594 
2595 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2596 struct pcpu_sw_netstats {
2597 	u64     rx_packets;
2598 	u64     rx_bytes;
2599 	u64     tx_packets;
2600 	u64     tx_bytes;
2601 	struct u64_stats_sync   syncp;
2602 } __aligned(4 * sizeof(u64));
2603 
2604 struct pcpu_lstats {
2605 	u64_stats_t packets;
2606 	u64_stats_t bytes;
2607 	struct u64_stats_sync syncp;
2608 } __aligned(2 * sizeof(u64));
2609 
2610 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2611 
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2612 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2613 {
2614 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2615 
2616 	u64_stats_update_begin(&tstats->syncp);
2617 	tstats->rx_bytes += len;
2618 	tstats->rx_packets++;
2619 	u64_stats_update_end(&tstats->syncp);
2620 }
2621 
dev_lstats_add(struct net_device * dev,unsigned int len)2622 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2623 {
2624 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2625 
2626 	u64_stats_update_begin(&lstats->syncp);
2627 	u64_stats_add(&lstats->bytes, len);
2628 	u64_stats_inc(&lstats->packets);
2629 	u64_stats_update_end(&lstats->syncp);
2630 }
2631 
2632 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2633 ({									\
2634 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2635 	if (pcpu_stats)	{						\
2636 		int __cpu;						\
2637 		for_each_possible_cpu(__cpu) {				\
2638 			typeof(type) *stat;				\
2639 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2640 			u64_stats_init(&stat->syncp);			\
2641 		}							\
2642 	}								\
2643 	pcpu_stats;							\
2644 })
2645 
2646 #define netdev_alloc_pcpu_stats(type)					\
2647 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2648 
2649 enum netdev_lag_tx_type {
2650 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2651 	NETDEV_LAG_TX_TYPE_RANDOM,
2652 	NETDEV_LAG_TX_TYPE_BROADCAST,
2653 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2654 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2655 	NETDEV_LAG_TX_TYPE_HASH,
2656 };
2657 
2658 enum netdev_lag_hash {
2659 	NETDEV_LAG_HASH_NONE,
2660 	NETDEV_LAG_HASH_L2,
2661 	NETDEV_LAG_HASH_L34,
2662 	NETDEV_LAG_HASH_L23,
2663 	NETDEV_LAG_HASH_E23,
2664 	NETDEV_LAG_HASH_E34,
2665 	NETDEV_LAG_HASH_UNKNOWN,
2666 };
2667 
2668 struct netdev_lag_upper_info {
2669 	enum netdev_lag_tx_type tx_type;
2670 	enum netdev_lag_hash hash_type;
2671 };
2672 
2673 struct netdev_lag_lower_state_info {
2674 	u8 link_up : 1,
2675 	   tx_enabled : 1;
2676 };
2677 
2678 #include <linux/notifier.h>
2679 
2680 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2681  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2682  * adding new types.
2683  */
2684 enum netdev_cmd {
2685 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2686 	NETDEV_DOWN,
2687 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2688 				   detected a hardware crash and restarted
2689 				   - we can use this eg to kick tcp sessions
2690 				   once done */
2691 	NETDEV_CHANGE,		/* Notify device state change */
2692 	NETDEV_REGISTER,
2693 	NETDEV_UNREGISTER,
2694 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2695 	NETDEV_CHANGEADDR,	/* notify after the address change */
2696 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2697 	NETDEV_GOING_DOWN,
2698 	NETDEV_CHANGENAME,
2699 	NETDEV_FEAT_CHANGE,
2700 	NETDEV_BONDING_FAILOVER,
2701 	NETDEV_PRE_UP,
2702 	NETDEV_PRE_TYPE_CHANGE,
2703 	NETDEV_POST_TYPE_CHANGE,
2704 	NETDEV_POST_INIT,
2705 	NETDEV_RELEASE,
2706 	NETDEV_NOTIFY_PEERS,
2707 	NETDEV_JOIN,
2708 	NETDEV_CHANGEUPPER,
2709 	NETDEV_RESEND_IGMP,
2710 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2711 	NETDEV_CHANGEINFODATA,
2712 	NETDEV_BONDING_INFO,
2713 	NETDEV_PRECHANGEUPPER,
2714 	NETDEV_CHANGELOWERSTATE,
2715 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2716 	NETDEV_UDP_TUNNEL_DROP_INFO,
2717 	NETDEV_CHANGE_TX_QUEUE_LEN,
2718 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2719 	NETDEV_CVLAN_FILTER_DROP_INFO,
2720 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2721 	NETDEV_SVLAN_FILTER_DROP_INFO,
2722 };
2723 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2724 
2725 int register_netdevice_notifier(struct notifier_block *nb);
2726 int unregister_netdevice_notifier(struct notifier_block *nb);
2727 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2728 int unregister_netdevice_notifier_net(struct net *net,
2729 				      struct notifier_block *nb);
2730 int register_netdevice_notifier_dev_net(struct net_device *dev,
2731 					struct notifier_block *nb,
2732 					struct netdev_net_notifier *nn);
2733 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2734 					  struct notifier_block *nb,
2735 					  struct netdev_net_notifier *nn);
2736 
2737 struct netdev_notifier_info {
2738 	struct net_device	*dev;
2739 	struct netlink_ext_ack	*extack;
2740 };
2741 
2742 struct netdev_notifier_info_ext {
2743 	struct netdev_notifier_info info; /* must be first */
2744 	union {
2745 		u32 mtu;
2746 	} ext;
2747 };
2748 
2749 struct netdev_notifier_change_info {
2750 	struct netdev_notifier_info info; /* must be first */
2751 	unsigned int flags_changed;
2752 };
2753 
2754 struct netdev_notifier_changeupper_info {
2755 	struct netdev_notifier_info info; /* must be first */
2756 	struct net_device *upper_dev; /* new upper dev */
2757 	bool master; /* is upper dev master */
2758 	bool linking; /* is the notification for link or unlink */
2759 	void *upper_info; /* upper dev info */
2760 };
2761 
2762 struct netdev_notifier_changelowerstate_info {
2763 	struct netdev_notifier_info info; /* must be first */
2764 	void *lower_state_info; /* is lower dev state */
2765 };
2766 
2767 struct netdev_notifier_pre_changeaddr_info {
2768 	struct netdev_notifier_info info; /* must be first */
2769 	const unsigned char *dev_addr;
2770 };
2771 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2772 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2773 					     struct net_device *dev)
2774 {
2775 	info->dev = dev;
2776 	info->extack = NULL;
2777 }
2778 
2779 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2780 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2781 {
2782 	return info->dev;
2783 }
2784 
2785 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2786 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2787 {
2788 	return info->extack;
2789 }
2790 
2791 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2792 
2793 
2794 extern rwlock_t				dev_base_lock;		/* Device list lock */
2795 
2796 #define for_each_netdev(net, d)		\
2797 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2798 #define for_each_netdev_reverse(net, d)	\
2799 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2800 #define for_each_netdev_rcu(net, d)		\
2801 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2802 #define for_each_netdev_safe(net, d, n)	\
2803 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2804 #define for_each_netdev_continue(net, d)		\
2805 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2806 #define for_each_netdev_continue_reverse(net, d)		\
2807 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2808 						     dev_list)
2809 #define for_each_netdev_continue_rcu(net, d)		\
2810 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2811 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2812 		for_each_netdev_rcu(&init_net, slave)	\
2813 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2814 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2815 
next_net_device(struct net_device * dev)2816 static inline struct net_device *next_net_device(struct net_device *dev)
2817 {
2818 	struct list_head *lh;
2819 	struct net *net;
2820 
2821 	net = dev_net(dev);
2822 	lh = dev->dev_list.next;
2823 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2824 }
2825 
next_net_device_rcu(struct net_device * dev)2826 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2827 {
2828 	struct list_head *lh;
2829 	struct net *net;
2830 
2831 	net = dev_net(dev);
2832 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2833 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2834 }
2835 
first_net_device(struct net * net)2836 static inline struct net_device *first_net_device(struct net *net)
2837 {
2838 	return list_empty(&net->dev_base_head) ? NULL :
2839 		net_device_entry(net->dev_base_head.next);
2840 }
2841 
first_net_device_rcu(struct net * net)2842 static inline struct net_device *first_net_device_rcu(struct net *net)
2843 {
2844 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2845 
2846 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2847 }
2848 
2849 int netdev_boot_setup_check(struct net_device *dev);
2850 unsigned long netdev_boot_base(const char *prefix, int unit);
2851 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2852 				       const char *hwaddr);
2853 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2854 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2855 void dev_add_pack(struct packet_type *pt);
2856 void dev_remove_pack(struct packet_type *pt);
2857 void __dev_remove_pack(struct packet_type *pt);
2858 void dev_add_offload(struct packet_offload *po);
2859 void dev_remove_offload(struct packet_offload *po);
2860 
2861 int dev_get_iflink(const struct net_device *dev);
2862 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2863 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2864 				      unsigned short mask);
2865 struct net_device *dev_get_by_name(struct net *net, const char *name);
2866 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2867 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2868 int dev_alloc_name(struct net_device *dev, const char *name);
2869 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2870 void dev_close(struct net_device *dev);
2871 void dev_close_many(struct list_head *head, bool unlink);
2872 void dev_disable_lro(struct net_device *dev);
2873 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2874 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2875 		     struct net_device *sb_dev);
2876 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2877 		       struct net_device *sb_dev);
2878 
2879 int dev_queue_xmit(struct sk_buff *skb);
2880 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2881 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2882 
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)2883 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2884 {
2885 	int ret;
2886 
2887 	ret = __dev_direct_xmit(skb, queue_id);
2888 	if (!dev_xmit_complete(ret))
2889 		kfree_skb(skb);
2890 	return ret;
2891 }
2892 
2893 int register_netdevice(struct net_device *dev);
2894 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2895 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2896 static inline void unregister_netdevice(struct net_device *dev)
2897 {
2898 	unregister_netdevice_queue(dev, NULL);
2899 }
2900 
2901 int netdev_refcnt_read(const struct net_device *dev);
2902 void free_netdev(struct net_device *dev);
2903 void netdev_freemem(struct net_device *dev);
2904 int init_dummy_netdev(struct net_device *dev);
2905 
2906 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2907 					 struct sk_buff *skb,
2908 					 bool all_slaves);
2909 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2910 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2911 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2912 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2913 int netdev_get_name(struct net *net, char *name, int ifindex);
2914 int dev_restart(struct net_device *dev);
2915 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2916 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2917 
skb_gro_offset(const struct sk_buff * skb)2918 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2919 {
2920 	return NAPI_GRO_CB(skb)->data_offset;
2921 }
2922 
skb_gro_len(const struct sk_buff * skb)2923 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2924 {
2925 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2926 }
2927 
skb_gro_pull(struct sk_buff * skb,unsigned int len)2928 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2929 {
2930 	NAPI_GRO_CB(skb)->data_offset += len;
2931 }
2932 
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2933 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2934 					unsigned int offset)
2935 {
2936 	return NAPI_GRO_CB(skb)->frag0 + offset;
2937 }
2938 
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2939 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2940 {
2941 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2942 }
2943 
skb_gro_frag0_invalidate(struct sk_buff * skb)2944 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2945 {
2946 	NAPI_GRO_CB(skb)->frag0 = NULL;
2947 	NAPI_GRO_CB(skb)->frag0_len = 0;
2948 }
2949 
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2950 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2951 					unsigned int offset)
2952 {
2953 	if (!pskb_may_pull(skb, hlen))
2954 		return NULL;
2955 
2956 	skb_gro_frag0_invalidate(skb);
2957 	return skb->data + offset;
2958 }
2959 
skb_gro_network_header(struct sk_buff * skb)2960 static inline void *skb_gro_network_header(struct sk_buff *skb)
2961 {
2962 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2963 	       skb_network_offset(skb);
2964 }
2965 
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2966 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2967 					const void *start, unsigned int len)
2968 {
2969 	if (NAPI_GRO_CB(skb)->csum_valid)
2970 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2971 						  csum_partial(start, len, 0));
2972 }
2973 
2974 /* GRO checksum functions. These are logical equivalents of the normal
2975  * checksum functions (in skbuff.h) except that they operate on the GRO
2976  * offsets and fields in sk_buff.
2977  */
2978 
2979 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2980 
skb_at_gro_remcsum_start(struct sk_buff * skb)2981 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2982 {
2983 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2984 }
2985 
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2986 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2987 						      bool zero_okay,
2988 						      __sum16 check)
2989 {
2990 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2991 		skb_checksum_start_offset(skb) <
2992 		 skb_gro_offset(skb)) &&
2993 		!skb_at_gro_remcsum_start(skb) &&
2994 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2995 		(!zero_okay || check));
2996 }
2997 
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)2998 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2999 							   __wsum psum)
3000 {
3001 	if (NAPI_GRO_CB(skb)->csum_valid &&
3002 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
3003 		return 0;
3004 
3005 	NAPI_GRO_CB(skb)->csum = psum;
3006 
3007 	return __skb_gro_checksum_complete(skb);
3008 }
3009 
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)3010 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
3011 {
3012 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
3013 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
3014 		NAPI_GRO_CB(skb)->csum_cnt--;
3015 	} else {
3016 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
3017 		 * verified a new top level checksum or an encapsulated one
3018 		 * during GRO. This saves work if we fallback to normal path.
3019 		 */
3020 		__skb_incr_checksum_unnecessary(skb);
3021 	}
3022 }
3023 
3024 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
3025 				    compute_pseudo)			\
3026 ({									\
3027 	__sum16 __ret = 0;						\
3028 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
3029 		__ret = __skb_gro_checksum_validate_complete(skb,	\
3030 				compute_pseudo(skb, proto));		\
3031 	if (!__ret)							\
3032 		skb_gro_incr_csum_unnecessary(skb);			\
3033 	__ret;								\
3034 })
3035 
3036 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
3037 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3038 
3039 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
3040 					     compute_pseudo)		\
3041 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3042 
3043 #define skb_gro_checksum_simple_validate(skb)				\
3044 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3045 
__skb_gro_checksum_convert_check(struct sk_buff * skb)3046 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3047 {
3048 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3049 		!NAPI_GRO_CB(skb)->csum_valid);
3050 }
3051 
__skb_gro_checksum_convert(struct sk_buff * skb,__wsum pseudo)3052 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3053 					      __wsum pseudo)
3054 {
3055 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3056 	NAPI_GRO_CB(skb)->csum_valid = 1;
3057 }
3058 
3059 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3060 do {									\
3061 	if (__skb_gro_checksum_convert_check(skb))			\
3062 		__skb_gro_checksum_convert(skb, 			\
3063 					   compute_pseudo(skb, proto));	\
3064 } while (0)
3065 
3066 struct gro_remcsum {
3067 	int offset;
3068 	__wsum delta;
3069 };
3070 
skb_gro_remcsum_init(struct gro_remcsum * grc)3071 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3072 {
3073 	grc->offset = 0;
3074 	grc->delta = 0;
3075 }
3076 
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,unsigned int off,size_t hdrlen,int start,int offset,struct gro_remcsum * grc,bool nopartial)3077 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3078 					    unsigned int off, size_t hdrlen,
3079 					    int start, int offset,
3080 					    struct gro_remcsum *grc,
3081 					    bool nopartial)
3082 {
3083 	__wsum delta;
3084 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3085 
3086 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3087 
3088 	if (!nopartial) {
3089 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3090 		return ptr;
3091 	}
3092 
3093 	ptr = skb_gro_header_fast(skb, off);
3094 	if (skb_gro_header_hard(skb, off + plen)) {
3095 		ptr = skb_gro_header_slow(skb, off + plen, off);
3096 		if (!ptr)
3097 			return NULL;
3098 	}
3099 
3100 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3101 			       start, offset);
3102 
3103 	/* Adjust skb->csum since we changed the packet */
3104 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3105 
3106 	grc->offset = off + hdrlen + offset;
3107 	grc->delta = delta;
3108 
3109 	return ptr;
3110 }
3111 
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)3112 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3113 					   struct gro_remcsum *grc)
3114 {
3115 	void *ptr;
3116 	size_t plen = grc->offset + sizeof(u16);
3117 
3118 	if (!grc->delta)
3119 		return;
3120 
3121 	ptr = skb_gro_header_fast(skb, grc->offset);
3122 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3123 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3124 		if (!ptr)
3125 			return;
3126 	}
3127 
3128 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3129 }
3130 
3131 #ifdef CONFIG_XFRM_OFFLOAD
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)3132 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3133 {
3134 	if (PTR_ERR(pp) != -EINPROGRESS)
3135 		NAPI_GRO_CB(skb)->flush |= flush;
3136 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)3137 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3138 					       struct sk_buff *pp,
3139 					       int flush,
3140 					       struct gro_remcsum *grc)
3141 {
3142 	if (PTR_ERR(pp) != -EINPROGRESS) {
3143 		NAPI_GRO_CB(skb)->flush |= flush;
3144 		skb_gro_remcsum_cleanup(skb, grc);
3145 		skb->remcsum_offload = 0;
3146 	}
3147 }
3148 #else
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)3149 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3150 {
3151 	NAPI_GRO_CB(skb)->flush |= flush;
3152 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)3153 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3154 					       struct sk_buff *pp,
3155 					       int flush,
3156 					       struct gro_remcsum *grc)
3157 {
3158 	NAPI_GRO_CB(skb)->flush |= flush;
3159 	skb_gro_remcsum_cleanup(skb, grc);
3160 	skb->remcsum_offload = 0;
3161 }
3162 #endif
3163 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3164 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3165 				  unsigned short type,
3166 				  const void *daddr, const void *saddr,
3167 				  unsigned int len)
3168 {
3169 	if (!dev->header_ops || !dev->header_ops->create)
3170 		return 0;
3171 
3172 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3173 }
3174 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3175 static inline int dev_parse_header(const struct sk_buff *skb,
3176 				   unsigned char *haddr)
3177 {
3178 	const struct net_device *dev = skb->dev;
3179 
3180 	if (!dev->header_ops || !dev->header_ops->parse)
3181 		return 0;
3182 	return dev->header_ops->parse(skb, haddr);
3183 }
3184 
dev_parse_header_protocol(const struct sk_buff * skb)3185 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3186 {
3187 	const struct net_device *dev = skb->dev;
3188 
3189 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3190 		return 0;
3191 	return dev->header_ops->parse_protocol(skb);
3192 }
3193 
3194 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3195 static inline bool dev_validate_header(const struct net_device *dev,
3196 				       char *ll_header, int len)
3197 {
3198 	if (likely(len >= dev->hard_header_len))
3199 		return true;
3200 	if (len < dev->min_header_len)
3201 		return false;
3202 
3203 	if (capable(CAP_SYS_RAWIO)) {
3204 		memset(ll_header + len, 0, dev->hard_header_len - len);
3205 		return true;
3206 	}
3207 
3208 	if (dev->header_ops && dev->header_ops->validate)
3209 		return dev->header_ops->validate(ll_header, len);
3210 
3211 	return false;
3212 }
3213 
dev_has_header(const struct net_device * dev)3214 static inline bool dev_has_header(const struct net_device *dev)
3215 {
3216 	return dev->header_ops && dev->header_ops->create;
3217 }
3218 
3219 #ifdef CONFIG_NET_FLOW_LIMIT
3220 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3221 struct sd_flow_limit {
3222 	u64			count;
3223 	unsigned int		num_buckets;
3224 	unsigned int		history_head;
3225 	u16			history[FLOW_LIMIT_HISTORY];
3226 	u8			buckets[];
3227 };
3228 
3229 extern int netdev_flow_limit_table_len;
3230 #endif /* CONFIG_NET_FLOW_LIMIT */
3231 
3232 /*
3233  * Incoming packets are placed on per-CPU queues
3234  */
3235 struct softnet_data {
3236 	struct list_head	poll_list;
3237 	struct sk_buff_head	process_queue;
3238 
3239 	/* stats */
3240 	unsigned int		processed;
3241 	unsigned int		time_squeeze;
3242 	unsigned int		received_rps;
3243 #ifdef CONFIG_RPS
3244 	struct softnet_data	*rps_ipi_list;
3245 #endif
3246 #ifdef CONFIG_NET_FLOW_LIMIT
3247 	struct sd_flow_limit __rcu *flow_limit;
3248 #endif
3249 	struct Qdisc		*output_queue;
3250 	struct Qdisc		**output_queue_tailp;
3251 	struct sk_buff		*completion_queue;
3252 #ifdef CONFIG_XFRM_OFFLOAD
3253 	struct sk_buff_head	xfrm_backlog;
3254 #endif
3255 	/* written and read only by owning cpu: */
3256 	struct {
3257 		u16 recursion;
3258 		u8  more;
3259 	} xmit;
3260 #ifdef CONFIG_RPS
3261 	/* input_queue_head should be written by cpu owning this struct,
3262 	 * and only read by other cpus. Worth using a cache line.
3263 	 */
3264 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3265 
3266 	/* Elements below can be accessed between CPUs for RPS/RFS */
3267 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3268 	struct softnet_data	*rps_ipi_next;
3269 	unsigned int		cpu;
3270 	unsigned int		input_queue_tail;
3271 #endif
3272 	unsigned int		dropped;
3273 	struct sk_buff_head	input_pkt_queue;
3274 	struct napi_struct	backlog;
3275 
3276 };
3277 
input_queue_head_incr(struct softnet_data * sd)3278 static inline void input_queue_head_incr(struct softnet_data *sd)
3279 {
3280 #ifdef CONFIG_RPS
3281 	sd->input_queue_head++;
3282 #endif
3283 }
3284 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3285 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3286 					      unsigned int *qtail)
3287 {
3288 #ifdef CONFIG_RPS
3289 	*qtail = ++sd->input_queue_tail;
3290 #endif
3291 }
3292 
3293 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3294 
dev_recursion_level(void)3295 static inline int dev_recursion_level(void)
3296 {
3297 	return this_cpu_read(softnet_data.xmit.recursion);
3298 }
3299 
3300 #define XMIT_RECURSION_LIMIT	8
dev_xmit_recursion(void)3301 static inline bool dev_xmit_recursion(void)
3302 {
3303 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3304 			XMIT_RECURSION_LIMIT);
3305 }
3306 
dev_xmit_recursion_inc(void)3307 static inline void dev_xmit_recursion_inc(void)
3308 {
3309 	__this_cpu_inc(softnet_data.xmit.recursion);
3310 }
3311 
dev_xmit_recursion_dec(void)3312 static inline void dev_xmit_recursion_dec(void)
3313 {
3314 	__this_cpu_dec(softnet_data.xmit.recursion);
3315 }
3316 
3317 void __netif_schedule(struct Qdisc *q);
3318 void netif_schedule_queue(struct netdev_queue *txq);
3319 
netif_tx_schedule_all(struct net_device * dev)3320 static inline void netif_tx_schedule_all(struct net_device *dev)
3321 {
3322 	unsigned int i;
3323 
3324 	for (i = 0; i < dev->num_tx_queues; i++)
3325 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3326 }
3327 
netif_tx_start_queue(struct netdev_queue * dev_queue)3328 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3329 {
3330 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3331 }
3332 
3333 /**
3334  *	netif_start_queue - allow transmit
3335  *	@dev: network device
3336  *
3337  *	Allow upper layers to call the device hard_start_xmit routine.
3338  */
netif_start_queue(struct net_device * dev)3339 static inline void netif_start_queue(struct net_device *dev)
3340 {
3341 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3342 }
3343 
netif_tx_start_all_queues(struct net_device * dev)3344 static inline void netif_tx_start_all_queues(struct net_device *dev)
3345 {
3346 	unsigned int i;
3347 
3348 	for (i = 0; i < dev->num_tx_queues; i++) {
3349 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3350 		netif_tx_start_queue(txq);
3351 	}
3352 }
3353 
3354 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3355 
3356 /**
3357  *	netif_wake_queue - restart transmit
3358  *	@dev: network device
3359  *
3360  *	Allow upper layers to call the device hard_start_xmit routine.
3361  *	Used for flow control when transmit resources are available.
3362  */
netif_wake_queue(struct net_device * dev)3363 static inline void netif_wake_queue(struct net_device *dev)
3364 {
3365 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3366 }
3367 
netif_tx_wake_all_queues(struct net_device * dev)3368 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3369 {
3370 	unsigned int i;
3371 
3372 	for (i = 0; i < dev->num_tx_queues; i++) {
3373 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3374 		netif_tx_wake_queue(txq);
3375 	}
3376 }
3377 
netif_tx_stop_queue(struct netdev_queue * dev_queue)3378 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3379 {
3380 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3381 }
3382 
3383 /**
3384  *	netif_stop_queue - stop transmitted packets
3385  *	@dev: network device
3386  *
3387  *	Stop upper layers calling the device hard_start_xmit routine.
3388  *	Used for flow control when transmit resources are unavailable.
3389  */
netif_stop_queue(struct net_device * dev)3390 static inline void netif_stop_queue(struct net_device *dev)
3391 {
3392 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3393 }
3394 
3395 void netif_tx_stop_all_queues(struct net_device *dev);
3396 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3397 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3398 {
3399 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3400 }
3401 
3402 /**
3403  *	netif_queue_stopped - test if transmit queue is flowblocked
3404  *	@dev: network device
3405  *
3406  *	Test if transmit queue on device is currently unable to send.
3407  */
netif_queue_stopped(const struct net_device * dev)3408 static inline bool netif_queue_stopped(const struct net_device *dev)
3409 {
3410 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3411 }
3412 
netif_xmit_stopped(const struct netdev_queue * dev_queue)3413 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3414 {
3415 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3416 }
3417 
3418 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3419 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3420 {
3421 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3422 }
3423 
3424 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3425 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3426 {
3427 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3428 }
3429 
3430 /**
3431  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3432  *	@dev_queue: pointer to transmit queue
3433  *
3434  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3435  * to give appropriate hint to the CPU.
3436  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3437 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3438 {
3439 #ifdef CONFIG_BQL
3440 	prefetchw(&dev_queue->dql.num_queued);
3441 #endif
3442 }
3443 
3444 /**
3445  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3446  *	@dev_queue: pointer to transmit queue
3447  *
3448  * BQL enabled drivers might use this helper in their TX completion path,
3449  * to give appropriate hint to the CPU.
3450  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3451 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3452 {
3453 #ifdef CONFIG_BQL
3454 	prefetchw(&dev_queue->dql.limit);
3455 #endif
3456 }
3457 
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3458 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3459 					unsigned int bytes)
3460 {
3461 #ifdef CONFIG_BQL
3462 	dql_queued(&dev_queue->dql, bytes);
3463 
3464 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3465 		return;
3466 
3467 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3468 
3469 	/*
3470 	 * The XOFF flag must be set before checking the dql_avail below,
3471 	 * because in netdev_tx_completed_queue we update the dql_completed
3472 	 * before checking the XOFF flag.
3473 	 */
3474 	smp_mb();
3475 
3476 	/* check again in case another CPU has just made room avail */
3477 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3478 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3479 #endif
3480 }
3481 
3482 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3483  * that they should not test BQL status themselves.
3484  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3485  * skb of a batch.
3486  * Returns true if the doorbell must be used to kick the NIC.
3487  */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3488 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3489 					  unsigned int bytes,
3490 					  bool xmit_more)
3491 {
3492 	if (xmit_more) {
3493 #ifdef CONFIG_BQL
3494 		dql_queued(&dev_queue->dql, bytes);
3495 #endif
3496 		return netif_tx_queue_stopped(dev_queue);
3497 	}
3498 	netdev_tx_sent_queue(dev_queue, bytes);
3499 	return true;
3500 }
3501 
3502 /**
3503  * 	netdev_sent_queue - report the number of bytes queued to hardware
3504  * 	@dev: network device
3505  * 	@bytes: number of bytes queued to the hardware device queue
3506  *
3507  * 	Report the number of bytes queued for sending/completion to the network
3508  * 	device hardware queue. @bytes should be a good approximation and should
3509  * 	exactly match netdev_completed_queue() @bytes
3510  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3511 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3512 {
3513 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3514 }
3515 
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3516 static inline bool __netdev_sent_queue(struct net_device *dev,
3517 				       unsigned int bytes,
3518 				       bool xmit_more)
3519 {
3520 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3521 				      xmit_more);
3522 }
3523 
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3524 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3525 					     unsigned int pkts, unsigned int bytes)
3526 {
3527 #ifdef CONFIG_BQL
3528 	if (unlikely(!bytes))
3529 		return;
3530 
3531 	dql_completed(&dev_queue->dql, bytes);
3532 
3533 	/*
3534 	 * Without the memory barrier there is a small possiblity that
3535 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3536 	 * be stopped forever
3537 	 */
3538 	smp_mb();
3539 
3540 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3541 		return;
3542 
3543 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3544 		netif_schedule_queue(dev_queue);
3545 #endif
3546 }
3547 
3548 /**
3549  * 	netdev_completed_queue - report bytes and packets completed by device
3550  * 	@dev: network device
3551  * 	@pkts: actual number of packets sent over the medium
3552  * 	@bytes: actual number of bytes sent over the medium
3553  *
3554  * 	Report the number of bytes and packets transmitted by the network device
3555  * 	hardware queue over the physical medium, @bytes must exactly match the
3556  * 	@bytes amount passed to netdev_sent_queue()
3557  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3558 static inline void netdev_completed_queue(struct net_device *dev,
3559 					  unsigned int pkts, unsigned int bytes)
3560 {
3561 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3562 }
3563 
netdev_tx_reset_queue(struct netdev_queue * q)3564 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3565 {
3566 #ifdef CONFIG_BQL
3567 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3568 	dql_reset(&q->dql);
3569 #endif
3570 }
3571 
3572 /**
3573  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3574  * 	@dev_queue: network device
3575  *
3576  * 	Reset the bytes and packet count of a network device and clear the
3577  * 	software flow control OFF bit for this network device
3578  */
netdev_reset_queue(struct net_device * dev_queue)3579 static inline void netdev_reset_queue(struct net_device *dev_queue)
3580 {
3581 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3582 }
3583 
3584 /**
3585  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3586  * 	@dev: network device
3587  * 	@queue_index: given tx queue index
3588  *
3589  * 	Returns 0 if given tx queue index >= number of device tx queues,
3590  * 	otherwise returns the originally passed tx queue index.
3591  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3592 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3593 {
3594 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3595 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3596 				     dev->name, queue_index,
3597 				     dev->real_num_tx_queues);
3598 		return 0;
3599 	}
3600 
3601 	return queue_index;
3602 }
3603 
3604 /**
3605  *	netif_running - test if up
3606  *	@dev: network device
3607  *
3608  *	Test if the device has been brought up.
3609  */
netif_running(const struct net_device * dev)3610 static inline bool netif_running(const struct net_device *dev)
3611 {
3612 	return test_bit(__LINK_STATE_START, &dev->state);
3613 }
3614 
3615 /*
3616  * Routines to manage the subqueues on a device.  We only need start,
3617  * stop, and a check if it's stopped.  All other device management is
3618  * done at the overall netdevice level.
3619  * Also test the device if we're multiqueue.
3620  */
3621 
3622 /**
3623  *	netif_start_subqueue - allow sending packets on subqueue
3624  *	@dev: network device
3625  *	@queue_index: sub queue index
3626  *
3627  * Start individual transmit queue of a device with multiple transmit queues.
3628  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3629 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3630 {
3631 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3632 
3633 	netif_tx_start_queue(txq);
3634 }
3635 
3636 /**
3637  *	netif_stop_subqueue - stop sending packets on subqueue
3638  *	@dev: network device
3639  *	@queue_index: sub queue index
3640  *
3641  * Stop individual transmit queue of a device with multiple transmit queues.
3642  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3643 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3644 {
3645 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3646 	netif_tx_stop_queue(txq);
3647 }
3648 
3649 /**
3650  *	netif_subqueue_stopped - test status of subqueue
3651  *	@dev: network device
3652  *	@queue_index: sub queue index
3653  *
3654  * Check individual transmit queue of a device with multiple transmit queues.
3655  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3656 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3657 					    u16 queue_index)
3658 {
3659 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3660 
3661 	return netif_tx_queue_stopped(txq);
3662 }
3663 
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3664 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3665 					  struct sk_buff *skb)
3666 {
3667 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3668 }
3669 
3670 /**
3671  *	netif_wake_subqueue - allow sending packets on subqueue
3672  *	@dev: network device
3673  *	@queue_index: sub queue index
3674  *
3675  * Resume individual transmit queue of a device with multiple transmit queues.
3676  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3677 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3678 {
3679 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3680 
3681 	netif_tx_wake_queue(txq);
3682 }
3683 
3684 #ifdef CONFIG_XPS
3685 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3686 			u16 index);
3687 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3688 			  u16 index, bool is_rxqs_map);
3689 
3690 /**
3691  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3692  *	@j: CPU/Rx queue index
3693  *	@mask: bitmask of all cpus/rx queues
3694  *	@nr_bits: number of bits in the bitmask
3695  *
3696  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3697  */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3698 static inline bool netif_attr_test_mask(unsigned long j,
3699 					const unsigned long *mask,
3700 					unsigned int nr_bits)
3701 {
3702 	cpu_max_bits_warn(j, nr_bits);
3703 	return test_bit(j, mask);
3704 }
3705 
3706 /**
3707  *	netif_attr_test_online - Test for online CPU/Rx queue
3708  *	@j: CPU/Rx queue index
3709  *	@online_mask: bitmask for CPUs/Rx queues that are online
3710  *	@nr_bits: number of bits in the bitmask
3711  *
3712  * Returns true if a CPU/Rx queue is online.
3713  */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3714 static inline bool netif_attr_test_online(unsigned long j,
3715 					  const unsigned long *online_mask,
3716 					  unsigned int nr_bits)
3717 {
3718 	cpu_max_bits_warn(j, nr_bits);
3719 
3720 	if (online_mask)
3721 		return test_bit(j, online_mask);
3722 
3723 	return (j < nr_bits);
3724 }
3725 
3726 /**
3727  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3728  *	@n: CPU/Rx queue index
3729  *	@srcp: the cpumask/Rx queue mask pointer
3730  *	@nr_bits: number of bits in the bitmask
3731  *
3732  * Returns >= nr_bits if no further CPUs/Rx queues set.
3733  */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3734 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3735 					       unsigned int nr_bits)
3736 {
3737 	/* -1 is a legal arg here. */
3738 	if (n != -1)
3739 		cpu_max_bits_warn(n, nr_bits);
3740 
3741 	if (srcp)
3742 		return find_next_bit(srcp, nr_bits, n + 1);
3743 
3744 	return n + 1;
3745 }
3746 
3747 /**
3748  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3749  *	@n: CPU/Rx queue index
3750  *	@src1p: the first CPUs/Rx queues mask pointer
3751  *	@src2p: the second CPUs/Rx queues mask pointer
3752  *	@nr_bits: number of bits in the bitmask
3753  *
3754  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3755  */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3756 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3757 					  const unsigned long *src2p,
3758 					  unsigned int nr_bits)
3759 {
3760 	/* -1 is a legal arg here. */
3761 	if (n != -1)
3762 		cpu_max_bits_warn(n, nr_bits);
3763 
3764 	if (src1p && src2p)
3765 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3766 	else if (src1p)
3767 		return find_next_bit(src1p, nr_bits, n + 1);
3768 	else if (src2p)
3769 		return find_next_bit(src2p, nr_bits, n + 1);
3770 
3771 	return n + 1;
3772 }
3773 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3774 static inline int netif_set_xps_queue(struct net_device *dev,
3775 				      const struct cpumask *mask,
3776 				      u16 index)
3777 {
3778 	return 0;
3779 }
3780 
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)3781 static inline int __netif_set_xps_queue(struct net_device *dev,
3782 					const unsigned long *mask,
3783 					u16 index, bool is_rxqs_map)
3784 {
3785 	return 0;
3786 }
3787 #endif
3788 
3789 /**
3790  *	netif_is_multiqueue - test if device has multiple transmit queues
3791  *	@dev: network device
3792  *
3793  * Check if device has multiple transmit queues
3794  */
netif_is_multiqueue(const struct net_device * dev)3795 static inline bool netif_is_multiqueue(const struct net_device *dev)
3796 {
3797 	return dev->num_tx_queues > 1;
3798 }
3799 
3800 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3801 
3802 #ifdef CONFIG_SYSFS
3803 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3804 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3805 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3806 						unsigned int rxqs)
3807 {
3808 	dev->real_num_rx_queues = rxqs;
3809 	return 0;
3810 }
3811 #endif
3812 
3813 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3814 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3815 {
3816 	return dev->_rx + rxq;
3817 }
3818 
3819 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3820 static inline unsigned int get_netdev_rx_queue_index(
3821 		struct netdev_rx_queue *queue)
3822 {
3823 	struct net_device *dev = queue->dev;
3824 	int index = queue - dev->_rx;
3825 
3826 	BUG_ON(index >= dev->num_rx_queues);
3827 	return index;
3828 }
3829 #endif
3830 
3831 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3832 int netif_get_num_default_rss_queues(void);
3833 
3834 enum skb_free_reason {
3835 	SKB_REASON_CONSUMED,
3836 	SKB_REASON_DROPPED,
3837 };
3838 
3839 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3840 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3841 
3842 /*
3843  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3844  * interrupt context or with hardware interrupts being disabled.
3845  * (in_irq() || irqs_disabled())
3846  *
3847  * We provide four helpers that can be used in following contexts :
3848  *
3849  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3850  *  replacing kfree_skb(skb)
3851  *
3852  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3853  *  Typically used in place of consume_skb(skb) in TX completion path
3854  *
3855  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3856  *  replacing kfree_skb(skb)
3857  *
3858  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3859  *  and consumed a packet. Used in place of consume_skb(skb)
3860  */
dev_kfree_skb_irq(struct sk_buff * skb)3861 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3862 {
3863 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3864 }
3865 
dev_consume_skb_irq(struct sk_buff * skb)3866 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3867 {
3868 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3869 }
3870 
dev_kfree_skb_any(struct sk_buff * skb)3871 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3872 {
3873 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3874 }
3875 
dev_consume_skb_any(struct sk_buff * skb)3876 static inline void dev_consume_skb_any(struct sk_buff *skb)
3877 {
3878 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3879 }
3880 
3881 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3882 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3883 int netif_rx(struct sk_buff *skb);
3884 int netif_rx_ni(struct sk_buff *skb);
3885 int netif_rx_any_context(struct sk_buff *skb);
3886 int netif_receive_skb(struct sk_buff *skb);
3887 int netif_receive_skb_core(struct sk_buff *skb);
3888 void netif_receive_skb_list(struct list_head *head);
3889 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3890 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3891 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3892 gro_result_t napi_gro_frags(struct napi_struct *napi);
3893 struct packet_offload *gro_find_receive_by_type(__be16 type);
3894 struct packet_offload *gro_find_complete_by_type(__be16 type);
3895 
napi_free_frags(struct napi_struct * napi)3896 static inline void napi_free_frags(struct napi_struct *napi)
3897 {
3898 	kfree_skb(napi->skb);
3899 	napi->skb = NULL;
3900 }
3901 
3902 bool netdev_is_rx_handler_busy(struct net_device *dev);
3903 int netdev_rx_handler_register(struct net_device *dev,
3904 			       rx_handler_func_t *rx_handler,
3905 			       void *rx_handler_data);
3906 void netdev_rx_handler_unregister(struct net_device *dev);
3907 
3908 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3909 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3910 {
3911 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3912 }
3913 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3914 		bool *need_copyout);
3915 int dev_ifconf(struct net *net, struct ifconf *, int);
3916 int dev_ethtool(struct net *net, struct ifreq *);
3917 unsigned int dev_get_flags(const struct net_device *);
3918 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3919 		       struct netlink_ext_ack *extack);
3920 int dev_change_flags(struct net_device *dev, unsigned int flags,
3921 		     struct netlink_ext_ack *extack);
3922 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3923 			unsigned int gchanges);
3924 int dev_change_name(struct net_device *, const char *);
3925 int dev_set_alias(struct net_device *, const char *, size_t);
3926 int dev_get_alias(const struct net_device *, char *, size_t);
3927 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3928 int __dev_set_mtu(struct net_device *, int);
3929 int dev_validate_mtu(struct net_device *dev, int mtu,
3930 		     struct netlink_ext_ack *extack);
3931 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3932 		    struct netlink_ext_ack *extack);
3933 int dev_set_mtu(struct net_device *, int);
3934 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3935 void dev_set_group(struct net_device *, int);
3936 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3937 			      struct netlink_ext_ack *extack);
3938 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3939 			struct netlink_ext_ack *extack);
3940 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3941 			     struct netlink_ext_ack *extack);
3942 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3943 int dev_change_carrier(struct net_device *, bool new_carrier);
3944 int dev_get_phys_port_id(struct net_device *dev,
3945 			 struct netdev_phys_item_id *ppid);
3946 int dev_get_phys_port_name(struct net_device *dev,
3947 			   char *name, size_t len);
3948 int dev_get_port_parent_id(struct net_device *dev,
3949 			   struct netdev_phys_item_id *ppid, bool recurse);
3950 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3951 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3952 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3953 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3954 				  u32 value);
3955 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3956 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3957 				    struct netdev_queue *txq, int *ret);
3958 
3959 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3960 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3961 		      int fd, int expected_fd, u32 flags);
3962 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3963 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3964 
3965 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3966 
3967 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3968 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3969 bool is_skb_forwardable(const struct net_device *dev,
3970 			const struct sk_buff *skb);
3971 
____dev_forward_skb(struct net_device * dev,struct sk_buff * skb)3972 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3973 					       struct sk_buff *skb)
3974 {
3975 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3976 	    unlikely(!is_skb_forwardable(dev, skb))) {
3977 		atomic_long_inc(&dev->rx_dropped);
3978 		kfree_skb(skb);
3979 		return NET_RX_DROP;
3980 	}
3981 
3982 	skb_scrub_packet(skb, true);
3983 	skb->priority = 0;
3984 	return 0;
3985 }
3986 
3987 bool dev_nit_active(struct net_device *dev);
3988 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3989 
3990 extern int		netdev_budget;
3991 extern unsigned int	netdev_budget_usecs;
3992 
3993 /* Called by rtnetlink.c:rtnl_unlock() */
3994 void netdev_run_todo(void);
3995 
3996 /**
3997  *	dev_put - release reference to device
3998  *	@dev: network device
3999  *
4000  * Release reference to device to allow it to be freed.
4001  */
dev_put(struct net_device * dev)4002 static inline void dev_put(struct net_device *dev)
4003 {
4004 	if (dev)
4005 		this_cpu_dec(*dev->pcpu_refcnt);
4006 }
4007 
4008 /**
4009  *	dev_hold - get reference to device
4010  *	@dev: network device
4011  *
4012  * Hold reference to device to keep it from being freed.
4013  */
dev_hold(struct net_device * dev)4014 static inline void dev_hold(struct net_device *dev)
4015 {
4016 	if (dev)
4017 		this_cpu_inc(*dev->pcpu_refcnt);
4018 }
4019 
4020 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4021  * and _off may be called from IRQ context, but it is caller
4022  * who is responsible for serialization of these calls.
4023  *
4024  * The name carrier is inappropriate, these functions should really be
4025  * called netif_lowerlayer_*() because they represent the state of any
4026  * kind of lower layer not just hardware media.
4027  */
4028 
4029 void linkwatch_init_dev(struct net_device *dev);
4030 void linkwatch_fire_event(struct net_device *dev);
4031 void linkwatch_forget_dev(struct net_device *dev);
4032 
4033 /**
4034  *	netif_carrier_ok - test if carrier present
4035  *	@dev: network device
4036  *
4037  * Check if carrier is present on device
4038  */
netif_carrier_ok(const struct net_device * dev)4039 static inline bool netif_carrier_ok(const struct net_device *dev)
4040 {
4041 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4042 }
4043 
4044 unsigned long dev_trans_start(struct net_device *dev);
4045 
4046 void __netdev_watchdog_up(struct net_device *dev);
4047 
4048 void netif_carrier_on(struct net_device *dev);
4049 
4050 void netif_carrier_off(struct net_device *dev);
4051 
4052 /**
4053  *	netif_dormant_on - mark device as dormant.
4054  *	@dev: network device
4055  *
4056  * Mark device as dormant (as per RFC2863).
4057  *
4058  * The dormant state indicates that the relevant interface is not
4059  * actually in a condition to pass packets (i.e., it is not 'up') but is
4060  * in a "pending" state, waiting for some external event.  For "on-
4061  * demand" interfaces, this new state identifies the situation where the
4062  * interface is waiting for events to place it in the up state.
4063  */
netif_dormant_on(struct net_device * dev)4064 static inline void netif_dormant_on(struct net_device *dev)
4065 {
4066 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4067 		linkwatch_fire_event(dev);
4068 }
4069 
4070 /**
4071  *	netif_dormant_off - set device as not dormant.
4072  *	@dev: network device
4073  *
4074  * Device is not in dormant state.
4075  */
netif_dormant_off(struct net_device * dev)4076 static inline void netif_dormant_off(struct net_device *dev)
4077 {
4078 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4079 		linkwatch_fire_event(dev);
4080 }
4081 
4082 /**
4083  *	netif_dormant - test if device is dormant
4084  *	@dev: network device
4085  *
4086  * Check if device is dormant.
4087  */
netif_dormant(const struct net_device * dev)4088 static inline bool netif_dormant(const struct net_device *dev)
4089 {
4090 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4091 }
4092 
4093 
4094 /**
4095  *	netif_testing_on - mark device as under test.
4096  *	@dev: network device
4097  *
4098  * Mark device as under test (as per RFC2863).
4099  *
4100  * The testing state indicates that some test(s) must be performed on
4101  * the interface. After completion, of the test, the interface state
4102  * will change to up, dormant, or down, as appropriate.
4103  */
netif_testing_on(struct net_device * dev)4104 static inline void netif_testing_on(struct net_device *dev)
4105 {
4106 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4107 		linkwatch_fire_event(dev);
4108 }
4109 
4110 /**
4111  *	netif_testing_off - set device as not under test.
4112  *	@dev: network device
4113  *
4114  * Device is not in testing state.
4115  */
netif_testing_off(struct net_device * dev)4116 static inline void netif_testing_off(struct net_device *dev)
4117 {
4118 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4119 		linkwatch_fire_event(dev);
4120 }
4121 
4122 /**
4123  *	netif_testing - test if device is under test
4124  *	@dev: network device
4125  *
4126  * Check if device is under test
4127  */
netif_testing(const struct net_device * dev)4128 static inline bool netif_testing(const struct net_device *dev)
4129 {
4130 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4131 }
4132 
4133 
4134 /**
4135  *	netif_oper_up - test if device is operational
4136  *	@dev: network device
4137  *
4138  * Check if carrier is operational
4139  */
netif_oper_up(const struct net_device * dev)4140 static inline bool netif_oper_up(const struct net_device *dev)
4141 {
4142 	return (dev->operstate == IF_OPER_UP ||
4143 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4144 }
4145 
4146 /**
4147  *	netif_device_present - is device available or removed
4148  *	@dev: network device
4149  *
4150  * Check if device has not been removed from system.
4151  */
netif_device_present(struct net_device * dev)4152 static inline bool netif_device_present(struct net_device *dev)
4153 {
4154 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4155 }
4156 
4157 void netif_device_detach(struct net_device *dev);
4158 
4159 void netif_device_attach(struct net_device *dev);
4160 
4161 /*
4162  * Network interface message level settings
4163  */
4164 
4165 enum {
4166 	NETIF_MSG_DRV_BIT,
4167 	NETIF_MSG_PROBE_BIT,
4168 	NETIF_MSG_LINK_BIT,
4169 	NETIF_MSG_TIMER_BIT,
4170 	NETIF_MSG_IFDOWN_BIT,
4171 	NETIF_MSG_IFUP_BIT,
4172 	NETIF_MSG_RX_ERR_BIT,
4173 	NETIF_MSG_TX_ERR_BIT,
4174 	NETIF_MSG_TX_QUEUED_BIT,
4175 	NETIF_MSG_INTR_BIT,
4176 	NETIF_MSG_TX_DONE_BIT,
4177 	NETIF_MSG_RX_STATUS_BIT,
4178 	NETIF_MSG_PKTDATA_BIT,
4179 	NETIF_MSG_HW_BIT,
4180 	NETIF_MSG_WOL_BIT,
4181 
4182 	/* When you add a new bit above, update netif_msg_class_names array
4183 	 * in net/ethtool/common.c
4184 	 */
4185 	NETIF_MSG_CLASS_COUNT,
4186 };
4187 /* Both ethtool_ops interface and internal driver implementation use u32 */
4188 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4189 
4190 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4191 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4192 
4193 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4194 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4195 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4196 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4197 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4198 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4199 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4200 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4201 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4202 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4203 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4204 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4205 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4206 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4207 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4208 
4209 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4210 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4211 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4212 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4213 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4214 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4215 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4216 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4217 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4218 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4219 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4220 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4221 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4222 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4223 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4224 
netif_msg_init(int debug_value,int default_msg_enable_bits)4225 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4226 {
4227 	/* use default */
4228 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4229 		return default_msg_enable_bits;
4230 	if (debug_value == 0)	/* no output */
4231 		return 0;
4232 	/* set low N bits */
4233 	return (1U << debug_value) - 1;
4234 }
4235 
__netif_tx_lock(struct netdev_queue * txq,int cpu)4236 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4237 {
4238 	spin_lock(&txq->_xmit_lock);
4239 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4240 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4241 }
4242 
__netif_tx_acquire(struct netdev_queue * txq)4243 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4244 {
4245 	__acquire(&txq->_xmit_lock);
4246 	return true;
4247 }
4248 
__netif_tx_release(struct netdev_queue * txq)4249 static inline void __netif_tx_release(struct netdev_queue *txq)
4250 {
4251 	__release(&txq->_xmit_lock);
4252 }
4253 
__netif_tx_lock_bh(struct netdev_queue * txq)4254 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4255 {
4256 	spin_lock_bh(&txq->_xmit_lock);
4257 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4258 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4259 }
4260 
__netif_tx_trylock(struct netdev_queue * txq)4261 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4262 {
4263 	bool ok = spin_trylock(&txq->_xmit_lock);
4264 
4265 	if (likely(ok)) {
4266 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4267 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4268 	}
4269 	return ok;
4270 }
4271 
__netif_tx_unlock(struct netdev_queue * txq)4272 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4273 {
4274 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4275 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4276 	spin_unlock(&txq->_xmit_lock);
4277 }
4278 
__netif_tx_unlock_bh(struct netdev_queue * txq)4279 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4280 {
4281 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4282 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4283 	spin_unlock_bh(&txq->_xmit_lock);
4284 }
4285 
txq_trans_update(struct netdev_queue * txq)4286 static inline void txq_trans_update(struct netdev_queue *txq)
4287 {
4288 	if (txq->xmit_lock_owner != -1)
4289 		txq->trans_start = jiffies;
4290 }
4291 
4292 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4293 static inline void netif_trans_update(struct net_device *dev)
4294 {
4295 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4296 
4297 	if (txq->trans_start != jiffies)
4298 		txq->trans_start = jiffies;
4299 }
4300 
4301 /**
4302  *	netif_tx_lock - grab network device transmit lock
4303  *	@dev: network device
4304  *
4305  * Get network device transmit lock
4306  */
netif_tx_lock(struct net_device * dev)4307 static inline void netif_tx_lock(struct net_device *dev)
4308 {
4309 	unsigned int i;
4310 	int cpu;
4311 
4312 	spin_lock(&dev->tx_global_lock);
4313 	cpu = smp_processor_id();
4314 	for (i = 0; i < dev->num_tx_queues; i++) {
4315 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4316 
4317 		/* We are the only thread of execution doing a
4318 		 * freeze, but we have to grab the _xmit_lock in
4319 		 * order to synchronize with threads which are in
4320 		 * the ->hard_start_xmit() handler and already
4321 		 * checked the frozen bit.
4322 		 */
4323 		__netif_tx_lock(txq, cpu);
4324 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4325 		__netif_tx_unlock(txq);
4326 	}
4327 }
4328 
netif_tx_lock_bh(struct net_device * dev)4329 static inline void netif_tx_lock_bh(struct net_device *dev)
4330 {
4331 	local_bh_disable();
4332 	netif_tx_lock(dev);
4333 }
4334 
netif_tx_unlock(struct net_device * dev)4335 static inline void netif_tx_unlock(struct net_device *dev)
4336 {
4337 	unsigned int i;
4338 
4339 	for (i = 0; i < dev->num_tx_queues; i++) {
4340 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4341 
4342 		/* No need to grab the _xmit_lock here.  If the
4343 		 * queue is not stopped for another reason, we
4344 		 * force a schedule.
4345 		 */
4346 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4347 		netif_schedule_queue(txq);
4348 	}
4349 	spin_unlock(&dev->tx_global_lock);
4350 }
4351 
netif_tx_unlock_bh(struct net_device * dev)4352 static inline void netif_tx_unlock_bh(struct net_device *dev)
4353 {
4354 	netif_tx_unlock(dev);
4355 	local_bh_enable();
4356 }
4357 
4358 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4359 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4360 		__netif_tx_lock(txq, cpu);		\
4361 	} else {					\
4362 		__netif_tx_acquire(txq);		\
4363 	}						\
4364 }
4365 
4366 #define HARD_TX_TRYLOCK(dev, txq)			\
4367 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4368 		__netif_tx_trylock(txq) :		\
4369 		__netif_tx_acquire(txq))
4370 
4371 #define HARD_TX_UNLOCK(dev, txq) {			\
4372 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4373 		__netif_tx_unlock(txq);			\
4374 	} else {					\
4375 		__netif_tx_release(txq);		\
4376 	}						\
4377 }
4378 
netif_tx_disable(struct net_device * dev)4379 static inline void netif_tx_disable(struct net_device *dev)
4380 {
4381 	unsigned int i;
4382 	int cpu;
4383 
4384 	local_bh_disable();
4385 	cpu = smp_processor_id();
4386 	spin_lock(&dev->tx_global_lock);
4387 	for (i = 0; i < dev->num_tx_queues; i++) {
4388 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4389 
4390 		__netif_tx_lock(txq, cpu);
4391 		netif_tx_stop_queue(txq);
4392 		__netif_tx_unlock(txq);
4393 	}
4394 	spin_unlock(&dev->tx_global_lock);
4395 	local_bh_enable();
4396 }
4397 
netif_addr_lock(struct net_device * dev)4398 static inline void netif_addr_lock(struct net_device *dev)
4399 {
4400 	unsigned char nest_level = 0;
4401 
4402 #ifdef CONFIG_LOCKDEP
4403 	nest_level = dev->nested_level;
4404 #endif
4405 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4406 }
4407 
netif_addr_lock_bh(struct net_device * dev)4408 static inline void netif_addr_lock_bh(struct net_device *dev)
4409 {
4410 	unsigned char nest_level = 0;
4411 
4412 #ifdef CONFIG_LOCKDEP
4413 	nest_level = dev->nested_level;
4414 #endif
4415 	local_bh_disable();
4416 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4417 }
4418 
netif_addr_unlock(struct net_device * dev)4419 static inline void netif_addr_unlock(struct net_device *dev)
4420 {
4421 	spin_unlock(&dev->addr_list_lock);
4422 }
4423 
netif_addr_unlock_bh(struct net_device * dev)4424 static inline void netif_addr_unlock_bh(struct net_device *dev)
4425 {
4426 	spin_unlock_bh(&dev->addr_list_lock);
4427 }
4428 
4429 /*
4430  * dev_addrs walker. Should be used only for read access. Call with
4431  * rcu_read_lock held.
4432  */
4433 #define for_each_dev_addr(dev, ha) \
4434 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4435 
4436 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4437 
4438 void ether_setup(struct net_device *dev);
4439 
4440 /* Support for loadable net-drivers */
4441 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4442 				    unsigned char name_assign_type,
4443 				    void (*setup)(struct net_device *),
4444 				    unsigned int txqs, unsigned int rxqs);
4445 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4446 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4447 
4448 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4449 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4450 			 count)
4451 
4452 int register_netdev(struct net_device *dev);
4453 void unregister_netdev(struct net_device *dev);
4454 
4455 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4456 
4457 /* General hardware address lists handling functions */
4458 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4459 		   struct netdev_hw_addr_list *from_list, int addr_len);
4460 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4461 		      struct netdev_hw_addr_list *from_list, int addr_len);
4462 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4463 		       struct net_device *dev,
4464 		       int (*sync)(struct net_device *, const unsigned char *),
4465 		       int (*unsync)(struct net_device *,
4466 				     const unsigned char *));
4467 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4468 			   struct net_device *dev,
4469 			   int (*sync)(struct net_device *,
4470 				       const unsigned char *, int),
4471 			   int (*unsync)(struct net_device *,
4472 					 const unsigned char *, int));
4473 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4474 			      struct net_device *dev,
4475 			      int (*unsync)(struct net_device *,
4476 					    const unsigned char *, int));
4477 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4478 			  struct net_device *dev,
4479 			  int (*unsync)(struct net_device *,
4480 					const unsigned char *));
4481 void __hw_addr_init(struct netdev_hw_addr_list *list);
4482 
4483 /* Functions used for device addresses handling */
4484 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4485 		 unsigned char addr_type);
4486 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4487 		 unsigned char addr_type);
4488 void dev_addr_flush(struct net_device *dev);
4489 int dev_addr_init(struct net_device *dev);
4490 
4491 /* Functions used for unicast addresses handling */
4492 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4493 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4494 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4495 int dev_uc_sync(struct net_device *to, struct net_device *from);
4496 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4497 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4498 void dev_uc_flush(struct net_device *dev);
4499 void dev_uc_init(struct net_device *dev);
4500 
4501 /**
4502  *  __dev_uc_sync - Synchonize device's unicast list
4503  *  @dev:  device to sync
4504  *  @sync: function to call if address should be added
4505  *  @unsync: function to call if address should be removed
4506  *
4507  *  Add newly added addresses to the interface, and release
4508  *  addresses that have been deleted.
4509  */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4510 static inline int __dev_uc_sync(struct net_device *dev,
4511 				int (*sync)(struct net_device *,
4512 					    const unsigned char *),
4513 				int (*unsync)(struct net_device *,
4514 					      const unsigned char *))
4515 {
4516 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4517 }
4518 
4519 /**
4520  *  __dev_uc_unsync - Remove synchronized addresses from device
4521  *  @dev:  device to sync
4522  *  @unsync: function to call if address should be removed
4523  *
4524  *  Remove all addresses that were added to the device by dev_uc_sync().
4525  */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4526 static inline void __dev_uc_unsync(struct net_device *dev,
4527 				   int (*unsync)(struct net_device *,
4528 						 const unsigned char *))
4529 {
4530 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4531 }
4532 
4533 /* Functions used for multicast addresses handling */
4534 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4535 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4536 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4537 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4538 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4539 int dev_mc_sync(struct net_device *to, struct net_device *from);
4540 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4541 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4542 void dev_mc_flush(struct net_device *dev);
4543 void dev_mc_init(struct net_device *dev);
4544 
4545 /**
4546  *  __dev_mc_sync - Synchonize device's multicast list
4547  *  @dev:  device to sync
4548  *  @sync: function to call if address should be added
4549  *  @unsync: function to call if address should be removed
4550  *
4551  *  Add newly added addresses to the interface, and release
4552  *  addresses that have been deleted.
4553  */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4554 static inline int __dev_mc_sync(struct net_device *dev,
4555 				int (*sync)(struct net_device *,
4556 					    const unsigned char *),
4557 				int (*unsync)(struct net_device *,
4558 					      const unsigned char *))
4559 {
4560 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4561 }
4562 
4563 /**
4564  *  __dev_mc_unsync - Remove synchronized addresses from device
4565  *  @dev:  device to sync
4566  *  @unsync: function to call if address should be removed
4567  *
4568  *  Remove all addresses that were added to the device by dev_mc_sync().
4569  */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4570 static inline void __dev_mc_unsync(struct net_device *dev,
4571 				   int (*unsync)(struct net_device *,
4572 						 const unsigned char *))
4573 {
4574 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4575 }
4576 
4577 /* Functions used for secondary unicast and multicast support */
4578 void dev_set_rx_mode(struct net_device *dev);
4579 void __dev_set_rx_mode(struct net_device *dev);
4580 int dev_set_promiscuity(struct net_device *dev, int inc);
4581 int dev_set_allmulti(struct net_device *dev, int inc);
4582 void netdev_state_change(struct net_device *dev);
4583 void netdev_notify_peers(struct net_device *dev);
4584 void netdev_features_change(struct net_device *dev);
4585 /* Load a device via the kmod */
4586 void dev_load(struct net *net, const char *name);
4587 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4588 					struct rtnl_link_stats64 *storage);
4589 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4590 			     const struct net_device_stats *netdev_stats);
4591 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4592 			   const struct pcpu_sw_netstats __percpu *netstats);
4593 
4594 extern int		netdev_max_backlog;
4595 extern int		netdev_tstamp_prequeue;
4596 extern int		weight_p;
4597 extern int		dev_weight_rx_bias;
4598 extern int		dev_weight_tx_bias;
4599 extern int		dev_rx_weight;
4600 extern int		dev_tx_weight;
4601 extern int		gro_normal_batch;
4602 
4603 enum {
4604 	NESTED_SYNC_IMM_BIT,
4605 	NESTED_SYNC_TODO_BIT,
4606 };
4607 
4608 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4609 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4610 
4611 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4612 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4613 
4614 struct netdev_nested_priv {
4615 	unsigned char flags;
4616 	void *data;
4617 };
4618 
4619 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4620 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4621 						     struct list_head **iter);
4622 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4623 						     struct list_head **iter);
4624 
4625 #ifdef CONFIG_LOCKDEP
4626 static LIST_HEAD(net_unlink_list);
4627 
net_unlink_todo(struct net_device * dev)4628 static inline void net_unlink_todo(struct net_device *dev)
4629 {
4630 	if (list_empty(&dev->unlink_list))
4631 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4632 }
4633 #endif
4634 
4635 /* iterate through upper list, must be called under RCU read lock */
4636 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4637 	for (iter = &(dev)->adj_list.upper, \
4638 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4639 	     updev; \
4640 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4641 
4642 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4643 				  int (*fn)(struct net_device *upper_dev,
4644 					    struct netdev_nested_priv *priv),
4645 				  struct netdev_nested_priv *priv);
4646 
4647 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4648 				  struct net_device *upper_dev);
4649 
4650 bool netdev_has_any_upper_dev(struct net_device *dev);
4651 
4652 void *netdev_lower_get_next_private(struct net_device *dev,
4653 				    struct list_head **iter);
4654 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4655 					struct list_head **iter);
4656 
4657 #define netdev_for_each_lower_private(dev, priv, iter) \
4658 	for (iter = (dev)->adj_list.lower.next, \
4659 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4660 	     priv; \
4661 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4662 
4663 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4664 	for (iter = &(dev)->adj_list.lower, \
4665 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4666 	     priv; \
4667 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4668 
4669 void *netdev_lower_get_next(struct net_device *dev,
4670 				struct list_head **iter);
4671 
4672 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4673 	for (iter = (dev)->adj_list.lower.next, \
4674 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4675 	     ldev; \
4676 	     ldev = netdev_lower_get_next(dev, &(iter)))
4677 
4678 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4679 					     struct list_head **iter);
4680 int netdev_walk_all_lower_dev(struct net_device *dev,
4681 			      int (*fn)(struct net_device *lower_dev,
4682 					struct netdev_nested_priv *priv),
4683 			      struct netdev_nested_priv *priv);
4684 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4685 				  int (*fn)(struct net_device *lower_dev,
4686 					    struct netdev_nested_priv *priv),
4687 				  struct netdev_nested_priv *priv);
4688 
4689 void *netdev_adjacent_get_private(struct list_head *adj_list);
4690 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4691 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4692 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4693 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4694 			  struct netlink_ext_ack *extack);
4695 int netdev_master_upper_dev_link(struct net_device *dev,
4696 				 struct net_device *upper_dev,
4697 				 void *upper_priv, void *upper_info,
4698 				 struct netlink_ext_ack *extack);
4699 void netdev_upper_dev_unlink(struct net_device *dev,
4700 			     struct net_device *upper_dev);
4701 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4702 				   struct net_device *new_dev,
4703 				   struct net_device *dev,
4704 				   struct netlink_ext_ack *extack);
4705 void netdev_adjacent_change_commit(struct net_device *old_dev,
4706 				   struct net_device *new_dev,
4707 				   struct net_device *dev);
4708 void netdev_adjacent_change_abort(struct net_device *old_dev,
4709 				  struct net_device *new_dev,
4710 				  struct net_device *dev);
4711 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4712 void *netdev_lower_dev_get_private(struct net_device *dev,
4713 				   struct net_device *lower_dev);
4714 void netdev_lower_state_changed(struct net_device *lower_dev,
4715 				void *lower_state_info);
4716 
4717 /* RSS keys are 40 or 52 bytes long */
4718 #define NETDEV_RSS_KEY_LEN 52
4719 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4720 void netdev_rss_key_fill(void *buffer, size_t len);
4721 
4722 int skb_checksum_help(struct sk_buff *skb);
4723 int skb_crc32c_csum_help(struct sk_buff *skb);
4724 int skb_csum_hwoffload_help(struct sk_buff *skb,
4725 			    const netdev_features_t features);
4726 
4727 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4728 				  netdev_features_t features, bool tx_path);
4729 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4730 				    netdev_features_t features);
4731 
4732 struct netdev_bonding_info {
4733 	ifslave	slave;
4734 	ifbond	master;
4735 };
4736 
4737 struct netdev_notifier_bonding_info {
4738 	struct netdev_notifier_info info; /* must be first */
4739 	struct netdev_bonding_info  bonding_info;
4740 };
4741 
4742 void netdev_bonding_info_change(struct net_device *dev,
4743 				struct netdev_bonding_info *bonding_info);
4744 
4745 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4746 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4747 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)4748 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4749 				  const void *data)
4750 {
4751 }
4752 #endif
4753 
4754 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4755 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4756 {
4757 	return __skb_gso_segment(skb, features, true);
4758 }
4759 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4760 
can_checksum_protocol(netdev_features_t features,__be16 protocol)4761 static inline bool can_checksum_protocol(netdev_features_t features,
4762 					 __be16 protocol)
4763 {
4764 	if (protocol == htons(ETH_P_FCOE))
4765 		return !!(features & NETIF_F_FCOE_CRC);
4766 
4767 	/* Assume this is an IP checksum (not SCTP CRC) */
4768 
4769 	if (features & NETIF_F_HW_CSUM) {
4770 		/* Can checksum everything */
4771 		return true;
4772 	}
4773 
4774 	switch (protocol) {
4775 	case htons(ETH_P_IP):
4776 		return !!(features & NETIF_F_IP_CSUM);
4777 	case htons(ETH_P_IPV6):
4778 		return !!(features & NETIF_F_IPV6_CSUM);
4779 	default:
4780 		return false;
4781 	}
4782 }
4783 
4784 #ifdef CONFIG_BUG
4785 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4786 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4787 static inline void netdev_rx_csum_fault(struct net_device *dev,
4788 					struct sk_buff *skb)
4789 {
4790 }
4791 #endif
4792 /* rx skb timestamps */
4793 void net_enable_timestamp(void);
4794 void net_disable_timestamp(void);
4795 
4796 #ifdef CONFIG_PROC_FS
4797 int __init dev_proc_init(void);
4798 #else
4799 #define dev_proc_init() 0
4800 #endif
4801 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4802 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4803 					      struct sk_buff *skb, struct net_device *dev,
4804 					      bool more)
4805 {
4806 	__this_cpu_write(softnet_data.xmit.more, more);
4807 	return ops->ndo_start_xmit(skb, dev);
4808 }
4809 
netdev_xmit_more(void)4810 static inline bool netdev_xmit_more(void)
4811 {
4812 	return __this_cpu_read(softnet_data.xmit.more);
4813 }
4814 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4815 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4816 					    struct netdev_queue *txq, bool more)
4817 {
4818 	const struct net_device_ops *ops = dev->netdev_ops;
4819 	netdev_tx_t rc;
4820 
4821 	rc = __netdev_start_xmit(ops, skb, dev, more);
4822 	if (rc == NETDEV_TX_OK)
4823 		txq_trans_update(txq);
4824 
4825 	return rc;
4826 }
4827 
4828 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4829 				const void *ns);
4830 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4831 				 const void *ns);
4832 
4833 extern const struct kobj_ns_type_operations net_ns_type_operations;
4834 
4835 const char *netdev_drivername(const struct net_device *dev);
4836 
4837 void linkwatch_run_queue(void);
4838 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4839 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4840 							  netdev_features_t f2)
4841 {
4842 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4843 		if (f1 & NETIF_F_HW_CSUM)
4844 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4845 		else
4846 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4847 	}
4848 
4849 	return f1 & f2;
4850 }
4851 
netdev_get_wanted_features(struct net_device * dev)4852 static inline netdev_features_t netdev_get_wanted_features(
4853 	struct net_device *dev)
4854 {
4855 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4856 }
4857 netdev_features_t netdev_increment_features(netdev_features_t all,
4858 	netdev_features_t one, netdev_features_t mask);
4859 
4860 /* Allow TSO being used on stacked device :
4861  * Performing the GSO segmentation before last device
4862  * is a performance improvement.
4863  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4864 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4865 							netdev_features_t mask)
4866 {
4867 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4868 }
4869 
4870 int __netdev_update_features(struct net_device *dev);
4871 void netdev_update_features(struct net_device *dev);
4872 void netdev_change_features(struct net_device *dev);
4873 
4874 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4875 					struct net_device *dev);
4876 
4877 netdev_features_t passthru_features_check(struct sk_buff *skb,
4878 					  struct net_device *dev,
4879 					  netdev_features_t features);
4880 netdev_features_t netif_skb_features(struct sk_buff *skb);
4881 
net_gso_ok(netdev_features_t features,int gso_type)4882 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4883 {
4884 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4885 
4886 	/* check flags correspondence */
4887 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4888 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4889 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4890 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4891 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4892 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4893 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4894 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4895 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4896 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4897 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4898 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4899 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4900 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4901 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4902 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4903 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4904 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4905 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4906 
4907 	return (features & feature) == feature;
4908 }
4909 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4910 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4911 {
4912 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4913 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4914 }
4915 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4916 static inline bool netif_needs_gso(struct sk_buff *skb,
4917 				   netdev_features_t features)
4918 {
4919 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4920 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4921 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4922 }
4923 
netif_set_gso_max_size(struct net_device * dev,unsigned int size)4924 static inline void netif_set_gso_max_size(struct net_device *dev,
4925 					  unsigned int size)
4926 {
4927 	dev->gso_max_size = size;
4928 }
4929 
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4930 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4931 					int pulled_hlen, u16 mac_offset,
4932 					int mac_len)
4933 {
4934 	skb->protocol = protocol;
4935 	skb->encapsulation = 1;
4936 	skb_push(skb, pulled_hlen);
4937 	skb_reset_transport_header(skb);
4938 	skb->mac_header = mac_offset;
4939 	skb->network_header = skb->mac_header + mac_len;
4940 	skb->mac_len = mac_len;
4941 }
4942 
netif_is_macsec(const struct net_device * dev)4943 static inline bool netif_is_macsec(const struct net_device *dev)
4944 {
4945 	return dev->priv_flags & IFF_MACSEC;
4946 }
4947 
netif_is_macvlan(const struct net_device * dev)4948 static inline bool netif_is_macvlan(const struct net_device *dev)
4949 {
4950 	return dev->priv_flags & IFF_MACVLAN;
4951 }
4952 
netif_is_macvlan_port(const struct net_device * dev)4953 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4954 {
4955 	return dev->priv_flags & IFF_MACVLAN_PORT;
4956 }
4957 
netif_is_bond_master(const struct net_device * dev)4958 static inline bool netif_is_bond_master(const struct net_device *dev)
4959 {
4960 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4961 }
4962 
netif_is_bond_slave(const struct net_device * dev)4963 static inline bool netif_is_bond_slave(const struct net_device *dev)
4964 {
4965 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4966 }
4967 
netif_supports_nofcs(struct net_device * dev)4968 static inline bool netif_supports_nofcs(struct net_device *dev)
4969 {
4970 	return dev->priv_flags & IFF_SUPP_NOFCS;
4971 }
4972 
netif_has_l3_rx_handler(const struct net_device * dev)4973 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4974 {
4975 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4976 }
4977 
netif_is_l3_master(const struct net_device * dev)4978 static inline bool netif_is_l3_master(const struct net_device *dev)
4979 {
4980 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4981 }
4982 
netif_is_l3_slave(const struct net_device * dev)4983 static inline bool netif_is_l3_slave(const struct net_device *dev)
4984 {
4985 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4986 }
4987 
netif_is_bridge_master(const struct net_device * dev)4988 static inline bool netif_is_bridge_master(const struct net_device *dev)
4989 {
4990 	return dev->priv_flags & IFF_EBRIDGE;
4991 }
4992 
netif_is_bridge_port(const struct net_device * dev)4993 static inline bool netif_is_bridge_port(const struct net_device *dev)
4994 {
4995 	return dev->priv_flags & IFF_BRIDGE_PORT;
4996 }
4997 
netif_is_ovs_master(const struct net_device * dev)4998 static inline bool netif_is_ovs_master(const struct net_device *dev)
4999 {
5000 	return dev->priv_flags & IFF_OPENVSWITCH;
5001 }
5002 
netif_is_ovs_port(const struct net_device * dev)5003 static inline bool netif_is_ovs_port(const struct net_device *dev)
5004 {
5005 	return dev->priv_flags & IFF_OVS_DATAPATH;
5006 }
5007 
netif_is_any_bridge_port(const struct net_device * dev)5008 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5009 {
5010 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5011 }
5012 
netif_is_team_master(const struct net_device * dev)5013 static inline bool netif_is_team_master(const struct net_device *dev)
5014 {
5015 	return dev->priv_flags & IFF_TEAM;
5016 }
5017 
netif_is_team_port(const struct net_device * dev)5018 static inline bool netif_is_team_port(const struct net_device *dev)
5019 {
5020 	return dev->priv_flags & IFF_TEAM_PORT;
5021 }
5022 
netif_is_lag_master(const struct net_device * dev)5023 static inline bool netif_is_lag_master(const struct net_device *dev)
5024 {
5025 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5026 }
5027 
netif_is_lag_port(const struct net_device * dev)5028 static inline bool netif_is_lag_port(const struct net_device *dev)
5029 {
5030 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5031 }
5032 
netif_is_rxfh_configured(const struct net_device * dev)5033 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5034 {
5035 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5036 }
5037 
netif_is_failover(const struct net_device * dev)5038 static inline bool netif_is_failover(const struct net_device *dev)
5039 {
5040 	return dev->priv_flags & IFF_FAILOVER;
5041 }
5042 
netif_is_failover_slave(const struct net_device * dev)5043 static inline bool netif_is_failover_slave(const struct net_device *dev)
5044 {
5045 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5046 }
5047 
5048 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5049 static inline void netif_keep_dst(struct net_device *dev)
5050 {
5051 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5052 }
5053 
5054 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5055 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5056 {
5057 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5058 	return dev->priv_flags & IFF_MACSEC;
5059 }
5060 
5061 extern struct pernet_operations __net_initdata loopback_net_ops;
5062 
5063 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5064 
5065 /* netdev_printk helpers, similar to dev_printk */
5066 
netdev_name(const struct net_device * dev)5067 static inline const char *netdev_name(const struct net_device *dev)
5068 {
5069 	if (!dev->name[0] || strchr(dev->name, '%'))
5070 		return "(unnamed net_device)";
5071 	return dev->name;
5072 }
5073 
netdev_unregistering(const struct net_device * dev)5074 static inline bool netdev_unregistering(const struct net_device *dev)
5075 {
5076 	return dev->reg_state == NETREG_UNREGISTERING;
5077 }
5078 
netdev_reg_state(const struct net_device * dev)5079 static inline const char *netdev_reg_state(const struct net_device *dev)
5080 {
5081 	switch (dev->reg_state) {
5082 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5083 	case NETREG_REGISTERED: return "";
5084 	case NETREG_UNREGISTERING: return " (unregistering)";
5085 	case NETREG_UNREGISTERED: return " (unregistered)";
5086 	case NETREG_RELEASED: return " (released)";
5087 	case NETREG_DUMMY: return " (dummy)";
5088 	}
5089 
5090 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5091 	return " (unknown)";
5092 }
5093 
5094 __printf(3, 4) __cold
5095 void netdev_printk(const char *level, const struct net_device *dev,
5096 		   const char *format, ...);
5097 __printf(2, 3) __cold
5098 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5099 __printf(2, 3) __cold
5100 void netdev_alert(const struct net_device *dev, const char *format, ...);
5101 __printf(2, 3) __cold
5102 void netdev_crit(const struct net_device *dev, const char *format, ...);
5103 __printf(2, 3) __cold
5104 void netdev_err(const struct net_device *dev, const char *format, ...);
5105 __printf(2, 3) __cold
5106 void netdev_warn(const struct net_device *dev, const char *format, ...);
5107 __printf(2, 3) __cold
5108 void netdev_notice(const struct net_device *dev, const char *format, ...);
5109 __printf(2, 3) __cold
5110 void netdev_info(const struct net_device *dev, const char *format, ...);
5111 
5112 #define netdev_level_once(level, dev, fmt, ...)			\
5113 do {								\
5114 	static bool __print_once __read_mostly;			\
5115 								\
5116 	if (!__print_once) {					\
5117 		__print_once = true;				\
5118 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5119 	}							\
5120 } while (0)
5121 
5122 #define netdev_emerg_once(dev, fmt, ...) \
5123 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5124 #define netdev_alert_once(dev, fmt, ...) \
5125 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5126 #define netdev_crit_once(dev, fmt, ...) \
5127 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5128 #define netdev_err_once(dev, fmt, ...) \
5129 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5130 #define netdev_warn_once(dev, fmt, ...) \
5131 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5132 #define netdev_notice_once(dev, fmt, ...) \
5133 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5134 #define netdev_info_once(dev, fmt, ...) \
5135 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5136 
5137 #define MODULE_ALIAS_NETDEV(device) \
5138 	MODULE_ALIAS("netdev-" device)
5139 
5140 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5141 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5142 #define netdev_dbg(__dev, format, args...)			\
5143 do {								\
5144 	dynamic_netdev_dbg(__dev, format, ##args);		\
5145 } while (0)
5146 #elif defined(DEBUG)
5147 #define netdev_dbg(__dev, format, args...)			\
5148 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5149 #else
5150 #define netdev_dbg(__dev, format, args...)			\
5151 ({								\
5152 	if (0)							\
5153 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5154 })
5155 #endif
5156 
5157 #if defined(VERBOSE_DEBUG)
5158 #define netdev_vdbg	netdev_dbg
5159 #else
5160 
5161 #define netdev_vdbg(dev, format, args...)			\
5162 ({								\
5163 	if (0)							\
5164 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5165 	0;							\
5166 })
5167 #endif
5168 
5169 /*
5170  * netdev_WARN() acts like dev_printk(), but with the key difference
5171  * of using a WARN/WARN_ON to get the message out, including the
5172  * file/line information and a backtrace.
5173  */
5174 #define netdev_WARN(dev, format, args...)			\
5175 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5176 	     netdev_reg_state(dev), ##args)
5177 
5178 #define netdev_WARN_ONCE(dev, format, args...)				\
5179 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5180 		  netdev_reg_state(dev), ##args)
5181 
5182 /* netif printk helpers, similar to netdev_printk */
5183 
5184 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5185 do {					  			\
5186 	if (netif_msg_##type(priv))				\
5187 		netdev_printk(level, (dev), fmt, ##args);	\
5188 } while (0)
5189 
5190 #define netif_level(level, priv, type, dev, fmt, args...)	\
5191 do {								\
5192 	if (netif_msg_##type(priv))				\
5193 		netdev_##level(dev, fmt, ##args);		\
5194 } while (0)
5195 
5196 #define netif_emerg(priv, type, dev, fmt, args...)		\
5197 	netif_level(emerg, priv, type, dev, fmt, ##args)
5198 #define netif_alert(priv, type, dev, fmt, args...)		\
5199 	netif_level(alert, priv, type, dev, fmt, ##args)
5200 #define netif_crit(priv, type, dev, fmt, args...)		\
5201 	netif_level(crit, priv, type, dev, fmt, ##args)
5202 #define netif_err(priv, type, dev, fmt, args...)		\
5203 	netif_level(err, priv, type, dev, fmt, ##args)
5204 #define netif_warn(priv, type, dev, fmt, args...)		\
5205 	netif_level(warn, priv, type, dev, fmt, ##args)
5206 #define netif_notice(priv, type, dev, fmt, args...)		\
5207 	netif_level(notice, priv, type, dev, fmt, ##args)
5208 #define netif_info(priv, type, dev, fmt, args...)		\
5209 	netif_level(info, priv, type, dev, fmt, ##args)
5210 
5211 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5212 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5213 #define netif_dbg(priv, type, netdev, format, args...)		\
5214 do {								\
5215 	if (netif_msg_##type(priv))				\
5216 		dynamic_netdev_dbg(netdev, format, ##args);	\
5217 } while (0)
5218 #elif defined(DEBUG)
5219 #define netif_dbg(priv, type, dev, format, args...)		\
5220 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5221 #else
5222 #define netif_dbg(priv, type, dev, format, args...)			\
5223 ({									\
5224 	if (0)								\
5225 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5226 	0;								\
5227 })
5228 #endif
5229 
5230 /* if @cond then downgrade to debug, else print at @level */
5231 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5232 	do {                                                              \
5233 		if (cond)                                                 \
5234 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5235 		else                                                      \
5236 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5237 	} while (0)
5238 
5239 #if defined(VERBOSE_DEBUG)
5240 #define netif_vdbg	netif_dbg
5241 #else
5242 #define netif_vdbg(priv, type, dev, format, args...)		\
5243 ({								\
5244 	if (0)							\
5245 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5246 	0;							\
5247 })
5248 #endif
5249 
5250 /*
5251  *	The list of packet types we will receive (as opposed to discard)
5252  *	and the routines to invoke.
5253  *
5254  *	Why 16. Because with 16 the only overlap we get on a hash of the
5255  *	low nibble of the protocol value is RARP/SNAP/X.25.
5256  *
5257  *		0800	IP
5258  *		0001	802.3
5259  *		0002	AX.25
5260  *		0004	802.2
5261  *		8035	RARP
5262  *		0005	SNAP
5263  *		0805	X.25
5264  *		0806	ARP
5265  *		8137	IPX
5266  *		0009	Localtalk
5267  *		86DD	IPv6
5268  */
5269 #define PTYPE_HASH_SIZE	(16)
5270 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5271 
5272 extern struct net_device *blackhole_netdev;
5273 
5274 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5275 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5276 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5277 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5278 
5279 #endif	/* _LINUX_NETDEVICE_H */
5280