1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/heap/factory.h"
6
7 #include <algorithm> // For copy
8 #include <memory> // For shared_ptr<>
9 #include <string>
10 #include <utility> // For move
11
12 #include "src/ast/ast-source-ranges.h"
13 #include "src/base/bits.h"
14 #include "src/builtins/accessors.h"
15 #include "src/builtins/constants-table-builder.h"
16 #include "src/codegen/compilation-cache.h"
17 #include "src/codegen/compiler.h"
18 #include "src/common/assert-scope.h"
19 #include "src/common/globals.h"
20 #include "src/diagnostics/basic-block-profiler.h"
21 #include "src/execution/isolate-inl.h"
22 #include "src/execution/protectors-inl.h"
23 #include "src/heap/basic-memory-chunk.h"
24 #include "src/heap/heap-allocator-inl.h"
25 #include "src/heap/heap-inl.h"
26 #include "src/heap/incremental-marking.h"
27 #include "src/heap/mark-compact-inl.h"
28 #include "src/heap/memory-chunk.h"
29 #include "src/heap/read-only-heap.h"
30 #include "src/ic/handler-configuration-inl.h"
31 #include "src/init/bootstrapper.h"
32 #include "src/interpreter/interpreter.h"
33 #include "src/logging/counters.h"
34 #include "src/logging/log.h"
35 #include "src/numbers/conversions.h"
36 #include "src/numbers/hash-seed-inl.h"
37 #include "src/objects/allocation-site-inl.h"
38 #include "src/objects/allocation-site-scopes.h"
39 #include "src/objects/api-callbacks.h"
40 #include "src/objects/arguments-inl.h"
41 #include "src/objects/bigint.h"
42 #include "src/objects/call-site-info-inl.h"
43 #include "src/objects/cell-inl.h"
44 #include "src/objects/debug-objects-inl.h"
45 #include "src/objects/embedder-data-array-inl.h"
46 #include "src/objects/feedback-cell-inl.h"
47 #include "src/objects/fixed-array-inl.h"
48 #include "src/objects/foreign-inl.h"
49 #include "src/objects/instance-type-inl.h"
50 #include "src/objects/js-array-buffer-inl.h"
51 #include "src/objects/js-array-inl.h"
52 #include "src/objects/js-collection-inl.h"
53 #include "src/objects/js-generator-inl.h"
54 #include "src/objects/js-objects.h"
55 #include "src/objects/js-regexp-inl.h"
56 #include "src/objects/js-weak-refs-inl.h"
57 #include "src/objects/literal-objects-inl.h"
58 #include "src/objects/megadom-handler-inl.h"
59 #include "src/objects/microtask-inl.h"
60 #include "src/objects/module-inl.h"
61 #include "src/objects/promise-inl.h"
62 #include "src/objects/property-descriptor-object-inl.h"
63 #include "src/objects/scope-info.h"
64 #include "src/objects/string-set-inl.h"
65 #include "src/objects/struct-inl.h"
66 #include "src/objects/synthetic-module-inl.h"
67 #include "src/objects/template-objects-inl.h"
68 #include "src/objects/transitions-inl.h"
69 #include "src/roots/roots.h"
70 #include "src/strings/unicode-inl.h"
71 #if V8_ENABLE_WEBASSEMBLY
72 #include "src/wasm/wasm-value.h"
73 #endif
74
75 #include "src/heap/local-factory-inl.h"
76 #include "src/heap/local-heap-inl.h"
77
78 namespace v8 {
79 namespace internal {
80
CodeBuilder(Isolate * isolate,const CodeDesc & desc,CodeKind kind)81 Factory::CodeBuilder::CodeBuilder(Isolate* isolate, const CodeDesc& desc,
82 CodeKind kind)
83 : isolate_(isolate),
84 local_isolate_(isolate_->main_thread_local_isolate()),
85 code_desc_(desc),
86 kind_(kind),
87 position_table_(isolate_->factory()->empty_byte_array()) {}
88
CodeBuilder(LocalIsolate * local_isolate,const CodeDesc & desc,CodeKind kind)89 Factory::CodeBuilder::CodeBuilder(LocalIsolate* local_isolate,
90 const CodeDesc& desc, CodeKind kind)
91 : isolate_(local_isolate->GetMainThreadIsolateUnsafe()),
92 local_isolate_(local_isolate),
93 code_desc_(desc),
94 kind_(kind),
95 position_table_(isolate_->factory()->empty_byte_array()) {}
96
BuildInternal(bool retry_allocation_or_fail)97 MaybeHandle<Code> Factory::CodeBuilder::BuildInternal(
98 bool retry_allocation_or_fail) {
99 const auto factory = isolate_->factory();
100 // Allocate objects needed for code initialization.
101 Handle<ByteArray> reloc_info =
102 CompiledWithConcurrentBaseline()
103 ? local_isolate_->factory()->NewByteArray(code_desc_.reloc_size,
104 AllocationType::kOld)
105 : factory->NewByteArray(code_desc_.reloc_size, AllocationType::kOld);
106 Handle<CodeDataContainer> data_container;
107
108 // Use a canonical off-heap trampoline CodeDataContainer if possible.
109 const int32_t promise_rejection_flag =
110 Code::IsPromiseRejectionField::encode(true);
111 if (read_only_data_container_ &&
112 (kind_specific_flags_ == 0 ||
113 kind_specific_flags_ == promise_rejection_flag)) {
114 const ReadOnlyRoots roots(isolate_);
115 const auto canonical_code_data_container = Handle<CodeDataContainer>::cast(
116 kind_specific_flags_ == 0
117 ? roots.trampoline_trivial_code_data_container_handle()
118 : roots.trampoline_promise_rejection_code_data_container_handle());
119 DCHECK_EQ(canonical_code_data_container->kind_specific_flags(kRelaxedLoad),
120 kind_specific_flags_);
121 data_container = canonical_code_data_container;
122 } else {
123 if (CompiledWithConcurrentBaseline()) {
124 data_container = local_isolate_->factory()->NewCodeDataContainer(
125 0, AllocationType::kOld);
126 } else {
127 data_container = factory->NewCodeDataContainer(
128 0, read_only_data_container_ ? AllocationType::kReadOnly
129 : AllocationType::kOld);
130 }
131 if (V8_EXTERNAL_CODE_SPACE_BOOL) {
132 data_container->initialize_flags(kind_, builtin_);
133 }
134 data_container->set_kind_specific_flags(kind_specific_flags_,
135 kRelaxedStore);
136 }
137
138 // Basic block profiling data for builtins is stored in the JS heap rather
139 // than in separately-allocated C++ objects. Allocate that data now if
140 // appropriate.
141 Handle<OnHeapBasicBlockProfilerData> on_heap_profiler_data;
142 if (profiler_data_ && isolate_->IsGeneratingEmbeddedBuiltins()) {
143 on_heap_profiler_data = profiler_data_->CopyToJSHeap(isolate_);
144
145 // Add the on-heap data to a global list, which keeps it alive and allows
146 // iteration.
147 Handle<ArrayList> list(isolate_->heap()->basic_block_profiling_data(),
148 isolate_);
149 Handle<ArrayList> new_list =
150 ArrayList::Add(isolate_, list, on_heap_profiler_data);
151 isolate_->heap()->SetBasicBlockProfilingData(new_list);
152 }
153
154 STATIC_ASSERT(Code::kOnHeapBodyIsContiguous);
155 Heap* heap = isolate_->heap();
156 CodePageCollectionMemoryModificationScope code_allocation(heap);
157
158 Handle<Code> code;
159 if (CompiledWithConcurrentBaseline()) {
160 if (!AllocateConcurrentSparkplugCode(retry_allocation_or_fail)
161 .ToHandle(&code)) {
162 return MaybeHandle<Code>();
163 }
164 } else if (!AllocateCode(retry_allocation_or_fail).ToHandle(&code)) {
165 return MaybeHandle<Code>();
166 }
167
168 {
169 Code raw_code = *code;
170 constexpr bool kIsNotOffHeapTrampoline = false;
171 DisallowGarbageCollection no_gc;
172
173 raw_code.set_raw_instruction_size(code_desc_.instruction_size());
174 raw_code.set_raw_metadata_size(code_desc_.metadata_size());
175 raw_code.set_relocation_info(*reloc_info);
176 raw_code.initialize_flags(kind_, is_turbofanned_, stack_slots_,
177 kIsNotOffHeapTrampoline);
178 raw_code.set_builtin_id(builtin_);
179 // This might impact direct concurrent reads from TF if we are resetting
180 // this field. We currently assume it's immutable thus a relaxed read (after
181 // passing IsPendingAllocation).
182 raw_code.set_inlined_bytecode_size(inlined_bytecode_size_);
183 raw_code.set_code_data_container(*data_container, kReleaseStore);
184 if (kind_ == CodeKind::BASELINE) {
185 raw_code.set_bytecode_or_interpreter_data(*interpreter_data_);
186 raw_code.set_bytecode_offset_table(*position_table_);
187 } else {
188 raw_code.set_deoptimization_data(*deoptimization_data_);
189 raw_code.set_source_position_table(*position_table_);
190 }
191 raw_code.set_handler_table_offset(
192 code_desc_.handler_table_offset_relative());
193 raw_code.set_constant_pool_offset(
194 code_desc_.constant_pool_offset_relative());
195 raw_code.set_code_comments_offset(
196 code_desc_.code_comments_offset_relative());
197 raw_code.set_unwinding_info_offset(
198 code_desc_.unwinding_info_offset_relative());
199
200 // Allow self references to created code object by patching the handle to
201 // point to the newly allocated Code object.
202 Handle<Object> self_reference;
203 if (self_reference_.ToHandle(&self_reference)) {
204 DCHECK(self_reference->IsOddball());
205 DCHECK_EQ(Oddball::cast(*self_reference).kind(),
206 Oddball::kSelfReferenceMarker);
207 DCHECK_NE(kind_, CodeKind::BASELINE);
208 if (isolate_->IsGeneratingEmbeddedBuiltins()) {
209 isolate_->builtins_constants_table_builder()->PatchSelfReference(
210 self_reference, code);
211 }
212 self_reference.PatchValue(*code);
213 }
214
215 // Likewise, any references to the basic block counters marker need to be
216 // updated to point to the newly-allocated counters array.
217 if (!on_heap_profiler_data.is_null()) {
218 isolate_->builtins_constants_table_builder()
219 ->PatchBasicBlockCountersReference(
220 handle(on_heap_profiler_data->counts(), isolate_));
221 }
222
223 // Migrate generated code.
224 // The generated code can contain embedded objects (typically from
225 // handles) in a pointer-to-tagged-value format (i.e. with indirection
226 // like a handle) that are dereferenced during the copy to point directly
227 // to the actual heap objects. These pointers can include references to
228 // the code object itself, through the self_reference parameter.
229 raw_code.CopyFromNoFlush(*reloc_info, heap, code_desc_);
230
231 raw_code.clear_padding();
232
233 if (V8_EXTERNAL_CODE_SPACE_BOOL) {
234 raw_code.set_main_cage_base(isolate_->cage_base(), kRelaxedStore);
235 data_container->SetCodeAndEntryPoint(isolate_, raw_code);
236 }
237 #ifdef VERIFY_HEAP
238 if (FLAG_verify_heap) HeapObject::VerifyCodePointer(isolate_, raw_code);
239 #endif
240
241 // Flush the instruction cache before changing the permissions.
242 // Note: we do this before setting permissions to ReadExecute because on
243 // some older ARM kernels there is a bug which causes an access error on
244 // cache flush instructions to trigger access error on non-writable memory.
245 // See https://bugs.chromium.org/p/v8/issues/detail?id=8157
246 raw_code.FlushICache();
247 }
248
249 if (profiler_data_ && FLAG_turbo_profiling_verbose) {
250 #ifdef ENABLE_DISASSEMBLER
251 std::ostringstream os;
252 code->Disassemble(nullptr, os, isolate_);
253 if (!on_heap_profiler_data.is_null()) {
254 Handle<String> disassembly =
255 isolate_->factory()->NewStringFromAsciiChecked(os.str().c_str(),
256 AllocationType::kOld);
257 on_heap_profiler_data->set_code(*disassembly);
258 } else {
259 profiler_data_->SetCode(os);
260 }
261 #endif // ENABLE_DISASSEMBLER
262 }
263
264 return code;
265 }
266
267 // TODO(victorgomes): Unify the two AllocateCodes
AllocateCode(bool retry_allocation_or_fail)268 MaybeHandle<Code> Factory::CodeBuilder::AllocateCode(
269 bool retry_allocation_or_fail) {
270 Heap* heap = isolate_->heap();
271 HeapAllocator* allocator = heap->allocator();
272 HeapObject result;
273 AllocationType allocation_type = V8_EXTERNAL_CODE_SPACE_BOOL || is_executable_
274 ? AllocationType::kCode
275 : AllocationType::kReadOnly;
276 const int object_size = Code::SizeFor(code_desc_.body_size());
277 if (retry_allocation_or_fail) {
278 result = allocator->AllocateRawWith<HeapAllocator::kRetryOrFail>(
279 object_size, allocation_type, AllocationOrigin::kRuntime);
280 } else {
281 result = allocator->AllocateRawWith<HeapAllocator::kLightRetry>(
282 object_size, allocation_type, AllocationOrigin::kRuntime);
283 // Return an empty handle if we cannot allocate the code object.
284 if (result.is_null()) return MaybeHandle<Code>();
285 }
286
287 // The code object has not been fully initialized yet. We rely on the
288 // fact that no allocation will happen from this point on.
289 DisallowGarbageCollection no_gc;
290 result.set_map_after_allocation(*isolate_->factory()->code_map(),
291 SKIP_WRITE_BARRIER);
292 Handle<Code> code = handle(Code::cast(result), isolate_);
293 if (is_executable_) {
294 DCHECK(IsAligned(code->address(), kCodeAlignment));
295 DCHECK_IMPLIES(
296 !V8_ENABLE_THIRD_PARTY_HEAP_BOOL && !heap->code_region().is_empty(),
297 heap->code_region().contains(code->address()));
298 }
299 return code;
300 }
301
AllocateConcurrentSparkplugCode(bool retry_allocation_or_fail)302 MaybeHandle<Code> Factory::CodeBuilder::AllocateConcurrentSparkplugCode(
303 bool retry_allocation_or_fail) {
304 LocalHeap* heap = local_isolate_->heap();
305 AllocationType allocation_type = V8_EXTERNAL_CODE_SPACE_BOOL || is_executable_
306 ? AllocationType::kCode
307 : AllocationType::kReadOnly;
308 const int object_size = Code::SizeFor(code_desc_.body_size());
309 HeapObject result;
310 if (!heap->AllocateRaw(object_size, allocation_type).To(&result)) {
311 return MaybeHandle<Code>();
312 }
313 CHECK(!result.is_null());
314
315 // The code object has not been fully initialized yet. We rely on the
316 // fact that no allocation will happen from this point on.
317 DisallowGarbageCollection no_gc;
318 result.set_map_after_allocation(*local_isolate_->factory()->code_map(),
319 SKIP_WRITE_BARRIER);
320 Handle<Code> code = handle(Code::cast(result), local_isolate_);
321 DCHECK_IMPLIES(is_executable_, IsAligned(code->address(), kCodeAlignment));
322 return code;
323 }
324
TryBuild()325 MaybeHandle<Code> Factory::CodeBuilder::TryBuild() {
326 return BuildInternal(false);
327 }
328
Build()329 Handle<Code> Factory::CodeBuilder::Build() {
330 return BuildInternal(true).ToHandleChecked();
331 }
332
AllocateRaw(int size,AllocationType allocation,AllocationAlignment alignment)333 HeapObject Factory::AllocateRaw(int size, AllocationType allocation,
334 AllocationAlignment alignment) {
335 return allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
336 size, allocation, AllocationOrigin::kRuntime, alignment);
337 }
338
AllocateRawWithAllocationSite(Handle<Map> map,AllocationType allocation,Handle<AllocationSite> allocation_site)339 HeapObject Factory::AllocateRawWithAllocationSite(
340 Handle<Map> map, AllocationType allocation,
341 Handle<AllocationSite> allocation_site) {
342 DCHECK(map->instance_type() != MAP_TYPE);
343 int size = map->instance_size();
344 if (!allocation_site.is_null()) {
345 DCHECK(V8_ALLOCATION_SITE_TRACKING_BOOL);
346 size += AllocationMemento::kSize;
347 }
348 HeapObject result = allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
349 size, allocation);
350 WriteBarrierMode write_barrier_mode = allocation == AllocationType::kYoung
351 ? SKIP_WRITE_BARRIER
352 : UPDATE_WRITE_BARRIER;
353 result.set_map_after_allocation(*map, write_barrier_mode);
354 if (!allocation_site.is_null()) {
355 AllocationMemento alloc_memento = AllocationMemento::unchecked_cast(
356 Object(result.ptr() + map->instance_size()));
357 InitializeAllocationMemento(alloc_memento, *allocation_site);
358 }
359 return result;
360 }
361
InitializeAllocationMemento(AllocationMemento memento,AllocationSite allocation_site)362 void Factory::InitializeAllocationMemento(AllocationMemento memento,
363 AllocationSite allocation_site) {
364 DCHECK(V8_ALLOCATION_SITE_TRACKING_BOOL);
365 memento.set_map_after_allocation(*allocation_memento_map(),
366 SKIP_WRITE_BARRIER);
367 memento.set_allocation_site(allocation_site, SKIP_WRITE_BARRIER);
368 if (FLAG_allocation_site_pretenuring) {
369 allocation_site.IncrementMementoCreateCount();
370 }
371 }
372
New(Handle<Map> map,AllocationType allocation)373 HeapObject Factory::New(Handle<Map> map, AllocationType allocation) {
374 DCHECK(map->instance_type() != MAP_TYPE);
375 int size = map->instance_size();
376 HeapObject result = allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
377 size, allocation);
378 // New space objects are allocated white.
379 WriteBarrierMode write_barrier_mode = allocation == AllocationType::kYoung
380 ? SKIP_WRITE_BARRIER
381 : UPDATE_WRITE_BARRIER;
382 result.set_map_after_allocation(*map, write_barrier_mode);
383 return result;
384 }
385
NewFillerObject(int size,AllocationAlignment alignment,AllocationType allocation,AllocationOrigin origin)386 Handle<HeapObject> Factory::NewFillerObject(int size,
387 AllocationAlignment alignment,
388 AllocationType allocation,
389 AllocationOrigin origin) {
390 Heap* heap = isolate()->heap();
391 HeapObject result = allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
392 size, allocation, origin, alignment);
393 heap->CreateFillerObjectAt(result.address(), size, ClearRecordedSlots::kNo);
394 return Handle<HeapObject>(result, isolate());
395 }
396
NewPrototypeInfo()397 Handle<PrototypeInfo> Factory::NewPrototypeInfo() {
398 auto result = NewStructInternal<PrototypeInfo>(PROTOTYPE_INFO_TYPE,
399 AllocationType::kOld);
400 DisallowGarbageCollection no_gc;
401 result.set_prototype_users(Smi::zero());
402 result.set_registry_slot(PrototypeInfo::UNREGISTERED);
403 result.set_bit_field(0);
404 result.set_module_namespace(*undefined_value(), SKIP_WRITE_BARRIER);
405 return handle(result, isolate());
406 }
407
NewEnumCache(Handle<FixedArray> keys,Handle<FixedArray> indices)408 Handle<EnumCache> Factory::NewEnumCache(Handle<FixedArray> keys,
409 Handle<FixedArray> indices) {
410 auto result =
411 NewStructInternal<EnumCache>(ENUM_CACHE_TYPE, AllocationType::kOld);
412 DisallowGarbageCollection no_gc;
413 result.set_keys(*keys);
414 result.set_indices(*indices);
415 return handle(result, isolate());
416 }
417
NewTuple2(Handle<Object> value1,Handle<Object> value2,AllocationType allocation)418 Handle<Tuple2> Factory::NewTuple2(Handle<Object> value1, Handle<Object> value2,
419 AllocationType allocation) {
420 auto result = NewStructInternal<Tuple2>(TUPLE2_TYPE, allocation);
421 DisallowGarbageCollection no_gc;
422 result.set_value1(*value1);
423 result.set_value2(*value2);
424 return handle(result, isolate());
425 }
426
NewOddball(Handle<Map> map,const char * to_string,Handle<Object> to_number,const char * type_of,byte kind)427 Handle<Oddball> Factory::NewOddball(Handle<Map> map, const char* to_string,
428 Handle<Object> to_number,
429 const char* type_of, byte kind) {
430 Handle<Oddball> oddball(Oddball::cast(New(map, AllocationType::kReadOnly)),
431 isolate());
432 Oddball::Initialize(isolate(), oddball, to_string, to_number, type_of, kind);
433 return oddball;
434 }
435
NewSelfReferenceMarker()436 Handle<Oddball> Factory::NewSelfReferenceMarker() {
437 return NewOddball(self_reference_marker_map(), "self_reference_marker",
438 handle(Smi::FromInt(-1), isolate()), "undefined",
439 Oddball::kSelfReferenceMarker);
440 }
441
NewBasicBlockCountersMarker()442 Handle<Oddball> Factory::NewBasicBlockCountersMarker() {
443 return NewOddball(basic_block_counters_marker_map(),
444 "basic_block_counters_marker",
445 handle(Smi::FromInt(-1), isolate()), "undefined",
446 Oddball::kBasicBlockCountersMarker);
447 }
448
NewPropertyArray(int length,AllocationType allocation)449 Handle<PropertyArray> Factory::NewPropertyArray(int length,
450 AllocationType allocation) {
451 DCHECK_LE(0, length);
452 if (length == 0) return empty_property_array();
453 HeapObject result = AllocateRawFixedArray(length, allocation);
454 DisallowGarbageCollection no_gc;
455 result.set_map_after_allocation(*property_array_map(), SKIP_WRITE_BARRIER);
456 PropertyArray array = PropertyArray::cast(result);
457 array.initialize_length(length);
458 MemsetTagged(array.data_start(), read_only_roots().undefined_value(), length);
459 return handle(array, isolate());
460 }
461
TryNewFixedArray(int length,AllocationType allocation_type)462 MaybeHandle<FixedArray> Factory::TryNewFixedArray(
463 int length, AllocationType allocation_type) {
464 DCHECK_LE(0, length);
465 if (length == 0) return empty_fixed_array();
466
467 int size = FixedArray::SizeFor(length);
468 Heap* heap = isolate()->heap();
469 AllocationResult allocation = heap->AllocateRaw(size, allocation_type);
470 HeapObject result;
471 if (!allocation.To(&result)) return MaybeHandle<FixedArray>();
472 if ((size > heap->MaxRegularHeapObjectSize(allocation_type)) &&
473 FLAG_use_marking_progress_bar) {
474 LargePage::FromHeapObject(result)->ProgressBar().Enable();
475 }
476 DisallowGarbageCollection no_gc;
477 result.set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER);
478 FixedArray array = FixedArray::cast(result);
479 array.set_length(length);
480 MemsetTagged(array.data_start(), *undefined_value(), length);
481 return handle(array, isolate());
482 }
483
NewClosureFeedbackCellArray(int length)484 Handle<ClosureFeedbackCellArray> Factory::NewClosureFeedbackCellArray(
485 int length) {
486 if (length == 0) return empty_closure_feedback_cell_array();
487
488 Handle<ClosureFeedbackCellArray> feedback_cell_array =
489 Handle<ClosureFeedbackCellArray>::cast(NewFixedArrayWithMap(
490 read_only_roots().closure_feedback_cell_array_map_handle(), length,
491 AllocationType::kOld));
492
493 return feedback_cell_array;
494 }
495
NewFeedbackVector(Handle<SharedFunctionInfo> shared,Handle<ClosureFeedbackCellArray> closure_feedback_cell_array)496 Handle<FeedbackVector> Factory::NewFeedbackVector(
497 Handle<SharedFunctionInfo> shared,
498 Handle<ClosureFeedbackCellArray> closure_feedback_cell_array) {
499 int length = shared->feedback_metadata().slot_count();
500 DCHECK_LE(0, length);
501 int size = FeedbackVector::SizeFor(length);
502
503 FeedbackVector vector = FeedbackVector::cast(AllocateRawWithImmortalMap(
504 size, AllocationType::kOld, *feedback_vector_map()));
505 DisallowGarbageCollection no_gc;
506 vector.set_shared_function_info(*shared);
507 vector.set_maybe_optimized_code(HeapObjectReference::ClearedValue(isolate()),
508 kReleaseStore);
509 vector.set_length(length);
510 vector.set_invocation_count(0);
511 vector.set_profiler_ticks(0);
512 vector.reset_flags();
513 vector.set_closure_feedback_cell_array(*closure_feedback_cell_array);
514
515 // TODO(leszeks): Initialize based on the feedback metadata.
516 MemsetTagged(ObjectSlot(vector.slots_start()), *undefined_value(), length);
517 return handle(vector, isolate());
518 }
519
NewEmbedderDataArray(int length)520 Handle<EmbedderDataArray> Factory::NewEmbedderDataArray(int length) {
521 DCHECK_LE(0, length);
522 int size = EmbedderDataArray::SizeFor(length);
523 EmbedderDataArray array = EmbedderDataArray::cast(AllocateRawWithImmortalMap(
524 size, AllocationType::kYoung, *embedder_data_array_map()));
525 DisallowGarbageCollection no_gc;
526 array.set_length(length);
527
528 if (length > 0) {
529 for (int i = 0; i < length; i++) {
530 // TODO(v8): consider initializing embedded data array with Smi::zero().
531 EmbedderDataSlot(array, i).Initialize(*undefined_value());
532 }
533 }
534 return handle(array, isolate());
535 }
536
NewFixedDoubleArrayWithHoles(int length)537 Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(int length) {
538 DCHECK_LE(0, length);
539 Handle<FixedArrayBase> array = NewFixedDoubleArray(length);
540 if (length > 0) {
541 Handle<FixedDoubleArray>::cast(array)->FillWithHoles(0, length);
542 }
543 return array;
544 }
545
546 template <typename T>
AllocateSmallOrderedHashTable(Handle<Map> map,int capacity,AllocationType allocation)547 Handle<T> Factory::AllocateSmallOrderedHashTable(Handle<Map> map, int capacity,
548 AllocationType allocation) {
549 // Capacity must be a power of two, since we depend on being able
550 // to divide and multiple by 2 (kLoadFactor) to derive capacity
551 // from number of buckets. If we decide to change kLoadFactor
552 // to something other than 2, capacity should be stored as another
553 // field of this object.
554 DCHECK_EQ(T::kLoadFactor, 2);
555 capacity =
556 base::bits::RoundUpToPowerOfTwo32(std::max({T::kMinCapacity, capacity}));
557 capacity = std::min({capacity, T::kMaxCapacity});
558
559 DCHECK_LT(0, capacity);
560 DCHECK_EQ(0, capacity % T::kLoadFactor);
561
562 int size = T::SizeFor(capacity);
563 HeapObject result = AllocateRawWithImmortalMap(size, allocation, *map);
564 Handle<T> table(T::cast(result), isolate());
565 table->Initialize(isolate(), capacity);
566 return table;
567 }
568
NewSmallOrderedHashSet(int capacity,AllocationType allocation)569 Handle<SmallOrderedHashSet> Factory::NewSmallOrderedHashSet(
570 int capacity, AllocationType allocation) {
571 return AllocateSmallOrderedHashTable<SmallOrderedHashSet>(
572 small_ordered_hash_set_map(), capacity, allocation);
573 }
574
NewSmallOrderedHashMap(int capacity,AllocationType allocation)575 Handle<SmallOrderedHashMap> Factory::NewSmallOrderedHashMap(
576 int capacity, AllocationType allocation) {
577 return AllocateSmallOrderedHashTable<SmallOrderedHashMap>(
578 small_ordered_hash_map_map(), capacity, allocation);
579 }
580
NewSmallOrderedNameDictionary(int capacity,AllocationType allocation)581 Handle<SmallOrderedNameDictionary> Factory::NewSmallOrderedNameDictionary(
582 int capacity, AllocationType allocation) {
583 Handle<SmallOrderedNameDictionary> dict =
584 AllocateSmallOrderedHashTable<SmallOrderedNameDictionary>(
585 small_ordered_name_dictionary_map(), capacity, allocation);
586 dict->SetHash(PropertyArray::kNoHashSentinel);
587 return dict;
588 }
589
NewOrderedHashSet()590 Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
591 return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kInitialCapacity,
592 AllocationType::kYoung)
593 .ToHandleChecked();
594 }
595
NewOrderedHashMap()596 Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
597 return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kInitialCapacity,
598 AllocationType::kYoung)
599 .ToHandleChecked();
600 }
601
NewOrderedNameDictionary(int capacity)602 Handle<OrderedNameDictionary> Factory::NewOrderedNameDictionary(int capacity) {
603 return OrderedNameDictionary::Allocate(isolate(), capacity,
604 AllocationType::kYoung)
605 .ToHandleChecked();
606 }
607
NewNameDictionary(int at_least_space_for)608 Handle<NameDictionary> Factory::NewNameDictionary(int at_least_space_for) {
609 return NameDictionary::New(isolate(), at_least_space_for);
610 }
611
NewPropertyDescriptorObject()612 Handle<PropertyDescriptorObject> Factory::NewPropertyDescriptorObject() {
613 auto object = NewStructInternal<PropertyDescriptorObject>(
614 PROPERTY_DESCRIPTOR_OBJECT_TYPE, AllocationType::kYoung);
615 DisallowGarbageCollection no_gc;
616 object.set_flags(0);
617 Oddball the_hole = read_only_roots().the_hole_value();
618 object.set_value(the_hole, SKIP_WRITE_BARRIER);
619 object.set_get(the_hole, SKIP_WRITE_BARRIER);
620 object.set_set(the_hole, SKIP_WRITE_BARRIER);
621 return handle(object, isolate());
622 }
623
CreateCanonicalEmptySwissNameDictionary()624 Handle<SwissNameDictionary> Factory::CreateCanonicalEmptySwissNameDictionary() {
625 // This function is only supposed to be used to create the canonical empty
626 // version and should not be used afterwards.
627 DCHECK_EQ(kNullAddress, ReadOnlyRoots(isolate()).at(
628 RootIndex::kEmptySwissPropertyDictionary));
629
630 ReadOnlyRoots roots(isolate());
631
632 Handle<ByteArray> empty_meta_table =
633 NewByteArray(SwissNameDictionary::kMetaTableEnumerationDataStartIndex,
634 AllocationType::kReadOnly);
635
636 Map map = roots.swiss_name_dictionary_map();
637 int size = SwissNameDictionary::SizeFor(0);
638 HeapObject obj =
639 AllocateRawWithImmortalMap(size, AllocationType::kReadOnly, map);
640 SwissNameDictionary result = SwissNameDictionary::cast(obj);
641 result.Initialize(isolate(), *empty_meta_table, 0);
642 return handle(result, isolate());
643 }
644
645 // Internalized strings are created in the old generation (data space).
InternalizeUtf8String(const base::Vector<const char> & string)646 Handle<String> Factory::InternalizeUtf8String(
647 const base::Vector<const char>& string) {
648 base::Vector<const uint8_t> utf8_data =
649 base::Vector<const uint8_t>::cast(string);
650 Utf8Decoder decoder(utf8_data);
651 if (decoder.is_ascii()) return InternalizeString(utf8_data);
652 if (decoder.is_one_byte()) {
653 std::unique_ptr<uint8_t[]> buffer(new uint8_t[decoder.utf16_length()]);
654 decoder.Decode(buffer.get(), utf8_data);
655 return InternalizeString(
656 base::Vector<const uint8_t>(buffer.get(), decoder.utf16_length()));
657 }
658 std::unique_ptr<uint16_t[]> buffer(new uint16_t[decoder.utf16_length()]);
659 decoder.Decode(buffer.get(), utf8_data);
660 return InternalizeString(
661 base::Vector<const base::uc16>(buffer.get(), decoder.utf16_length()));
662 }
663
664 template <typename SeqString>
InternalizeString(Handle<SeqString> string,int from,int length,bool convert_encoding)665 Handle<String> Factory::InternalizeString(Handle<SeqString> string, int from,
666 int length, bool convert_encoding) {
667 SeqSubStringKey<SeqString> key(isolate(), string, from, length,
668 convert_encoding);
669 return InternalizeStringWithKey(&key);
670 }
671
672 template Handle<String> Factory::InternalizeString(
673 Handle<SeqOneByteString> string, int from, int length,
674 bool convert_encoding);
675 template Handle<String> Factory::InternalizeString(
676 Handle<SeqTwoByteString> string, int from, int length,
677 bool convert_encoding);
678
NewStringFromOneByte(const base::Vector<const uint8_t> & string,AllocationType allocation)679 MaybeHandle<String> Factory::NewStringFromOneByte(
680 const base::Vector<const uint8_t>& string, AllocationType allocation) {
681 DCHECK_NE(allocation, AllocationType::kReadOnly);
682 int length = string.length();
683 if (length == 0) return empty_string();
684 if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
685 Handle<SeqOneByteString> result;
686 ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
687 NewRawOneByteString(string.length(), allocation),
688 String);
689
690 DisallowGarbageCollection no_gc;
691 // Copy the characters into the new object.
692 CopyChars(SeqOneByteString::cast(*result).GetChars(no_gc), string.begin(),
693 length);
694 return result;
695 }
696
NewStringFromUtf8(const base::Vector<const char> & string,AllocationType allocation)697 MaybeHandle<String> Factory::NewStringFromUtf8(
698 const base::Vector<const char>& string, AllocationType allocation) {
699 base::Vector<const uint8_t> utf8_data =
700 base::Vector<const uint8_t>::cast(string);
701 Utf8Decoder decoder(utf8_data);
702
703 if (decoder.utf16_length() == 0) return empty_string();
704
705 if (decoder.is_one_byte()) {
706 // Allocate string.
707 Handle<SeqOneByteString> result;
708 ASSIGN_RETURN_ON_EXCEPTION(
709 isolate(), result,
710 NewRawOneByteString(decoder.utf16_length(), allocation), String);
711
712 DisallowGarbageCollection no_gc;
713 decoder.Decode(result->GetChars(no_gc), utf8_data);
714 return result;
715 }
716
717 // Allocate string.
718 Handle<SeqTwoByteString> result;
719 ASSIGN_RETURN_ON_EXCEPTION(
720 isolate(), result,
721 NewRawTwoByteString(decoder.utf16_length(), allocation), String);
722
723 DisallowGarbageCollection no_gc;
724 decoder.Decode(result->GetChars(no_gc), utf8_data);
725 return result;
726 }
727
NewStringFromUtf8SubString(Handle<SeqOneByteString> str,int begin,int length,AllocationType allocation)728 MaybeHandle<String> Factory::NewStringFromUtf8SubString(
729 Handle<SeqOneByteString> str, int begin, int length,
730 AllocationType allocation) {
731 base::Vector<const uint8_t> utf8_data;
732 {
733 DisallowGarbageCollection no_gc;
734 utf8_data =
735 base::Vector<const uint8_t>(str->GetChars(no_gc) + begin, length);
736 }
737 Utf8Decoder decoder(utf8_data);
738
739 if (length == 1) {
740 uint16_t t;
741 // Decode even in the case of length 1 since it can be a bad character.
742 decoder.Decode(&t, utf8_data);
743 return LookupSingleCharacterStringFromCode(t);
744 }
745
746 if (decoder.is_ascii()) {
747 // If the string is ASCII, we can just make a substring.
748 // TODO(v8): the allocation flag is ignored in this case.
749 return NewSubString(str, begin, begin + length);
750 }
751
752 DCHECK_GT(decoder.utf16_length(), 0);
753
754 if (decoder.is_one_byte()) {
755 // Allocate string.
756 Handle<SeqOneByteString> result;
757 ASSIGN_RETURN_ON_EXCEPTION(
758 isolate(), result,
759 NewRawOneByteString(decoder.utf16_length(), allocation), String);
760 DisallowGarbageCollection no_gc;
761 // Update pointer references, since the original string may have moved after
762 // allocation.
763 utf8_data =
764 base::Vector<const uint8_t>(str->GetChars(no_gc) + begin, length);
765 decoder.Decode(result->GetChars(no_gc), utf8_data);
766 return result;
767 }
768
769 // Allocate string.
770 Handle<SeqTwoByteString> result;
771 ASSIGN_RETURN_ON_EXCEPTION(
772 isolate(), result,
773 NewRawTwoByteString(decoder.utf16_length(), allocation), String);
774
775 DisallowGarbageCollection no_gc;
776 // Update pointer references, since the original string may have moved after
777 // allocation.
778 utf8_data = base::Vector<const uint8_t>(str->GetChars(no_gc) + begin, length);
779 decoder.Decode(result->GetChars(no_gc), utf8_data);
780 return result;
781 }
782
NewStringFromTwoByte(const base::uc16 * string,int length,AllocationType allocation)783 MaybeHandle<String> Factory::NewStringFromTwoByte(const base::uc16* string,
784 int length,
785 AllocationType allocation) {
786 DCHECK_NE(allocation, AllocationType::kReadOnly);
787 if (length == 0) return empty_string();
788 if (String::IsOneByte(string, length)) {
789 if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
790 Handle<SeqOneByteString> result;
791 ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
792 NewRawOneByteString(length, allocation), String);
793 DisallowGarbageCollection no_gc;
794 CopyChars(result->GetChars(no_gc), string, length);
795 return result;
796 } else {
797 Handle<SeqTwoByteString> result;
798 ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
799 NewRawTwoByteString(length, allocation), String);
800 DisallowGarbageCollection no_gc;
801 CopyChars(result->GetChars(no_gc), string, length);
802 return result;
803 }
804 }
805
NewStringFromTwoByte(const base::Vector<const base::uc16> & string,AllocationType allocation)806 MaybeHandle<String> Factory::NewStringFromTwoByte(
807 const base::Vector<const base::uc16>& string, AllocationType allocation) {
808 return NewStringFromTwoByte(string.begin(), string.length(), allocation);
809 }
810
NewStringFromTwoByte(const ZoneVector<base::uc16> * string,AllocationType allocation)811 MaybeHandle<String> Factory::NewStringFromTwoByte(
812 const ZoneVector<base::uc16>* string, AllocationType allocation) {
813 return NewStringFromTwoByte(string->data(), static_cast<int>(string->size()),
814 allocation);
815 }
816
817 namespace {
818
WriteOneByteData(Handle<String> s,uint8_t * chars,int len)819 inline void WriteOneByteData(Handle<String> s, uint8_t* chars, int len) {
820 DCHECK(s->length() == len);
821 String::WriteToFlat(*s, chars, 0, len);
822 }
823
WriteTwoByteData(Handle<String> s,uint16_t * chars,int len)824 inline void WriteTwoByteData(Handle<String> s, uint16_t* chars, int len) {
825 DCHECK(s->length() == len);
826 String::WriteToFlat(*s, chars, 0, len);
827 }
828
829 } // namespace
830
831 template <bool is_one_byte, typename T>
AllocateInternalizedStringImpl(T t,int chars,uint32_t hash_field)832 Handle<String> Factory::AllocateInternalizedStringImpl(T t, int chars,
833 uint32_t hash_field) {
834 DCHECK_LE(0, chars);
835 DCHECK_GE(String::kMaxLength, chars);
836
837 // Compute map and object size.
838 int size;
839 Map map;
840 if (is_one_byte) {
841 map = *one_byte_internalized_string_map();
842 size = SeqOneByteString::SizeFor(chars);
843 } else {
844 map = *internalized_string_map();
845 size = SeqTwoByteString::SizeFor(chars);
846 }
847
848 String result = String::cast(AllocateRawWithImmortalMap(
849 size,
850 RefineAllocationTypeForInPlaceInternalizableString(
851 CanAllocateInReadOnlySpace() ? AllocationType::kReadOnly
852 : AllocationType::kOld,
853 map),
854 map));
855 DisallowGarbageCollection no_gc;
856 result.set_length(chars);
857 result.set_raw_hash_field(hash_field);
858 DCHECK_EQ(size, result.Size());
859
860 if (is_one_byte) {
861 WriteOneByteData(t, SeqOneByteString::cast(result).GetChars(no_gc), chars);
862 } else {
863 WriteTwoByteData(t, SeqTwoByteString::cast(result).GetChars(no_gc), chars);
864 }
865 return handle(result, isolate());
866 }
867
NewInternalizedStringImpl(Handle<String> string,int chars,uint32_t hash_field)868 Handle<String> Factory::NewInternalizedStringImpl(Handle<String> string,
869 int chars,
870 uint32_t hash_field) {
871 if (string->IsOneByteRepresentation()) {
872 return AllocateInternalizedStringImpl<true>(string, chars, hash_field);
873 }
874 return AllocateInternalizedStringImpl<false>(string, chars, hash_field);
875 }
876
ComputeInternalizationStrategyForString(Handle<String> string,MaybeHandle<Map> * internalized_map)877 StringTransitionStrategy Factory::ComputeInternalizationStrategyForString(
878 Handle<String> string, MaybeHandle<Map>* internalized_map) {
879 // Do not internalize young strings in-place: This allows us to ignore both
880 // string table and stub cache on scavenges.
881 if (Heap::InYoungGeneration(*string)) {
882 return StringTransitionStrategy::kCopy;
883 }
884 DCHECK_NOT_NULL(internalized_map);
885 DisallowGarbageCollection no_gc;
886 // This method may be called concurrently, so snapshot the map from the input
887 // string instead of the calling IsType methods on HeapObject, which would
888 // reload the map each time.
889 Map map = string->map();
890 *internalized_map = GetInPlaceInternalizedStringMap(map);
891 if (!internalized_map->is_null()) {
892 return StringTransitionStrategy::kInPlace;
893 }
894 if (InstanceTypeChecker::IsInternalizedString(map.instance_type())) {
895 return StringTransitionStrategy::kAlreadyTransitioned;
896 }
897 return StringTransitionStrategy::kCopy;
898 }
899
900 template <class StringClass>
InternalizeExternalString(Handle<String> string)901 Handle<StringClass> Factory::InternalizeExternalString(Handle<String> string) {
902 Handle<Map> map =
903 GetInPlaceInternalizedStringMap(string->map()).ToHandleChecked();
904 StringClass external_string =
905 StringClass::cast(New(map, AllocationType::kOld));
906 DisallowGarbageCollection no_gc;
907 external_string.AllocateExternalPointerEntries(isolate());
908 StringClass cast_string = StringClass::cast(*string);
909 external_string.set_length(cast_string.length());
910 external_string.set_raw_hash_field(cast_string.raw_hash_field());
911 external_string.SetResource(isolate(), nullptr);
912 isolate()->heap()->RegisterExternalString(external_string);
913 return handle(external_string, isolate());
914 }
915
916 template Handle<ExternalOneByteString>
917 Factory::InternalizeExternalString<ExternalOneByteString>(Handle<String>);
918 template Handle<ExternalTwoByteString>
919 Factory::InternalizeExternalString<ExternalTwoByteString>(Handle<String>);
920
ComputeSharingStrategyForString(Handle<String> string,MaybeHandle<Map> * shared_map)921 StringTransitionStrategy Factory::ComputeSharingStrategyForString(
922 Handle<String> string, MaybeHandle<Map>* shared_map) {
923 DCHECK(FLAG_shared_string_table);
924 // Do not share young strings in-place: there is no shared young space.
925 if (Heap::InYoungGeneration(*string)) {
926 return StringTransitionStrategy::kCopy;
927 }
928 DCHECK_NOT_NULL(shared_map);
929 DisallowGarbageCollection no_gc;
930 InstanceType instance_type = string->map().instance_type();
931 if (StringShape(instance_type).IsShared()) {
932 return StringTransitionStrategy::kAlreadyTransitioned;
933 }
934 switch (instance_type) {
935 case STRING_TYPE:
936 *shared_map = read_only_roots().shared_string_map_handle();
937 return StringTransitionStrategy::kInPlace;
938 case ONE_BYTE_STRING_TYPE:
939 *shared_map = read_only_roots().shared_one_byte_string_map_handle();
940 return StringTransitionStrategy::kInPlace;
941 default:
942 return StringTransitionStrategy::kCopy;
943 }
944 }
945
LookupSingleCharacterStringFromCode(uint16_t code)946 Handle<String> Factory::LookupSingleCharacterStringFromCode(uint16_t code) {
947 if (code <= unibrow::Latin1::kMaxChar) {
948 {
949 DisallowGarbageCollection no_gc;
950 Object value = single_character_string_cache()->get(code);
951 if (value != *undefined_value()) {
952 return handle(String::cast(value), isolate());
953 }
954 }
955 uint8_t buffer[] = {static_cast<uint8_t>(code)};
956 Handle<String> result =
957 InternalizeString(base::Vector<const uint8_t>(buffer, 1));
958 single_character_string_cache()->set(code, *result);
959 return result;
960 }
961 uint16_t buffer[] = {code};
962 return InternalizeString(base::Vector<const uint16_t>(buffer, 1));
963 }
964
NewSurrogatePairString(uint16_t lead,uint16_t trail)965 Handle<String> Factory::NewSurrogatePairString(uint16_t lead, uint16_t trail) {
966 DCHECK_GE(lead, 0xD800);
967 DCHECK_LE(lead, 0xDBFF);
968 DCHECK_GE(trail, 0xDC00);
969 DCHECK_LE(trail, 0xDFFF);
970
971 Handle<SeqTwoByteString> str =
972 isolate()->factory()->NewRawTwoByteString(2).ToHandleChecked();
973 DisallowGarbageCollection no_gc;
974 base::uc16* dest = str->GetChars(no_gc);
975 dest[0] = lead;
976 dest[1] = trail;
977 return str;
978 }
979
NewProperSubString(Handle<String> str,int begin,int end)980 Handle<String> Factory::NewProperSubString(Handle<String> str, int begin,
981 int end) {
982 #if VERIFY_HEAP
983 if (FLAG_verify_heap) str->StringVerify(isolate());
984 #endif
985 DCHECK(begin > 0 || end < str->length());
986
987 str = String::Flatten(isolate(), str);
988
989 int length = end - begin;
990 if (length <= 0) return empty_string();
991 if (length == 1) {
992 return LookupSingleCharacterStringFromCode(str->Get(begin));
993 }
994 if (length == 2) {
995 // Optimization for 2-byte strings often used as keys in a decompression
996 // dictionary. Check whether we already have the string in the string
997 // table to prevent creation of many unnecessary strings.
998 uint16_t c1 = str->Get(begin);
999 uint16_t c2 = str->Get(begin + 1);
1000 return MakeOrFindTwoCharacterString(c1, c2);
1001 }
1002
1003 if (!FLAG_string_slices || length < SlicedString::kMinLength) {
1004 if (str->IsOneByteRepresentation()) {
1005 Handle<SeqOneByteString> result =
1006 NewRawOneByteString(length).ToHandleChecked();
1007 DisallowGarbageCollection no_gc;
1008 uint8_t* dest = result->GetChars(no_gc);
1009 String::WriteToFlat(*str, dest, begin, length);
1010 return result;
1011 } else {
1012 Handle<SeqTwoByteString> result =
1013 NewRawTwoByteString(length).ToHandleChecked();
1014 DisallowGarbageCollection no_gc;
1015 base::uc16* dest = result->GetChars(no_gc);
1016 String::WriteToFlat(*str, dest, begin, length);
1017 return result;
1018 }
1019 }
1020
1021 int offset = begin;
1022
1023 if (str->IsSlicedString()) {
1024 Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
1025 str = Handle<String>(slice->parent(), isolate());
1026 offset += slice->offset();
1027 }
1028 if (str->IsThinString()) {
1029 Handle<ThinString> thin = Handle<ThinString>::cast(str);
1030 str = handle(thin->actual(), isolate());
1031 }
1032
1033 DCHECK(str->IsSeqString() || str->IsExternalString());
1034 Handle<Map> map = str->IsOneByteRepresentation()
1035 ? sliced_one_byte_string_map()
1036 : sliced_string_map();
1037 SlicedString slice = SlicedString::cast(New(map, AllocationType::kYoung));
1038 DisallowGarbageCollection no_gc;
1039 slice.set_raw_hash_field(String::kEmptyHashField);
1040 slice.set_length(length);
1041 slice.set_parent(*str);
1042 slice.set_offset(offset);
1043 return handle(slice, isolate());
1044 }
1045
NewExternalStringFromOneByte(const ExternalOneByteString::Resource * resource)1046 MaybeHandle<String> Factory::NewExternalStringFromOneByte(
1047 const ExternalOneByteString::Resource* resource) {
1048 size_t length = resource->length();
1049 if (length > static_cast<size_t>(String::kMaxLength)) {
1050 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
1051 }
1052 if (length == 0) return empty_string();
1053
1054 Handle<Map> map = resource->IsCacheable()
1055 ? external_one_byte_string_map()
1056 : uncached_external_one_byte_string_map();
1057 ExternalOneByteString external_string =
1058 ExternalOneByteString::cast(New(map, AllocationType::kOld));
1059 DisallowGarbageCollection no_gc;
1060 external_string.AllocateExternalPointerEntries(isolate());
1061 external_string.set_length(static_cast<int>(length));
1062 external_string.set_raw_hash_field(String::kEmptyHashField);
1063 external_string.SetResource(isolate(), resource);
1064
1065 isolate()->heap()->RegisterExternalString(external_string);
1066
1067 return Handle<String>(external_string, isolate());
1068 }
1069
NewExternalStringFromTwoByte(const ExternalTwoByteString::Resource * resource)1070 MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
1071 const ExternalTwoByteString::Resource* resource) {
1072 size_t length = resource->length();
1073 if (length > static_cast<size_t>(String::kMaxLength)) {
1074 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
1075 }
1076 if (length == 0) return empty_string();
1077
1078 Handle<Map> map = resource->IsCacheable() ? external_string_map()
1079 : uncached_external_string_map();
1080 ExternalTwoByteString string =
1081 ExternalTwoByteString::cast(New(map, AllocationType::kOld));
1082 DisallowGarbageCollection no_gc;
1083 string.AllocateExternalPointerEntries(isolate());
1084 string.set_length(static_cast<int>(length));
1085 string.set_raw_hash_field(String::kEmptyHashField);
1086 string.SetResource(isolate(), resource);
1087
1088 isolate()->heap()->RegisterExternalString(string);
1089
1090 return Handle<ExternalTwoByteString>(string, isolate());
1091 }
1092
NewJSStringIterator(Handle<String> string)1093 Handle<JSStringIterator> Factory::NewJSStringIterator(Handle<String> string) {
1094 Handle<Map> map(isolate()->native_context()->initial_string_iterator_map(),
1095 isolate());
1096 Handle<String> flat_string = String::Flatten(isolate(), string);
1097 Handle<JSStringIterator> iterator =
1098 Handle<JSStringIterator>::cast(NewJSObjectFromMap(map));
1099
1100 DisallowGarbageCollection no_gc;
1101 JSStringIterator raw = *iterator;
1102 raw.set_string(*flat_string);
1103 raw.set_index(0);
1104 return iterator;
1105 }
1106
NewSymbolInternal(AllocationType allocation)1107 Symbol Factory::NewSymbolInternal(AllocationType allocation) {
1108 DCHECK(allocation != AllocationType::kYoung);
1109 // Statically ensure that it is safe to allocate symbols in paged spaces.
1110 STATIC_ASSERT(Symbol::kSize <= kMaxRegularHeapObjectSize);
1111
1112 Symbol symbol = Symbol::cast(AllocateRawWithImmortalMap(
1113 Symbol::kSize, allocation, read_only_roots().symbol_map()));
1114 DisallowGarbageCollection no_gc;
1115 // Generate a random hash value.
1116 int hash = isolate()->GenerateIdentityHash(Name::HashBits::kMax);
1117 symbol.set_raw_hash_field(
1118 Name::CreateHashFieldValue(hash, Name::HashFieldType::kHash));
1119 symbol.set_description(read_only_roots().undefined_value(),
1120 SKIP_WRITE_BARRIER);
1121 symbol.set_flags(0);
1122 DCHECK(!symbol.is_private());
1123 return symbol;
1124 }
1125
NewSymbol(AllocationType allocation)1126 Handle<Symbol> Factory::NewSymbol(AllocationType allocation) {
1127 return handle(NewSymbolInternal(allocation), isolate());
1128 }
1129
NewPrivateSymbol(AllocationType allocation)1130 Handle<Symbol> Factory::NewPrivateSymbol(AllocationType allocation) {
1131 DCHECK(allocation != AllocationType::kYoung);
1132 Symbol symbol = NewSymbolInternal(allocation);
1133 DisallowGarbageCollection no_gc;
1134 symbol.set_is_private(true);
1135 return handle(symbol, isolate());
1136 }
1137
NewPrivateNameSymbol(Handle<String> name)1138 Handle<Symbol> Factory::NewPrivateNameSymbol(Handle<String> name) {
1139 Symbol symbol = NewSymbolInternal();
1140 DisallowGarbageCollection no_gc;
1141 symbol.set_is_private_name();
1142 symbol.set_description(*name);
1143 return handle(symbol, isolate());
1144 }
1145
NewContextInternal(Handle<Map> map,int size,int variadic_part_length,AllocationType allocation)1146 Context Factory::NewContextInternal(Handle<Map> map, int size,
1147 int variadic_part_length,
1148 AllocationType allocation) {
1149 DCHECK_LE(Context::kTodoHeaderSize, size);
1150 DCHECK(IsAligned(size, kTaggedSize));
1151 DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length);
1152 DCHECK_LE(Context::SizeFor(variadic_part_length), size);
1153
1154 HeapObject result = allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
1155 size, allocation);
1156 result.set_map_after_allocation(*map);
1157 DisallowGarbageCollection no_gc;
1158 Context context = Context::cast(result);
1159 context.set_length(variadic_part_length);
1160 DCHECK_EQ(context.SizeFromMap(*map), size);
1161 if (size > Context::kTodoHeaderSize) {
1162 ObjectSlot start = context.RawField(Context::kTodoHeaderSize);
1163 ObjectSlot end = context.RawField(size);
1164 size_t slot_count = end - start;
1165 MemsetTagged(start, *undefined_value(), slot_count);
1166 }
1167 return context;
1168 }
1169
NewNativeContext()1170 Handle<NativeContext> Factory::NewNativeContext() {
1171 Handle<Map> map = NewMap(NATIVE_CONTEXT_TYPE, kVariableSizeSentinel);
1172 NativeContext context = NativeContext::cast(NewContextInternal(
1173 map, NativeContext::kSize, NativeContext::NATIVE_CONTEXT_SLOTS,
1174 AllocationType::kOld));
1175 DisallowGarbageCollection no_gc;
1176 context.set_native_context_map(*map);
1177 map->set_native_context(context);
1178 // The ExternalPointerTable is a C++ object.
1179 context.AllocateExternalPointerEntries(isolate());
1180 context.set_scope_info(*native_scope_info());
1181 context.set_previous(Context());
1182 context.set_extension(*undefined_value());
1183 context.set_errors_thrown(Smi::zero());
1184 context.set_math_random_index(Smi::zero());
1185 context.set_serialized_objects(*empty_fixed_array());
1186 context.set_microtask_queue(isolate(), nullptr);
1187 context.set_osr_code_cache(*OSROptimizedCodeCache::Empty(isolate()));
1188 context.set_retained_maps(*empty_weak_array_list());
1189 return handle(context, isolate());
1190 }
1191
NewScriptContext(Handle<NativeContext> outer,Handle<ScopeInfo> scope_info)1192 Handle<Context> Factory::NewScriptContext(Handle<NativeContext> outer,
1193 Handle<ScopeInfo> scope_info) {
1194 DCHECK_EQ(scope_info->scope_type(), SCRIPT_SCOPE);
1195 int variadic_part_length = scope_info->ContextLength();
1196 Context context =
1197 NewContextInternal(handle(outer->script_context_map(), isolate()),
1198 Context::SizeFor(variadic_part_length),
1199 variadic_part_length, AllocationType::kOld);
1200 DisallowGarbageCollection no_gc;
1201 context.set_scope_info(*scope_info);
1202 context.set_previous(*outer);
1203 DCHECK(context.IsScriptContext());
1204 return handle(context, isolate());
1205 }
1206
NewScriptContextTable()1207 Handle<ScriptContextTable> Factory::NewScriptContextTable() {
1208 Handle<ScriptContextTable> context_table = Handle<ScriptContextTable>::cast(
1209 NewFixedArrayWithMap(read_only_roots().script_context_table_map_handle(),
1210 ScriptContextTable::kMinLength));
1211 Handle<NameToIndexHashTable> names = NameToIndexHashTable::New(isolate(), 16);
1212 context_table->set_used(0, kReleaseStore);
1213 context_table->set_names_to_context_index(*names);
1214 return context_table;
1215 }
1216
NewModuleContext(Handle<SourceTextModule> module,Handle<NativeContext> outer,Handle<ScopeInfo> scope_info)1217 Handle<Context> Factory::NewModuleContext(Handle<SourceTextModule> module,
1218 Handle<NativeContext> outer,
1219 Handle<ScopeInfo> scope_info) {
1220 DCHECK_EQ(scope_info->scope_type(), MODULE_SCOPE);
1221 int variadic_part_length = scope_info->ContextLength();
1222 Context context = NewContextInternal(
1223 isolate()->module_context_map(), Context::SizeFor(variadic_part_length),
1224 variadic_part_length, AllocationType::kOld);
1225 DisallowGarbageCollection no_gc;
1226 context.set_scope_info(*scope_info);
1227 context.set_previous(*outer);
1228 context.set_extension(*module);
1229 DCHECK(context.IsModuleContext());
1230 return handle(context, isolate());
1231 }
1232
NewFunctionContext(Handle<Context> outer,Handle<ScopeInfo> scope_info)1233 Handle<Context> Factory::NewFunctionContext(Handle<Context> outer,
1234 Handle<ScopeInfo> scope_info) {
1235 Handle<Map> map;
1236 switch (scope_info->scope_type()) {
1237 case EVAL_SCOPE:
1238 map = isolate()->eval_context_map();
1239 break;
1240 case FUNCTION_SCOPE:
1241 map = isolate()->function_context_map();
1242 break;
1243 default:
1244 UNREACHABLE();
1245 }
1246 int variadic_part_length = scope_info->ContextLength();
1247 Context context =
1248 NewContextInternal(map, Context::SizeFor(variadic_part_length),
1249 variadic_part_length, AllocationType::kYoung);
1250 DisallowGarbageCollection no_gc;
1251 context.set_scope_info(*scope_info);
1252 context.set_previous(*outer);
1253 return handle(context, isolate());
1254 }
1255
NewCatchContext(Handle<Context> previous,Handle<ScopeInfo> scope_info,Handle<Object> thrown_object)1256 Handle<Context> Factory::NewCatchContext(Handle<Context> previous,
1257 Handle<ScopeInfo> scope_info,
1258 Handle<Object> thrown_object) {
1259 DCHECK_EQ(scope_info->scope_type(), CATCH_SCOPE);
1260 STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
1261 // TODO(ishell): Take the details from CatchContext class.
1262 int variadic_part_length = Context::MIN_CONTEXT_SLOTS + 1;
1263 Context context = NewContextInternal(
1264 isolate()->catch_context_map(), Context::SizeFor(variadic_part_length),
1265 variadic_part_length, AllocationType::kYoung);
1266 DisallowGarbageCollection no_gc;
1267 DCHECK_IMPLIES(!FLAG_single_generation, Heap::InYoungGeneration(context));
1268 context.set_scope_info(*scope_info, SKIP_WRITE_BARRIER);
1269 context.set_previous(*previous, SKIP_WRITE_BARRIER);
1270 context.set(Context::THROWN_OBJECT_INDEX, *thrown_object, SKIP_WRITE_BARRIER);
1271 return handle(context, isolate());
1272 }
1273
NewDebugEvaluateContext(Handle<Context> previous,Handle<ScopeInfo> scope_info,Handle<JSReceiver> extension,Handle<Context> wrapped)1274 Handle<Context> Factory::NewDebugEvaluateContext(Handle<Context> previous,
1275 Handle<ScopeInfo> scope_info,
1276 Handle<JSReceiver> extension,
1277 Handle<Context> wrapped) {
1278 DCHECK(scope_info->IsDebugEvaluateScope());
1279 Handle<HeapObject> ext = extension.is_null()
1280 ? Handle<HeapObject>::cast(undefined_value())
1281 : Handle<HeapObject>::cast(extension);
1282 // TODO(ishell): Take the details from DebugEvaluateContextContext class.
1283 int variadic_part_length = Context::MIN_CONTEXT_EXTENDED_SLOTS + 1;
1284 Context context =
1285 NewContextInternal(isolate()->debug_evaluate_context_map(),
1286 Context::SizeFor(variadic_part_length),
1287 variadic_part_length, AllocationType::kYoung);
1288 DisallowGarbageCollection no_gc;
1289 DCHECK_IMPLIES(!FLAG_single_generation, Heap::InYoungGeneration(context));
1290 context.set_scope_info(*scope_info, SKIP_WRITE_BARRIER);
1291 context.set_previous(*previous, SKIP_WRITE_BARRIER);
1292 context.set_extension(*ext, SKIP_WRITE_BARRIER);
1293 if (!wrapped.is_null()) {
1294 context.set(Context::WRAPPED_CONTEXT_INDEX, *wrapped, SKIP_WRITE_BARRIER);
1295 }
1296 return handle(context, isolate());
1297 }
1298
NewWithContext(Handle<Context> previous,Handle<ScopeInfo> scope_info,Handle<JSReceiver> extension)1299 Handle<Context> Factory::NewWithContext(Handle<Context> previous,
1300 Handle<ScopeInfo> scope_info,
1301 Handle<JSReceiver> extension) {
1302 DCHECK_EQ(scope_info->scope_type(), WITH_SCOPE);
1303 // TODO(ishell): Take the details from WithContext class.
1304 int variadic_part_length = Context::MIN_CONTEXT_EXTENDED_SLOTS;
1305 Context context = NewContextInternal(
1306 isolate()->with_context_map(), Context::SizeFor(variadic_part_length),
1307 variadic_part_length, AllocationType::kYoung);
1308 DisallowGarbageCollection no_gc;
1309 DCHECK_IMPLIES(!FLAG_single_generation, Heap::InYoungGeneration(context));
1310 context.set_scope_info(*scope_info, SKIP_WRITE_BARRIER);
1311 context.set_previous(*previous, SKIP_WRITE_BARRIER);
1312 context.set_extension(*extension, SKIP_WRITE_BARRIER);
1313 return handle(context, isolate());
1314 }
1315
NewBlockContext(Handle<Context> previous,Handle<ScopeInfo> scope_info)1316 Handle<Context> Factory::NewBlockContext(Handle<Context> previous,
1317 Handle<ScopeInfo> scope_info) {
1318 DCHECK_IMPLIES(scope_info->scope_type() != BLOCK_SCOPE,
1319 scope_info->scope_type() == CLASS_SCOPE);
1320 int variadic_part_length = scope_info->ContextLength();
1321 Context context = NewContextInternal(
1322 isolate()->block_context_map(), Context::SizeFor(variadic_part_length),
1323 variadic_part_length, AllocationType::kYoung);
1324 DisallowGarbageCollection no_gc;
1325 DCHECK_IMPLIES(!FLAG_single_generation, Heap::InYoungGeneration(context));
1326 context.set_scope_info(*scope_info, SKIP_WRITE_BARRIER);
1327 context.set_previous(*previous, SKIP_WRITE_BARRIER);
1328 return handle(context, isolate());
1329 }
1330
NewBuiltinContext(Handle<NativeContext> native_context,int variadic_part_length)1331 Handle<Context> Factory::NewBuiltinContext(Handle<NativeContext> native_context,
1332 int variadic_part_length) {
1333 DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length);
1334 Context context = NewContextInternal(
1335 isolate()->function_context_map(), Context::SizeFor(variadic_part_length),
1336 variadic_part_length, AllocationType::kYoung);
1337 DisallowGarbageCollection no_gc;
1338 DCHECK_IMPLIES(!FLAG_single_generation, Heap::InYoungGeneration(context));
1339 context.set_scope_info(read_only_roots().empty_scope_info(),
1340 SKIP_WRITE_BARRIER);
1341 context.set_previous(*native_context, SKIP_WRITE_BARRIER);
1342 return handle(context, isolate());
1343 }
1344
NewAliasedArgumentsEntry(int aliased_context_slot)1345 Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
1346 int aliased_context_slot) {
1347 auto entry = NewStructInternal<AliasedArgumentsEntry>(
1348 ALIASED_ARGUMENTS_ENTRY_TYPE, AllocationType::kYoung);
1349 entry.set_aliased_context_slot(aliased_context_slot);
1350 return handle(entry, isolate());
1351 }
1352
NewAccessorInfo()1353 Handle<AccessorInfo> Factory::NewAccessorInfo() {
1354 auto info =
1355 NewStructInternal<AccessorInfo>(ACCESSOR_INFO_TYPE, AllocationType::kOld);
1356 DisallowGarbageCollection no_gc;
1357 info.set_name(*empty_string(), SKIP_WRITE_BARRIER);
1358 info.set_flags(0); // Must clear the flags, it was initialized as undefined.
1359 info.set_is_sloppy(true);
1360 info.set_initial_property_attributes(NONE);
1361
1362 // Clear some other fields that should not be undefined.
1363 info.set_getter(Smi::zero(), SKIP_WRITE_BARRIER);
1364 info.set_setter(Smi::zero(), SKIP_WRITE_BARRIER);
1365 info.set_js_getter(Smi::zero(), SKIP_WRITE_BARRIER);
1366 return handle(info, isolate());
1367 }
1368
NewErrorStackData(Handle<Object> call_site_infos_or_formatted_stack,Handle<Object> limit_or_stack_frame_infos)1369 Handle<ErrorStackData> Factory::NewErrorStackData(
1370 Handle<Object> call_site_infos_or_formatted_stack,
1371 Handle<Object> limit_or_stack_frame_infos) {
1372 ErrorStackData error_stack_data = NewStructInternal<ErrorStackData>(
1373 ERROR_STACK_DATA_TYPE, AllocationType::kYoung);
1374 DisallowGarbageCollection no_gc;
1375 error_stack_data.set_call_site_infos_or_formatted_stack(
1376 *call_site_infos_or_formatted_stack, SKIP_WRITE_BARRIER);
1377 error_stack_data.set_limit_or_stack_frame_infos(*limit_or_stack_frame_infos,
1378 SKIP_WRITE_BARRIER);
1379 return handle(error_stack_data, isolate());
1380 }
1381
AddToScriptList(Handle<Script> script)1382 void Factory::AddToScriptList(Handle<Script> script) {
1383 Handle<WeakArrayList> scripts = script_list();
1384 scripts = WeakArrayList::Append(isolate(), scripts,
1385 MaybeObjectHandle::Weak(script));
1386 isolate()->heap()->set_script_list(*scripts);
1387 }
1388
CloneScript(Handle<Script> script)1389 Handle<Script> Factory::CloneScript(Handle<Script> script) {
1390 Heap* heap = isolate()->heap();
1391 int script_id = isolate()->GetNextScriptId();
1392 #ifdef V8_SCRIPTORMODULE_LEGACY_LIFETIME
1393 Handle<ArrayList> list = ArrayList::New(isolate(), 0);
1394 #endif
1395 Handle<Script> new_script_handle =
1396 Handle<Script>::cast(NewStruct(SCRIPT_TYPE, AllocationType::kOld));
1397 {
1398 DisallowGarbageCollection no_gc;
1399 Script new_script = *new_script_handle;
1400 const Script old_script = *script;
1401 new_script.set_source(old_script.source());
1402 new_script.set_name(old_script.name());
1403 new_script.set_id(script_id);
1404 new_script.set_line_offset(old_script.line_offset());
1405 new_script.set_column_offset(old_script.column_offset());
1406 new_script.set_context_data(old_script.context_data());
1407 new_script.set_type(old_script.type());
1408 new_script.set_line_ends(*undefined_value(), SKIP_WRITE_BARRIER);
1409 new_script.set_eval_from_shared_or_wrapped_arguments_or_sfi_table(
1410 script->eval_from_shared_or_wrapped_arguments_or_sfi_table());
1411 new_script.set_shared_function_infos(*empty_weak_fixed_array(),
1412 SKIP_WRITE_BARRIER);
1413 new_script.set_eval_from_position(old_script.eval_from_position());
1414 new_script.set_flags(old_script.flags());
1415 new_script.set_host_defined_options(old_script.host_defined_options());
1416 #ifdef V8_SCRIPTORMODULE_LEGACY_LIFETIME
1417 new_script.set_script_or_modules(*list);
1418 #endif
1419 }
1420
1421 Handle<WeakArrayList> scripts = script_list();
1422 scripts = WeakArrayList::AddToEnd(isolate(), scripts,
1423 MaybeObjectHandle::Weak(new_script_handle));
1424 heap->set_script_list(*scripts);
1425 LOG(isolate(), ScriptEvent(Logger::ScriptEventType::kCreate, script_id));
1426 return new_script_handle;
1427 }
1428
NewCallableTask(Handle<JSReceiver> callable,Handle<Context> context)1429 Handle<CallableTask> Factory::NewCallableTask(Handle<JSReceiver> callable,
1430 Handle<Context> context) {
1431 DCHECK(callable->IsCallable());
1432 auto microtask = NewStructInternal<CallableTask>(CALLABLE_TASK_TYPE,
1433 AllocationType::kYoung);
1434 DisallowGarbageCollection no_gc;
1435 microtask.set_callable(*callable, SKIP_WRITE_BARRIER);
1436 microtask.set_context(*context, SKIP_WRITE_BARRIER);
1437 return handle(microtask, isolate());
1438 }
1439
NewCallbackTask(Handle<Foreign> callback,Handle<Foreign> data)1440 Handle<CallbackTask> Factory::NewCallbackTask(Handle<Foreign> callback,
1441 Handle<Foreign> data) {
1442 auto microtask = NewStructInternal<CallbackTask>(CALLBACK_TASK_TYPE,
1443 AllocationType::kYoung);
1444 DisallowGarbageCollection no_gc;
1445 microtask.set_callback(*callback, SKIP_WRITE_BARRIER);
1446 microtask.set_data(*data, SKIP_WRITE_BARRIER);
1447 return handle(microtask, isolate());
1448 }
1449
NewPromiseResolveThenableJobTask(Handle<JSPromise> promise_to_resolve,Handle<JSReceiver> thenable,Handle<JSReceiver> then,Handle<Context> context)1450 Handle<PromiseResolveThenableJobTask> Factory::NewPromiseResolveThenableJobTask(
1451 Handle<JSPromise> promise_to_resolve, Handle<JSReceiver> thenable,
1452 Handle<JSReceiver> then, Handle<Context> context) {
1453 DCHECK(then->IsCallable());
1454 auto microtask = NewStructInternal<PromiseResolveThenableJobTask>(
1455 PROMISE_RESOLVE_THENABLE_JOB_TASK_TYPE, AllocationType::kYoung);
1456 DisallowGarbageCollection no_gc;
1457 microtask.set_promise_to_resolve(*promise_to_resolve, SKIP_WRITE_BARRIER);
1458 microtask.set_thenable(*thenable, SKIP_WRITE_BARRIER);
1459 microtask.set_then(*then, SKIP_WRITE_BARRIER);
1460 microtask.set_context(*context, SKIP_WRITE_BARRIER);
1461 return handle(microtask, isolate());
1462 }
1463
NewForeign(Address addr)1464 Handle<Foreign> Factory::NewForeign(Address addr) {
1465 // Statically ensure that it is safe to allocate foreigns in paged spaces.
1466 STATIC_ASSERT(Foreign::kSize <= kMaxRegularHeapObjectSize);
1467 Map map = *foreign_map();
1468 Foreign foreign = Foreign::cast(AllocateRawWithImmortalMap(
1469 map.instance_size(), AllocationType::kYoung, map));
1470 DisallowGarbageCollection no_gc;
1471 foreign.AllocateExternalPointerEntries(isolate());
1472 foreign.set_foreign_address(isolate(), addr);
1473 return handle(foreign, isolate());
1474 }
1475
1476 #if V8_ENABLE_WEBASSEMBLY
NewWasmTypeInfo(Address type_address,Handle<Map> opt_parent,int instance_size_bytes,Handle<WasmInstanceObject> instance)1477 Handle<WasmTypeInfo> Factory::NewWasmTypeInfo(
1478 Address type_address, Handle<Map> opt_parent, int instance_size_bytes,
1479 Handle<WasmInstanceObject> instance) {
1480 // We pretenure WasmTypeInfo objects for two reasons:
1481 // (1) They are referenced by Maps, which are assumed to be long-lived,
1482 // so pretenuring the WTI is a bit more efficient.
1483 // (2) The object visitors need to read the WasmTypeInfo to find tagged
1484 // fields in Wasm structs; in the middle of a GC cycle that's only
1485 // safe to do if the WTI is in old space.
1486 // The supertypes list is constant after initialization, so we pretenure
1487 // that too. The subtypes list, however, is expected to grow (and hence be
1488 // replaced), so we don't pretenure it.
1489 Handle<FixedArray> supertypes;
1490 if (opt_parent.is_null()) {
1491 supertypes = NewFixedArray(wasm::kMinimumSupertypeArraySize);
1492 for (int i = 0; i < supertypes->length(); i++) {
1493 supertypes->set(i, *undefined_value());
1494 }
1495 } else {
1496 Handle<FixedArray> parent_supertypes =
1497 handle(opt_parent->wasm_type_info().supertypes(), isolate());
1498 int last_defined_index = parent_supertypes->length() - 1;
1499 while (last_defined_index >= 0 &&
1500 parent_supertypes->get(last_defined_index).IsUndefined()) {
1501 last_defined_index--;
1502 }
1503 if (last_defined_index == parent_supertypes->length() - 1) {
1504 supertypes = CopyArrayAndGrow(parent_supertypes, 1, AllocationType::kOld);
1505 } else {
1506 supertypes = CopyFixedArray(parent_supertypes);
1507 }
1508 supertypes->set(last_defined_index + 1, *opt_parent);
1509 }
1510 Map map = *wasm_type_info_map();
1511 WasmTypeInfo result = WasmTypeInfo::cast(AllocateRawWithImmortalMap(
1512 map.instance_size(), AllocationType::kOld, map));
1513 DisallowGarbageCollection no_gc;
1514 result.AllocateExternalPointerEntries(isolate());
1515 result.set_foreign_address(isolate(), type_address);
1516 result.set_supertypes(*supertypes);
1517 result.set_subtypes(ReadOnlyRoots(isolate()).empty_array_list());
1518 result.set_instance_size(instance_size_bytes);
1519 result.set_instance(*instance);
1520 return handle(result, isolate());
1521 }
1522
NewWasmApiFunctionRef(Handle<JSReceiver> callable,Handle<HeapObject> suspender)1523 Handle<WasmApiFunctionRef> Factory::NewWasmApiFunctionRef(
1524 Handle<JSReceiver> callable, Handle<HeapObject> suspender) {
1525 Map map = *wasm_api_function_ref_map();
1526 auto result = WasmApiFunctionRef::cast(AllocateRawWithImmortalMap(
1527 map.instance_size(), AllocationType::kOld, map));
1528 DisallowGarbageCollection no_gc;
1529 result.set_isolate_root(isolate()->isolate_root());
1530 result.set_native_context(*isolate()->native_context());
1531 if (!callable.is_null()) {
1532 result.set_callable(*callable);
1533 } else {
1534 result.set_callable(*undefined_value());
1535 }
1536 if (!suspender.is_null()) {
1537 result.set_suspender(*suspender);
1538 } else {
1539 result.set_suspender(*undefined_value());
1540 }
1541 return handle(result, isolate());
1542 }
1543
NewWasmInternalFunction(Address opt_call_target,Handle<HeapObject> ref,Handle<Map> rtt)1544 Handle<WasmInternalFunction> Factory::NewWasmInternalFunction(
1545 Address opt_call_target, Handle<HeapObject> ref, Handle<Map> rtt) {
1546 HeapObject raw = AllocateRaw(rtt->instance_size(), AllocationType::kOld);
1547 raw.set_map_after_allocation(*rtt);
1548 WasmInternalFunction result = WasmInternalFunction::cast(raw);
1549 DisallowGarbageCollection no_gc;
1550 result.AllocateExternalPointerEntries(isolate());
1551 result.set_foreign_address(isolate(), opt_call_target);
1552 result.set_ref(*ref);
1553 // Default values, will be overwritten by the caller.
1554 result.set_code(*BUILTIN_CODE(isolate(), Abort));
1555 result.set_external(*undefined_value());
1556 return handle(result, isolate());
1557 }
1558
NewWasmJSFunctionData(Address opt_call_target,Handle<JSReceiver> callable,int return_count,int parameter_count,Handle<PodArray<wasm::ValueType>> serialized_sig,Handle<CodeT> wrapper_code,Handle<Map> rtt,Handle<HeapObject> suspender)1559 Handle<WasmJSFunctionData> Factory::NewWasmJSFunctionData(
1560 Address opt_call_target, Handle<JSReceiver> callable, int return_count,
1561 int parameter_count, Handle<PodArray<wasm::ValueType>> serialized_sig,
1562 Handle<CodeT> wrapper_code, Handle<Map> rtt, Handle<HeapObject> suspender) {
1563 Handle<WasmApiFunctionRef> ref = NewWasmApiFunctionRef(callable, suspender);
1564 Handle<WasmInternalFunction> internal =
1565 NewWasmInternalFunction(opt_call_target, ref, rtt);
1566 Map map = *wasm_js_function_data_map();
1567 WasmJSFunctionData result =
1568 WasmJSFunctionData::cast(AllocateRawWithImmortalMap(
1569 map.instance_size(), AllocationType::kOld, map));
1570 DisallowGarbageCollection no_gc;
1571 result.set_internal(*internal);
1572 result.set_wrapper_code(*wrapper_code);
1573 result.set_serialized_return_count(return_count);
1574 result.set_serialized_parameter_count(parameter_count);
1575 result.set_serialized_signature(*serialized_sig);
1576 return handle(result, isolate());
1577 }
1578
NewWasmOnFulfilledData(Handle<WasmSuspenderObject> suspender)1579 Handle<WasmOnFulfilledData> Factory::NewWasmOnFulfilledData(
1580 Handle<WasmSuspenderObject> suspender) {
1581 Map map = *wasm_onfulfilled_data_map();
1582 WasmOnFulfilledData result =
1583 WasmOnFulfilledData::cast(AllocateRawWithImmortalMap(
1584 map.instance_size(), AllocationType::kOld, map));
1585 DisallowGarbageCollection no_gc;
1586 result.set_suspender(*suspender);
1587 return handle(result, isolate());
1588 }
1589
NewWasmExportedFunctionData(Handle<CodeT> export_wrapper,Handle<WasmInstanceObject> instance,Address call_target,Handle<Object> ref,int func_index,Address sig_address,int wrapper_budget,Handle<Map> rtt)1590 Handle<WasmExportedFunctionData> Factory::NewWasmExportedFunctionData(
1591 Handle<CodeT> export_wrapper, Handle<WasmInstanceObject> instance,
1592 Address call_target, Handle<Object> ref, int func_index,
1593 Address sig_address, int wrapper_budget, Handle<Map> rtt) {
1594 Handle<Foreign> sig_foreign = NewForeign(sig_address);
1595 Handle<WasmInternalFunction> internal =
1596 NewWasmInternalFunction(call_target, Handle<HeapObject>::cast(ref), rtt);
1597 Map map = *wasm_exported_function_data_map();
1598 WasmExportedFunctionData result =
1599 WasmExportedFunctionData::cast(AllocateRawWithImmortalMap(
1600 map.instance_size(), AllocationType::kOld, map));
1601 DisallowGarbageCollection no_gc;
1602 DCHECK(ref->IsWasmInstanceObject() || ref->IsWasmApiFunctionRef());
1603 result.set_internal(*internal);
1604 result.set_wrapper_code(*export_wrapper);
1605 result.set_instance(*instance);
1606 result.set_function_index(func_index);
1607 result.set_signature(*sig_foreign);
1608 result.set_wrapper_budget(wrapper_budget);
1609 // We can't skip the write barrier when V8_EXTERNAL_CODE_SPACE is enabled
1610 // because in this case the CodeT (CodeDataContainer) objects are not
1611 // immovable.
1612 result.set_c_wrapper_code(
1613 *BUILTIN_CODE(isolate(), Illegal),
1614 V8_EXTERNAL_CODE_SPACE_BOOL ? UPDATE_WRITE_BARRIER : SKIP_WRITE_BARRIER);
1615 result.set_packed_args_size(0);
1616 result.set_suspender(*undefined_value());
1617 return handle(result, isolate());
1618 }
1619
NewWasmCapiFunctionData(Address call_target,Handle<Foreign> embedder_data,Handle<CodeT> wrapper_code,Handle<Map> rtt,Handle<PodArray<wasm::ValueType>> serialized_sig)1620 Handle<WasmCapiFunctionData> Factory::NewWasmCapiFunctionData(
1621 Address call_target, Handle<Foreign> embedder_data,
1622 Handle<CodeT> wrapper_code, Handle<Map> rtt,
1623 Handle<PodArray<wasm::ValueType>> serialized_sig) {
1624 Handle<WasmApiFunctionRef> ref =
1625 NewWasmApiFunctionRef(Handle<JSReceiver>(), Handle<HeapObject>());
1626 Handle<WasmInternalFunction> internal =
1627 NewWasmInternalFunction(call_target, ref, rtt);
1628 Map map = *wasm_capi_function_data_map();
1629 WasmCapiFunctionData result =
1630 WasmCapiFunctionData::cast(AllocateRawWithImmortalMap(
1631 map.instance_size(), AllocationType::kOld, map));
1632 DisallowGarbageCollection no_gc;
1633 result.set_internal(*internal);
1634 result.set_wrapper_code(*wrapper_code);
1635 result.set_embedder_data(*embedder_data);
1636 result.set_serialized_signature(*serialized_sig);
1637 return handle(result, isolate());
1638 }
1639
NewWasmArrayFromElements(const wasm::ArrayType * type,const std::vector<wasm::WasmValue> & elements,Handle<Map> map)1640 Handle<WasmArray> Factory::NewWasmArrayFromElements(
1641 const wasm::ArrayType* type, const std::vector<wasm::WasmValue>& elements,
1642 Handle<Map> map) {
1643 uint32_t length = static_cast<uint32_t>(elements.size());
1644 HeapObject raw =
1645 AllocateRaw(WasmArray::SizeFor(*map, length), AllocationType::kYoung);
1646 DisallowGarbageCollection no_gc;
1647 raw.set_map_after_allocation(*map);
1648 WasmArray result = WasmArray::cast(raw);
1649 result.set_raw_properties_or_hash(*empty_fixed_array(), kRelaxedStore);
1650 result.set_length(length);
1651 if (type->element_type().is_numeric()) {
1652 for (uint32_t i = 0; i < length; i++) {
1653 Address address = result.ElementAddress(i);
1654 elements[i]
1655 .Packed(type->element_type())
1656 .CopyTo(reinterpret_cast<byte*>(address));
1657 }
1658 } else {
1659 for (uint32_t i = 0; i < length; i++) {
1660 int offset = result.element_offset(i);
1661 TaggedField<Object>::store(result, offset, *elements[i].to_ref());
1662 }
1663 }
1664 return handle(result, isolate());
1665 }
1666
NewWasmArrayFromMemory(uint32_t length,Handle<Map> map,Address source)1667 Handle<WasmArray> Factory::NewWasmArrayFromMemory(uint32_t length,
1668 Handle<Map> map,
1669 Address source) {
1670 wasm::ValueType element_type = reinterpret_cast<wasm::ArrayType*>(
1671 map->wasm_type_info().foreign_address())
1672 ->element_type();
1673 DCHECK(element_type.is_numeric());
1674 HeapObject raw =
1675 AllocateRaw(WasmArray::SizeFor(*map, length), AllocationType::kYoung);
1676 DisallowGarbageCollection no_gc;
1677 raw.set_map_after_allocation(*map);
1678 WasmArray result = WasmArray::cast(raw);
1679 result.set_raw_properties_or_hash(*empty_fixed_array(), kRelaxedStore);
1680 result.set_length(length);
1681 MemCopy(reinterpret_cast<void*>(result.ElementAddress(0)),
1682 reinterpret_cast<void*>(source),
1683 length * element_type.value_kind_size());
1684
1685 return handle(result, isolate());
1686 }
1687
NewWasmStruct(const wasm::StructType * type,wasm::WasmValue * args,Handle<Map> map)1688 Handle<WasmStruct> Factory::NewWasmStruct(const wasm::StructType* type,
1689 wasm::WasmValue* args,
1690 Handle<Map> map) {
1691 DCHECK_EQ(WasmStruct::Size(type), map->wasm_type_info().instance_size());
1692 HeapObject raw = AllocateRaw(WasmStruct::Size(type), AllocationType::kYoung);
1693 raw.set_map_after_allocation(*map);
1694 WasmStruct result = WasmStruct::cast(raw);
1695 result.set_raw_properties_or_hash(*empty_fixed_array(), kRelaxedStore);
1696 for (uint32_t i = 0; i < type->field_count(); i++) {
1697 int offset = type->field_offset(i);
1698 if (type->field(i).is_numeric()) {
1699 Address address = result.RawFieldAddress(offset);
1700 args[i].Packed(type->field(i)).CopyTo(reinterpret_cast<byte*>(address));
1701 } else {
1702 offset += WasmStruct::kHeaderSize;
1703 TaggedField<Object>::store(result, offset, *args[i].to_ref());
1704 }
1705 }
1706 return handle(result, isolate());
1707 }
1708
1709 Handle<SharedFunctionInfo>
NewSharedFunctionInfoForWasmExportedFunction(Handle<String> name,Handle<WasmExportedFunctionData> data)1710 Factory::NewSharedFunctionInfoForWasmExportedFunction(
1711 Handle<String> name, Handle<WasmExportedFunctionData> data) {
1712 return NewSharedFunctionInfo(name, data, Builtin::kNoBuiltinId);
1713 }
1714
NewSharedFunctionInfoForWasmJSFunction(Handle<String> name,Handle<WasmJSFunctionData> data)1715 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForWasmJSFunction(
1716 Handle<String> name, Handle<WasmJSFunctionData> data) {
1717 return NewSharedFunctionInfo(name, data, Builtin::kNoBuiltinId);
1718 }
1719
NewSharedFunctionInfoForWasmOnFulfilled(Handle<WasmOnFulfilledData> data)1720 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForWasmOnFulfilled(
1721 Handle<WasmOnFulfilledData> data) {
1722 return NewSharedFunctionInfo({}, data, Builtin::kNoBuiltinId);
1723 }
1724
NewSharedFunctionInfoForWasmCapiFunction(Handle<WasmCapiFunctionData> data)1725 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForWasmCapiFunction(
1726 Handle<WasmCapiFunctionData> data) {
1727 return NewSharedFunctionInfo(MaybeHandle<String>(), data,
1728 Builtin::kNoBuiltinId,
1729 FunctionKind::kConciseMethod);
1730 }
1731 #endif // V8_ENABLE_WEBASSEMBLY
1732
NewCell(Handle<Object> value)1733 Handle<Cell> Factory::NewCell(Handle<Object> value) {
1734 STATIC_ASSERT(Cell::kSize <= kMaxRegularHeapObjectSize);
1735 Cell result = Cell::cast(AllocateRawWithImmortalMap(
1736 Cell::kSize, AllocationType::kOld, *cell_map()));
1737 DisallowGarbageCollection no_gc;
1738 result.set_value(*value);
1739 return handle(result, isolate());
1740 }
1741
NewNoClosuresCell(Handle<HeapObject> value)1742 Handle<FeedbackCell> Factory::NewNoClosuresCell(Handle<HeapObject> value) {
1743 FeedbackCell result = FeedbackCell::cast(AllocateRawWithImmortalMap(
1744 FeedbackCell::kAlignedSize, AllocationType::kOld,
1745 *no_closures_cell_map()));
1746 DisallowGarbageCollection no_gc;
1747 result.set_value(*value);
1748 result.SetInitialInterruptBudget();
1749 result.clear_padding();
1750 return handle(result, isolate());
1751 }
1752
NewOneClosureCell(Handle<HeapObject> value)1753 Handle<FeedbackCell> Factory::NewOneClosureCell(Handle<HeapObject> value) {
1754 FeedbackCell result = FeedbackCell::cast(AllocateRawWithImmortalMap(
1755 FeedbackCell::kAlignedSize, AllocationType::kOld,
1756 *one_closure_cell_map()));
1757 DisallowGarbageCollection no_gc;
1758 result.set_value(*value);
1759 result.SetInitialInterruptBudget();
1760 result.clear_padding();
1761 return handle(result, isolate());
1762 }
1763
NewManyClosuresCell(Handle<HeapObject> value)1764 Handle<FeedbackCell> Factory::NewManyClosuresCell(Handle<HeapObject> value) {
1765 FeedbackCell result = FeedbackCell::cast(AllocateRawWithImmortalMap(
1766 FeedbackCell::kAlignedSize, AllocationType::kOld,
1767 *many_closures_cell_map()));
1768 DisallowGarbageCollection no_gc;
1769 result.set_value(*value);
1770 result.SetInitialInterruptBudget();
1771 result.clear_padding();
1772 return handle(result, isolate());
1773 }
1774
NewPropertyCell(Handle<Name> name,PropertyDetails details,Handle<Object> value,AllocationType allocation)1775 Handle<PropertyCell> Factory::NewPropertyCell(Handle<Name> name,
1776 PropertyDetails details,
1777 Handle<Object> value,
1778 AllocationType allocation) {
1779 DCHECK(name->IsUniqueName());
1780 STATIC_ASSERT(PropertyCell::kSize <= kMaxRegularHeapObjectSize);
1781 PropertyCell cell = PropertyCell::cast(AllocateRawWithImmortalMap(
1782 PropertyCell::kSize, allocation, *global_property_cell_map()));
1783 DisallowGarbageCollection no_gc;
1784 cell.set_dependent_code(
1785 DependentCode::empty_dependent_code(ReadOnlyRoots(isolate())),
1786 SKIP_WRITE_BARRIER);
1787 WriteBarrierMode mode = allocation == AllocationType::kYoung
1788 ? SKIP_WRITE_BARRIER
1789 : UPDATE_WRITE_BARRIER;
1790 cell.set_name(*name, mode);
1791 cell.set_value(*value, mode);
1792 cell.set_property_details_raw(details.AsSmi(), SKIP_WRITE_BARRIER);
1793 return handle(cell, isolate());
1794 }
1795
NewProtector()1796 Handle<PropertyCell> Factory::NewProtector() {
1797 return NewPropertyCell(
1798 empty_string(), PropertyDetails::Empty(PropertyCellType::kConstantType),
1799 handle(Smi::FromInt(Protectors::kProtectorValid), isolate()));
1800 }
1801
NewTransitionArray(int number_of_transitions,int slack)1802 Handle<TransitionArray> Factory::NewTransitionArray(int number_of_transitions,
1803 int slack) {
1804 int capacity = TransitionArray::LengthFor(number_of_transitions + slack);
1805 Handle<TransitionArray> array = Handle<TransitionArray>::cast(
1806 NewWeakFixedArrayWithMap(read_only_roots().transition_array_map(),
1807 capacity, AllocationType::kOld));
1808 // Transition arrays are AllocationType::kOld. When black allocation is on we
1809 // have to add the transition array to the list of
1810 // encountered_transition_arrays.
1811 Heap* heap = isolate()->heap();
1812 if (heap->incremental_marking()->black_allocation()) {
1813 heap->mark_compact_collector()->AddTransitionArray(*array);
1814 }
1815 array->WeakFixedArray::Set(TransitionArray::kPrototypeTransitionsIndex,
1816 MaybeObject::FromObject(Smi::zero()));
1817 array->WeakFixedArray::Set(
1818 TransitionArray::kTransitionLengthIndex,
1819 MaybeObject::FromObject(Smi::FromInt(number_of_transitions)));
1820 return array;
1821 }
1822
NewAllocationSite(bool with_weak_next)1823 Handle<AllocationSite> Factory::NewAllocationSite(bool with_weak_next) {
1824 Handle<Map> map = with_weak_next ? allocation_site_map()
1825 : allocation_site_without_weaknext_map();
1826 Handle<AllocationSite> site(
1827 AllocationSite::cast(New(map, AllocationType::kOld)), isolate());
1828 site->Initialize();
1829
1830 if (with_weak_next) {
1831 // Link the site
1832 site->set_weak_next(isolate()->heap()->allocation_sites_list());
1833 isolate()->heap()->set_allocation_sites_list(*site);
1834 }
1835 return site;
1836 }
1837
NewMap(InstanceType type,int instance_size,ElementsKind elements_kind,int inobject_properties,AllocationType allocation_type)1838 Handle<Map> Factory::NewMap(InstanceType type, int instance_size,
1839 ElementsKind elements_kind, int inobject_properties,
1840 AllocationType allocation_type) {
1841 STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
1842 DCHECK_IMPLIES(InstanceTypeChecker::IsJSObject(type) &&
1843 !Map::CanHaveFastTransitionableElementsKind(type),
1844 IsDictionaryElementsKind(elements_kind) ||
1845 IsTerminalElementsKind(elements_kind));
1846 DCHECK(allocation_type == AllocationType::kMap ||
1847 allocation_type == AllocationType::kSharedMap);
1848 HeapObject result = allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
1849 Map::kSize, allocation_type);
1850 DisallowGarbageCollection no_gc;
1851 Heap* roots = allocation_type == AllocationType::kMap
1852 ? isolate()->heap()
1853 : isolate()->shared_isolate()->heap();
1854 result.set_map_after_allocation(ReadOnlyRoots(roots).meta_map(),
1855 SKIP_WRITE_BARRIER);
1856 return handle(InitializeMap(Map::cast(result), type, instance_size,
1857 elements_kind, inobject_properties, roots),
1858 isolate());
1859 }
1860
InitializeMap(Map map,InstanceType type,int instance_size,ElementsKind elements_kind,int inobject_properties,Heap * roots)1861 Map Factory::InitializeMap(Map map, InstanceType type, int instance_size,
1862 ElementsKind elements_kind, int inobject_properties,
1863 Heap* roots) {
1864 DisallowGarbageCollection no_gc;
1865 map.set_bit_field(0);
1866 map.set_bit_field2(Map::Bits2::NewTargetIsBaseBit::encode(true));
1867 int bit_field3 =
1868 Map::Bits3::EnumLengthBits::encode(kInvalidEnumCacheSentinel) |
1869 Map::Bits3::OwnsDescriptorsBit::encode(true) |
1870 Map::Bits3::ConstructionCounterBits::encode(Map::kNoSlackTracking) |
1871 Map::Bits3::IsExtensibleBit::encode(true);
1872 map.set_bit_field3(bit_field3);
1873 map.set_instance_type(type);
1874 ReadOnlyRoots ro_roots(roots);
1875 HeapObject raw_null_value = ro_roots.null_value();
1876 map.set_prototype(raw_null_value, SKIP_WRITE_BARRIER);
1877 map.set_constructor_or_back_pointer(raw_null_value, SKIP_WRITE_BARRIER);
1878 map.set_instance_size(instance_size);
1879 if (map.IsJSObjectMap()) {
1880 DCHECK(!ReadOnlyHeap::Contains(map));
1881 map.SetInObjectPropertiesStartInWords(instance_size / kTaggedSize -
1882 inobject_properties);
1883 DCHECK_EQ(map.GetInObjectProperties(), inobject_properties);
1884 map.set_prototype_validity_cell(roots->invalid_prototype_validity_cell());
1885 } else {
1886 DCHECK_EQ(inobject_properties, 0);
1887 map.set_inobject_properties_start_or_constructor_function_index(0);
1888 map.set_prototype_validity_cell(Smi::FromInt(Map::kPrototypeChainValid),
1889 SKIP_WRITE_BARRIER);
1890 }
1891 map.set_dependent_code(DependentCode::empty_dependent_code(ro_roots),
1892 SKIP_WRITE_BARRIER);
1893 map.set_raw_transitions(MaybeObject::FromSmi(Smi::zero()),
1894 SKIP_WRITE_BARRIER);
1895 map.SetInObjectUnusedPropertyFields(inobject_properties);
1896 map.SetInstanceDescriptors(isolate(), ro_roots.empty_descriptor_array(), 0);
1897 // Must be called only after |instance_type| and |instance_size| are set.
1898 map.set_visitor_id(Map::GetVisitorId(map));
1899 DCHECK(!map.is_in_retained_map_list());
1900 map.clear_padding();
1901 map.set_elements_kind(elements_kind);
1902 isolate()->counters()->maps_created()->Increment();
1903 if (FLAG_log_maps) LOG(isolate(), MapCreate(map));
1904 return map;
1905 }
1906
CopyJSObject(Handle<JSObject> source)1907 Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> source) {
1908 return CopyJSObjectWithAllocationSite(source, Handle<AllocationSite>());
1909 }
1910
CopyJSObjectWithAllocationSite(Handle<JSObject> source,Handle<AllocationSite> site)1911 Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
1912 Handle<JSObject> source, Handle<AllocationSite> site) {
1913 Handle<Map> map(source->map(), isolate());
1914
1915 // We can only clone regexps, normal objects, api objects, errors or arrays.
1916 // Copying anything else will break invariants.
1917 InstanceType instance_type = map->instance_type();
1918 bool is_clonable_js_type =
1919 instance_type == JS_REG_EXP_TYPE || instance_type == JS_OBJECT_TYPE ||
1920 instance_type == JS_ERROR_TYPE || instance_type == JS_ARRAY_TYPE ||
1921 instance_type == JS_SPECIAL_API_OBJECT_TYPE ||
1922 InstanceTypeChecker::IsJSApiObject(instance_type);
1923 bool is_clonable_wasm_type = false;
1924 #if V8_ENABLE_WEBASSEMBLY
1925 is_clonable_wasm_type = instance_type == WASM_GLOBAL_OBJECT_TYPE ||
1926 instance_type == WASM_INSTANCE_OBJECT_TYPE ||
1927 instance_type == WASM_MEMORY_OBJECT_TYPE ||
1928 instance_type == WASM_MODULE_OBJECT_TYPE ||
1929 instance_type == WASM_TABLE_OBJECT_TYPE;
1930 #endif // V8_ENABLE_WEBASSEMBLY
1931 CHECK(is_clonable_js_type || is_clonable_wasm_type);
1932
1933 DCHECK(site.is_null() || AllocationSite::CanTrack(instance_type));
1934
1935 int object_size = map->instance_size();
1936 int adjusted_object_size = object_size;
1937 if (!site.is_null()) {
1938 DCHECK(V8_ALLOCATION_SITE_TRACKING_BOOL);
1939 adjusted_object_size += AllocationMemento::kSize;
1940 }
1941 HeapObject raw_clone =
1942 allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
1943 adjusted_object_size, AllocationType::kYoung);
1944
1945 DCHECK(Heap::InYoungGeneration(raw_clone) || FLAG_single_generation);
1946
1947 Heap::CopyBlock(raw_clone.address(), source->address(), object_size);
1948 Handle<JSObject> clone(JSObject::cast(raw_clone), isolate());
1949
1950 if (FLAG_enable_unconditional_write_barriers) {
1951 // By default, we shouldn't need to update the write barrier here, as the
1952 // clone will be allocated in new space.
1953 const ObjectSlot start(raw_clone.address());
1954 const ObjectSlot end(raw_clone.address() + object_size);
1955 isolate()->heap()->WriteBarrierForRange(raw_clone, start, end);
1956 }
1957 if (!site.is_null()) {
1958 AllocationMemento alloc_memento = AllocationMemento::unchecked_cast(
1959 Object(raw_clone.ptr() + object_size));
1960 InitializeAllocationMemento(alloc_memento, *site);
1961 }
1962
1963 SLOW_DCHECK(clone->GetElementsKind() == source->GetElementsKind());
1964 FixedArrayBase elements = source->elements();
1965 // Update elements if necessary.
1966 if (elements.length() > 0) {
1967 FixedArrayBase elem;
1968 if (elements.map() == *fixed_cow_array_map()) {
1969 elem = elements;
1970 } else if (source->HasDoubleElements()) {
1971 elem = *CopyFixedDoubleArray(
1972 handle(FixedDoubleArray::cast(elements), isolate()));
1973 } else {
1974 elem = *CopyFixedArray(handle(FixedArray::cast(elements), isolate()));
1975 }
1976 clone->set_elements(elem);
1977 }
1978
1979 // Update properties if necessary.
1980 if (source->HasFastProperties()) {
1981 PropertyArray properties = source->property_array();
1982 if (properties.length() > 0) {
1983 // TODO(gsathya): Do not copy hash code.
1984 Handle<PropertyArray> prop = CopyArrayWithMap(
1985 handle(properties, isolate()), handle(properties.map(), isolate()));
1986 clone->set_raw_properties_or_hash(*prop, kRelaxedStore);
1987 }
1988 } else {
1989 Handle<Object> copied_properties;
1990 if (V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL) {
1991 copied_properties = SwissNameDictionary::ShallowCopy(
1992 isolate(), handle(source->property_dictionary_swiss(), isolate()));
1993 } else {
1994 copied_properties =
1995 CopyFixedArray(handle(source->property_dictionary(), isolate()));
1996 }
1997 clone->set_raw_properties_or_hash(*copied_properties, kRelaxedStore);
1998 }
1999 return clone;
2000 }
2001
2002 namespace {
2003 template <typename T>
initialize_length(T array,int length)2004 void initialize_length(T array, int length) {
2005 array.set_length(length);
2006 }
2007
2008 template <>
initialize_length(PropertyArray array,int length)2009 void initialize_length<PropertyArray>(PropertyArray array, int length) {
2010 array.initialize_length(length);
2011 }
2012
InitEmbedderFields(i::JSObject obj,i::Object initial_value)2013 inline void InitEmbedderFields(i::JSObject obj, i::Object initial_value) {
2014 for (int i = 0; i < obj.GetEmbedderFieldCount(); i++) {
2015 EmbedderDataSlot(obj, i).Initialize(initial_value);
2016 }
2017 }
2018
2019 } // namespace
2020
2021 template <typename T>
CopyArrayWithMap(Handle<T> src,Handle<Map> map)2022 Handle<T> Factory::CopyArrayWithMap(Handle<T> src, Handle<Map> map) {
2023 int len = src->length();
2024 HeapObject new_object = AllocateRawFixedArray(len, AllocationType::kYoung);
2025 DisallowGarbageCollection no_gc;
2026 new_object.set_map_after_allocation(*map, SKIP_WRITE_BARRIER);
2027 T result = T::cast(new_object);
2028 initialize_length(result, len);
2029 // Copy the content.
2030 WriteBarrierMode mode = result.GetWriteBarrierMode(no_gc);
2031 result.CopyElements(isolate(), 0, *src, 0, len, mode);
2032 return handle(result, isolate());
2033 }
2034
2035 template <typename T>
CopyArrayAndGrow(Handle<T> src,int grow_by,AllocationType allocation)2036 Handle<T> Factory::CopyArrayAndGrow(Handle<T> src, int grow_by,
2037 AllocationType allocation) {
2038 DCHECK_LT(0, grow_by);
2039 DCHECK_LE(grow_by, kMaxInt - src->length());
2040 int old_len = src->length();
2041 int new_len = old_len + grow_by;
2042 HeapObject new_object = AllocateRawFixedArray(new_len, allocation);
2043 DisallowGarbageCollection no_gc;
2044 new_object.set_map_after_allocation(src->map(), SKIP_WRITE_BARRIER);
2045 T result = T::cast(new_object);
2046 initialize_length(result, new_len);
2047 // Copy the content.
2048 WriteBarrierMode mode = result.GetWriteBarrierMode(no_gc);
2049 result.CopyElements(isolate(), 0, *src, 0, old_len, mode);
2050 MemsetTagged(ObjectSlot(result.data_start() + old_len),
2051 read_only_roots().undefined_value(), grow_by);
2052 return handle(result, isolate());
2053 }
2054
CopyFixedArrayWithMap(Handle<FixedArray> array,Handle<Map> map)2055 Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
2056 Handle<Map> map) {
2057 return CopyArrayWithMap(array, map);
2058 }
2059
CopyFixedArrayAndGrow(Handle<FixedArray> array,int grow_by)2060 Handle<FixedArray> Factory::CopyFixedArrayAndGrow(Handle<FixedArray> array,
2061 int grow_by) {
2062 return CopyArrayAndGrow(array, grow_by, AllocationType::kYoung);
2063 }
2064
NewUninitializedWeakArrayList(int capacity,AllocationType allocation)2065 Handle<WeakArrayList> Factory::NewUninitializedWeakArrayList(
2066 int capacity, AllocationType allocation) {
2067 DCHECK_LE(0, capacity);
2068 if (capacity == 0) return empty_weak_array_list();
2069
2070 HeapObject heap_object = AllocateRawWeakArrayList(capacity, allocation);
2071 DisallowGarbageCollection no_gc;
2072 heap_object.set_map_after_allocation(*weak_array_list_map(),
2073 SKIP_WRITE_BARRIER);
2074 WeakArrayList result = WeakArrayList::cast(heap_object);
2075 result.set_length(0);
2076 result.set_capacity(capacity);
2077 return handle(result, isolate());
2078 }
2079
NewWeakArrayList(int capacity,AllocationType allocation)2080 Handle<WeakArrayList> Factory::NewWeakArrayList(int capacity,
2081 AllocationType allocation) {
2082 Handle<WeakArrayList> result =
2083 NewUninitializedWeakArrayList(capacity, allocation);
2084 MemsetTagged(ObjectSlot(result->data_start()),
2085 read_only_roots().undefined_value(), capacity);
2086 return result;
2087 }
2088
CopyWeakFixedArrayAndGrow(Handle<WeakFixedArray> src,int grow_by)2089 Handle<WeakFixedArray> Factory::CopyWeakFixedArrayAndGrow(
2090 Handle<WeakFixedArray> src, int grow_by) {
2091 DCHECK(!src->IsTransitionArray()); // Compacted by GC, this code doesn't work
2092 return CopyArrayAndGrow(src, grow_by, AllocationType::kOld);
2093 }
2094
CopyWeakArrayListAndGrow(Handle<WeakArrayList> src,int grow_by,AllocationType allocation)2095 Handle<WeakArrayList> Factory::CopyWeakArrayListAndGrow(
2096 Handle<WeakArrayList> src, int grow_by, AllocationType allocation) {
2097 int old_capacity = src->capacity();
2098 int new_capacity = old_capacity + grow_by;
2099 DCHECK_GE(new_capacity, old_capacity);
2100 Handle<WeakArrayList> result =
2101 NewUninitializedWeakArrayList(new_capacity, allocation);
2102 DisallowGarbageCollection no_gc;
2103 WeakArrayList raw = *result;
2104 int old_len = src->length();
2105 raw.set_length(old_len);
2106 // Copy the content.
2107 WriteBarrierMode mode = raw.GetWriteBarrierMode(no_gc);
2108 raw.CopyElements(isolate(), 0, *src, 0, old_len, mode);
2109 MemsetTagged(ObjectSlot(raw.data_start() + old_len),
2110 read_only_roots().undefined_value(), new_capacity - old_len);
2111 return result;
2112 }
2113
CompactWeakArrayList(Handle<WeakArrayList> src,int new_capacity,AllocationType allocation)2114 Handle<WeakArrayList> Factory::CompactWeakArrayList(Handle<WeakArrayList> src,
2115 int new_capacity,
2116 AllocationType allocation) {
2117 Handle<WeakArrayList> result =
2118 NewUninitializedWeakArrayList(new_capacity, allocation);
2119
2120 // Copy the content.
2121 DisallowGarbageCollection no_gc;
2122 WeakArrayList raw_src = *src;
2123 WeakArrayList raw_result = *result;
2124 WriteBarrierMode mode = raw_result.GetWriteBarrierMode(no_gc);
2125 int copy_to = 0, length = raw_src.length();
2126 for (int i = 0; i < length; i++) {
2127 MaybeObject element = raw_src.Get(i);
2128 if (element->IsCleared()) continue;
2129 raw_result.Set(copy_to++, element, mode);
2130 }
2131 raw_result.set_length(copy_to);
2132
2133 MemsetTagged(ObjectSlot(raw_result.data_start() + copy_to),
2134 read_only_roots().undefined_value(), new_capacity - copy_to);
2135 return result;
2136 }
2137
CopyPropertyArrayAndGrow(Handle<PropertyArray> array,int grow_by)2138 Handle<PropertyArray> Factory::CopyPropertyArrayAndGrow(
2139 Handle<PropertyArray> array, int grow_by) {
2140 return CopyArrayAndGrow(array, grow_by, AllocationType::kYoung);
2141 }
2142
CopyFixedArrayUpTo(Handle<FixedArray> array,int new_len,AllocationType allocation)2143 Handle<FixedArray> Factory::CopyFixedArrayUpTo(Handle<FixedArray> array,
2144 int new_len,
2145 AllocationType allocation) {
2146 DCHECK_LE(0, new_len);
2147 DCHECK_LE(new_len, array->length());
2148 if (new_len == 0) return empty_fixed_array();
2149 HeapObject heap_object = AllocateRawFixedArray(new_len, allocation);
2150 DisallowGarbageCollection no_gc;
2151 heap_object.set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER);
2152 FixedArray result = FixedArray::cast(heap_object);
2153 result.set_length(new_len);
2154 // Copy the content.
2155 WriteBarrierMode mode = result.GetWriteBarrierMode(no_gc);
2156 result.CopyElements(isolate(), 0, *array, 0, new_len, mode);
2157 return handle(result, isolate());
2158 }
2159
CopyFixedArray(Handle<FixedArray> array)2160 Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
2161 if (array->length() == 0) return array;
2162 return CopyArrayWithMap(array, handle(array->map(), isolate()));
2163 }
2164
CopyFixedDoubleArray(Handle<FixedDoubleArray> array)2165 Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
2166 Handle<FixedDoubleArray> array) {
2167 int len = array->length();
2168 if (len == 0) return array;
2169 Handle<FixedDoubleArray> result =
2170 Handle<FixedDoubleArray>::cast(NewFixedDoubleArray(len));
2171 Heap::CopyBlock(
2172 result->address() + FixedDoubleArray::kLengthOffset,
2173 array->address() + FixedDoubleArray::kLengthOffset,
2174 FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset);
2175 return result;
2176 }
2177
NewHeapNumberForCodeAssembler(double value)2178 Handle<HeapNumber> Factory::NewHeapNumberForCodeAssembler(double value) {
2179 return CanAllocateInReadOnlySpace()
2180 ? NewHeapNumber<AllocationType::kReadOnly>(value)
2181 : NewHeapNumber<AllocationType::kOld>(value);
2182 }
2183
NewError(Handle<JSFunction> constructor,MessageTemplate template_index,Handle<Object> arg0,Handle<Object> arg1,Handle<Object> arg2)2184 Handle<JSObject> Factory::NewError(Handle<JSFunction> constructor,
2185 MessageTemplate template_index,
2186 Handle<Object> arg0, Handle<Object> arg1,
2187 Handle<Object> arg2) {
2188 HandleScope scope(isolate());
2189
2190 if (arg0.is_null()) arg0 = undefined_value();
2191 if (arg1.is_null()) arg1 = undefined_value();
2192 if (arg2.is_null()) arg2 = undefined_value();
2193
2194 return scope.CloseAndEscape(ErrorUtils::MakeGenericError(
2195 isolate(), constructor, template_index, arg0, arg1, arg2, SKIP_NONE));
2196 }
2197
NewError(Handle<JSFunction> constructor,Handle<String> message)2198 Handle<JSObject> Factory::NewError(Handle<JSFunction> constructor,
2199 Handle<String> message) {
2200 // Construct a new error object. If an exception is thrown, use the exception
2201 // as the result.
2202
2203 Handle<Object> no_caller;
2204 return ErrorUtils::Construct(isolate(), constructor, constructor, message,
2205 undefined_value(), SKIP_NONE, no_caller,
2206 ErrorUtils::StackTraceCollection::kEnabled)
2207 .ToHandleChecked();
2208 }
2209
NewInvalidStringLengthError()2210 Handle<Object> Factory::NewInvalidStringLengthError() {
2211 if (FLAG_correctness_fuzzer_suppressions) {
2212 FATAL("Aborting on invalid string length");
2213 }
2214 // Invalidate the "string length" protector.
2215 if (Protectors::IsStringLengthOverflowLookupChainIntact(isolate())) {
2216 Protectors::InvalidateStringLengthOverflowLookupChain(isolate());
2217 }
2218 return NewRangeError(MessageTemplate::kInvalidStringLength);
2219 }
2220
2221 #define DEFINE_ERROR(NAME, name) \
2222 Handle<JSObject> Factory::New##NAME( \
2223 MessageTemplate template_index, Handle<Object> arg0, \
2224 Handle<Object> arg1, Handle<Object> arg2) { \
2225 return NewError(isolate()->name##_function(), template_index, arg0, arg1, \
2226 arg2); \
2227 }
DEFINE_ERROR(Error,error)2228 DEFINE_ERROR(Error, error)
2229 DEFINE_ERROR(EvalError, eval_error)
2230 DEFINE_ERROR(RangeError, range_error)
2231 DEFINE_ERROR(ReferenceError, reference_error)
2232 DEFINE_ERROR(SyntaxError, syntax_error)
2233 DEFINE_ERROR(TypeError, type_error)
2234 DEFINE_ERROR(WasmCompileError, wasm_compile_error)
2235 DEFINE_ERROR(WasmLinkError, wasm_link_error)
2236 DEFINE_ERROR(WasmRuntimeError, wasm_runtime_error)
2237 DEFINE_ERROR(WasmExceptionError, wasm_exception_error)
2238 #undef DEFINE_ERROR
2239
2240 Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
2241 // Make sure to use globals from the function's context, since the function
2242 // can be from a different context.
2243 Handle<NativeContext> native_context(function->native_context(), isolate());
2244 Handle<Map> new_map;
2245 if (V8_UNLIKELY(IsAsyncGeneratorFunction(function->shared().kind()))) {
2246 new_map = handle(native_context->async_generator_object_prototype_map(),
2247 isolate());
2248 } else if (IsResumableFunction(function->shared().kind())) {
2249 // Generator and async function prototypes can share maps since they
2250 // don't have "constructor" properties.
2251 new_map =
2252 handle(native_context->generator_object_prototype_map(), isolate());
2253 } else {
2254 // Each function prototype gets a fresh map to avoid unwanted sharing of
2255 // maps between prototypes of different constructors.
2256 Handle<JSFunction> object_function(native_context->object_function(),
2257 isolate());
2258 DCHECK(object_function->has_initial_map());
2259 new_map = handle(object_function->initial_map(), isolate());
2260 }
2261
2262 DCHECK(!new_map->is_prototype_map());
2263 Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
2264
2265 if (!IsResumableFunction(function->shared().kind())) {
2266 JSObject::AddProperty(isolate(), prototype, constructor_string(), function,
2267 DONT_ENUM);
2268 }
2269
2270 return prototype;
2271 }
2272
NewExternal(void * value)2273 Handle<JSObject> Factory::NewExternal(void* value) {
2274 auto external =
2275 Handle<JSExternalObject>::cast(NewJSObjectFromMap(external_map()));
2276 external->AllocateExternalPointerEntries(isolate());
2277 external->set_value(isolate(), value);
2278 return external;
2279 }
2280
NewDeoptimizationLiteralArray(int length)2281 Handle<DeoptimizationLiteralArray> Factory::NewDeoptimizationLiteralArray(
2282 int length) {
2283 return Handle<DeoptimizationLiteralArray>::cast(
2284 NewWeakFixedArray(length, AllocationType::kOld));
2285 }
2286
NewOffHeapTrampolineFor(Handle<Code> code,Address off_heap_entry)2287 Handle<Code> Factory::NewOffHeapTrampolineFor(Handle<Code> code,
2288 Address off_heap_entry) {
2289 CHECK_NOT_NULL(isolate()->embedded_blob_code());
2290 CHECK_NE(0, isolate()->embedded_blob_code_size());
2291 CHECK(Builtins::IsIsolateIndependentBuiltin(*code));
2292
2293 bool generate_jump_to_instruction_stream =
2294 Builtins::CodeObjectIsExecutable(code->builtin_id());
2295 Handle<Code> result = Builtins::GenerateOffHeapTrampolineFor(
2296 isolate(), off_heap_entry,
2297 code->code_data_container(kAcquireLoad).kind_specific_flags(kRelaxedLoad),
2298 generate_jump_to_instruction_stream);
2299
2300 // Trampolines may not contain any metadata since all metadata offsets,
2301 // stored on the Code object, refer to the off-heap metadata area.
2302 CHECK_EQ(result->raw_metadata_size(), 0);
2303
2304 // The CodeDataContainer should not be modified beyond this point since it's
2305 // now possibly canonicalized.
2306
2307 // The trampoline code object must inherit specific flags from the original
2308 // builtin (e.g. the safepoint-table offset). We set them manually here.
2309 {
2310 DisallowGarbageCollection no_gc;
2311 CodePageMemoryModificationScope code_allocation(*result);
2312 Code raw_code = *code;
2313 Code raw_result = *result;
2314
2315 const bool set_is_off_heap_trampoline = true;
2316 raw_result.initialize_flags(raw_code.kind(), raw_code.is_turbofanned(),
2317 raw_code.stack_slots(),
2318 set_is_off_heap_trampoline);
2319 raw_result.set_builtin_id(raw_code.builtin_id());
2320 raw_result.set_handler_table_offset(raw_code.handler_table_offset());
2321 raw_result.set_constant_pool_offset(raw_code.constant_pool_offset());
2322 raw_result.set_code_comments_offset(raw_code.code_comments_offset());
2323 raw_result.set_unwinding_info_offset(raw_code.unwinding_info_offset());
2324
2325 // Replace the newly generated trampoline's RelocInfo ByteArray with the
2326 // canonical one stored in the roots to avoid duplicating it for every
2327 // single builtin.
2328 ByteArray canonical_reloc_info =
2329 generate_jump_to_instruction_stream
2330 ? read_only_roots().off_heap_trampoline_relocation_info()
2331 : read_only_roots().empty_byte_array();
2332 #ifdef DEBUG
2333 // Verify that the contents are the same.
2334 ByteArray reloc_info = raw_result.relocation_info();
2335 DCHECK_EQ(reloc_info.length(), canonical_reloc_info.length());
2336 for (int i = 0; i < reloc_info.length(); ++i) {
2337 DCHECK_EQ(reloc_info.get(i), canonical_reloc_info.get(i));
2338 }
2339 #endif
2340 raw_result.set_relocation_info(canonical_reloc_info);
2341 if (V8_EXTERNAL_CODE_SPACE_BOOL) {
2342 CodeDataContainer code_data_container =
2343 raw_result.code_data_container(kAcquireLoad);
2344 // Updating flags (in particular is_off_heap_trampoline one) might change
2345 // the value of the instruction start, so update it here.
2346 code_data_container.UpdateCodeEntryPoint(isolate(), raw_result);
2347 // Also update flag values cached on the code data container.
2348 code_data_container.initialize_flags(raw_code.kind(),
2349 raw_code.builtin_id());
2350 }
2351 }
2352
2353 return result;
2354 }
2355
CopyCode(Handle<Code> code)2356 Handle<Code> Factory::CopyCode(Handle<Code> code) {
2357 Handle<CodeDataContainer> data_container = NewCodeDataContainer(
2358 code->code_data_container(kAcquireLoad).kind_specific_flags(kRelaxedLoad),
2359 AllocationType::kOld);
2360
2361 Heap* heap = isolate()->heap();
2362 Handle<Code> new_code;
2363 {
2364 int obj_size = code->Size();
2365 CodePageCollectionMemoryModificationScope code_allocation(heap);
2366 HeapObject result =
2367 allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
2368 obj_size, AllocationType::kCode, AllocationOrigin::kRuntime);
2369
2370 // Copy code object.
2371 Address old_addr = code->address();
2372 Address new_addr = result.address();
2373 Heap::CopyBlock(new_addr, old_addr, obj_size);
2374 new_code = handle(Code::cast(result), isolate());
2375
2376 // Set the {CodeDataContainer}, it cannot be shared.
2377 new_code->set_code_data_container(*data_container, kReleaseStore);
2378
2379 new_code->Relocate(new_addr - old_addr);
2380 // We have to iterate over the object and process its pointers when black
2381 // allocation is on.
2382 heap->incremental_marking()->ProcessBlackAllocatedObject(*new_code);
2383 // Record all references to embedded objects in the new code object.
2384 #ifndef V8_DISABLE_WRITE_BARRIERS
2385 WriteBarrierForCode(*new_code);
2386 #endif
2387 }
2388 if (V8_EXTERNAL_CODE_SPACE_BOOL) {
2389 data_container->initialize_flags(code->kind(), code->builtin_id());
2390 data_container->SetCodeAndEntryPoint(isolate(), *new_code);
2391 }
2392
2393 #ifdef VERIFY_HEAP
2394 if (FLAG_verify_heap) new_code->ObjectVerify(isolate());
2395 #endif
2396 DCHECK(IsAligned(new_code->address(), kCodeAlignment));
2397 DCHECK_IMPLIES(
2398 !V8_ENABLE_THIRD_PARTY_HEAP_BOOL && !heap->code_region().is_empty(),
2399 heap->code_region().contains(new_code->address()));
2400 return new_code;
2401 }
2402
CopyBytecodeArray(Handle<BytecodeArray> source)2403 Handle<BytecodeArray> Factory::CopyBytecodeArray(Handle<BytecodeArray> source) {
2404 int size = BytecodeArray::SizeFor(source->length());
2405 BytecodeArray copy = BytecodeArray::cast(AllocateRawWithImmortalMap(
2406 size, AllocationType::kOld, *bytecode_array_map()));
2407 DisallowGarbageCollection no_gc;
2408 BytecodeArray raw_source = *source;
2409 copy.set_length(raw_source.length());
2410 copy.set_frame_size(raw_source.frame_size());
2411 copy.set_parameter_count(raw_source.parameter_count());
2412 copy.set_incoming_new_target_or_generator_register(
2413 raw_source.incoming_new_target_or_generator_register());
2414 copy.set_constant_pool(raw_source.constant_pool());
2415 copy.set_handler_table(raw_source.handler_table());
2416 copy.set_source_position_table(raw_source.source_position_table(kAcquireLoad),
2417 kReleaseStore);
2418 copy.set_osr_urgency(raw_source.osr_urgency());
2419 copy.set_bytecode_age(raw_source.bytecode_age());
2420 raw_source.CopyBytecodesTo(copy);
2421 return handle(copy, isolate());
2422 }
2423
NewJSObject(Handle<JSFunction> constructor,AllocationType allocation)2424 Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
2425 AllocationType allocation) {
2426 JSFunction::EnsureHasInitialMap(constructor);
2427 Handle<Map> map(constructor->initial_map(), isolate());
2428 return NewJSObjectFromMap(map, allocation);
2429 }
2430
NewSlowJSObjectWithNullProto()2431 Handle<JSObject> Factory::NewSlowJSObjectWithNullProto() {
2432 Handle<JSObject> result =
2433 NewSlowJSObjectFromMap(isolate()->slow_object_with_null_prototype_map());
2434 return result;
2435 }
2436
NewJSObjectWithNullProto()2437 Handle<JSObject> Factory::NewJSObjectWithNullProto() {
2438 Handle<Map> map(isolate()->object_function()->initial_map(), isolate());
2439 Handle<Map> map_with_null_proto =
2440 Map::TransitionToPrototype(isolate(), map, null_value());
2441 return NewJSObjectFromMap(map_with_null_proto);
2442 }
2443
NewJSGlobalObject(Handle<JSFunction> constructor)2444 Handle<JSGlobalObject> Factory::NewJSGlobalObject(
2445 Handle<JSFunction> constructor) {
2446 DCHECK(constructor->has_initial_map());
2447 Handle<Map> map(constructor->initial_map(), isolate());
2448 DCHECK(map->is_dictionary_map());
2449
2450 // Make sure no field properties are described in the initial map.
2451 // This guarantees us that normalizing the properties does not
2452 // require us to change property values to PropertyCells.
2453 DCHECK_EQ(map->NextFreePropertyIndex(), 0);
2454
2455 // Make sure we don't have a ton of pre-allocated slots in the
2456 // global objects. They will be unused once we normalize the object.
2457 DCHECK_EQ(map->UnusedPropertyFields(), 0);
2458 DCHECK_EQ(map->GetInObjectProperties(), 0);
2459
2460 // Initial size of the backing store to avoid resize of the storage during
2461 // bootstrapping. The size differs between the JS global object ad the
2462 // builtins object.
2463 int initial_size = 64;
2464
2465 // Allocate a dictionary object for backing storage.
2466 int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
2467 Handle<GlobalDictionary> dictionary =
2468 GlobalDictionary::New(isolate(), at_least_space_for);
2469
2470 // The global object might be created from an object template with accessors.
2471 // Fill these accessors into the dictionary.
2472 Handle<DescriptorArray> descs(map->instance_descriptors(isolate()),
2473 isolate());
2474 for (InternalIndex i : map->IterateOwnDescriptors()) {
2475 PropertyDetails details = descs->GetDetails(i);
2476 // Only accessors are expected.
2477 DCHECK_EQ(PropertyKind::kAccessor, details.kind());
2478 PropertyDetails d(PropertyKind::kAccessor, details.attributes(),
2479 PropertyCellType::kMutable);
2480 Handle<Name> name(descs->GetKey(i), isolate());
2481 Handle<Object> value(descs->GetStrongValue(i), isolate());
2482 Handle<PropertyCell> cell = NewPropertyCell(name, d, value);
2483 // |dictionary| already contains enough space for all properties.
2484 USE(GlobalDictionary::Add(isolate(), dictionary, name, cell, d));
2485 }
2486
2487 // Allocate the global object and initialize it with the backing store.
2488 Handle<JSGlobalObject> global(
2489 JSGlobalObject::cast(New(map, AllocationType::kOld)), isolate());
2490 InitializeJSObjectFromMap(*global, *dictionary, *map);
2491
2492 // Create a new map for the global object.
2493 Handle<Map> new_map = Map::CopyDropDescriptors(isolate(), map);
2494 Map raw_map = *new_map;
2495 raw_map.set_may_have_interesting_symbols(true);
2496 raw_map.set_is_dictionary_map(true);
2497 LOG(isolate(), MapDetails(raw_map));
2498
2499 // Set up the global object as a normalized object.
2500 global->set_global_dictionary(*dictionary, kReleaseStore);
2501 global->set_map(raw_map, kReleaseStore);
2502
2503 // Make sure result is a global object with properties in dictionary.
2504 DCHECK(global->IsJSGlobalObject() && !global->HasFastProperties());
2505 return global;
2506 }
2507
InitializeJSObjectFromMap(JSObject obj,Object properties,Map map)2508 void Factory::InitializeJSObjectFromMap(JSObject obj, Object properties,
2509 Map map) {
2510 DisallowGarbageCollection no_gc;
2511 obj.set_raw_properties_or_hash(properties, kRelaxedStore);
2512 obj.initialize_elements();
2513 // TODO(1240798): Initialize the object's body using valid initial values
2514 // according to the object's initial map. For example, if the map's
2515 // instance type is JS_ARRAY_TYPE, the length field should be initialized
2516 // to a number (e.g. Smi::zero()) and the elements initialized to a
2517 // fixed array (e.g. Heap::empty_fixed_array()). Currently, the object
2518 // verification code has to cope with (temporarily) invalid objects. See
2519 // for example, JSArray::JSArrayVerify).
2520 InitializeJSObjectBody(obj, map, JSObject::kHeaderSize);
2521 }
2522
InitializeJSObjectBody(JSObject obj,Map map,int start_offset)2523 void Factory::InitializeJSObjectBody(JSObject obj, Map map, int start_offset) {
2524 DisallowGarbageCollection no_gc;
2525 if (start_offset == map.instance_size()) return;
2526 DCHECK_LT(start_offset, map.instance_size());
2527
2528 // We cannot always fill with one_pointer_filler_map because objects
2529 // created from API functions expect their embedder fields to be initialized
2530 // with undefined_value.
2531 // Pre-allocated fields need to be initialized with undefined_value as well
2532 // so that object accesses before the constructor completes (e.g. in the
2533 // debugger) will not cause a crash.
2534
2535 // In case of Array subclassing the |map| could already be transitioned
2536 // to different elements kind from the initial map on which we track slack.
2537 bool in_progress = map.IsInobjectSlackTrackingInProgress();
2538 obj.InitializeBody(map, start_offset, in_progress,
2539 ReadOnlyRoots(isolate()).one_pointer_filler_map_word(),
2540 *undefined_value());
2541 if (in_progress) {
2542 map.FindRootMap(isolate()).InobjectSlackTrackingStep(isolate());
2543 }
2544 }
2545
NewJSObjectFromMap(Handle<Map> map,AllocationType allocation,Handle<AllocationSite> allocation_site)2546 Handle<JSObject> Factory::NewJSObjectFromMap(
2547 Handle<Map> map, AllocationType allocation,
2548 Handle<AllocationSite> allocation_site) {
2549 // JSFunctions should be allocated using AllocateFunction to be
2550 // properly initialized.
2551 DCHECK(!InstanceTypeChecker::IsJSFunction((map->instance_type())));
2552
2553 // Both types of global objects should be allocated using
2554 // AllocateGlobalObject to be properly initialized.
2555 DCHECK(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
2556
2557 JSObject js_obj = JSObject::cast(
2558 AllocateRawWithAllocationSite(map, allocation, allocation_site));
2559
2560 InitializeJSObjectFromMap(js_obj, *empty_fixed_array(), *map);
2561
2562 DCHECK(js_obj.HasFastElements() ||
2563 js_obj.HasTypedArrayOrRabGsabTypedArrayElements() ||
2564 js_obj.HasFastStringWrapperElements() ||
2565 js_obj.HasFastArgumentsElements() || js_obj.HasDictionaryElements());
2566 return handle(js_obj, isolate());
2567 }
2568
NewSlowJSObjectFromMap(Handle<Map> map,int capacity,AllocationType allocation,Handle<AllocationSite> allocation_site)2569 Handle<JSObject> Factory::NewSlowJSObjectFromMap(
2570 Handle<Map> map, int capacity, AllocationType allocation,
2571 Handle<AllocationSite> allocation_site) {
2572 DCHECK(map->is_dictionary_map());
2573 Handle<HeapObject> object_properties;
2574 if (V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL) {
2575 object_properties = NewSwissNameDictionary(capacity, allocation);
2576 } else {
2577 object_properties = NameDictionary::New(isolate(), capacity);
2578 }
2579 Handle<JSObject> js_object =
2580 NewJSObjectFromMap(map, allocation, allocation_site);
2581 js_object->set_raw_properties_or_hash(*object_properties, kRelaxedStore);
2582 return js_object;
2583 }
2584
NewSlowJSObjectWithPropertiesAndElements(Handle<HeapObject> prototype,Handle<HeapObject> properties,Handle<FixedArrayBase> elements)2585 Handle<JSObject> Factory::NewSlowJSObjectWithPropertiesAndElements(
2586 Handle<HeapObject> prototype, Handle<HeapObject> properties,
2587 Handle<FixedArrayBase> elements) {
2588 DCHECK_IMPLIES(V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL,
2589 properties->IsSwissNameDictionary());
2590 DCHECK_IMPLIES(!V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL,
2591 properties->IsNameDictionary());
2592
2593 Handle<Map> object_map = isolate()->slow_object_with_object_prototype_map();
2594 if (object_map->prototype() != *prototype) {
2595 object_map = Map::TransitionToPrototype(isolate(), object_map, prototype);
2596 }
2597 DCHECK(object_map->is_dictionary_map());
2598 Handle<JSObject> object =
2599 NewJSObjectFromMap(object_map, AllocationType::kYoung);
2600 object->set_raw_properties_or_hash(*properties);
2601 if (*elements != read_only_roots().empty_fixed_array()) {
2602 DCHECK(elements->IsNumberDictionary());
2603 object_map =
2604 JSObject::GetElementsTransitionMap(object, DICTIONARY_ELEMENTS);
2605 JSObject::MigrateToMap(isolate(), object, object_map);
2606 object->set_elements(*elements);
2607 }
2608 return object;
2609 }
2610
NewJSArray(ElementsKind elements_kind,int length,int capacity,ArrayStorageAllocationMode mode,AllocationType allocation)2611 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, int length,
2612 int capacity,
2613 ArrayStorageAllocationMode mode,
2614 AllocationType allocation) {
2615 DCHECK(capacity >= length);
2616 if (capacity == 0) {
2617 return NewJSArrayWithElements(empty_fixed_array(), elements_kind, length,
2618 allocation);
2619 }
2620
2621 HandleScope inner_scope(isolate());
2622 Handle<FixedArrayBase> elms =
2623 NewJSArrayStorage(elements_kind, capacity, mode);
2624 return inner_scope.CloseAndEscape(NewJSArrayWithUnverifiedElements(
2625 elms, elements_kind, length, allocation));
2626 }
2627
NewJSArrayWithElements(Handle<FixedArrayBase> elements,ElementsKind elements_kind,int length,AllocationType allocation)2628 Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
2629 ElementsKind elements_kind,
2630 int length,
2631 AllocationType allocation) {
2632 Handle<JSArray> array = NewJSArrayWithUnverifiedElements(
2633 elements, elements_kind, length, allocation);
2634 JSObject::ValidateElements(*array);
2635 return array;
2636 }
2637
NewJSArrayWithUnverifiedElements(Handle<FixedArrayBase> elements,ElementsKind elements_kind,int length,AllocationType allocation)2638 Handle<JSArray> Factory::NewJSArrayWithUnverifiedElements(
2639 Handle<FixedArrayBase> elements, ElementsKind elements_kind, int length,
2640 AllocationType allocation) {
2641 DCHECK(length <= elements->length());
2642 NativeContext native_context = isolate()->raw_native_context();
2643 Map map = native_context.GetInitialJSArrayMap(elements_kind);
2644 if (map.is_null()) {
2645 JSFunction array_function = native_context.array_function();
2646 map = array_function.initial_map();
2647 }
2648 Handle<JSArray> array = Handle<JSArray>::cast(
2649 NewJSObjectFromMap(handle(map, isolate()), allocation));
2650 DisallowGarbageCollection no_gc;
2651 JSArray raw = *array;
2652 raw.set_elements(*elements);
2653 raw.set_length(Smi::FromInt(length));
2654 return array;
2655 }
2656
NewJSArrayStorage(Handle<JSArray> array,int length,int capacity,ArrayStorageAllocationMode mode)2657 void Factory::NewJSArrayStorage(Handle<JSArray> array, int length, int capacity,
2658 ArrayStorageAllocationMode mode) {
2659 DCHECK(capacity >= length);
2660
2661 if (capacity == 0) {
2662 JSArray raw = *array;
2663 DisallowGarbageCollection no_gc;
2664 raw.set_length(Smi::zero());
2665 raw.set_elements(*empty_fixed_array());
2666 return;
2667 }
2668
2669 HandleScope inner_scope(isolate());
2670 Handle<FixedArrayBase> elms =
2671 NewJSArrayStorage(array->GetElementsKind(), capacity, mode);
2672 DisallowGarbageCollection no_gc;
2673 JSArray raw = *array;
2674 raw.set_elements(*elms);
2675 raw.set_length(Smi::FromInt(length));
2676 }
2677
NewJSArrayStorage(ElementsKind elements_kind,int capacity,ArrayStorageAllocationMode mode)2678 Handle<FixedArrayBase> Factory::NewJSArrayStorage(
2679 ElementsKind elements_kind, int capacity, ArrayStorageAllocationMode mode) {
2680 DCHECK_GT(capacity, 0);
2681 Handle<FixedArrayBase> elms;
2682 if (IsDoubleElementsKind(elements_kind)) {
2683 if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
2684 elms = NewFixedDoubleArray(capacity);
2685 } else {
2686 DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
2687 elms = NewFixedDoubleArrayWithHoles(capacity);
2688 }
2689 } else {
2690 DCHECK(IsSmiOrObjectElementsKind(elements_kind));
2691 if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
2692 elms = NewFixedArray(capacity);
2693 } else {
2694 DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
2695 elms = NewFixedArrayWithHoles(capacity);
2696 }
2697 }
2698 return elms;
2699 }
2700
NewJSWeakMap()2701 Handle<JSWeakMap> Factory::NewJSWeakMap() {
2702 NativeContext native_context = isolate()->raw_native_context();
2703 Handle<Map> map(native_context.js_weak_map_fun().initial_map(), isolate());
2704 Handle<JSWeakMap> weakmap(JSWeakMap::cast(*NewJSObjectFromMap(map)),
2705 isolate());
2706 {
2707 // Do not leak handles for the hash table, it would make entries strong.
2708 HandleScope scope(isolate());
2709 JSWeakCollection::Initialize(weakmap, isolate());
2710 }
2711 return weakmap;
2712 }
2713
NewJSModuleNamespace()2714 Handle<JSModuleNamespace> Factory::NewJSModuleNamespace() {
2715 Handle<Map> map = isolate()->js_module_namespace_map();
2716 Handle<JSModuleNamespace> module_namespace(
2717 Handle<JSModuleNamespace>::cast(NewJSObjectFromMap(map)));
2718 FieldIndex index = FieldIndex::ForDescriptor(
2719 *map, InternalIndex(JSModuleNamespace::kToStringTagFieldIndex));
2720 module_namespace->FastPropertyAtPut(index, read_only_roots().Module_string(),
2721 SKIP_WRITE_BARRIER);
2722 return module_namespace;
2723 }
2724
NewJSWrappedFunction(Handle<NativeContext> creation_context,Handle<Object> target)2725 Handle<JSWrappedFunction> Factory::NewJSWrappedFunction(
2726 Handle<NativeContext> creation_context, Handle<Object> target) {
2727 DCHECK(target->IsCallable());
2728 Handle<Map> map(
2729 Map::cast(creation_context->get(Context::WRAPPED_FUNCTION_MAP_INDEX)),
2730 isolate());
2731 // 2. Let wrapped be ! MakeBasicObject(internalSlotsList).
2732 // 3. Set wrapped.[[Prototype]] to
2733 // callerRealm.[[Intrinsics]].[[%Function.prototype%]].
2734 // 4. Set wrapped.[[Call]] as described in 2.1.
2735 Handle<JSWrappedFunction> wrapped = Handle<JSWrappedFunction>::cast(
2736 isolate()->factory()->NewJSObjectFromMap(map));
2737 // 5. Set wrapped.[[WrappedTargetFunction]] to Target.
2738 wrapped->set_wrapped_target_function(JSReceiver::cast(*target));
2739 // 6. Set wrapped.[[Realm]] to callerRealm.
2740 wrapped->set_context(*creation_context);
2741 // TODO(v8:11989): https://github.com/tc39/proposal-shadowrealm/pull/348
2742
2743 return wrapped;
2744 }
2745
NewJSGeneratorObject(Handle<JSFunction> function)2746 Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
2747 Handle<JSFunction> function) {
2748 DCHECK(IsResumableFunction(function->shared().kind()));
2749 JSFunction::EnsureHasInitialMap(function);
2750 Handle<Map> map(function->initial_map(), isolate());
2751
2752 DCHECK(map->instance_type() == JS_GENERATOR_OBJECT_TYPE ||
2753 map->instance_type() == JS_ASYNC_GENERATOR_OBJECT_TYPE);
2754
2755 return Handle<JSGeneratorObject>::cast(NewJSObjectFromMap(map));
2756 }
2757
NewSourceTextModule(Handle<SharedFunctionInfo> sfi)2758 Handle<SourceTextModule> Factory::NewSourceTextModule(
2759 Handle<SharedFunctionInfo> sfi) {
2760 Handle<SourceTextModuleInfo> module_info(
2761 sfi->scope_info().ModuleDescriptorInfo(), isolate());
2762 Handle<ObjectHashTable> exports =
2763 ObjectHashTable::New(isolate(), module_info->RegularExportCount());
2764 Handle<FixedArray> regular_exports =
2765 NewFixedArray(module_info->RegularExportCount());
2766 Handle<FixedArray> regular_imports =
2767 NewFixedArray(module_info->regular_imports().length());
2768 int requested_modules_length = module_info->module_requests().length();
2769 Handle<FixedArray> requested_modules =
2770 requested_modules_length > 0 ? NewFixedArray(requested_modules_length)
2771 : empty_fixed_array();
2772
2773 ReadOnlyRoots roots(isolate());
2774 SourceTextModule module = SourceTextModule::cast(
2775 New(source_text_module_map(), AllocationType::kOld));
2776 DisallowGarbageCollection no_gc;
2777 module.set_code(*sfi);
2778 module.set_exports(*exports);
2779 module.set_regular_exports(*regular_exports);
2780 module.set_regular_imports(*regular_imports);
2781 module.set_hash(isolate()->GenerateIdentityHash(Smi::kMaxValue));
2782 module.set_module_namespace(roots.undefined_value(), SKIP_WRITE_BARRIER);
2783 module.set_requested_modules(*requested_modules);
2784 module.set_status(Module::kUnlinked);
2785 module.set_exception(roots.the_hole_value(), SKIP_WRITE_BARRIER);
2786 module.set_top_level_capability(roots.undefined_value(), SKIP_WRITE_BARRIER);
2787 module.set_import_meta(roots.the_hole_value(), kReleaseStore,
2788 SKIP_WRITE_BARRIER);
2789 module.set_dfs_index(-1);
2790 module.set_dfs_ancestor_index(-1);
2791 module.set_flags(0);
2792 module.set_async(IsAsyncModule(sfi->kind()));
2793 module.set_async_evaluating_ordinal(SourceTextModule::kNotAsyncEvaluated);
2794 module.set_cycle_root(roots.the_hole_value(), SKIP_WRITE_BARRIER);
2795 module.set_async_parent_modules(roots.empty_array_list());
2796 module.set_pending_async_dependencies(0);
2797 return handle(module, isolate());
2798 }
2799
NewSyntheticModule(Handle<String> module_name,Handle<FixedArray> export_names,v8::Module::SyntheticModuleEvaluationSteps evaluation_steps)2800 Handle<SyntheticModule> Factory::NewSyntheticModule(
2801 Handle<String> module_name, Handle<FixedArray> export_names,
2802 v8::Module::SyntheticModuleEvaluationSteps evaluation_steps) {
2803 ReadOnlyRoots roots(isolate());
2804
2805 Handle<ObjectHashTable> exports =
2806 ObjectHashTable::New(isolate(), static_cast<int>(export_names->length()));
2807 Handle<Foreign> evaluation_steps_foreign =
2808 NewForeign(reinterpret_cast<i::Address>(evaluation_steps));
2809
2810 SyntheticModule module =
2811 SyntheticModule::cast(New(synthetic_module_map(), AllocationType::kOld));
2812 DisallowGarbageCollection no_gc;
2813 module.set_hash(isolate()->GenerateIdentityHash(Smi::kMaxValue));
2814 module.set_module_namespace(roots.undefined_value(), SKIP_WRITE_BARRIER);
2815 module.set_status(Module::kUnlinked);
2816 module.set_exception(roots.the_hole_value(), SKIP_WRITE_BARRIER);
2817 module.set_top_level_capability(roots.undefined_value(), SKIP_WRITE_BARRIER);
2818 module.set_name(*module_name);
2819 module.set_export_names(*export_names);
2820 module.set_exports(*exports);
2821 module.set_evaluation_steps(*evaluation_steps_foreign);
2822 return handle(module, isolate());
2823 }
2824
NewJSArrayBuffer(std::shared_ptr<BackingStore> backing_store,AllocationType allocation)2825 Handle<JSArrayBuffer> Factory::NewJSArrayBuffer(
2826 std::shared_ptr<BackingStore> backing_store, AllocationType allocation) {
2827 Handle<Map> map(isolate()->native_context()->array_buffer_fun().initial_map(),
2828 isolate());
2829 auto result =
2830 Handle<JSArrayBuffer>::cast(NewJSObjectFromMap(map, allocation));
2831 result->Setup(SharedFlag::kNotShared, ResizableFlag::kNotResizable,
2832 std::move(backing_store));
2833 return result;
2834 }
2835
NewJSArrayBufferAndBackingStore(size_t byte_length,InitializedFlag initialized,AllocationType allocation)2836 MaybeHandle<JSArrayBuffer> Factory::NewJSArrayBufferAndBackingStore(
2837 size_t byte_length, InitializedFlag initialized,
2838 AllocationType allocation) {
2839 std::unique_ptr<BackingStore> backing_store = nullptr;
2840
2841 if (byte_length > 0) {
2842 backing_store = BackingStore::Allocate(isolate(), byte_length,
2843 SharedFlag::kNotShared, initialized);
2844 if (!backing_store) return MaybeHandle<JSArrayBuffer>();
2845 }
2846 Handle<Map> map(isolate()->native_context()->array_buffer_fun().initial_map(),
2847 isolate());
2848 auto array_buffer =
2849 Handle<JSArrayBuffer>::cast(NewJSObjectFromMap(map, allocation));
2850 array_buffer->Setup(SharedFlag::kNotShared, ResizableFlag::kNotResizable,
2851 std::move(backing_store));
2852 return array_buffer;
2853 }
2854
NewJSSharedArrayBuffer(std::shared_ptr<BackingStore> backing_store)2855 Handle<JSArrayBuffer> Factory::NewJSSharedArrayBuffer(
2856 std::shared_ptr<BackingStore> backing_store) {
2857 DCHECK_IMPLIES(backing_store->is_resizable(), FLAG_harmony_rab_gsab);
2858 Handle<Map> map(
2859 isolate()->native_context()->shared_array_buffer_fun().initial_map(),
2860 isolate());
2861 auto result = Handle<JSArrayBuffer>::cast(
2862 NewJSObjectFromMap(map, AllocationType::kYoung));
2863 ResizableFlag resizable = backing_store->is_resizable()
2864 ? ResizableFlag::kResizable
2865 : ResizableFlag::kNotResizable;
2866 result->Setup(SharedFlag::kShared, resizable, std::move(backing_store));
2867 return result;
2868 }
2869
NewJSIteratorResult(Handle<Object> value,bool done)2870 Handle<JSIteratorResult> Factory::NewJSIteratorResult(Handle<Object> value,
2871 bool done) {
2872 Handle<Map> map(isolate()->native_context()->iterator_result_map(),
2873 isolate());
2874 Handle<JSIteratorResult> js_iter_result = Handle<JSIteratorResult>::cast(
2875 NewJSObjectFromMap(map, AllocationType::kYoung));
2876 DisallowGarbageCollection no_gc;
2877 JSIteratorResult raw = *js_iter_result;
2878 raw.set_value(*value, SKIP_WRITE_BARRIER);
2879 raw.set_done(*ToBoolean(done), SKIP_WRITE_BARRIER);
2880 return js_iter_result;
2881 }
2882
NewJSAsyncFromSyncIterator(Handle<JSReceiver> sync_iterator,Handle<Object> next)2883 Handle<JSAsyncFromSyncIterator> Factory::NewJSAsyncFromSyncIterator(
2884 Handle<JSReceiver> sync_iterator, Handle<Object> next) {
2885 Handle<Map> map(isolate()->native_context()->async_from_sync_iterator_map(),
2886 isolate());
2887 Handle<JSAsyncFromSyncIterator> iterator =
2888 Handle<JSAsyncFromSyncIterator>::cast(
2889 NewJSObjectFromMap(map, AllocationType::kYoung));
2890 DisallowGarbageCollection no_gc;
2891 JSAsyncFromSyncIterator raw = *iterator;
2892 raw.set_sync_iterator(*sync_iterator, SKIP_WRITE_BARRIER);
2893 raw.set_next(*next, SKIP_WRITE_BARRIER);
2894 return iterator;
2895 }
2896
NewJSMap()2897 Handle<JSMap> Factory::NewJSMap() {
2898 Handle<Map> map(isolate()->native_context()->js_map_map(), isolate());
2899 Handle<JSMap> js_map = Handle<JSMap>::cast(NewJSObjectFromMap(map));
2900 JSMap::Initialize(js_map, isolate());
2901 return js_map;
2902 }
2903
NewJSSet()2904 Handle<JSSet> Factory::NewJSSet() {
2905 Handle<Map> map(isolate()->native_context()->js_set_map(), isolate());
2906 Handle<JSSet> js_set = Handle<JSSet>::cast(NewJSObjectFromMap(map));
2907 JSSet::Initialize(js_set, isolate());
2908 return js_set;
2909 }
2910
TypeAndSizeForElementsKind(ElementsKind kind,ExternalArrayType * array_type,size_t * element_size)2911 void Factory::TypeAndSizeForElementsKind(ElementsKind kind,
2912 ExternalArrayType* array_type,
2913 size_t* element_size) {
2914 switch (kind) {
2915 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
2916 case TYPE##_ELEMENTS: \
2917 *array_type = kExternal##Type##Array; \
2918 *element_size = sizeof(ctype); \
2919 break;
2920 TYPED_ARRAYS(TYPED_ARRAY_CASE)
2921 RAB_GSAB_TYPED_ARRAYS_WITH_TYPED_ARRAY_TYPE(TYPED_ARRAY_CASE)
2922 #undef TYPED_ARRAY_CASE
2923
2924 default:
2925 UNREACHABLE();
2926 }
2927 }
2928
2929 namespace {
2930
ForFixedTypedArray(ExternalArrayType array_type,size_t * element_size,ElementsKind * element_kind)2931 void ForFixedTypedArray(ExternalArrayType array_type, size_t* element_size,
2932 ElementsKind* element_kind) {
2933 switch (array_type) {
2934 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
2935 case kExternal##Type##Array: \
2936 *element_size = sizeof(ctype); \
2937 *element_kind = TYPE##_ELEMENTS; \
2938 return;
2939
2940 TYPED_ARRAYS(TYPED_ARRAY_CASE)
2941 #undef TYPED_ARRAY_CASE
2942 }
2943 UNREACHABLE();
2944 }
2945
2946 } // namespace
2947
NewJSArrayBufferView(Handle<Map> map,Handle<FixedArrayBase> elements,Handle<JSArrayBuffer> buffer,size_t byte_offset,size_t byte_length)2948 Handle<JSArrayBufferView> Factory::NewJSArrayBufferView(
2949 Handle<Map> map, Handle<FixedArrayBase> elements,
2950 Handle<JSArrayBuffer> buffer, size_t byte_offset, size_t byte_length) {
2951 CHECK_LE(byte_length, buffer->byte_length());
2952 CHECK_LE(byte_offset, buffer->byte_length());
2953 CHECK_LE(byte_offset + byte_length, buffer->byte_length());
2954 Handle<JSArrayBufferView> array_buffer_view = Handle<JSArrayBufferView>::cast(
2955 NewJSObjectFromMap(map, AllocationType::kYoung));
2956 DisallowGarbageCollection no_gc;
2957 JSArrayBufferView raw = *array_buffer_view;
2958 raw.set_elements(*elements, SKIP_WRITE_BARRIER);
2959 raw.set_buffer(*buffer, SKIP_WRITE_BARRIER);
2960 raw.set_byte_offset(byte_offset);
2961 raw.set_byte_length(byte_length);
2962 raw.set_bit_field(0);
2963 // TODO(v8) remove once embedder data slots are always zero-initialized.
2964 InitEmbedderFields(raw, Smi::zero());
2965 DCHECK_EQ(raw.GetEmbedderFieldCount(),
2966 v8::ArrayBufferView::kEmbedderFieldCount);
2967 return array_buffer_view;
2968 }
2969
NewJSTypedArray(ExternalArrayType type,Handle<JSArrayBuffer> buffer,size_t byte_offset,size_t length)2970 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
2971 Handle<JSArrayBuffer> buffer,
2972 size_t byte_offset,
2973 size_t length) {
2974 size_t element_size;
2975 ElementsKind elements_kind;
2976 ForFixedTypedArray(type, &element_size, &elements_kind);
2977 size_t byte_length = length * element_size;
2978
2979 CHECK_LE(length, JSTypedArray::kMaxLength);
2980 CHECK_EQ(length, byte_length / element_size);
2981 CHECK_EQ(0, byte_offset % ElementsKindToByteSize(elements_kind));
2982
2983 Handle<Map> map;
2984 switch (elements_kind) {
2985 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype) \
2986 case TYPE##_ELEMENTS: \
2987 map = \
2988 handle(isolate()->native_context()->type##_array_fun().initial_map(), \
2989 isolate()); \
2990 break;
2991
2992 TYPED_ARRAYS(TYPED_ARRAY_FUN)
2993 #undef TYPED_ARRAY_FUN
2994
2995 default:
2996 UNREACHABLE();
2997 }
2998 Handle<JSTypedArray> typed_array =
2999 Handle<JSTypedArray>::cast(NewJSArrayBufferView(
3000 map, empty_byte_array(), buffer, byte_offset, byte_length));
3001 JSTypedArray raw = *typed_array;
3002 DisallowGarbageCollection no_gc;
3003 raw.set_length(length);
3004 raw.SetOffHeapDataPtr(isolate(), buffer->backing_store(), byte_offset);
3005 raw.set_is_length_tracking(false);
3006 raw.set_is_backed_by_rab(!buffer->is_shared() && buffer->is_resizable());
3007 return typed_array;
3008 }
3009
NewJSDataView(Handle<JSArrayBuffer> buffer,size_t byte_offset,size_t byte_length)3010 Handle<JSDataView> Factory::NewJSDataView(Handle<JSArrayBuffer> buffer,
3011 size_t byte_offset,
3012 size_t byte_length) {
3013 Handle<Map> map(isolate()->native_context()->data_view_fun().initial_map(),
3014 isolate());
3015 Handle<JSDataView> obj = Handle<JSDataView>::cast(NewJSArrayBufferView(
3016 map, empty_fixed_array(), buffer, byte_offset, byte_length));
3017 obj->set_data_pointer(
3018 isolate(), static_cast<uint8_t*>(buffer->backing_store()) + byte_offset);
3019 // TODO(v8:11111): Support creating length tracking DataViews via the API.
3020 obj->set_is_length_tracking(false);
3021 obj->set_is_backed_by_rab(!buffer->is_shared() && buffer->is_resizable());
3022 return obj;
3023 }
3024
NewJSBoundFunction(Handle<JSReceiver> target_function,Handle<Object> bound_this,base::Vector<Handle<Object>> bound_args)3025 MaybeHandle<JSBoundFunction> Factory::NewJSBoundFunction(
3026 Handle<JSReceiver> target_function, Handle<Object> bound_this,
3027 base::Vector<Handle<Object>> bound_args) {
3028 DCHECK(target_function->IsCallable());
3029 STATIC_ASSERT(Code::kMaxArguments <= FixedArray::kMaxLength);
3030 if (bound_args.length() >= Code::kMaxArguments) {
3031 THROW_NEW_ERROR(isolate(),
3032 NewRangeError(MessageTemplate::kTooManyArguments),
3033 JSBoundFunction);
3034 }
3035
3036 // Determine the prototype of the {target_function}.
3037 Handle<HeapObject> prototype;
3038 ASSIGN_RETURN_ON_EXCEPTION(
3039 isolate(), prototype,
3040 JSReceiver::GetPrototype(isolate(), target_function), JSBoundFunction);
3041
3042 SaveAndSwitchContext save(
3043 isolate(), *target_function->GetCreationContext().ToHandleChecked());
3044
3045 // Create the [[BoundArguments]] for the result.
3046 Handle<FixedArray> bound_arguments;
3047 if (bound_args.length() == 0) {
3048 bound_arguments = empty_fixed_array();
3049 } else {
3050 bound_arguments = NewFixedArray(bound_args.length());
3051 for (int i = 0; i < bound_args.length(); ++i) {
3052 bound_arguments->set(i, *bound_args[i]);
3053 }
3054 }
3055
3056 // Setup the map for the JSBoundFunction instance.
3057 Handle<Map> map = target_function->IsConstructor()
3058 ? isolate()->bound_function_with_constructor_map()
3059 : isolate()->bound_function_without_constructor_map();
3060 if (map->prototype() != *prototype) {
3061 map = Map::TransitionToPrototype(isolate(), map, prototype);
3062 }
3063 DCHECK_EQ(target_function->IsConstructor(), map->is_constructor());
3064
3065 // Setup the JSBoundFunction instance.
3066 Handle<JSBoundFunction> result = Handle<JSBoundFunction>::cast(
3067 NewJSObjectFromMap(map, AllocationType::kYoung));
3068 DisallowGarbageCollection no_gc;
3069 JSBoundFunction raw = *result;
3070 raw.set_bound_target_function(*target_function, SKIP_WRITE_BARRIER);
3071 raw.set_bound_this(*bound_this, SKIP_WRITE_BARRIER);
3072 raw.set_bound_arguments(*bound_arguments, SKIP_WRITE_BARRIER);
3073 return result;
3074 }
3075
3076 // ES6 section 9.5.15 ProxyCreate (target, handler)
NewJSProxy(Handle<JSReceiver> target,Handle<JSReceiver> handler)3077 Handle<JSProxy> Factory::NewJSProxy(Handle<JSReceiver> target,
3078 Handle<JSReceiver> handler) {
3079 // Allocate the proxy object.
3080 Handle<Map> map;
3081 if (target->IsCallable()) {
3082 if (target->IsConstructor()) {
3083 map = Handle<Map>(isolate()->proxy_constructor_map());
3084 } else {
3085 map = Handle<Map>(isolate()->proxy_callable_map());
3086 }
3087 } else {
3088 map = Handle<Map>(isolate()->proxy_map());
3089 }
3090 DCHECK(map->prototype().IsNull(isolate()));
3091 JSProxy result = JSProxy::cast(New(map, AllocationType::kYoung));
3092 DisallowGarbageCollection no_gc;
3093 result.initialize_properties(isolate());
3094 result.set_target(*target, SKIP_WRITE_BARRIER);
3095 result.set_handler(*handler, SKIP_WRITE_BARRIER);
3096 return handle(result, isolate());
3097 }
3098
NewUninitializedJSGlobalProxy(int size)3099 Handle<JSGlobalProxy> Factory::NewUninitializedJSGlobalProxy(int size) {
3100 // Create an empty shell of a JSGlobalProxy that needs to be reinitialized
3101 // via ReinitializeJSGlobalProxy later.
3102 Handle<Map> map = NewMap(JS_GLOBAL_PROXY_TYPE, size);
3103 // Maintain invariant expected from any JSGlobalProxy.
3104 {
3105 DisallowGarbageCollection no_gc;
3106 Map raw = *map;
3107 raw.set_is_access_check_needed(true);
3108 raw.set_may_have_interesting_symbols(true);
3109 LOG(isolate(), MapDetails(raw));
3110 }
3111 Handle<JSGlobalProxy> proxy = Handle<JSGlobalProxy>::cast(
3112 NewJSObjectFromMap(map, AllocationType::kOld));
3113 // Create identity hash early in case there is any JS collection containing
3114 // a global proxy key and needs to be rehashed after deserialization.
3115 proxy->GetOrCreateIdentityHash(isolate());
3116 return proxy;
3117 }
3118
ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,Handle<JSFunction> constructor)3119 void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
3120 Handle<JSFunction> constructor) {
3121 DCHECK(constructor->has_initial_map());
3122 Handle<Map> map(constructor->initial_map(), isolate());
3123 Handle<Map> old_map(object->map(), isolate());
3124
3125 // The proxy's hash should be retained across reinitialization.
3126 Handle<Object> raw_properties_or_hash(object->raw_properties_or_hash(),
3127 isolate());
3128
3129 if (old_map->is_prototype_map()) {
3130 map = Map::Copy(isolate(), map, "CopyAsPrototypeForJSGlobalProxy");
3131 map->set_is_prototype_map(true);
3132 }
3133 JSObject::NotifyMapChange(old_map, map, isolate());
3134 old_map->NotifyLeafMapLayoutChange(isolate());
3135
3136 // Check that the already allocated object has the same size and type as
3137 // objects allocated using the constructor.
3138 DCHECK(map->instance_size() == old_map->instance_size());
3139 DCHECK(map->instance_type() == old_map->instance_type());
3140
3141 // In order to keep heap in consistent state there must be no allocations
3142 // before object re-initialization is finished.
3143 DisallowGarbageCollection no_gc;
3144
3145 // Reset the map for the object.
3146 JSGlobalProxy raw = *object;
3147 raw.set_map(*map, kReleaseStore);
3148
3149 // Reinitialize the object from the constructor map.
3150 InitializeJSObjectFromMap(raw, *raw_properties_or_hash, *map);
3151 }
3152
NewJSMessageObject(MessageTemplate message,Handle<Object> argument,int start_position,int end_position,Handle<SharedFunctionInfo> shared_info,int bytecode_offset,Handle<Script> script,Handle<Object> stack_frames)3153 Handle<JSMessageObject> Factory::NewJSMessageObject(
3154 MessageTemplate message, Handle<Object> argument, int start_position,
3155 int end_position, Handle<SharedFunctionInfo> shared_info,
3156 int bytecode_offset, Handle<Script> script, Handle<Object> stack_frames) {
3157 Handle<Map> map = message_object_map();
3158 JSMessageObject message_obj =
3159 JSMessageObject::cast(New(map, AllocationType::kYoung));
3160 DisallowGarbageCollection no_gc;
3161 message_obj.set_raw_properties_or_hash(*empty_fixed_array(),
3162 SKIP_WRITE_BARRIER);
3163 message_obj.initialize_elements();
3164 message_obj.set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
3165 message_obj.set_type(message);
3166 message_obj.set_argument(*argument, SKIP_WRITE_BARRIER);
3167 message_obj.set_start_position(start_position);
3168 message_obj.set_end_position(end_position);
3169 message_obj.set_script(*script, SKIP_WRITE_BARRIER);
3170 if (start_position >= 0) {
3171 // If there's a start_position, then there's no need to store the
3172 // SharedFunctionInfo as it will never be necessary to regenerate the
3173 // position.
3174 message_obj.set_shared_info(*undefined_value(), SKIP_WRITE_BARRIER);
3175 message_obj.set_bytecode_offset(Smi::FromInt(0));
3176 } else {
3177 message_obj.set_bytecode_offset(Smi::FromInt(bytecode_offset));
3178 if (shared_info.is_null()) {
3179 message_obj.set_shared_info(*undefined_value(), SKIP_WRITE_BARRIER);
3180 DCHECK_EQ(bytecode_offset, -1);
3181 } else {
3182 message_obj.set_shared_info(*shared_info, SKIP_WRITE_BARRIER);
3183 DCHECK_GE(bytecode_offset, kFunctionEntryBytecodeOffset);
3184 }
3185 }
3186
3187 message_obj.set_stack_frames(*stack_frames, SKIP_WRITE_BARRIER);
3188 message_obj.set_error_level(v8::Isolate::kMessageError);
3189 return handle(message_obj, isolate());
3190 }
3191
NewSharedFunctionInfoForApiFunction(MaybeHandle<String> maybe_name,Handle<FunctionTemplateInfo> function_template_info,FunctionKind kind)3192 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForApiFunction(
3193 MaybeHandle<String> maybe_name,
3194 Handle<FunctionTemplateInfo> function_template_info, FunctionKind kind) {
3195 Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(
3196 maybe_name, function_template_info, Builtin::kNoBuiltinId, kind);
3197 return shared;
3198 }
3199
NewSharedFunctionInfoForBuiltin(MaybeHandle<String> maybe_name,Builtin builtin,FunctionKind kind)3200 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForBuiltin(
3201 MaybeHandle<String> maybe_name, Builtin builtin, FunctionKind kind) {
3202 Handle<SharedFunctionInfo> shared =
3203 NewSharedFunctionInfo(maybe_name, MaybeHandle<Code>(), builtin, kind);
3204 return shared;
3205 }
3206
NewSharedFunctionInfoForWebSnapshot()3207 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForWebSnapshot() {
3208 return NewSharedFunctionInfo(empty_string(), MaybeHandle<Code>(),
3209 Builtin::kNoBuiltinId,
3210 FunctionKind::kNormalFunction);
3211 }
3212
3213 namespace {
NumberToStringCacheHash(Handle<FixedArray> cache,Smi number)3214 V8_INLINE int NumberToStringCacheHash(Handle<FixedArray> cache, Smi number) {
3215 int mask = (cache->length() >> 1) - 1;
3216 return number.value() & mask;
3217 }
3218
NumberToStringCacheHash(Handle<FixedArray> cache,double number)3219 V8_INLINE int NumberToStringCacheHash(Handle<FixedArray> cache, double number) {
3220 int mask = (cache->length() >> 1) - 1;
3221 int64_t bits = bit_cast<int64_t>(number);
3222 return (static_cast<int>(bits) ^ static_cast<int>(bits >> 32)) & mask;
3223 }
3224
CharToString(Factory * factory,const char * string,NumberCacheMode mode)3225 V8_INLINE Handle<String> CharToString(Factory* factory, const char* string,
3226 NumberCacheMode mode) {
3227 // We tenure the allocated string since it is referenced from the
3228 // number-string cache which lives in the old space.
3229 AllocationType type = mode == NumberCacheMode::kIgnore
3230 ? AllocationType::kYoung
3231 : AllocationType::kOld;
3232 return factory->NewStringFromAsciiChecked(string, type);
3233 }
3234
3235 } // namespace
3236
NumberToStringCacheSet(Handle<Object> number,int hash,Handle<String> js_string)3237 void Factory::NumberToStringCacheSet(Handle<Object> number, int hash,
3238 Handle<String> js_string) {
3239 if (!number_string_cache()->get(hash * 2).IsUndefined(isolate()) &&
3240 !FLAG_optimize_for_size) {
3241 int full_size = isolate()->heap()->MaxNumberToStringCacheSize();
3242 if (number_string_cache()->length() != full_size) {
3243 Handle<FixedArray> new_cache =
3244 NewFixedArray(full_size, AllocationType::kOld);
3245 isolate()->heap()->set_number_string_cache(*new_cache);
3246 return;
3247 }
3248 }
3249 DisallowGarbageCollection no_gc;
3250 FixedArray cache = *number_string_cache();
3251 cache.set(hash * 2, *number);
3252 cache.set(hash * 2 + 1, *js_string);
3253 }
3254
NumberToStringCacheGet(Object number,int hash)3255 Handle<Object> Factory::NumberToStringCacheGet(Object number, int hash) {
3256 DisallowGarbageCollection no_gc;
3257 FixedArray cache = *number_string_cache();
3258 Object key = cache.get(hash * 2);
3259 if (key == number || (key.IsHeapNumber() && number.IsHeapNumber() &&
3260 key.Number() == number.Number())) {
3261 return Handle<String>(String::cast(cache.get(hash * 2 + 1)), isolate());
3262 }
3263 return undefined_value();
3264 }
3265
NumberToString(Handle<Object> number,NumberCacheMode mode)3266 Handle<String> Factory::NumberToString(Handle<Object> number,
3267 NumberCacheMode mode) {
3268 SLOW_DCHECK(number->IsNumber());
3269 if (number->IsSmi()) return SmiToString(Smi::cast(*number), mode);
3270
3271 double double_value = Handle<HeapNumber>::cast(number)->value();
3272 // Try to canonicalize doubles.
3273 int smi_value;
3274 if (DoubleToSmiInteger(double_value, &smi_value)) {
3275 return SmiToString(Smi::FromInt(smi_value), mode);
3276 }
3277 return HeapNumberToString(Handle<HeapNumber>::cast(number), double_value,
3278 mode);
3279 }
3280
3281 // Must be large enough to fit any double, int, or size_t.
3282 static const int kNumberToStringBufferSize = 32;
3283
HeapNumberToString(Handle<HeapNumber> number,double value,NumberCacheMode mode)3284 Handle<String> Factory::HeapNumberToString(Handle<HeapNumber> number,
3285 double value, NumberCacheMode mode) {
3286 int hash = 0;
3287 if (mode != NumberCacheMode::kIgnore) {
3288 hash = NumberToStringCacheHash(number_string_cache(), value);
3289 }
3290 if (mode == NumberCacheMode::kBoth) {
3291 Handle<Object> cached = NumberToStringCacheGet(*number, hash);
3292 if (!cached->IsUndefined(isolate())) return Handle<String>::cast(cached);
3293 }
3294
3295 Handle<String> result;
3296 if (value == 0) {
3297 result = zero_string();
3298 } else if (std::isnan(value)) {
3299 result = NaN_string();
3300 } else {
3301 char arr[kNumberToStringBufferSize];
3302 base::Vector<char> buffer(arr, arraysize(arr));
3303 const char* string = DoubleToCString(value, buffer);
3304 result = CharToString(this, string, mode);
3305 }
3306 if (mode != NumberCacheMode::kIgnore) {
3307 NumberToStringCacheSet(number, hash, result);
3308 }
3309 return result;
3310 }
3311
SmiToString(Smi number,NumberCacheMode mode)3312 inline Handle<String> Factory::SmiToString(Smi number, NumberCacheMode mode) {
3313 int hash = NumberToStringCacheHash(number_string_cache(), number);
3314 if (mode == NumberCacheMode::kBoth) {
3315 Handle<Object> cached = NumberToStringCacheGet(number, hash);
3316 if (!cached->IsUndefined(isolate())) return Handle<String>::cast(cached);
3317 }
3318
3319 Handle<String> result;
3320 if (number == Smi::zero()) {
3321 result = zero_string();
3322 } else {
3323 char arr[kNumberToStringBufferSize];
3324 base::Vector<char> buffer(arr, arraysize(arr));
3325 const char* string = IntToCString(number.value(), buffer);
3326 result = CharToString(this, string, mode);
3327 }
3328 if (mode != NumberCacheMode::kIgnore) {
3329 NumberToStringCacheSet(handle(number, isolate()), hash, result);
3330 }
3331
3332 // Compute the hash here (rather than letting the caller take care of it) so
3333 // that the "cache hit" case above doesn't have to bother with it.
3334 STATIC_ASSERT(Smi::kMaxValue <= std::numeric_limits<uint32_t>::max());
3335 {
3336 DisallowGarbageCollection no_gc;
3337 String raw = *result;
3338 if (raw.raw_hash_field() == String::kEmptyHashField &&
3339 number.value() >= 0) {
3340 uint32_t raw_hash_field = StringHasher::MakeArrayIndexHash(
3341 static_cast<uint32_t>(number.value()), raw.length());
3342 raw.set_raw_hash_field(raw_hash_field);
3343 }
3344 }
3345 return result;
3346 }
3347
SizeToString(size_t value,bool check_cache)3348 Handle<String> Factory::SizeToString(size_t value, bool check_cache) {
3349 Handle<String> result;
3350 NumberCacheMode cache_mode =
3351 check_cache ? NumberCacheMode::kBoth : NumberCacheMode::kIgnore;
3352 if (value <= Smi::kMaxValue) {
3353 int32_t int32v = static_cast<int32_t>(static_cast<uint32_t>(value));
3354 // SmiToString sets the hash when needed, we can return immediately.
3355 return SmiToString(Smi::FromInt(int32v), cache_mode);
3356 } else if (value <= kMaxSafeInteger) {
3357 // TODO(jkummerow): Refactor the cache to not require Objects as keys.
3358 double double_value = static_cast<double>(value);
3359 result = HeapNumberToString(NewHeapNumber(double_value), value, cache_mode);
3360 } else {
3361 char arr[kNumberToStringBufferSize];
3362 base::Vector<char> buffer(arr, arraysize(arr));
3363 // Build the string backwards from the least significant digit.
3364 int i = buffer.length();
3365 size_t value_copy = value;
3366 buffer[--i] = '\0';
3367 do {
3368 buffer[--i] = '0' + (value_copy % 10);
3369 value_copy /= 10;
3370 } while (value_copy > 0);
3371 char* string = buffer.begin() + i;
3372 // No way to cache this; we'd need an {Object} to use as key.
3373 result = NewStringFromAsciiChecked(string);
3374 }
3375 {
3376 DisallowGarbageCollection no_gc;
3377 String raw = *result;
3378 if (value <= JSArray::kMaxArrayIndex &&
3379 raw.raw_hash_field() == String::kEmptyHashField) {
3380 uint32_t raw_hash_field = StringHasher::MakeArrayIndexHash(
3381 static_cast<uint32_t>(value), raw.length());
3382 raw.set_raw_hash_field(raw_hash_field);
3383 }
3384 }
3385 return result;
3386 }
3387
NewDebugInfo(Handle<SharedFunctionInfo> shared)3388 Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
3389 DCHECK(!shared->HasDebugInfo());
3390
3391 auto debug_info =
3392 NewStructInternal<DebugInfo>(DEBUG_INFO_TYPE, AllocationType::kOld);
3393 DisallowGarbageCollection no_gc;
3394 SharedFunctionInfo raw_shared = *shared;
3395 debug_info.set_flags(DebugInfo::kNone, kRelaxedStore);
3396 debug_info.set_shared(raw_shared);
3397 debug_info.set_debugger_hints(0);
3398 DCHECK_EQ(DebugInfo::kNoDebuggingId, debug_info.debugging_id());
3399 debug_info.set_script(raw_shared.script_or_debug_info(kAcquireLoad));
3400 HeapObject undefined = *undefined_value();
3401 debug_info.set_original_bytecode_array(undefined, kReleaseStore,
3402 SKIP_WRITE_BARRIER);
3403 debug_info.set_debug_bytecode_array(undefined, kReleaseStore,
3404 SKIP_WRITE_BARRIER);
3405 debug_info.set_break_points(*empty_fixed_array(), SKIP_WRITE_BARRIER);
3406
3407 // Link debug info to function.
3408 raw_shared.SetDebugInfo(debug_info);
3409
3410 return handle(debug_info, isolate());
3411 }
3412
NewBreakPointInfo(int source_position)3413 Handle<BreakPointInfo> Factory::NewBreakPointInfo(int source_position) {
3414 auto new_break_point_info = NewStructInternal<BreakPointInfo>(
3415 BREAK_POINT_INFO_TYPE, AllocationType::kOld);
3416 DisallowGarbageCollection no_gc;
3417 new_break_point_info.set_source_position(source_position);
3418 new_break_point_info.set_break_points(*undefined_value(), SKIP_WRITE_BARRIER);
3419 return handle(new_break_point_info, isolate());
3420 }
3421
NewBreakPoint(int id,Handle<String> condition)3422 Handle<BreakPoint> Factory::NewBreakPoint(int id, Handle<String> condition) {
3423 auto new_break_point =
3424 NewStructInternal<BreakPoint>(BREAK_POINT_TYPE, AllocationType::kOld);
3425 DisallowGarbageCollection no_gc;
3426 new_break_point.set_id(id);
3427 new_break_point.set_condition(*condition);
3428 return handle(new_break_point, isolate());
3429 }
3430
NewCallSiteInfo(Handle<Object> receiver_or_instance,Handle<Object> function,Handle<HeapObject> code_object,int code_offset_or_source_position,int flags,Handle<FixedArray> parameters)3431 Handle<CallSiteInfo> Factory::NewCallSiteInfo(
3432 Handle<Object> receiver_or_instance, Handle<Object> function,
3433 Handle<HeapObject> code_object, int code_offset_or_source_position,
3434 int flags, Handle<FixedArray> parameters) {
3435 auto info = NewStructInternal<CallSiteInfo>(CALL_SITE_INFO_TYPE,
3436 AllocationType::kYoung);
3437 DisallowGarbageCollection no_gc;
3438 info.set_receiver_or_instance(*receiver_or_instance, SKIP_WRITE_BARRIER);
3439 info.set_function(*function, SKIP_WRITE_BARRIER);
3440 info.set_code_object(*code_object, SKIP_WRITE_BARRIER);
3441 info.set_code_offset_or_source_position(code_offset_or_source_position);
3442 info.set_flags(flags);
3443 info.set_parameters(*parameters, SKIP_WRITE_BARRIER);
3444 return handle(info, isolate());
3445 }
3446
NewStackFrameInfo(Handle<HeapObject> shared_or_script,int bytecode_offset_or_source_position,Handle<String> function_name,bool is_constructor)3447 Handle<StackFrameInfo> Factory::NewStackFrameInfo(
3448 Handle<HeapObject> shared_or_script, int bytecode_offset_or_source_position,
3449 Handle<String> function_name, bool is_constructor) {
3450 DCHECK_GE(bytecode_offset_or_source_position, 0);
3451 StackFrameInfo info = NewStructInternal<StackFrameInfo>(
3452 STACK_FRAME_INFO_TYPE, AllocationType::kYoung);
3453 DisallowGarbageCollection no_gc;
3454 info.set_flags(0);
3455 info.set_shared_or_script(*shared_or_script, SKIP_WRITE_BARRIER);
3456 info.set_bytecode_offset_or_source_position(
3457 bytecode_offset_or_source_position);
3458 info.set_function_name(*function_name, SKIP_WRITE_BARRIER);
3459 info.set_is_constructor(is_constructor);
3460 return handle(info, isolate());
3461 }
3462
NewPromiseOnStack(Handle<Object> prev,Handle<JSObject> promise)3463 Handle<PromiseOnStack> Factory::NewPromiseOnStack(Handle<Object> prev,
3464 Handle<JSObject> promise) {
3465 PromiseOnStack promise_on_stack = NewStructInternal<PromiseOnStack>(
3466 PROMISE_ON_STACK_TYPE, AllocationType::kYoung);
3467 DisallowGarbageCollection no_gc;
3468 promise_on_stack.set_prev(*prev, SKIP_WRITE_BARRIER);
3469 promise_on_stack.set_promise(*MaybeObjectHandle::Weak(promise));
3470 return handle(promise_on_stack, isolate());
3471 }
3472
NewArgumentsObject(Handle<JSFunction> callee,int length)3473 Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee,
3474 int length) {
3475 bool strict_mode_callee = is_strict(callee->shared().language_mode()) ||
3476 !callee->shared().has_simple_parameters();
3477 Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map()
3478 : isolate()->sloppy_arguments_map();
3479 AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(),
3480 false);
3481 DCHECK(!isolate()->has_pending_exception());
3482 Handle<JSObject> result = NewJSObjectFromMap(map);
3483 Handle<Smi> value(Smi::FromInt(length), isolate());
3484 Object::SetProperty(isolate(), result, length_string(), value,
3485 StoreOrigin::kMaybeKeyed,
3486 Just(ShouldThrow::kThrowOnError))
3487 .Assert();
3488 if (!strict_mode_callee) {
3489 Object::SetProperty(isolate(), result, callee_string(), callee,
3490 StoreOrigin::kMaybeKeyed,
3491 Just(ShouldThrow::kThrowOnError))
3492 .Assert();
3493 }
3494 return result;
3495 }
3496
ObjectLiteralMapFromCache(Handle<NativeContext> context,int number_of_properties)3497 Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<NativeContext> context,
3498 int number_of_properties) {
3499 // Use initial slow object proto map for too many properties.
3500 if (number_of_properties >= JSObject::kMapCacheSize) {
3501 return handle(context->slow_object_with_object_prototype_map(), isolate());
3502 }
3503
3504 Handle<WeakFixedArray> cache(WeakFixedArray::cast(context->map_cache()),
3505 isolate());
3506
3507 // Check to see whether there is a matching element in the cache.
3508 MaybeObject result = cache->Get(number_of_properties);
3509 HeapObject heap_object;
3510 if (result->GetHeapObjectIfWeak(&heap_object)) {
3511 Map map = Map::cast(heap_object);
3512 DCHECK(!map.is_dictionary_map());
3513 return handle(map, isolate());
3514 }
3515
3516 // Create a new map and add it to the cache.
3517 Handle<Map> map = Map::Create(isolate(), number_of_properties);
3518 DCHECK(!map->is_dictionary_map());
3519 cache->Set(number_of_properties, HeapObjectReference::Weak(*map));
3520 return map;
3521 }
3522
NewMegaDomHandler(MaybeObjectHandle accessor,MaybeObjectHandle context)3523 Handle<MegaDomHandler> Factory::NewMegaDomHandler(MaybeObjectHandle accessor,
3524 MaybeObjectHandle context) {
3525 Handle<Map> map = read_only_roots().mega_dom_handler_map_handle();
3526 MegaDomHandler handler = MegaDomHandler::cast(New(map, AllocationType::kOld));
3527 DisallowGarbageCollection no_gc;
3528 handler.set_accessor(*accessor);
3529 handler.set_context(*context);
3530 return handle(handler, isolate());
3531 }
3532
NewLoadHandler(int data_count,AllocationType allocation)3533 Handle<LoadHandler> Factory::NewLoadHandler(int data_count,
3534 AllocationType allocation) {
3535 Handle<Map> map;
3536 switch (data_count) {
3537 case 1:
3538 map = load_handler1_map();
3539 break;
3540 case 2:
3541 map = load_handler2_map();
3542 break;
3543 case 3:
3544 map = load_handler3_map();
3545 break;
3546 default:
3547 UNREACHABLE();
3548 }
3549 return handle(LoadHandler::cast(New(map, allocation)), isolate());
3550 }
3551
NewStoreHandler(int data_count)3552 Handle<StoreHandler> Factory::NewStoreHandler(int data_count) {
3553 Handle<Map> map;
3554 switch (data_count) {
3555 case 0:
3556 map = store_handler0_map();
3557 break;
3558 case 1:
3559 map = store_handler1_map();
3560 break;
3561 case 2:
3562 map = store_handler2_map();
3563 break;
3564 case 3:
3565 map = store_handler3_map();
3566 break;
3567 default:
3568 UNREACHABLE();
3569 }
3570 return handle(StoreHandler::cast(New(map, AllocationType::kOld)), isolate());
3571 }
3572
SetRegExpAtomData(Handle<JSRegExp> regexp,Handle<String> source,JSRegExp::Flags flags,Handle<Object> data)3573 void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp, Handle<String> source,
3574 JSRegExp::Flags flags, Handle<Object> data) {
3575 FixedArray store =
3576 *NewFixedArray(JSRegExp::kAtomDataSize, AllocationType::kYoung);
3577 DisallowGarbageCollection no_gc;
3578 store.set(JSRegExp::kTagIndex, Smi::FromInt(JSRegExp::ATOM));
3579 store.set(JSRegExp::kSourceIndex, *source, SKIP_WRITE_BARRIER);
3580 store.set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
3581 store.set(JSRegExp::kAtomPatternIndex, *data, SKIP_WRITE_BARRIER);
3582 regexp->set_data(store);
3583 }
3584
SetRegExpIrregexpData(Handle<JSRegExp> regexp,Handle<String> source,JSRegExp::Flags flags,int capture_count,uint32_t backtrack_limit)3585 void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
3586 Handle<String> source,
3587 JSRegExp::Flags flags, int capture_count,
3588 uint32_t backtrack_limit) {
3589 DCHECK(Smi::IsValid(backtrack_limit));
3590 FixedArray store =
3591 *NewFixedArray(JSRegExp::kIrregexpDataSize, AllocationType::kYoung);
3592 DisallowGarbageCollection no_gc;
3593 Smi uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
3594 Smi ticks_until_tier_up = FLAG_regexp_tier_up
3595 ? Smi::FromInt(FLAG_regexp_tier_up_ticks)
3596 : uninitialized;
3597 store.set(JSRegExp::kTagIndex, Smi::FromInt(JSRegExp::IRREGEXP));
3598 store.set(JSRegExp::kSourceIndex, *source, SKIP_WRITE_BARRIER);
3599 store.set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
3600 store.set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
3601 store.set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
3602 store.set(JSRegExp::kIrregexpLatin1BytecodeIndex, uninitialized);
3603 store.set(JSRegExp::kIrregexpUC16BytecodeIndex, uninitialized);
3604 store.set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::zero());
3605 store.set(JSRegExp::kIrregexpCaptureCountIndex, Smi::FromInt(capture_count));
3606 store.set(JSRegExp::kIrregexpCaptureNameMapIndex, uninitialized);
3607 store.set(JSRegExp::kIrregexpTicksUntilTierUpIndex, ticks_until_tier_up);
3608 store.set(JSRegExp::kIrregexpBacktrackLimit, Smi::FromInt(backtrack_limit));
3609 regexp->set_data(store);
3610 }
3611
SetRegExpExperimentalData(Handle<JSRegExp> regexp,Handle<String> source,JSRegExp::Flags flags,int capture_count)3612 void Factory::SetRegExpExperimentalData(Handle<JSRegExp> regexp,
3613 Handle<String> source,
3614 JSRegExp::Flags flags,
3615 int capture_count) {
3616 FixedArray store =
3617 *NewFixedArray(JSRegExp::kExperimentalDataSize, AllocationType::kYoung);
3618 DisallowGarbageCollection no_gc;
3619 Smi uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
3620
3621 store.set(JSRegExp::kTagIndex, Smi::FromInt(JSRegExp::EXPERIMENTAL));
3622 store.set(JSRegExp::kSourceIndex, *source, SKIP_WRITE_BARRIER);
3623 store.set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
3624 store.set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
3625 store.set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
3626 store.set(JSRegExp::kIrregexpLatin1BytecodeIndex, uninitialized);
3627 store.set(JSRegExp::kIrregexpUC16BytecodeIndex, uninitialized);
3628 store.set(JSRegExp::kIrregexpMaxRegisterCountIndex, uninitialized);
3629 store.set(JSRegExp::kIrregexpCaptureCountIndex, Smi::FromInt(capture_count));
3630 store.set(JSRegExp::kIrregexpCaptureNameMapIndex, uninitialized);
3631 store.set(JSRegExp::kIrregexpTicksUntilTierUpIndex, uninitialized);
3632 store.set(JSRegExp::kIrregexpBacktrackLimit, uninitialized);
3633 regexp->set_data(store);
3634 }
3635
NewRegExpMatchInfo()3636 Handle<RegExpMatchInfo> Factory::NewRegExpMatchInfo() {
3637 // Initially, the last match info consists of all fixed fields plus space for
3638 // the match itself (i.e., 2 capture indices).
3639 static const int kInitialSize = RegExpMatchInfo::kFirstCaptureIndex +
3640 RegExpMatchInfo::kInitialCaptureIndices;
3641
3642 Handle<FixedArray> elems =
3643 NewFixedArray(kInitialSize, AllocationType::kYoung);
3644 Handle<RegExpMatchInfo> result = Handle<RegExpMatchInfo>::cast(elems);
3645 {
3646 DisallowGarbageCollection no_gc;
3647 RegExpMatchInfo raw = *result;
3648 raw.SetNumberOfCaptureRegisters(RegExpMatchInfo::kInitialCaptureIndices);
3649 raw.SetLastSubject(*empty_string(), SKIP_WRITE_BARRIER);
3650 raw.SetLastInput(*undefined_value(), SKIP_WRITE_BARRIER);
3651 raw.SetCapture(0, 0);
3652 raw.SetCapture(1, 0);
3653 }
3654 return result;
3655 }
3656
GlobalConstantFor(Handle<Name> name)3657 Handle<Object> Factory::GlobalConstantFor(Handle<Name> name) {
3658 if (Name::Equals(isolate(), name, undefined_string())) {
3659 return undefined_value();
3660 }
3661 if (Name::Equals(isolate(), name, NaN_string())) return nan_value();
3662 if (Name::Equals(isolate(), name, Infinity_string())) return infinity_value();
3663 return Handle<Object>::null();
3664 }
3665
ToPrimitiveHintString(ToPrimitiveHint hint)3666 Handle<String> Factory::ToPrimitiveHintString(ToPrimitiveHint hint) {
3667 switch (hint) {
3668 case ToPrimitiveHint::kDefault:
3669 return default_string();
3670 case ToPrimitiveHint::kNumber:
3671 return number_string();
3672 case ToPrimitiveHint::kString:
3673 return string_string();
3674 }
3675 UNREACHABLE();
3676 }
3677
CreateSloppyFunctionMap(FunctionMode function_mode,MaybeHandle<JSFunction> maybe_empty_function)3678 Handle<Map> Factory::CreateSloppyFunctionMap(
3679 FunctionMode function_mode, MaybeHandle<JSFunction> maybe_empty_function) {
3680 bool has_prototype = IsFunctionModeWithPrototype(function_mode);
3681 int header_size = has_prototype ? JSFunction::kSizeWithPrototype
3682 : JSFunction::kSizeWithoutPrototype;
3683 int descriptors_count = has_prototype ? 5 : 4;
3684 int inobject_properties_count = 0;
3685 if (IsFunctionModeWithName(function_mode)) ++inobject_properties_count;
3686
3687 Handle<Map> map = NewMap(
3688 JS_FUNCTION_TYPE, header_size + inobject_properties_count * kTaggedSize,
3689 TERMINAL_FAST_ELEMENTS_KIND, inobject_properties_count);
3690 {
3691 DisallowGarbageCollection no_gc;
3692 Map raw_map = *map;
3693 raw_map.set_has_prototype_slot(has_prototype);
3694 raw_map.set_is_constructor(has_prototype);
3695 raw_map.set_is_callable(true);
3696 }
3697 Handle<JSFunction> empty_function;
3698 if (maybe_empty_function.ToHandle(&empty_function)) {
3699 Map::SetPrototype(isolate(), map, empty_function);
3700 }
3701
3702 //
3703 // Setup descriptors array.
3704 //
3705 Map::EnsureDescriptorSlack(isolate(), map, descriptors_count);
3706
3707 PropertyAttributes ro_attribs =
3708 static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
3709 PropertyAttributes rw_attribs =
3710 static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
3711 PropertyAttributes roc_attribs =
3712 static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
3713
3714 int field_index = 0;
3715 STATIC_ASSERT(
3716 JSFunctionOrBoundFunctionOrWrappedFunction::kLengthDescriptorIndex == 0);
3717 { // Add length accessor.
3718 Descriptor d = Descriptor::AccessorConstant(
3719 length_string(), function_length_accessor(), roc_attribs);
3720 map->AppendDescriptor(isolate(), &d);
3721 }
3722
3723 STATIC_ASSERT(
3724 JSFunctionOrBoundFunctionOrWrappedFunction::kNameDescriptorIndex == 1);
3725 if (IsFunctionModeWithName(function_mode)) {
3726 // Add name field.
3727 Handle<Name> name = isolate()->factory()->name_string();
3728 Descriptor d = Descriptor::DataField(isolate(), name, field_index++,
3729 roc_attribs, Representation::Tagged());
3730 map->AppendDescriptor(isolate(), &d);
3731
3732 } else {
3733 // Add name accessor.
3734 Descriptor d = Descriptor::AccessorConstant(
3735 name_string(), function_name_accessor(), roc_attribs);
3736 map->AppendDescriptor(isolate(), &d);
3737 }
3738 { // Add arguments accessor.
3739 Descriptor d = Descriptor::AccessorConstant(
3740 arguments_string(), function_arguments_accessor(), ro_attribs);
3741 map->AppendDescriptor(isolate(), &d);
3742 }
3743 { // Add caller accessor.
3744 Descriptor d = Descriptor::AccessorConstant(
3745 caller_string(), function_caller_accessor(), ro_attribs);
3746 map->AppendDescriptor(isolate(), &d);
3747 }
3748 if (IsFunctionModeWithPrototype(function_mode)) {
3749 // Add prototype accessor.
3750 PropertyAttributes attribs =
3751 IsFunctionModeWithWritablePrototype(function_mode) ? rw_attribs
3752 : ro_attribs;
3753 Descriptor d = Descriptor::AccessorConstant(
3754 prototype_string(), function_prototype_accessor(), attribs);
3755 map->AppendDescriptor(isolate(), &d);
3756 }
3757 DCHECK_EQ(inobject_properties_count, field_index);
3758 DCHECK_EQ(0,
3759 map->instance_descriptors(isolate()).number_of_slack_descriptors());
3760 LOG(isolate(), MapDetails(*map));
3761 return map;
3762 }
3763
CreateStrictFunctionMap(FunctionMode function_mode,Handle<JSFunction> empty_function)3764 Handle<Map> Factory::CreateStrictFunctionMap(
3765 FunctionMode function_mode, Handle<JSFunction> empty_function) {
3766 bool has_prototype = IsFunctionModeWithPrototype(function_mode);
3767 int header_size = has_prototype ? JSFunction::kSizeWithPrototype
3768 : JSFunction::kSizeWithoutPrototype;
3769 int inobject_properties_count = 0;
3770 // length and prototype accessors or just length accessor.
3771 int descriptors_count = IsFunctionModeWithPrototype(function_mode) ? 2 : 1;
3772 if (IsFunctionModeWithName(function_mode)) {
3773 ++inobject_properties_count; // name property.
3774 } else {
3775 ++descriptors_count; // name accessor.
3776 }
3777 descriptors_count += inobject_properties_count;
3778
3779 Handle<Map> map = NewMap(
3780 JS_FUNCTION_TYPE, header_size + inobject_properties_count * kTaggedSize,
3781 TERMINAL_FAST_ELEMENTS_KIND, inobject_properties_count);
3782 {
3783 DisallowGarbageCollection no_gc;
3784 Map raw_map = *map;
3785 raw_map.set_has_prototype_slot(has_prototype);
3786 raw_map.set_is_constructor(has_prototype);
3787 raw_map.set_is_callable(true);
3788 }
3789 Map::SetPrototype(isolate(), map, empty_function);
3790
3791 //
3792 // Setup descriptors array.
3793 //
3794 Map::EnsureDescriptorSlack(isolate(), map, descriptors_count);
3795
3796 PropertyAttributes rw_attribs =
3797 static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
3798 PropertyAttributes ro_attribs =
3799 static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
3800 PropertyAttributes roc_attribs =
3801 static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
3802
3803 int field_index = 0;
3804 STATIC_ASSERT(JSFunction::kLengthDescriptorIndex == 0);
3805 { // Add length accessor.
3806 Descriptor d = Descriptor::AccessorConstant(
3807 length_string(), function_length_accessor(), roc_attribs);
3808 map->AppendDescriptor(isolate(), &d);
3809 }
3810
3811 STATIC_ASSERT(JSFunction::kNameDescriptorIndex == 1);
3812 if (IsFunctionModeWithName(function_mode)) {
3813 // Add name field.
3814 Handle<Name> name = isolate()->factory()->name_string();
3815 Descriptor d = Descriptor::DataField(isolate(), name, field_index++,
3816 roc_attribs, Representation::Tagged());
3817 map->AppendDescriptor(isolate(), &d);
3818
3819 } else {
3820 // Add name accessor.
3821 Descriptor d = Descriptor::AccessorConstant(
3822 name_string(), function_name_accessor(), roc_attribs);
3823 map->AppendDescriptor(isolate(), &d);
3824 }
3825
3826 if (IsFunctionModeWithPrototype(function_mode)) {
3827 // Add prototype accessor.
3828 PropertyAttributes attribs =
3829 IsFunctionModeWithWritablePrototype(function_mode) ? rw_attribs
3830 : ro_attribs;
3831 Descriptor d = Descriptor::AccessorConstant(
3832 prototype_string(), function_prototype_accessor(), attribs);
3833 map->AppendDescriptor(isolate(), &d);
3834 }
3835 DCHECK_EQ(inobject_properties_count, field_index);
3836 DCHECK_EQ(0,
3837 map->instance_descriptors(isolate()).number_of_slack_descriptors());
3838 LOG(isolate(), MapDetails(*map));
3839 return map;
3840 }
3841
CreateClassFunctionMap(Handle<JSFunction> empty_function)3842 Handle<Map> Factory::CreateClassFunctionMap(Handle<JSFunction> empty_function) {
3843 Handle<Map> map =
3844 NewMap(JS_CLASS_CONSTRUCTOR_TYPE, JSFunction::kSizeWithPrototype);
3845 {
3846 DisallowGarbageCollection no_gc;
3847 Map raw_map = *map;
3848 raw_map.set_has_prototype_slot(true);
3849 raw_map.set_is_constructor(true);
3850 raw_map.set_is_prototype_map(true);
3851 raw_map.set_is_callable(true);
3852 }
3853 Map::SetPrototype(isolate(), map, empty_function);
3854
3855 //
3856 // Setup descriptors array.
3857 //
3858 Map::EnsureDescriptorSlack(isolate(), map, 2);
3859
3860 PropertyAttributes ro_attribs =
3861 static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
3862 PropertyAttributes roc_attribs =
3863 static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
3864
3865 STATIC_ASSERT(JSFunction::kLengthDescriptorIndex == 0);
3866 { // Add length accessor.
3867 Descriptor d = Descriptor::AccessorConstant(
3868 length_string(), function_length_accessor(), roc_attribs);
3869 map->AppendDescriptor(isolate(), &d);
3870 }
3871
3872 {
3873 // Add prototype accessor.
3874 Descriptor d = Descriptor::AccessorConstant(
3875 prototype_string(), function_prototype_accessor(), ro_attribs);
3876 map->AppendDescriptor(isolate(), &d);
3877 }
3878 LOG(isolate(), MapDetails(*map));
3879 return map;
3880 }
3881
NewJSPromiseWithoutHook()3882 Handle<JSPromise> Factory::NewJSPromiseWithoutHook() {
3883 Handle<JSPromise> promise =
3884 Handle<JSPromise>::cast(NewJSObject(isolate()->promise_function()));
3885 DisallowGarbageCollection no_gc;
3886 JSPromise raw = *promise;
3887 raw.set_reactions_or_result(Smi::zero(), SKIP_WRITE_BARRIER);
3888 raw.set_flags(0);
3889 // TODO(v8) remove once embedder data slots are always zero-initialized.
3890 InitEmbedderFields(*promise, Smi::zero());
3891 DCHECK_EQ(raw.GetEmbedderFieldCount(), v8::Promise::kEmbedderFieldCount);
3892 return promise;
3893 }
3894
NewJSPromise()3895 Handle<JSPromise> Factory::NewJSPromise() {
3896 Handle<JSPromise> promise = NewJSPromiseWithoutHook();
3897 isolate()->RunAllPromiseHooks(PromiseHookType::kInit, promise,
3898 undefined_value());
3899 return promise;
3900 }
3901
NewCallHandlerInfo(bool has_no_side_effect)3902 Handle<CallHandlerInfo> Factory::NewCallHandlerInfo(bool has_no_side_effect) {
3903 Handle<Map> map = has_no_side_effect
3904 ? side_effect_free_call_handler_info_map()
3905 : side_effect_call_handler_info_map();
3906 CallHandlerInfo info = CallHandlerInfo::cast(New(map, AllocationType::kOld));
3907 DisallowGarbageCollection no_gc;
3908 Object undefined_value = read_only_roots().undefined_value();
3909 info.set_callback(undefined_value, SKIP_WRITE_BARRIER);
3910 info.set_js_callback(undefined_value, SKIP_WRITE_BARRIER);
3911 info.set_data(undefined_value, SKIP_WRITE_BARRIER);
3912 return handle(info, isolate());
3913 }
3914
CanAllocateInReadOnlySpace()3915 bool Factory::CanAllocateInReadOnlySpace() {
3916 return allocator()->CanAllocateInReadOnlySpace();
3917 }
3918
EmptyStringRootIsInitialized()3919 bool Factory::EmptyStringRootIsInitialized() {
3920 return isolate()->roots_table()[RootIndex::kempty_string] != kNullAddress;
3921 }
3922
AllocationTypeForInPlaceInternalizableString()3923 AllocationType Factory::AllocationTypeForInPlaceInternalizableString() {
3924 return isolate()
3925 ->heap()
3926 ->allocation_type_for_in_place_internalizable_strings();
3927 }
3928
NewFunctionForTesting(Handle<String> name)3929 Handle<JSFunction> Factory::NewFunctionForTesting(Handle<String> name) {
3930 Handle<SharedFunctionInfo> info =
3931 NewSharedFunctionInfoForBuiltin(name, Builtin::kIllegal);
3932 info->set_language_mode(LanguageMode::kSloppy);
3933 return JSFunctionBuilder{isolate(), info, isolate()->native_context()}
3934 .Build();
3935 }
3936
JSFunctionBuilder(Isolate * isolate,Handle<SharedFunctionInfo> sfi,Handle<Context> context)3937 Factory::JSFunctionBuilder::JSFunctionBuilder(Isolate* isolate,
3938 Handle<SharedFunctionInfo> sfi,
3939 Handle<Context> context)
3940 : isolate_(isolate), sfi_(sfi), context_(context) {}
3941
Build()3942 Handle<JSFunction> Factory::JSFunctionBuilder::Build() {
3943 PrepareMap();
3944 PrepareFeedbackCell();
3945
3946 Handle<Code> code = handle(FromCodeT(sfi_->GetCode()), isolate_);
3947 Handle<JSFunction> result = BuildRaw(code);
3948
3949 if (code->kind() == CodeKind::BASELINE) {
3950 IsCompiledScope is_compiled_scope(sfi_->is_compiled_scope(isolate_));
3951 JSFunction::EnsureFeedbackVector(isolate_, result, &is_compiled_scope);
3952 }
3953
3954 Compiler::PostInstantiation(result);
3955 return result;
3956 }
3957
BuildRaw(Handle<Code> code)3958 Handle<JSFunction> Factory::JSFunctionBuilder::BuildRaw(Handle<Code> code) {
3959 Isolate* isolate = isolate_;
3960 Factory* factory = isolate_->factory();
3961
3962 Handle<Map> map = maybe_map_.ToHandleChecked();
3963 Handle<FeedbackCell> feedback_cell = maybe_feedback_cell_.ToHandleChecked();
3964
3965 DCHECK(InstanceTypeChecker::IsJSFunction(map->instance_type()));
3966
3967 // Allocation.
3968 JSFunction function = JSFunction::cast(factory->New(map, allocation_type_));
3969 DisallowGarbageCollection no_gc;
3970
3971 WriteBarrierMode mode = allocation_type_ == AllocationType::kYoung
3972 ? SKIP_WRITE_BARRIER
3973 : UPDATE_WRITE_BARRIER;
3974 // Header initialization.
3975 function.initialize_properties(isolate);
3976 function.initialize_elements();
3977 function.set_shared(*sfi_, mode);
3978 function.set_context(*context_, mode);
3979 function.set_raw_feedback_cell(*feedback_cell, mode);
3980 function.set_code(*code, kReleaseStore, mode);
3981 if (function.has_prototype_slot()) {
3982 function.set_prototype_or_initial_map(
3983 ReadOnlyRoots(isolate).the_hole_value(), kReleaseStore,
3984 SKIP_WRITE_BARRIER);
3985 }
3986
3987 // Potentially body initialization.
3988 factory->InitializeJSObjectBody(
3989 function, *map, JSFunction::GetHeaderSize(map->has_prototype_slot()));
3990
3991 return handle(function, isolate_);
3992 }
3993
PrepareMap()3994 void Factory::JSFunctionBuilder::PrepareMap() {
3995 if (maybe_map_.is_null()) {
3996 // No specific map requested, use the default.
3997 maybe_map_ = handle(
3998 Map::cast(context_->native_context().get(sfi_->function_map_index())),
3999 isolate_);
4000 }
4001 }
4002
PrepareFeedbackCell()4003 void Factory::JSFunctionBuilder::PrepareFeedbackCell() {
4004 Handle<FeedbackCell> feedback_cell;
4005 if (maybe_feedback_cell_.ToHandle(&feedback_cell)) {
4006 // Track the newly-created closure.
4007 feedback_cell->IncrementClosureCount(isolate_);
4008 } else {
4009 // Fall back to the many_closures_cell.
4010 maybe_feedback_cell_ = isolate_->factory()->many_closures_cell();
4011 }
4012 }
4013
4014 } // namespace internal
4015 } // namespace v8
4016