1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Analysis/LoopIterator.h"
12 #include "llvm/Analysis/TargetTransformInfoImpl.h"
13 #include "llvm/IR/CFG.h"
14 #include "llvm/IR/CallSite.h"
15 #include "llvm/IR/DataLayout.h"
16 #include "llvm/IR/Instruction.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/IntrinsicInst.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/Operator.h"
21 #include "llvm/IR/PatternMatch.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <utility>
26
27 using namespace llvm;
28 using namespace PatternMatch;
29
30 #define DEBUG_TYPE "tti"
31
32 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
33 cl::Hidden,
34 cl::desc("Recognize reduction patterns."));
35
36 namespace {
37 /// No-op implementation of the TTI interface using the utility base
38 /// classes.
39 ///
40 /// This is used when no target specific information is available.
41 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
NoTTIImpl__anonfef1a99d0111::NoTTIImpl42 explicit NoTTIImpl(const DataLayout &DL)
43 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
44 };
45 }
46
canAnalyze(LoopInfo & LI)47 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
48 // If the loop has irreducible control flow, it can not be converted to
49 // Hardware loop.
50 LoopBlocksRPO RPOT(L);
51 RPOT.perform(&LI);
52 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
53 return false;
54 return true;
55 }
56
isHardwareLoopCandidate(ScalarEvolution & SE,LoopInfo & LI,DominatorTree & DT,bool ForceNestedLoop,bool ForceHardwareLoopPHI)57 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
58 LoopInfo &LI, DominatorTree &DT,
59 bool ForceNestedLoop,
60 bool ForceHardwareLoopPHI) {
61 SmallVector<BasicBlock *, 4> ExitingBlocks;
62 L->getExitingBlocks(ExitingBlocks);
63
64 for (BasicBlock *BB : ExitingBlocks) {
65 // If we pass the updated counter back through a phi, we need to know
66 // which latch the updated value will be coming from.
67 if (!L->isLoopLatch(BB)) {
68 if (ForceHardwareLoopPHI || CounterInReg)
69 continue;
70 }
71
72 const SCEV *EC = SE.getExitCount(L, BB);
73 if (isa<SCEVCouldNotCompute>(EC))
74 continue;
75 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
76 if (ConstEC->getValue()->isZero())
77 continue;
78 } else if (!SE.isLoopInvariant(EC, L))
79 continue;
80
81 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
82 continue;
83
84 // If this exiting block is contained in a nested loop, it is not eligible
85 // for insertion of the branch-and-decrement since the inner loop would
86 // end up messing up the value in the CTR.
87 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
88 continue;
89
90 // We now have a loop-invariant count of loop iterations (which is not the
91 // constant zero) for which we know that this loop will not exit via this
92 // existing block.
93
94 // We need to make sure that this block will run on every loop iteration.
95 // For this to be true, we must dominate all blocks with backedges. Such
96 // blocks are in-loop predecessors to the header block.
97 bool NotAlways = false;
98 for (BasicBlock *Pred : predecessors(L->getHeader())) {
99 if (!L->contains(Pred))
100 continue;
101
102 if (!DT.dominates(BB, Pred)) {
103 NotAlways = true;
104 break;
105 }
106 }
107
108 if (NotAlways)
109 continue;
110
111 // Make sure this blocks ends with a conditional branch.
112 Instruction *TI = BB->getTerminator();
113 if (!TI)
114 continue;
115
116 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
117 if (!BI->isConditional())
118 continue;
119
120 ExitBranch = BI;
121 } else
122 continue;
123
124 // Note that this block may not be the loop latch block, even if the loop
125 // has a latch block.
126 ExitBlock = BB;
127 ExitCount = EC;
128 break;
129 }
130
131 if (!ExitBlock)
132 return false;
133 return true;
134 }
135
TargetTransformInfo(const DataLayout & DL)136 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
137 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
138
~TargetTransformInfo()139 TargetTransformInfo::~TargetTransformInfo() {}
140
TargetTransformInfo(TargetTransformInfo && Arg)141 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
142 : TTIImpl(std::move(Arg.TTIImpl)) {}
143
operator =(TargetTransformInfo && RHS)144 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
145 TTIImpl = std::move(RHS.TTIImpl);
146 return *this;
147 }
148
getOperationCost(unsigned Opcode,Type * Ty,Type * OpTy) const149 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
150 Type *OpTy) const {
151 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy);
152 assert(Cost >= 0 && "TTI should not produce negative costs!");
153 return Cost;
154 }
155
getCallCost(FunctionType * FTy,int NumArgs,const User * U) const156 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs,
157 const User *U) const {
158 int Cost = TTIImpl->getCallCost(FTy, NumArgs, U);
159 assert(Cost >= 0 && "TTI should not produce negative costs!");
160 return Cost;
161 }
162
getCallCost(const Function * F,ArrayRef<const Value * > Arguments,const User * U) const163 int TargetTransformInfo::getCallCost(const Function *F,
164 ArrayRef<const Value *> Arguments,
165 const User *U) const {
166 int Cost = TTIImpl->getCallCost(F, Arguments, U);
167 assert(Cost >= 0 && "TTI should not produce negative costs!");
168 return Cost;
169 }
170
getInliningThresholdMultiplier() const171 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
172 return TTIImpl->getInliningThresholdMultiplier();
173 }
174
getInlinerVectorBonusPercent() const175 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
176 return TTIImpl->getInlinerVectorBonusPercent();
177 }
178
getGEPCost(Type * PointeeType,const Value * Ptr,ArrayRef<const Value * > Operands) const179 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
180 ArrayRef<const Value *> Operands) const {
181 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands);
182 }
183
getExtCost(const Instruction * I,const Value * Src) const184 int TargetTransformInfo::getExtCost(const Instruction *I,
185 const Value *Src) const {
186 return TTIImpl->getExtCost(I, Src);
187 }
188
getIntrinsicCost(Intrinsic::ID IID,Type * RetTy,ArrayRef<const Value * > Arguments,const User * U) const189 int TargetTransformInfo::getIntrinsicCost(
190 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments,
191 const User *U) const {
192 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U);
193 assert(Cost >= 0 && "TTI should not produce negative costs!");
194 return Cost;
195 }
196
197 unsigned
getEstimatedNumberOfCaseClusters(const SwitchInst & SI,unsigned & JTSize,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI) const198 TargetTransformInfo::getEstimatedNumberOfCaseClusters(
199 const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
200 BlockFrequencyInfo *BFI) const {
201 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
202 }
203
getUserCost(const User * U,ArrayRef<const Value * > Operands) const204 int TargetTransformInfo::getUserCost(const User *U,
205 ArrayRef<const Value *> Operands) const {
206 int Cost = TTIImpl->getUserCost(U, Operands);
207 assert(Cost >= 0 && "TTI should not produce negative costs!");
208 return Cost;
209 }
210
hasBranchDivergence() const211 bool TargetTransformInfo::hasBranchDivergence() const {
212 return TTIImpl->hasBranchDivergence();
213 }
214
isSourceOfDivergence(const Value * V) const215 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
216 return TTIImpl->isSourceOfDivergence(V);
217 }
218
isAlwaysUniform(const Value * V) const219 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
220 return TTIImpl->isAlwaysUniform(V);
221 }
222
getFlatAddressSpace() const223 unsigned TargetTransformInfo::getFlatAddressSpace() const {
224 return TTIImpl->getFlatAddressSpace();
225 }
226
collectFlatAddressOperands(SmallVectorImpl<int> & OpIndexes,Intrinsic::ID IID) const227 bool TargetTransformInfo::collectFlatAddressOperands(
228 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
229 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
230 }
231
rewriteIntrinsicWithAddressSpace(IntrinsicInst * II,Value * OldV,Value * NewV) const232 bool TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
233 IntrinsicInst *II, Value *OldV, Value *NewV) const {
234 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
235 }
236
isLoweredToCall(const Function * F) const237 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
238 return TTIImpl->isLoweredToCall(F);
239 }
240
isHardwareLoopProfitable(Loop * L,ScalarEvolution & SE,AssumptionCache & AC,TargetLibraryInfo * LibInfo,HardwareLoopInfo & HWLoopInfo) const241 bool TargetTransformInfo::isHardwareLoopProfitable(
242 Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
243 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
244 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
245 }
246
preferPredicateOverEpilogue(Loop * L,LoopInfo * LI,ScalarEvolution & SE,AssumptionCache & AC,TargetLibraryInfo * TLI,DominatorTree * DT,const LoopAccessInfo * LAI) const247 bool TargetTransformInfo::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI,
248 ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *TLI,
249 DominatorTree *DT, const LoopAccessInfo *LAI) const {
250 return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
251 }
252
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,UnrollingPreferences & UP) const253 void TargetTransformInfo::getUnrollingPreferences(
254 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
255 return TTIImpl->getUnrollingPreferences(L, SE, UP);
256 }
257
isLegalAddImmediate(int64_t Imm) const258 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
259 return TTIImpl->isLegalAddImmediate(Imm);
260 }
261
isLegalICmpImmediate(int64_t Imm) const262 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
263 return TTIImpl->isLegalICmpImmediate(Imm);
264 }
265
isLegalAddressingMode(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace,Instruction * I) const266 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
267 int64_t BaseOffset,
268 bool HasBaseReg,
269 int64_t Scale,
270 unsigned AddrSpace,
271 Instruction *I) const {
272 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
273 Scale, AddrSpace, I);
274 }
275
isLSRCostLess(LSRCost & C1,LSRCost & C2) const276 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
277 return TTIImpl->isLSRCostLess(C1, C2);
278 }
279
canMacroFuseCmp() const280 bool TargetTransformInfo::canMacroFuseCmp() const {
281 return TTIImpl->canMacroFuseCmp();
282 }
283
canSaveCmp(Loop * L,BranchInst ** BI,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,AssumptionCache * AC,TargetLibraryInfo * LibInfo) const284 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
285 ScalarEvolution *SE, LoopInfo *LI,
286 DominatorTree *DT, AssumptionCache *AC,
287 TargetLibraryInfo *LibInfo) const {
288 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
289 }
290
shouldFavorPostInc() const291 bool TargetTransformInfo::shouldFavorPostInc() const {
292 return TTIImpl->shouldFavorPostInc();
293 }
294
shouldFavorBackedgeIndex(const Loop * L) const295 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const {
296 return TTIImpl->shouldFavorBackedgeIndex(L);
297 }
298
isLegalMaskedStore(Type * DataType,MaybeAlign Alignment) const299 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
300 MaybeAlign Alignment) const {
301 return TTIImpl->isLegalMaskedStore(DataType, Alignment);
302 }
303
isLegalMaskedLoad(Type * DataType,MaybeAlign Alignment) const304 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
305 MaybeAlign Alignment) const {
306 return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
307 }
308
isLegalNTStore(Type * DataType,Align Alignment) const309 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
310 Align Alignment) const {
311 return TTIImpl->isLegalNTStore(DataType, Alignment);
312 }
313
isLegalNTLoad(Type * DataType,Align Alignment) const314 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
315 return TTIImpl->isLegalNTLoad(DataType, Alignment);
316 }
317
isLegalMaskedGather(Type * DataType,MaybeAlign Alignment) const318 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
319 MaybeAlign Alignment) const {
320 return TTIImpl->isLegalMaskedGather(DataType, Alignment);
321 }
322
isLegalMaskedScatter(Type * DataType,MaybeAlign Alignment) const323 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
324 MaybeAlign Alignment) const {
325 return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
326 }
327
isLegalMaskedCompressStore(Type * DataType) const328 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
329 return TTIImpl->isLegalMaskedCompressStore(DataType);
330 }
331
isLegalMaskedExpandLoad(Type * DataType) const332 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
333 return TTIImpl->isLegalMaskedExpandLoad(DataType);
334 }
335
hasDivRemOp(Type * DataType,bool IsSigned) const336 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
337 return TTIImpl->hasDivRemOp(DataType, IsSigned);
338 }
339
hasVolatileVariant(Instruction * I,unsigned AddrSpace) const340 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
341 unsigned AddrSpace) const {
342 return TTIImpl->hasVolatileVariant(I, AddrSpace);
343 }
344
prefersVectorizedAddressing() const345 bool TargetTransformInfo::prefersVectorizedAddressing() const {
346 return TTIImpl->prefersVectorizedAddressing();
347 }
348
getScalingFactorCost(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace) const349 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
350 int64_t BaseOffset,
351 bool HasBaseReg,
352 int64_t Scale,
353 unsigned AddrSpace) const {
354 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
355 Scale, AddrSpace);
356 assert(Cost >= 0 && "TTI should not produce negative costs!");
357 return Cost;
358 }
359
LSRWithInstrQueries() const360 bool TargetTransformInfo::LSRWithInstrQueries() const {
361 return TTIImpl->LSRWithInstrQueries();
362 }
363
isTruncateFree(Type * Ty1,Type * Ty2) const364 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
365 return TTIImpl->isTruncateFree(Ty1, Ty2);
366 }
367
isProfitableToHoist(Instruction * I) const368 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
369 return TTIImpl->isProfitableToHoist(I);
370 }
371
useAA() const372 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
373
isTypeLegal(Type * Ty) const374 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
375 return TTIImpl->isTypeLegal(Ty);
376 }
377
shouldBuildLookupTables() const378 bool TargetTransformInfo::shouldBuildLookupTables() const {
379 return TTIImpl->shouldBuildLookupTables();
380 }
shouldBuildLookupTablesForConstant(Constant * C) const381 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const {
382 return TTIImpl->shouldBuildLookupTablesForConstant(C);
383 }
384
useColdCCForColdCall(Function & F) const385 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
386 return TTIImpl->useColdCCForColdCall(F);
387 }
388
389 unsigned TargetTransformInfo::
getScalarizationOverhead(Type * Ty,bool Insert,bool Extract) const390 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const {
391 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract);
392 }
393
394 unsigned TargetTransformInfo::
getOperandsScalarizationOverhead(ArrayRef<const Value * > Args,unsigned VF) const395 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
396 unsigned VF) const {
397 return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
398 }
399
supportsEfficientVectorElementLoadStore() const400 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
401 return TTIImpl->supportsEfficientVectorElementLoadStore();
402 }
403
enableAggressiveInterleaving(bool LoopHasReductions) const404 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const {
405 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
406 }
407
408 TargetTransformInfo::MemCmpExpansionOptions
enableMemCmpExpansion(bool OptSize,bool IsZeroCmp) const409 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
410 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
411 }
412
enableInterleavedAccessVectorization() const413 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
414 return TTIImpl->enableInterleavedAccessVectorization();
415 }
416
enableMaskedInterleavedAccessVectorization() const417 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
418 return TTIImpl->enableMaskedInterleavedAccessVectorization();
419 }
420
isFPVectorizationPotentiallyUnsafe() const421 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
422 return TTIImpl->isFPVectorizationPotentiallyUnsafe();
423 }
424
allowsMisalignedMemoryAccesses(LLVMContext & Context,unsigned BitWidth,unsigned AddressSpace,unsigned Alignment,bool * Fast) const425 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
426 unsigned BitWidth,
427 unsigned AddressSpace,
428 unsigned Alignment,
429 bool *Fast) const {
430 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
431 Alignment, Fast);
432 }
433
434 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned IntTyWidthInBit) const435 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
436 return TTIImpl->getPopcntSupport(IntTyWidthInBit);
437 }
438
haveFastSqrt(Type * Ty) const439 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
440 return TTIImpl->haveFastSqrt(Ty);
441 }
442
isFCmpOrdCheaperThanFCmpZero(Type * Ty) const443 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
444 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
445 }
446
getFPOpCost(Type * Ty) const447 int TargetTransformInfo::getFPOpCost(Type *Ty) const {
448 int Cost = TTIImpl->getFPOpCost(Ty);
449 assert(Cost >= 0 && "TTI should not produce negative costs!");
450 return Cost;
451 }
452
getIntImmCodeSizeCost(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty) const453 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
454 const APInt &Imm,
455 Type *Ty) const {
456 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
457 assert(Cost >= 0 && "TTI should not produce negative costs!");
458 return Cost;
459 }
460
getIntImmCost(const APInt & Imm,Type * Ty) const461 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
462 int Cost = TTIImpl->getIntImmCost(Imm, Ty);
463 assert(Cost >= 0 && "TTI should not produce negative costs!");
464 return Cost;
465 }
466
getIntImmCostInst(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty) const467 int TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx,
468 const APInt &Imm, Type *Ty) const {
469 int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty);
470 assert(Cost >= 0 && "TTI should not produce negative costs!");
471 return Cost;
472 }
473
getIntImmCostIntrin(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty) const474 int TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
475 const APInt &Imm, Type *Ty) const {
476 int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty);
477 assert(Cost >= 0 && "TTI should not produce negative costs!");
478 return Cost;
479 }
480
getNumberOfRegisters(unsigned ClassID) const481 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
482 return TTIImpl->getNumberOfRegisters(ClassID);
483 }
484
getRegisterClassForType(bool Vector,Type * Ty) const485 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, Type *Ty) const {
486 return TTIImpl->getRegisterClassForType(Vector, Ty);
487 }
488
getRegisterClassName(unsigned ClassID) const489 const char* TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
490 return TTIImpl->getRegisterClassName(ClassID);
491 }
492
getRegisterBitWidth(bool Vector) const493 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
494 return TTIImpl->getRegisterBitWidth(Vector);
495 }
496
getMinVectorRegisterBitWidth() const497 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
498 return TTIImpl->getMinVectorRegisterBitWidth();
499 }
500
shouldMaximizeVectorBandwidth(bool OptSize) const501 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
502 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
503 }
504
getMinimumVF(unsigned ElemWidth) const505 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
506 return TTIImpl->getMinimumVF(ElemWidth);
507 }
508
shouldConsiderAddressTypePromotion(const Instruction & I,bool & AllowPromotionWithoutCommonHeader) const509 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
510 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
511 return TTIImpl->shouldConsiderAddressTypePromotion(
512 I, AllowPromotionWithoutCommonHeader);
513 }
514
getCacheLineSize() const515 unsigned TargetTransformInfo::getCacheLineSize() const {
516 return TTIImpl->getCacheLineSize();
517 }
518
getCacheSize(CacheLevel Level) const519 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level)
520 const {
521 return TTIImpl->getCacheSize(Level);
522 }
523
getCacheAssociativity(CacheLevel Level) const524 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity(
525 CacheLevel Level) const {
526 return TTIImpl->getCacheAssociativity(Level);
527 }
528
getPrefetchDistance() const529 unsigned TargetTransformInfo::getPrefetchDistance() const {
530 return TTIImpl->getPrefetchDistance();
531 }
532
getMinPrefetchStride() const533 unsigned TargetTransformInfo::getMinPrefetchStride() const {
534 return TTIImpl->getMinPrefetchStride();
535 }
536
getMaxPrefetchIterationsAhead() const537 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
538 return TTIImpl->getMaxPrefetchIterationsAhead();
539 }
540
getMaxInterleaveFactor(unsigned VF) const541 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
542 return TTIImpl->getMaxInterleaveFactor(VF);
543 }
544
545 TargetTransformInfo::OperandValueKind
getOperandInfo(Value * V,OperandValueProperties & OpProps)546 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) {
547 OperandValueKind OpInfo = OK_AnyValue;
548 OpProps = OP_None;
549
550 if (auto *CI = dyn_cast<ConstantInt>(V)) {
551 if (CI->getValue().isPowerOf2())
552 OpProps = OP_PowerOf2;
553 return OK_UniformConstantValue;
554 }
555
556 // A broadcast shuffle creates a uniform value.
557 // TODO: Add support for non-zero index broadcasts.
558 // TODO: Add support for different source vector width.
559 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
560 if (ShuffleInst->isZeroEltSplat())
561 OpInfo = OK_UniformValue;
562
563 const Value *Splat = getSplatValue(V);
564
565 // Check for a splat of a constant or for a non uniform vector of constants
566 // and check if the constant(s) are all powers of two.
567 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
568 OpInfo = OK_NonUniformConstantValue;
569 if (Splat) {
570 OpInfo = OK_UniformConstantValue;
571 if (auto *CI = dyn_cast<ConstantInt>(Splat))
572 if (CI->getValue().isPowerOf2())
573 OpProps = OP_PowerOf2;
574 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
575 OpProps = OP_PowerOf2;
576 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
577 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
578 if (CI->getValue().isPowerOf2())
579 continue;
580 OpProps = OP_None;
581 break;
582 }
583 }
584 }
585
586 // Check for a splat of a uniform value. This is not loop aware, so return
587 // true only for the obviously uniform cases (argument, globalvalue)
588 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
589 OpInfo = OK_UniformValue;
590
591 return OpInfo;
592 }
593
getArithmeticInstrCost(unsigned Opcode,Type * Ty,OperandValueKind Opd1Info,OperandValueKind Opd2Info,OperandValueProperties Opd1PropInfo,OperandValueProperties Opd2PropInfo,ArrayRef<const Value * > Args,const Instruction * CxtI) const594 int TargetTransformInfo::getArithmeticInstrCost(
595 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
596 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
597 OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
598 const Instruction *CxtI) const {
599 int Cost = TTIImpl->getArithmeticInstrCost(
600 Opcode, Ty, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, Args, CxtI);
601 assert(Cost >= 0 && "TTI should not produce negative costs!");
602 return Cost;
603 }
604
getShuffleCost(ShuffleKind Kind,Type * Ty,int Index,Type * SubTp) const605 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index,
606 Type *SubTp) const {
607 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
608 assert(Cost >= 0 && "TTI should not produce negative costs!");
609 return Cost;
610 }
611
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,const Instruction * I) const612 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
613 Type *Src, const Instruction *I) const {
614 assert ((I == nullptr || I->getOpcode() == Opcode) &&
615 "Opcode should reflect passed instruction.");
616 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I);
617 assert(Cost >= 0 && "TTI should not produce negative costs!");
618 return Cost;
619 }
620
getExtractWithExtendCost(unsigned Opcode,Type * Dst,VectorType * VecTy,unsigned Index) const621 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
622 VectorType *VecTy,
623 unsigned Index) const {
624 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
625 assert(Cost >= 0 && "TTI should not produce negative costs!");
626 return Cost;
627 }
628
getCFInstrCost(unsigned Opcode) const629 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
630 int Cost = TTIImpl->getCFInstrCost(Opcode);
631 assert(Cost >= 0 && "TTI should not produce negative costs!");
632 return Cost;
633 }
634
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,const Instruction * I) const635 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
636 Type *CondTy, const Instruction *I) const {
637 assert ((I == nullptr || I->getOpcode() == Opcode) &&
638 "Opcode should reflect passed instruction.");
639 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
640 assert(Cost >= 0 && "TTI should not produce negative costs!");
641 return Cost;
642 }
643
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index) const644 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
645 unsigned Index) const {
646 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
647 assert(Cost >= 0 && "TTI should not produce negative costs!");
648 return Cost;
649 }
650
getMemoryOpCost(unsigned Opcode,Type * Src,MaybeAlign Alignment,unsigned AddressSpace,const Instruction * I) const651 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
652 MaybeAlign Alignment,
653 unsigned AddressSpace,
654 const Instruction *I) const {
655 assert ((I == nullptr || I->getOpcode() == Opcode) &&
656 "Opcode should reflect passed instruction.");
657 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
658 assert(Cost >= 0 && "TTI should not produce negative costs!");
659 return Cost;
660 }
661
getMaskedMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace) const662 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
663 unsigned Alignment,
664 unsigned AddressSpace) const {
665 int Cost =
666 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
667 assert(Cost >= 0 && "TTI should not produce negative costs!");
668 return Cost;
669 }
670
getGatherScatterOpCost(unsigned Opcode,Type * DataTy,Value * Ptr,bool VariableMask,unsigned Alignment) const671 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
672 Value *Ptr, bool VariableMask,
673 unsigned Alignment) const {
674 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
675 Alignment);
676 assert(Cost >= 0 && "TTI should not produce negative costs!");
677 return Cost;
678 }
679
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,unsigned Alignment,unsigned AddressSpace,bool UseMaskForCond,bool UseMaskForGaps) const680 int TargetTransformInfo::getInterleavedMemoryOpCost(
681 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
682 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
683 bool UseMaskForGaps) const {
684 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
685 Alignment, AddressSpace,
686 UseMaskForCond,
687 UseMaskForGaps);
688 assert(Cost >= 0 && "TTI should not produce negative costs!");
689 return Cost;
690 }
691
getIntrinsicInstrCost(Intrinsic::ID ID,Type * RetTy,ArrayRef<Type * > Tys,FastMathFlags FMF,unsigned ScalarizationCostPassed) const692 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
693 ArrayRef<Type *> Tys, FastMathFlags FMF,
694 unsigned ScalarizationCostPassed) const {
695 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
696 ScalarizationCostPassed);
697 assert(Cost >= 0 && "TTI should not produce negative costs!");
698 return Cost;
699 }
700
getIntrinsicInstrCost(Intrinsic::ID ID,Type * RetTy,ArrayRef<Value * > Args,FastMathFlags FMF,unsigned VF) const701 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
702 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const {
703 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
704 assert(Cost >= 0 && "TTI should not produce negative costs!");
705 return Cost;
706 }
707
getCallInstrCost(Function * F,Type * RetTy,ArrayRef<Type * > Tys) const708 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
709 ArrayRef<Type *> Tys) const {
710 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys);
711 assert(Cost >= 0 && "TTI should not produce negative costs!");
712 return Cost;
713 }
714
getNumberOfParts(Type * Tp) const715 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
716 return TTIImpl->getNumberOfParts(Tp);
717 }
718
getAddressComputationCost(Type * Tp,ScalarEvolution * SE,const SCEV * Ptr) const719 int TargetTransformInfo::getAddressComputationCost(Type *Tp,
720 ScalarEvolution *SE,
721 const SCEV *Ptr) const {
722 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
723 assert(Cost >= 0 && "TTI should not produce negative costs!");
724 return Cost;
725 }
726
getMemcpyCost(const Instruction * I) const727 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
728 int Cost = TTIImpl->getMemcpyCost(I);
729 assert(Cost >= 0 && "TTI should not produce negative costs!");
730 return Cost;
731 }
732
getArithmeticReductionCost(unsigned Opcode,Type * Ty,bool IsPairwiseForm) const733 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
734 bool IsPairwiseForm) const {
735 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
736 assert(Cost >= 0 && "TTI should not produce negative costs!");
737 return Cost;
738 }
739
getMinMaxReductionCost(Type * Ty,Type * CondTy,bool IsPairwiseForm,bool IsUnsigned) const740 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy,
741 bool IsPairwiseForm,
742 bool IsUnsigned) const {
743 int Cost =
744 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
745 assert(Cost >= 0 && "TTI should not produce negative costs!");
746 return Cost;
747 }
748
749 unsigned
getCostOfKeepingLiveOverCall(ArrayRef<Type * > Tys) const750 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
751 return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
752 }
753
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info) const754 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
755 MemIntrinsicInfo &Info) const {
756 return TTIImpl->getTgtMemIntrinsic(Inst, Info);
757 }
758
getAtomicMemIntrinsicMaxElementSize() const759 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
760 return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
761 }
762
getOrCreateResultFromMemIntrinsic(IntrinsicInst * Inst,Type * ExpectedType) const763 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
764 IntrinsicInst *Inst, Type *ExpectedType) const {
765 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
766 }
767
getMemcpyLoopLoweringType(LLVMContext & Context,Value * Length,unsigned SrcAlign,unsigned DestAlign) const768 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context,
769 Value *Length,
770 unsigned SrcAlign,
771 unsigned DestAlign) const {
772 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign,
773 DestAlign);
774 }
775
getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type * > & OpsOut,LLVMContext & Context,unsigned RemainingBytes,unsigned SrcAlign,unsigned DestAlign) const776 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
777 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
778 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const {
779 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
780 SrcAlign, DestAlign);
781 }
782
areInlineCompatible(const Function * Caller,const Function * Callee) const783 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
784 const Function *Callee) const {
785 return TTIImpl->areInlineCompatible(Caller, Callee);
786 }
787
areFunctionArgsABICompatible(const Function * Caller,const Function * Callee,SmallPtrSetImpl<Argument * > & Args) const788 bool TargetTransformInfo::areFunctionArgsABICompatible(
789 const Function *Caller, const Function *Callee,
790 SmallPtrSetImpl<Argument *> &Args) const {
791 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
792 }
793
isIndexedLoadLegal(MemIndexedMode Mode,Type * Ty) const794 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
795 Type *Ty) const {
796 return TTIImpl->isIndexedLoadLegal(Mode, Ty);
797 }
798
isIndexedStoreLegal(MemIndexedMode Mode,Type * Ty) const799 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
800 Type *Ty) const {
801 return TTIImpl->isIndexedStoreLegal(Mode, Ty);
802 }
803
getLoadStoreVecRegBitWidth(unsigned AS) const804 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
805 return TTIImpl->getLoadStoreVecRegBitWidth(AS);
806 }
807
isLegalToVectorizeLoad(LoadInst * LI) const808 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
809 return TTIImpl->isLegalToVectorizeLoad(LI);
810 }
811
isLegalToVectorizeStore(StoreInst * SI) const812 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
813 return TTIImpl->isLegalToVectorizeStore(SI);
814 }
815
isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,unsigned Alignment,unsigned AddrSpace) const816 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
817 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
818 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
819 AddrSpace);
820 }
821
isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,unsigned Alignment,unsigned AddrSpace) const822 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
823 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
824 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
825 AddrSpace);
826 }
827
getLoadVectorFactor(unsigned VF,unsigned LoadSize,unsigned ChainSizeInBytes,VectorType * VecTy) const828 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
829 unsigned LoadSize,
830 unsigned ChainSizeInBytes,
831 VectorType *VecTy) const {
832 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
833 }
834
getStoreVectorFactor(unsigned VF,unsigned StoreSize,unsigned ChainSizeInBytes,VectorType * VecTy) const835 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
836 unsigned StoreSize,
837 unsigned ChainSizeInBytes,
838 VectorType *VecTy) const {
839 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
840 }
841
useReductionIntrinsic(unsigned Opcode,Type * Ty,ReductionFlags Flags) const842 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode,
843 Type *Ty, ReductionFlags Flags) const {
844 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
845 }
846
shouldExpandReduction(const IntrinsicInst * II) const847 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
848 return TTIImpl->shouldExpandReduction(II);
849 }
850
getGISelRematGlobalCost() const851 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
852 return TTIImpl->getGISelRematGlobalCost();
853 }
854
getInstructionLatency(const Instruction * I) const855 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
856 return TTIImpl->getInstructionLatency(I);
857 }
858
matchPairwiseShuffleMask(ShuffleVectorInst * SI,bool IsLeft,unsigned Level)859 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
860 unsigned Level) {
861 // We don't need a shuffle if we just want to have element 0 in position 0 of
862 // the vector.
863 if (!SI && Level == 0 && IsLeft)
864 return true;
865 else if (!SI)
866 return false;
867
868 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
869
870 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
871 // we look at the left or right side.
872 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
873 Mask[i] = val;
874
875 SmallVector<int, 16> ActualMask = SI->getShuffleMask();
876 return Mask == ActualMask;
877 }
878
879 namespace {
880 /// Kind of the reduction data.
881 enum ReductionKind {
882 RK_None, /// Not a reduction.
883 RK_Arithmetic, /// Binary reduction data.
884 RK_MinMax, /// Min/max reduction data.
885 RK_UnsignedMinMax, /// Unsigned min/max reduction data.
886 };
887 /// Contains opcode + LHS/RHS parts of the reduction operations.
888 struct ReductionData {
889 ReductionData() = delete;
ReductionData__anonfef1a99d0211::ReductionData890 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
891 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
892 assert(Kind != RK_None && "expected binary or min/max reduction only.");
893 }
894 unsigned Opcode = 0;
895 Value *LHS = nullptr;
896 Value *RHS = nullptr;
897 ReductionKind Kind = RK_None;
hasSameData__anonfef1a99d0211::ReductionData898 bool hasSameData(ReductionData &RD) const {
899 return Kind == RD.Kind && Opcode == RD.Opcode;
900 }
901 };
902 } // namespace
903
getReductionData(Instruction * I)904 static Optional<ReductionData> getReductionData(Instruction *I) {
905 Value *L, *R;
906 if (m_BinOp(m_Value(L), m_Value(R)).match(I))
907 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R);
908 if (auto *SI = dyn_cast<SelectInst>(I)) {
909 if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
910 m_SMax(m_Value(L), m_Value(R)).match(SI) ||
911 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
912 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
913 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
914 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
915 auto *CI = cast<CmpInst>(SI->getCondition());
916 return ReductionData(RK_MinMax, CI->getOpcode(), L, R);
917 }
918 if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
919 m_UMax(m_Value(L), m_Value(R)).match(SI)) {
920 auto *CI = cast<CmpInst>(SI->getCondition());
921 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R);
922 }
923 }
924 return llvm::None;
925 }
926
matchPairwiseReductionAtLevel(Instruction * I,unsigned Level,unsigned NumLevels)927 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
928 unsigned Level,
929 unsigned NumLevels) {
930 // Match one level of pairwise operations.
931 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
932 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
933 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
934 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
935 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
936 if (!I)
937 return RK_None;
938
939 assert(I->getType()->isVectorTy() && "Expecting a vector type");
940
941 Optional<ReductionData> RD = getReductionData(I);
942 if (!RD)
943 return RK_None;
944
945 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
946 if (!LS && Level)
947 return RK_None;
948 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
949 if (!RS && Level)
950 return RK_None;
951
952 // On level 0 we can omit one shufflevector instruction.
953 if (!Level && !RS && !LS)
954 return RK_None;
955
956 // Shuffle inputs must match.
957 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
958 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
959 Value *NextLevelOp = nullptr;
960 if (NextLevelOpR && NextLevelOpL) {
961 // If we have two shuffles their operands must match.
962 if (NextLevelOpL != NextLevelOpR)
963 return RK_None;
964
965 NextLevelOp = NextLevelOpL;
966 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
967 // On the first level we can omit the shufflevector <0, undef,...>. So the
968 // input to the other shufflevector <1, undef> must match with one of the
969 // inputs to the current binary operation.
970 // Example:
971 // %NextLevelOpL = shufflevector %R, <1, undef ...>
972 // %BinOp = fadd %NextLevelOpL, %R
973 if (NextLevelOpL && NextLevelOpL != RD->RHS)
974 return RK_None;
975 else if (NextLevelOpR && NextLevelOpR != RD->LHS)
976 return RK_None;
977
978 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
979 } else
980 return RK_None;
981
982 // Check that the next levels binary operation exists and matches with the
983 // current one.
984 if (Level + 1 != NumLevels) {
985 Optional<ReductionData> NextLevelRD =
986 getReductionData(cast<Instruction>(NextLevelOp));
987 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
988 return RK_None;
989 }
990
991 // Shuffle mask for pairwise operation must match.
992 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
993 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
994 return RK_None;
995 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
996 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
997 return RK_None;
998 } else {
999 return RK_None;
1000 }
1001
1002 if (++Level == NumLevels)
1003 return RD->Kind;
1004
1005 // Match next level.
1006 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level,
1007 NumLevels);
1008 }
1009
matchPairwiseReduction(const ExtractElementInst * ReduxRoot,unsigned & Opcode,Type * & Ty)1010 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
1011 unsigned &Opcode, Type *&Ty) {
1012 if (!EnableReduxCost)
1013 return RK_None;
1014
1015 // Need to extract the first element.
1016 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1017 unsigned Idx = ~0u;
1018 if (CI)
1019 Idx = CI->getZExtValue();
1020 if (Idx != 0)
1021 return RK_None;
1022
1023 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1024 if (!RdxStart)
1025 return RK_None;
1026 Optional<ReductionData> RD = getReductionData(RdxStart);
1027 if (!RD)
1028 return RK_None;
1029
1030 Type *VecTy = RdxStart->getType();
1031 unsigned NumVecElems = VecTy->getVectorNumElements();
1032 if (!isPowerOf2_32(NumVecElems))
1033 return RK_None;
1034
1035 // We look for a sequence of shuffle,shuffle,add triples like the following
1036 // that builds a pairwise reduction tree.
1037 //
1038 // (X0, X1, X2, X3)
1039 // (X0 + X1, X2 + X3, undef, undef)
1040 // ((X0 + X1) + (X2 + X3), undef, undef, undef)
1041 //
1042 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
1043 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
1044 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
1045 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
1046 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
1047 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1048 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
1049 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1050 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1051 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
1052 // %r = extractelement <4 x float> %bin.rdx8, i32 0
1053 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
1054 RK_None)
1055 return RK_None;
1056
1057 Opcode = RD->Opcode;
1058 Ty = VecTy;
1059
1060 return RD->Kind;
1061 }
1062
1063 static std::pair<Value *, ShuffleVectorInst *>
getShuffleAndOtherOprd(Value * L,Value * R)1064 getShuffleAndOtherOprd(Value *L, Value *R) {
1065 ShuffleVectorInst *S = nullptr;
1066
1067 if ((S = dyn_cast<ShuffleVectorInst>(L)))
1068 return std::make_pair(R, S);
1069
1070 S = dyn_cast<ShuffleVectorInst>(R);
1071 return std::make_pair(L, S);
1072 }
1073
1074 static ReductionKind
matchVectorSplittingReduction(const ExtractElementInst * ReduxRoot,unsigned & Opcode,Type * & Ty)1075 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
1076 unsigned &Opcode, Type *&Ty) {
1077 if (!EnableReduxCost)
1078 return RK_None;
1079
1080 // Need to extract the first element.
1081 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1082 unsigned Idx = ~0u;
1083 if (CI)
1084 Idx = CI->getZExtValue();
1085 if (Idx != 0)
1086 return RK_None;
1087
1088 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1089 if (!RdxStart)
1090 return RK_None;
1091 Optional<ReductionData> RD = getReductionData(RdxStart);
1092 if (!RD)
1093 return RK_None;
1094
1095 Type *VecTy = ReduxRoot->getOperand(0)->getType();
1096 unsigned NumVecElems = VecTy->getVectorNumElements();
1097 if (!isPowerOf2_32(NumVecElems))
1098 return RK_None;
1099
1100 // We look for a sequence of shuffles and adds like the following matching one
1101 // fadd, shuffle vector pair at a time.
1102 //
1103 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
1104 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
1105 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
1106 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
1107 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1108 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
1109 // %r = extractelement <4 x float> %bin.rdx8, i32 0
1110
1111 unsigned MaskStart = 1;
1112 Instruction *RdxOp = RdxStart;
1113 SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
1114 unsigned NumVecElemsRemain = NumVecElems;
1115 while (NumVecElemsRemain - 1) {
1116 // Check for the right reduction operation.
1117 if (!RdxOp)
1118 return RK_None;
1119 Optional<ReductionData> RDLevel = getReductionData(RdxOp);
1120 if (!RDLevel || !RDLevel->hasSameData(*RD))
1121 return RK_None;
1122
1123 Value *NextRdxOp;
1124 ShuffleVectorInst *Shuffle;
1125 std::tie(NextRdxOp, Shuffle) =
1126 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
1127
1128 // Check the current reduction operation and the shuffle use the same value.
1129 if (Shuffle == nullptr)
1130 return RK_None;
1131 if (Shuffle->getOperand(0) != NextRdxOp)
1132 return RK_None;
1133
1134 // Check that shuffle masks matches.
1135 for (unsigned j = 0; j != MaskStart; ++j)
1136 ShuffleMask[j] = MaskStart + j;
1137 // Fill the rest of the mask with -1 for undef.
1138 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
1139
1140 SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
1141 if (ShuffleMask != Mask)
1142 return RK_None;
1143
1144 RdxOp = dyn_cast<Instruction>(NextRdxOp);
1145 NumVecElemsRemain /= 2;
1146 MaskStart *= 2;
1147 }
1148
1149 Opcode = RD->Opcode;
1150 Ty = VecTy;
1151 return RD->Kind;
1152 }
1153
getInstructionThroughput(const Instruction * I) const1154 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1155 switch (I->getOpcode()) {
1156 case Instruction::GetElementPtr:
1157 return getUserCost(I);
1158
1159 case Instruction::Ret:
1160 case Instruction::PHI:
1161 case Instruction::Br: {
1162 return getCFInstrCost(I->getOpcode());
1163 }
1164 case Instruction::Add:
1165 case Instruction::FAdd:
1166 case Instruction::Sub:
1167 case Instruction::FSub:
1168 case Instruction::Mul:
1169 case Instruction::FMul:
1170 case Instruction::UDiv:
1171 case Instruction::SDiv:
1172 case Instruction::FDiv:
1173 case Instruction::URem:
1174 case Instruction::SRem:
1175 case Instruction::FRem:
1176 case Instruction::Shl:
1177 case Instruction::LShr:
1178 case Instruction::AShr:
1179 case Instruction::And:
1180 case Instruction::Or:
1181 case Instruction::Xor: {
1182 TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1183 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1184 Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1185 Op2VK = getOperandInfo(I->getOperand(1), Op2VP);
1186 SmallVector<const Value *, 2> Operands(I->operand_values());
1187 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1188 Op1VP, Op2VP, Operands, I);
1189 }
1190 case Instruction::FNeg: {
1191 TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1192 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1193 Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1194 Op2VK = OK_AnyValue;
1195 Op2VP = OP_None;
1196 SmallVector<const Value *, 2> Operands(I->operand_values());
1197 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1198 Op1VP, Op2VP, Operands, I);
1199 }
1200 case Instruction::Select: {
1201 const SelectInst *SI = cast<SelectInst>(I);
1202 Type *CondTy = SI->getCondition()->getType();
1203 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I);
1204 }
1205 case Instruction::ICmp:
1206 case Instruction::FCmp: {
1207 Type *ValTy = I->getOperand(0)->getType();
1208 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I);
1209 }
1210 case Instruction::Store: {
1211 const StoreInst *SI = cast<StoreInst>(I);
1212 Type *ValTy = SI->getValueOperand()->getType();
1213 return getMemoryOpCost(I->getOpcode(), ValTy,
1214 MaybeAlign(SI->getAlignment()),
1215 SI->getPointerAddressSpace(), I);
1216 }
1217 case Instruction::Load: {
1218 const LoadInst *LI = cast<LoadInst>(I);
1219 return getMemoryOpCost(I->getOpcode(), I->getType(),
1220 MaybeAlign(LI->getAlignment()),
1221 LI->getPointerAddressSpace(), I);
1222 }
1223 case Instruction::ZExt:
1224 case Instruction::SExt:
1225 case Instruction::FPToUI:
1226 case Instruction::FPToSI:
1227 case Instruction::FPExt:
1228 case Instruction::PtrToInt:
1229 case Instruction::IntToPtr:
1230 case Instruction::SIToFP:
1231 case Instruction::UIToFP:
1232 case Instruction::Trunc:
1233 case Instruction::FPTrunc:
1234 case Instruction::BitCast:
1235 case Instruction::AddrSpaceCast: {
1236 Type *SrcTy = I->getOperand(0)->getType();
1237 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I);
1238 }
1239 case Instruction::ExtractElement: {
1240 const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
1241 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1242 unsigned Idx = -1;
1243 if (CI)
1244 Idx = CI->getZExtValue();
1245
1246 // Try to match a reduction sequence (series of shufflevector and vector
1247 // adds followed by a extractelement).
1248 unsigned ReduxOpCode;
1249 Type *ReduxType;
1250
1251 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) {
1252 case RK_Arithmetic:
1253 return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1254 /*IsPairwiseForm=*/false);
1255 case RK_MinMax:
1256 return getMinMaxReductionCost(
1257 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1258 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false);
1259 case RK_UnsignedMinMax:
1260 return getMinMaxReductionCost(
1261 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1262 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true);
1263 case RK_None:
1264 break;
1265 }
1266
1267 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) {
1268 case RK_Arithmetic:
1269 return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1270 /*IsPairwiseForm=*/true);
1271 case RK_MinMax:
1272 return getMinMaxReductionCost(
1273 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1274 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false);
1275 case RK_UnsignedMinMax:
1276 return getMinMaxReductionCost(
1277 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1278 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true);
1279 case RK_None:
1280 break;
1281 }
1282
1283 return getVectorInstrCost(I->getOpcode(),
1284 EEI->getOperand(0)->getType(), Idx);
1285 }
1286 case Instruction::InsertElement: {
1287 const InsertElementInst * IE = cast<InsertElementInst>(I);
1288 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
1289 unsigned Idx = -1;
1290 if (CI)
1291 Idx = CI->getZExtValue();
1292 return getVectorInstrCost(I->getOpcode(),
1293 IE->getType(), Idx);
1294 }
1295 case Instruction::ExtractValue:
1296 return 0; // Model all ExtractValue nodes as free.
1297 case Instruction::ShuffleVector: {
1298 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1299 Type *Ty = Shuffle->getType();
1300 Type *SrcTy = Shuffle->getOperand(0)->getType();
1301
1302 // TODO: Identify and add costs for insert subvector, etc.
1303 int SubIndex;
1304 if (Shuffle->isExtractSubvectorMask(SubIndex))
1305 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty);
1306
1307 if (Shuffle->changesLength())
1308 return -1;
1309
1310 if (Shuffle->isIdentity())
1311 return 0;
1312
1313 if (Shuffle->isReverse())
1314 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr);
1315
1316 if (Shuffle->isSelect())
1317 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr);
1318
1319 if (Shuffle->isTranspose())
1320 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr);
1321
1322 if (Shuffle->isZeroEltSplat())
1323 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr);
1324
1325 if (Shuffle->isSingleSource())
1326 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr);
1327
1328 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr);
1329 }
1330 case Instruction::Call:
1331 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1332 SmallVector<Value *, 4> Args(II->arg_operands());
1333
1334 FastMathFlags FMF;
1335 if (auto *FPMO = dyn_cast<FPMathOperator>(II))
1336 FMF = FPMO->getFastMathFlags();
1337
1338 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
1339 Args, FMF);
1340 }
1341 return -1;
1342 default:
1343 // We don't have any information on this instruction.
1344 return -1;
1345 }
1346 }
1347
~Concept()1348 TargetTransformInfo::Concept::~Concept() {}
1349
TargetIRAnalysis()1350 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1351
TargetIRAnalysis(std::function<Result (const Function &)> TTICallback)1352 TargetIRAnalysis::TargetIRAnalysis(
1353 std::function<Result(const Function &)> TTICallback)
1354 : TTICallback(std::move(TTICallback)) {}
1355
run(const Function & F,FunctionAnalysisManager &)1356 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1357 FunctionAnalysisManager &) {
1358 return TTICallback(F);
1359 }
1360
1361 AnalysisKey TargetIRAnalysis::Key;
1362
getDefaultTTI(const Function & F)1363 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1364 return Result(F.getParent()->getDataLayout());
1365 }
1366
1367 // Register the basic pass.
1368 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1369 "Target Transform Information", false, true)
1370 char TargetTransformInfoWrapperPass::ID = 0;
1371
anchor()1372 void TargetTransformInfoWrapperPass::anchor() {}
1373
TargetTransformInfoWrapperPass()1374 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1375 : ImmutablePass(ID) {
1376 initializeTargetTransformInfoWrapperPassPass(
1377 *PassRegistry::getPassRegistry());
1378 }
1379
TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA)1380 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1381 TargetIRAnalysis TIRA)
1382 : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1383 initializeTargetTransformInfoWrapperPassPass(
1384 *PassRegistry::getPassRegistry());
1385 }
1386
getTTI(const Function & F)1387 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1388 FunctionAnalysisManager DummyFAM;
1389 TTI = TIRA.run(F, DummyFAM);
1390 return *TTI;
1391 }
1392
1393 ImmutablePass *
createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA)1394 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1395 return new TargetTransformInfoWrapperPass(std::move(TIRA));
1396 }
1397