• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * gain code, gain pitch and pitch delay decoding
3  *
4  * Copyright (c) 2008 Vladimir Voroshilov
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #ifndef AVCODEC_ACELP_PITCH_DELAY_H
24 #define AVCODEC_ACELP_PITCH_DELAY_H
25 
26 #include <stdint.h>
27 
28 #include "audiodsp.h"
29 
30 #define PITCH_DELAY_MIN             20
31 #define PITCH_DELAY_MAX             143
32 
33 /**
34  * @brief Decode pitch delay of the first subframe encoded by 8 bits with 1/3
35  *        resolution.
36  * @param ac_index adaptive codebook index (8 bits)
37  *
38  * @return pitch delay in 1/3 units
39  *
40  * Pitch delay is coded:
41  *    with 1/3 resolution, 19  < pitch_delay <  85
42  *    integers only,       85 <= pitch_delay <= 143
43  */
ff_acelp_decode_8bit_to_1st_delay3(int ac_index)44 static inline int ff_acelp_decode_8bit_to_1st_delay3(int ac_index)
45 {
46     ac_index += 58;
47     if (ac_index > 254)
48         ac_index = 3 * ac_index - 510;
49     return ac_index;
50 }
51 
52 /**
53  * @brief Decode pitch delay of the second subframe encoded by 5 or 6 bits
54  *        with 1/3 precision.
55  * @param ac_index adaptive codebook index (5 or 6 bits)
56  * @param pitch_delay_min lower bound (integer) of pitch delay interval
57  *                      for second subframe
58  *
59  * @return pitch delay in 1/3 units
60  *
61  * Pitch delay is coded:
62  *    with 1/3 resolution, -6 < pitch_delay - int(prev_pitch_delay) < 5
63  *
64  * @remark The routine is used in G.729 @@8k, AMR @@10.2k, AMR @@7.95k,
65  *         AMR @@7.4k for the second subframe.
66  */
ff_acelp_decode_5_6_bit_to_2nd_delay3(int ac_index,int pitch_delay_min)67 static inline int ff_acelp_decode_5_6_bit_to_2nd_delay3(int ac_index,
68                                                         int pitch_delay_min)
69 {
70         return 3 * pitch_delay_min + ac_index - 2;
71 }
72 
73 /**
74  * @brief Decode pitch delay with 1/3 precision.
75  * @param ac_index adaptive codebook index (4 bits)
76  * @param pitch_delay_min lower bound (integer) of pitch delay interval for
77  *                      second subframe
78  *
79  * @return pitch delay in 1/3 units
80  *
81  * Pitch delay is coded:
82  *    integers only,          -6  < pitch_delay - int(prev_pitch_delay) <= -2
83  *    with 1/3 resolution,    -2  < pitch_delay - int(prev_pitch_delay) <  1
84  *    integers only,           1 <= pitch_delay - int(prev_pitch_delay) <  5
85  *
86  * @remark The routine is used in G.729 @@6.4k, AMR @@6.7k, AMR @@5.9k,
87  *         AMR @@5.15k, AMR @@4.75k for the second subframe.
88  */
ff_acelp_decode_4bit_to_2nd_delay3(int ac_index,int pitch_delay_min)89 static inline int ff_acelp_decode_4bit_to_2nd_delay3(int ac_index,
90                                                      int pitch_delay_min)
91 {
92     if (ac_index < 4)
93         return 3 * (ac_index + pitch_delay_min);
94     else if (ac_index < 12)
95         return 3 * pitch_delay_min + ac_index + 6;
96     else
97         return 3 * (ac_index + pitch_delay_min) - 18;
98 }
99 
100 /**
101  * @brief Decode pitch delay of the first subframe encoded by 9 bits
102  *        with 1/6 precision.
103  * @param ac_index adaptive codebook index (9 bits)
104  *
105  * @return pitch delay in 1/6 units
106  *
107  * Pitch delay is coded:
108  *    with 1/6 resolution,  17  < pitch_delay <  95
109  *    integers only,        95 <= pitch_delay <= 143
110  *
111  * @remark The routine is used in AMR @@12.2k for the first and third subframes.
112  */
ff_acelp_decode_9bit_to_1st_delay6(int ac_index)113 static inline int ff_acelp_decode_9bit_to_1st_delay6(int ac_index)
114 {
115     if (ac_index < 463)
116         return ac_index + 105;
117     else
118         return 6 * (ac_index - 368);
119 }
120 
121 /**
122  * @brief Decode pitch delay of the second subframe encoded by 6 bits
123  *        with 1/6 precision.
124  * @param ac_index adaptive codebook index (6 bits)
125  * @param pitch_delay_min lower bound (integer) of pitch delay interval for
126  *                      second subframe
127  *
128  * @return pitch delay in 1/6 units
129  *
130  * Pitch delay is coded:
131  *    with 1/6 resolution, -6 < pitch_delay - int(prev_pitch_delay) < 5
132  *
133  * @remark The routine is used in AMR @@12.2k for the second and fourth subframes.
134  */
ff_acelp_decode_6bit_to_2nd_delay6(int ac_index,int pitch_delay_min)135 static inline int ff_acelp_decode_6bit_to_2nd_delay6(int ac_index,
136                                                      int pitch_delay_min)
137 {
138     return 6 * pitch_delay_min + ac_index - 3;
139 }
140 
141 /**
142  * @brief Update past quantized energies
143  * @param[in,out]  quant_energy  past quantized energies (5.10)
144  * @param gain_corr_factor gain correction factor
145  * @param log2_ma_pred_order log2() of MA prediction order
146  * @param erasure frame erasure flag
147  *
148  * If frame erasure flag is not equal to zero, memory is updated with
149  * averaged energy, attenuated by 4dB:
150  *     max(avg(quant_energy[i])-4, -14), i=0,ma_pred_order
151  *
152  * In normal mode memory is updated with
153  *     Er - Ep = 20 * log10(gain_corr_factor)
154  *
155  * @remark The routine is used in G.729 and AMR (all modes).
156  */
157 void ff_acelp_update_past_gain(
158         int16_t* quant_energy,
159         int gain_corr_factor,
160         int log2_ma_pred_order,
161         int erasure);
162 
163 /**
164  * @brief Decode the adaptive codebook gain and add
165  *        correction (4.1.5 and 3.9.1 of G.729).
166  * @param adsp initialized audio DSP context
167  * @param gain_corr_factor gain correction factor (2.13)
168  * @param fc_v fixed-codebook vector (2.13)
169  * @param mr_energy mean innovation energy and fixed-point correction (7.13)
170  * @param[in,out]  quant_energy  past quantized energies (5.10)
171  * @param subframe_size length of subframe
172  *
173  * @return quantized fixed-codebook gain (14.1)
174  *
175  * The routine implements equations 69, 66 and 71 of the G.729 specification (3.9.1)
176  *
177  *    Em   - mean innovation energy (dB, constant, depends on decoding algorithm)
178  *    Ep   - mean-removed predicted energy (dB)
179  *    Er   - mean-removed innovation energy (dB)
180  *    Ei   - mean energy of the fixed-codebook contribution (dB)
181  *    N    - subframe_size
182  *    M    - MA (Moving Average) prediction order
183  *    gc   - fixed-codebook gain
184  *    gc_p - predicted fixed-codebook gain
185  *
186  *    Fixed codebook gain is computed using predicted gain gc_p and
187  *    correction factor gain_corr_factor as shown below:
188  *
189  *        gc = gc_p * gain_corr_factor
190  *
191  *    The predicted fixed codebook gain gc_p is found by predicting
192  *    the energy of the fixed-codebook contribution from the energy
193  *    of previous fixed-codebook contributions.
194  *
195  *        mean = 1/N * sum(i,0,N){ fc_v[i] * fc_v[i] }
196  *
197  *        Ei = 10log(mean)
198  *
199  *        Er = 10log(1/N * gc^2 * mean) - Em = 20log(gc) + Ei - Em
200  *
201  *    Replacing Er with Ep and gc with gc_p we will receive:
202  *
203  *        Ep = 10log(1/N * gc_p^2 * mean) - Em = 20log(gc_p) + Ei - Em
204  *
205  *    and from above:
206  *
207  *        gc_p = 10^((Ep - Ei + Em) / 20)
208  *
209  *    Ep is predicted using past energies and prediction coefficients:
210  *
211  *        Ep = sum(i,0,M){ ma_prediction_coeff[i] * quant_energy[i] }
212  *
213  *    gc_p in fixed-point arithmetic is calculated as following:
214  *
215  *        mean = 1/N * sum(i,0,N){ (fc_v[i] / 2^13) * (fc_v[i] / 2^13) } =
216  *        = 1/N * sum(i,0,N) { fc_v[i] * fc_v[i] } / 2^26
217  *
218  *        Ei = 10log(mean) = -10log(N) - 10log(2^26) +
219  *        + 10log(sum(i,0,N) { fc_v[i] * fc_v[i] })
220  *
221  *        Ep - Ei + Em = Ep + Em + 10log(N) + 10log(2^26) -
222  *        - 10log(sum(i,0,N) { fc_v[i] * fc_v[i] }) =
223  *        = Ep + mr_energy - 10log(sum(i,0,N) { fc_v[i] * fc_v[i] })
224  *
225  *        gc_p = 10 ^ ((Ep - Ei + Em) / 20) =
226  *        = 2 ^ (3.3219 * (Ep - Ei + Em) / 20) = 2 ^ (0.166 * (Ep - Ei + Em))
227  *
228  *    where
229  *
230  *        mr_energy = Em + 10log(N) + 10log(2^26)
231  *
232  * @remark The routine is used in G.729 and AMR (all modes).
233  */
234 int16_t ff_acelp_decode_gain_code(
235     AudioDSPContext *adsp,
236     int gain_corr_factor,
237     const int16_t* fc_v,
238     int mr_energy,
239     const int16_t* quant_energy,
240     const int16_t* ma_prediction_coeff,
241     int subframe_size,
242     int max_pred_order);
243 
244 /**
245  * Calculate fixed gain (part of section 6.1.3 of AMR spec)
246  *
247  * @param fixed_gain_factor gain correction factor
248  * @param fixed_mean_energy mean decoded algebraic codebook vector energy
249  * @param prediction_error vector of the quantified predictor errors of
250  *        the four previous subframes. It is updated by this function.
251  * @param energy_mean desired mean innovation energy
252  * @param pred_table table of four moving average coefficients
253  */
254 float ff_amr_set_fixed_gain(float fixed_gain_factor, float fixed_mean_energy,
255                             float *prediction_error, float energy_mean,
256                             const float *pred_table);
257 
258 
259 /**
260  * Decode the adaptive codebook index to the integer and fractional parts
261  * of the pitch lag for one subframe at 1/3 fractional precision.
262  *
263  * The choice of pitch lag is described in 3GPP TS 26.090 section 5.6.1.
264  *
265  * @param lag_int             integer part of pitch lag of the current subframe
266  * @param lag_frac            fractional part of pitch lag of the current subframe
267  * @param pitch_index         parsed adaptive codebook (pitch) index
268  * @param prev_lag_int        integer part of pitch lag for the previous subframe
269  * @param subframe            current subframe number
270  * @param third_as_first      treat the third frame the same way as the first
271  */
272 void ff_decode_pitch_lag(int *lag_int, int *lag_frac, int pitch_index,
273                          const int prev_lag_int, const int subframe,
274                          int third_as_first, int resolution);
275 
276 #endif /* AVCODEC_ACELP_PITCH_DELAY_H */
277