• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * \file psa/crypto_values.h
3  *
4  * \brief PSA cryptography module: macros to build and analyze integer values.
5  *
6  * \note This file may not be included directly. Applications must
7  * include psa/crypto.h. Drivers must include the appropriate driver
8  * header file.
9  *
10  * This file contains portable definitions of macros to build and analyze
11  * values of integral types that encode properties of cryptographic keys,
12  * designations of cryptographic algorithms, and error codes returned by
13  * the library.
14  *
15  * Note that many of the constants defined in this file are embedded in
16  * the persistent key store, as part of key metadata (including usage
17  * policies). As a consequence, they must not be changed (unless the storage
18  * format version changes).
19  *
20  * This header file only defines preprocessor macros.
21  */
22 /*
23  *  Copyright The Mbed TLS Contributors
24  *  SPDX-License-Identifier: Apache-2.0
25  *
26  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
27  *  not use this file except in compliance with the License.
28  *  You may obtain a copy of the License at
29  *
30  *  http://www.apache.org/licenses/LICENSE-2.0
31  *
32  *  Unless required by applicable law or agreed to in writing, software
33  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
34  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
35  *  See the License for the specific language governing permissions and
36  *  limitations under the License.
37  */
38 
39 #ifndef PSA_CRYPTO_VALUES_H
40 #define PSA_CRYPTO_VALUES_H
41 #include "mbedtls/private_access.h"
42 
43 /** \defgroup error Error codes
44  * @{
45  */
46 
47 /* PSA error codes */
48 
49 /* Error codes are standardized across PSA domains (framework, crypto, storage,
50  * etc.). Do not change the values in this section or even the expansions
51  * of each macro: it must be possible to `#include` both this header
52  * and some other PSA component's headers in the same C source,
53  * which will lead to duplicate definitions of the `PSA_SUCCESS` and
54  * `PSA_ERROR_xxx` macros, which is ok if and only if the macros expand
55  * to the same sequence of tokens.
56  *
57  * If you must add a new
58  * value, check with the Arm PSA framework group to pick one that other
59  * domains aren't already using. */
60 
61 /* Tell uncrustify not to touch the constant definitions, otherwise
62  * it might change the spacing to something that is not PSA-compliant
63  * (e.g. adding a space after casts).
64  *
65  * *INDENT-OFF*
66  */
67 
68 /** The action was completed successfully. */
69 #define PSA_SUCCESS ((psa_status_t)0)
70 
71 /** An error occurred that does not correspond to any defined
72  * failure cause.
73  *
74  * Implementations may use this error code if none of the other standard
75  * error codes are applicable. */
76 #define PSA_ERROR_GENERIC_ERROR         ((psa_status_t)-132)
77 
78 /** The requested operation or a parameter is not supported
79  * by this implementation.
80  *
81  * Implementations should return this error code when an enumeration
82  * parameter such as a key type, algorithm, etc. is not recognized.
83  * If a combination of parameters is recognized and identified as
84  * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
85 #define PSA_ERROR_NOT_SUPPORTED         ((psa_status_t)-134)
86 
87 /** The requested action is denied by a policy.
88  *
89  * Implementations should return this error code when the parameters
90  * are recognized as valid and supported, and a policy explicitly
91  * denies the requested operation.
92  *
93  * If a subset of the parameters of a function call identify a
94  * forbidden operation, and another subset of the parameters are
95  * not valid or not supported, it is unspecified whether the function
96  * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
97  * #PSA_ERROR_INVALID_ARGUMENT. */
98 #define PSA_ERROR_NOT_PERMITTED         ((psa_status_t)-133)
99 
100 /** An output buffer is too small.
101  *
102  * Applications can call the \c PSA_xxx_SIZE macro listed in the function
103  * description to determine a sufficient buffer size.
104  *
105  * Implementations should preferably return this error code only
106  * in cases when performing the operation with a larger output
107  * buffer would succeed. However implementations may return this
108  * error if a function has invalid or unsupported parameters in addition
109  * to the parameters that determine the necessary output buffer size. */
110 #define PSA_ERROR_BUFFER_TOO_SMALL      ((psa_status_t)-138)
111 
112 /** Asking for an item that already exists
113  *
114  * Implementations should return this error, when attempting
115  * to write an item (like a key) that already exists. */
116 #define PSA_ERROR_ALREADY_EXISTS        ((psa_status_t)-139)
117 
118 /** Asking for an item that doesn't exist
119  *
120  * Implementations should return this error, if a requested item (like
121  * a key) does not exist. */
122 #define PSA_ERROR_DOES_NOT_EXIST        ((psa_status_t)-140)
123 
124 /** The requested action cannot be performed in the current state.
125  *
126  * Multipart operations return this error when one of the
127  * functions is called out of sequence. Refer to the function
128  * descriptions for permitted sequencing of functions.
129  *
130  * Implementations shall not return this error code to indicate
131  * that a key either exists or not,
132  * but shall instead return #PSA_ERROR_ALREADY_EXISTS or #PSA_ERROR_DOES_NOT_EXIST
133  * as applicable.
134  *
135  * Implementations shall not return this error code to indicate that a
136  * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
137  * instead. */
138 #define PSA_ERROR_BAD_STATE             ((psa_status_t)-137)
139 
140 /** The parameters passed to the function are invalid.
141  *
142  * Implementations may return this error any time a parameter or
143  * combination of parameters are recognized as invalid.
144  *
145  * Implementations shall not return this error code to indicate that a
146  * key identifier is invalid, but shall return #PSA_ERROR_INVALID_HANDLE
147  * instead.
148  */
149 #define PSA_ERROR_INVALID_ARGUMENT      ((psa_status_t)-135)
150 
151 /** There is not enough runtime memory.
152  *
153  * If the action is carried out across multiple security realms, this
154  * error can refer to available memory in any of the security realms. */
155 #define PSA_ERROR_INSUFFICIENT_MEMORY   ((psa_status_t)-141)
156 
157 /** There is not enough persistent storage.
158  *
159  * Functions that modify the key storage return this error code if
160  * there is insufficient storage space on the host media. In addition,
161  * many functions that do not otherwise access storage may return this
162  * error code if the implementation requires a mandatory log entry for
163  * the requested action and the log storage space is full. */
164 #define PSA_ERROR_INSUFFICIENT_STORAGE  ((psa_status_t)-142)
165 
166 /** There was a communication failure inside the implementation.
167  *
168  * This can indicate a communication failure between the application
169  * and an external cryptoprocessor or between the cryptoprocessor and
170  * an external volatile or persistent memory. A communication failure
171  * may be transient or permanent depending on the cause.
172  *
173  * \warning If a function returns this error, it is undetermined
174  * whether the requested action has completed or not. Implementations
175  * should return #PSA_SUCCESS on successful completion whenever
176  * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
177  * if the requested action was completed successfully in an external
178  * cryptoprocessor but there was a breakdown of communication before
179  * the cryptoprocessor could report the status to the application.
180  */
181 #define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
182 
183 /** There was a storage failure that may have led to data loss.
184  *
185  * This error indicates that some persistent storage is corrupted.
186  * It should not be used for a corruption of volatile memory
187  * (use #PSA_ERROR_CORRUPTION_DETECTED), for a communication error
188  * between the cryptoprocessor and its external storage (use
189  * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
190  * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
191  *
192  * Note that a storage failure does not indicate that any data that was
193  * previously read is invalid. However this previously read data may no
194  * longer be readable from storage.
195  *
196  * When a storage failure occurs, it is no longer possible to ensure
197  * the global integrity of the keystore. Depending on the global
198  * integrity guarantees offered by the implementation, access to other
199  * data may or may not fail even if the data is still readable but
200  * its integrity cannot be guaranteed.
201  *
202  * Implementations should only use this error code to report a
203  * permanent storage corruption. However application writers should
204  * keep in mind that transient errors while reading the storage may be
205  * reported using this error code. */
206 #define PSA_ERROR_STORAGE_FAILURE       ((psa_status_t)-146)
207 
208 /** A hardware failure was detected.
209  *
210  * A hardware failure may be transient or permanent depending on the
211  * cause. */
212 #define PSA_ERROR_HARDWARE_FAILURE      ((psa_status_t)-147)
213 
214 /** A tampering attempt was detected.
215  *
216  * If an application receives this error code, there is no guarantee
217  * that previously accessed or computed data was correct and remains
218  * confidential. Applications should not perform any security function
219  * and should enter a safe failure state.
220  *
221  * Implementations may return this error code if they detect an invalid
222  * state that cannot happen during normal operation and that indicates
223  * that the implementation's security guarantees no longer hold. Depending
224  * on the implementation architecture and on its security and safety goals,
225  * the implementation may forcibly terminate the application.
226  *
227  * This error code is intended as a last resort when a security breach
228  * is detected and it is unsure whether the keystore data is still
229  * protected. Implementations shall only return this error code
230  * to report an alarm from a tampering detector, to indicate that
231  * the confidentiality of stored data can no longer be guaranteed,
232  * or to indicate that the integrity of previously returned data is now
233  * considered compromised. Implementations shall not use this error code
234  * to indicate a hardware failure that merely makes it impossible to
235  * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
236  * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
237  * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
238  * instead).
239  *
240  * This error indicates an attack against the application. Implementations
241  * shall not return this error code as a consequence of the behavior of
242  * the application itself. */
243 #define PSA_ERROR_CORRUPTION_DETECTED    ((psa_status_t)-151)
244 
245 /** There is not enough entropy to generate random data needed
246  * for the requested action.
247  *
248  * This error indicates a failure of a hardware random generator.
249  * Application writers should note that this error can be returned not
250  * only by functions whose purpose is to generate random data, such
251  * as key, IV or nonce generation, but also by functions that execute
252  * an algorithm with a randomized result, as well as functions that
253  * use randomization of intermediate computations as a countermeasure
254  * to certain attacks.
255  *
256  * Implementations should avoid returning this error after psa_crypto_init()
257  * has succeeded. Implementations should generate sufficient
258  * entropy during initialization and subsequently use a cryptographically
259  * secure pseudorandom generator (PRNG). However implementations may return
260  * this error at any time if a policy requires the PRNG to be reseeded
261  * during normal operation. */
262 #define PSA_ERROR_INSUFFICIENT_ENTROPY  ((psa_status_t)-148)
263 
264 /** The signature, MAC or hash is incorrect.
265  *
266  * Verification functions return this error if the verification
267  * calculations completed successfully, and the value to be verified
268  * was determined to be incorrect.
269  *
270  * If the value to verify has an invalid size, implementations may return
271  * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
272 #define PSA_ERROR_INVALID_SIGNATURE     ((psa_status_t)-149)
273 
274 /** The decrypted padding is incorrect.
275  *
276  * \warning In some protocols, when decrypting data, it is essential that
277  * the behavior of the application does not depend on whether the padding
278  * is correct, down to precise timing. Applications should prefer
279  * protocols that use authenticated encryption rather than plain
280  * encryption. If the application must perform a decryption of
281  * unauthenticated data, the application writer should take care not
282  * to reveal whether the padding is invalid.
283  *
284  * Implementations should strive to make valid and invalid padding
285  * as close as possible to indistinguishable to an external observer.
286  * In particular, the timing of a decryption operation should not
287  * depend on the validity of the padding. */
288 #define PSA_ERROR_INVALID_PADDING       ((psa_status_t)-150)
289 
290 /** Return this error when there's insufficient data when attempting
291  * to read from a resource. */
292 #define PSA_ERROR_INSUFFICIENT_DATA     ((psa_status_t)-143)
293 
294 /** The key identifier is not valid. See also :ref:\`key-handles\`.
295  */
296 #define PSA_ERROR_INVALID_HANDLE        ((psa_status_t)-136)
297 
298 /** Stored data has been corrupted.
299  *
300  * This error indicates that some persistent storage has suffered corruption.
301  * It does not indicate the following situations, which have specific error
302  * codes:
303  *
304  * - A corruption of volatile memory - use #PSA_ERROR_CORRUPTION_DETECTED.
305  * - A communication error between the cryptoprocessor and its external
306  *   storage - use #PSA_ERROR_COMMUNICATION_FAILURE.
307  * - When the storage is in a valid state but is full - use
308  *   #PSA_ERROR_INSUFFICIENT_STORAGE.
309  * - When the storage fails for other reasons - use
310  *   #PSA_ERROR_STORAGE_FAILURE.
311  * - When the stored data is not valid - use #PSA_ERROR_DATA_INVALID.
312  *
313  * \note A storage corruption does not indicate that any data that was
314  * previously read is invalid. However this previously read data might no
315  * longer be readable from storage.
316  *
317  * When a storage failure occurs, it is no longer possible to ensure the
318  * global integrity of the keystore.
319  */
320 #define PSA_ERROR_DATA_CORRUPT          ((psa_status_t)-152)
321 
322 /** Data read from storage is not valid for the implementation.
323  *
324  * This error indicates that some data read from storage does not have a valid
325  * format. It does not indicate the following situations, which have specific
326  * error codes:
327  *
328  * - When the storage or stored data is corrupted - use #PSA_ERROR_DATA_CORRUPT
329  * - When the storage fails for other reasons - use #PSA_ERROR_STORAGE_FAILURE
330  * - An invalid argument to the API - use #PSA_ERROR_INVALID_ARGUMENT
331  *
332  * This error is typically a result of either storage corruption on a
333  * cleartext storage backend, or an attempt to read data that was
334  * written by an incompatible version of the library.
335  */
336 #define PSA_ERROR_DATA_INVALID          ((psa_status_t)-153)
337 
338 /** The function that returns this status is defined as interruptible and
339  *  still has work to do, thus the user should call the function again with the
340  *  same operation context until it either returns #PSA_SUCCESS or any other
341  *  error. This is not an error per se, more a notification of status.
342  */
343 #define PSA_OPERATION_INCOMPLETE           ((psa_status_t)-248)
344 
345 /* *INDENT-ON* */
346 
347 /**@}*/
348 
349 /** \defgroup crypto_types Key and algorithm types
350  * @{
351  */
352 
353 /* Note that key type values, including ECC family and DH group values, are
354  * embedded in the persistent key store, as part of key metadata. As a
355  * consequence, they must not be changed (unless the storage format version
356  * changes).
357  */
358 
359 /** An invalid key type value.
360  *
361  * Zero is not the encoding of any key type.
362  */
363 #define PSA_KEY_TYPE_NONE                           ((psa_key_type_t) 0x0000)
364 
365 /** Vendor-defined key type flag.
366  *
367  * Key types defined by this standard will never have the
368  * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
369  * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
370  * respect the bitwise structure used by standard encodings whenever practical.
371  */
372 #define PSA_KEY_TYPE_VENDOR_FLAG                    ((psa_key_type_t) 0x8000)
373 
374 #define PSA_KEY_TYPE_CATEGORY_MASK                  ((psa_key_type_t) 0x7000)
375 #define PSA_KEY_TYPE_CATEGORY_RAW                   ((psa_key_type_t) 0x1000)
376 #define PSA_KEY_TYPE_CATEGORY_SYMMETRIC             ((psa_key_type_t) 0x2000)
377 #define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY            ((psa_key_type_t) 0x4000)
378 #define PSA_KEY_TYPE_CATEGORY_KEY_PAIR              ((psa_key_type_t) 0x7000)
379 
380 #define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR             ((psa_key_type_t) 0x3000)
381 
382 /** Whether a key type is vendor-defined.
383  *
384  * See also #PSA_KEY_TYPE_VENDOR_FLAG.
385  */
386 #define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
387     (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
388 
389 /** Whether a key type is an unstructured array of bytes.
390  *
391  * This encompasses both symmetric keys and non-key data.
392  */
393 #define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
394     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_RAW || \
395      ((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
396 
397 /** Whether a key type is asymmetric: either a key pair or a public key. */
398 #define PSA_KEY_TYPE_IS_ASYMMETRIC(type)                                \
399     (((type) & PSA_KEY_TYPE_CATEGORY_MASK                               \
400       & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) ==                            \
401      PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
402 /** Whether a key type is the public part of a key pair. */
403 #define PSA_KEY_TYPE_IS_PUBLIC_KEY(type)                                \
404     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY)
405 /** Whether a key type is a key pair containing a private part and a public
406  * part. */
407 #define PSA_KEY_TYPE_IS_KEY_PAIR(type)                                   \
408     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR)
409 /** The key pair type corresponding to a public key type.
410  *
411  * You may also pass a key pair type as \p type, it will be left unchanged.
412  *
413  * \param type      A public key type or key pair type.
414  *
415  * \return          The corresponding key pair type.
416  *                  If \p type is not a public key or a key pair,
417  *                  the return value is undefined.
418  */
419 #define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type)        \
420     ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
421 /** The public key type corresponding to a key pair type.
422  *
423  * You may also pass a key pair type as \p type, it will be left unchanged.
424  *
425  * \param type      A public key type or key pair type.
426  *
427  * \return          The corresponding public key type.
428  *                  If \p type is not a public key or a key pair,
429  *                  the return value is undefined.
430  */
431 #define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type)        \
432     ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR)
433 
434 /** Raw data.
435  *
436  * A "key" of this type cannot be used for any cryptographic operation.
437  * Applications may use this type to store arbitrary data in the keystore. */
438 #define PSA_KEY_TYPE_RAW_DATA                       ((psa_key_type_t) 0x1001)
439 
440 /** HMAC key.
441  *
442  * The key policy determines which underlying hash algorithm the key can be
443  * used for.
444  *
445  * HMAC keys should generally have the same size as the underlying hash.
446  * This size can be calculated with #PSA_HASH_LENGTH(\c alg) where
447  * \c alg is the HMAC algorithm or the underlying hash algorithm. */
448 #define PSA_KEY_TYPE_HMAC                           ((psa_key_type_t) 0x1100)
449 
450 /** A secret for key derivation.
451  *
452  * This key type is for high-entropy secrets only. For low-entropy secrets,
453  * #PSA_KEY_TYPE_PASSWORD should be used instead.
454  *
455  * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_SECRET or
456  * #PSA_KEY_DERIVATION_INPUT_PASSWORD input of key derivation algorithms.
457  *
458  * The key policy determines which key derivation algorithm the key
459  * can be used for.
460  */
461 #define PSA_KEY_TYPE_DERIVE                         ((psa_key_type_t) 0x1200)
462 
463 /** A low-entropy secret for password hashing or key derivation.
464  *
465  * This key type is suitable for passwords and passphrases which are typically
466  * intended to be memorizable by humans, and have a low entropy relative to
467  * their size. It can be used for randomly generated or derived keys with
468  * maximum or near-maximum entropy, but #PSA_KEY_TYPE_DERIVE is more suitable
469  * for such keys. It is not suitable for passwords with extremely low entropy,
470  * such as numerical PINs.
471  *
472  * These keys can be used as the #PSA_KEY_DERIVATION_INPUT_PASSWORD input of
473  * key derivation algorithms. Algorithms that accept such an input were
474  * designed to accept low-entropy secret and are known as password hashing or
475  * key stretching algorithms.
476  *
477  * These keys cannot be used as the #PSA_KEY_DERIVATION_INPUT_SECRET input of
478  * key derivation algorithms, as the algorithms that take such an input expect
479  * it to be high-entropy.
480  *
481  * The key policy determines which key derivation algorithm the key can be
482  * used for, among the permissible subset defined above.
483  */
484 #define PSA_KEY_TYPE_PASSWORD                       ((psa_key_type_t) 0x1203)
485 
486 /** A secret value that can be used to verify a password hash.
487  *
488  * The key policy determines which key derivation algorithm the key
489  * can be used for, among the same permissible subset as for
490  * #PSA_KEY_TYPE_PASSWORD.
491  */
492 #define PSA_KEY_TYPE_PASSWORD_HASH                  ((psa_key_type_t) 0x1205)
493 
494 /** A secret value that can be used in when computing a password hash.
495  *
496  * The key policy determines which key derivation algorithm the key
497  * can be used for, among the subset of algorithms that can use pepper.
498  */
499 #define PSA_KEY_TYPE_PEPPER                         ((psa_key_type_t) 0x1206)
500 
501 /** Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
502  *
503  * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
504  * 32 bytes (AES-256).
505  */
506 #define PSA_KEY_TYPE_AES                            ((psa_key_type_t) 0x2400)
507 
508 /** Key for a cipher, AEAD or MAC algorithm based on the
509  * ARIA block cipher. */
510 #define PSA_KEY_TYPE_ARIA                           ((psa_key_type_t) 0x2406)
511 
512 /** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
513  *
514  * The size of the key can be 64 bits (single DES), 128 bits (2-key 3DES) or
515  * 192 bits (3-key 3DES).
516  *
517  * Note that single DES and 2-key 3DES are weak and strongly
518  * deprecated and should only be used to decrypt legacy data. 3-key 3DES
519  * is weak and deprecated and should only be used in legacy protocols.
520  */
521 #define PSA_KEY_TYPE_DES                            ((psa_key_type_t) 0x2301)
522 
523 /** Key for a cipher, AEAD or MAC algorithm based on the
524  * Camellia block cipher. */
525 #define PSA_KEY_TYPE_CAMELLIA                       ((psa_key_type_t) 0x2403)
526 
527 /** Key for the ChaCha20 stream cipher or the Chacha20-Poly1305 AEAD algorithm.
528  *
529  * ChaCha20 and the ChaCha20_Poly1305 construction are defined in RFC 7539.
530  *
531  * \note For ChaCha20 and ChaCha20_Poly1305, Mbed TLS only supports
532  *       12-byte nonces.
533  *
534  * \note For ChaCha20, the initial counter value is 0. To encrypt or decrypt
535  *       with the initial counter value 1, you can process and discard a
536  *       64-byte block before the real data.
537  */
538 #define PSA_KEY_TYPE_CHACHA20                       ((psa_key_type_t) 0x2004)
539 
540 /** RSA public key.
541  *
542  * The size of an RSA key is the bit size of the modulus.
543  */
544 #define PSA_KEY_TYPE_RSA_PUBLIC_KEY                 ((psa_key_type_t) 0x4001)
545 /** RSA key pair (private and public key).
546  *
547  * The size of an RSA key is the bit size of the modulus.
548  */
549 #define PSA_KEY_TYPE_RSA_KEY_PAIR                   ((psa_key_type_t) 0x7001)
550 /** Whether a key type is an RSA key (pair or public-only). */
551 #define PSA_KEY_TYPE_IS_RSA(type)                                       \
552     (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
553 
554 #define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE            ((psa_key_type_t) 0x4100)
555 #define PSA_KEY_TYPE_ECC_KEY_PAIR_BASE              ((psa_key_type_t) 0x7100)
556 #define PSA_KEY_TYPE_ECC_CURVE_MASK                 ((psa_key_type_t) 0x00ff)
557 /** Elliptic curve key pair.
558  *
559  * The size of an elliptic curve key is the bit size associated with the curve,
560  * i.e. the bit size of *q* for a curve over a field *F<sub>q</sub>*.
561  * See the documentation of `PSA_ECC_FAMILY_xxx` curve families for details.
562  *
563  * \param curve     A value of type ::psa_ecc_family_t that
564  *                  identifies the ECC curve to be used.
565  */
566 #define PSA_KEY_TYPE_ECC_KEY_PAIR(curve)         \
567     (PSA_KEY_TYPE_ECC_KEY_PAIR_BASE | (curve))
568 /** Elliptic curve public key.
569  *
570  * The size of an elliptic curve public key is the same as the corresponding
571  * private key (see #PSA_KEY_TYPE_ECC_KEY_PAIR and the documentation of
572  * `PSA_ECC_FAMILY_xxx` curve families).
573  *
574  * \param curve     A value of type ::psa_ecc_family_t that
575  *                  identifies the ECC curve to be used.
576  */
577 #define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve)              \
578     (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
579 
580 /** Whether a key type is an elliptic curve key (pair or public-only). */
581 #define PSA_KEY_TYPE_IS_ECC(type)                                       \
582     ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) &                        \
583       ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
584 /** Whether a key type is an elliptic curve key pair. */
585 #define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type)                               \
586     (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) ==                         \
587      PSA_KEY_TYPE_ECC_KEY_PAIR_BASE)
588 /** Whether a key type is an elliptic curve public key. */
589 #define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type)                            \
590     (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) ==                         \
591      PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
592 
593 /** Extract the curve from an elliptic curve key type. */
594 #define PSA_KEY_TYPE_ECC_GET_FAMILY(type)                        \
595     ((psa_ecc_family_t) (PSA_KEY_TYPE_IS_ECC(type) ?             \
596                          ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
597                          0))
598 
599 /** Check if the curve of given family is Weierstrass elliptic curve. */
600 #define PSA_ECC_FAMILY_IS_WEIERSTRASS(family) ((family & 0xc0) == 0)
601 
602 /** SEC Koblitz curves over prime fields.
603  *
604  * This family comprises the following curves:
605  * secp192k1, secp224k1, secp256k1.
606  * They are defined in _Standards for Efficient Cryptography_,
607  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
608  * https://www.secg.org/sec2-v2.pdf
609  */
610 #define PSA_ECC_FAMILY_SECP_K1           ((psa_ecc_family_t) 0x17)
611 
612 /** SEC random curves over prime fields.
613  *
614  * This family comprises the following curves:
615  * secp192k1, secp224r1, secp256r1, secp384r1, secp521r1.
616  * They are defined in _Standards for Efficient Cryptography_,
617  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
618  * https://www.secg.org/sec2-v2.pdf
619  */
620 #define PSA_ECC_FAMILY_SECP_R1           ((psa_ecc_family_t) 0x12)
621 /* SECP160R2 (SEC2 v1, obsolete) */
622 #define PSA_ECC_FAMILY_SECP_R2           ((psa_ecc_family_t) 0x1b)
623 
624 /** SEC Koblitz curves over binary fields.
625  *
626  * This family comprises the following curves:
627  * sect163k1, sect233k1, sect239k1, sect283k1, sect409k1, sect571k1.
628  * They are defined in _Standards for Efficient Cryptography_,
629  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
630  * https://www.secg.org/sec2-v2.pdf
631  */
632 #define PSA_ECC_FAMILY_SECT_K1           ((psa_ecc_family_t) 0x27)
633 
634 /** SEC random curves over binary fields.
635  *
636  * This family comprises the following curves:
637  * sect163r1, sect233r1, sect283r1, sect409r1, sect571r1.
638  * They are defined in _Standards for Efficient Cryptography_,
639  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
640  * https://www.secg.org/sec2-v2.pdf
641  */
642 #define PSA_ECC_FAMILY_SECT_R1           ((psa_ecc_family_t) 0x22)
643 
644 /** SEC additional random curves over binary fields.
645  *
646  * This family comprises the following curve:
647  * sect163r2.
648  * It is defined in _Standards for Efficient Cryptography_,
649  * _SEC 2: Recommended Elliptic Curve Domain Parameters_.
650  * https://www.secg.org/sec2-v2.pdf
651  */
652 #define PSA_ECC_FAMILY_SECT_R2           ((psa_ecc_family_t) 0x2b)
653 
654 /** Brainpool P random curves.
655  *
656  * This family comprises the following curves:
657  * brainpoolP160r1, brainpoolP192r1, brainpoolP224r1, brainpoolP256r1,
658  * brainpoolP320r1, brainpoolP384r1, brainpoolP512r1.
659  * It is defined in RFC 5639.
660  */
661 #define PSA_ECC_FAMILY_BRAINPOOL_P_R1    ((psa_ecc_family_t) 0x30)
662 
663 /** Curve25519 and Curve448.
664  *
665  * This family comprises the following Montgomery curves:
666  * - 255-bit: Bernstein et al.,
667  *   _Curve25519: new Diffie-Hellman speed records_, LNCS 3958, 2006.
668  *   The algorithm #PSA_ALG_ECDH performs X25519 when used with this curve.
669  * - 448-bit: Hamburg,
670  *   _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
671  *   The algorithm #PSA_ALG_ECDH performs X448 when used with this curve.
672  */
673 #define PSA_ECC_FAMILY_MONTGOMERY        ((psa_ecc_family_t) 0x41)
674 
675 /** The twisted Edwards curves Ed25519 and Ed448.
676  *
677  * These curves are suitable for EdDSA (#PSA_ALG_PURE_EDDSA for both curves,
678  * #PSA_ALG_ED25519PH for the 255-bit curve,
679  * #PSA_ALG_ED448PH for the 448-bit curve).
680  *
681  * This family comprises the following twisted Edwards curves:
682  * - 255-bit: Edwards25519, the twisted Edwards curve birationally equivalent
683  *   to Curve25519.
684  *   Bernstein et al., _Twisted Edwards curves_, Africacrypt 2008.
685  * - 448-bit: Edwards448, the twisted Edwards curve birationally equivalent
686  *   to Curve448.
687  *   Hamburg, _Ed448-Goldilocks, a new elliptic curve_, NIST ECC Workshop, 2015.
688  */
689 #define PSA_ECC_FAMILY_TWISTED_EDWARDS   ((psa_ecc_family_t) 0x42)
690 
691 #define PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE             ((psa_key_type_t) 0x4200)
692 #define PSA_KEY_TYPE_DH_KEY_PAIR_BASE               ((psa_key_type_t) 0x7200)
693 #define PSA_KEY_TYPE_DH_GROUP_MASK                  ((psa_key_type_t) 0x00ff)
694 /** Diffie-Hellman key pair.
695  *
696  * \param group     A value of type ::psa_dh_family_t that identifies the
697  *                  Diffie-Hellman group to be used.
698  */
699 #define PSA_KEY_TYPE_DH_KEY_PAIR(group)          \
700     (PSA_KEY_TYPE_DH_KEY_PAIR_BASE | (group))
701 /** Diffie-Hellman public key.
702  *
703  * \param group     A value of type ::psa_dh_family_t that identifies the
704  *                  Diffie-Hellman group to be used.
705  */
706 #define PSA_KEY_TYPE_DH_PUBLIC_KEY(group)               \
707     (PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE | (group))
708 
709 /** Whether a key type is a Diffie-Hellman key (pair or public-only). */
710 #define PSA_KEY_TYPE_IS_DH(type)                                        \
711     ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) &                        \
712       ~PSA_KEY_TYPE_DH_GROUP_MASK) == PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
713 /** Whether a key type is a Diffie-Hellman key pair. */
714 #define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type)                               \
715     (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) ==                         \
716      PSA_KEY_TYPE_DH_KEY_PAIR_BASE)
717 /** Whether a key type is a Diffie-Hellman public key. */
718 #define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type)                            \
719     (((type) & ~PSA_KEY_TYPE_DH_GROUP_MASK) ==                         \
720      PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE)
721 
722 /** Extract the group from a Diffie-Hellman key type. */
723 #define PSA_KEY_TYPE_DH_GET_FAMILY(type)                        \
724     ((psa_dh_family_t) (PSA_KEY_TYPE_IS_DH(type) ?              \
725                         ((type) & PSA_KEY_TYPE_DH_GROUP_MASK) :  \
726                         0))
727 
728 /** Diffie-Hellman groups defined in RFC 7919 Appendix A.
729  *
730  * This family includes groups with the following key sizes (in bits):
731  * 2048, 3072, 4096, 6144, 8192. A given implementation may support
732  * all of these sizes or only a subset.
733  */
734 #define PSA_DH_FAMILY_RFC7919            ((psa_dh_family_t) 0x03)
735 
736 #define PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type)      \
737     (((type) >> 8) & 7)
738 /** The block size of a block cipher.
739  *
740  * \param type  A cipher key type (value of type #psa_key_type_t).
741  *
742  * \return      The block size for a block cipher, or 1 for a stream cipher.
743  *              The return value is undefined if \p type is not a supported
744  *              cipher key type.
745  *
746  * \note It is possible to build stream cipher algorithms on top of a block
747  *       cipher, for example CTR mode (#PSA_ALG_CTR).
748  *       This macro only takes the key type into account, so it cannot be
749  *       used to determine the size of the data that #psa_cipher_update()
750  *       might buffer for future processing in general.
751  *
752  * \note This macro returns a compile-time constant if its argument is one.
753  *
754  * \warning This macro may evaluate its argument multiple times.
755  */
756 #define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type)                                     \
757     (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC ? \
758      1u << PSA_GET_KEY_TYPE_BLOCK_SIZE_EXPONENT(type) :                         \
759         0u)
760 
761 /* Note that algorithm values are embedded in the persistent key store,
762  * as part of key metadata. As a consequence, they must not be changed
763  * (unless the storage format version changes).
764  */
765 
766 /** Vendor-defined algorithm flag.
767  *
768  * Algorithms defined by this standard will never have the #PSA_ALG_VENDOR_FLAG
769  * bit set. Vendors who define additional algorithms must use an encoding with
770  * the #PSA_ALG_VENDOR_FLAG bit set and should respect the bitwise structure
771  * used by standard encodings whenever practical.
772  */
773 #define PSA_ALG_VENDOR_FLAG                     ((psa_algorithm_t) 0x80000000)
774 
775 #define PSA_ALG_CATEGORY_MASK                   ((psa_algorithm_t) 0x7f000000)
776 #define PSA_ALG_CATEGORY_HASH                   ((psa_algorithm_t) 0x02000000)
777 #define PSA_ALG_CATEGORY_MAC                    ((psa_algorithm_t) 0x03000000)
778 #define PSA_ALG_CATEGORY_CIPHER                 ((psa_algorithm_t) 0x04000000)
779 #define PSA_ALG_CATEGORY_AEAD                   ((psa_algorithm_t) 0x05000000)
780 #define PSA_ALG_CATEGORY_SIGN                   ((psa_algorithm_t) 0x06000000)
781 #define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION  ((psa_algorithm_t) 0x07000000)
782 #define PSA_ALG_CATEGORY_KEY_DERIVATION         ((psa_algorithm_t) 0x08000000)
783 #define PSA_ALG_CATEGORY_KEY_AGREEMENT          ((psa_algorithm_t) 0x09000000)
784 
785 /** Whether an algorithm is vendor-defined.
786  *
787  * See also #PSA_ALG_VENDOR_FLAG.
788  */
789 #define PSA_ALG_IS_VENDOR_DEFINED(alg)                                  \
790     (((alg) & PSA_ALG_VENDOR_FLAG) != 0)
791 
792 /** Whether the specified algorithm is a hash algorithm.
793  *
794  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
795  *
796  * \return 1 if \p alg is a hash algorithm, 0 otherwise.
797  *         This macro may return either 0 or 1 if \p alg is not a supported
798  *         algorithm identifier.
799  */
800 #define PSA_ALG_IS_HASH(alg)                                            \
801     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
802 
803 /** Whether the specified algorithm is a MAC algorithm.
804  *
805  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
806  *
807  * \return 1 if \p alg is a MAC algorithm, 0 otherwise.
808  *         This macro may return either 0 or 1 if \p alg is not a supported
809  *         algorithm identifier.
810  */
811 #define PSA_ALG_IS_MAC(alg)                                             \
812     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
813 
814 /** Whether the specified algorithm is a symmetric cipher algorithm.
815  *
816  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
817  *
818  * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise.
819  *         This macro may return either 0 or 1 if \p alg is not a supported
820  *         algorithm identifier.
821  */
822 #define PSA_ALG_IS_CIPHER(alg)                                          \
823     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
824 
825 /** Whether the specified algorithm is an authenticated encryption
826  * with associated data (AEAD) algorithm.
827  *
828  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
829  *
830  * \return 1 if \p alg is an AEAD algorithm, 0 otherwise.
831  *         This macro may return either 0 or 1 if \p alg is not a supported
832  *         algorithm identifier.
833  */
834 #define PSA_ALG_IS_AEAD(alg)                                            \
835     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
836 
837 /** Whether the specified algorithm is an asymmetric signature algorithm,
838  * also known as public-key signature algorithm.
839  *
840  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
841  *
842  * \return 1 if \p alg is an asymmetric signature algorithm, 0 otherwise.
843  *         This macro may return either 0 or 1 if \p alg is not a supported
844  *         algorithm identifier.
845  */
846 #define PSA_ALG_IS_SIGN(alg)                                            \
847     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
848 
849 /** Whether the specified algorithm is an asymmetric encryption algorithm,
850  * also known as public-key encryption algorithm.
851  *
852  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
853  *
854  * \return 1 if \p alg is an asymmetric encryption algorithm, 0 otherwise.
855  *         This macro may return either 0 or 1 if \p alg is not a supported
856  *         algorithm identifier.
857  */
858 #define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg)                           \
859     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
860 
861 /** Whether the specified algorithm is a key agreement algorithm.
862  *
863  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
864  *
865  * \return 1 if \p alg is a key agreement algorithm, 0 otherwise.
866  *         This macro may return either 0 or 1 if \p alg is not a supported
867  *         algorithm identifier.
868  */
869 #define PSA_ALG_IS_KEY_AGREEMENT(alg)                                   \
870     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
871 
872 /** Whether the specified algorithm is a key derivation algorithm.
873  *
874  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
875  *
876  * \return 1 if \p alg is a key derivation algorithm, 0 otherwise.
877  *         This macro may return either 0 or 1 if \p alg is not a supported
878  *         algorithm identifier.
879  */
880 #define PSA_ALG_IS_KEY_DERIVATION(alg)                                  \
881     (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
882 
883 /** Whether the specified algorithm is a key stretching / password hashing
884  * algorithm.
885  *
886  * A key stretching / password hashing algorithm is a key derivation algorithm
887  * that is suitable for use with a low-entropy secret such as a password.
888  * Equivalently, it's a key derivation algorithm that uses a
889  * #PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
890  *
891  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
892  *
893  * \return 1 if \p alg is a key stretching / password hashing algorithm, 0
894  *         otherwise. This macro may return either 0 or 1 if \p alg is not a
895  *         supported algorithm identifier.
896  */
897 #define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg)                                  \
898     (PSA_ALG_IS_KEY_DERIVATION(alg) &&              \
899      (alg) & PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG)
900 
901 /** An invalid algorithm identifier value. */
902 /* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
903 #define PSA_ALG_NONE                            ((psa_algorithm_t)0)
904 /* *INDENT-ON* */
905 
906 #define PSA_ALG_HASH_MASK                       ((psa_algorithm_t) 0x000000ff)
907 /** MD5 */
908 #define PSA_ALG_MD5                             ((psa_algorithm_t) 0x02000003)
909 /** PSA_ALG_RIPEMD160 */
910 #define PSA_ALG_RIPEMD160                       ((psa_algorithm_t) 0x02000004)
911 /** SHA1 */
912 #define PSA_ALG_SHA_1                           ((psa_algorithm_t) 0x02000005)
913 /** SHA2-224 */
914 #define PSA_ALG_SHA_224                         ((psa_algorithm_t) 0x02000008)
915 /** SHA2-256 */
916 #define PSA_ALG_SHA_256                         ((psa_algorithm_t) 0x02000009)
917 /** SHA2-384 */
918 #define PSA_ALG_SHA_384                         ((psa_algorithm_t) 0x0200000a)
919 /** SHA2-512 */
920 #define PSA_ALG_SHA_512                         ((psa_algorithm_t) 0x0200000b)
921 /** SHA2-512/224 */
922 #define PSA_ALG_SHA_512_224                     ((psa_algorithm_t) 0x0200000c)
923 /** SHA2-512/256 */
924 #define PSA_ALG_SHA_512_256                     ((psa_algorithm_t) 0x0200000d)
925 /** SHA3-224 */
926 #define PSA_ALG_SHA3_224                        ((psa_algorithm_t) 0x02000010)
927 /** SHA3-256 */
928 #define PSA_ALG_SHA3_256                        ((psa_algorithm_t) 0x02000011)
929 /** SHA3-384 */
930 #define PSA_ALG_SHA3_384                        ((psa_algorithm_t) 0x02000012)
931 /** SHA3-512 */
932 #define PSA_ALG_SHA3_512                        ((psa_algorithm_t) 0x02000013)
933 /** The first 512 bits (64 bytes) of the SHAKE256 output.
934  *
935  * This is the prehashing for Ed448ph (see #PSA_ALG_ED448PH). For other
936  * scenarios where a hash function based on SHA3/SHAKE is desired, SHA3-512
937  * has the same output size and a (theoretically) higher security strength.
938  */
939 #define PSA_ALG_SHAKE256_512                    ((psa_algorithm_t) 0x02000015)
940 
941 /** In a hash-and-sign algorithm policy, allow any hash algorithm.
942  *
943  * This value may be used to form the algorithm usage field of a policy
944  * for a signature algorithm that is parametrized by a hash. The key
945  * may then be used to perform operations using the same signature
946  * algorithm parametrized with any supported hash.
947  *
948  * That is, suppose that `PSA_xxx_SIGNATURE` is one of the following macros:
949  * - #PSA_ALG_RSA_PKCS1V15_SIGN, #PSA_ALG_RSA_PSS, #PSA_ALG_RSA_PSS_ANY_SALT,
950  * - #PSA_ALG_ECDSA, #PSA_ALG_DETERMINISTIC_ECDSA.
951  * Then you may create and use a key as follows:
952  * - Set the key usage field using #PSA_ALG_ANY_HASH, for example:
953  *   ```
954  *   psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH); // or VERIFY
955  *   psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));
956  *   ```
957  * - Import or generate key material.
958  * - Call psa_sign_hash() or psa_verify_hash(), passing
959  *   an algorithm built from `PSA_xxx_SIGNATURE` and a specific hash. Each
960  *   call to sign or verify a message may use a different hash.
961  *   ```
962  *   psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
963  *   psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
964  *   psa_sign_hash(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);
965  *   ```
966  *
967  * This value may not be used to build other algorithms that are
968  * parametrized over a hash. For any valid use of this macro to build
969  * an algorithm \c alg, #PSA_ALG_IS_HASH_AND_SIGN(\c alg) is true.
970  *
971  * This value may not be used to build an algorithm specification to
972  * perform an operation. It is only valid to build policies.
973  */
974 #define PSA_ALG_ANY_HASH                        ((psa_algorithm_t) 0x020000ff)
975 
976 #define PSA_ALG_MAC_SUBCATEGORY_MASK            ((psa_algorithm_t) 0x00c00000)
977 #define PSA_ALG_HMAC_BASE                       ((psa_algorithm_t) 0x03800000)
978 /** Macro to build an HMAC algorithm.
979  *
980  * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256.
981  *
982  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
983  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
984  *
985  * \return              The corresponding HMAC algorithm.
986  * \return              Unspecified if \p hash_alg is not a supported
987  *                      hash algorithm.
988  */
989 #define PSA_ALG_HMAC(hash_alg)                                  \
990     (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
991 
992 #define PSA_ALG_HMAC_GET_HASH(hmac_alg)                             \
993     (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
994 
995 /** Whether the specified algorithm is an HMAC algorithm.
996  *
997  * HMAC is a family of MAC algorithms that are based on a hash function.
998  *
999  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1000  *
1001  * \return 1 if \p alg is an HMAC algorithm, 0 otherwise.
1002  *         This macro may return either 0 or 1 if \p alg is not a supported
1003  *         algorithm identifier.
1004  */
1005 #define PSA_ALG_IS_HMAC(alg)                                            \
1006     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1007      PSA_ALG_HMAC_BASE)
1008 
1009 /* In the encoding of a MAC algorithm, the bits corresponding to
1010  * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is
1011  * truncated. As an exception, the value 0 means the untruncated algorithm,
1012  * whatever its length is. The length is encoded in 6 bits, so it can
1013  * reach up to 63; the largest MAC is 64 bytes so its trivial truncation
1014  * to full length is correctly encoded as 0 and any non-trivial truncation
1015  * is correctly encoded as a value between 1 and 63. */
1016 #define PSA_ALG_MAC_TRUNCATION_MASK             ((psa_algorithm_t) 0x003f0000)
1017 #define PSA_MAC_TRUNCATION_OFFSET 16
1018 
1019 /* In the encoding of a MAC algorithm, the bit corresponding to
1020  * #PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
1021  * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1022  * algorithm policy can be used with any algorithm corresponding to the
1023  * same base class and having a (potentially truncated) MAC length greater or
1024  * equal than the one encoded in #PSA_ALG_MAC_TRUNCATION_MASK. */
1025 #define PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG   ((psa_algorithm_t) 0x00008000)
1026 
1027 /** Macro to build a truncated MAC algorithm.
1028  *
1029  * A truncated MAC algorithm is identical to the corresponding MAC
1030  * algorithm except that the MAC value for the truncated algorithm
1031  * consists of only the first \p mac_length bytes of the MAC value
1032  * for the untruncated algorithm.
1033  *
1034  * \note    This macro may allow constructing algorithm identifiers that
1035  *          are not valid, either because the specified length is larger
1036  *          than the untruncated MAC or because the specified length is
1037  *          smaller than permitted by the implementation.
1038  *
1039  * \note    It is implementation-defined whether a truncated MAC that
1040  *          is truncated to the same length as the MAC of the untruncated
1041  *          algorithm is considered identical to the untruncated algorithm
1042  *          for policy comparison purposes.
1043  *
1044  * \param mac_alg       A MAC algorithm identifier (value of type
1045  *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1046  *                      is true). This may be a truncated or untruncated
1047  *                      MAC algorithm.
1048  * \param mac_length    Desired length of the truncated MAC in bytes.
1049  *                      This must be at most the full length of the MAC
1050  *                      and must be at least an implementation-specified
1051  *                      minimum. The implementation-specified minimum
1052  *                      shall not be zero.
1053  *
1054  * \return              The corresponding MAC algorithm with the specified
1055  *                      length.
1056  * \return              Unspecified if \p mac_alg is not a supported
1057  *                      MAC algorithm or if \p mac_length is too small or
1058  *                      too large for the specified MAC algorithm.
1059  */
1060 #define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length)              \
1061     (((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK |               \
1062                     PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)) |   \
1063      ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK))
1064 
1065 /** Macro to build the base MAC algorithm corresponding to a truncated
1066  * MAC algorithm.
1067  *
1068  * \param mac_alg       A MAC algorithm identifier (value of type
1069  *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1070  *                      is true). This may be a truncated or untruncated
1071  *                      MAC algorithm.
1072  *
1073  * \return              The corresponding base MAC algorithm.
1074  * \return              Unspecified if \p mac_alg is not a supported
1075  *                      MAC algorithm.
1076  */
1077 #define PSA_ALG_FULL_LENGTH_MAC(mac_alg)                        \
1078     ((mac_alg) & ~(PSA_ALG_MAC_TRUNCATION_MASK |                \
1079                    PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG))
1080 
1081 /** Length to which a MAC algorithm is truncated.
1082  *
1083  * \param mac_alg       A MAC algorithm identifier (value of type
1084  *                      #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1085  *                      is true).
1086  *
1087  * \return              Length of the truncated MAC in bytes.
1088  * \return              0 if \p mac_alg is a non-truncated MAC algorithm.
1089  * \return              Unspecified if \p mac_alg is not a supported
1090  *                      MAC algorithm.
1091  */
1092 #define PSA_MAC_TRUNCATED_LENGTH(mac_alg)                               \
1093     (((mac_alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET)
1094 
1095 /** Macro to build a MAC minimum-MAC-length wildcard algorithm.
1096  *
1097  * A minimum-MAC-length MAC wildcard algorithm permits all MAC algorithms
1098  * sharing the same base algorithm, and where the (potentially truncated) MAC
1099  * length of the specific algorithm is equal to or larger then the wildcard
1100  * algorithm's minimum MAC length.
1101  *
1102  * \note    When setting the minimum required MAC length to less than the
1103  *          smallest MAC length allowed by the base algorithm, this effectively
1104  *          becomes an 'any-MAC-length-allowed' policy for that base algorithm.
1105  *
1106  * \param mac_alg         A MAC algorithm identifier (value of type
1107  *                        #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p mac_alg)
1108  *                        is true).
1109  * \param min_mac_length  Desired minimum length of the message authentication
1110  *                        code in bytes. This must be at most the untruncated
1111  *                        length of the MAC and must be at least 1.
1112  *
1113  * \return                The corresponding MAC wildcard algorithm with the
1114  *                        specified minimum length.
1115  * \return                Unspecified if \p mac_alg is not a supported MAC
1116  *                        algorithm or if \p min_mac_length is less than 1 or
1117  *                        too large for the specified MAC algorithm.
1118  */
1119 #define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length)   \
1120     (PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) |              \
1121      PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG)
1122 
1123 #define PSA_ALG_CIPHER_MAC_BASE                 ((psa_algorithm_t) 0x03c00000)
1124 /** The CBC-MAC construction over a block cipher
1125  *
1126  * \warning CBC-MAC is insecure in many cases.
1127  * A more secure mode, such as #PSA_ALG_CMAC, is recommended.
1128  */
1129 #define PSA_ALG_CBC_MAC                         ((psa_algorithm_t) 0x03c00100)
1130 /** The CMAC construction over a block cipher */
1131 #define PSA_ALG_CMAC                            ((psa_algorithm_t) 0x03c00200)
1132 
1133 /** Whether the specified algorithm is a MAC algorithm based on a block cipher.
1134  *
1135  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1136  *
1137  * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise.
1138  *         This macro may return either 0 or 1 if \p alg is not a supported
1139  *         algorithm identifier.
1140  */
1141 #define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg)                                \
1142     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
1143      PSA_ALG_CIPHER_MAC_BASE)
1144 
1145 #define PSA_ALG_CIPHER_STREAM_FLAG              ((psa_algorithm_t) 0x00800000)
1146 #define PSA_ALG_CIPHER_FROM_BLOCK_FLAG          ((psa_algorithm_t) 0x00400000)
1147 
1148 /** Whether the specified algorithm is a stream cipher.
1149  *
1150  * A stream cipher is a symmetric cipher that encrypts or decrypts messages
1151  * by applying a bitwise-xor with a stream of bytes that is generated
1152  * from a key.
1153  *
1154  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1155  *
1156  * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise.
1157  *         This macro may return either 0 or 1 if \p alg is not a supported
1158  *         algorithm identifier or if it is not a symmetric cipher algorithm.
1159  */
1160 #define PSA_ALG_IS_STREAM_CIPHER(alg)            \
1161     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \
1162      (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG))
1163 
1164 /** The stream cipher mode of a stream cipher algorithm.
1165  *
1166  * The underlying stream cipher is determined by the key type.
1167  * - To use ChaCha20, use a key type of #PSA_KEY_TYPE_CHACHA20.
1168  */
1169 #define PSA_ALG_STREAM_CIPHER                   ((psa_algorithm_t) 0x04800100)
1170 
1171 /** The CTR stream cipher mode.
1172  *
1173  * CTR is a stream cipher which is built from a block cipher.
1174  * The underlying block cipher is determined by the key type.
1175  * For example, to use AES-128-CTR, use this algorithm with
1176  * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes).
1177  */
1178 #define PSA_ALG_CTR                             ((psa_algorithm_t) 0x04c01000)
1179 
1180 /** The CFB stream cipher mode.
1181  *
1182  * The underlying block cipher is determined by the key type.
1183  */
1184 #define PSA_ALG_CFB                             ((psa_algorithm_t) 0x04c01100)
1185 
1186 /** The OFB stream cipher mode.
1187  *
1188  * The underlying block cipher is determined by the key type.
1189  */
1190 #define PSA_ALG_OFB                             ((psa_algorithm_t) 0x04c01200)
1191 
1192 /** The XTS cipher mode.
1193  *
1194  * XTS is a cipher mode which is built from a block cipher. It requires at
1195  * least one full block of input, but beyond this minimum the input
1196  * does not need to be a whole number of blocks.
1197  */
1198 #define PSA_ALG_XTS                             ((psa_algorithm_t) 0x0440ff00)
1199 
1200 /** The Electronic Code Book (ECB) mode of a block cipher, with no padding.
1201  *
1202  * \warning ECB mode does not protect the confidentiality of the encrypted data
1203  * except in extremely narrow circumstances. It is recommended that applications
1204  * only use ECB if they need to construct an operating mode that the
1205  * implementation does not provide. Implementations are encouraged to provide
1206  * the modes that applications need in preference to supporting direct access
1207  * to ECB.
1208  *
1209  * The underlying block cipher is determined by the key type.
1210  *
1211  * This symmetric cipher mode can only be used with messages whose lengths are a
1212  * multiple of the block size of the chosen block cipher.
1213  *
1214  * ECB mode does not accept an initialization vector (IV). When using a
1215  * multi-part cipher operation with this algorithm, psa_cipher_generate_iv()
1216  * and psa_cipher_set_iv() must not be called.
1217  */
1218 #define PSA_ALG_ECB_NO_PADDING                  ((psa_algorithm_t) 0x04404400)
1219 
1220 /** The CBC block cipher chaining mode, with no padding.
1221  *
1222  * The underlying block cipher is determined by the key type.
1223  *
1224  * This symmetric cipher mode can only be used with messages whose lengths
1225  * are whole number of blocks for the chosen block cipher.
1226  */
1227 #define PSA_ALG_CBC_NO_PADDING                  ((psa_algorithm_t) 0x04404000)
1228 
1229 /** The CBC block cipher chaining mode with PKCS#7 padding.
1230  *
1231  * The underlying block cipher is determined by the key type.
1232  *
1233  * This is the padding method defined by PKCS#7 (RFC 2315) &sect;10.3.
1234  */
1235 #define PSA_ALG_CBC_PKCS7                       ((psa_algorithm_t) 0x04404100)
1236 
1237 #define PSA_ALG_AEAD_FROM_BLOCK_FLAG            ((psa_algorithm_t) 0x00400000)
1238 
1239 /** Whether the specified algorithm is an AEAD mode on a block cipher.
1240  *
1241  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1242  *
1243  * \return 1 if \p alg is an AEAD algorithm which is an AEAD mode based on
1244  *         a block cipher, 0 otherwise.
1245  *         This macro may return either 0 or 1 if \p alg is not a supported
1246  *         algorithm identifier.
1247  */
1248 #define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg)    \
1249     (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_AEAD_FROM_BLOCK_FLAG)) == \
1250      (PSA_ALG_CATEGORY_AEAD | PSA_ALG_AEAD_FROM_BLOCK_FLAG))
1251 
1252 /** The CCM authenticated encryption algorithm.
1253  *
1254  * The underlying block cipher is determined by the key type.
1255  */
1256 #define PSA_ALG_CCM                             ((psa_algorithm_t) 0x05500100)
1257 
1258 /** The CCM* cipher mode without authentication.
1259  *
1260  * This is CCM* as specified in IEEE 802.15.4 §7, with a tag length of 0.
1261  * For CCM* with a nonzero tag length, use the AEAD algorithm #PSA_ALG_CCM.
1262  *
1263  * The underlying block cipher is determined by the key type.
1264  *
1265  * Currently only 13-byte long IV's are supported.
1266  */
1267 #define PSA_ALG_CCM_STAR_NO_TAG                 ((psa_algorithm_t) 0x04c01300)
1268 
1269 /** The GCM authenticated encryption algorithm.
1270  *
1271  * The underlying block cipher is determined by the key type.
1272  */
1273 #define PSA_ALG_GCM                             ((psa_algorithm_t) 0x05500200)
1274 
1275 /** The Chacha20-Poly1305 AEAD algorithm.
1276  *
1277  * The ChaCha20_Poly1305 construction is defined in RFC 7539.
1278  *
1279  * Implementations must support 12-byte nonces, may support 8-byte nonces,
1280  * and should reject other sizes.
1281  *
1282  * Implementations must support 16-byte tags and should reject other sizes.
1283  */
1284 #define PSA_ALG_CHACHA20_POLY1305               ((psa_algorithm_t) 0x05100500)
1285 
1286 /* In the encoding of an AEAD algorithm, the bits corresponding to
1287  * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag.
1288  * The constants for default lengths follow this encoding.
1289  */
1290 #define PSA_ALG_AEAD_TAG_LENGTH_MASK            ((psa_algorithm_t) 0x003f0000)
1291 #define PSA_AEAD_TAG_LENGTH_OFFSET 16
1292 
1293 /* In the encoding of an AEAD algorithm, the bit corresponding to
1294  * #PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG encodes the fact that the algorithm
1295  * is a wildcard algorithm. A key with such wildcard algorithm as permitted
1296  * algorithm policy can be used with any algorithm corresponding to the
1297  * same base class and having a tag length greater than or equal to the one
1298  * encoded in #PSA_ALG_AEAD_TAG_LENGTH_MASK. */
1299 #define PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG  ((psa_algorithm_t) 0x00008000)
1300 
1301 /** Macro to build a shortened AEAD algorithm.
1302  *
1303  * A shortened AEAD algorithm is similar to the corresponding AEAD
1304  * algorithm, but has an authentication tag that consists of fewer bytes.
1305  * Depending on the algorithm, the tag length may affect the calculation
1306  * of the ciphertext.
1307  *
1308  * \param aead_alg      An AEAD algorithm identifier (value of type
1309  *                      #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
1310  *                      is true).
1311  * \param tag_length    Desired length of the authentication tag in bytes.
1312  *
1313  * \return              The corresponding AEAD algorithm with the specified
1314  *                      length.
1315  * \return              Unspecified if \p aead_alg is not a supported
1316  *                      AEAD algorithm or if \p tag_length is not valid
1317  *                      for the specified AEAD algorithm.
1318  */
1319 #define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length)           \
1320     (((aead_alg) & ~(PSA_ALG_AEAD_TAG_LENGTH_MASK |                     \
1321                      PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)) |         \
1322      ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET &                      \
1323         PSA_ALG_AEAD_TAG_LENGTH_MASK))
1324 
1325 /** Retrieve the tag length of a specified AEAD algorithm
1326  *
1327  * \param aead_alg      An AEAD algorithm identifier (value of type
1328  *                      #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p aead_alg)
1329  *                      is true).
1330  *
1331  * \return              The tag length specified by the input algorithm.
1332  * \return              Unspecified if \p aead_alg is not a supported
1333  *                      AEAD algorithm.
1334  */
1335 #define PSA_ALG_AEAD_GET_TAG_LENGTH(aead_alg)                           \
1336     (((aead_alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >>                     \
1337      PSA_AEAD_TAG_LENGTH_OFFSET)
1338 
1339 /** Calculate the corresponding AEAD algorithm with the default tag length.
1340  *
1341  * \param aead_alg      An AEAD algorithm (\c PSA_ALG_XXX value such that
1342  *                      #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1343  *
1344  * \return              The corresponding AEAD algorithm with the default
1345  *                      tag length for that algorithm.
1346  */
1347 #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg)                   \
1348     (                                                                    \
1349         PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CCM) \
1350         PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_GCM) \
1351         PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, PSA_ALG_CHACHA20_POLY1305) \
1352         0)
1353 #define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG_CASE(aead_alg, ref)         \
1354     PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, 0) ==                      \
1355     PSA_ALG_AEAD_WITH_SHORTENED_TAG(ref, 0) ?                            \
1356     ref :
1357 
1358 /** Macro to build an AEAD minimum-tag-length wildcard algorithm.
1359  *
1360  * A minimum-tag-length AEAD wildcard algorithm permits all AEAD algorithms
1361  * sharing the same base algorithm, and where the tag length of the specific
1362  * algorithm is equal to or larger then the minimum tag length specified by the
1363  * wildcard algorithm.
1364  *
1365  * \note    When setting the minimum required tag length to less than the
1366  *          smallest tag length allowed by the base algorithm, this effectively
1367  *          becomes an 'any-tag-length-allowed' policy for that base algorithm.
1368  *
1369  * \param aead_alg        An AEAD algorithm identifier (value of type
1370  *                        #psa_algorithm_t such that
1371  *                        #PSA_ALG_IS_AEAD(\p aead_alg) is true).
1372  * \param min_tag_length  Desired minimum length of the authentication tag in
1373  *                        bytes. This must be at least 1 and at most the largest
1374  *                        allowed tag length of the algorithm.
1375  *
1376  * \return                The corresponding AEAD wildcard algorithm with the
1377  *                        specified minimum length.
1378  * \return                Unspecified if \p aead_alg is not a supported
1379  *                        AEAD algorithm or if \p min_tag_length is less than 1
1380  *                        or too large for the specified AEAD algorithm.
1381  */
1382 #define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
1383     (PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) |            \
1384      PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)
1385 
1386 #define PSA_ALG_RSA_PKCS1V15_SIGN_BASE          ((psa_algorithm_t) 0x06000200)
1387 /** RSA PKCS#1 v1.5 signature with hashing.
1388  *
1389  * This is the signature scheme defined by RFC 8017
1390  * (PKCS#1: RSA Cryptography Specifications) under the name
1391  * RSASSA-PKCS1-v1_5.
1392  *
1393  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1394  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1395  *                      This includes #PSA_ALG_ANY_HASH
1396  *                      when specifying the algorithm in a usage policy.
1397  *
1398  * \return              The corresponding RSA PKCS#1 v1.5 signature algorithm.
1399  * \return              Unspecified if \p hash_alg is not a supported
1400  *                      hash algorithm.
1401  */
1402 #define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg)                             \
1403     (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1404 /** Raw PKCS#1 v1.5 signature.
1405  *
1406  * The input to this algorithm is the DigestInfo structure used by
1407  * RFC 8017 (PKCS#1: RSA Cryptography Specifications), &sect;9.2
1408  * steps 3&ndash;6.
1409  */
1410 #define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE
1411 #define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg)                               \
1412     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE)
1413 
1414 #define PSA_ALG_RSA_PSS_BASE               ((psa_algorithm_t) 0x06000300)
1415 #define PSA_ALG_RSA_PSS_ANY_SALT_BASE      ((psa_algorithm_t) 0x06001300)
1416 /** RSA PSS signature with hashing.
1417  *
1418  * This is the signature scheme defined by RFC 8017
1419  * (PKCS#1: RSA Cryptography Specifications) under the name
1420  * RSASSA-PSS, with the message generation function MGF1, and with
1421  * a salt length equal to the length of the hash, or the largest
1422  * possible salt length for the algorithm and key size if that is
1423  * smaller than the hash length. The specified hash algorithm is
1424  * used to hash the input message, to create the salted hash, and
1425  * for the mask generation.
1426  *
1427  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1428  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1429  *                      This includes #PSA_ALG_ANY_HASH
1430  *                      when specifying the algorithm in a usage policy.
1431  *
1432  * \return              The corresponding RSA PSS signature algorithm.
1433  * \return              Unspecified if \p hash_alg is not a supported
1434  *                      hash algorithm.
1435  */
1436 #define PSA_ALG_RSA_PSS(hash_alg)                               \
1437     (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1438 
1439 /** RSA PSS signature with hashing with relaxed verification.
1440  *
1441  * This algorithm has the same behavior as #PSA_ALG_RSA_PSS when signing,
1442  * but allows an arbitrary salt length (including \c 0) when verifying a
1443  * signature.
1444  *
1445  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1446  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1447  *                      This includes #PSA_ALG_ANY_HASH
1448  *                      when specifying the algorithm in a usage policy.
1449  *
1450  * \return              The corresponding RSA PSS signature algorithm.
1451  * \return              Unspecified if \p hash_alg is not a supported
1452  *                      hash algorithm.
1453  */
1454 #define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg)                      \
1455     (PSA_ALG_RSA_PSS_ANY_SALT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1456 
1457 /** Whether the specified algorithm is RSA PSS with standard salt.
1458  *
1459  * \param alg           An algorithm value or an algorithm policy wildcard.
1460  *
1461  * \return              1 if \p alg is of the form
1462  *                      #PSA_ALG_RSA_PSS(\c hash_alg),
1463  *                      where \c hash_alg is a hash algorithm or
1464  *                      #PSA_ALG_ANY_HASH. 0 otherwise.
1465  *                      This macro may return either 0 or 1 if \p alg is not
1466  *                      a supported algorithm identifier or policy.
1467  */
1468 #define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg)                   \
1469     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE)
1470 
1471 /** Whether the specified algorithm is RSA PSS with any salt.
1472  *
1473  * \param alg           An algorithm value or an algorithm policy wildcard.
1474  *
1475  * \return              1 if \p alg is of the form
1476  *                      #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1477  *                      where \c hash_alg is a hash algorithm or
1478  *                      #PSA_ALG_ANY_HASH. 0 otherwise.
1479  *                      This macro may return either 0 or 1 if \p alg is not
1480  *                      a supported algorithm identifier or policy.
1481  */
1482 #define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg)                                \
1483     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_ANY_SALT_BASE)
1484 
1485 /** Whether the specified algorithm is RSA PSS.
1486  *
1487  * This includes any of the RSA PSS algorithm variants, regardless of the
1488  * constraints on salt length.
1489  *
1490  * \param alg           An algorithm value or an algorithm policy wildcard.
1491  *
1492  * \return              1 if \p alg is of the form
1493  *                      #PSA_ALG_RSA_PSS(\c hash_alg) or
1494  *                      #PSA_ALG_RSA_PSS_ANY_SALT_BASE(\c hash_alg),
1495  *                      where \c hash_alg is a hash algorithm or
1496  *                      #PSA_ALG_ANY_HASH. 0 otherwise.
1497  *                      This macro may return either 0 or 1 if \p alg is not
1498  *                      a supported algorithm identifier or policy.
1499  */
1500 #define PSA_ALG_IS_RSA_PSS(alg)                                 \
1501     (PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) ||                   \
1502      PSA_ALG_IS_RSA_PSS_ANY_SALT(alg))
1503 
1504 #define PSA_ALG_ECDSA_BASE                      ((psa_algorithm_t) 0x06000600)
1505 /** ECDSA signature with hashing.
1506  *
1507  * This is the ECDSA signature scheme defined by ANSI X9.62,
1508  * with a random per-message secret number (*k*).
1509  *
1510  * The representation of the signature as a byte string consists of
1511  * the concatenation of the signature values *r* and *s*. Each of
1512  * *r* and *s* is encoded as an *N*-octet string, where *N* is the length
1513  * of the base point of the curve in octets. Each value is represented
1514  * in big-endian order (most significant octet first).
1515  *
1516  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1517  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1518  *                      This includes #PSA_ALG_ANY_HASH
1519  *                      when specifying the algorithm in a usage policy.
1520  *
1521  * \return              The corresponding ECDSA signature algorithm.
1522  * \return              Unspecified if \p hash_alg is not a supported
1523  *                      hash algorithm.
1524  */
1525 #define PSA_ALG_ECDSA(hash_alg)                                 \
1526     (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1527 /** ECDSA signature without hashing.
1528  *
1529  * This is the same signature scheme as #PSA_ALG_ECDSA(), but
1530  * without specifying a hash algorithm. This algorithm may only be
1531  * used to sign or verify a sequence of bytes that should be an
1532  * already-calculated hash. Note that the input is padded with
1533  * zeros on the left or truncated on the left as required to fit
1534  * the curve size.
1535  */
1536 #define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE
1537 #define PSA_ALG_DETERMINISTIC_ECDSA_BASE        ((psa_algorithm_t) 0x06000700)
1538 /** Deterministic ECDSA signature with hashing.
1539  *
1540  * This is the deterministic ECDSA signature scheme defined by RFC 6979.
1541  *
1542  * The representation of a signature is the same as with #PSA_ALG_ECDSA().
1543  *
1544  * Note that when this algorithm is used for verification, signatures
1545  * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the
1546  * same private key are accepted. In other words,
1547  * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from
1548  * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification.
1549  *
1550  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1551  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1552  *                      This includes #PSA_ALG_ANY_HASH
1553  *                      when specifying the algorithm in a usage policy.
1554  *
1555  * \return              The corresponding deterministic ECDSA signature
1556  *                      algorithm.
1557  * \return              Unspecified if \p hash_alg is not a supported
1558  *                      hash algorithm.
1559  */
1560 #define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg)                           \
1561     (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1562 #define PSA_ALG_ECDSA_DETERMINISTIC_FLAG        ((psa_algorithm_t) 0x00000100)
1563 #define PSA_ALG_IS_ECDSA(alg)                                           \
1564     (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_ECDSA_DETERMINISTIC_FLAG) ==  \
1565      PSA_ALG_ECDSA_BASE)
1566 #define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)             \
1567     (((alg) & PSA_ALG_ECDSA_DETERMINISTIC_FLAG) != 0)
1568 #define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg)                             \
1569     (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1570 #define PSA_ALG_IS_RANDOMIZED_ECDSA(alg)                                \
1571     (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg))
1572 
1573 /** Edwards-curve digital signature algorithm without prehashing (PureEdDSA),
1574  * using standard parameters.
1575  *
1576  * Contexts are not supported in the current version of this specification
1577  * because there is no suitable signature interface that can take the
1578  * context as a parameter. A future version of this specification may add
1579  * suitable functions and extend this algorithm to support contexts.
1580  *
1581  * PureEdDSA requires an elliptic curve key on a twisted Edwards curve.
1582  * In this specification, the following curves are supported:
1583  * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 255-bit: Ed25519 as specified
1584  *   in RFC 8032.
1585  *   The curve is Edwards25519.
1586  *   The hash function used internally is SHA-512.
1587  * - #PSA_ECC_FAMILY_TWISTED_EDWARDS, 448-bit: Ed448 as specified
1588  *   in RFC 8032.
1589  *   The curve is Edwards448.
1590  *   The hash function used internally is the first 114 bytes of the
1591  *   SHAKE256 output.
1592  *
1593  * This algorithm can be used with psa_sign_message() and
1594  * psa_verify_message(). Since there is no prehashing, it cannot be used
1595  * with psa_sign_hash() or psa_verify_hash().
1596  *
1597  * The signature format is the concatenation of R and S as defined by
1598  * RFC 8032 §5.1.6 and §5.2.6 (a 64-byte string for Ed25519, a 114-byte
1599  * string for Ed448).
1600  */
1601 #define PSA_ALG_PURE_EDDSA                      ((psa_algorithm_t) 0x06000800)
1602 
1603 #define PSA_ALG_HASH_EDDSA_BASE                 ((psa_algorithm_t) 0x06000900)
1604 #define PSA_ALG_IS_HASH_EDDSA(alg)              \
1605     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HASH_EDDSA_BASE)
1606 
1607 /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1608  * using SHA-512 and the Edwards25519 curve.
1609  *
1610  * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1611  *
1612  * This algorithm is Ed25519 as specified in RFC 8032.
1613  * The curve is Edwards25519.
1614  * The prehash is SHA-512.
1615  * The hash function used internally is SHA-512.
1616  *
1617  * This is a hash-and-sign algorithm: to calculate a signature,
1618  * you can either:
1619  * - call psa_sign_message() on the message;
1620  * - or calculate the SHA-512 hash of the message
1621  *   with psa_hash_compute()
1622  *   or with a multi-part hash operation started with psa_hash_setup(),
1623  *   using the hash algorithm #PSA_ALG_SHA_512,
1624  *   then sign the calculated hash with psa_sign_hash().
1625  * Verifying a signature is similar, using psa_verify_message() or
1626  * psa_verify_hash() instead of the signature function.
1627  */
1628 #define PSA_ALG_ED25519PH                               \
1629     (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHA_512 & PSA_ALG_HASH_MASK))
1630 
1631 /** Edwards-curve digital signature algorithm with prehashing (HashEdDSA),
1632  * using SHAKE256 and the Edwards448 curve.
1633  *
1634  * See #PSA_ALG_PURE_EDDSA regarding context support and the signature format.
1635  *
1636  * This algorithm is Ed448 as specified in RFC 8032.
1637  * The curve is Edwards448.
1638  * The prehash is the first 64 bytes of the SHAKE256 output.
1639  * The hash function used internally is the first 114 bytes of the
1640  * SHAKE256 output.
1641  *
1642  * This is a hash-and-sign algorithm: to calculate a signature,
1643  * you can either:
1644  * - call psa_sign_message() on the message;
1645  * - or calculate the first 64 bytes of the SHAKE256 output of the message
1646  *   with psa_hash_compute()
1647  *   or with a multi-part hash operation started with psa_hash_setup(),
1648  *   using the hash algorithm #PSA_ALG_SHAKE256_512,
1649  *   then sign the calculated hash with psa_sign_hash().
1650  * Verifying a signature is similar, using psa_verify_message() or
1651  * psa_verify_hash() instead of the signature function.
1652  */
1653 #define PSA_ALG_ED448PH                                 \
1654     (PSA_ALG_HASH_EDDSA_BASE | (PSA_ALG_SHAKE256_512 & PSA_ALG_HASH_MASK))
1655 
1656 /* Default definition, to be overridden if the library is extended with
1657  * more hash-and-sign algorithms that we want to keep out of this header
1658  * file. */
1659 #define PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg) 0
1660 
1661 /** Whether the specified algorithm is a signature algorithm that can be used
1662  * with psa_sign_hash() and psa_verify_hash().
1663  *
1664  * This encompasses all strict hash-and-sign algorithms categorized by
1665  * PSA_ALG_IS_HASH_AND_SIGN(), as well as algorithms that follow the
1666  * paradigm more loosely:
1667  * - #PSA_ALG_RSA_PKCS1V15_SIGN_RAW (expects its input to be an encoded hash)
1668  * - #PSA_ALG_ECDSA_ANY (doesn't specify what kind of hash the input is)
1669  *
1670  * \param alg An algorithm identifier (value of type psa_algorithm_t).
1671  *
1672  * \return 1 if alg is a signature algorithm that can be used to sign a
1673  *         hash. 0 if alg is a signature algorithm that can only be used
1674  *         to sign a message. 0 if alg is not a signature algorithm.
1675  *         This macro can return either 0 or 1 if alg is not a
1676  *         supported algorithm identifier.
1677  */
1678 #define PSA_ALG_IS_SIGN_HASH(alg)                                       \
1679     (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) ||    \
1680      PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) ||             \
1681      PSA_ALG_IS_VENDOR_HASH_AND_SIGN(alg))
1682 
1683 /** Whether the specified algorithm is a signature algorithm that can be used
1684  * with psa_sign_message() and psa_verify_message().
1685  *
1686  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1687  *
1688  * \return 1 if alg is a signature algorithm that can be used to sign a
1689  *         message. 0 if \p alg is a signature algorithm that can only be used
1690  *         to sign an already-calculated hash. 0 if \p alg is not a signature
1691  *         algorithm. This macro can return either 0 or 1 if \p alg is not a
1692  *         supported algorithm identifier.
1693  */
1694 #define PSA_ALG_IS_SIGN_MESSAGE(alg)                                    \
1695     (PSA_ALG_IS_SIGN_HASH(alg) || (alg) == PSA_ALG_PURE_EDDSA)
1696 
1697 /** Whether the specified algorithm is a hash-and-sign algorithm.
1698  *
1699  * Hash-and-sign algorithms are asymmetric (public-key) signature algorithms
1700  * structured in two parts: first the calculation of a hash in a way that
1701  * does not depend on the key, then the calculation of a signature from the
1702  * hash value and the key. Hash-and-sign algorithms encode the hash
1703  * used for the hashing step, and you can call #PSA_ALG_SIGN_GET_HASH
1704  * to extract this algorithm.
1705  *
1706  * Thus, for a hash-and-sign algorithm,
1707  * `psa_sign_message(key, alg, input, ...)` is equivalent to
1708  * ```
1709  * psa_hash_compute(PSA_ALG_SIGN_GET_HASH(alg), input, ..., hash, ...);
1710  * psa_sign_hash(key, alg, hash, ..., signature, ...);
1711  * ```
1712  * Most usefully, separating the hash from the signature allows the hash
1713  * to be calculated in multiple steps with psa_hash_setup(), psa_hash_update()
1714  * and psa_hash_finish(). Likewise psa_verify_message() is equivalent to
1715  * calculating the hash and then calling psa_verify_hash().
1716  *
1717  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1718  *
1719  * \return 1 if \p alg is a hash-and-sign algorithm, 0 otherwise.
1720  *         This macro may return either 0 or 1 if \p alg is not a supported
1721  *         algorithm identifier.
1722  */
1723 #define PSA_ALG_IS_HASH_AND_SIGN(alg)                                   \
1724     (PSA_ALG_IS_SIGN_HASH(alg) &&                                       \
1725      ((alg) & PSA_ALG_HASH_MASK) != 0)
1726 
1727 /** Get the hash used by a hash-and-sign signature algorithm.
1728  *
1729  * A hash-and-sign algorithm is a signature algorithm which is
1730  * composed of two phases: first a hashing phase which does not use
1731  * the key and produces a hash of the input message, then a signing
1732  * phase which only uses the hash and the key and not the message
1733  * itself.
1734  *
1735  * \param alg   A signature algorithm (\c PSA_ALG_XXX value such that
1736  *              #PSA_ALG_IS_SIGN(\p alg) is true).
1737  *
1738  * \return      The underlying hash algorithm if \p alg is a hash-and-sign
1739  *              algorithm.
1740  * \return      0 if \p alg is a signature algorithm that does not
1741  *              follow the hash-and-sign structure.
1742  * \return      Unspecified if \p alg is not a signature algorithm or
1743  *              if it is not supported by the implementation.
1744  */
1745 #define PSA_ALG_SIGN_GET_HASH(alg)                                     \
1746     (PSA_ALG_IS_HASH_AND_SIGN(alg) ?                                   \
1747      ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH :             \
1748      0)
1749 
1750 /** RSA PKCS#1 v1.5 encryption.
1751  */
1752 #define PSA_ALG_RSA_PKCS1V15_CRYPT              ((psa_algorithm_t) 0x07000200)
1753 
1754 #define PSA_ALG_RSA_OAEP_BASE                   ((psa_algorithm_t) 0x07000300)
1755 /** RSA OAEP encryption.
1756  *
1757  * This is the encryption scheme defined by RFC 8017
1758  * (PKCS#1: RSA Cryptography Specifications) under the name
1759  * RSAES-OAEP, with the message generation function MGF1.
1760  *
1761  * \param hash_alg      The hash algorithm (\c PSA_ALG_XXX value such that
1762  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true) to use
1763  *                      for MGF1.
1764  *
1765  * \return              The corresponding RSA OAEP encryption algorithm.
1766  * \return              Unspecified if \p hash_alg is not a supported
1767  *                      hash algorithm.
1768  */
1769 #define PSA_ALG_RSA_OAEP(hash_alg)                              \
1770     (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1771 #define PSA_ALG_IS_RSA_OAEP(alg)                                \
1772     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE)
1773 #define PSA_ALG_RSA_OAEP_GET_HASH(alg)                          \
1774     (PSA_ALG_IS_RSA_OAEP(alg) ?                                 \
1775      ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH :      \
1776      0)
1777 
1778 #define PSA_ALG_HKDF_BASE                       ((psa_algorithm_t) 0x08000100)
1779 /** Macro to build an HKDF algorithm.
1780  *
1781  * For example, `PSA_ALG_HKDF(PSA_ALG_SHA_256)` is HKDF using HMAC-SHA-256.
1782  *
1783  * This key derivation algorithm uses the following inputs:
1784  * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the "extract" step.
1785  *   It is optional; if omitted, the derivation uses an empty salt.
1786  * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key used in the "extract" step.
1787  * - #PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the "expand" step.
1788  * You must pass #PSA_KEY_DERIVATION_INPUT_SALT before #PSA_KEY_DERIVATION_INPUT_SECRET.
1789  * You may pass #PSA_KEY_DERIVATION_INPUT_INFO at any time after steup and before
1790  * starting to generate output.
1791  *
1792  *  \warning  HKDF processes the salt as follows: first hash it with hash_alg
1793  *  if the salt is longer than the block size of the hash algorithm; then
1794  *  pad with null bytes up to the block size. As a result, it is possible
1795  *  for distinct salt inputs to result in the same outputs. To ensure
1796  *  unique outputs, it is recommended to use a fixed length for salt values.
1797  *
1798  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1799  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1800  *
1801  * \return              The corresponding HKDF algorithm.
1802  * \return              Unspecified if \p hash_alg is not a supported
1803  *                      hash algorithm.
1804  */
1805 #define PSA_ALG_HKDF(hash_alg)                                  \
1806     (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1807 /** Whether the specified algorithm is an HKDF algorithm.
1808  *
1809  * HKDF is a family of key derivation algorithms that are based on a hash
1810  * function and the HMAC construction.
1811  *
1812  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1813  *
1814  * \return 1 if \c alg is an HKDF algorithm, 0 otherwise.
1815  *         This macro may return either 0 or 1 if \c alg is not a supported
1816  *         key derivation algorithm identifier.
1817  */
1818 #define PSA_ALG_IS_HKDF(alg)                            \
1819     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE)
1820 #define PSA_ALG_HKDF_GET_HASH(hkdf_alg)                         \
1821     (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1822 
1823 #define PSA_ALG_HKDF_EXTRACT_BASE                       ((psa_algorithm_t) 0x08000400)
1824 /** Macro to build an HKDF-Extract algorithm.
1825  *
1826  * For example, `PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA_256)` is
1827  * HKDF-Extract using HMAC-SHA-256.
1828  *
1829  * This key derivation algorithm uses the following inputs:
1830  *  - PSA_KEY_DERIVATION_INPUT_SALT is the salt.
1831  *  - PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the
1832  *    "extract" step.
1833  * The inputs are mandatory and must be passed in the order above.
1834  * Each input may only be passed once.
1835  *
1836  *  \warning HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF
1837  *  should be used instead if possible. PSA_ALG_HKDF_EXTRACT is provided
1838  *  as a separate algorithm for the sake of protocols that use it as a
1839  *  building block. It may also be a slight performance optimization
1840  *  in applications that use HKDF with the same salt and key but many
1841  *  different info strings.
1842  *
1843  *  \warning  HKDF processes the salt as follows: first hash it with hash_alg
1844  *  if the salt is longer than the block size of the hash algorithm; then
1845  *  pad with null bytes up to the block size. As a result, it is possible
1846  *  for distinct salt inputs to result in the same outputs. To ensure
1847  *  unique outputs, it is recommended to use a fixed length for salt values.
1848  *
1849  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1850  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1851  *
1852  * \return              The corresponding HKDF-Extract algorithm.
1853  * \return              Unspecified if \p hash_alg is not a supported
1854  *                      hash algorithm.
1855  */
1856 #define PSA_ALG_HKDF_EXTRACT(hash_alg)                                  \
1857     (PSA_ALG_HKDF_EXTRACT_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1858 /** Whether the specified algorithm is an HKDF-Extract algorithm.
1859  *
1860  * HKDF-Extract is a family of key derivation algorithms that are based
1861  * on a hash function and the HMAC construction.
1862  *
1863  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1864  *
1865  * \return 1 if \c alg is an HKDF-Extract algorithm, 0 otherwise.
1866  *         This macro may return either 0 or 1 if \c alg is not a supported
1867  *         key derivation algorithm identifier.
1868  */
1869 #define PSA_ALG_IS_HKDF_EXTRACT(alg)                            \
1870     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE)
1871 
1872 #define PSA_ALG_HKDF_EXPAND_BASE                       ((psa_algorithm_t) 0x08000500)
1873 /** Macro to build an HKDF-Expand algorithm.
1874  *
1875  * For example, `PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA_256)` is
1876  * HKDF-Expand using HMAC-SHA-256.
1877  *
1878  * This key derivation algorithm uses the following inputs:
1879  *  - PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
1880  *  - PSA_KEY_DERIVATION_INPUT_INFO is the info string.
1881  *
1882  *  The inputs are mandatory and must be passed in the order above.
1883  *  Each input may only be passed once.
1884  *
1885  *  \warning HKDF-Expand is not meant to be used on its own. `PSA_ALG_HKDF`
1886  *  should be used instead if possible. `PSA_ALG_HKDF_EXPAND` is provided as
1887  *  a separate algorithm for the sake of protocols that use it as a building
1888  *  block. It may also be a slight performance optimization in applications
1889  *  that use HKDF with the same salt and key but many different info strings.
1890  *
1891  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1892  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1893  *
1894  * \return              The corresponding HKDF-Expand algorithm.
1895  * \return              Unspecified if \p hash_alg is not a supported
1896  *                      hash algorithm.
1897  */
1898 #define PSA_ALG_HKDF_EXPAND(hash_alg)                                  \
1899     (PSA_ALG_HKDF_EXPAND_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1900 /** Whether the specified algorithm is an HKDF-Expand algorithm.
1901  *
1902  * HKDF-Expand is a family of key derivation algorithms that are based
1903  * on a hash function and the HMAC construction.
1904  *
1905  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1906  *
1907  * \return 1 if \c alg is an HKDF-Expand algorithm, 0 otherwise.
1908  *         This macro may return either 0 or 1 if \c alg is not a supported
1909  *         key derivation algorithm identifier.
1910  */
1911 #define PSA_ALG_IS_HKDF_EXPAND(alg)                            \
1912     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1913 
1914 /** Whether the specified algorithm is an HKDF or HKDF-Extract or
1915  *  HKDF-Expand algorithm.
1916  *
1917  *
1918  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1919  *
1920  * \return 1 if \c alg is any HKDF type algorithm, 0 otherwise.
1921  *         This macro may return either 0 or 1 if \c alg is not a supported
1922  *         key derivation algorithm identifier.
1923  */
1924 #define PSA_ALG_IS_ANY_HKDF(alg)                                   \
1925     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE ||          \
1926      ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXTRACT_BASE ||  \
1927      ((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_EXPAND_BASE)
1928 
1929 #define PSA_ALG_TLS12_PRF_BASE                  ((psa_algorithm_t) 0x08000200)
1930 /** Macro to build a TLS-1.2 PRF algorithm.
1931  *
1932  * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule,
1933  * specified in Section 5 of RFC 5246. It is based on HMAC and can be
1934  * used with either SHA-256 or SHA-384.
1935  *
1936  * This key derivation algorithm uses the following inputs, which must be
1937  * passed in the order given here:
1938  * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
1939  * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1940  * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
1941  *
1942  * For the application to TLS-1.2 key expansion, the seed is the
1943  * concatenation of ServerHello.Random + ClientHello.Random,
1944  * and the label is "key expansion".
1945  *
1946  * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256)` represents the
1947  * TLS 1.2 PRF using HMAC-SHA-256.
1948  *
1949  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
1950  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
1951  *
1952  * \return              The corresponding TLS-1.2 PRF algorithm.
1953  * \return              Unspecified if \p hash_alg is not a supported
1954  *                      hash algorithm.
1955  */
1956 #define PSA_ALG_TLS12_PRF(hash_alg)                                  \
1957     (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
1958 
1959 /** Whether the specified algorithm is a TLS-1.2 PRF algorithm.
1960  *
1961  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
1962  *
1963  * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise.
1964  *         This macro may return either 0 or 1 if \c alg is not a supported
1965  *         key derivation algorithm identifier.
1966  */
1967 #define PSA_ALG_IS_TLS12_PRF(alg)                                    \
1968     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE)
1969 #define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg)                         \
1970     (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
1971 
1972 #define PSA_ALG_TLS12_PSK_TO_MS_BASE            ((psa_algorithm_t) 0x08000300)
1973 /** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
1974  *
1975  * In a pure-PSK handshake in TLS 1.2, the master secret is derived
1976  * from the PreSharedKey (PSK) through the application of padding
1977  * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5).
1978  * The latter is based on HMAC and can be used with either SHA-256
1979  * or SHA-384.
1980  *
1981  * This key derivation algorithm uses the following inputs, which must be
1982  * passed in the order given here:
1983  * - #PSA_KEY_DERIVATION_INPUT_SEED is the seed.
1984  * - #PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the
1985  *   computation of the premaster secret. This input is optional;
1986  *   if omitted, it defaults to a string of null bytes with the same length
1987  *   as the secret (PSK) input.
1988  * - #PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
1989  * - #PSA_KEY_DERIVATION_INPUT_LABEL is the label.
1990  *
1991  * For the application to TLS-1.2, the seed (which is
1992  * forwarded to the TLS-1.2 PRF) is the concatenation of the
1993  * ClientHello.Random + ServerHello.Random,
1994  * the label is "master secret" or "extended master secret" and
1995  * the other secret depends on the key exchange specified in the cipher suite:
1996  * - for a plain PSK cipher suite (RFC 4279, Section 2), omit
1997  *   PSA_KEY_DERIVATION_INPUT_OTHER_SECRET
1998  * - for a DHE-PSK (RFC 4279, Section 3) or ECDHE-PSK cipher suite
1999  *   (RFC 5489, Section 2), the other secret should be the output of the
2000  *   PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer.
2001  *   The recommended way to pass this input is to use a key derivation
2002  *   algorithm constructed as
2003  *   PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg))
2004  *   and to call psa_key_derivation_key_agreement(). Alternatively,
2005  *   this input may be an output of `psa_raw_key_agreement()` passed with
2006  *   psa_key_derivation_input_bytes(), or an equivalent input passed with
2007  *   psa_key_derivation_input_bytes() or psa_key_derivation_input_key().
2008  * - for a RSA-PSK cipher suite (RFC 4279, Section 4), the other secret
2009  *   should be the 48-byte client challenge (the PreMasterSecret of
2010  *   (RFC 5246, Section 7.4.7.1)) concatenation of the TLS version and
2011  *   a 46-byte random string chosen by the client. On the server, this is
2012  *   typically an output of psa_asymmetric_decrypt() using
2013  *   PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivation operation
2014  *   with `psa_key_derivation_input_bytes()`.
2015  *
2016  * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)` represents the
2017  * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
2018  *
2019  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
2020  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
2021  *
2022  * \return              The corresponding TLS-1.2 PSK to MS algorithm.
2023  * \return              Unspecified if \p hash_alg is not a supported
2024  *                      hash algorithm.
2025  */
2026 #define PSA_ALG_TLS12_PSK_TO_MS(hash_alg)                                  \
2027     (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2028 
2029 /** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
2030  *
2031  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2032  *
2033  * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise.
2034  *         This macro may return either 0 or 1 if \c alg is not a supported
2035  *         key derivation algorithm identifier.
2036  */
2037 #define PSA_ALG_IS_TLS12_PSK_TO_MS(alg)                                    \
2038     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE)
2039 #define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg)                         \
2040     (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK))
2041 
2042 /* The TLS 1.2 ECJPAKE-to-PMS KDF. It takes the shared secret K (an EC point
2043  * in case of EC J-PAKE) and calculates SHA256(K.X) that the rest of TLS 1.2
2044  * will use to derive the session secret, as defined by step 2 of
2045  * https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01#section-8.7.
2046  * Uses PSA_ALG_SHA_256.
2047  * This function takes a single input:
2048  * #PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE.
2049  * The only supported curve is secp256r1 (the 256-bit curve in
2050  * #PSA_ECC_FAMILY_SECP_R1), so the input must be exactly 65 bytes.
2051  * The output has to be read as a single chunk of 32 bytes, defined as
2052  * PSA_TLS12_ECJPAKE_TO_PMS_DATA_SIZE.
2053  */
2054 #define PSA_ALG_TLS12_ECJPAKE_TO_PMS            ((psa_algorithm_t) 0x08000609)
2055 
2056 /* This flag indicates whether the key derivation algorithm is suitable for
2057  * use on low-entropy secrets such as password - these algorithms are also
2058  * known as key stretching or password hashing schemes. These are also the
2059  * algorithms that accepts inputs of type #PSA_KEY_DERIVATION_INPUT_PASSWORD.
2060  *
2061  * Those algorithms cannot be combined with a key agreement algorithm.
2062  */
2063 #define PSA_ALG_KEY_DERIVATION_STRETCHING_FLAG  ((psa_algorithm_t) 0x00800000)
2064 
2065 #define PSA_ALG_PBKDF2_HMAC_BASE                ((psa_algorithm_t) 0x08800100)
2066 /** Macro to build a PBKDF2-HMAC password hashing / key stretching algorithm.
2067  *
2068  * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2069  * This macro specifies the PBKDF2 algorithm constructed using a PRF based on
2070  * HMAC with the specified hash.
2071  * For example, `PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256)` specifies PBKDF2
2072  * using the PRF HMAC-SHA-256.
2073  *
2074  * This key derivation algorithm uses the following inputs, which must be
2075  * provided in the following order:
2076  * - #PSA_KEY_DERIVATION_INPUT_COST is the iteration count.
2077  *   This input step must be used exactly once.
2078  * - #PSA_KEY_DERIVATION_INPUT_SALT is the salt.
2079  *   This input step must be used one or more times; if used several times, the
2080  *   inputs will be concatenated. This can be used to build the final salt
2081  *   from multiple sources, both public and secret (also known as pepper).
2082  * - #PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed.
2083  *   This input step must be used exactly once.
2084  *
2085  * \param hash_alg      A hash algorithm (\c PSA_ALG_XXX value such that
2086  *                      #PSA_ALG_IS_HASH(\p hash_alg) is true).
2087  *
2088  * \return              The corresponding PBKDF2-HMAC-XXX algorithm.
2089  * \return              Unspecified if \p hash_alg is not a supported
2090  *                      hash algorithm.
2091  */
2092 #define PSA_ALG_PBKDF2_HMAC(hash_alg)                                  \
2093     (PSA_ALG_PBKDF2_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
2094 
2095 /** Whether the specified algorithm is a PBKDF2-HMAC algorithm.
2096  *
2097  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2098  *
2099  * \return 1 if \c alg is a PBKDF2-HMAC algorithm, 0 otherwise.
2100  *         This macro may return either 0 or 1 if \c alg is not a supported
2101  *         key derivation algorithm identifier.
2102  */
2103 #define PSA_ALG_IS_PBKDF2_HMAC(alg)                                    \
2104     (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_PBKDF2_HMAC_BASE)
2105 
2106 /** The PBKDF2-AES-CMAC-PRF-128 password hashing / key stretching algorithm.
2107  *
2108  * PBKDF2 is defined by PKCS#5, republished as RFC 8018 (section 5.2).
2109  * This macro specifies the PBKDF2 algorithm constructed using the
2110  * AES-CMAC-PRF-128 PRF specified by RFC 4615.
2111  *
2112  * This key derivation algorithm uses the same inputs as
2113  * #PSA_ALG_PBKDF2_HMAC() with the same constraints.
2114  */
2115 #define PSA_ALG_PBKDF2_AES_CMAC_PRF_128         ((psa_algorithm_t) 0x08800200)
2116 
2117 #define PSA_ALG_KEY_DERIVATION_MASK             ((psa_algorithm_t) 0xfe00ffff)
2118 #define PSA_ALG_KEY_AGREEMENT_MASK              ((psa_algorithm_t) 0xffff0000)
2119 
2120 /** Macro to build a combined algorithm that chains a key agreement with
2121  * a key derivation.
2122  *
2123  * \param ka_alg        A key agreement algorithm (\c PSA_ALG_XXX value such
2124  *                      that #PSA_ALG_IS_KEY_AGREEMENT(\p ka_alg) is true).
2125  * \param kdf_alg       A key derivation algorithm (\c PSA_ALG_XXX value such
2126  *                      that #PSA_ALG_IS_KEY_DERIVATION(\p kdf_alg) is true).
2127  *
2128  * \return              The corresponding key agreement and derivation
2129  *                      algorithm.
2130  * \return              Unspecified if \p ka_alg is not a supported
2131  *                      key agreement algorithm or \p kdf_alg is not a
2132  *                      supported key derivation algorithm.
2133  */
2134 #define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg)  \
2135     ((ka_alg) | (kdf_alg))
2136 
2137 #define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg)                              \
2138     (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION)
2139 
2140 #define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg)                             \
2141     (((alg) & PSA_ALG_KEY_AGREEMENT_MASK) | PSA_ALG_CATEGORY_KEY_AGREEMENT)
2142 
2143 /** Whether the specified algorithm is a raw key agreement algorithm.
2144  *
2145  * A raw key agreement algorithm is one that does not specify
2146  * a key derivation function.
2147  * Usually, raw key agreement algorithms are constructed directly with
2148  * a \c PSA_ALG_xxx macro while non-raw key agreement algorithms are
2149  * constructed with #PSA_ALG_KEY_AGREEMENT().
2150  *
2151  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2152  *
2153  * \return 1 if \p alg is a raw key agreement algorithm, 0 otherwise.
2154  *         This macro may return either 0 or 1 if \p alg is not a supported
2155  *         algorithm identifier.
2156  */
2157 #define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg)                               \
2158     (PSA_ALG_IS_KEY_AGREEMENT(alg) &&                                   \
2159      PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) == PSA_ALG_CATEGORY_KEY_DERIVATION)
2160 
2161 #define PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT(alg)     \
2162     ((PSA_ALG_IS_KEY_DERIVATION(alg) || PSA_ALG_IS_KEY_AGREEMENT(alg)))
2163 
2164 /** The finite-field Diffie-Hellman (DH) key agreement algorithm.
2165  *
2166  * The shared secret produced by key agreement is
2167  * `g^{ab}` in big-endian format.
2168  * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p`
2169  * in bits.
2170  */
2171 #define PSA_ALG_FFDH                            ((psa_algorithm_t) 0x09010000)
2172 
2173 /** Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
2174  *
2175  * This includes the raw finite field Diffie-Hellman algorithm as well as
2176  * finite-field Diffie-Hellman followed by any supporter key derivation
2177  * algorithm.
2178  *
2179  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2180  *
2181  * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise.
2182  *         This macro may return either 0 or 1 if \c alg is not a supported
2183  *         key agreement algorithm identifier.
2184  */
2185 #define PSA_ALG_IS_FFDH(alg) \
2186     (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH)
2187 
2188 /** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
2189  *
2190  * The shared secret produced by key agreement is the x-coordinate of
2191  * the shared secret point. It is always `ceiling(m / 8)` bytes long where
2192  * `m` is the bit size associated with the curve, i.e. the bit size of the
2193  * order of the curve's coordinate field. When `m` is not a multiple of 8,
2194  * the byte containing the most significant bit of the shared secret
2195  * is padded with zero bits. The byte order is either little-endian
2196  * or big-endian depending on the curve type.
2197  *
2198  * - For Montgomery curves (curve types `PSA_ECC_FAMILY_CURVEXXX`),
2199  *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2200  *   in little-endian byte order.
2201  *   The bit size is 448 for Curve448 and 255 for Curve25519.
2202  * - For Weierstrass curves over prime fields (curve types
2203  *   `PSA_ECC_FAMILY_SECPXXX` and `PSA_ECC_FAMILY_BRAINPOOL_PXXX`),
2204  *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2205  *   in big-endian byte order.
2206  *   The bit size is `m = ceiling(log_2(p))` for the field `F_p`.
2207  * - For Weierstrass curves over binary fields (curve types
2208  *   `PSA_ECC_FAMILY_SECTXXX`),
2209  *   the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A`
2210  *   in big-endian byte order.
2211  *   The bit size is `m` for the field `F_{2^m}`.
2212  */
2213 #define PSA_ALG_ECDH                            ((psa_algorithm_t) 0x09020000)
2214 
2215 /** Whether the specified algorithm is an elliptic curve Diffie-Hellman
2216  * algorithm.
2217  *
2218  * This includes the raw elliptic curve Diffie-Hellman algorithm as well as
2219  * elliptic curve Diffie-Hellman followed by any supporter key derivation
2220  * algorithm.
2221  *
2222  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2223  *
2224  * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm,
2225  *         0 otherwise.
2226  *         This macro may return either 0 or 1 if \c alg is not a supported
2227  *         key agreement algorithm identifier.
2228  */
2229 #define PSA_ALG_IS_ECDH(alg) \
2230     (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH)
2231 
2232 /** Whether the specified algorithm encoding is a wildcard.
2233  *
2234  * Wildcard values may only be used to set the usage algorithm field in
2235  * a policy, not to perform an operation.
2236  *
2237  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2238  *
2239  * \return 1 if \c alg is a wildcard algorithm encoding.
2240  * \return 0 if \c alg is a non-wildcard algorithm encoding (suitable for
2241  *         an operation).
2242  * \return This macro may return either 0 or 1 if \c alg is not a supported
2243  *         algorithm identifier.
2244  */
2245 #define PSA_ALG_IS_WILDCARD(alg)                            \
2246     (PSA_ALG_IS_HASH_AND_SIGN(alg) ?                        \
2247      PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH :       \
2248      PSA_ALG_IS_MAC(alg) ?                                  \
2249      (alg & PSA_ALG_MAC_AT_LEAST_THIS_LENGTH_FLAG) != 0 :   \
2250      PSA_ALG_IS_AEAD(alg) ?                                 \
2251      (alg & PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG) != 0 :  \
2252      (alg) == PSA_ALG_ANY_HASH)
2253 
2254 /** Get the hash used by a composite algorithm.
2255  *
2256  * \param alg An algorithm identifier (value of type #psa_algorithm_t).
2257  *
2258  * \return The underlying hash algorithm if alg is a composite algorithm that
2259  * uses a hash algorithm.
2260  *
2261  * \return \c 0 if alg is not a composite algorithm that uses a hash.
2262  */
2263 #define PSA_ALG_GET_HASH(alg) \
2264     (((alg) & 0x000000ff) == 0 ? ((psa_algorithm_t) 0) : 0x02000000 | ((alg) & 0x000000ff))
2265 
2266 /**@}*/
2267 
2268 /** \defgroup key_lifetimes Key lifetimes
2269  * @{
2270  */
2271 
2272 /* Note that location and persistence level values are embedded in the
2273  * persistent key store, as part of key metadata. As a consequence, they
2274  * must not be changed (unless the storage format version changes).
2275  */
2276 
2277 /** The default lifetime for volatile keys.
2278  *
2279  * A volatile key only exists as long as the identifier to it is not destroyed.
2280  * The key material is guaranteed to be erased on a power reset.
2281  *
2282  * A key with this lifetime is typically stored in the RAM area of the
2283  * PSA Crypto subsystem. However this is an implementation choice.
2284  * If an implementation stores data about the key in a non-volatile memory,
2285  * it must release all the resources associated with the key and erase the
2286  * key material if the calling application terminates.
2287  */
2288 #define PSA_KEY_LIFETIME_VOLATILE               ((psa_key_lifetime_t) 0x00000000)
2289 
2290 /** The default lifetime for persistent keys.
2291  *
2292  * A persistent key remains in storage until it is explicitly destroyed or
2293  * until the corresponding storage area is wiped. This specification does
2294  * not define any mechanism to wipe a storage area, but integrations may
2295  * provide their own mechanism (for example to perform a factory reset,
2296  * to prepare for device refurbishment, or to uninstall an application).
2297  *
2298  * This lifetime value is the default storage area for the calling
2299  * application. Integrations of Mbed TLS may support other persistent lifetimes.
2300  * See ::psa_key_lifetime_t for more information.
2301  */
2302 #define PSA_KEY_LIFETIME_PERSISTENT             ((psa_key_lifetime_t) 0x00000001)
2303 
2304 /** The persistence level of volatile keys.
2305  *
2306  * See ::psa_key_persistence_t for more information.
2307  */
2308 #define PSA_KEY_PERSISTENCE_VOLATILE            ((psa_key_persistence_t) 0x00)
2309 
2310 /** The default persistence level for persistent keys.
2311  *
2312  * See ::psa_key_persistence_t for more information.
2313  */
2314 #define PSA_KEY_PERSISTENCE_DEFAULT             ((psa_key_persistence_t) 0x01)
2315 
2316 /** A persistence level indicating that a key is never destroyed.
2317  *
2318  * See ::psa_key_persistence_t for more information.
2319  */
2320 #define PSA_KEY_PERSISTENCE_READ_ONLY           ((psa_key_persistence_t) 0xff)
2321 
2322 #define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime)      \
2323     ((psa_key_persistence_t) ((lifetime) & 0x000000ff))
2324 
2325 #define PSA_KEY_LIFETIME_GET_LOCATION(lifetime)      \
2326     ((psa_key_location_t) ((lifetime) >> 8))
2327 
2328 /** Whether a key lifetime indicates that the key is volatile.
2329  *
2330  * A volatile key is automatically destroyed by the implementation when
2331  * the application instance terminates. In particular, a volatile key
2332  * is automatically destroyed on a power reset of the device.
2333  *
2334  * A key that is not volatile is persistent. Persistent keys are
2335  * preserved until the application explicitly destroys them or until an
2336  * implementation-specific device management event occurs (for example,
2337  * a factory reset).
2338  *
2339  * \param lifetime      The lifetime value to query (value of type
2340  *                      ::psa_key_lifetime_t).
2341  *
2342  * \return \c 1 if the key is volatile, otherwise \c 0.
2343  */
2344 #define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime)  \
2345     (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2346      PSA_KEY_PERSISTENCE_VOLATILE)
2347 
2348 /** Whether a key lifetime indicates that the key is read-only.
2349  *
2350  * Read-only keys cannot be created or destroyed through the PSA Crypto API.
2351  * They must be created through platform-specific means that bypass the API.
2352  *
2353  * Some platforms may offer ways to destroy read-only keys. For example,
2354  * consider a platform with multiple levels of privilege, where a
2355  * low-privilege application can use a key but is not allowed to destroy
2356  * it, and the platform exposes the key to the application with a read-only
2357  * lifetime. High-privilege code can destroy the key even though the
2358  * application sees the key as read-only.
2359  *
2360  * \param lifetime      The lifetime value to query (value of type
2361  *                      ::psa_key_lifetime_t).
2362  *
2363  * \return \c 1 if the key is read-only, otherwise \c 0.
2364  */
2365 #define PSA_KEY_LIFETIME_IS_READ_ONLY(lifetime)  \
2366     (PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == \
2367      PSA_KEY_PERSISTENCE_READ_ONLY)
2368 
2369 /** Construct a lifetime from a persistence level and a location.
2370  *
2371  * \param persistence   The persistence level
2372  *                      (value of type ::psa_key_persistence_t).
2373  * \param location      The location indicator
2374  *                      (value of type ::psa_key_location_t).
2375  *
2376  * \return The constructed lifetime value.
2377  */
2378 #define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \
2379     ((location) << 8 | (persistence))
2380 
2381 /** The local storage area for persistent keys.
2382  *
2383  * This storage area is available on all systems that can store persistent
2384  * keys without delegating the storage to a third-party cryptoprocessor.
2385  *
2386  * See ::psa_key_location_t for more information.
2387  */
2388 #define PSA_KEY_LOCATION_LOCAL_STORAGE          ((psa_key_location_t) 0x000000)
2389 
2390 #define PSA_KEY_LOCATION_VENDOR_FLAG            ((psa_key_location_t) 0x800000)
2391 
2392 /* Note that key identifier values are embedded in the
2393  * persistent key store, as part of key metadata. As a consequence, they
2394  * must not be changed (unless the storage format version changes).
2395  */
2396 
2397 /** The null key identifier.
2398  */
2399 /* *INDENT-OFF* (https://github.com/ARM-software/psa-arch-tests/issues/337) */
2400 #define PSA_KEY_ID_NULL                         ((psa_key_id_t)0)
2401 /* *INDENT-ON* */
2402 /** The minimum value for a key identifier chosen by the application.
2403  */
2404 #define PSA_KEY_ID_USER_MIN                     ((psa_key_id_t) 0x00000001)
2405 /** The maximum value for a key identifier chosen by the application.
2406  */
2407 #define PSA_KEY_ID_USER_MAX                     ((psa_key_id_t) 0x3fffffff)
2408 /** The minimum value for a key identifier chosen by the implementation.
2409  */
2410 #define PSA_KEY_ID_VENDOR_MIN                   ((psa_key_id_t) 0x40000000)
2411 /** The maximum value for a key identifier chosen by the implementation.
2412  */
2413 #define PSA_KEY_ID_VENDOR_MAX                   ((psa_key_id_t) 0x7fffffff)
2414 
2415 
2416 #if !defined(MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER)
2417 
2418 #define MBEDTLS_SVC_KEY_ID_INIT ((psa_key_id_t) 0)
2419 #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) (id)
2420 #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) (0)
2421 
2422 /** Utility to initialize a key identifier at runtime.
2423  *
2424  * \param unused  Unused parameter.
2425  * \param key_id  Identifier of the key.
2426  */
mbedtls_svc_key_id_make(unsigned int unused,psa_key_id_t key_id)2427 static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2428     unsigned int unused, psa_key_id_t key_id)
2429 {
2430     (void) unused;
2431 
2432     return key_id;
2433 }
2434 
2435 /** Compare two key identifiers.
2436  *
2437  * \param id1 First key identifier.
2438  * \param id2 Second key identifier.
2439  *
2440  * \return Non-zero if the two key identifier are equal, zero otherwise.
2441  */
mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,mbedtls_svc_key_id_t id2)2442 static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2443                                            mbedtls_svc_key_id_t id2)
2444 {
2445     return id1 == id2;
2446 }
2447 
2448 /** Check whether a key identifier is null.
2449  *
2450  * \param key Key identifier.
2451  *
2452  * \return Non-zero if the key identifier is null, zero otherwise.
2453  */
mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)2454 static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
2455 {
2456     return key == 0;
2457 }
2458 
2459 #else /* MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2460 
2461 #define MBEDTLS_SVC_KEY_ID_INIT ((mbedtls_svc_key_id_t){ 0, 0 })
2462 #define MBEDTLS_SVC_KEY_ID_GET_KEY_ID(id) ((id).MBEDTLS_PRIVATE(key_id))
2463 #define MBEDTLS_SVC_KEY_ID_GET_OWNER_ID(id) ((id).MBEDTLS_PRIVATE(owner))
2464 
2465 /** Utility to initialize a key identifier at runtime.
2466  *
2467  * \param owner_id Identifier of the key owner.
2468  * \param key_id   Identifier of the key.
2469  */
mbedtls_svc_key_id_make(mbedtls_key_owner_id_t owner_id,psa_key_id_t key_id)2470 static inline mbedtls_svc_key_id_t mbedtls_svc_key_id_make(
2471     mbedtls_key_owner_id_t owner_id, psa_key_id_t key_id)
2472 {
2473     return (mbedtls_svc_key_id_t){ .MBEDTLS_PRIVATE(key_id) = key_id,
2474                                    .MBEDTLS_PRIVATE(owner) = owner_id };
2475 }
2476 
2477 /** Compare two key identifiers.
2478  *
2479  * \param id1 First key identifier.
2480  * \param id2 Second key identifier.
2481  *
2482  * \return Non-zero if the two key identifier are equal, zero otherwise.
2483  */
mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,mbedtls_svc_key_id_t id2)2484 static inline int mbedtls_svc_key_id_equal(mbedtls_svc_key_id_t id1,
2485                                            mbedtls_svc_key_id_t id2)
2486 {
2487     return (id1.MBEDTLS_PRIVATE(key_id) == id2.MBEDTLS_PRIVATE(key_id)) &&
2488            mbedtls_key_owner_id_equal(id1.MBEDTLS_PRIVATE(owner), id2.MBEDTLS_PRIVATE(owner));
2489 }
2490 
2491 /** Check whether a key identifier is null.
2492  *
2493  * \param key Key identifier.
2494  *
2495  * \return Non-zero if the key identifier is null, zero otherwise.
2496  */
mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)2497 static inline int mbedtls_svc_key_id_is_null(mbedtls_svc_key_id_t key)
2498 {
2499     return key.MBEDTLS_PRIVATE(key_id) == 0;
2500 }
2501 
2502 #endif /* !MBEDTLS_PSA_CRYPTO_KEY_ID_ENCODES_OWNER */
2503 
2504 /**@}*/
2505 
2506 /** \defgroup policy Key policies
2507  * @{
2508  */
2509 
2510 /* Note that key usage flags are embedded in the
2511  * persistent key store, as part of key metadata. As a consequence, they
2512  * must not be changed (unless the storage format version changes).
2513  */
2514 
2515 /** Whether the key may be exported.
2516  *
2517  * A public key or the public part of a key pair may always be exported
2518  * regardless of the value of this permission flag.
2519  *
2520  * If a key does not have export permission, implementations shall not
2521  * allow the key to be exported in plain form from the cryptoprocessor,
2522  * whether through psa_export_key() or through a proprietary interface.
2523  * The key may however be exportable in a wrapped form, i.e. in a form
2524  * where it is encrypted by another key.
2525  */
2526 #define PSA_KEY_USAGE_EXPORT                    ((psa_key_usage_t) 0x00000001)
2527 
2528 /** Whether the key may be copied.
2529  *
2530  * This flag allows the use of psa_copy_key() to make a copy of the key
2531  * with the same policy or a more restrictive policy.
2532  *
2533  * For lifetimes for which the key is located in a secure element which
2534  * enforce the non-exportability of keys, copying a key outside the secure
2535  * element also requires the usage flag #PSA_KEY_USAGE_EXPORT.
2536  * Copying the key inside the secure element is permitted with just
2537  * #PSA_KEY_USAGE_COPY if the secure element supports it.
2538  * For keys with the lifetime #PSA_KEY_LIFETIME_VOLATILE or
2539  * #PSA_KEY_LIFETIME_PERSISTENT, the usage flag #PSA_KEY_USAGE_COPY
2540  * is sufficient to permit the copy.
2541  */
2542 #define PSA_KEY_USAGE_COPY                      ((psa_key_usage_t) 0x00000002)
2543 
2544 /** Whether the key may be used to encrypt a message.
2545  *
2546  * This flag allows the key to be used for a symmetric encryption operation,
2547  * for an AEAD encryption-and-authentication operation,
2548  * or for an asymmetric encryption operation,
2549  * if otherwise permitted by the key's type and policy.
2550  *
2551  * For a key pair, this concerns the public key.
2552  */
2553 #define PSA_KEY_USAGE_ENCRYPT                   ((psa_key_usage_t) 0x00000100)
2554 
2555 /** Whether the key may be used to decrypt a message.
2556  *
2557  * This flag allows the key to be used for a symmetric decryption operation,
2558  * for an AEAD decryption-and-verification operation,
2559  * or for an asymmetric decryption operation,
2560  * if otherwise permitted by the key's type and policy.
2561  *
2562  * For a key pair, this concerns the private key.
2563  */
2564 #define PSA_KEY_USAGE_DECRYPT                   ((psa_key_usage_t) 0x00000200)
2565 
2566 /** Whether the key may be used to sign a message.
2567  *
2568  * This flag allows the key to be used for a MAC calculation operation or for
2569  * an asymmetric message signature operation, if otherwise permitted by the
2570  * key’s type and policy.
2571  *
2572  * For a key pair, this concerns the private key.
2573  */
2574 #define PSA_KEY_USAGE_SIGN_MESSAGE              ((psa_key_usage_t) 0x00000400)
2575 
2576 /** Whether the key may be used to verify a message.
2577  *
2578  * This flag allows the key to be used for a MAC verification operation or for
2579  * an asymmetric message signature verification operation, if otherwise
2580  * permitted by the key’s type and policy.
2581  *
2582  * For a key pair, this concerns the public key.
2583  */
2584 #define PSA_KEY_USAGE_VERIFY_MESSAGE            ((psa_key_usage_t) 0x00000800)
2585 
2586 /** Whether the key may be used to sign a message.
2587  *
2588  * This flag allows the key to be used for a MAC calculation operation
2589  * or for an asymmetric signature operation,
2590  * if otherwise permitted by the key's type and policy.
2591  *
2592  * For a key pair, this concerns the private key.
2593  */
2594 #define PSA_KEY_USAGE_SIGN_HASH                 ((psa_key_usage_t) 0x00001000)
2595 
2596 /** Whether the key may be used to verify a message signature.
2597  *
2598  * This flag allows the key to be used for a MAC verification operation
2599  * or for an asymmetric signature verification operation,
2600  * if otherwise permitted by the key's type and policy.
2601  *
2602  * For a key pair, this concerns the public key.
2603  */
2604 #define PSA_KEY_USAGE_VERIFY_HASH               ((psa_key_usage_t) 0x00002000)
2605 
2606 /** Whether the key may be used to derive other keys or produce a password
2607  * hash.
2608  *
2609  * This flag allows the key to be used for a key derivation operation or for
2610  * a key agreement operation, if otherwise permitted by the key's type and
2611  * policy.
2612  *
2613  * If this flag is present on all keys used in calls to
2614  * psa_key_derivation_input_key() for a key derivation operation, then it
2615  * permits calling psa_key_derivation_output_bytes() or
2616  * psa_key_derivation_output_key() at the end of the operation.
2617  */
2618 #define PSA_KEY_USAGE_DERIVE                    ((psa_key_usage_t) 0x00004000)
2619 
2620 /** Whether the key may be used to verify the result of a key derivation,
2621  * including password hashing.
2622  *
2623  * This flag allows the key to be used:
2624  *
2625  * This flag allows the key to be used in a key derivation operation, if
2626  * otherwise permitted by the key's type and policy.
2627  *
2628  * If this flag is present on all keys used in calls to
2629  * psa_key_derivation_input_key() for a key derivation operation, then it
2630  * permits calling psa_key_derivation_verify_bytes() or
2631  * psa_key_derivation_verify_key() at the end of the operation.
2632  */
2633 #define PSA_KEY_USAGE_VERIFY_DERIVATION         ((psa_key_usage_t) 0x00008000)
2634 
2635 /**@}*/
2636 
2637 /** \defgroup derivation Key derivation
2638  * @{
2639  */
2640 
2641 /* Key input steps are not embedded in the persistent storage, so you can
2642  * change them if needed: it's only an ABI change. */
2643 
2644 /** A secret input for key derivation.
2645  *
2646  * This should be a key of type #PSA_KEY_TYPE_DERIVE
2647  * (passed to psa_key_derivation_input_key())
2648  * or the shared secret resulting from a key agreement
2649  * (obtained via psa_key_derivation_key_agreement()).
2650  *
2651  * The secret can also be a direct input (passed to
2652  * key_derivation_input_bytes()). In this case, the derivation operation
2653  * may not be used to derive keys: the operation will only allow
2654  * psa_key_derivation_output_bytes(),
2655  * psa_key_derivation_verify_bytes(), or
2656  * psa_key_derivation_verify_key(), but not
2657  * psa_key_derivation_output_key().
2658  */
2659 #define PSA_KEY_DERIVATION_INPUT_SECRET     ((psa_key_derivation_step_t) 0x0101)
2660 
2661 /** A low-entropy secret input for password hashing / key stretching.
2662  *
2663  * This is usually a key of type #PSA_KEY_TYPE_PASSWORD (passed to
2664  * psa_key_derivation_input_key()) or a direct input (passed to
2665  * psa_key_derivation_input_bytes()) that is a password or passphrase. It can
2666  * also be high-entropy secret such as a key of type #PSA_KEY_TYPE_DERIVE or
2667  * the shared secret resulting from a key agreement.
2668  *
2669  * The secret can also be a direct input (passed to
2670  * key_derivation_input_bytes()). In this case, the derivation operation
2671  * may not be used to derive keys: the operation will only allow
2672  * psa_key_derivation_output_bytes(),
2673  * psa_key_derivation_verify_bytes(), or
2674  * psa_key_derivation_verify_key(), but not
2675  * psa_key_derivation_output_key().
2676  */
2677 #define PSA_KEY_DERIVATION_INPUT_PASSWORD   ((psa_key_derivation_step_t) 0x0102)
2678 
2679 /** A high-entropy additional secret input for key derivation.
2680  *
2681  * This is typically the shared secret resulting from a key agreement obtained
2682  * via `psa_key_derivation_key_agreement()`. It may alternatively be a key of
2683  * type `PSA_KEY_TYPE_DERIVE` passed to `psa_key_derivation_input_key()`, or
2684  * a direct input passed to `psa_key_derivation_input_bytes()`.
2685  */
2686 #define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
2687     ((psa_key_derivation_step_t) 0x0103)
2688 
2689 /** A label for key derivation.
2690  *
2691  * This should be a direct input.
2692  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2693  */
2694 #define PSA_KEY_DERIVATION_INPUT_LABEL      ((psa_key_derivation_step_t) 0x0201)
2695 
2696 /** A salt for key derivation.
2697  *
2698  * This should be a direct input.
2699  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA or
2700  * #PSA_KEY_TYPE_PEPPER.
2701  */
2702 #define PSA_KEY_DERIVATION_INPUT_SALT       ((psa_key_derivation_step_t) 0x0202)
2703 
2704 /** An information string for key derivation.
2705  *
2706  * This should be a direct input.
2707  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2708  */
2709 #define PSA_KEY_DERIVATION_INPUT_INFO       ((psa_key_derivation_step_t) 0x0203)
2710 
2711 /** A seed for key derivation.
2712  *
2713  * This should be a direct input.
2714  * It can also be a key of type #PSA_KEY_TYPE_RAW_DATA.
2715  */
2716 #define PSA_KEY_DERIVATION_INPUT_SEED       ((psa_key_derivation_step_t) 0x0204)
2717 
2718 /** A cost parameter for password hashing / key stretching.
2719  *
2720  * This must be a direct input, passed to psa_key_derivation_input_integer().
2721  */
2722 #define PSA_KEY_DERIVATION_INPUT_COST       ((psa_key_derivation_step_t) 0x0205)
2723 
2724 /**@}*/
2725 
2726 /** \defgroup helper_macros Helper macros
2727  * @{
2728  */
2729 
2730 /* Helper macros */
2731 
2732 /** Check if two AEAD algorithm identifiers refer to the same AEAD algorithm
2733  *  regardless of the tag length they encode.
2734  *
2735  * \param aead_alg_1 An AEAD algorithm identifier.
2736  * \param aead_alg_2 An AEAD algorithm identifier.
2737  *
2738  * \return           1 if both identifiers refer to the same AEAD algorithm,
2739  *                   0 otherwise.
2740  *                   Unspecified if neither \p aead_alg_1 nor \p aead_alg_2 are
2741  *                   a supported AEAD algorithm.
2742  */
2743 #define MBEDTLS_PSA_ALG_AEAD_EQUAL(aead_alg_1, aead_alg_2) \
2744     (!(((aead_alg_1) ^ (aead_alg_2)) & \
2745        ~(PSA_ALG_AEAD_TAG_LENGTH_MASK | PSA_ALG_AEAD_AT_LEAST_THIS_LENGTH_FLAG)))
2746 
2747 /**@}*/
2748 
2749 /**@}*/
2750 
2751 /** \defgroup interruptible Interruptible operations
2752  * @{
2753  */
2754 
2755 /** Maximum value for use with \c psa_interruptible_set_max_ops() to determine
2756  *  the maximum number of ops allowed to be executed by an interruptible
2757  *  function in a single call.
2758  */
2759 #define PSA_INTERRUPTIBLE_MAX_OPS_UNLIMITED UINT32_MAX
2760 
2761 /**@}*/
2762 
2763 #endif /* PSA_CRYPTO_VALUES_H */
2764