• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/parsing/parser.h"
6 
7 #include <algorithm>
8 #include <memory>
9 
10 #include "src/ast/ast-function-literal-id-reindexer.h"
11 #include "src/ast/ast-traversal-visitor.h"
12 #include "src/ast/ast.h"
13 #include "src/ast/source-range-ast-visitor.h"
14 #include "src/base/ieee754.h"
15 #include "src/base/overflowing-math.h"
16 #include "src/base/platform/platform.h"
17 #include "src/codegen/bailout-reason.h"
18 #include "src/common/globals.h"
19 #include "src/common/message-template.h"
20 #include "src/compiler-dispatcher/lazy-compile-dispatcher.h"
21 #include "src/heap/parked-scope.h"
22 #include "src/logging/counters.h"
23 #include "src/logging/log.h"
24 #include "src/logging/runtime-call-stats-scope.h"
25 #include "src/numbers/conversions-inl.h"
26 #include "src/objects/scope-info.h"
27 #include "src/parsing/parse-info.h"
28 #include "src/parsing/rewriter.h"
29 #include "src/runtime/runtime.h"
30 #include "src/strings/char-predicates-inl.h"
31 #include "src/strings/string-stream.h"
32 #include "src/strings/unicode-inl.h"
33 #include "src/tracing/trace-event.h"
34 #include "src/zone/zone-list-inl.h"
35 
36 namespace v8 {
37 namespace internal {
38 
DefaultConstructor(const AstRawString * name,bool call_super,int pos,int end_pos)39 FunctionLiteral* Parser::DefaultConstructor(const AstRawString* name,
40                                             bool call_super, int pos,
41                                             int end_pos) {
42   int expected_property_count = 0;
43   const int parameter_count = 0;
44 
45   FunctionKind kind = call_super ? FunctionKind::kDefaultDerivedConstructor
46                                  : FunctionKind::kDefaultBaseConstructor;
47   DeclarationScope* function_scope = NewFunctionScope(kind);
48   SetLanguageMode(function_scope, LanguageMode::kStrict);
49   // Set start and end position to the same value
50   function_scope->set_start_position(pos);
51   function_scope->set_end_position(pos);
52   ScopedPtrList<Statement> body(pointer_buffer());
53 
54   {
55     FunctionState function_state(&function_state_, &scope_, function_scope);
56 
57     if (call_super) {
58       // Create a SuperCallReference and handle in BytecodeGenerator.
59       auto constructor_args_name = ast_value_factory()->empty_string();
60       bool is_rest = true;
61       bool is_optional = false;
62       Variable* constructor_args = function_scope->DeclareParameter(
63           constructor_args_name, VariableMode::kTemporary, is_optional, is_rest,
64           ast_value_factory(), pos);
65 
66       Expression* call;
67       {
68         ScopedPtrList<Expression> args(pointer_buffer());
69         Spread* spread_args = factory()->NewSpread(
70             factory()->NewVariableProxy(constructor_args), pos, pos);
71 
72         args.Add(spread_args);
73         Expression* super_call_ref = NewSuperCallReference(pos);
74         constexpr bool has_spread = true;
75         call = factory()->NewCall(super_call_ref, args, pos, has_spread);
76       }
77       body.Add(factory()->NewReturnStatement(call, pos));
78     }
79 
80     expected_property_count = function_state.expected_property_count();
81   }
82 
83   FunctionLiteral* function_literal = factory()->NewFunctionLiteral(
84       name, function_scope, body, expected_property_count, parameter_count,
85       parameter_count, FunctionLiteral::kNoDuplicateParameters,
86       FunctionSyntaxKind::kAnonymousExpression, default_eager_compile_hint(),
87       pos, true, GetNextFunctionLiteralId());
88   return function_literal;
89 }
90 
ReportUnexpectedTokenAt(Scanner::Location location,Token::Value token,MessageTemplate message)91 void Parser::ReportUnexpectedTokenAt(Scanner::Location location,
92                                      Token::Value token,
93                                      MessageTemplate message) {
94   const char* arg = nullptr;
95   switch (token) {
96     case Token::EOS:
97       message = MessageTemplate::kUnexpectedEOS;
98       break;
99     case Token::SMI:
100     case Token::NUMBER:
101     case Token::BIGINT:
102       message = MessageTemplate::kUnexpectedTokenNumber;
103       break;
104     case Token::STRING:
105       message = MessageTemplate::kUnexpectedTokenString;
106       break;
107     case Token::PRIVATE_NAME:
108     case Token::IDENTIFIER:
109       message = MessageTemplate::kUnexpectedTokenIdentifier;
110       break;
111     case Token::AWAIT:
112     case Token::ENUM:
113       message = MessageTemplate::kUnexpectedReserved;
114       break;
115     case Token::LET:
116     case Token::STATIC:
117     case Token::YIELD:
118     case Token::FUTURE_STRICT_RESERVED_WORD:
119       message = is_strict(language_mode())
120                     ? MessageTemplate::kUnexpectedStrictReserved
121                     : MessageTemplate::kUnexpectedTokenIdentifier;
122       break;
123     case Token::TEMPLATE_SPAN:
124     case Token::TEMPLATE_TAIL:
125       message = MessageTemplate::kUnexpectedTemplateString;
126       break;
127     case Token::ESCAPED_STRICT_RESERVED_WORD:
128     case Token::ESCAPED_KEYWORD:
129       message = MessageTemplate::kInvalidEscapedReservedWord;
130       break;
131     case Token::ILLEGAL:
132       if (scanner()->has_error()) {
133         message = scanner()->error();
134         location = scanner()->error_location();
135       } else {
136         message = MessageTemplate::kInvalidOrUnexpectedToken;
137       }
138       break;
139     case Token::REGEXP_LITERAL:
140       message = MessageTemplate::kUnexpectedTokenRegExp;
141       break;
142     default:
143       const char* name = Token::String(token);
144       DCHECK_NOT_NULL(name);
145       arg = name;
146       break;
147   }
148   ReportMessageAt(location, message, arg);
149 }
150 
151 // ----------------------------------------------------------------------------
152 // Implementation of Parser
153 
ShortcutNumericLiteralBinaryExpression(Expression ** x,Expression * y,Token::Value op,int pos)154 bool Parser::ShortcutNumericLiteralBinaryExpression(Expression** x,
155                                                     Expression* y,
156                                                     Token::Value op, int pos) {
157   if ((*x)->IsNumberLiteral() && y->IsNumberLiteral()) {
158     double x_val = (*x)->AsLiteral()->AsNumber();
159     double y_val = y->AsLiteral()->AsNumber();
160     switch (op) {
161       case Token::ADD:
162         *x = factory()->NewNumberLiteral(x_val + y_val, pos);
163         return true;
164       case Token::SUB:
165         *x = factory()->NewNumberLiteral(x_val - y_val, pos);
166         return true;
167       case Token::MUL:
168         *x = factory()->NewNumberLiteral(x_val * y_val, pos);
169         return true;
170       case Token::DIV:
171         *x = factory()->NewNumberLiteral(base::Divide(x_val, y_val), pos);
172         return true;
173       case Token::BIT_OR: {
174         int value = DoubleToInt32(x_val) | DoubleToInt32(y_val);
175         *x = factory()->NewNumberLiteral(value, pos);
176         return true;
177       }
178       case Token::BIT_AND: {
179         int value = DoubleToInt32(x_val) & DoubleToInt32(y_val);
180         *x = factory()->NewNumberLiteral(value, pos);
181         return true;
182       }
183       case Token::BIT_XOR: {
184         int value = DoubleToInt32(x_val) ^ DoubleToInt32(y_val);
185         *x = factory()->NewNumberLiteral(value, pos);
186         return true;
187       }
188       case Token::SHL: {
189         int value =
190             base::ShlWithWraparound(DoubleToInt32(x_val), DoubleToInt32(y_val));
191         *x = factory()->NewNumberLiteral(value, pos);
192         return true;
193       }
194       case Token::SHR: {
195         uint32_t shift = DoubleToInt32(y_val) & 0x1F;
196         uint32_t value = DoubleToUint32(x_val) >> shift;
197         *x = factory()->NewNumberLiteral(value, pos);
198         return true;
199       }
200       case Token::SAR: {
201         uint32_t shift = DoubleToInt32(y_val) & 0x1F;
202         int value = ArithmeticShiftRight(DoubleToInt32(x_val), shift);
203         *x = factory()->NewNumberLiteral(value, pos);
204         return true;
205       }
206       case Token::EXP:
207         *x = factory()->NewNumberLiteral(base::ieee754::pow(x_val, y_val), pos);
208         return true;
209       default:
210         break;
211     }
212   }
213   return false;
214 }
215 
CollapseNaryExpression(Expression ** x,Expression * y,Token::Value op,int pos,const SourceRange & range)216 bool Parser::CollapseNaryExpression(Expression** x, Expression* y,
217                                     Token::Value op, int pos,
218                                     const SourceRange& range) {
219   // Filter out unsupported ops.
220   if (!Token::IsBinaryOp(op) || op == Token::EXP) return false;
221 
222   // Convert *x into an nary operation with the given op, returning false if
223   // this is not possible.
224   NaryOperation* nary = nullptr;
225   if ((*x)->IsBinaryOperation()) {
226     BinaryOperation* binop = (*x)->AsBinaryOperation();
227     if (binop->op() != op) return false;
228 
229     nary = factory()->NewNaryOperation(op, binop->left(), 2);
230     nary->AddSubsequent(binop->right(), binop->position());
231     ConvertBinaryToNaryOperationSourceRange(binop, nary);
232     *x = nary;
233   } else if ((*x)->IsNaryOperation()) {
234     nary = (*x)->AsNaryOperation();
235     if (nary->op() != op) return false;
236   } else {
237     return false;
238   }
239 
240   // Append our current expression to the nary operation.
241   // TODO(leszeks): Do some literal collapsing here if we're appending Smi or
242   // String literals.
243   nary->AddSubsequent(y, pos);
244   nary->clear_parenthesized();
245   AppendNaryOperationSourceRange(nary, range);
246 
247   return true;
248 }
249 
GetBigIntAsSymbol()250 const AstRawString* Parser::GetBigIntAsSymbol() {
251   base::Vector<const uint8_t> literal = scanner()->BigIntLiteral();
252   if (literal[0] != '0' || literal.length() == 1) {
253     return ast_value_factory()->GetOneByteString(literal);
254   }
255   std::unique_ptr<char[]> decimal =
256       BigIntLiteralToDecimal(local_isolate_, literal);
257   return ast_value_factory()->GetOneByteString(decimal.get());
258 }
259 
BuildUnaryExpression(Expression * expression,Token::Value op,int pos)260 Expression* Parser::BuildUnaryExpression(Expression* expression,
261                                          Token::Value op, int pos) {
262   DCHECK_NOT_NULL(expression);
263   const Literal* literal = expression->AsLiteral();
264   if (literal != nullptr) {
265     if (op == Token::NOT) {
266       // Convert the literal to a boolean condition and negate it.
267       return factory()->NewBooleanLiteral(literal->ToBooleanIsFalse(), pos);
268     } else if (literal->IsNumberLiteral()) {
269       // Compute some expressions involving only number literals.
270       double value = literal->AsNumber();
271       switch (op) {
272         case Token::ADD:
273           return expression;
274         case Token::SUB:
275           return factory()->NewNumberLiteral(-value, pos);
276         case Token::BIT_NOT:
277           return factory()->NewNumberLiteral(~DoubleToInt32(value), pos);
278         default:
279           break;
280       }
281     }
282   }
283   return factory()->NewUnaryOperation(op, expression, pos);
284 }
285 
NewThrowError(Runtime::FunctionId id,MessageTemplate message,const AstRawString * arg,int pos)286 Expression* Parser::NewThrowError(Runtime::FunctionId id,
287                                   MessageTemplate message,
288                                   const AstRawString* arg, int pos) {
289   ScopedPtrList<Expression> args(pointer_buffer());
290   args.Add(factory()->NewSmiLiteral(static_cast<int>(message), pos));
291   args.Add(factory()->NewStringLiteral(arg, pos));
292   CallRuntime* call_constructor = factory()->NewCallRuntime(id, args, pos);
293   return factory()->NewThrow(call_constructor, pos);
294 }
295 
NewSuperPropertyReference(Scope * home_object_scope,int pos)296 Expression* Parser::NewSuperPropertyReference(Scope* home_object_scope,
297                                               int pos) {
298   const AstRawString* home_object_name;
299   if (IsStatic(scope()->GetReceiverScope()->function_kind())) {
300     home_object_name = ast_value_factory_->dot_static_home_object_string();
301   } else {
302     home_object_name = ast_value_factory_->dot_home_object_string();
303   }
304   return factory()->NewSuperPropertyReference(
305       home_object_scope->NewHomeObjectVariableProxy(factory(), home_object_name,
306                                                     pos),
307       pos);
308 }
309 
NewSuperCallReference(int pos)310 Expression* Parser::NewSuperCallReference(int pos) {
311   VariableProxy* new_target_proxy =
312       NewUnresolved(ast_value_factory()->new_target_string(), pos);
313   VariableProxy* this_function_proxy =
314       NewUnresolved(ast_value_factory()->this_function_string(), pos);
315   return factory()->NewSuperCallReference(new_target_proxy, this_function_proxy,
316                                           pos);
317 }
318 
NewTargetExpression(int pos)319 Expression* Parser::NewTargetExpression(int pos) {
320   auto proxy = NewUnresolved(ast_value_factory()->new_target_string(), pos);
321   proxy->set_is_new_target();
322   return proxy;
323 }
324 
ImportMetaExpression(int pos)325 Expression* Parser::ImportMetaExpression(int pos) {
326   ScopedPtrList<Expression> args(pointer_buffer());
327   return factory()->NewCallRuntime(Runtime::kInlineGetImportMetaObject, args,
328                                    pos);
329 }
330 
ExpressionFromLiteral(Token::Value token,int pos)331 Expression* Parser::ExpressionFromLiteral(Token::Value token, int pos) {
332   switch (token) {
333     case Token::NULL_LITERAL:
334       return factory()->NewNullLiteral(pos);
335     case Token::TRUE_LITERAL:
336       return factory()->NewBooleanLiteral(true, pos);
337     case Token::FALSE_LITERAL:
338       return factory()->NewBooleanLiteral(false, pos);
339     case Token::SMI: {
340       uint32_t value = scanner()->smi_value();
341       return factory()->NewSmiLiteral(value, pos);
342     }
343     case Token::NUMBER: {
344       double value = scanner()->DoubleValue();
345       return factory()->NewNumberLiteral(value, pos);
346     }
347     case Token::BIGINT:
348       return factory()->NewBigIntLiteral(
349           AstBigInt(scanner()->CurrentLiteralAsCString(zone())), pos);
350     case Token::STRING: {
351       return factory()->NewStringLiteral(GetSymbol(), pos);
352     }
353     default:
354       DCHECK(false);
355   }
356   return FailureExpression();
357 }
358 
NewV8Intrinsic(const AstRawString * name,const ScopedPtrList<Expression> & args,int pos)359 Expression* Parser::NewV8Intrinsic(const AstRawString* name,
360                                    const ScopedPtrList<Expression>& args,
361                                    int pos) {
362   if (ParsingExtension()) {
363     // The extension structures are only accessible while parsing the
364     // very first time, not when reparsing because of lazy compilation.
365     GetClosureScope()->ForceEagerCompilation();
366   }
367 
368   if (!name->is_one_byte()) {
369     // There are no two-byte named intrinsics.
370     ReportMessage(MessageTemplate::kNotDefined, name);
371     return FailureExpression();
372   }
373 
374   const Runtime::Function* function =
375       Runtime::FunctionForName(name->raw_data(), name->length());
376 
377   // Be more permissive when fuzzing. Intrinsics are not supported.
378   if (FLAG_fuzzing) {
379     return NewV8RuntimeFunctionForFuzzing(function, args, pos);
380   }
381 
382   if (function != nullptr) {
383     // Check for possible name clash.
384     DCHECK_EQ(Context::kNotFound,
385               Context::IntrinsicIndexForName(name->raw_data(), name->length()));
386 
387     // Check that the expected number of arguments are being passed.
388     if (function->nargs != -1 && function->nargs != args.length()) {
389       ReportMessage(MessageTemplate::kRuntimeWrongNumArgs);
390       return FailureExpression();
391     }
392 
393     return factory()->NewCallRuntime(function, args, pos);
394   }
395 
396   int context_index =
397       Context::IntrinsicIndexForName(name->raw_data(), name->length());
398 
399   // Check that the function is defined.
400   if (context_index == Context::kNotFound) {
401     ReportMessage(MessageTemplate::kNotDefined, name);
402     return FailureExpression();
403   }
404 
405   return factory()->NewCallRuntime(context_index, args, pos);
406 }
407 
408 // More permissive runtime-function creation on fuzzers.
NewV8RuntimeFunctionForFuzzing(const Runtime::Function * function,const ScopedPtrList<Expression> & args,int pos)409 Expression* Parser::NewV8RuntimeFunctionForFuzzing(
410     const Runtime::Function* function, const ScopedPtrList<Expression>& args,
411     int pos) {
412   CHECK(FLAG_fuzzing);
413 
414   // Intrinsics are not supported for fuzzing. Only allow allowlisted runtime
415   // functions. Also prevent later errors due to too few arguments and just
416   // ignore this call.
417   if (function == nullptr ||
418       !Runtime::IsAllowListedForFuzzing(function->function_id) ||
419       function->nargs > args.length()) {
420     return factory()->NewUndefinedLiteral(kNoSourcePosition);
421   }
422 
423   // Flexible number of arguments permitted.
424   if (function->nargs == -1) {
425     return factory()->NewCallRuntime(function, args, pos);
426   }
427 
428   // Otherwise ignore superfluous arguments.
429   ScopedPtrList<Expression> permissive_args(pointer_buffer());
430   for (int i = 0; i < function->nargs; i++) {
431     permissive_args.Add(args.at(i));
432   }
433   return factory()->NewCallRuntime(function, permissive_args, pos);
434 }
435 
Parser(LocalIsolate * local_isolate,ParseInfo * info,Handle<Script> script)436 Parser::Parser(LocalIsolate* local_isolate, ParseInfo* info,
437                Handle<Script> script)
438     : ParserBase<Parser>(
439           info->zone(), &scanner_, info->stack_limit(),
440           info->ast_value_factory(), info->pending_error_handler(),
441           info->runtime_call_stats(), info->logger(), info->flags(), true),
442       local_isolate_(local_isolate),
443       info_(info),
444       script_(script),
445       scanner_(info->character_stream(), flags()),
446       preparser_zone_(info->zone()->allocator(), "pre-parser-zone"),
447       reusable_preparser_(nullptr),
448       mode_(PARSE_EAGERLY),  // Lazy mode must be set explicitly.
449       source_range_map_(info->source_range_map()),
450       total_preparse_skipped_(0),
451       consumed_preparse_data_(info->consumed_preparse_data()),
452       preparse_data_buffer_(),
453       parameters_end_pos_(info->parameters_end_pos()) {
454   // Even though we were passed ParseInfo, we should not store it in
455   // Parser - this makes sure that Isolate is not accidentally accessed via
456   // ParseInfo during background parsing.
457   DCHECK_NOT_NULL(info->character_stream());
458   // Determine if functions can be lazily compiled. This is necessary to
459   // allow some of our builtin JS files to be lazily compiled. These
460   // builtins cannot be handled lazily by the parser, since we have to know
461   // if a function uses the special natives syntax, which is something the
462   // parser records.
463   // If the debugger requests compilation for break points, we cannot be
464   // aggressive about lazy compilation, because it might trigger compilation
465   // of functions without an outer context when setting a breakpoint through
466   // Debug::FindSharedFunctionInfoInScript
467   // We also compile eagerly for kProduceExhaustiveCodeCache.
468   bool can_compile_lazily = flags().allow_lazy_compile() && !flags().is_eager();
469 
470   set_default_eager_compile_hint(can_compile_lazily
471                                      ? FunctionLiteral::kShouldLazyCompile
472                                      : FunctionLiteral::kShouldEagerCompile);
473   allow_lazy_ = flags().allow_lazy_compile() && flags().allow_lazy_parsing() &&
474                 info->extension() == nullptr && can_compile_lazily;
475   for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount;
476        ++feature) {
477     use_counts_[feature] = 0;
478   }
479 }
480 
InitializeEmptyScopeChain(ParseInfo * info)481 void Parser::InitializeEmptyScopeChain(ParseInfo* info) {
482   DCHECK_NULL(original_scope_);
483   DCHECK_NULL(info->script_scope());
484   DeclarationScope* script_scope =
485       NewScriptScope(flags().is_repl_mode() ? REPLMode::kYes : REPLMode::kNo);
486   info->set_script_scope(script_scope);
487   original_scope_ = script_scope;
488 }
489 
490 template <typename IsolateT>
DeserializeScopeChain(IsolateT * isolate,ParseInfo * info,MaybeHandle<ScopeInfo> maybe_outer_scope_info,Scope::DeserializationMode mode)491 void Parser::DeserializeScopeChain(
492     IsolateT* isolate, ParseInfo* info,
493     MaybeHandle<ScopeInfo> maybe_outer_scope_info,
494     Scope::DeserializationMode mode) {
495   InitializeEmptyScopeChain(info);
496   Handle<ScopeInfo> outer_scope_info;
497   if (maybe_outer_scope_info.ToHandle(&outer_scope_info)) {
498     DCHECK_EQ(ThreadId::Current(), isolate->thread_id());
499     original_scope_ = Scope::DeserializeScopeChain(
500         isolate, zone(), *outer_scope_info, info->script_scope(),
501         ast_value_factory(), mode);
502     if (flags().is_eval() || IsArrowFunction(flags().function_kind())) {
503       original_scope_->GetReceiverScope()->DeserializeReceiver(
504           ast_value_factory());
505     }
506   }
507 }
508 
509 template void Parser::DeserializeScopeChain(
510     Isolate* isolate, ParseInfo* info,
511     MaybeHandle<ScopeInfo> maybe_outer_scope_info,
512     Scope::DeserializationMode mode);
513 template void Parser::DeserializeScopeChain(
514     LocalIsolate* isolate, ParseInfo* info,
515     MaybeHandle<ScopeInfo> maybe_outer_scope_info,
516     Scope::DeserializationMode mode);
517 
518 namespace {
519 
MaybeProcessSourceRanges(ParseInfo * parse_info,Expression * root,uintptr_t stack_limit_)520 void MaybeProcessSourceRanges(ParseInfo* parse_info, Expression* root,
521                               uintptr_t stack_limit_) {
522   if (root != nullptr && parse_info->source_range_map() != nullptr) {
523     SourceRangeAstVisitor visitor(stack_limit_, root,
524                                   parse_info->source_range_map());
525     visitor.Run();
526   }
527 }
528 
529 }  // namespace
530 
ParseProgram(Isolate * isolate,Handle<Script> script,ParseInfo * info,MaybeHandle<ScopeInfo> maybe_outer_scope_info)531 void Parser::ParseProgram(Isolate* isolate, Handle<Script> script,
532                           ParseInfo* info,
533                           MaybeHandle<ScopeInfo> maybe_outer_scope_info) {
534   DCHECK_EQ(script->id(), flags().script_id());
535 
536   // It's OK to use the Isolate & counters here, since this function is only
537   // called in the main thread.
538   DCHECK(parsing_on_main_thread_);
539   RCS_SCOPE(runtime_call_stats_, flags().is_eval()
540                                      ? RuntimeCallCounterId::kParseEval
541                                      : RuntimeCallCounterId::kParseProgram);
542   TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.ParseProgram");
543   base::ElapsedTimer timer;
544   if (V8_UNLIKELY(FLAG_log_function_events)) timer.Start();
545 
546   // Initialize parser state.
547   DeserializeScopeChain(isolate, info, maybe_outer_scope_info,
548                         Scope::DeserializationMode::kIncludingVariables);
549 
550   DCHECK_EQ(script->is_wrapped(), info->is_wrapped_as_function());
551   if (script->is_wrapped()) {
552     maybe_wrapped_arguments_ = handle(script->wrapped_arguments(), isolate);
553   }
554 
555   scanner_.Initialize();
556   FunctionLiteral* result = DoParseProgram(isolate, info);
557   MaybeProcessSourceRanges(info, result, stack_limit_);
558   PostProcessParseResult(isolate, info, result);
559 
560   HandleSourceURLComments(isolate, script);
561 
562   if (V8_UNLIKELY(FLAG_log_function_events) && result != nullptr) {
563     double ms = timer.Elapsed().InMillisecondsF();
564     const char* event_name = "parse-eval";
565     int start = -1;
566     int end = -1;
567     if (!flags().is_eval()) {
568       event_name = "parse-script";
569       start = 0;
570       end = String::cast(script->source()).length();
571     }
572     LOG(isolate,
573         FunctionEvent(event_name, flags().script_id(), ms, start, end, "", 0));
574   }
575 }
576 
DoParseProgram(Isolate * isolate,ParseInfo * info)577 FunctionLiteral* Parser::DoParseProgram(Isolate* isolate, ParseInfo* info) {
578   // Note that this function can be called from the main thread or from a
579   // background thread. We should not access anything Isolate / heap dependent
580   // via ParseInfo, and also not pass it forward. If not on the main thread
581   // isolate will be nullptr.
582   DCHECK_EQ(parsing_on_main_thread_, isolate != nullptr);
583   DCHECK_NULL(scope_);
584 
585   ParsingModeScope mode(this, allow_lazy_ ? PARSE_LAZILY : PARSE_EAGERLY);
586   ResetFunctionLiteralId();
587 
588   FunctionLiteral* result = nullptr;
589   {
590     Scope* outer = original_scope_;
591     DCHECK_NOT_NULL(outer);
592     if (flags().is_eval()) {
593       outer = NewEvalScope(outer);
594     } else if (flags().is_module()) {
595       DCHECK_EQ(outer, info->script_scope());
596       outer = NewModuleScope(info->script_scope());
597     }
598 
599     DeclarationScope* scope = outer->AsDeclarationScope();
600     scope->set_start_position(0);
601 
602     FunctionState function_state(&function_state_, &scope_, scope);
603     ScopedPtrList<Statement> body(pointer_buffer());
604     int beg_pos = scanner()->location().beg_pos;
605     if (flags().is_module()) {
606       DCHECK(flags().is_module());
607 
608       PrepareGeneratorVariables();
609       Expression* initial_yield = BuildInitialYield(
610           kNoSourcePosition, FunctionKind::kGeneratorFunction);
611       body.Add(
612           factory()->NewExpressionStatement(initial_yield, kNoSourcePosition));
613       // First parse statements into a buffer. Then, if there was a
614       // top level await, create an inner block and rewrite the body of the
615       // module as an async function. Otherwise merge the statements back
616       // into the main body.
617       BlockT block = impl()->NullBlock();
618       {
619         StatementListT statements(pointer_buffer());
620         ParseModuleItemList(&statements);
621         // Modules will always have an initial yield. If there are any
622         // additional suspends, i.e. awaits, then we treat the module as an
623         // AsyncModule.
624         if (function_state.suspend_count() > 1) {
625           scope->set_is_async_module();
626           block = factory()->NewBlock(true, statements);
627         } else {
628           statements.MergeInto(&body);
629         }
630       }
631       if (IsAsyncModule(scope->function_kind())) {
632         impl()->RewriteAsyncFunctionBody(
633             &body, block, factory()->NewUndefinedLiteral(kNoSourcePosition));
634       }
635       if (!has_error() &&
636           !module()->Validate(this->scope()->AsModuleScope(),
637                               pending_error_handler(), zone())) {
638         scanner()->set_parser_error();
639       }
640     } else if (info->is_wrapped_as_function()) {
641       DCHECK(parsing_on_main_thread_);
642       ParseWrapped(isolate, info, &body, scope, zone());
643     } else if (flags().is_repl_mode()) {
644       ParseREPLProgram(info, &body, scope);
645     } else {
646       // Don't count the mode in the use counters--give the program a chance
647       // to enable script-wide strict mode below.
648       this->scope()->SetLanguageMode(info->language_mode());
649       ParseStatementList(&body, Token::EOS);
650     }
651 
652     // The parser will peek but not consume EOS.  Our scope logically goes all
653     // the way to the EOS, though.
654     scope->set_end_position(peek_position());
655 
656     if (is_strict(language_mode())) {
657       CheckStrictOctalLiteral(beg_pos, end_position());
658     }
659     if (is_sloppy(language_mode())) {
660       // TODO(littledan): Function bindings on the global object that modify
661       // pre-existing bindings should be made writable, enumerable and
662       // nonconfigurable if possible, whereas this code will leave attributes
663       // unchanged if the property already exists.
664       InsertSloppyBlockFunctionVarBindings(scope);
665     }
666     // Internalize the ast strings in the case of eval so we can check for
667     // conflicting var declarations with outer scope-info-backed scopes.
668     if (flags().is_eval()) {
669       DCHECK(parsing_on_main_thread_);
670       DCHECK(!overall_parse_is_parked_);
671       info->ast_value_factory()->Internalize(isolate);
672     }
673     CheckConflictingVarDeclarations(scope);
674 
675     if (flags().parse_restriction() == ONLY_SINGLE_FUNCTION_LITERAL) {
676       if (body.length() != 1 || !body.at(0)->IsExpressionStatement() ||
677           !body.at(0)
678                ->AsExpressionStatement()
679                ->expression()
680                ->IsFunctionLiteral()) {
681         ReportMessage(MessageTemplate::kSingleFunctionLiteral);
682       }
683     }
684 
685     int parameter_count = 0;
686     result = factory()->NewScriptOrEvalFunctionLiteral(
687         scope, body, function_state.expected_property_count(), parameter_count);
688     result->set_suspend_count(function_state.suspend_count());
689   }
690 
691   info->set_max_function_literal_id(GetLastFunctionLiteralId());
692 
693   if (has_error()) return nullptr;
694 
695   RecordFunctionLiteralSourceRange(result);
696 
697   return result;
698 }
699 
700 template <typename IsolateT>
PostProcessParseResult(IsolateT * isolate,ParseInfo * info,FunctionLiteral * literal)701 void Parser::PostProcessParseResult(IsolateT* isolate, ParseInfo* info,
702                                     FunctionLiteral* literal) {
703   if (literal == nullptr) return;
704 
705   info->set_literal(literal);
706   info->set_language_mode(literal->language_mode());
707   if (info->flags().is_eval()) {
708     info->set_allow_eval_cache(allow_eval_cache());
709   }
710 
711   info->ast_value_factory()->Internalize(isolate);
712 
713   {
714     RCS_SCOPE(info->runtime_call_stats(), RuntimeCallCounterId::kCompileAnalyse,
715               RuntimeCallStats::kThreadSpecific);
716     if (!Rewriter::Rewrite(info) || !DeclarationScope::Analyze(info)) {
717       // Null out the literal to indicate that something failed.
718       info->set_literal(nullptr);
719       return;
720     }
721   }
722 }
723 
724 template void Parser::PostProcessParseResult(Isolate* isolate, ParseInfo* info,
725                                              FunctionLiteral* literal);
726 template void Parser::PostProcessParseResult(LocalIsolate* isolate,
727                                              ParseInfo* info,
728                                              FunctionLiteral* literal);
729 
PrepareWrappedArguments(Isolate * isolate,ParseInfo * info,Zone * zone)730 ZonePtrList<const AstRawString>* Parser::PrepareWrappedArguments(
731     Isolate* isolate, ParseInfo* info, Zone* zone) {
732   DCHECK(parsing_on_main_thread_);
733   DCHECK_NOT_NULL(isolate);
734   Handle<FixedArray> arguments = maybe_wrapped_arguments_.ToHandleChecked();
735   int arguments_length = arguments->length();
736   ZonePtrList<const AstRawString>* arguments_for_wrapped_function =
737       zone->New<ZonePtrList<const AstRawString>>(arguments_length, zone);
738   for (int i = 0; i < arguments_length; i++) {
739     const AstRawString* argument_string = ast_value_factory()->GetString(
740         String::cast(arguments->get(i)),
741         SharedStringAccessGuardIfNeeded(isolate));
742     arguments_for_wrapped_function->Add(argument_string, zone);
743   }
744   return arguments_for_wrapped_function;
745 }
746 
ParseWrapped(Isolate * isolate,ParseInfo * info,ScopedPtrList<Statement> * body,DeclarationScope * outer_scope,Zone * zone)747 void Parser::ParseWrapped(Isolate* isolate, ParseInfo* info,
748                           ScopedPtrList<Statement>* body,
749                           DeclarationScope* outer_scope, Zone* zone) {
750   DCHECK(parsing_on_main_thread_);
751   DCHECK(info->is_wrapped_as_function());
752   ParsingModeScope parsing_mode(this, PARSE_EAGERLY);
753 
754   // Set function and block state for the outer eval scope.
755   DCHECK(outer_scope->is_eval_scope());
756   FunctionState function_state(&function_state_, &scope_, outer_scope);
757 
758   const AstRawString* function_name = nullptr;
759   Scanner::Location location(0, 0);
760 
761   ZonePtrList<const AstRawString>* arguments_for_wrapped_function =
762       PrepareWrappedArguments(isolate, info, zone);
763 
764   FunctionLiteral* function_literal =
765       ParseFunctionLiteral(function_name, location, kSkipFunctionNameCheck,
766                            FunctionKind::kNormalFunction, kNoSourcePosition,
767                            FunctionSyntaxKind::kWrapped, LanguageMode::kSloppy,
768                            arguments_for_wrapped_function);
769 
770   Statement* return_statement =
771       factory()->NewReturnStatement(function_literal, kNoSourcePosition);
772   body->Add(return_statement);
773 }
774 
ParseREPLProgram(ParseInfo * info,ScopedPtrList<Statement> * body,DeclarationScope * scope)775 void Parser::ParseREPLProgram(ParseInfo* info, ScopedPtrList<Statement>* body,
776                               DeclarationScope* scope) {
777   // REPL scripts are handled nearly the same way as the body of an async
778   // function. The difference is the value used to resolve the async
779   // promise.
780   // For a REPL script this is the completion value of the
781   // script instead of the expression of some "return" statement. The
782   // completion value of the script is obtained by manually invoking
783   // the {Rewriter} which will return a VariableProxy referencing the
784   // result.
785   DCHECK(flags().is_repl_mode());
786   this->scope()->SetLanguageMode(info->language_mode());
787   PrepareGeneratorVariables();
788 
789   BlockT block = impl()->NullBlock();
790   {
791     StatementListT statements(pointer_buffer());
792     ParseStatementList(&statements, Token::EOS);
793     block = factory()->NewBlock(true, statements);
794   }
795 
796   if (has_error()) return;
797 
798   base::Optional<VariableProxy*> maybe_result =
799       Rewriter::RewriteBody(info, scope, block->statements());
800   Expression* result_value =
801       (maybe_result && *maybe_result)
802           ? static_cast<Expression*>(*maybe_result)
803           : factory()->NewUndefinedLiteral(kNoSourcePosition);
804 
805   impl()->RewriteAsyncFunctionBody(body, block, WrapREPLResult(result_value),
806                                    REPLMode::kYes);
807 }
808 
WrapREPLResult(Expression * value)809 Expression* Parser::WrapREPLResult(Expression* value) {
810   // REPL scripts additionally wrap the ".result" variable in an
811   // object literal:
812   //
813   //     return %_AsyncFunctionResolve(
814   //                .generator_object, {.repl_result: .result});
815   //
816   // Should ".result" be a resolved promise itself, the async return
817   // would chain the promises and return the resolve value instead of
818   // the promise.
819 
820   Literal* property_name = factory()->NewStringLiteral(
821       ast_value_factory()->dot_repl_result_string(), kNoSourcePosition);
822   ObjectLiteralProperty* property =
823       factory()->NewObjectLiteralProperty(property_name, value, true);
824 
825   ScopedPtrList<ObjectLiteralProperty> properties(pointer_buffer());
826   properties.Add(property);
827   return factory()->NewObjectLiteral(properties, false, kNoSourcePosition,
828                                      false);
829 }
830 
ParseFunction(Isolate * isolate,ParseInfo * info,Handle<SharedFunctionInfo> shared_info)831 void Parser::ParseFunction(Isolate* isolate, ParseInfo* info,
832                            Handle<SharedFunctionInfo> shared_info) {
833   // It's OK to use the Isolate & counters here, since this function is only
834   // called in the main thread.
835   DCHECK(parsing_on_main_thread_);
836   RCS_SCOPE(runtime_call_stats_, RuntimeCallCounterId::kParseFunction);
837   TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.ParseFunction");
838   base::ElapsedTimer timer;
839   if (V8_UNLIKELY(FLAG_log_function_events)) timer.Start();
840 
841   MaybeHandle<ScopeInfo> maybe_outer_scope_info;
842   if (shared_info->HasOuterScopeInfo()) {
843     maybe_outer_scope_info = handle(shared_info->GetOuterScopeInfo(), isolate);
844   }
845   int start_position = shared_info->StartPosition();
846   int end_position = shared_info->EndPosition();
847 
848   MaybeHandle<ScopeInfo> deserialize_start_scope = maybe_outer_scope_info;
849   bool needs_script_scope_finalization = false;
850   // If the function is a class member initializer and there isn't a
851   // scope mismatch, we will only deserialize up to the outer scope of
852   // the class scope, and regenerate the class scope during reparsing.
853   if (flags().function_kind() ==
854           FunctionKind::kClassMembersInitializerFunction &&
855       shared_info->HasOuterScopeInfo() &&
856       maybe_outer_scope_info.ToHandleChecked()->scope_type() == CLASS_SCOPE &&
857       maybe_outer_scope_info.ToHandleChecked()->StartPosition() ==
858           start_position) {
859     Handle<ScopeInfo> outer_scope_info =
860         maybe_outer_scope_info.ToHandleChecked();
861     if (outer_scope_info->HasOuterScopeInfo()) {
862       deserialize_start_scope =
863           handle(outer_scope_info->OuterScopeInfo(), isolate);
864     } else {
865       // If the class scope doesn't have an outer scope to deserialize, we need
866       // to finalize the script scope without using
867       // Scope::DeserializeScopeChain().
868       deserialize_start_scope = MaybeHandle<ScopeInfo>();
869       needs_script_scope_finalization = true;
870     }
871   }
872 
873   DeserializeScopeChain(isolate, info, deserialize_start_scope,
874                         Scope::DeserializationMode::kIncludingVariables);
875   if (needs_script_scope_finalization) {
876     DCHECK_EQ(original_scope_, info->script_scope());
877     Scope::SetScriptScopeInfo(isolate, info->script_scope());
878   }
879   DCHECK_EQ(factory()->zone(), info->zone());
880 
881   Handle<Script> script = handle(Script::cast(shared_info->script()), isolate);
882   if (shared_info->is_wrapped()) {
883     maybe_wrapped_arguments_ = handle(script->wrapped_arguments(), isolate);
884   }
885 
886   int function_literal_id = shared_info->function_literal_id();
887   if V8_UNLIKELY (script->type() == Script::TYPE_WEB_SNAPSHOT) {
888     // Function literal IDs for inner functions haven't been allocated when
889     // deserializing. Put the inner function SFIs to the end of the list;
890     // they'll be deduplicated later (if the corresponding SFIs exist already)
891     // in Script::FindSharedFunctionInfo. (-1 here because function_literal_id
892     // is the parent's id. The inner function will get ids starting from
893     // function_literal_id + 1.)
894     function_literal_id = script->shared_function_info_count() - 1;
895   }
896 
897   // Initialize parser state.
898   info->set_function_name(ast_value_factory()->GetString(
899       shared_info->Name(), SharedStringAccessGuardIfNeeded(isolate)));
900   scanner_.Initialize();
901 
902   FunctionLiteral* result;
903   if (V8_UNLIKELY(shared_info->private_name_lookup_skips_outer_class() &&
904                   original_scope_->is_class_scope())) {
905     // If the function skips the outer class and the outer scope is a class, the
906     // function is in heritage position. Otherwise the function scope's skip bit
907     // will be correctly inherited from the outer scope.
908     ClassScope::HeritageParsingScope heritage(original_scope_->AsClassScope());
909     result = DoParseDeserializedFunction(
910         isolate, maybe_outer_scope_info, info, start_position, end_position,
911         function_literal_id, info->function_name());
912   } else {
913     result = DoParseDeserializedFunction(
914         isolate, maybe_outer_scope_info, info, start_position, end_position,
915         function_literal_id, info->function_name());
916   }
917   MaybeProcessSourceRanges(info, result, stack_limit_);
918   if (result != nullptr) {
919     Handle<String> inferred_name(shared_info->inferred_name(), isolate);
920     result->set_inferred_name(inferred_name);
921     // Fix the function_literal_id in case we changed it earlier.
922     result->set_function_literal_id(shared_info->function_literal_id());
923   }
924   PostProcessParseResult(isolate, info, result);
925   if (V8_UNLIKELY(FLAG_log_function_events) && result != nullptr) {
926     double ms = timer.Elapsed().InMillisecondsF();
927     // We should already be internalized by now, so the debug name will be
928     // available.
929     DeclarationScope* function_scope = result->scope();
930     std::unique_ptr<char[]> function_name = result->GetDebugName();
931     LOG(isolate,
932         FunctionEvent("parse-function", flags().script_id(), ms,
933                       function_scope->start_position(),
934                       function_scope->end_position(), function_name.get(),
935                       strlen(function_name.get())));
936   }
937 }
938 
DoParseFunction(Isolate * isolate,ParseInfo * info,int start_position,int end_position,int function_literal_id,const AstRawString * raw_name)939 FunctionLiteral* Parser::DoParseFunction(Isolate* isolate, ParseInfo* info,
940                                          int start_position, int end_position,
941                                          int function_literal_id,
942                                          const AstRawString* raw_name) {
943   DCHECK_EQ(parsing_on_main_thread_, isolate != nullptr);
944   DCHECK_NOT_NULL(raw_name);
945   DCHECK_NULL(scope_);
946 
947   DCHECK(ast_value_factory());
948   fni_.PushEnclosingName(raw_name);
949 
950   ResetFunctionLiteralId();
951   DCHECK_LT(0, function_literal_id);
952   SkipFunctionLiterals(function_literal_id - 1);
953 
954   ParsingModeScope parsing_mode(this, PARSE_EAGERLY);
955 
956   // Place holder for the result.
957   FunctionLiteral* result = nullptr;
958 
959   {
960     // Parse the function literal.
961     Scope* outer = original_scope_;
962     DeclarationScope* outer_function = outer->GetClosureScope();
963     DCHECK(outer);
964     FunctionState function_state(&function_state_, &scope_, outer_function);
965     BlockState block_state(&scope_, outer);
966     DCHECK(is_sloppy(outer->language_mode()) ||
967            is_strict(info->language_mode()));
968     FunctionKind kind = flags().function_kind();
969     DCHECK_IMPLIES(IsConciseMethod(kind) || IsAccessorFunction(kind),
970                    flags().function_syntax_kind() ==
971                        FunctionSyntaxKind::kAccessorOrMethod);
972 
973     if (IsArrowFunction(kind)) {
974       if (IsAsyncFunction(kind)) {
975         DCHECK(!scanner()->HasLineTerminatorAfterNext());
976         if (!Check(Token::ASYNC)) {
977           CHECK(stack_overflow());
978           return nullptr;
979         }
980         if (!(peek_any_identifier() || peek() == Token::LPAREN)) {
981           CHECK(stack_overflow());
982           return nullptr;
983         }
984       }
985 
986       // TODO(adamk): We should construct this scope from the ScopeInfo.
987       DeclarationScope* scope = NewFunctionScope(kind);
988       scope->set_has_checked_syntax(true);
989 
990       // This bit only needs to be explicitly set because we're
991       // not passing the ScopeInfo to the Scope constructor.
992       SetLanguageMode(scope, info->language_mode());
993 
994       scope->set_start_position(start_position);
995       ParserFormalParameters formals(scope);
996       {
997         ParameterDeclarationParsingScope formals_scope(this);
998         // Parsing patterns as variable reference expression creates
999         // NewUnresolved references in current scope. Enter arrow function
1000         // scope for formal parameter parsing.
1001         BlockState inner_block_state(&scope_, scope);
1002         if (Check(Token::LPAREN)) {
1003           // '(' StrictFormalParameters ')'
1004           ParseFormalParameterList(&formals);
1005           Expect(Token::RPAREN);
1006         } else {
1007           // BindingIdentifier
1008           ParameterParsingScope parameter_parsing_scope(impl(), &formals);
1009           ParseFormalParameter(&formals);
1010           DeclareFormalParameters(&formals);
1011         }
1012         formals.duplicate_loc = formals_scope.duplicate_location();
1013       }
1014 
1015       if (GetLastFunctionLiteralId() != function_literal_id - 1) {
1016         if (has_error()) return nullptr;
1017         // If there were FunctionLiterals in the parameters, we need to
1018         // renumber them to shift down so the next function literal id for
1019         // the arrow function is the one requested.
1020         AstFunctionLiteralIdReindexer reindexer(
1021             stack_limit_,
1022             (function_literal_id - 1) - GetLastFunctionLiteralId());
1023         for (auto p : formals.params) {
1024           if (p->pattern != nullptr) reindexer.Reindex(p->pattern);
1025           if (p->initializer() != nullptr) {
1026             reindexer.Reindex(p->initializer());
1027           }
1028           if (reindexer.HasStackOverflow()) {
1029             set_stack_overflow();
1030             return nullptr;
1031           }
1032         }
1033         ResetFunctionLiteralId();
1034         SkipFunctionLiterals(function_literal_id - 1);
1035       }
1036 
1037       Expression* expression = ParseArrowFunctionLiteral(formals);
1038       // Scanning must end at the same position that was recorded
1039       // previously. If not, parsing has been interrupted due to a stack
1040       // overflow, at which point the partially parsed arrow function
1041       // concise body happens to be a valid expression. This is a problem
1042       // only for arrow functions with single expression bodies, since there
1043       // is no end token such as "}" for normal functions.
1044       if (scanner()->location().end_pos == end_position) {
1045         // The pre-parser saw an arrow function here, so the full parser
1046         // must produce a FunctionLiteral.
1047         DCHECK(expression->IsFunctionLiteral());
1048         result = expression->AsFunctionLiteral();
1049       }
1050     } else if (IsDefaultConstructor(kind)) {
1051       DCHECK_EQ(scope(), outer);
1052       result = DefaultConstructor(raw_name, IsDerivedConstructor(kind),
1053                                   start_position, end_position);
1054     } else {
1055       ZonePtrList<const AstRawString>* arguments_for_wrapped_function =
1056           info->is_wrapped_as_function()
1057               ? PrepareWrappedArguments(isolate, info, zone())
1058               : nullptr;
1059       result = ParseFunctionLiteral(
1060           raw_name, Scanner::Location::invalid(), kSkipFunctionNameCheck, kind,
1061           kNoSourcePosition, flags().function_syntax_kind(),
1062           info->language_mode(), arguments_for_wrapped_function);
1063     }
1064 
1065     if (has_error()) return nullptr;
1066     result->set_requires_instance_members_initializer(
1067         flags().requires_instance_members_initializer());
1068     result->set_class_scope_has_private_brand(
1069         flags().class_scope_has_private_brand());
1070     result->set_has_static_private_methods_or_accessors(
1071         flags().has_static_private_methods_or_accessors());
1072   }
1073 
1074   DCHECK_IMPLIES(result, function_literal_id == result->function_literal_id());
1075   return result;
1076 }
1077 
DoParseDeserializedFunction(Isolate * isolate,MaybeHandle<ScopeInfo> maybe_outer_scope_info,ParseInfo * info,int start_position,int end_position,int function_literal_id,const AstRawString * raw_name)1078 FunctionLiteral* Parser::DoParseDeserializedFunction(
1079     Isolate* isolate, MaybeHandle<ScopeInfo> maybe_outer_scope_info,
1080     ParseInfo* info, int start_position, int end_position,
1081     int function_literal_id, const AstRawString* raw_name) {
1082   if (flags().function_kind() ==
1083       FunctionKind::kClassMembersInitializerFunction) {
1084     return ParseClassForInstanceMemberInitialization(
1085         isolate, maybe_outer_scope_info, start_position, function_literal_id,
1086         end_position);
1087   }
1088 
1089   return DoParseFunction(isolate, info, start_position, end_position,
1090                          function_literal_id, raw_name);
1091 }
1092 
ParseClassForInstanceMemberInitialization(Isolate * isolate,MaybeHandle<ScopeInfo> maybe_class_scope_info,int initializer_pos,int initializer_id,int initializer_end_pos)1093 FunctionLiteral* Parser::ParseClassForInstanceMemberInitialization(
1094     Isolate* isolate, MaybeHandle<ScopeInfo> maybe_class_scope_info,
1095     int initializer_pos, int initializer_id, int initializer_end_pos) {
1096   // When the function is a kClassMembersInitializerFunction, we record the
1097   // source range of the entire class as its positions in its SFI, so at this
1098   // point the scanner should be rewound to the position of the class token.
1099   int class_token_pos = initializer_pos;
1100   DCHECK_EQ(peek_position(), class_token_pos);
1101 
1102   // Insert a FunctionState with the closest outer Declaration scope
1103   DeclarationScope* nearest_decl_scope = original_scope_->GetDeclarationScope();
1104   DCHECK_NOT_NULL(nearest_decl_scope);
1105   FunctionState function_state(&function_state_, &scope_, nearest_decl_scope);
1106   // We will reindex the function literals later.
1107   ResetFunctionLiteralId();
1108 
1109   // We preparse the class members that are not fields with initializers
1110   // in order to collect the function literal ids.
1111   ParsingModeScope mode(this, PARSE_LAZILY);
1112 
1113   ExpressionParsingScope no_expression_scope(impl());
1114 
1115   // Reparse the class as an expression to build the instance member
1116   // initializer function.
1117   Expression* expr = ParseClassExpression(original_scope_);
1118 
1119   DCHECK(expr->IsClassLiteral());
1120   ClassLiteral* literal = expr->AsClassLiteral();
1121   FunctionLiteral* initializer =
1122       literal->instance_members_initializer_function();
1123 
1124   // Reindex so that the function literal ids match.
1125   AstFunctionLiteralIdReindexer reindexer(
1126       stack_limit_, initializer_id - initializer->function_literal_id());
1127   reindexer.Reindex(expr);
1128 
1129   no_expression_scope.ValidateExpression();
1130 
1131   // If the class scope was not optimized away, we know that it allocated
1132   // some variables and we need to fix up the allocation info for them.
1133   bool needs_allocation_fixup =
1134       !maybe_class_scope_info.is_null() &&
1135       maybe_class_scope_info.ToHandleChecked()->scope_type() == CLASS_SCOPE &&
1136       maybe_class_scope_info.ToHandleChecked()->StartPosition() ==
1137           class_token_pos;
1138 
1139   ClassScope* reparsed_scope = literal->scope();
1140   reparsed_scope->FinalizeReparsedClassScope(isolate, maybe_class_scope_info,
1141                                              ast_value_factory(),
1142                                              needs_allocation_fixup);
1143   original_scope_ = reparsed_scope;
1144 
1145   DCHECK_EQ(initializer->kind(),
1146             FunctionKind::kClassMembersInitializerFunction);
1147   DCHECK_EQ(initializer->function_literal_id(), initializer_id);
1148   DCHECK_EQ(initializer->end_position(), initializer_end_pos);
1149 
1150   return initializer;
1151 }
1152 
ParseModuleItem()1153 Statement* Parser::ParseModuleItem() {
1154   // ecma262/#prod-ModuleItem
1155   // ModuleItem :
1156   //    ImportDeclaration
1157   //    ExportDeclaration
1158   //    StatementListItem
1159 
1160   Token::Value next = peek();
1161 
1162   if (next == Token::EXPORT) {
1163     return ParseExportDeclaration();
1164   }
1165 
1166   if (next == Token::IMPORT) {
1167     // We must be careful not to parse a dynamic import expression as an import
1168     // declaration. Same for import.meta expressions.
1169     Token::Value peek_ahead = PeekAhead();
1170     if (peek_ahead != Token::LPAREN && peek_ahead != Token::PERIOD) {
1171       ParseImportDeclaration();
1172       return factory()->EmptyStatement();
1173     }
1174   }
1175 
1176   return ParseStatementListItem();
1177 }
1178 
ParseModuleItemList(ScopedPtrList<Statement> * body)1179 void Parser::ParseModuleItemList(ScopedPtrList<Statement>* body) {
1180   // ecma262/#prod-Module
1181   // Module :
1182   //    ModuleBody?
1183   //
1184   // ecma262/#prod-ModuleItemList
1185   // ModuleBody :
1186   //    ModuleItem*
1187 
1188   DCHECK(scope()->is_module_scope());
1189   while (peek() != Token::EOS) {
1190     Statement* stat = ParseModuleItem();
1191     if (stat == nullptr) return;
1192     if (stat->IsEmptyStatement()) continue;
1193     body->Add(stat);
1194   }
1195 }
1196 
ParseModuleSpecifier()1197 const AstRawString* Parser::ParseModuleSpecifier() {
1198   // ModuleSpecifier :
1199   //    StringLiteral
1200 
1201   Expect(Token::STRING);
1202   return GetSymbol();
1203 }
1204 
ParseExportClause(Scanner::Location * reserved_loc,Scanner::Location * string_literal_local_name_loc)1205 ZoneChunkList<Parser::ExportClauseData>* Parser::ParseExportClause(
1206     Scanner::Location* reserved_loc,
1207     Scanner::Location* string_literal_local_name_loc) {
1208   // ExportClause :
1209   //   '{' '}'
1210   //   '{' ExportsList '}'
1211   //   '{' ExportsList ',' '}'
1212   //
1213   // ExportsList :
1214   //   ExportSpecifier
1215   //   ExportsList ',' ExportSpecifier
1216   //
1217   // ExportSpecifier :
1218   //   IdentifierName
1219   //   IdentifierName 'as' IdentifierName
1220   //   IdentifierName 'as' ModuleExportName
1221   //   ModuleExportName
1222   //   ModuleExportName 'as' ModuleExportName
1223   //
1224   // ModuleExportName :
1225   //   StringLiteral
1226   ZoneChunkList<ExportClauseData>* export_data =
1227       zone()->New<ZoneChunkList<ExportClauseData>>(zone());
1228 
1229   Expect(Token::LBRACE);
1230 
1231   Token::Value name_tok;
1232   while ((name_tok = peek()) != Token::RBRACE) {
1233     const AstRawString* local_name = ParseExportSpecifierName();
1234     if (!string_literal_local_name_loc->IsValid() &&
1235         name_tok == Token::STRING) {
1236       // Keep track of the first string literal local name exported for error
1237       // reporting. These must be followed by a 'from' clause.
1238       *string_literal_local_name_loc = scanner()->location();
1239     } else if (!reserved_loc->IsValid() &&
1240                !Token::IsValidIdentifier(name_tok, LanguageMode::kStrict, false,
1241                                          flags().is_module())) {
1242       // Keep track of the first reserved word encountered in case our
1243       // caller needs to report an error.
1244       *reserved_loc = scanner()->location();
1245     }
1246     const AstRawString* export_name;
1247     Scanner::Location location = scanner()->location();
1248     if (CheckContextualKeyword(ast_value_factory()->as_string())) {
1249       export_name = ParseExportSpecifierName();
1250       // Set the location to the whole "a as b" string, so that it makes sense
1251       // both for errors due to "a" and for errors due to "b".
1252       location.end_pos = scanner()->location().end_pos;
1253     } else {
1254       export_name = local_name;
1255     }
1256     export_data->push_back({export_name, local_name, location});
1257     if (peek() == Token::RBRACE) break;
1258     if (V8_UNLIKELY(!Check(Token::COMMA))) {
1259       ReportUnexpectedToken(Next());
1260       break;
1261     }
1262   }
1263 
1264   Expect(Token::RBRACE);
1265   return export_data;
1266 }
1267 
ParseExportSpecifierName()1268 const AstRawString* Parser::ParseExportSpecifierName() {
1269   Token::Value next = Next();
1270 
1271   // IdentifierName
1272   if (V8_LIKELY(Token::IsPropertyName(next))) {
1273     return GetSymbol();
1274   }
1275 
1276   // ModuleExportName
1277   if (next == Token::STRING) {
1278     const AstRawString* export_name = GetSymbol();
1279     if (V8_LIKELY(export_name->is_one_byte())) return export_name;
1280     if (!unibrow::Utf16::HasUnpairedSurrogate(
1281             reinterpret_cast<const uint16_t*>(export_name->raw_data()),
1282             export_name->length())) {
1283       return export_name;
1284     }
1285     ReportMessage(MessageTemplate::kInvalidModuleExportName);
1286     return EmptyIdentifierString();
1287   }
1288 
1289   ReportUnexpectedToken(next);
1290   return EmptyIdentifierString();
1291 }
1292 
ParseNamedImports(int pos)1293 ZonePtrList<const Parser::NamedImport>* Parser::ParseNamedImports(int pos) {
1294   // NamedImports :
1295   //   '{' '}'
1296   //   '{' ImportsList '}'
1297   //   '{' ImportsList ',' '}'
1298   //
1299   // ImportsList :
1300   //   ImportSpecifier
1301   //   ImportsList ',' ImportSpecifier
1302   //
1303   // ImportSpecifier :
1304   //   BindingIdentifier
1305   //   IdentifierName 'as' BindingIdentifier
1306   //   ModuleExportName 'as' BindingIdentifier
1307 
1308   Expect(Token::LBRACE);
1309 
1310   auto result = zone()->New<ZonePtrList<const NamedImport>>(1, zone());
1311   while (peek() != Token::RBRACE) {
1312     const AstRawString* import_name = ParseExportSpecifierName();
1313     const AstRawString* local_name = import_name;
1314     Scanner::Location location = scanner()->location();
1315     // In the presence of 'as', the left-side of the 'as' can
1316     // be any IdentifierName. But without 'as', it must be a valid
1317     // BindingIdentifier.
1318     if (CheckContextualKeyword(ast_value_factory()->as_string())) {
1319       local_name = ParsePropertyName();
1320     }
1321     if (!Token::IsValidIdentifier(scanner()->current_token(),
1322                                   LanguageMode::kStrict, false,
1323                                   flags().is_module())) {
1324       ReportMessage(MessageTemplate::kUnexpectedReserved);
1325       return nullptr;
1326     } else if (IsEvalOrArguments(local_name)) {
1327       ReportMessage(MessageTemplate::kStrictEvalArguments);
1328       return nullptr;
1329     }
1330 
1331     DeclareUnboundVariable(local_name, VariableMode::kConst,
1332                            kNeedsInitialization, position());
1333 
1334     NamedImport* import =
1335         zone()->New<NamedImport>(import_name, local_name, location);
1336     result->Add(import, zone());
1337 
1338     if (peek() == Token::RBRACE) break;
1339     Expect(Token::COMMA);
1340   }
1341 
1342   Expect(Token::RBRACE);
1343   return result;
1344 }
1345 
ParseImportAssertClause()1346 ImportAssertions* Parser::ParseImportAssertClause() {
1347   // AssertClause :
1348   //    assert '{' '}'
1349   //    assert '{' AssertEntries '}'
1350 
1351   // AssertEntries :
1352   //    IdentifierName: AssertionKey
1353   //    IdentifierName: AssertionKey , AssertEntries
1354 
1355   // AssertionKey :
1356   //     IdentifierName
1357   //     StringLiteral
1358 
1359   auto import_assertions = zone()->New<ImportAssertions>(zone());
1360 
1361   if (!FLAG_harmony_import_assertions) {
1362     return import_assertions;
1363   }
1364 
1365   // Assert clause is optional, and cannot be preceded by a LineTerminator.
1366   if (scanner()->HasLineTerminatorBeforeNext() ||
1367       !CheckContextualKeyword(ast_value_factory()->assert_string())) {
1368     return import_assertions;
1369   }
1370 
1371   Expect(Token::LBRACE);
1372 
1373   while (peek() != Token::RBRACE) {
1374     const AstRawString* attribute_key = nullptr;
1375     if (Check(Token::STRING)) {
1376       attribute_key = GetSymbol();
1377     } else {
1378       attribute_key = ParsePropertyName();
1379     }
1380 
1381     Scanner::Location location = scanner()->location();
1382 
1383     Expect(Token::COLON);
1384     Expect(Token::STRING);
1385 
1386     const AstRawString* attribute_value = GetSymbol();
1387 
1388     // Set the location to the whole "key: 'value'"" string, so that it makes
1389     // sense both for errors due to the key and errors due to the value.
1390     location.end_pos = scanner()->location().end_pos;
1391 
1392     auto result = import_assertions->insert(std::make_pair(
1393         attribute_key, std::make_pair(attribute_value, location)));
1394     if (!result.second) {
1395       // It is a syntax error if two AssertEntries have the same key.
1396       ReportMessageAt(location, MessageTemplate::kImportAssertionDuplicateKey,
1397                       attribute_key);
1398       break;
1399     }
1400 
1401     if (peek() == Token::RBRACE) break;
1402     if (V8_UNLIKELY(!Check(Token::COMMA))) {
1403       ReportUnexpectedToken(Next());
1404       break;
1405     }
1406   }
1407 
1408   Expect(Token::RBRACE);
1409 
1410   return import_assertions;
1411 }
1412 
ParseImportDeclaration()1413 void Parser::ParseImportDeclaration() {
1414   // ImportDeclaration :
1415   //   'import' ImportClause 'from' ModuleSpecifier ';'
1416   //   'import' ModuleSpecifier ';'
1417   //   'import' ImportClause 'from' ModuleSpecifier [no LineTerminator here]
1418   //       AssertClause ';'
1419   //   'import' ModuleSpecifier [no LineTerminator here] AssertClause';'
1420   //
1421   // ImportClause :
1422   //   ImportedDefaultBinding
1423   //   NameSpaceImport
1424   //   NamedImports
1425   //   ImportedDefaultBinding ',' NameSpaceImport
1426   //   ImportedDefaultBinding ',' NamedImports
1427   //
1428   // NameSpaceImport :
1429   //   '*' 'as' ImportedBinding
1430 
1431   int pos = peek_position();
1432   Expect(Token::IMPORT);
1433 
1434   Token::Value tok = peek();
1435 
1436   // 'import' ModuleSpecifier ';'
1437   if (tok == Token::STRING) {
1438     Scanner::Location specifier_loc = scanner()->peek_location();
1439     const AstRawString* module_specifier = ParseModuleSpecifier();
1440     const ImportAssertions* import_assertions = ParseImportAssertClause();
1441     ExpectSemicolon();
1442     module()->AddEmptyImport(module_specifier, import_assertions, specifier_loc,
1443                              zone());
1444     return;
1445   }
1446 
1447   // Parse ImportedDefaultBinding if present.
1448   const AstRawString* import_default_binding = nullptr;
1449   Scanner::Location import_default_binding_loc;
1450   if (tok != Token::MUL && tok != Token::LBRACE) {
1451     import_default_binding = ParseNonRestrictedIdentifier();
1452     import_default_binding_loc = scanner()->location();
1453     DeclareUnboundVariable(import_default_binding, VariableMode::kConst,
1454                            kNeedsInitialization, pos);
1455   }
1456 
1457   // Parse NameSpaceImport or NamedImports if present.
1458   const AstRawString* module_namespace_binding = nullptr;
1459   Scanner::Location module_namespace_binding_loc;
1460   const ZonePtrList<const NamedImport>* named_imports = nullptr;
1461   if (import_default_binding == nullptr || Check(Token::COMMA)) {
1462     switch (peek()) {
1463       case Token::MUL: {
1464         Consume(Token::MUL);
1465         ExpectContextualKeyword(ast_value_factory()->as_string());
1466         module_namespace_binding = ParseNonRestrictedIdentifier();
1467         module_namespace_binding_loc = scanner()->location();
1468         DeclareUnboundVariable(module_namespace_binding, VariableMode::kConst,
1469                                kCreatedInitialized, pos);
1470         break;
1471       }
1472 
1473       case Token::LBRACE:
1474         named_imports = ParseNamedImports(pos);
1475         break;
1476 
1477       default:
1478         ReportUnexpectedToken(scanner()->current_token());
1479         return;
1480     }
1481   }
1482 
1483   ExpectContextualKeyword(ast_value_factory()->from_string());
1484   Scanner::Location specifier_loc = scanner()->peek_location();
1485   const AstRawString* module_specifier = ParseModuleSpecifier();
1486   const ImportAssertions* import_assertions = ParseImportAssertClause();
1487   ExpectSemicolon();
1488 
1489   // Now that we have all the information, we can make the appropriate
1490   // declarations.
1491 
1492   // TODO(neis): Would prefer to call DeclareVariable for each case below rather
1493   // than above and in ParseNamedImports, but then a possible error message
1494   // would point to the wrong location.  Maybe have a DeclareAt version of
1495   // Declare that takes a location?
1496 
1497   if (module_namespace_binding != nullptr) {
1498     module()->AddStarImport(module_namespace_binding, module_specifier,
1499                             import_assertions, module_namespace_binding_loc,
1500                             specifier_loc, zone());
1501   }
1502 
1503   if (import_default_binding != nullptr) {
1504     module()->AddImport(ast_value_factory()->default_string(),
1505                         import_default_binding, module_specifier,
1506                         import_assertions, import_default_binding_loc,
1507                         specifier_loc, zone());
1508   }
1509 
1510   if (named_imports != nullptr) {
1511     if (named_imports->length() == 0) {
1512       module()->AddEmptyImport(module_specifier, import_assertions,
1513                                specifier_loc, zone());
1514     } else {
1515       for (const NamedImport* import : *named_imports) {
1516         module()->AddImport(import->import_name, import->local_name,
1517                             module_specifier, import_assertions,
1518                             import->location, specifier_loc, zone());
1519       }
1520     }
1521   }
1522 }
1523 
ParseExportDefault()1524 Statement* Parser::ParseExportDefault() {
1525   //  Supports the following productions, starting after the 'default' token:
1526   //    'export' 'default' HoistableDeclaration
1527   //    'export' 'default' ClassDeclaration
1528   //    'export' 'default' AssignmentExpression[In] ';'
1529 
1530   Expect(Token::DEFAULT);
1531   Scanner::Location default_loc = scanner()->location();
1532 
1533   ZonePtrList<const AstRawString> local_names(1, zone());
1534   Statement* result = nullptr;
1535   switch (peek()) {
1536     case Token::FUNCTION:
1537       result = ParseHoistableDeclaration(&local_names, true);
1538       break;
1539 
1540     case Token::CLASS:
1541       Consume(Token::CLASS);
1542       result = ParseClassDeclaration(&local_names, true);
1543       break;
1544 
1545     case Token::ASYNC:
1546       if (PeekAhead() == Token::FUNCTION &&
1547           !scanner()->HasLineTerminatorAfterNext()) {
1548         Consume(Token::ASYNC);
1549         result = ParseAsyncFunctionDeclaration(&local_names, true);
1550         break;
1551       }
1552       V8_FALLTHROUGH;
1553 
1554     default: {
1555       int pos = position();
1556       AcceptINScope scope(this, true);
1557       Expression* value = ParseAssignmentExpression();
1558       SetFunctionName(value, ast_value_factory()->default_string());
1559 
1560       const AstRawString* local_name =
1561           ast_value_factory()->dot_default_string();
1562       local_names.Add(local_name, zone());
1563 
1564       // It's fine to declare this as VariableMode::kConst because the user has
1565       // no way of writing to it.
1566       VariableProxy* proxy =
1567           DeclareBoundVariable(local_name, VariableMode::kConst, pos);
1568       proxy->var()->set_initializer_position(position());
1569 
1570       Assignment* assignment = factory()->NewAssignment(
1571           Token::INIT, proxy, value, kNoSourcePosition);
1572       result = IgnoreCompletion(
1573           factory()->NewExpressionStatement(assignment, kNoSourcePosition));
1574 
1575       ExpectSemicolon();
1576       break;
1577     }
1578   }
1579 
1580   if (result != nullptr) {
1581     DCHECK_EQ(local_names.length(), 1);
1582     module()->AddExport(local_names.first(),
1583                         ast_value_factory()->default_string(), default_loc,
1584                         zone());
1585   }
1586 
1587   return result;
1588 }
1589 
NextInternalNamespaceExportName()1590 const AstRawString* Parser::NextInternalNamespaceExportName() {
1591   const char* prefix = ".ns-export";
1592   std::string s(prefix);
1593   s.append(std::to_string(number_of_named_namespace_exports_++));
1594   return ast_value_factory()->GetOneByteString(s.c_str());
1595 }
1596 
ParseExportStar()1597 void Parser::ParseExportStar() {
1598   int pos = position();
1599   Consume(Token::MUL);
1600 
1601   if (!PeekContextualKeyword(ast_value_factory()->as_string())) {
1602     // 'export' '*' 'from' ModuleSpecifier ';'
1603     Scanner::Location loc = scanner()->location();
1604     ExpectContextualKeyword(ast_value_factory()->from_string());
1605     Scanner::Location specifier_loc = scanner()->peek_location();
1606     const AstRawString* module_specifier = ParseModuleSpecifier();
1607     const ImportAssertions* import_assertions = ParseImportAssertClause();
1608     ExpectSemicolon();
1609     module()->AddStarExport(module_specifier, import_assertions, loc,
1610                             specifier_loc, zone());
1611     return;
1612   }
1613 
1614   // 'export' '*' 'as' IdentifierName 'from' ModuleSpecifier ';'
1615   //
1616   // Desugaring:
1617   //   export * as x from "...";
1618   // ~>
1619   //   import * as .x from "..."; export {.x as x};
1620   //
1621   // Note that the desugared internal namespace export name (.x above) will
1622   // never conflict with a string literal export name, as literal string export
1623   // names in local name positions (i.e. left of 'as' or in a clause without
1624   // 'as') are disallowed without a following 'from' clause.
1625 
1626   ExpectContextualKeyword(ast_value_factory()->as_string());
1627   const AstRawString* export_name = ParseExportSpecifierName();
1628   Scanner::Location export_name_loc = scanner()->location();
1629   const AstRawString* local_name = NextInternalNamespaceExportName();
1630   Scanner::Location local_name_loc = Scanner::Location::invalid();
1631   DeclareUnboundVariable(local_name, VariableMode::kConst, kCreatedInitialized,
1632                          pos);
1633 
1634   ExpectContextualKeyword(ast_value_factory()->from_string());
1635   Scanner::Location specifier_loc = scanner()->peek_location();
1636   const AstRawString* module_specifier = ParseModuleSpecifier();
1637   const ImportAssertions* import_assertions = ParseImportAssertClause();
1638   ExpectSemicolon();
1639 
1640   module()->AddStarImport(local_name, module_specifier, import_assertions,
1641                           local_name_loc, specifier_loc, zone());
1642   module()->AddExport(local_name, export_name, export_name_loc, zone());
1643 }
1644 
ParseExportDeclaration()1645 Statement* Parser::ParseExportDeclaration() {
1646   // ExportDeclaration:
1647   //    'export' '*' 'from' ModuleSpecifier ';'
1648   //    'export' '*' 'from' ModuleSpecifier [no LineTerminator here]
1649   //        AssertClause ';'
1650   //    'export' '*' 'as' IdentifierName 'from' ModuleSpecifier ';'
1651   //    'export' '*' 'as' IdentifierName 'from' ModuleSpecifier
1652   //        [no LineTerminator here] AssertClause ';'
1653   //    'export' '*' 'as' ModuleExportName 'from' ModuleSpecifier ';'
1654   //    'export' '*' 'as' ModuleExportName 'from' ModuleSpecifier ';'
1655   //        [no LineTerminator here] AssertClause ';'
1656   //    'export' ExportClause ('from' ModuleSpecifier)? ';'
1657   //    'export' ExportClause ('from' ModuleSpecifier [no LineTerminator here]
1658   //        AssertClause)? ';'
1659   //    'export' VariableStatement
1660   //    'export' Declaration
1661   //    'export' 'default' ... (handled in ParseExportDefault)
1662   //
1663   // ModuleExportName :
1664   //   StringLiteral
1665 
1666   Expect(Token::EXPORT);
1667   Statement* result = nullptr;
1668   ZonePtrList<const AstRawString> names(1, zone());
1669   Scanner::Location loc = scanner()->peek_location();
1670   switch (peek()) {
1671     case Token::DEFAULT:
1672       return ParseExportDefault();
1673 
1674     case Token::MUL:
1675       ParseExportStar();
1676       return factory()->EmptyStatement();
1677 
1678     case Token::LBRACE: {
1679       // There are two cases here:
1680       //
1681       // 'export' ExportClause ';'
1682       // and
1683       // 'export' ExportClause FromClause ';'
1684       //
1685       // In the first case, the exported identifiers in ExportClause must
1686       // not be reserved words, while in the latter they may be. We
1687       // pass in a location that gets filled with the first reserved word
1688       // encountered, and then throw a SyntaxError if we are in the
1689       // non-FromClause case.
1690       Scanner::Location reserved_loc = Scanner::Location::invalid();
1691       Scanner::Location string_literal_local_name_loc =
1692           Scanner::Location::invalid();
1693       ZoneChunkList<ExportClauseData>* export_data =
1694           ParseExportClause(&reserved_loc, &string_literal_local_name_loc);
1695       if (CheckContextualKeyword(ast_value_factory()->from_string())) {
1696         Scanner::Location specifier_loc = scanner()->peek_location();
1697         const AstRawString* module_specifier = ParseModuleSpecifier();
1698         const ImportAssertions* import_assertions = ParseImportAssertClause();
1699         ExpectSemicolon();
1700 
1701         if (export_data->is_empty()) {
1702           module()->AddEmptyImport(module_specifier, import_assertions,
1703                                    specifier_loc, zone());
1704         } else {
1705           for (const ExportClauseData& data : *export_data) {
1706             module()->AddExport(data.local_name, data.export_name,
1707                                 module_specifier, import_assertions,
1708                                 data.location, specifier_loc, zone());
1709           }
1710         }
1711       } else {
1712         if (reserved_loc.IsValid()) {
1713           // No FromClause, so reserved words are invalid in ExportClause.
1714           ReportMessageAt(reserved_loc, MessageTemplate::kUnexpectedReserved);
1715           return nullptr;
1716         } else if (string_literal_local_name_loc.IsValid()) {
1717           ReportMessageAt(string_literal_local_name_loc,
1718                           MessageTemplate::kModuleExportNameWithoutFromClause);
1719           return nullptr;
1720         }
1721 
1722         ExpectSemicolon();
1723 
1724         for (const ExportClauseData& data : *export_data) {
1725           module()->AddExport(data.local_name, data.export_name, data.location,
1726                               zone());
1727         }
1728       }
1729       return factory()->EmptyStatement();
1730     }
1731 
1732     case Token::FUNCTION:
1733       result = ParseHoistableDeclaration(&names, false);
1734       break;
1735 
1736     case Token::CLASS:
1737       Consume(Token::CLASS);
1738       result = ParseClassDeclaration(&names, false);
1739       break;
1740 
1741     case Token::VAR:
1742     case Token::LET:
1743     case Token::CONST:
1744       result = ParseVariableStatement(kStatementListItem, &names);
1745       break;
1746 
1747     case Token::ASYNC:
1748       Consume(Token::ASYNC);
1749       if (peek() == Token::FUNCTION &&
1750           !scanner()->HasLineTerminatorBeforeNext()) {
1751         result = ParseAsyncFunctionDeclaration(&names, false);
1752         break;
1753       }
1754       V8_FALLTHROUGH;
1755 
1756     default:
1757       ReportUnexpectedToken(scanner()->current_token());
1758       return nullptr;
1759   }
1760   loc.end_pos = scanner()->location().end_pos;
1761 
1762   SourceTextModuleDescriptor* descriptor = module();
1763   for (const AstRawString* name : names) {
1764     descriptor->AddExport(name, name, loc, zone());
1765   }
1766 
1767   return result;
1768 }
1769 
DeclareUnboundVariable(const AstRawString * name,VariableMode mode,InitializationFlag init,int pos)1770 void Parser::DeclareUnboundVariable(const AstRawString* name, VariableMode mode,
1771                                     InitializationFlag init, int pos) {
1772   bool was_added;
1773   Variable* var = DeclareVariable(name, NORMAL_VARIABLE, mode, init, scope(),
1774                                   &was_added, pos, end_position());
1775   // The variable will be added to the declarations list, but since we are not
1776   // binding it to anything, we can simply ignore it here.
1777   USE(var);
1778 }
1779 
DeclareBoundVariable(const AstRawString * name,VariableMode mode,int pos)1780 VariableProxy* Parser::DeclareBoundVariable(const AstRawString* name,
1781                                             VariableMode mode, int pos) {
1782   DCHECK_NOT_NULL(name);
1783   VariableProxy* proxy =
1784       factory()->NewVariableProxy(name, NORMAL_VARIABLE, position());
1785   bool was_added;
1786   Variable* var = DeclareVariable(name, NORMAL_VARIABLE, mode,
1787                                   Variable::DefaultInitializationFlag(mode),
1788                                   scope(), &was_added, pos, end_position());
1789   proxy->BindTo(var);
1790   return proxy;
1791 }
1792 
DeclareAndBindVariable(VariableProxy * proxy,VariableKind kind,VariableMode mode,Scope * scope,bool * was_added,int initializer_position)1793 void Parser::DeclareAndBindVariable(VariableProxy* proxy, VariableKind kind,
1794                                     VariableMode mode, Scope* scope,
1795                                     bool* was_added, int initializer_position) {
1796   Variable* var = DeclareVariable(
1797       proxy->raw_name(), kind, mode, Variable::DefaultInitializationFlag(mode),
1798       scope, was_added, proxy->position(), kNoSourcePosition);
1799   var->set_initializer_position(initializer_position);
1800   proxy->BindTo(var);
1801 }
1802 
DeclareVariable(const AstRawString * name,VariableKind kind,VariableMode mode,InitializationFlag init,Scope * scope,bool * was_added,int begin,int end)1803 Variable* Parser::DeclareVariable(const AstRawString* name, VariableKind kind,
1804                                   VariableMode mode, InitializationFlag init,
1805                                   Scope* scope, bool* was_added, int begin,
1806                                   int end) {
1807   Declaration* declaration;
1808   if (mode == VariableMode::kVar && !scope->is_declaration_scope()) {
1809     DCHECK(scope->is_block_scope() || scope->is_with_scope());
1810     declaration = factory()->NewNestedVariableDeclaration(scope, begin);
1811   } else {
1812     declaration = factory()->NewVariableDeclaration(begin);
1813   }
1814   Declare(declaration, name, kind, mode, init, scope, was_added, begin, end);
1815   return declaration->var();
1816 }
1817 
Declare(Declaration * declaration,const AstRawString * name,VariableKind variable_kind,VariableMode mode,InitializationFlag init,Scope * scope,bool * was_added,int var_begin_pos,int var_end_pos)1818 void Parser::Declare(Declaration* declaration, const AstRawString* name,
1819                      VariableKind variable_kind, VariableMode mode,
1820                      InitializationFlag init, Scope* scope, bool* was_added,
1821                      int var_begin_pos, int var_end_pos) {
1822   bool local_ok = true;
1823   bool sloppy_mode_block_scope_function_redefinition = false;
1824   scope->DeclareVariable(
1825       declaration, name, var_begin_pos, mode, variable_kind, init, was_added,
1826       &sloppy_mode_block_scope_function_redefinition, &local_ok);
1827   if (!local_ok) {
1828     // If we only have the start position of a proxy, we can't highlight the
1829     // whole variable name.  Pretend its length is 1 so that we highlight at
1830     // least the first character.
1831     Scanner::Location loc(var_begin_pos, var_end_pos != kNoSourcePosition
1832                                              ? var_end_pos
1833                                              : var_begin_pos + 1);
1834     if (variable_kind == PARAMETER_VARIABLE) {
1835       ReportMessageAt(loc, MessageTemplate::kParamDupe);
1836     } else {
1837       ReportMessageAt(loc, MessageTemplate::kVarRedeclaration,
1838                       declaration->var()->raw_name());
1839     }
1840   } else if (sloppy_mode_block_scope_function_redefinition) {
1841     ++use_counts_[v8::Isolate::kSloppyModeBlockScopedFunctionRedefinition];
1842   }
1843 }
1844 
BuildInitializationBlock(DeclarationParsingResult * parsing_result)1845 Statement* Parser::BuildInitializationBlock(
1846     DeclarationParsingResult* parsing_result) {
1847   ScopedPtrList<Statement> statements(pointer_buffer());
1848   for (const auto& declaration : parsing_result->declarations) {
1849     if (!declaration.initializer) continue;
1850     InitializeVariables(&statements, parsing_result->descriptor.kind,
1851                         &declaration);
1852   }
1853   return factory()->NewBlock(true, statements);
1854 }
1855 
DeclareFunction(const AstRawString * variable_name,FunctionLiteral * function,VariableMode mode,VariableKind kind,int beg_pos,int end_pos,ZonePtrList<const AstRawString> * names)1856 Statement* Parser::DeclareFunction(const AstRawString* variable_name,
1857                                    FunctionLiteral* function, VariableMode mode,
1858                                    VariableKind kind, int beg_pos, int end_pos,
1859                                    ZonePtrList<const AstRawString>* names) {
1860   Declaration* declaration =
1861       factory()->NewFunctionDeclaration(function, beg_pos);
1862   bool was_added;
1863   Declare(declaration, variable_name, kind, mode, kCreatedInitialized, scope(),
1864           &was_added, beg_pos);
1865   if (info()->flags().coverage_enabled()) {
1866     // Force the function to be allocated when collecting source coverage, so
1867     // that even dead functions get source coverage data.
1868     declaration->var()->set_is_used();
1869   }
1870   if (names) names->Add(variable_name, zone());
1871   if (kind == SLOPPY_BLOCK_FUNCTION_VARIABLE) {
1872     Token::Value init = loop_nesting_depth() > 0 ? Token::ASSIGN : Token::INIT;
1873     SloppyBlockFunctionStatement* statement =
1874         factory()->NewSloppyBlockFunctionStatement(end_pos, declaration->var(),
1875                                                    init);
1876     GetDeclarationScope()->DeclareSloppyBlockFunction(statement);
1877     return statement;
1878   }
1879   return factory()->EmptyStatement();
1880 }
1881 
DeclareClass(const AstRawString * variable_name,Expression * value,ZonePtrList<const AstRawString> * names,int class_token_pos,int end_pos)1882 Statement* Parser::DeclareClass(const AstRawString* variable_name,
1883                                 Expression* value,
1884                                 ZonePtrList<const AstRawString>* names,
1885                                 int class_token_pos, int end_pos) {
1886   VariableProxy* proxy =
1887       DeclareBoundVariable(variable_name, VariableMode::kLet, class_token_pos);
1888   proxy->var()->set_initializer_position(end_pos);
1889   if (names) names->Add(variable_name, zone());
1890 
1891   Assignment* assignment =
1892       factory()->NewAssignment(Token::INIT, proxy, value, class_token_pos);
1893   return IgnoreCompletion(
1894       factory()->NewExpressionStatement(assignment, kNoSourcePosition));
1895 }
1896 
DeclareNative(const AstRawString * name,int pos)1897 Statement* Parser::DeclareNative(const AstRawString* name, int pos) {
1898   // Make sure that the function containing the native declaration
1899   // isn't lazily compiled. The extension structures are only
1900   // accessible while parsing the first time not when reparsing
1901   // because of lazy compilation.
1902   GetClosureScope()->ForceEagerCompilation();
1903 
1904   // TODO(1240846): It's weird that native function declarations are
1905   // introduced dynamically when we meet their declarations, whereas
1906   // other functions are set up when entering the surrounding scope.
1907   VariableProxy* proxy = DeclareBoundVariable(name, VariableMode::kVar, pos);
1908   NativeFunctionLiteral* lit =
1909       factory()->NewNativeFunctionLiteral(name, extension(), kNoSourcePosition);
1910   return factory()->NewExpressionStatement(
1911       factory()->NewAssignment(Token::INIT, proxy, lit, kNoSourcePosition),
1912       pos);
1913 }
1914 
IgnoreCompletion(Statement * statement)1915 Block* Parser::IgnoreCompletion(Statement* statement) {
1916   Block* block = factory()->NewBlock(1, true);
1917   block->statements()->Add(statement, zone());
1918   return block;
1919 }
1920 
RewriteReturn(Expression * return_value,int pos)1921 Expression* Parser::RewriteReturn(Expression* return_value, int pos) {
1922   if (IsDerivedConstructor(function_state_->kind())) {
1923     // For subclass constructors we need to return this in case of undefined;
1924     // other primitive values trigger an exception in the ConstructStub.
1925     //
1926     //   return expr;
1927     //
1928     // Is rewritten as:
1929     //
1930     //   return (temp = expr) === undefined ? this : temp;
1931 
1932     // temp = expr
1933     Variable* temp = NewTemporary(ast_value_factory()->empty_string());
1934     Assignment* assign = factory()->NewAssignment(
1935         Token::ASSIGN, factory()->NewVariableProxy(temp), return_value, pos);
1936 
1937     // temp === undefined
1938     Expression* is_undefined = factory()->NewCompareOperation(
1939         Token::EQ_STRICT, assign,
1940         factory()->NewUndefinedLiteral(kNoSourcePosition), pos);
1941 
1942     // is_undefined ? this : temp
1943     // We don't need to call UseThis() since it's guaranteed to be called
1944     // for derived constructors after parsing the constructor in
1945     // ParseFunctionBody.
1946     return_value =
1947         factory()->NewConditional(is_undefined, factory()->ThisExpression(),
1948                                   factory()->NewVariableProxy(temp), pos);
1949   }
1950   return return_value;
1951 }
1952 
RewriteSwitchStatement(SwitchStatement * switch_statement,Scope * scope)1953 Statement* Parser::RewriteSwitchStatement(SwitchStatement* switch_statement,
1954                                           Scope* scope) {
1955   // In order to get the CaseClauses to execute in their own lexical scope,
1956   // but without requiring downstream code to have special scope handling
1957   // code for switch statements, desugar into blocks as follows:
1958   // {  // To group the statements--harmless to evaluate Expression in scope
1959   //   .tag_variable = Expression;
1960   //   {  // To give CaseClauses a scope
1961   //     switch (.tag_variable) { CaseClause* }
1962   //   }
1963   // }
1964   DCHECK_NOT_NULL(scope);
1965   DCHECK(scope->is_block_scope());
1966   DCHECK_GE(switch_statement->position(), scope->start_position());
1967   DCHECK_LT(switch_statement->position(), scope->end_position());
1968 
1969   Block* switch_block = factory()->NewBlock(2, false);
1970 
1971   Expression* tag = switch_statement->tag();
1972   Variable* tag_variable =
1973       NewTemporary(ast_value_factory()->dot_switch_tag_string());
1974   Assignment* tag_assign = factory()->NewAssignment(
1975       Token::ASSIGN, factory()->NewVariableProxy(tag_variable), tag,
1976       tag->position());
1977   // Wrap with IgnoreCompletion so the tag isn't returned as the completion
1978   // value, in case the switch statements don't have a value.
1979   Statement* tag_statement = IgnoreCompletion(
1980       factory()->NewExpressionStatement(tag_assign, kNoSourcePosition));
1981   switch_block->statements()->Add(tag_statement, zone());
1982 
1983   switch_statement->set_tag(factory()->NewVariableProxy(tag_variable));
1984   Block* cases_block = factory()->NewBlock(1, false);
1985   cases_block->statements()->Add(switch_statement, zone());
1986   cases_block->set_scope(scope);
1987   switch_block->statements()->Add(cases_block, zone());
1988   return switch_block;
1989 }
1990 
InitializeVariables(ScopedPtrList<Statement> * statements,VariableKind kind,const DeclarationParsingResult::Declaration * declaration)1991 void Parser::InitializeVariables(
1992     ScopedPtrList<Statement>* statements, VariableKind kind,
1993     const DeclarationParsingResult::Declaration* declaration) {
1994   if (has_error()) return;
1995 
1996   DCHECK_NOT_NULL(declaration->initializer);
1997 
1998   int pos = declaration->value_beg_pos;
1999   if (pos == kNoSourcePosition) {
2000     pos = declaration->initializer->position();
2001   }
2002   Assignment* assignment = factory()->NewAssignment(
2003       Token::INIT, declaration->pattern, declaration->initializer, pos);
2004   statements->Add(factory()->NewExpressionStatement(assignment, pos));
2005 }
2006 
RewriteCatchPattern(CatchInfo * catch_info)2007 Block* Parser::RewriteCatchPattern(CatchInfo* catch_info) {
2008   DCHECK_NOT_NULL(catch_info->pattern);
2009 
2010   DeclarationParsingResult::Declaration decl(
2011       catch_info->pattern, factory()->NewVariableProxy(catch_info->variable));
2012 
2013   ScopedPtrList<Statement> init_statements(pointer_buffer());
2014   InitializeVariables(&init_statements, NORMAL_VARIABLE, &decl);
2015   return factory()->NewBlock(true, init_statements);
2016 }
2017 
ReportVarRedeclarationIn(const AstRawString * name,Scope * scope)2018 void Parser::ReportVarRedeclarationIn(const AstRawString* name, Scope* scope) {
2019   for (Declaration* decl : *scope->declarations()) {
2020     if (decl->var()->raw_name() == name) {
2021       int position = decl->position();
2022       Scanner::Location location =
2023           position == kNoSourcePosition
2024               ? Scanner::Location::invalid()
2025               : Scanner::Location(position, position + name->length());
2026       ReportMessageAt(location, MessageTemplate::kVarRedeclaration, name);
2027       return;
2028     }
2029   }
2030   UNREACHABLE();
2031 }
2032 
RewriteTryStatement(Block * try_block,Block * catch_block,const SourceRange & catch_range,Block * finally_block,const SourceRange & finally_range,const CatchInfo & catch_info,int pos)2033 Statement* Parser::RewriteTryStatement(Block* try_block, Block* catch_block,
2034                                        const SourceRange& catch_range,
2035                                        Block* finally_block,
2036                                        const SourceRange& finally_range,
2037                                        const CatchInfo& catch_info, int pos) {
2038   // Simplify the AST nodes by converting:
2039   //   'try B0 catch B1 finally B2'
2040   // to:
2041   //   'try { try B0 catch B1 } finally B2'
2042 
2043   if (catch_block != nullptr && finally_block != nullptr) {
2044     // If we have both, create an inner try/catch.
2045     TryCatchStatement* statement;
2046     statement = factory()->NewTryCatchStatement(try_block, catch_info.scope,
2047                                                 catch_block, kNoSourcePosition);
2048     RecordTryCatchStatementSourceRange(statement, catch_range);
2049 
2050     try_block = factory()->NewBlock(1, false);
2051     try_block->statements()->Add(statement, zone());
2052     catch_block = nullptr;  // Clear to indicate it's been handled.
2053   }
2054 
2055   if (catch_block != nullptr) {
2056     DCHECK_NULL(finally_block);
2057     TryCatchStatement* stmt = factory()->NewTryCatchStatement(
2058         try_block, catch_info.scope, catch_block, pos);
2059     RecordTryCatchStatementSourceRange(stmt, catch_range);
2060     return stmt;
2061   } else {
2062     DCHECK_NOT_NULL(finally_block);
2063     TryFinallyStatement* stmt =
2064         factory()->NewTryFinallyStatement(try_block, finally_block, pos);
2065     RecordTryFinallyStatementSourceRange(stmt, finally_range);
2066     return stmt;
2067   }
2068 }
2069 
ParseAndRewriteGeneratorFunctionBody(int pos,FunctionKind kind,ScopedPtrList<Statement> * body)2070 void Parser::ParseAndRewriteGeneratorFunctionBody(
2071     int pos, FunctionKind kind, ScopedPtrList<Statement>* body) {
2072   // For ES6 Generators, we just prepend the initial yield.
2073   Expression* initial_yield = BuildInitialYield(pos, kind);
2074   body->Add(
2075       factory()->NewExpressionStatement(initial_yield, kNoSourcePosition));
2076   ParseStatementList(body, Token::RBRACE);
2077 }
2078 
ParseAndRewriteAsyncGeneratorFunctionBody(int pos,FunctionKind kind,ScopedPtrList<Statement> * body)2079 void Parser::ParseAndRewriteAsyncGeneratorFunctionBody(
2080     int pos, FunctionKind kind, ScopedPtrList<Statement>* body) {
2081   // For ES2017 Async Generators, we produce:
2082   //
2083   // try {
2084   //   InitialYield;
2085   //   ...body...;
2086   //   // fall through to the implicit return after the try-finally
2087   // } catch (.catch) {
2088   //   %AsyncGeneratorReject(generator, .catch);
2089   // } finally {
2090   //   %_GeneratorClose(generator);
2091   // }
2092   //
2093   // - InitialYield yields the actual generator object.
2094   // - Any return statement inside the body will have its argument wrapped
2095   //   in an iterator result object with a "done" property set to `true`.
2096   // - If the generator terminates for whatever reason, we must close it.
2097   //   Hence the finally clause.
2098   // - BytecodeGenerator performs special handling for ReturnStatements in
2099   //   async generator functions, resolving the appropriate Promise with an
2100   //   "done" iterator result object containing a Promise-unwrapped value.
2101   DCHECK(IsAsyncGeneratorFunction(kind));
2102 
2103   Block* try_block;
2104   {
2105     ScopedPtrList<Statement> statements(pointer_buffer());
2106     Expression* initial_yield = BuildInitialYield(pos, kind);
2107     statements.Add(
2108         factory()->NewExpressionStatement(initial_yield, kNoSourcePosition));
2109     ParseStatementList(&statements, Token::RBRACE);
2110     // Since the whole body is wrapped in a try-catch, make the implicit
2111     // end-of-function return explicit to ensure BytecodeGenerator's special
2112     // handling for ReturnStatements in async generators applies.
2113     statements.Add(factory()->NewSyntheticAsyncReturnStatement(
2114         factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition));
2115 
2116     // Don't create iterator result for async generators, as the resume methods
2117     // will create it.
2118     try_block = factory()->NewBlock(false, statements);
2119   }
2120 
2121   // For AsyncGenerators, a top-level catch block will reject the Promise.
2122   Scope* catch_scope = NewHiddenCatchScope();
2123 
2124   Block* catch_block;
2125   {
2126     ScopedPtrList<Expression> reject_args(pointer_buffer());
2127     reject_args.Add(factory()->NewVariableProxy(
2128         function_state_->scope()->generator_object_var()));
2129     reject_args.Add(factory()->NewVariableProxy(catch_scope->catch_variable()));
2130 
2131     Expression* reject_call = factory()->NewCallRuntime(
2132         Runtime::kInlineAsyncGeneratorReject, reject_args, kNoSourcePosition);
2133     catch_block = IgnoreCompletion(factory()->NewReturnStatement(
2134         reject_call, kNoSourcePosition, kNoSourcePosition));
2135   }
2136 
2137   {
2138     ScopedPtrList<Statement> statements(pointer_buffer());
2139     TryStatement* try_catch = factory()->NewTryCatchStatementForAsyncAwait(
2140         try_block, catch_scope, catch_block, kNoSourcePosition);
2141     statements.Add(try_catch);
2142     try_block = factory()->NewBlock(false, statements);
2143   }
2144 
2145   Expression* close_call;
2146   {
2147     ScopedPtrList<Expression> close_args(pointer_buffer());
2148     VariableProxy* call_proxy = factory()->NewVariableProxy(
2149         function_state_->scope()->generator_object_var());
2150     close_args.Add(call_proxy);
2151     close_call = factory()->NewCallRuntime(Runtime::kInlineGeneratorClose,
2152                                            close_args, kNoSourcePosition);
2153   }
2154 
2155   Block* finally_block;
2156   {
2157     ScopedPtrList<Statement> statements(pointer_buffer());
2158     statements.Add(
2159         factory()->NewExpressionStatement(close_call, kNoSourcePosition));
2160     finally_block = factory()->NewBlock(false, statements);
2161   }
2162 
2163   body->Add(factory()->NewTryFinallyStatement(try_block, finally_block,
2164                                               kNoSourcePosition));
2165 }
2166 
DeclareFunctionNameVar(const AstRawString * function_name,FunctionSyntaxKind function_syntax_kind,DeclarationScope * function_scope)2167 void Parser::DeclareFunctionNameVar(const AstRawString* function_name,
2168                                     FunctionSyntaxKind function_syntax_kind,
2169                                     DeclarationScope* function_scope) {
2170   if (function_syntax_kind == FunctionSyntaxKind::kNamedExpression &&
2171       function_scope->LookupLocal(function_name) == nullptr) {
2172     DCHECK_EQ(function_scope, scope());
2173     function_scope->DeclareFunctionVar(function_name);
2174   }
2175 }
2176 
2177 // Special case for legacy for
2178 //
2179 //    for (var x = initializer in enumerable) body
2180 //
2181 // An initialization block of the form
2182 //
2183 //    {
2184 //      x = initializer;
2185 //    }
2186 //
2187 // is returned in this case.  It has reserved space for two statements,
2188 // so that (later on during parsing), the equivalent of
2189 //
2190 //   for (x in enumerable) body
2191 //
2192 // is added as a second statement to it.
RewriteForVarInLegacy(const ForInfo & for_info)2193 Block* Parser::RewriteForVarInLegacy(const ForInfo& for_info) {
2194   const DeclarationParsingResult::Declaration& decl =
2195       for_info.parsing_result.declarations[0];
2196   if (!IsLexicalVariableMode(for_info.parsing_result.descriptor.mode) &&
2197       decl.initializer != nullptr && decl.pattern->IsVariableProxy()) {
2198     ++use_counts_[v8::Isolate::kForInInitializer];
2199     const AstRawString* name = decl.pattern->AsVariableProxy()->raw_name();
2200     VariableProxy* single_var = NewUnresolved(name);
2201     Block* init_block = factory()->NewBlock(2, true);
2202     init_block->statements()->Add(
2203         factory()->NewExpressionStatement(
2204             factory()->NewAssignment(Token::ASSIGN, single_var,
2205                                      decl.initializer, decl.value_beg_pos),
2206             kNoSourcePosition),
2207         zone());
2208     return init_block;
2209   }
2210   return nullptr;
2211 }
2212 
2213 // Rewrite a for-in/of statement of the form
2214 //
2215 //   for (let/const/var x in/of e) b
2216 //
2217 // into
2218 //
2219 //   {
2220 //     var temp;
2221 //     for (temp in/of e) {
2222 //       let/const/var x = temp;
2223 //       b;
2224 //     }
2225 //     let x;  // for TDZ
2226 //   }
DesugarBindingInForEachStatement(ForInfo * for_info,Block ** body_block,Expression ** each_variable)2227 void Parser::DesugarBindingInForEachStatement(ForInfo* for_info,
2228                                               Block** body_block,
2229                                               Expression** each_variable) {
2230   DCHECK_EQ(1, for_info->parsing_result.declarations.size());
2231   DeclarationParsingResult::Declaration& decl =
2232       for_info->parsing_result.declarations[0];
2233   Variable* temp = NewTemporary(ast_value_factory()->dot_for_string());
2234   ScopedPtrList<Statement> each_initialization_statements(pointer_buffer());
2235   DCHECK_IMPLIES(!has_error(), decl.pattern != nullptr);
2236   decl.initializer = factory()->NewVariableProxy(temp, for_info->position);
2237   InitializeVariables(&each_initialization_statements, NORMAL_VARIABLE, &decl);
2238 
2239   *body_block = factory()->NewBlock(3, false);
2240   (*body_block)
2241       ->statements()
2242       ->Add(factory()->NewBlock(true, each_initialization_statements), zone());
2243   *each_variable = factory()->NewVariableProxy(temp, for_info->position);
2244 }
2245 
2246 // Create a TDZ for any lexically-bound names in for in/of statements.
CreateForEachStatementTDZ(Block * init_block,const ForInfo & for_info)2247 Block* Parser::CreateForEachStatementTDZ(Block* init_block,
2248                                          const ForInfo& for_info) {
2249   if (IsLexicalVariableMode(for_info.parsing_result.descriptor.mode)) {
2250     DCHECK_NULL(init_block);
2251 
2252     init_block = factory()->NewBlock(1, false);
2253 
2254     for (const AstRawString* bound_name : for_info.bound_names) {
2255       // TODO(adamk): This needs to be some sort of special
2256       // INTERNAL variable that's invisible to the debugger
2257       // but visible to everything else.
2258       VariableProxy* tdz_proxy = DeclareBoundVariable(
2259           bound_name, VariableMode::kLet, kNoSourcePosition);
2260       tdz_proxy->var()->set_initializer_position(position());
2261     }
2262   }
2263   return init_block;
2264 }
2265 
DesugarLexicalBindingsInForStatement(ForStatement * loop,Statement * init,Expression * cond,Statement * next,Statement * body,Scope * inner_scope,const ForInfo & for_info)2266 Statement* Parser::DesugarLexicalBindingsInForStatement(
2267     ForStatement* loop, Statement* init, Expression* cond, Statement* next,
2268     Statement* body, Scope* inner_scope, const ForInfo& for_info) {
2269   // ES6 13.7.4.8 specifies that on each loop iteration the let variables are
2270   // copied into a new environment.  Moreover, the "next" statement must be
2271   // evaluated not in the environment of the just completed iteration but in
2272   // that of the upcoming one.  We achieve this with the following desugaring.
2273   // Extra care is needed to preserve the completion value of the original loop.
2274   //
2275   // We are given a for statement of the form
2276   //
2277   //  labels: for (let/const x = i; cond; next) body
2278   //
2279   // and rewrite it as follows.  Here we write {{ ... }} for init-blocks, ie.,
2280   // blocks whose ignore_completion_value_ flag is set.
2281   //
2282   //  {
2283   //    let/const x = i;
2284   //    temp_x = x;
2285   //    first = 1;
2286   //    undefined;
2287   //    outer: for (;;) {
2288   //      let/const x = temp_x;
2289   //      {{ if (first == 1) {
2290   //           first = 0;
2291   //         } else {
2292   //           next;
2293   //         }
2294   //         flag = 1;
2295   //         if (!cond) break;
2296   //      }}
2297   //      labels: for (; flag == 1; flag = 0, temp_x = x) {
2298   //        body
2299   //      }
2300   //      {{ if (flag == 1)  // Body used break.
2301   //           break;
2302   //      }}
2303   //    }
2304   //  }
2305 
2306   DCHECK_GT(for_info.bound_names.length(), 0);
2307   ScopedPtrList<Variable> temps(pointer_buffer());
2308 
2309   Block* outer_block =
2310       factory()->NewBlock(for_info.bound_names.length() + 4, false);
2311 
2312   // Add statement: let/const x = i.
2313   outer_block->statements()->Add(init, zone());
2314 
2315   const AstRawString* temp_name = ast_value_factory()->dot_for_string();
2316 
2317   // For each lexical variable x:
2318   //   make statement: temp_x = x.
2319   for (const AstRawString* bound_name : for_info.bound_names) {
2320     VariableProxy* proxy = NewUnresolved(bound_name);
2321     Variable* temp = NewTemporary(temp_name);
2322     VariableProxy* temp_proxy = factory()->NewVariableProxy(temp);
2323     Assignment* assignment = factory()->NewAssignment(Token::ASSIGN, temp_proxy,
2324                                                       proxy, kNoSourcePosition);
2325     Statement* assignment_statement =
2326         factory()->NewExpressionStatement(assignment, kNoSourcePosition);
2327     outer_block->statements()->Add(assignment_statement, zone());
2328     temps.Add(temp);
2329   }
2330 
2331   Variable* first = nullptr;
2332   // Make statement: first = 1.
2333   if (next) {
2334     first = NewTemporary(temp_name);
2335     VariableProxy* first_proxy = factory()->NewVariableProxy(first);
2336     Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
2337     Assignment* assignment = factory()->NewAssignment(
2338         Token::ASSIGN, first_proxy, const1, kNoSourcePosition);
2339     Statement* assignment_statement =
2340         factory()->NewExpressionStatement(assignment, kNoSourcePosition);
2341     outer_block->statements()->Add(assignment_statement, zone());
2342   }
2343 
2344   // make statement: undefined;
2345   outer_block->statements()->Add(
2346       factory()->NewExpressionStatement(
2347           factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition),
2348       zone());
2349 
2350   // Make statement: outer: for (;;)
2351   // Note that we don't actually create the label, or set this loop up as an
2352   // explicit break target, instead handing it directly to those nodes that
2353   // need to know about it. This should be safe because we don't run any code
2354   // in this function that looks up break targets.
2355   ForStatement* outer_loop = factory()->NewForStatement(kNoSourcePosition);
2356   outer_block->statements()->Add(outer_loop, zone());
2357   outer_block->set_scope(scope());
2358 
2359   Block* inner_block = factory()->NewBlock(3, false);
2360   {
2361     BlockState block_state(&scope_, inner_scope);
2362 
2363     Block* ignore_completion_block =
2364         factory()->NewBlock(for_info.bound_names.length() + 3, true);
2365     ScopedPtrList<Variable> inner_vars(pointer_buffer());
2366     // For each let variable x:
2367     //    make statement: let/const x = temp_x.
2368     for (int i = 0; i < for_info.bound_names.length(); i++) {
2369       VariableProxy* proxy = DeclareBoundVariable(
2370           for_info.bound_names[i], for_info.parsing_result.descriptor.mode,
2371           kNoSourcePosition);
2372       inner_vars.Add(proxy->var());
2373       VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i));
2374       Assignment* assignment = factory()->NewAssignment(
2375           Token::INIT, proxy, temp_proxy, kNoSourcePosition);
2376       Statement* assignment_statement =
2377           factory()->NewExpressionStatement(assignment, kNoSourcePosition);
2378       int declaration_pos = for_info.parsing_result.descriptor.declaration_pos;
2379       DCHECK_NE(declaration_pos, kNoSourcePosition);
2380       proxy->var()->set_initializer_position(declaration_pos);
2381       ignore_completion_block->statements()->Add(assignment_statement, zone());
2382     }
2383 
2384     // Make statement: if (first == 1) { first = 0; } else { next; }
2385     if (next) {
2386       DCHECK(first);
2387       Expression* compare = nullptr;
2388       // Make compare expression: first == 1.
2389       {
2390         Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
2391         VariableProxy* first_proxy = factory()->NewVariableProxy(first);
2392         compare = factory()->NewCompareOperation(Token::EQ, first_proxy, const1,
2393                                                  kNoSourcePosition);
2394       }
2395       Statement* clear_first = nullptr;
2396       // Make statement: first = 0.
2397       {
2398         VariableProxy* first_proxy = factory()->NewVariableProxy(first);
2399         Expression* const0 = factory()->NewSmiLiteral(0, kNoSourcePosition);
2400         Assignment* assignment = factory()->NewAssignment(
2401             Token::ASSIGN, first_proxy, const0, kNoSourcePosition);
2402         clear_first =
2403             factory()->NewExpressionStatement(assignment, kNoSourcePosition);
2404       }
2405       Statement* clear_first_or_next = factory()->NewIfStatement(
2406           compare, clear_first, next, kNoSourcePosition);
2407       ignore_completion_block->statements()->Add(clear_first_or_next, zone());
2408     }
2409 
2410     Variable* flag = NewTemporary(temp_name);
2411     // Make statement: flag = 1.
2412     {
2413       VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
2414       Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
2415       Assignment* assignment = factory()->NewAssignment(
2416           Token::ASSIGN, flag_proxy, const1, kNoSourcePosition);
2417       Statement* assignment_statement =
2418           factory()->NewExpressionStatement(assignment, kNoSourcePosition);
2419       ignore_completion_block->statements()->Add(assignment_statement, zone());
2420     }
2421 
2422     // Make statement: if (!cond) break.
2423     if (cond) {
2424       Statement* stop =
2425           factory()->NewBreakStatement(outer_loop, kNoSourcePosition);
2426       Statement* noop = factory()->EmptyStatement();
2427       ignore_completion_block->statements()->Add(
2428           factory()->NewIfStatement(cond, noop, stop, cond->position()),
2429           zone());
2430     }
2431 
2432     inner_block->statements()->Add(ignore_completion_block, zone());
2433     // Make cond expression for main loop: flag == 1.
2434     Expression* flag_cond = nullptr;
2435     {
2436       Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
2437       VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
2438       flag_cond = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1,
2439                                                  kNoSourcePosition);
2440     }
2441 
2442     // Create chain of expressions "flag = 0, temp_x = x, ..."
2443     Statement* compound_next_statement = nullptr;
2444     {
2445       Expression* compound_next = nullptr;
2446       // Make expression: flag = 0.
2447       {
2448         VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
2449         Expression* const0 = factory()->NewSmiLiteral(0, kNoSourcePosition);
2450         compound_next = factory()->NewAssignment(Token::ASSIGN, flag_proxy,
2451                                                  const0, kNoSourcePosition);
2452       }
2453 
2454       // Make the comma-separated list of temp_x = x assignments.
2455       int inner_var_proxy_pos = scanner()->location().beg_pos;
2456       for (int i = 0; i < for_info.bound_names.length(); i++) {
2457         VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i));
2458         VariableProxy* proxy =
2459             factory()->NewVariableProxy(inner_vars.at(i), inner_var_proxy_pos);
2460         Assignment* assignment = factory()->NewAssignment(
2461             Token::ASSIGN, temp_proxy, proxy, kNoSourcePosition);
2462         compound_next = factory()->NewBinaryOperation(
2463             Token::COMMA, compound_next, assignment, kNoSourcePosition);
2464       }
2465 
2466       compound_next_statement =
2467           factory()->NewExpressionStatement(compound_next, kNoSourcePosition);
2468     }
2469 
2470     // Make statement: labels: for (; flag == 1; flag = 0, temp_x = x)
2471     // Note that we re-use the original loop node, which retains its labels
2472     // and ensures that any break or continue statements in body point to
2473     // the right place.
2474     loop->Initialize(nullptr, flag_cond, compound_next_statement, body);
2475     inner_block->statements()->Add(loop, zone());
2476 
2477     // Make statement: {{if (flag == 1) break;}}
2478     {
2479       Expression* compare = nullptr;
2480       // Make compare expresion: flag == 1.
2481       {
2482         Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
2483         VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
2484         compare = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1,
2485                                                  kNoSourcePosition);
2486       }
2487       Statement* stop =
2488           factory()->NewBreakStatement(outer_loop, kNoSourcePosition);
2489       Statement* empty = factory()->EmptyStatement();
2490       Statement* if_flag_break =
2491           factory()->NewIfStatement(compare, stop, empty, kNoSourcePosition);
2492       inner_block->statements()->Add(IgnoreCompletion(if_flag_break), zone());
2493     }
2494 
2495     inner_block->set_scope(inner_scope);
2496   }
2497 
2498   outer_loop->Initialize(nullptr, nullptr, nullptr, inner_block);
2499 
2500   return outer_block;
2501 }
2502 
ValidateDuplicate(Parser * parser) const2503 void ParserFormalParameters::ValidateDuplicate(Parser* parser) const {
2504   if (has_duplicate()) {
2505     parser->ReportMessageAt(duplicate_loc, MessageTemplate::kParamDupe);
2506   }
2507 }
ValidateStrictMode(Parser * parser) const2508 void ParserFormalParameters::ValidateStrictMode(Parser* parser) const {
2509   if (strict_error_loc.IsValid()) {
2510     parser->ReportMessageAt(strict_error_loc, strict_error_message);
2511   }
2512 }
2513 
AddArrowFunctionFormalParameters(ParserFormalParameters * parameters,Expression * expr,int end_pos)2514 void Parser::AddArrowFunctionFormalParameters(
2515     ParserFormalParameters* parameters, Expression* expr, int end_pos) {
2516   // ArrowFunctionFormals ::
2517   //    Nary(Token::COMMA, VariableProxy*, Tail)
2518   //    Binary(Token::COMMA, NonTailArrowFunctionFormals, Tail)
2519   //    Tail
2520   // NonTailArrowFunctionFormals ::
2521   //    Binary(Token::COMMA, NonTailArrowFunctionFormals, VariableProxy)
2522   //    VariableProxy
2523   // Tail ::
2524   //    VariableProxy
2525   //    Spread(VariableProxy)
2526   //
2527   // We need to visit the parameters in left-to-right order
2528   //
2529 
2530   // For the Nary case, we simply visit the parameters in a loop.
2531   if (expr->IsNaryOperation()) {
2532     NaryOperation* nary = expr->AsNaryOperation();
2533     // The classifier has already run, so we know that the expression is a valid
2534     // arrow function formals production.
2535     DCHECK_EQ(nary->op(), Token::COMMA);
2536     // Each op position is the end position of the *previous* expr, with the
2537     // second (i.e. first "subsequent") op position being the end position of
2538     // the first child expression.
2539     Expression* next = nary->first();
2540     for (size_t i = 0; i < nary->subsequent_length(); ++i) {
2541       AddArrowFunctionFormalParameters(parameters, next,
2542                                        nary->subsequent_op_position(i));
2543       next = nary->subsequent(i);
2544     }
2545     AddArrowFunctionFormalParameters(parameters, next, end_pos);
2546     return;
2547   }
2548 
2549   // For the binary case, we recurse on the left-hand side of binary comma
2550   // expressions.
2551   if (expr->IsBinaryOperation()) {
2552     BinaryOperation* binop = expr->AsBinaryOperation();
2553     // The classifier has already run, so we know that the expression is a valid
2554     // arrow function formals production.
2555     DCHECK_EQ(binop->op(), Token::COMMA);
2556     Expression* left = binop->left();
2557     Expression* right = binop->right();
2558     int comma_pos = binop->position();
2559     AddArrowFunctionFormalParameters(parameters, left, comma_pos);
2560     // LHS of comma expression should be unparenthesized.
2561     expr = right;
2562   }
2563 
2564   // Only the right-most expression may be a rest parameter.
2565   DCHECK(!parameters->has_rest);
2566 
2567   bool is_rest = expr->IsSpread();
2568   if (is_rest) {
2569     expr = expr->AsSpread()->expression();
2570     parameters->has_rest = true;
2571   }
2572   DCHECK_IMPLIES(parameters->is_simple, !is_rest);
2573   DCHECK_IMPLIES(parameters->is_simple, expr->IsVariableProxy());
2574 
2575   Expression* initializer = nullptr;
2576   if (expr->IsAssignment()) {
2577     Assignment* assignment = expr->AsAssignment();
2578     DCHECK(!assignment->IsCompoundAssignment());
2579     initializer = assignment->value();
2580     expr = assignment->target();
2581   }
2582 
2583   AddFormalParameter(parameters, expr, initializer, end_pos, is_rest);
2584 }
2585 
DeclareArrowFunctionFormalParameters(ParserFormalParameters * parameters,Expression * expr,const Scanner::Location & params_loc)2586 void Parser::DeclareArrowFunctionFormalParameters(
2587     ParserFormalParameters* parameters, Expression* expr,
2588     const Scanner::Location& params_loc) {
2589   if (expr->IsEmptyParentheses() || has_error()) return;
2590 
2591   AddArrowFunctionFormalParameters(parameters, expr, params_loc.end_pos);
2592 
2593   if (parameters->arity > Code::kMaxArguments) {
2594     ReportMessageAt(params_loc, MessageTemplate::kMalformedArrowFunParamList);
2595     return;
2596   }
2597 
2598   DeclareFormalParameters(parameters);
2599   DCHECK_IMPLIES(parameters->is_simple,
2600                  parameters->scope->has_simple_parameters());
2601 }
2602 
PrepareGeneratorVariables()2603 void Parser::PrepareGeneratorVariables() {
2604   // Calling a generator returns a generator object.  That object is stored
2605   // in a temporary variable, a definition that is used by "yield"
2606   // expressions.
2607   function_state_->scope()->DeclareGeneratorObjectVar(
2608       ast_value_factory()->dot_generator_object_string());
2609 }
2610 
ParseFunctionLiteral(const AstRawString * function_name,Scanner::Location function_name_location,FunctionNameValidity function_name_validity,FunctionKind kind,int function_token_pos,FunctionSyntaxKind function_syntax_kind,LanguageMode language_mode,ZonePtrList<const AstRawString> * arguments_for_wrapped_function)2611 FunctionLiteral* Parser::ParseFunctionLiteral(
2612     const AstRawString* function_name, Scanner::Location function_name_location,
2613     FunctionNameValidity function_name_validity, FunctionKind kind,
2614     int function_token_pos, FunctionSyntaxKind function_syntax_kind,
2615     LanguageMode language_mode,
2616     ZonePtrList<const AstRawString>* arguments_for_wrapped_function) {
2617   // Function ::
2618   //   '(' FormalParameterList? ')' '{' FunctionBody '}'
2619   //
2620   // Getter ::
2621   //   '(' ')' '{' FunctionBody '}'
2622   //
2623   // Setter ::
2624   //   '(' PropertySetParameterList ')' '{' FunctionBody '}'
2625 
2626   bool is_wrapped = function_syntax_kind == FunctionSyntaxKind::kWrapped;
2627   DCHECK_EQ(is_wrapped, arguments_for_wrapped_function != nullptr);
2628 
2629   int pos = function_token_pos == kNoSourcePosition ? peek_position()
2630                                                     : function_token_pos;
2631   DCHECK_NE(kNoSourcePosition, pos);
2632 
2633   // Anonymous functions were passed either the empty symbol or a null
2634   // handle as the function name.  Remember if we were passed a non-empty
2635   // handle to decide whether to invoke function name inference.
2636   bool should_infer_name = function_name == nullptr;
2637 
2638   // We want a non-null handle as the function name by default. We will handle
2639   // the "function does not have a shared name" case later.
2640   if (should_infer_name) {
2641     function_name = ast_value_factory()->empty_string();
2642   }
2643 
2644   FunctionLiteral::EagerCompileHint eager_compile_hint =
2645       function_state_->next_function_is_likely_called() || is_wrapped
2646           ? FunctionLiteral::kShouldEagerCompile
2647           : default_eager_compile_hint();
2648 
2649   // Determine if the function can be parsed lazily. Lazy parsing is
2650   // different from lazy compilation; we need to parse more eagerly than we
2651   // compile.
2652 
2653   // We can only parse lazily if we also compile lazily. The heuristics for lazy
2654   // compilation are:
2655   // - It must not have been prohibited by the caller to Parse (some callers
2656   //   need a full AST).
2657   // - The outer scope must allow lazy compilation of inner functions.
2658   // - The function mustn't be a function expression with an open parenthesis
2659   //   before; we consider that a hint that the function will be called
2660   //   immediately, and it would be a waste of time to make it lazily
2661   //   compiled.
2662   // These are all things we can know at this point, without looking at the
2663   // function itself.
2664 
2665   // We separate between lazy parsing top level functions and lazy parsing inner
2666   // functions, because the latter needs to do more work. In particular, we need
2667   // to track unresolved variables to distinguish between these cases:
2668   // (function foo() {
2669   //   bar = function() { return 1; }
2670   //  })();
2671   // and
2672   // (function foo() {
2673   //   var a = 1;
2674   //   bar = function() { return a; }
2675   //  })();
2676 
2677   // Now foo will be parsed eagerly and compiled eagerly (optimization: assume
2678   // parenthesis before the function means that it will be called
2679   // immediately). bar can be parsed lazily, but we need to parse it in a mode
2680   // that tracks unresolved variables.
2681   DCHECK_IMPLIES(parse_lazily(), info()->flags().allow_lazy_compile());
2682   DCHECK_IMPLIES(parse_lazily(), has_error() || allow_lazy_);
2683   DCHECK_IMPLIES(parse_lazily(), extension() == nullptr);
2684 
2685   const bool is_lazy =
2686       eager_compile_hint == FunctionLiteral::kShouldLazyCompile;
2687   const bool is_top_level = AllowsLazyParsingWithoutUnresolvedVariables();
2688   const bool is_eager_top_level_function = !is_lazy && is_top_level;
2689 
2690   RCS_SCOPE(runtime_call_stats_, RuntimeCallCounterId::kParseFunctionLiteral,
2691             RuntimeCallStats::kThreadSpecific);
2692   base::ElapsedTimer timer;
2693   if (V8_UNLIKELY(FLAG_log_function_events)) timer.Start();
2694 
2695   // Determine whether we can lazy parse the inner function. Lazy compilation
2696   // has to be enabled, which is either forced by overall parse flags or via a
2697   // ParsingModeScope.
2698   const bool can_preparse = parse_lazily();
2699 
2700   // Determine whether we can post any parallel compile tasks. Preparsing must
2701   // be possible, there has to be a dispatcher, and the character stream must be
2702   // cloneable.
2703   const bool can_post_parallel_task =
2704       can_preparse && info()->dispatcher() &&
2705       scanner()->stream()->can_be_cloned_for_parallel_access();
2706 
2707   // If parallel compile tasks are enabled, enable parallel compile for the
2708   // subset of functions as defined by flags.
2709   bool should_post_parallel_task =
2710       can_post_parallel_task &&
2711       ((is_eager_top_level_function &&
2712         flags().post_parallel_compile_tasks_for_eager_toplevel()) ||
2713        (is_lazy && flags().post_parallel_compile_tasks_for_lazy()));
2714 
2715   // Determine whether we should lazy parse the inner function. This will be
2716   // when either the function is lazy by inspection, or when we force it to be
2717   // preparsed now so that we can then post a parallel full parse & compile task
2718   // for it.
2719   const bool should_preparse =
2720       can_preparse && (is_lazy || should_post_parallel_task);
2721 
2722   ScopedPtrList<Statement> body(pointer_buffer());
2723   int expected_property_count = 0;
2724   int suspend_count = -1;
2725   int num_parameters = -1;
2726   int function_length = -1;
2727   bool has_duplicate_parameters = false;
2728   int function_literal_id = GetNextFunctionLiteralId();
2729   ProducedPreparseData* produced_preparse_data = nullptr;
2730 
2731   // Inner functions will be parsed using a temporary Zone. After parsing, we
2732   // will migrate unresolved variable into a Scope in the main Zone.
2733   Zone* parse_zone = should_preparse ? &preparser_zone_ : zone();
2734   // This Scope lives in the main zone. We'll migrate data into that zone later.
2735   DeclarationScope* scope = NewFunctionScope(kind, parse_zone);
2736   SetLanguageMode(scope, language_mode);
2737 #ifdef DEBUG
2738   scope->SetScopeName(function_name);
2739 #endif
2740 
2741   if (!is_wrapped && V8_UNLIKELY(!Check(Token::LPAREN))) {
2742     ReportUnexpectedToken(Next());
2743     return nullptr;
2744   }
2745   scope->set_start_position(position());
2746 
2747   // Eager or lazy parse? If is_lazy_top_level_function, we'll parse
2748   // lazily. We'll call SkipFunction, which may decide to
2749   // abort lazy parsing if it suspects that wasn't a good idea. If so (in
2750   // which case the parser is expected to have backtracked), or if we didn't
2751   // try to lazy parse in the first place, we'll have to parse eagerly.
2752   bool did_preparse_successfully =
2753       should_preparse &&
2754       SkipFunction(function_name, kind, function_syntax_kind, scope,
2755                    &num_parameters, &function_length, &produced_preparse_data);
2756 
2757   if (!did_preparse_successfully) {
2758     // If skipping aborted, it rewound the scanner until before the LPAREN.
2759     // Consume it in that case.
2760     if (should_preparse) Consume(Token::LPAREN);
2761     should_post_parallel_task = false;
2762     ParseFunction(&body, function_name, pos, kind, function_syntax_kind, scope,
2763                   &num_parameters, &function_length, &has_duplicate_parameters,
2764                   &expected_property_count, &suspend_count,
2765                   arguments_for_wrapped_function);
2766   }
2767 
2768   if (V8_UNLIKELY(FLAG_log_function_events)) {
2769     double ms = timer.Elapsed().InMillisecondsF();
2770     const char* event_name =
2771         should_preparse
2772             ? (is_top_level ? "preparse-no-resolution" : "preparse-resolution")
2773             : "full-parse";
2774     logger_->FunctionEvent(
2775         event_name, flags().script_id(), ms, scope->start_position(),
2776         scope->end_position(),
2777         reinterpret_cast<const char*>(function_name->raw_data()),
2778         function_name->byte_length(), function_name->is_one_byte());
2779   }
2780 #ifdef V8_RUNTIME_CALL_STATS
2781   if (did_preparse_successfully && runtime_call_stats_ &&
2782       V8_UNLIKELY(TracingFlags::is_runtime_stats_enabled())) {
2783     runtime_call_stats_->CorrectCurrentCounterId(
2784         RuntimeCallCounterId::kPreParseWithVariableResolution,
2785         RuntimeCallStats::kThreadSpecific);
2786   }
2787 #endif  // V8_RUNTIME_CALL_STATS
2788 
2789   // Validate function name. We can do this only after parsing the function,
2790   // since the function can declare itself strict.
2791   language_mode = scope->language_mode();
2792   CheckFunctionName(language_mode, function_name, function_name_validity,
2793                     function_name_location);
2794 
2795   if (is_strict(language_mode)) {
2796     CheckStrictOctalLiteral(scope->start_position(), scope->end_position());
2797   }
2798 
2799   FunctionLiteral::ParameterFlag duplicate_parameters =
2800       has_duplicate_parameters ? FunctionLiteral::kHasDuplicateParameters
2801                                : FunctionLiteral::kNoDuplicateParameters;
2802 
2803   // Note that the FunctionLiteral needs to be created in the main Zone again.
2804   FunctionLiteral* function_literal = factory()->NewFunctionLiteral(
2805       function_name, scope, body, expected_property_count, num_parameters,
2806       function_length, duplicate_parameters, function_syntax_kind,
2807       eager_compile_hint, pos, true, function_literal_id,
2808       produced_preparse_data);
2809   function_literal->set_function_token_position(function_token_pos);
2810   function_literal->set_suspend_count(suspend_count);
2811 
2812   RecordFunctionLiteralSourceRange(function_literal);
2813 
2814   if (should_post_parallel_task && !has_error()) {
2815     function_literal->set_should_parallel_compile();
2816   }
2817 
2818   if (should_infer_name) {
2819     fni_.AddFunction(function_literal);
2820   }
2821   return function_literal;
2822 }
2823 
SkipFunction(const AstRawString * function_name,FunctionKind kind,FunctionSyntaxKind function_syntax_kind,DeclarationScope * function_scope,int * num_parameters,int * function_length,ProducedPreparseData ** produced_preparse_data)2824 bool Parser::SkipFunction(const AstRawString* function_name, FunctionKind kind,
2825                           FunctionSyntaxKind function_syntax_kind,
2826                           DeclarationScope* function_scope, int* num_parameters,
2827                           int* function_length,
2828                           ProducedPreparseData** produced_preparse_data) {
2829   FunctionState function_state(&function_state_, &scope_, function_scope);
2830   function_scope->set_zone(&preparser_zone_);
2831 
2832   DCHECK_NE(kNoSourcePosition, function_scope->start_position());
2833   DCHECK_EQ(kNoSourcePosition, parameters_end_pos_);
2834 
2835   DCHECK_IMPLIES(IsArrowFunction(kind),
2836                  scanner()->current_token() == Token::ARROW);
2837 
2838   // FIXME(marja): There are 2 ways to skip functions now. Unify them.
2839   if (consumed_preparse_data_) {
2840     int end_position;
2841     LanguageMode language_mode;
2842     int num_inner_functions;
2843     bool uses_super_property;
2844     if (stack_overflow()) return true;
2845     {
2846       base::Optional<UnparkedScope> unparked_scope;
2847       if (overall_parse_is_parked_) {
2848         unparked_scope.emplace(local_isolate_);
2849       }
2850       *produced_preparse_data =
2851           consumed_preparse_data_->GetDataForSkippableFunction(
2852               main_zone(), function_scope->start_position(), &end_position,
2853               num_parameters, function_length, &num_inner_functions,
2854               &uses_super_property, &language_mode);
2855     }
2856 
2857     function_scope->outer_scope()->SetMustUsePreparseData();
2858     function_scope->set_is_skipped_function(true);
2859     function_scope->set_end_position(end_position);
2860     scanner()->SeekForward(end_position - 1);
2861     Expect(Token::RBRACE);
2862     SetLanguageMode(function_scope, language_mode);
2863     if (uses_super_property) {
2864       function_scope->RecordSuperPropertyUsage();
2865     }
2866     SkipFunctionLiterals(num_inner_functions);
2867     function_scope->ResetAfterPreparsing(ast_value_factory_, false);
2868     return true;
2869   }
2870 
2871   Scanner::BookmarkScope bookmark(scanner());
2872   bookmark.Set(function_scope->start_position());
2873 
2874   UnresolvedList::Iterator unresolved_private_tail;
2875   PrivateNameScopeIterator private_name_scope_iter(function_scope);
2876   if (!private_name_scope_iter.Done()) {
2877     unresolved_private_tail =
2878         private_name_scope_iter.GetScope()->GetUnresolvedPrivateNameTail();
2879   }
2880 
2881   // With no cached data, we partially parse the function, without building an
2882   // AST. This gathers the data needed to build a lazy function.
2883   TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.PreParse");
2884 
2885   PreParser::PreParseResult result = reusable_preparser()->PreParseFunction(
2886       function_name, kind, function_syntax_kind, function_scope, use_counts_,
2887       produced_preparse_data);
2888 
2889   if (result == PreParser::kPreParseStackOverflow) {
2890     // Propagate stack overflow.
2891     set_stack_overflow();
2892   } else if (pending_error_handler()->has_error_unidentifiable_by_preparser()) {
2893     // Make sure we don't re-preparse inner functions of the aborted function.
2894     // The error might be in an inner function.
2895     allow_lazy_ = false;
2896     mode_ = PARSE_EAGERLY;
2897     DCHECK(!pending_error_handler()->stack_overflow());
2898     // If we encounter an error that the preparser can not identify we reset to
2899     // the state before preparsing. The caller may then fully parse the function
2900     // to identify the actual error.
2901     bookmark.Apply();
2902     if (!private_name_scope_iter.Done()) {
2903       private_name_scope_iter.GetScope()->ResetUnresolvedPrivateNameTail(
2904           unresolved_private_tail);
2905     }
2906     function_scope->ResetAfterPreparsing(ast_value_factory_, true);
2907     pending_error_handler()->clear_unidentifiable_error();
2908     return false;
2909   } else if (pending_error_handler()->has_pending_error()) {
2910     DCHECK(!pending_error_handler()->stack_overflow());
2911     DCHECK(has_error());
2912   } else {
2913     DCHECK(!pending_error_handler()->stack_overflow());
2914     set_allow_eval_cache(reusable_preparser()->allow_eval_cache());
2915 
2916     PreParserLogger* logger = reusable_preparser()->logger();
2917     function_scope->set_end_position(logger->end());
2918     Expect(Token::RBRACE);
2919     total_preparse_skipped_ +=
2920         function_scope->end_position() - function_scope->start_position();
2921     *num_parameters = logger->num_parameters();
2922     *function_length = logger->function_length();
2923     SkipFunctionLiterals(logger->num_inner_functions());
2924     if (!private_name_scope_iter.Done()) {
2925       private_name_scope_iter.GetScope()->MigrateUnresolvedPrivateNameTail(
2926           factory(), unresolved_private_tail);
2927     }
2928     function_scope->AnalyzePartially(this, factory(), MaybeParsingArrowhead());
2929   }
2930 
2931   return true;
2932 }
2933 
BuildParameterInitializationBlock(const ParserFormalParameters & parameters)2934 Block* Parser::BuildParameterInitializationBlock(
2935     const ParserFormalParameters& parameters) {
2936   DCHECK(!parameters.is_simple);
2937   DCHECK(scope()->is_function_scope());
2938   DCHECK_EQ(scope(), parameters.scope);
2939   ScopedPtrList<Statement> init_statements(pointer_buffer());
2940   int index = 0;
2941   for (auto parameter : parameters.params) {
2942     Expression* initial_value =
2943         factory()->NewVariableProxy(parameters.scope->parameter(index));
2944     if (parameter->initializer() != nullptr) {
2945       // IS_UNDEFINED($param) ? initializer : $param
2946 
2947       auto condition = factory()->NewCompareOperation(
2948           Token::EQ_STRICT,
2949           factory()->NewVariableProxy(parameters.scope->parameter(index)),
2950           factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition);
2951       initial_value =
2952           factory()->NewConditional(condition, parameter->initializer(),
2953                                     initial_value, kNoSourcePosition);
2954     }
2955 
2956     BlockState block_state(&scope_, scope()->AsDeclarationScope());
2957     DeclarationParsingResult::Declaration decl(parameter->pattern,
2958                                                initial_value);
2959     InitializeVariables(&init_statements, PARAMETER_VARIABLE, &decl);
2960 
2961     ++index;
2962   }
2963   return factory()->NewBlock(true, init_statements);
2964 }
2965 
NewHiddenCatchScope()2966 Scope* Parser::NewHiddenCatchScope() {
2967   Scope* catch_scope = NewScopeWithParent(scope(), CATCH_SCOPE);
2968   bool was_added;
2969   catch_scope->DeclareLocal(ast_value_factory()->dot_catch_string(),
2970                             VariableMode::kVar, NORMAL_VARIABLE, &was_added);
2971   DCHECK(was_added);
2972   catch_scope->set_is_hidden();
2973   return catch_scope;
2974 }
2975 
BuildRejectPromiseOnException(Block * inner_block,REPLMode repl_mode)2976 Block* Parser::BuildRejectPromiseOnException(Block* inner_block,
2977                                              REPLMode repl_mode) {
2978   // try {
2979   //   <inner_block>
2980   // } catch (.catch) {
2981   //   return %_AsyncFunctionReject(.generator_object, .catch, can_suspend);
2982   // }
2983   Block* result = factory()->NewBlock(1, true);
2984 
2985   // catch (.catch) {
2986   //   return %_AsyncFunctionReject(.generator_object, .catch, can_suspend)
2987   // }
2988   Scope* catch_scope = NewHiddenCatchScope();
2989 
2990   Expression* reject_promise;
2991   {
2992     ScopedPtrList<Expression> args(pointer_buffer());
2993     args.Add(factory()->NewVariableProxy(
2994         function_state_->scope()->generator_object_var()));
2995     args.Add(factory()->NewVariableProxy(catch_scope->catch_variable()));
2996     reject_promise = factory()->NewCallRuntime(
2997         Runtime::kInlineAsyncFunctionReject, args, kNoSourcePosition);
2998   }
2999   Block* catch_block = IgnoreCompletion(factory()->NewReturnStatement(
3000       reject_promise, kNoSourcePosition, kNoSourcePosition));
3001 
3002   // Treat the exception for REPL mode scripts as UNCAUGHT. This will
3003   // keep the corresponding JSMessageObject alive on the Isolate. The
3004   // message object is used by the inspector to provide better error
3005   // messages for REPL inputs that throw.
3006   TryStatement* try_catch_statement =
3007       repl_mode == REPLMode::kYes
3008           ? factory()->NewTryCatchStatementForReplAsyncAwait(
3009                 inner_block, catch_scope, catch_block, kNoSourcePosition)
3010           : factory()->NewTryCatchStatementForAsyncAwait(
3011                 inner_block, catch_scope, catch_block, kNoSourcePosition);
3012   result->statements()->Add(try_catch_statement, zone());
3013   return result;
3014 }
3015 
BuildInitialYield(int pos,FunctionKind kind)3016 Expression* Parser::BuildInitialYield(int pos, FunctionKind kind) {
3017   Expression* yield_result = factory()->NewVariableProxy(
3018       function_state_->scope()->generator_object_var());
3019   // The position of the yield is important for reporting the exception
3020   // caused by calling the .throw method on a generator suspended at the
3021   // initial yield (i.e. right after generator instantiation).
3022   function_state_->AddSuspend();
3023   return factory()->NewYield(yield_result, scope()->start_position(),
3024                              Suspend::kOnExceptionThrow);
3025 }
3026 
ParseFunction(ScopedPtrList<Statement> * body,const AstRawString * function_name,int pos,FunctionKind kind,FunctionSyntaxKind function_syntax_kind,DeclarationScope * function_scope,int * num_parameters,int * function_length,bool * has_duplicate_parameters,int * expected_property_count,int * suspend_count,ZonePtrList<const AstRawString> * arguments_for_wrapped_function)3027 void Parser::ParseFunction(
3028     ScopedPtrList<Statement>* body, const AstRawString* function_name, int pos,
3029     FunctionKind kind, FunctionSyntaxKind function_syntax_kind,
3030     DeclarationScope* function_scope, int* num_parameters, int* function_length,
3031     bool* has_duplicate_parameters, int* expected_property_count,
3032     int* suspend_count,
3033     ZonePtrList<const AstRawString>* arguments_for_wrapped_function) {
3034   FunctionParsingScope function_parsing_scope(this);
3035   ParsingModeScope mode(this, allow_lazy_ ? PARSE_LAZILY : PARSE_EAGERLY);
3036 
3037   FunctionState function_state(&function_state_, &scope_, function_scope);
3038 
3039   bool is_wrapped = function_syntax_kind == FunctionSyntaxKind::kWrapped;
3040 
3041   int expected_parameters_end_pos = parameters_end_pos_;
3042   if (expected_parameters_end_pos != kNoSourcePosition) {
3043     // This is the first function encountered in a CreateDynamicFunction eval.
3044     parameters_end_pos_ = kNoSourcePosition;
3045     // The function name should have been ignored, giving us the empty string
3046     // here.
3047     DCHECK_EQ(function_name, ast_value_factory()->empty_string());
3048   }
3049 
3050   ParserFormalParameters formals(function_scope);
3051 
3052   {
3053     ParameterDeclarationParsingScope formals_scope(this);
3054     if (is_wrapped) {
3055       // For a function implicitly wrapped in function header and footer, the
3056       // function arguments are provided separately to the source, and are
3057       // declared directly here.
3058       for (const AstRawString* arg : *arguments_for_wrapped_function) {
3059         const bool is_rest = false;
3060         Expression* argument = ExpressionFromIdentifier(arg, kNoSourcePosition);
3061         AddFormalParameter(&formals, argument, NullExpression(),
3062                            kNoSourcePosition, is_rest);
3063       }
3064       DCHECK_EQ(arguments_for_wrapped_function->length(),
3065                 formals.num_parameters());
3066       DeclareFormalParameters(&formals);
3067     } else {
3068       // For a regular function, the function arguments are parsed from source.
3069       DCHECK_NULL(arguments_for_wrapped_function);
3070       ParseFormalParameterList(&formals);
3071       if (expected_parameters_end_pos != kNoSourcePosition) {
3072         // Check for '(' or ')' shenanigans in the parameter string for dynamic
3073         // functions.
3074         int position = peek_position();
3075         if (position < expected_parameters_end_pos) {
3076           ReportMessageAt(Scanner::Location(position, position + 1),
3077                           MessageTemplate::kArgStringTerminatesParametersEarly);
3078           return;
3079         } else if (position > expected_parameters_end_pos) {
3080           ReportMessageAt(Scanner::Location(expected_parameters_end_pos - 2,
3081                                             expected_parameters_end_pos),
3082                           MessageTemplate::kUnexpectedEndOfArgString);
3083           return;
3084         }
3085       }
3086       Expect(Token::RPAREN);
3087       int formals_end_position = scanner()->location().end_pos;
3088 
3089       CheckArityRestrictions(formals.arity, kind, formals.has_rest,
3090                              function_scope->start_position(),
3091                              formals_end_position);
3092       Expect(Token::LBRACE);
3093     }
3094     formals.duplicate_loc = formals_scope.duplicate_location();
3095   }
3096 
3097   *num_parameters = formals.num_parameters();
3098   *function_length = formals.function_length;
3099 
3100   AcceptINScope scope(this, true);
3101   ParseFunctionBody(body, function_name, pos, formals, kind,
3102                     function_syntax_kind, FunctionBodyType::kBlock);
3103 
3104   *has_duplicate_parameters = formals.has_duplicate();
3105 
3106   *expected_property_count = function_state.expected_property_count();
3107   *suspend_count = function_state.suspend_count();
3108 }
3109 
DeclareClassVariable(ClassScope * scope,const AstRawString * name,ClassInfo * class_info,int class_token_pos)3110 void Parser::DeclareClassVariable(ClassScope* scope, const AstRawString* name,
3111                                   ClassInfo* class_info, int class_token_pos) {
3112 #ifdef DEBUG
3113   scope->SetScopeName(name);
3114 #endif
3115 
3116   DCHECK_IMPLIES(name == nullptr, class_info->is_anonymous);
3117   // Declare a special class variable for anonymous classes with the dot
3118   // if we need to save it for static private method access.
3119   Variable* class_variable =
3120       scope->DeclareClassVariable(ast_value_factory(), name, class_token_pos);
3121   Declaration* declaration = factory()->NewVariableDeclaration(class_token_pos);
3122   scope->declarations()->Add(declaration);
3123   declaration->set_var(class_variable);
3124 }
3125 
3126 // TODO(gsathya): Ideally, this should just bypass scope analysis and
3127 // allocate a slot directly on the context. We should just store this
3128 // index in the AST, instead of storing the variable.
CreateSyntheticContextVariable(const AstRawString * name)3129 Variable* Parser::CreateSyntheticContextVariable(const AstRawString* name) {
3130   VariableProxy* proxy =
3131       DeclareBoundVariable(name, VariableMode::kConst, kNoSourcePosition);
3132   proxy->var()->ForceContextAllocation();
3133   return proxy->var();
3134 }
3135 
CreatePrivateNameVariable(ClassScope * scope,VariableMode mode,IsStaticFlag is_static_flag,const AstRawString * name)3136 Variable* Parser::CreatePrivateNameVariable(ClassScope* scope,
3137                                             VariableMode mode,
3138                                             IsStaticFlag is_static_flag,
3139                                             const AstRawString* name) {
3140   DCHECK_NOT_NULL(name);
3141   int begin = position();
3142   int end = end_position();
3143   bool was_added = false;
3144   DCHECK(IsConstVariableMode(mode));
3145   Variable* var =
3146       scope->DeclarePrivateName(name, mode, is_static_flag, &was_added);
3147   if (!was_added) {
3148     Scanner::Location loc(begin, end);
3149     ReportMessageAt(loc, MessageTemplate::kVarRedeclaration, var->raw_name());
3150   }
3151   VariableProxy* proxy = factory()->NewVariableProxy(var, begin);
3152   return proxy->var();
3153 }
3154 
DeclarePublicClassField(ClassScope * scope,ClassLiteralProperty * property,bool is_static,bool is_computed_name,ClassInfo * class_info)3155 void Parser::DeclarePublicClassField(ClassScope* scope,
3156                                      ClassLiteralProperty* property,
3157                                      bool is_static, bool is_computed_name,
3158                                      ClassInfo* class_info) {
3159   if (is_static) {
3160     class_info->static_elements->Add(
3161         factory()->NewClassLiteralStaticElement(property), zone());
3162   } else {
3163     class_info->instance_fields->Add(property, zone());
3164   }
3165 
3166   if (is_computed_name) {
3167     // We create a synthetic variable name here so that scope
3168     // analysis doesn't dedupe the vars.
3169     Variable* computed_name_var =
3170         CreateSyntheticContextVariable(ClassFieldVariableName(
3171             ast_value_factory(), class_info->computed_field_count));
3172     property->set_computed_name_var(computed_name_var);
3173     class_info->public_members->Add(property, zone());
3174   }
3175 }
3176 
DeclarePrivateClassMember(ClassScope * scope,const AstRawString * property_name,ClassLiteralProperty * property,ClassLiteralProperty::Kind kind,bool is_static,ClassInfo * class_info)3177 void Parser::DeclarePrivateClassMember(ClassScope* scope,
3178                                        const AstRawString* property_name,
3179                                        ClassLiteralProperty* property,
3180                                        ClassLiteralProperty::Kind kind,
3181                                        bool is_static, ClassInfo* class_info) {
3182   if (kind == ClassLiteralProperty::Kind::FIELD) {
3183     if (is_static) {
3184       class_info->static_elements->Add(
3185           factory()->NewClassLiteralStaticElement(property), zone());
3186     } else {
3187       class_info->instance_fields->Add(property, zone());
3188     }
3189   }
3190 
3191   Variable* private_name_var = CreatePrivateNameVariable(
3192       scope, GetVariableMode(kind),
3193       is_static ? IsStaticFlag::kStatic : IsStaticFlag::kNotStatic,
3194       property_name);
3195   int pos = property->value()->position();
3196   if (pos == kNoSourcePosition) {
3197     pos = property->key()->position();
3198   }
3199   private_name_var->set_initializer_position(pos);
3200   property->set_private_name_var(private_name_var);
3201   class_info->private_members->Add(property, zone());
3202 }
3203 
3204 // This method declares a property of the given class.  It updates the
3205 // following fields of class_info, as appropriate:
3206 //   - constructor
3207 //   - properties
DeclarePublicClassMethod(const AstRawString * class_name,ClassLiteralProperty * property,bool is_constructor,ClassInfo * class_info)3208 void Parser::DeclarePublicClassMethod(const AstRawString* class_name,
3209                                       ClassLiteralProperty* property,
3210                                       bool is_constructor,
3211                                       ClassInfo* class_info) {
3212   if (is_constructor) {
3213     DCHECK(!class_info->constructor);
3214     class_info->constructor = property->value()->AsFunctionLiteral();
3215     DCHECK_NOT_NULL(class_info->constructor);
3216     class_info->constructor->set_raw_name(
3217         class_name != nullptr ? ast_value_factory()->NewConsString(class_name)
3218                               : nullptr);
3219     return;
3220   }
3221 
3222   class_info->public_members->Add(property, zone());
3223 }
3224 
AddClassStaticBlock(Block * block,ClassInfo * class_info)3225 void Parser::AddClassStaticBlock(Block* block, ClassInfo* class_info) {
3226   DCHECK(class_info->has_static_elements);
3227   class_info->static_elements->Add(
3228       factory()->NewClassLiteralStaticElement(block), zone());
3229 }
3230 
CreateInitializerFunction(const char * name,DeclarationScope * scope,Statement * initializer_stmt)3231 FunctionLiteral* Parser::CreateInitializerFunction(
3232     const char* name, DeclarationScope* scope, Statement* initializer_stmt) {
3233   DCHECK(IsClassMembersInitializerFunction(scope->function_kind()));
3234   // function() { .. class fields initializer .. }
3235   ScopedPtrList<Statement> statements(pointer_buffer());
3236   statements.Add(initializer_stmt);
3237   FunctionLiteral* result = factory()->NewFunctionLiteral(
3238       ast_value_factory()->GetOneByteString(name), scope, statements, 0, 0, 0,
3239       FunctionLiteral::kNoDuplicateParameters,
3240       FunctionSyntaxKind::kAccessorOrMethod,
3241       FunctionLiteral::kShouldEagerCompile, scope->start_position(), false,
3242       GetNextFunctionLiteralId());
3243 #ifdef DEBUG
3244   scope->SetScopeName(ast_value_factory()->GetOneByteString(name));
3245 #endif
3246   RecordFunctionLiteralSourceRange(result);
3247 
3248   return result;
3249 }
3250 
3251 // This method generates a ClassLiteral AST node.
3252 // It uses the following fields of class_info:
3253 //   - constructor (if missing, it updates it with a default constructor)
3254 //   - proxy
3255 //   - extends
3256 //   - properties
3257 //   - has_static_computed_names
RewriteClassLiteral(ClassScope * block_scope,const AstRawString * name,ClassInfo * class_info,int pos,int end_pos)3258 Expression* Parser::RewriteClassLiteral(ClassScope* block_scope,
3259                                         const AstRawString* name,
3260                                         ClassInfo* class_info, int pos,
3261                                         int end_pos) {
3262   DCHECK_NOT_NULL(block_scope);
3263   DCHECK_EQ(block_scope->scope_type(), CLASS_SCOPE);
3264   DCHECK_EQ(block_scope->language_mode(), LanguageMode::kStrict);
3265 
3266   bool has_extends = class_info->extends != nullptr;
3267   bool has_default_constructor = class_info->constructor == nullptr;
3268   if (has_default_constructor) {
3269     class_info->constructor =
3270         DefaultConstructor(name, has_extends, pos, end_pos);
3271   }
3272 
3273   if (name != nullptr) {
3274     DCHECK_NOT_NULL(block_scope->class_variable());
3275     block_scope->class_variable()->set_initializer_position(end_pos);
3276   }
3277 
3278   FunctionLiteral* static_initializer = nullptr;
3279   if (class_info->has_static_elements) {
3280     static_initializer = CreateInitializerFunction(
3281         "<static_initializer>", class_info->static_elements_scope,
3282         factory()->NewInitializeClassStaticElementsStatement(
3283             class_info->static_elements, kNoSourcePosition));
3284   }
3285 
3286   FunctionLiteral* instance_members_initializer_function = nullptr;
3287   if (class_info->has_instance_members) {
3288     instance_members_initializer_function = CreateInitializerFunction(
3289         "<instance_members_initializer>", class_info->instance_members_scope,
3290         factory()->NewInitializeClassMembersStatement(
3291             class_info->instance_fields, kNoSourcePosition));
3292     class_info->constructor->set_requires_instance_members_initializer(true);
3293     class_info->constructor->add_expected_properties(
3294         class_info->instance_fields->length());
3295   }
3296 
3297   if (class_info->requires_brand) {
3298     class_info->constructor->set_class_scope_has_private_brand(true);
3299   }
3300   if (class_info->has_static_private_methods) {
3301     class_info->constructor->set_has_static_private_methods_or_accessors(true);
3302   }
3303   ClassLiteral* class_literal = factory()->NewClassLiteral(
3304       block_scope, class_info->extends, class_info->constructor,
3305       class_info->public_members, class_info->private_members,
3306       static_initializer, instance_members_initializer_function, pos, end_pos,
3307       class_info->has_static_computed_names, class_info->is_anonymous,
3308       class_info->has_private_methods, class_info->home_object_variable,
3309       class_info->static_home_object_variable);
3310 
3311   AddFunctionForNameInference(class_info->constructor);
3312   return class_literal;
3313 }
3314 
InsertShadowingVarBindingInitializers(Block * inner_block)3315 void Parser::InsertShadowingVarBindingInitializers(Block* inner_block) {
3316   // For each var-binding that shadows a parameter, insert an assignment
3317   // initializing the variable with the parameter.
3318   Scope* inner_scope = inner_block->scope();
3319   DCHECK(inner_scope->is_declaration_scope());
3320   Scope* function_scope = inner_scope->outer_scope();
3321   DCHECK(function_scope->is_function_scope());
3322   BlockState block_state(&scope_, inner_scope);
3323   for (Declaration* decl : *inner_scope->declarations()) {
3324     if (decl->var()->mode() != VariableMode::kVar ||
3325         !decl->IsVariableDeclaration()) {
3326       continue;
3327     }
3328     const AstRawString* name = decl->var()->raw_name();
3329     Variable* parameter = function_scope->LookupLocal(name);
3330     if (parameter == nullptr) continue;
3331     VariableProxy* to = NewUnresolved(name);
3332     VariableProxy* from = factory()->NewVariableProxy(parameter);
3333     Expression* assignment =
3334         factory()->NewAssignment(Token::ASSIGN, to, from, kNoSourcePosition);
3335     Statement* statement =
3336         factory()->NewExpressionStatement(assignment, kNoSourcePosition);
3337     inner_block->statements()->InsertAt(0, statement, zone());
3338   }
3339 }
3340 
InsertSloppyBlockFunctionVarBindings(DeclarationScope * scope)3341 void Parser::InsertSloppyBlockFunctionVarBindings(DeclarationScope* scope) {
3342   // For the outermost eval scope, we cannot hoist during parsing: let
3343   // declarations in the surrounding scope may prevent hoisting, but the
3344   // information is unaccessible during parsing. In this case, we hoist later in
3345   // DeclarationScope::Analyze.
3346   if (scope->is_eval_scope() && scope->outer_scope() == original_scope_) {
3347     return;
3348   }
3349   scope->HoistSloppyBlockFunctions(factory());
3350 }
3351 
3352 // ----------------------------------------------------------------------------
3353 // Parser support
3354 
3355 template <typename IsolateT>
HandleSourceURLComments(IsolateT * isolate,Handle<Script> script)3356 void Parser::HandleSourceURLComments(IsolateT* isolate, Handle<Script> script) {
3357   Handle<String> source_url = scanner_.SourceUrl(isolate);
3358   if (!source_url.is_null()) {
3359     script->set_source_url(*source_url);
3360   }
3361   Handle<String> source_mapping_url = scanner_.SourceMappingUrl(isolate);
3362   if (!source_mapping_url.is_null()) {
3363     script->set_source_mapping_url(*source_mapping_url);
3364   }
3365 }
3366 
3367 template void Parser::HandleSourceURLComments(Isolate* isolate,
3368                                               Handle<Script> script);
3369 template void Parser::HandleSourceURLComments(LocalIsolate* isolate,
3370                                               Handle<Script> script);
3371 
UpdateStatistics(Isolate * isolate,Handle<Script> script)3372 void Parser::UpdateStatistics(Isolate* isolate, Handle<Script> script) {
3373   CHECK_NOT_NULL(isolate);
3374 
3375   // Move statistics to Isolate.
3376   for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount;
3377        ++feature) {
3378     if (use_counts_[feature] > 0) {
3379       isolate->CountUsage(v8::Isolate::UseCounterFeature(feature));
3380     }
3381   }
3382   if (scanner_.FoundHtmlComment()) {
3383     isolate->CountUsage(v8::Isolate::kHtmlComment);
3384     if (script->line_offset() == 0 && script->column_offset() == 0) {
3385       isolate->CountUsage(v8::Isolate::kHtmlCommentInExternalScript);
3386     }
3387   }
3388   isolate->counters()->total_preparse_skipped()->Increment(
3389       total_preparse_skipped_);
3390 }
3391 
UpdateStatistics(Handle<Script> script,base::SmallVector<v8::Isolate::UseCounterFeature,8> * use_counts,int * preparse_skipped)3392 void Parser::UpdateStatistics(
3393     Handle<Script> script,
3394     base::SmallVector<v8::Isolate::UseCounterFeature, 8>* use_counts,
3395     int* preparse_skipped) {
3396   // Move statistics to Isolate.
3397   for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount;
3398        ++feature) {
3399     if (use_counts_[feature] > 0) {
3400       use_counts->emplace_back(v8::Isolate::UseCounterFeature(feature));
3401     }
3402   }
3403   if (scanner_.FoundHtmlComment()) {
3404     use_counts->emplace_back(v8::Isolate::kHtmlComment);
3405     if (script->line_offset() == 0 && script->column_offset() == 0) {
3406       use_counts->emplace_back(v8::Isolate::kHtmlCommentInExternalScript);
3407     }
3408   }
3409   *preparse_skipped = total_preparse_skipped_;
3410 }
3411 
ParseOnBackground(LocalIsolate * isolate,ParseInfo * info,int start_position,int end_position,int function_literal_id)3412 void Parser::ParseOnBackground(LocalIsolate* isolate, ParseInfo* info,
3413                                int start_position, int end_position,
3414                                int function_literal_id) {
3415   RCS_SCOPE(isolate, RuntimeCallCounterId::kParseProgram,
3416             RuntimeCallStats::CounterMode::kThreadSpecific);
3417   parsing_on_main_thread_ = false;
3418 
3419   DCHECK_NULL(info->literal());
3420   FunctionLiteral* result = nullptr;
3421   {
3422     // We can park the isolate while parsing, it doesn't need to allocate or
3423     // access the main thread.
3424     ParkedScope parked_scope(isolate);
3425     overall_parse_is_parked_ = true;
3426 
3427     scanner_.Initialize();
3428 
3429     DCHECK(original_scope_);
3430 
3431     // When streaming, we don't know the length of the source until we have
3432     // parsed it. The raw data can be UTF-8, so we wouldn't know the source
3433     // length until we have decoded it anyway even if we knew the raw data
3434     // length (which we don't). We work around this by storing all the scopes
3435     // which need their end position set at the end of the script (the top scope
3436     // and possible eval scopes) and set their end position after we know the
3437     // script length.
3438     if (flags().is_toplevel()) {
3439       DCHECK_EQ(start_position, 0);
3440       DCHECK_EQ(end_position, 0);
3441       DCHECK_EQ(function_literal_id, kFunctionLiteralIdTopLevel);
3442       result = DoParseProgram(/* isolate = */ nullptr, info);
3443     } else {
3444       base::Optional<ClassScope::HeritageParsingScope> heritage;
3445       if (V8_UNLIKELY(flags().private_name_lookup_skips_outer_class() &&
3446                       original_scope_->is_class_scope())) {
3447         // If the function skips the outer class and the outer scope is a class,
3448         // the function is in heritage position. Otherwise the function scope's
3449         // skip bit will be correctly inherited from the outer scope.
3450         heritage.emplace(original_scope_->AsClassScope());
3451       }
3452       result = DoParseFunction(/* isolate = */ nullptr, info, start_position,
3453                                end_position, function_literal_id,
3454                                info->function_name());
3455     }
3456     MaybeProcessSourceRanges(info, result, stack_limit_);
3457   }
3458   // We need to unpark by now though, to be able to internalize.
3459   PostProcessParseResult(isolate, info, result);
3460   if (flags().is_toplevel()) {
3461     HandleSourceURLComments(isolate, script_);
3462   }
3463 }
3464 
OpenTemplateLiteral(int pos)3465 Parser::TemplateLiteralState Parser::OpenTemplateLiteral(int pos) {
3466   return zone()->New<TemplateLiteral>(zone(), pos);
3467 }
3468 
AddTemplateSpan(TemplateLiteralState * state,bool should_cook,bool tail)3469 void Parser::AddTemplateSpan(TemplateLiteralState* state, bool should_cook,
3470                              bool tail) {
3471   int end = scanner()->location().end_pos - (tail ? 1 : 2);
3472   const AstRawString* raw = scanner()->CurrentRawSymbol(ast_value_factory());
3473   if (should_cook) {
3474     const AstRawString* cooked = scanner()->CurrentSymbol(ast_value_factory());
3475     (*state)->AddTemplateSpan(cooked, raw, end, zone());
3476   } else {
3477     (*state)->AddTemplateSpan(nullptr, raw, end, zone());
3478   }
3479 }
3480 
AddTemplateExpression(TemplateLiteralState * state,Expression * expression)3481 void Parser::AddTemplateExpression(TemplateLiteralState* state,
3482                                    Expression* expression) {
3483   (*state)->AddExpression(expression, zone());
3484 }
3485 
CloseTemplateLiteral(TemplateLiteralState * state,int start,Expression * tag)3486 Expression* Parser::CloseTemplateLiteral(TemplateLiteralState* state, int start,
3487                                          Expression* tag) {
3488   TemplateLiteral* lit = *state;
3489   int pos = lit->position();
3490   const ZonePtrList<const AstRawString>* cooked_strings = lit->cooked();
3491   const ZonePtrList<const AstRawString>* raw_strings = lit->raw();
3492   const ZonePtrList<Expression>* expressions = lit->expressions();
3493   DCHECK_EQ(cooked_strings->length(), raw_strings->length());
3494   DCHECK_EQ(cooked_strings->length(), expressions->length() + 1);
3495 
3496   if (!tag) {
3497     if (cooked_strings->length() == 1) {
3498       return factory()->NewStringLiteral(cooked_strings->first(), pos);
3499     }
3500     return factory()->NewTemplateLiteral(cooked_strings, expressions, pos);
3501   } else {
3502     // GetTemplateObject
3503     Expression* template_object =
3504         factory()->NewGetTemplateObject(cooked_strings, raw_strings, pos);
3505 
3506     // Call TagFn
3507     ScopedPtrList<Expression> call_args(pointer_buffer());
3508     call_args.Add(template_object);
3509     call_args.AddAll(expressions->ToConstVector());
3510     return factory()->NewTaggedTemplate(tag, call_args, pos);
3511   }
3512 }
3513 
ArrayLiteralFromListWithSpread(const ScopedPtrList<Expression> & list)3514 ArrayLiteral* Parser::ArrayLiteralFromListWithSpread(
3515     const ScopedPtrList<Expression>& list) {
3516   // If there's only a single spread argument, a fast path using CallWithSpread
3517   // is taken.
3518   DCHECK_LT(1, list.length());
3519 
3520   // The arguments of the spread call become a single ArrayLiteral.
3521   int first_spread = 0;
3522   for (; first_spread < list.length() && !list.at(first_spread)->IsSpread();
3523        ++first_spread) {
3524   }
3525 
3526   DCHECK_LT(first_spread, list.length());
3527   return factory()->NewArrayLiteral(list, first_spread, kNoSourcePosition);
3528 }
3529 
SetLanguageMode(Scope * scope,LanguageMode mode)3530 void Parser::SetLanguageMode(Scope* scope, LanguageMode mode) {
3531   v8::Isolate::UseCounterFeature feature;
3532   if (is_sloppy(mode))
3533     feature = v8::Isolate::kSloppyMode;
3534   else if (is_strict(mode))
3535     feature = v8::Isolate::kStrictMode;
3536   else
3537     UNREACHABLE();
3538   ++use_counts_[feature];
3539   scope->SetLanguageMode(mode);
3540 }
3541 
3542 #if V8_ENABLE_WEBASSEMBLY
SetAsmModule()3543 void Parser::SetAsmModule() {
3544   // Store the usage count; The actual use counter on the isolate is
3545   // incremented after parsing is done.
3546   ++use_counts_[v8::Isolate::kUseAsm];
3547   DCHECK(scope()->is_declaration_scope());
3548   scope()->AsDeclarationScope()->set_is_asm_module();
3549   info_->set_contains_asm_module(true);
3550 }
3551 #endif  // V8_ENABLE_WEBASSEMBLY
3552 
ExpressionListToExpression(const ScopedPtrList<Expression> & args)3553 Expression* Parser::ExpressionListToExpression(
3554     const ScopedPtrList<Expression>& args) {
3555   Expression* expr = args.at(0);
3556   if (args.length() == 1) return expr;
3557   if (args.length() == 2) {
3558     return factory()->NewBinaryOperation(Token::COMMA, expr, args.at(1),
3559                                          args.at(1)->position());
3560   }
3561   NaryOperation* result =
3562       factory()->NewNaryOperation(Token::COMMA, expr, args.length() - 1);
3563   for (int i = 1; i < args.length(); i++) {
3564     result->AddSubsequent(args.at(i), args.at(i)->position());
3565   }
3566   return result;
3567 }
3568 
3569 // This method completes the desugaring of the body of async_function.
RewriteAsyncFunctionBody(ScopedPtrList<Statement> * body,Block * block,Expression * return_value,REPLMode repl_mode)3570 void Parser::RewriteAsyncFunctionBody(ScopedPtrList<Statement>* body,
3571                                       Block* block, Expression* return_value,
3572                                       REPLMode repl_mode) {
3573   // function async_function() {
3574   //   .generator_object = %_AsyncFunctionEnter();
3575   //   BuildRejectPromiseOnException({
3576   //     ... block ...
3577   //     return %_AsyncFunctionResolve(.generator_object, expr);
3578   //   })
3579   // }
3580 
3581   block->statements()->Add(factory()->NewSyntheticAsyncReturnStatement(
3582                                return_value, return_value->position()),
3583                            zone());
3584   block = BuildRejectPromiseOnException(block, repl_mode);
3585   body->Add(block);
3586 }
3587 
SetFunctionNameFromPropertyName(LiteralProperty * property,const AstRawString * name,const AstRawString * prefix)3588 void Parser::SetFunctionNameFromPropertyName(LiteralProperty* property,
3589                                              const AstRawString* name,
3590                                              const AstRawString* prefix) {
3591   if (has_error()) return;
3592   // Ensure that the function we are going to create has shared name iff
3593   // we are not going to set it later.
3594   if (property->NeedsSetFunctionName()) {
3595     name = nullptr;
3596     prefix = nullptr;
3597   } else {
3598     // If the property value is an anonymous function or an anonymous class or
3599     // a concise method or an accessor function which doesn't require the name
3600     // to be set then the shared name must be provided.
3601     DCHECK_IMPLIES(property->value()->IsAnonymousFunctionDefinition() ||
3602                        property->value()->IsConciseMethodDefinition() ||
3603                        property->value()->IsAccessorFunctionDefinition(),
3604                    name != nullptr);
3605   }
3606 
3607   Expression* value = property->value();
3608   SetFunctionName(value, name, prefix);
3609 }
3610 
SetFunctionNameFromPropertyName(ObjectLiteralProperty * property,const AstRawString * name,const AstRawString * prefix)3611 void Parser::SetFunctionNameFromPropertyName(ObjectLiteralProperty* property,
3612                                              const AstRawString* name,
3613                                              const AstRawString* prefix) {
3614   // Ignore "__proto__" as a name when it's being used to set the [[Prototype]]
3615   // of an object literal.
3616   // See ES #sec-__proto__-property-names-in-object-initializers.
3617   if (property->IsPrototype() || has_error()) return;
3618 
3619   DCHECK(!property->value()->IsAnonymousFunctionDefinition() ||
3620          property->kind() == ObjectLiteralProperty::COMPUTED);
3621 
3622   SetFunctionNameFromPropertyName(static_cast<LiteralProperty*>(property), name,
3623                                   prefix);
3624 }
3625 
SetFunctionNameFromIdentifierRef(Expression * value,Expression * identifier)3626 void Parser::SetFunctionNameFromIdentifierRef(Expression* value,
3627                                               Expression* identifier) {
3628   if (!identifier->IsVariableProxy()) return;
3629   // IsIdentifierRef of parenthesized expressions is false.
3630   if (identifier->is_parenthesized()) return;
3631   SetFunctionName(value, identifier->AsVariableProxy()->raw_name());
3632 }
3633 
SetFunctionName(Expression * value,const AstRawString * name,const AstRawString * prefix)3634 void Parser::SetFunctionName(Expression* value, const AstRawString* name,
3635                              const AstRawString* prefix) {
3636   if (!value->IsAnonymousFunctionDefinition() &&
3637       !value->IsConciseMethodDefinition() &&
3638       !value->IsAccessorFunctionDefinition()) {
3639     return;
3640   }
3641   auto function = value->AsFunctionLiteral();
3642   if (value->IsClassLiteral()) {
3643     function = value->AsClassLiteral()->constructor();
3644   }
3645   if (function != nullptr) {
3646     AstConsString* cons_name = nullptr;
3647     if (name != nullptr) {
3648       if (prefix != nullptr) {
3649         cons_name = ast_value_factory()->NewConsString(prefix, name);
3650       } else {
3651         cons_name = ast_value_factory()->NewConsString(name);
3652       }
3653     } else {
3654       DCHECK_NULL(prefix);
3655     }
3656     function->set_raw_name(cons_name);
3657   }
3658 }
3659 
CheckCallable(Variable * var,Expression * error,int pos)3660 Statement* Parser::CheckCallable(Variable* var, Expression* error, int pos) {
3661   const int nopos = kNoSourcePosition;
3662   Statement* validate_var;
3663   {
3664     Expression* type_of = factory()->NewUnaryOperation(
3665         Token::TYPEOF, factory()->NewVariableProxy(var), nopos);
3666     Expression* function_literal = factory()->NewStringLiteral(
3667         ast_value_factory()->function_string(), nopos);
3668     Expression* condition = factory()->NewCompareOperation(
3669         Token::EQ_STRICT, type_of, function_literal, nopos);
3670 
3671     Statement* throw_call = factory()->NewExpressionStatement(error, pos);
3672 
3673     validate_var = factory()->NewIfStatement(
3674         condition, factory()->EmptyStatement(), throw_call, nopos);
3675   }
3676   return validate_var;
3677 }
3678 
3679 }  // namespace internal
3680 }  // namespace v8
3681