• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- TruncInstCombine.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // TruncInstCombine - looks for expression dags post-dominated by TruncInst and
10 // for each eligible dag, it will create a reduced bit-width expression, replace
11 // the old expression with this new one and remove the old expression.
12 // Eligible expression dag is such that:
13 //   1. Contains only supported instructions.
14 //   2. Supported leaves: ZExtInst, SExtInst, TruncInst and Constant value.
15 //   3. Can be evaluated into type with reduced legal bit-width.
16 //   4. All instructions in the dag must not have users outside the dag.
17 //      The only exception is for {ZExt, SExt}Inst with operand type equal to
18 //      the new reduced type evaluated in (3).
19 //
20 // The motivation for this optimization is that evaluating and expression using
21 // smaller bit-width is preferable, especially for vectorization where we can
22 // fit more values in one vectorized instruction. In addition, this optimization
23 // may decrease the number of cast instructions, but will not increase it.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "AggressiveInstCombineInternal.h"
28 #include "llvm/ADT/MapVector.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/IRBuilder.h"
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "aggressive-instcombine"
38 
39 /// Given an instruction and a container, it fills all the relevant operands of
40 /// that instruction, with respect to the Trunc expression dag optimizaton.
getRelevantOperands(Instruction * I,SmallVectorImpl<Value * > & Ops)41 static void getRelevantOperands(Instruction *I, SmallVectorImpl<Value *> &Ops) {
42   unsigned Opc = I->getOpcode();
43   switch (Opc) {
44   case Instruction::Trunc:
45   case Instruction::ZExt:
46   case Instruction::SExt:
47     // These CastInst are considered leaves of the evaluated expression, thus,
48     // their operands are not relevent.
49     break;
50   case Instruction::Add:
51   case Instruction::Sub:
52   case Instruction::Mul:
53   case Instruction::And:
54   case Instruction::Or:
55   case Instruction::Xor:
56     Ops.push_back(I->getOperand(0));
57     Ops.push_back(I->getOperand(1));
58     break;
59   default:
60     llvm_unreachable("Unreachable!");
61   }
62 }
63 
buildTruncExpressionDag()64 bool TruncInstCombine::buildTruncExpressionDag() {
65   SmallVector<Value *, 8> Worklist;
66   SmallVector<Instruction *, 8> Stack;
67   // Clear old expression dag.
68   InstInfoMap.clear();
69 
70   Worklist.push_back(CurrentTruncInst->getOperand(0));
71 
72   while (!Worklist.empty()) {
73     Value *Curr = Worklist.back();
74 
75     if (isa<Constant>(Curr)) {
76       Worklist.pop_back();
77       continue;
78     }
79 
80     auto *I = dyn_cast<Instruction>(Curr);
81     if (!I)
82       return false;
83 
84     if (!Stack.empty() && Stack.back() == I) {
85       // Already handled all instruction operands, can remove it from both the
86       // Worklist and the Stack, and add it to the instruction info map.
87       Worklist.pop_back();
88       Stack.pop_back();
89       // Insert I to the Info map.
90       InstInfoMap.insert(std::make_pair(I, Info()));
91       continue;
92     }
93 
94     if (InstInfoMap.count(I)) {
95       Worklist.pop_back();
96       continue;
97     }
98 
99     // Add the instruction to the stack before start handling its operands.
100     Stack.push_back(I);
101 
102     unsigned Opc = I->getOpcode();
103     switch (Opc) {
104     case Instruction::Trunc:
105     case Instruction::ZExt:
106     case Instruction::SExt:
107       // trunc(trunc(x)) -> trunc(x)
108       // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
109       // trunc(ext(x)) -> trunc(x) if the source type is larger than the new
110       // dest
111       break;
112     case Instruction::Add:
113     case Instruction::Sub:
114     case Instruction::Mul:
115     case Instruction::And:
116     case Instruction::Or:
117     case Instruction::Xor: {
118       SmallVector<Value *, 2> Operands;
119       getRelevantOperands(I, Operands);
120       for (Value *Operand : Operands)
121         Worklist.push_back(Operand);
122       break;
123     }
124     default:
125       // TODO: Can handle more cases here:
126       // 1. select, shufflevector, extractelement, insertelement
127       // 2. udiv, urem
128       // 3. shl, lshr, ashr
129       // 4. phi node(and loop handling)
130       // ...
131       return false;
132     }
133   }
134   return true;
135 }
136 
getMinBitWidth()137 unsigned TruncInstCombine::getMinBitWidth() {
138   SmallVector<Value *, 8> Worklist;
139   SmallVector<Instruction *, 8> Stack;
140 
141   Value *Src = CurrentTruncInst->getOperand(0);
142   Type *DstTy = CurrentTruncInst->getType();
143   unsigned TruncBitWidth = DstTy->getScalarSizeInBits();
144   unsigned OrigBitWidth =
145       CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
146 
147   if (isa<Constant>(Src))
148     return TruncBitWidth;
149 
150   Worklist.push_back(Src);
151   InstInfoMap[cast<Instruction>(Src)].ValidBitWidth = TruncBitWidth;
152 
153   while (!Worklist.empty()) {
154     Value *Curr = Worklist.back();
155 
156     if (isa<Constant>(Curr)) {
157       Worklist.pop_back();
158       continue;
159     }
160 
161     // Otherwise, it must be an instruction.
162     auto *I = cast<Instruction>(Curr);
163 
164     auto &Info = InstInfoMap[I];
165 
166     SmallVector<Value *, 2> Operands;
167     getRelevantOperands(I, Operands);
168 
169     if (!Stack.empty() && Stack.back() == I) {
170       // Already handled all instruction operands, can remove it from both, the
171       // Worklist and the Stack, and update MinBitWidth.
172       Worklist.pop_back();
173       Stack.pop_back();
174       for (auto *Operand : Operands)
175         if (auto *IOp = dyn_cast<Instruction>(Operand))
176           Info.MinBitWidth =
177               std::max(Info.MinBitWidth, InstInfoMap[IOp].MinBitWidth);
178       continue;
179     }
180 
181     // Add the instruction to the stack before start handling its operands.
182     Stack.push_back(I);
183     unsigned ValidBitWidth = Info.ValidBitWidth;
184 
185     // Update minimum bit-width before handling its operands. This is required
186     // when the instruction is part of a loop.
187     Info.MinBitWidth = std::max(Info.MinBitWidth, Info.ValidBitWidth);
188 
189     for (auto *Operand : Operands)
190       if (auto *IOp = dyn_cast<Instruction>(Operand)) {
191         // If we already calculated the minimum bit-width for this valid
192         // bit-width, or for a smaller valid bit-width, then just keep the
193         // answer we already calculated.
194         unsigned IOpBitwidth = InstInfoMap.lookup(IOp).ValidBitWidth;
195         if (IOpBitwidth >= ValidBitWidth)
196           continue;
197         InstInfoMap[IOp].ValidBitWidth = std::max(ValidBitWidth, IOpBitwidth);
198         Worklist.push_back(IOp);
199       }
200   }
201   unsigned MinBitWidth = InstInfoMap.lookup(cast<Instruction>(Src)).MinBitWidth;
202   assert(MinBitWidth >= TruncBitWidth);
203 
204   if (MinBitWidth > TruncBitWidth) {
205     // In this case reducing expression with vector type might generate a new
206     // vector type, which is not preferable as it might result in generating
207     // sub-optimal code.
208     if (DstTy->isVectorTy())
209       return OrigBitWidth;
210     // Use the smallest integer type in the range [MinBitWidth, OrigBitWidth).
211     Type *Ty = DL.getSmallestLegalIntType(DstTy->getContext(), MinBitWidth);
212     // Update minimum bit-width with the new destination type bit-width if
213     // succeeded to find such, otherwise, with original bit-width.
214     MinBitWidth = Ty ? Ty->getScalarSizeInBits() : OrigBitWidth;
215   } else { // MinBitWidth == TruncBitWidth
216     // In this case the expression can be evaluated with the trunc instruction
217     // destination type, and trunc instruction can be omitted. However, we
218     // should not perform the evaluation if the original type is a legal scalar
219     // type and the target type is illegal.
220     bool FromLegal = MinBitWidth == 1 || DL.isLegalInteger(OrigBitWidth);
221     bool ToLegal = MinBitWidth == 1 || DL.isLegalInteger(MinBitWidth);
222     if (!DstTy->isVectorTy() && FromLegal && !ToLegal)
223       return OrigBitWidth;
224   }
225   return MinBitWidth;
226 }
227 
getBestTruncatedType()228 Type *TruncInstCombine::getBestTruncatedType() {
229   if (!buildTruncExpressionDag())
230     return nullptr;
231 
232   // We don't want to duplicate instructions, which isn't profitable. Thus, we
233   // can't shrink something that has multiple users, unless all users are
234   // post-dominated by the trunc instruction, i.e., were visited during the
235   // expression evaluation.
236   unsigned DesiredBitWidth = 0;
237   for (auto Itr : InstInfoMap) {
238     Instruction *I = Itr.first;
239     if (I->hasOneUse())
240       continue;
241     bool IsExtInst = (isa<ZExtInst>(I) || isa<SExtInst>(I));
242     for (auto *U : I->users())
243       if (auto *UI = dyn_cast<Instruction>(U))
244         if (UI != CurrentTruncInst && !InstInfoMap.count(UI)) {
245           if (!IsExtInst)
246             return nullptr;
247           // If this is an extension from the dest type, we can eliminate it,
248           // even if it has multiple users. Thus, update the DesiredBitWidth and
249           // validate all extension instructions agrees on same DesiredBitWidth.
250           unsigned ExtInstBitWidth =
251               I->getOperand(0)->getType()->getScalarSizeInBits();
252           if (DesiredBitWidth && DesiredBitWidth != ExtInstBitWidth)
253             return nullptr;
254           DesiredBitWidth = ExtInstBitWidth;
255         }
256   }
257 
258   unsigned OrigBitWidth =
259       CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
260 
261   // Calculate minimum allowed bit-width allowed for shrinking the currently
262   // visited truncate's operand.
263   unsigned MinBitWidth = getMinBitWidth();
264 
265   // Check that we can shrink to smaller bit-width than original one and that
266   // it is similar to the DesiredBitWidth is such exists.
267   if (MinBitWidth >= OrigBitWidth ||
268       (DesiredBitWidth && DesiredBitWidth != MinBitWidth))
269     return nullptr;
270 
271   return IntegerType::get(CurrentTruncInst->getContext(), MinBitWidth);
272 }
273 
274 /// Given a reduced scalar type \p Ty and a \p V value, return a reduced type
275 /// for \p V, according to its type, if it vector type, return the vector
276 /// version of \p Ty, otherwise return \p Ty.
getReducedType(Value * V,Type * Ty)277 static Type *getReducedType(Value *V, Type *Ty) {
278   assert(Ty && !Ty->isVectorTy() && "Expect Scalar Type");
279   if (auto *VTy = dyn_cast<VectorType>(V->getType()))
280     return VectorType::get(Ty, VTy->getNumElements());
281   return Ty;
282 }
283 
getReducedOperand(Value * V,Type * SclTy)284 Value *TruncInstCombine::getReducedOperand(Value *V, Type *SclTy) {
285   Type *Ty = getReducedType(V, SclTy);
286   if (auto *C = dyn_cast<Constant>(V)) {
287     C = ConstantExpr::getIntegerCast(C, Ty, false);
288     // If we got a constantexpr back, try to simplify it with DL info.
289     if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
290       C = FoldedC;
291     return C;
292   }
293 
294   auto *I = cast<Instruction>(V);
295   Info Entry = InstInfoMap.lookup(I);
296   assert(Entry.NewValue);
297   return Entry.NewValue;
298 }
299 
ReduceExpressionDag(Type * SclTy)300 void TruncInstCombine::ReduceExpressionDag(Type *SclTy) {
301   for (auto &Itr : InstInfoMap) { // Forward
302     Instruction *I = Itr.first;
303     TruncInstCombine::Info &NodeInfo = Itr.second;
304 
305     assert(!NodeInfo.NewValue && "Instruction has been evaluated");
306 
307     IRBuilder<> Builder(I);
308     Value *Res = nullptr;
309     unsigned Opc = I->getOpcode();
310     switch (Opc) {
311     case Instruction::Trunc:
312     case Instruction::ZExt:
313     case Instruction::SExt: {
314       Type *Ty = getReducedType(I, SclTy);
315       // If the source type of the cast is the type we're trying for then we can
316       // just return the source.  There's no need to insert it because it is not
317       // new.
318       if (I->getOperand(0)->getType() == Ty) {
319         assert(!isa<TruncInst>(I) && "Cannot reach here with TruncInst");
320         NodeInfo.NewValue = I->getOperand(0);
321         continue;
322       }
323       // Otherwise, must be the same type of cast, so just reinsert a new one.
324       // This also handles the case of zext(trunc(x)) -> zext(x).
325       Res = Builder.CreateIntCast(I->getOperand(0), Ty,
326                                   Opc == Instruction::SExt);
327 
328       // Update Worklist entries with new value if needed.
329       // There are three possible changes to the Worklist:
330       // 1. Update Old-TruncInst -> New-TruncInst.
331       // 2. Remove Old-TruncInst (if New node is not TruncInst).
332       // 3. Add New-TruncInst (if Old node was not TruncInst).
333       auto Entry = find(Worklist, I);
334       if (Entry != Worklist.end()) {
335         if (auto *NewCI = dyn_cast<TruncInst>(Res))
336           *Entry = NewCI;
337         else
338           Worklist.erase(Entry);
339       } else if (auto *NewCI = dyn_cast<TruncInst>(Res))
340           Worklist.push_back(NewCI);
341       break;
342     }
343     case Instruction::Add:
344     case Instruction::Sub:
345     case Instruction::Mul:
346     case Instruction::And:
347     case Instruction::Or:
348     case Instruction::Xor: {
349       Value *LHS = getReducedOperand(I->getOperand(0), SclTy);
350       Value *RHS = getReducedOperand(I->getOperand(1), SclTy);
351       Res = Builder.CreateBinOp((Instruction::BinaryOps)Opc, LHS, RHS);
352       break;
353     }
354     default:
355       llvm_unreachable("Unhandled instruction");
356     }
357 
358     NodeInfo.NewValue = Res;
359     if (auto *ResI = dyn_cast<Instruction>(Res))
360       ResI->takeName(I);
361   }
362 
363   Value *Res = getReducedOperand(CurrentTruncInst->getOperand(0), SclTy);
364   Type *DstTy = CurrentTruncInst->getType();
365   if (Res->getType() != DstTy) {
366     IRBuilder<> Builder(CurrentTruncInst);
367     Res = Builder.CreateIntCast(Res, DstTy, false);
368     if (auto *ResI = dyn_cast<Instruction>(Res))
369       ResI->takeName(CurrentTruncInst);
370   }
371   CurrentTruncInst->replaceAllUsesWith(Res);
372 
373   // Erase old expression dag, which was replaced by the reduced expression dag.
374   // We iterate backward, which means we visit the instruction before we visit
375   // any of its operands, this way, when we get to the operand, we already
376   // removed the instructions (from the expression dag) that uses it.
377   CurrentTruncInst->eraseFromParent();
378   for (auto I = InstInfoMap.rbegin(), E = InstInfoMap.rend(); I != E; ++I) {
379     // We still need to check that the instruction has no users before we erase
380     // it, because {SExt, ZExt}Inst Instruction might have other users that was
381     // not reduced, in such case, we need to keep that instruction.
382     if (I->first->use_empty())
383       I->first->eraseFromParent();
384   }
385 }
386 
run(Function & F)387 bool TruncInstCombine::run(Function &F) {
388   bool MadeIRChange = false;
389 
390   // Collect all TruncInst in the function into the Worklist for evaluating.
391   for (auto &BB : F) {
392     // Ignore unreachable basic block.
393     if (!DT.isReachableFromEntry(&BB))
394       continue;
395     for (auto &I : BB)
396       if (auto *CI = dyn_cast<TruncInst>(&I))
397         Worklist.push_back(CI);
398   }
399 
400   // Process all TruncInst in the Worklist, for each instruction:
401   //   1. Check if it dominates an eligible expression dag to be reduced.
402   //   2. Create a reduced expression dag and replace the old one with it.
403   while (!Worklist.empty()) {
404     CurrentTruncInst = Worklist.pop_back_val();
405 
406     if (Type *NewDstSclTy = getBestTruncatedType()) {
407       LLVM_DEBUG(
408           dbgs() << "ICE: TruncInstCombine reducing type of expression dag "
409                     "dominated by: "
410                  << CurrentTruncInst << '\n');
411       ReduceExpressionDag(NewDstSclTy);
412       MadeIRChange = true;
413     }
414   }
415 
416   return MadeIRChange;
417 }
418