1 //===- TruncInstCombine.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // TruncInstCombine - looks for expression dags post-dominated by TruncInst and
10 // for each eligible dag, it will create a reduced bit-width expression, replace
11 // the old expression with this new one and remove the old expression.
12 // Eligible expression dag is such that:
13 // 1. Contains only supported instructions.
14 // 2. Supported leaves: ZExtInst, SExtInst, TruncInst and Constant value.
15 // 3. Can be evaluated into type with reduced legal bit-width.
16 // 4. All instructions in the dag must not have users outside the dag.
17 // The only exception is for {ZExt, SExt}Inst with operand type equal to
18 // the new reduced type evaluated in (3).
19 //
20 // The motivation for this optimization is that evaluating and expression using
21 // smaller bit-width is preferable, especially for vectorization where we can
22 // fit more values in one vectorized instruction. In addition, this optimization
23 // may decrease the number of cast instructions, but will not increase it.
24 //
25 //===----------------------------------------------------------------------===//
26
27 #include "AggressiveInstCombineInternal.h"
28 #include "llvm/ADT/MapVector.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/IRBuilder.h"
35 using namespace llvm;
36
37 #define DEBUG_TYPE "aggressive-instcombine"
38
39 /// Given an instruction and a container, it fills all the relevant operands of
40 /// that instruction, with respect to the Trunc expression dag optimizaton.
getRelevantOperands(Instruction * I,SmallVectorImpl<Value * > & Ops)41 static void getRelevantOperands(Instruction *I, SmallVectorImpl<Value *> &Ops) {
42 unsigned Opc = I->getOpcode();
43 switch (Opc) {
44 case Instruction::Trunc:
45 case Instruction::ZExt:
46 case Instruction::SExt:
47 // These CastInst are considered leaves of the evaluated expression, thus,
48 // their operands are not relevent.
49 break;
50 case Instruction::Add:
51 case Instruction::Sub:
52 case Instruction::Mul:
53 case Instruction::And:
54 case Instruction::Or:
55 case Instruction::Xor:
56 Ops.push_back(I->getOperand(0));
57 Ops.push_back(I->getOperand(1));
58 break;
59 default:
60 llvm_unreachable("Unreachable!");
61 }
62 }
63
buildTruncExpressionDag()64 bool TruncInstCombine::buildTruncExpressionDag() {
65 SmallVector<Value *, 8> Worklist;
66 SmallVector<Instruction *, 8> Stack;
67 // Clear old expression dag.
68 InstInfoMap.clear();
69
70 Worklist.push_back(CurrentTruncInst->getOperand(0));
71
72 while (!Worklist.empty()) {
73 Value *Curr = Worklist.back();
74
75 if (isa<Constant>(Curr)) {
76 Worklist.pop_back();
77 continue;
78 }
79
80 auto *I = dyn_cast<Instruction>(Curr);
81 if (!I)
82 return false;
83
84 if (!Stack.empty() && Stack.back() == I) {
85 // Already handled all instruction operands, can remove it from both the
86 // Worklist and the Stack, and add it to the instruction info map.
87 Worklist.pop_back();
88 Stack.pop_back();
89 // Insert I to the Info map.
90 InstInfoMap.insert(std::make_pair(I, Info()));
91 continue;
92 }
93
94 if (InstInfoMap.count(I)) {
95 Worklist.pop_back();
96 continue;
97 }
98
99 // Add the instruction to the stack before start handling its operands.
100 Stack.push_back(I);
101
102 unsigned Opc = I->getOpcode();
103 switch (Opc) {
104 case Instruction::Trunc:
105 case Instruction::ZExt:
106 case Instruction::SExt:
107 // trunc(trunc(x)) -> trunc(x)
108 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
109 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new
110 // dest
111 break;
112 case Instruction::Add:
113 case Instruction::Sub:
114 case Instruction::Mul:
115 case Instruction::And:
116 case Instruction::Or:
117 case Instruction::Xor: {
118 SmallVector<Value *, 2> Operands;
119 getRelevantOperands(I, Operands);
120 for (Value *Operand : Operands)
121 Worklist.push_back(Operand);
122 break;
123 }
124 default:
125 // TODO: Can handle more cases here:
126 // 1. select, shufflevector, extractelement, insertelement
127 // 2. udiv, urem
128 // 3. shl, lshr, ashr
129 // 4. phi node(and loop handling)
130 // ...
131 return false;
132 }
133 }
134 return true;
135 }
136
getMinBitWidth()137 unsigned TruncInstCombine::getMinBitWidth() {
138 SmallVector<Value *, 8> Worklist;
139 SmallVector<Instruction *, 8> Stack;
140
141 Value *Src = CurrentTruncInst->getOperand(0);
142 Type *DstTy = CurrentTruncInst->getType();
143 unsigned TruncBitWidth = DstTy->getScalarSizeInBits();
144 unsigned OrigBitWidth =
145 CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
146
147 if (isa<Constant>(Src))
148 return TruncBitWidth;
149
150 Worklist.push_back(Src);
151 InstInfoMap[cast<Instruction>(Src)].ValidBitWidth = TruncBitWidth;
152
153 while (!Worklist.empty()) {
154 Value *Curr = Worklist.back();
155
156 if (isa<Constant>(Curr)) {
157 Worklist.pop_back();
158 continue;
159 }
160
161 // Otherwise, it must be an instruction.
162 auto *I = cast<Instruction>(Curr);
163
164 auto &Info = InstInfoMap[I];
165
166 SmallVector<Value *, 2> Operands;
167 getRelevantOperands(I, Operands);
168
169 if (!Stack.empty() && Stack.back() == I) {
170 // Already handled all instruction operands, can remove it from both, the
171 // Worklist and the Stack, and update MinBitWidth.
172 Worklist.pop_back();
173 Stack.pop_back();
174 for (auto *Operand : Operands)
175 if (auto *IOp = dyn_cast<Instruction>(Operand))
176 Info.MinBitWidth =
177 std::max(Info.MinBitWidth, InstInfoMap[IOp].MinBitWidth);
178 continue;
179 }
180
181 // Add the instruction to the stack before start handling its operands.
182 Stack.push_back(I);
183 unsigned ValidBitWidth = Info.ValidBitWidth;
184
185 // Update minimum bit-width before handling its operands. This is required
186 // when the instruction is part of a loop.
187 Info.MinBitWidth = std::max(Info.MinBitWidth, Info.ValidBitWidth);
188
189 for (auto *Operand : Operands)
190 if (auto *IOp = dyn_cast<Instruction>(Operand)) {
191 // If we already calculated the minimum bit-width for this valid
192 // bit-width, or for a smaller valid bit-width, then just keep the
193 // answer we already calculated.
194 unsigned IOpBitwidth = InstInfoMap.lookup(IOp).ValidBitWidth;
195 if (IOpBitwidth >= ValidBitWidth)
196 continue;
197 InstInfoMap[IOp].ValidBitWidth = std::max(ValidBitWidth, IOpBitwidth);
198 Worklist.push_back(IOp);
199 }
200 }
201 unsigned MinBitWidth = InstInfoMap.lookup(cast<Instruction>(Src)).MinBitWidth;
202 assert(MinBitWidth >= TruncBitWidth);
203
204 if (MinBitWidth > TruncBitWidth) {
205 // In this case reducing expression with vector type might generate a new
206 // vector type, which is not preferable as it might result in generating
207 // sub-optimal code.
208 if (DstTy->isVectorTy())
209 return OrigBitWidth;
210 // Use the smallest integer type in the range [MinBitWidth, OrigBitWidth).
211 Type *Ty = DL.getSmallestLegalIntType(DstTy->getContext(), MinBitWidth);
212 // Update minimum bit-width with the new destination type bit-width if
213 // succeeded to find such, otherwise, with original bit-width.
214 MinBitWidth = Ty ? Ty->getScalarSizeInBits() : OrigBitWidth;
215 } else { // MinBitWidth == TruncBitWidth
216 // In this case the expression can be evaluated with the trunc instruction
217 // destination type, and trunc instruction can be omitted. However, we
218 // should not perform the evaluation if the original type is a legal scalar
219 // type and the target type is illegal.
220 bool FromLegal = MinBitWidth == 1 || DL.isLegalInteger(OrigBitWidth);
221 bool ToLegal = MinBitWidth == 1 || DL.isLegalInteger(MinBitWidth);
222 if (!DstTy->isVectorTy() && FromLegal && !ToLegal)
223 return OrigBitWidth;
224 }
225 return MinBitWidth;
226 }
227
getBestTruncatedType()228 Type *TruncInstCombine::getBestTruncatedType() {
229 if (!buildTruncExpressionDag())
230 return nullptr;
231
232 // We don't want to duplicate instructions, which isn't profitable. Thus, we
233 // can't shrink something that has multiple users, unless all users are
234 // post-dominated by the trunc instruction, i.e., were visited during the
235 // expression evaluation.
236 unsigned DesiredBitWidth = 0;
237 for (auto Itr : InstInfoMap) {
238 Instruction *I = Itr.first;
239 if (I->hasOneUse())
240 continue;
241 bool IsExtInst = (isa<ZExtInst>(I) || isa<SExtInst>(I));
242 for (auto *U : I->users())
243 if (auto *UI = dyn_cast<Instruction>(U))
244 if (UI != CurrentTruncInst && !InstInfoMap.count(UI)) {
245 if (!IsExtInst)
246 return nullptr;
247 // If this is an extension from the dest type, we can eliminate it,
248 // even if it has multiple users. Thus, update the DesiredBitWidth and
249 // validate all extension instructions agrees on same DesiredBitWidth.
250 unsigned ExtInstBitWidth =
251 I->getOperand(0)->getType()->getScalarSizeInBits();
252 if (DesiredBitWidth && DesiredBitWidth != ExtInstBitWidth)
253 return nullptr;
254 DesiredBitWidth = ExtInstBitWidth;
255 }
256 }
257
258 unsigned OrigBitWidth =
259 CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
260
261 // Calculate minimum allowed bit-width allowed for shrinking the currently
262 // visited truncate's operand.
263 unsigned MinBitWidth = getMinBitWidth();
264
265 // Check that we can shrink to smaller bit-width than original one and that
266 // it is similar to the DesiredBitWidth is such exists.
267 if (MinBitWidth >= OrigBitWidth ||
268 (DesiredBitWidth && DesiredBitWidth != MinBitWidth))
269 return nullptr;
270
271 return IntegerType::get(CurrentTruncInst->getContext(), MinBitWidth);
272 }
273
274 /// Given a reduced scalar type \p Ty and a \p V value, return a reduced type
275 /// for \p V, according to its type, if it vector type, return the vector
276 /// version of \p Ty, otherwise return \p Ty.
getReducedType(Value * V,Type * Ty)277 static Type *getReducedType(Value *V, Type *Ty) {
278 assert(Ty && !Ty->isVectorTy() && "Expect Scalar Type");
279 if (auto *VTy = dyn_cast<VectorType>(V->getType()))
280 return VectorType::get(Ty, VTy->getNumElements());
281 return Ty;
282 }
283
getReducedOperand(Value * V,Type * SclTy)284 Value *TruncInstCombine::getReducedOperand(Value *V, Type *SclTy) {
285 Type *Ty = getReducedType(V, SclTy);
286 if (auto *C = dyn_cast<Constant>(V)) {
287 C = ConstantExpr::getIntegerCast(C, Ty, false);
288 // If we got a constantexpr back, try to simplify it with DL info.
289 if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
290 C = FoldedC;
291 return C;
292 }
293
294 auto *I = cast<Instruction>(V);
295 Info Entry = InstInfoMap.lookup(I);
296 assert(Entry.NewValue);
297 return Entry.NewValue;
298 }
299
ReduceExpressionDag(Type * SclTy)300 void TruncInstCombine::ReduceExpressionDag(Type *SclTy) {
301 for (auto &Itr : InstInfoMap) { // Forward
302 Instruction *I = Itr.first;
303 TruncInstCombine::Info &NodeInfo = Itr.second;
304
305 assert(!NodeInfo.NewValue && "Instruction has been evaluated");
306
307 IRBuilder<> Builder(I);
308 Value *Res = nullptr;
309 unsigned Opc = I->getOpcode();
310 switch (Opc) {
311 case Instruction::Trunc:
312 case Instruction::ZExt:
313 case Instruction::SExt: {
314 Type *Ty = getReducedType(I, SclTy);
315 // If the source type of the cast is the type we're trying for then we can
316 // just return the source. There's no need to insert it because it is not
317 // new.
318 if (I->getOperand(0)->getType() == Ty) {
319 assert(!isa<TruncInst>(I) && "Cannot reach here with TruncInst");
320 NodeInfo.NewValue = I->getOperand(0);
321 continue;
322 }
323 // Otherwise, must be the same type of cast, so just reinsert a new one.
324 // This also handles the case of zext(trunc(x)) -> zext(x).
325 Res = Builder.CreateIntCast(I->getOperand(0), Ty,
326 Opc == Instruction::SExt);
327
328 // Update Worklist entries with new value if needed.
329 // There are three possible changes to the Worklist:
330 // 1. Update Old-TruncInst -> New-TruncInst.
331 // 2. Remove Old-TruncInst (if New node is not TruncInst).
332 // 3. Add New-TruncInst (if Old node was not TruncInst).
333 auto Entry = find(Worklist, I);
334 if (Entry != Worklist.end()) {
335 if (auto *NewCI = dyn_cast<TruncInst>(Res))
336 *Entry = NewCI;
337 else
338 Worklist.erase(Entry);
339 } else if (auto *NewCI = dyn_cast<TruncInst>(Res))
340 Worklist.push_back(NewCI);
341 break;
342 }
343 case Instruction::Add:
344 case Instruction::Sub:
345 case Instruction::Mul:
346 case Instruction::And:
347 case Instruction::Or:
348 case Instruction::Xor: {
349 Value *LHS = getReducedOperand(I->getOperand(0), SclTy);
350 Value *RHS = getReducedOperand(I->getOperand(1), SclTy);
351 Res = Builder.CreateBinOp((Instruction::BinaryOps)Opc, LHS, RHS);
352 break;
353 }
354 default:
355 llvm_unreachable("Unhandled instruction");
356 }
357
358 NodeInfo.NewValue = Res;
359 if (auto *ResI = dyn_cast<Instruction>(Res))
360 ResI->takeName(I);
361 }
362
363 Value *Res = getReducedOperand(CurrentTruncInst->getOperand(0), SclTy);
364 Type *DstTy = CurrentTruncInst->getType();
365 if (Res->getType() != DstTy) {
366 IRBuilder<> Builder(CurrentTruncInst);
367 Res = Builder.CreateIntCast(Res, DstTy, false);
368 if (auto *ResI = dyn_cast<Instruction>(Res))
369 ResI->takeName(CurrentTruncInst);
370 }
371 CurrentTruncInst->replaceAllUsesWith(Res);
372
373 // Erase old expression dag, which was replaced by the reduced expression dag.
374 // We iterate backward, which means we visit the instruction before we visit
375 // any of its operands, this way, when we get to the operand, we already
376 // removed the instructions (from the expression dag) that uses it.
377 CurrentTruncInst->eraseFromParent();
378 for (auto I = InstInfoMap.rbegin(), E = InstInfoMap.rend(); I != E; ++I) {
379 // We still need to check that the instruction has no users before we erase
380 // it, because {SExt, ZExt}Inst Instruction might have other users that was
381 // not reduced, in such case, we need to keep that instruction.
382 if (I->first->use_empty())
383 I->first->eraseFromParent();
384 }
385 }
386
run(Function & F)387 bool TruncInstCombine::run(Function &F) {
388 bool MadeIRChange = false;
389
390 // Collect all TruncInst in the function into the Worklist for evaluating.
391 for (auto &BB : F) {
392 // Ignore unreachable basic block.
393 if (!DT.isReachableFromEntry(&BB))
394 continue;
395 for (auto &I : BB)
396 if (auto *CI = dyn_cast<TruncInst>(&I))
397 Worklist.push_back(CI);
398 }
399
400 // Process all TruncInst in the Worklist, for each instruction:
401 // 1. Check if it dominates an eligible expression dag to be reduced.
402 // 2. Create a reduced expression dag and replace the old one with it.
403 while (!Worklist.empty()) {
404 CurrentTruncInst = Worklist.pop_back_val();
405
406 if (Type *NewDstSclTy = getBestTruncatedType()) {
407 LLVM_DEBUG(
408 dbgs() << "ICE: TruncInstCombine reducing type of expression dag "
409 "dominated by: "
410 << CurrentTruncInst << '\n');
411 ReduceExpressionDag(NewDstSclTy);
412 MadeIRChange = true;
413 }
414 }
415
416 return MadeIRChange;
417 }
418