• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkMatrix.h"
9 #include "include/core/SkPoint3.h"
10 #include "include/private/SkNx.h"
11 #include "include/private/SkTPin.h"
12 #include "include/private/SkVx.h"
13 #include "src/core/SkGeometry.h"
14 #include "src/core/SkPointPriv.h"
15 
16 #include <algorithm>
17 #include <tuple>
18 #include <utility>
19 
to_vector(const Sk2s & x)20 static SkVector to_vector(const Sk2s& x) {
21     SkVector vector;
22     x.store(&vector);
23     return vector;
24 }
25 
26 ////////////////////////////////////////////////////////////////////////
27 
is_not_monotonic(SkScalar a,SkScalar b,SkScalar c)28 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
29     SkScalar ab = a - b;
30     SkScalar bc = b - c;
31     if (ab < 0) {
32         bc = -bc;
33     }
34     return ab == 0 || bc < 0;
35 }
36 
37 ////////////////////////////////////////////////////////////////////////
38 
valid_unit_divide(SkScalar numer,SkScalar denom,SkScalar * ratio)39 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
40     SkASSERT(ratio);
41 
42     if (numer < 0) {
43         numer = -numer;
44         denom = -denom;
45     }
46 
47     if (denom == 0 || numer == 0 || numer >= denom) {
48         return 0;
49     }
50 
51     SkScalar r = numer / denom;
52     if (SkScalarIsNaN(r)) {
53         return 0;
54     }
55     SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
56     if (r == 0) { // catch underflow if numer <<<< denom
57         return 0;
58     }
59     *ratio = r;
60     return 1;
61 }
62 
63 // Just returns its argument, but makes it easy to set a break-point to know when
64 // SkFindUnitQuadRoots is going to return 0 (an error).
return_check_zero(int value)65 static int return_check_zero(int value) {
66     if (value == 0) {
67         return 0;
68     }
69     return value;
70 }
71 
72 /** From Numerical Recipes in C.
73 
74     Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
75     x1 = Q / A
76     x2 = C / Q
77 */
SkFindUnitQuadRoots(SkScalar A,SkScalar B,SkScalar C,SkScalar roots[2])78 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
79     SkASSERT(roots);
80 
81     if (A == 0) {
82         return return_check_zero(valid_unit_divide(-C, B, roots));
83     }
84 
85     SkScalar* r = roots;
86 
87     // use doubles so we don't overflow temporarily trying to compute R
88     double dr = (double)B * B - 4 * (double)A * C;
89     if (dr < 0) {
90         return return_check_zero(0);
91     }
92     dr = sqrt(dr);
93     SkScalar R = SkDoubleToScalar(dr);
94     if (!SkScalarIsFinite(R)) {
95         return return_check_zero(0);
96     }
97 
98     SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
99     r += valid_unit_divide(Q, A, r);
100     r += valid_unit_divide(C, Q, r);
101     if (r - roots == 2) {
102         if (roots[0] > roots[1]) {
103             using std::swap;
104             swap(roots[0], roots[1]);
105         } else if (roots[0] == roots[1]) { // nearly-equal?
106             r -= 1; // skip the double root
107         }
108     }
109     return return_check_zero((int)(r - roots));
110 }
111 
112 ///////////////////////////////////////////////////////////////////////////////
113 ///////////////////////////////////////////////////////////////////////////////
114 
SkEvalQuadAt(const SkPoint src[3],SkScalar t,SkPoint * pt,SkVector * tangent)115 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
116     SkASSERT(src);
117     SkASSERT(t >= 0 && t <= SK_Scalar1);
118 
119     if (pt) {
120         *pt = SkEvalQuadAt(src, t);
121     }
122     if (tangent) {
123         *tangent = SkEvalQuadTangentAt(src, t);
124     }
125 }
126 
SkEvalQuadAt(const SkPoint src[3],SkScalar t)127 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
128     return to_point(SkQuadCoeff(src).eval(t));
129 }
130 
SkEvalQuadTangentAt(const SkPoint src[3],SkScalar t)131 SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
132     // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
133     // zero tangent vector when t is 0 or 1, and the control point is equal
134     // to the end point. In this case, use the quad end points to compute the tangent.
135     if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
136         return src[2] - src[0];
137     }
138     SkASSERT(src);
139     SkASSERT(t >= 0 && t <= SK_Scalar1);
140 
141     Sk2s P0 = from_point(src[0]);
142     Sk2s P1 = from_point(src[1]);
143     Sk2s P2 = from_point(src[2]);
144 
145     Sk2s B = P1 - P0;
146     Sk2s A = P2 - P1 - B;
147     Sk2s T = A * Sk2s(t) + B;
148 
149     return to_vector(T + T);
150 }
151 
interp(const Sk2s & v0,const Sk2s & v1,const Sk2s & t)152 static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
153     return v0 + (v1 - v0) * t;
154 }
155 
SkChopQuadAt(const SkPoint src[3],SkPoint dst[5],SkScalar t)156 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
157     SkASSERT(t > 0 && t < SK_Scalar1);
158 
159     Sk2s p0 = from_point(src[0]);
160     Sk2s p1 = from_point(src[1]);
161     Sk2s p2 = from_point(src[2]);
162     Sk2s tt(t);
163 
164     Sk2s p01 = interp(p0, p1, tt);
165     Sk2s p12 = interp(p1, p2, tt);
166 
167     dst[0] = to_point(p0);
168     dst[1] = to_point(p01);
169     dst[2] = to_point(interp(p01, p12, tt));
170     dst[3] = to_point(p12);
171     dst[4] = to_point(p2);
172 }
173 
SkChopQuadAtHalf(const SkPoint src[3],SkPoint dst[5])174 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
175     SkChopQuadAt(src, dst, 0.5f);
176 }
177 
SkMeasureAngleBetweenVectors(SkVector a,SkVector b)178 float SkMeasureAngleBetweenVectors(SkVector a, SkVector b) {
179     float cosTheta = sk_ieee_float_divide(a.dot(b), sqrtf(a.dot(a) * b.dot(b)));
180     // Pin cosTheta such that if it is NaN (e.g., if a or b was 0), then we return acos(1) = 0.
181     cosTheta = std::max(std::min(1.f, cosTheta), -1.f);
182     return acosf(cosTheta);
183 }
184 
SkFindBisector(SkVector a,SkVector b)185 SkVector SkFindBisector(SkVector a, SkVector b) {
186     std::array<SkVector, 2> v;
187     if (a.dot(b) >= 0) {
188         // a,b are within +/-90 degrees apart.
189         v = {a, b};
190     } else if (a.cross(b) >= 0) {
191         // a,b are >90 degrees apart. Find the bisector of their interior normals instead. (Above 90
192         // degrees, the original vectors start cancelling each other out which eventually becomes
193         // unstable.)
194         v[0].set(-a.fY, +a.fX);
195         v[1].set(+b.fY, -b.fX);
196     } else {
197         // a,b are <-90 degrees apart. Find the bisector of their interior normals instead. (Below
198         // -90 degrees, the original vectors start cancelling each other out which eventually
199         // becomes unstable.)
200         v[0].set(+a.fY, -a.fX);
201         v[1].set(-b.fY, +b.fX);
202     }
203     // Return "normalize(v[0]) + normalize(v[1])".
204     Sk2f x0_x1, y0_y1;
205     Sk2f::Load2(v.data(), &x0_x1, &y0_y1);
206     Sk2f invLengths = 1.0f / (x0_x1 * x0_x1 + y0_y1 * y0_y1).sqrt();
207     x0_x1 *= invLengths;
208     y0_y1 *= invLengths;
209     return SkPoint{x0_x1[0] + x0_x1[1], y0_y1[0] + y0_y1[1]};
210 }
211 
SkFindQuadMidTangent(const SkPoint src[3])212 float SkFindQuadMidTangent(const SkPoint src[3]) {
213     // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the
214     // midtangent. The bisector of tan0 and -tan1 is orthogonal to the midtangent:
215     //
216     //     n dot midtangent = 0
217     //
218     SkVector tan0 = src[1] - src[0];
219     SkVector tan1 = src[2] - src[1];
220     SkVector bisector = SkFindBisector(tan0, -tan1);
221 
222     // The midtangent can be found where (F' dot bisector) = 0:
223     //
224     //   0 = (F'(T) dot bisector) = |2*T 1| * |p0 - 2*p1 + p2| * |bisector.x|
225     //                                        |-2*p0 + 2*p1  |   |bisector.y|
226     //
227     //                     = |2*T 1| * |tan1 - tan0| * |nx|
228     //                                 |2*tan0     |   |ny|
229     //
230     //                     = 2*T * ((tan1 - tan0) dot bisector) + (2*tan0 dot bisector)
231     //
232     //   T = (tan0 dot bisector) / ((tan0 - tan1) dot bisector)
233     float T = sk_ieee_float_divide(tan0.dot(bisector), (tan0 - tan1).dot(bisector));
234     if (!(T > 0 && T < 1)) {  // Use "!(positive_logic)" so T=nan will take this branch.
235         T = .5;  // The quadratic was a line or near-line. Just chop at .5.
236     }
237 
238     return T;
239 }
240 
241 /** Quad'(t) = At + B, where
242     A = 2(a - 2b + c)
243     B = 2(b - a)
244     Solve for t, only if it fits between 0 < t < 1
245 */
SkFindQuadExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar tValue[1])246 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
247     /*  At + B == 0
248         t = -B / A
249     */
250     return valid_unit_divide(a - b, a - b - b + c, tValue);
251 }
252 
flatten_double_quad_extrema(SkScalar coords[14])253 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
254     coords[2] = coords[6] = coords[4];
255 }
256 
257 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
258  stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
259  */
SkChopQuadAtYExtrema(const SkPoint src[3],SkPoint dst[5])260 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
261     SkASSERT(src);
262     SkASSERT(dst);
263 
264     SkScalar a = src[0].fY;
265     SkScalar b = src[1].fY;
266     SkScalar c = src[2].fY;
267 
268     if (is_not_monotonic(a, b, c)) {
269         SkScalar    tValue;
270         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
271             SkChopQuadAt(src, dst, tValue);
272             flatten_double_quad_extrema(&dst[0].fY);
273             return 1;
274         }
275         // if we get here, we need to force dst to be monotonic, even though
276         // we couldn't compute a unit_divide value (probably underflow).
277         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
278     }
279     dst[0].set(src[0].fX, a);
280     dst[1].set(src[1].fX, b);
281     dst[2].set(src[2].fX, c);
282     return 0;
283 }
284 
285 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
286     stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
287  */
SkChopQuadAtXExtrema(const SkPoint src[3],SkPoint dst[5])288 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
289     SkASSERT(src);
290     SkASSERT(dst);
291 
292     SkScalar a = src[0].fX;
293     SkScalar b = src[1].fX;
294     SkScalar c = src[2].fX;
295 
296     if (is_not_monotonic(a, b, c)) {
297         SkScalar tValue;
298         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
299             SkChopQuadAt(src, dst, tValue);
300             flatten_double_quad_extrema(&dst[0].fX);
301             return 1;
302         }
303         // if we get here, we need to force dst to be monotonic, even though
304         // we couldn't compute a unit_divide value (probably underflow).
305         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
306     }
307     dst[0].set(a, src[0].fY);
308     dst[1].set(b, src[1].fY);
309     dst[2].set(c, src[2].fY);
310     return 0;
311 }
312 
313 //  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
314 //  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
315 //  F''(t)  = 2 (a - 2b + c)
316 //
317 //  A = 2 (b - a)
318 //  B = 2 (a - 2b + c)
319 //
320 //  Maximum curvature for a quadratic means solving
321 //  Fx' Fx'' + Fy' Fy'' = 0
322 //
323 //  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
324 //
SkFindQuadMaxCurvature(const SkPoint src[3])325 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
326     SkScalar    Ax = src[1].fX - src[0].fX;
327     SkScalar    Ay = src[1].fY - src[0].fY;
328     SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
329     SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
330 
331     SkScalar numer = -(Ax * Bx + Ay * By);
332     SkScalar denom = Bx * Bx + By * By;
333     if (denom < 0) {
334         numer = -numer;
335         denom = -denom;
336     }
337     if (numer <= 0) {
338         return 0;
339     }
340     if (numer >= denom) {  // Also catches denom=0.
341         return 1;
342     }
343     SkScalar t = numer / denom;
344     SkASSERT((0 <= t && t < 1) || SkScalarIsNaN(t));
345     return t;
346 }
347 
SkChopQuadAtMaxCurvature(const SkPoint src[3],SkPoint dst[5])348 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
349     SkScalar t = SkFindQuadMaxCurvature(src);
350     if (t > 0 && t < 1) {
351         SkChopQuadAt(src, dst, t);
352         return 2;
353     } else {
354         memcpy(dst, src, 3 * sizeof(SkPoint));
355         return 1;
356     }
357 }
358 
SkConvertQuadToCubic(const SkPoint src[3],SkPoint dst[4])359 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
360     Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
361     Sk2s s0 = from_point(src[0]);
362     Sk2s s1 = from_point(src[1]);
363     Sk2s s2 = from_point(src[2]);
364 
365     dst[0] = to_point(s0);
366     dst[1] = to_point(s0 + (s1 - s0) * scale);
367     dst[2] = to_point(s2 + (s1 - s2) * scale);
368     dst[3] = to_point(s2);
369 }
370 
371 //////////////////////////////////////////////////////////////////////////////
372 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
373 //////////////////////////////////////////////////////////////////////////////
374 
eval_cubic_derivative(const SkPoint src[4],SkScalar t)375 static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) {
376     SkQuadCoeff coeff;
377     Sk2s P0 = from_point(src[0]);
378     Sk2s P1 = from_point(src[1]);
379     Sk2s P2 = from_point(src[2]);
380     Sk2s P3 = from_point(src[3]);
381 
382     coeff.fA = P3 + Sk2s(3) * (P1 - P2) - P0;
383     coeff.fB = times_2(P2 - times_2(P1) + P0);
384     coeff.fC = P1 - P0;
385     return to_vector(coeff.eval(t));
386 }
387 
eval_cubic_2ndDerivative(const SkPoint src[4],SkScalar t)388 static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) {
389     Sk2s P0 = from_point(src[0]);
390     Sk2s P1 = from_point(src[1]);
391     Sk2s P2 = from_point(src[2]);
392     Sk2s P3 = from_point(src[3]);
393     Sk2s A = P3 + Sk2s(3) * (P1 - P2) - P0;
394     Sk2s B = P2 - times_2(P1) + P0;
395 
396     return to_vector(A * Sk2s(t) + B);
397 }
398 
SkEvalCubicAt(const SkPoint src[4],SkScalar t,SkPoint * loc,SkVector * tangent,SkVector * curvature)399 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
400                    SkVector* tangent, SkVector* curvature) {
401     SkASSERT(src);
402     SkASSERT(t >= 0 && t <= SK_Scalar1);
403 
404     if (loc) {
405         *loc = to_point(SkCubicCoeff(src).eval(t));
406     }
407     if (tangent) {
408         // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
409         // adjacent control point is equal to the end point. In this case, use the
410         // next control point or the end points to compute the tangent.
411         if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
412             if (t == 0) {
413                 *tangent = src[2] - src[0];
414             } else {
415                 *tangent = src[3] - src[1];
416             }
417             if (!tangent->fX && !tangent->fY) {
418                 *tangent = src[3] - src[0];
419             }
420         } else {
421             *tangent = eval_cubic_derivative(src, t);
422         }
423     }
424     if (curvature) {
425         *curvature = eval_cubic_2ndDerivative(src, t);
426     }
427 }
428 
429 /** Cubic'(t) = At^2 + Bt + C, where
430     A = 3(-a + 3(b - c) + d)
431     B = 6(a - 2b + c)
432     C = 3(b - a)
433     Solve for t, keeping only those that fit betwee 0 < t < 1
434 */
SkFindCubicExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar d,SkScalar tValues[2])435 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
436                        SkScalar tValues[2]) {
437     // we divide A,B,C by 3 to simplify
438     SkScalar A = d - a + 3*(b - c);
439     SkScalar B = 2*(a - b - b + c);
440     SkScalar C = b - a;
441 
442     return SkFindUnitQuadRoots(A, B, C, tValues);
443 }
444 
445 // This does not return b when t==1, but it otherwise seems to get better precision than
446 // "a*(1 - t) + b*t" for things like chopping cubics on exact cusp points.
447 // The responsibility falls on the caller to check that t != 1 before calling.
448 template<int N, typename T>
unchecked_mix(const skvx::Vec<N,T> & a,const skvx::Vec<N,T> & b,const skvx::Vec<N,T> & t)449 inline static skvx::Vec<N,T> unchecked_mix(const skvx::Vec<N,T>& a, const skvx::Vec<N,T>& b,
450                                            const skvx::Vec<N,T>& t) {
451     return (b - a)*t + a;
452 }
453 
SkChopCubicAt(const SkPoint src[4],SkPoint dst[7],SkScalar t)454 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
455     using float2 = skvx::Vec<2,float>;
456     SkASSERT(0 <= t && t <= 1);
457 
458     if (t == 1) {
459         memcpy(dst, src, sizeof(SkPoint) * 4);
460         dst[4] = dst[5] = dst[6] = src[3];
461         return;
462     }
463 
464     float2 p0 = skvx::bit_pun<float2>(src[0]);
465     float2 p1 = skvx::bit_pun<float2>(src[1]);
466     float2 p2 = skvx::bit_pun<float2>(src[2]);
467     float2 p3 = skvx::bit_pun<float2>(src[3]);
468     float2 T = t;
469 
470     float2 ab = unchecked_mix(p0, p1, T);
471     float2 bc = unchecked_mix(p1, p2, T);
472     float2 cd = unchecked_mix(p2, p3, T);
473     float2 abc = unchecked_mix(ab, bc, T);
474     float2 bcd = unchecked_mix(bc, cd, T);
475     float2 abcd = unchecked_mix(abc, bcd, T);
476 
477     dst[0] = skvx::bit_pun<SkPoint>(p0);
478     dst[1] = skvx::bit_pun<SkPoint>(ab);
479     dst[2] = skvx::bit_pun<SkPoint>(abc);
480     dst[3] = skvx::bit_pun<SkPoint>(abcd);
481     dst[4] = skvx::bit_pun<SkPoint>(bcd);
482     dst[5] = skvx::bit_pun<SkPoint>(cd);
483     dst[6] = skvx::bit_pun<SkPoint>(p3);
484 }
485 
SkChopCubicAt(const SkPoint src[4],SkPoint dst[10],float t0,float t1)486 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[10], float t0, float t1) {
487     using float4 = skvx::Vec<4,float>;
488     using float2 = skvx::Vec<2,float>;
489     SkASSERT(0 <= t0 && t0 <= t1 && t1 <= 1);
490 
491     if (t1 == 1) {
492         SkChopCubicAt(src, dst, t0);
493         dst[7] = dst[8] = dst[9] = src[3];
494         return;
495     }
496 
497     // Perform both chops in parallel using 4-lane SIMD.
498     float4 p00, p11, p22, p33, T;
499     p00.lo = p00.hi = skvx::bit_pun<float2>(src[0]);
500     p11.lo = p11.hi = skvx::bit_pun<float2>(src[1]);
501     p22.lo = p22.hi = skvx::bit_pun<float2>(src[2]);
502     p33.lo = p33.hi = skvx::bit_pun<float2>(src[3]);
503     T.lo = t0;
504     T.hi = t1;
505 
506     float4 ab = unchecked_mix(p00, p11, T);
507     float4 bc = unchecked_mix(p11, p22, T);
508     float4 cd = unchecked_mix(p22, p33, T);
509     float4 abc = unchecked_mix(ab, bc, T);
510     float4 bcd = unchecked_mix(bc, cd, T);
511     float4 abcd = unchecked_mix(abc, bcd, T);
512     float4 middle = unchecked_mix(abc, bcd, skvx::shuffle<2,3,0,1>(T));
513 
514     dst[0] = skvx::bit_pun<SkPoint>(p00.lo);
515     dst[1] = skvx::bit_pun<SkPoint>(ab.lo);
516     dst[2] = skvx::bit_pun<SkPoint>(abc.lo);
517     dst[3] = skvx::bit_pun<SkPoint>(abcd.lo);
518     middle.store(dst + 4);
519     dst[6] = skvx::bit_pun<SkPoint>(abcd.hi);
520     dst[7] = skvx::bit_pun<SkPoint>(bcd.hi);
521     dst[8] = skvx::bit_pun<SkPoint>(cd.hi);
522     dst[9] = skvx::bit_pun<SkPoint>(p33.hi);
523 }
524 
SkChopCubicAt(const SkPoint src[4],SkPoint dst[],const SkScalar tValues[],int tCount)525 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
526                    const SkScalar tValues[], int tCount) {
527     using float2 = skvx::Vec<2,float>;
528 
529     SkASSERT(std::all_of(tValues, tValues + tCount, [](SkScalar t) { return t >= 0 && t <= 1; }));
530     SkASSERT(std::is_sorted(tValues, tValues + tCount));
531 
532     if (dst) {
533         if (tCount == 0) { // nothing to chop
534             memcpy(dst, src, 4*sizeof(SkPoint));
535         } else {
536             int i = 0;
537             for (; i < tCount - 1; i += 2) {
538                 // Do two chops at once.
539                 float2 tt = float2::Load(tValues + i);
540                 if (i != 0) {
541                     float lastT = tValues[i - 1];
542                     tt = skvx::pin((tt - lastT) / (1 - lastT), float2(0), float2(1));
543                 }
544                 SkChopCubicAt(src, dst, tt[0], tt[1]);
545                 src = dst = dst + 6;
546             }
547             if (i < tCount) {
548                 // Chop the final cubic if there was an odd number of chops.
549                 SkASSERT(i + 1 == tCount);
550                 float t = tValues[i];
551                 if (i != 0) {
552                     float lastT = tValues[i - 1];
553                     t = SkTPin(sk_ieee_float_divide(t - lastT, 1 - lastT), 0.f, 1.f);
554                 }
555                 SkChopCubicAt(src, dst, t);
556             }
557         }
558     }
559 }
560 
SkChopCubicAtHalf(const SkPoint src[4],SkPoint dst[7])561 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
562     SkChopCubicAt(src, dst, 0.5f);
563 }
564 
SkMeasureNonInflectCubicRotation(const SkPoint pts[4])565 float SkMeasureNonInflectCubicRotation(const SkPoint pts[4]) {
566     SkVector a = pts[1] - pts[0];
567     SkVector b = pts[2] - pts[1];
568     SkVector c = pts[3] - pts[2];
569     if (a.isZero()) {
570         return SkMeasureAngleBetweenVectors(b, c);
571     }
572     if (b.isZero()) {
573         return SkMeasureAngleBetweenVectors(a, c);
574     }
575     if (c.isZero()) {
576         return SkMeasureAngleBetweenVectors(a, b);
577     }
578     // Postulate: When no points are colocated and there are no inflection points in T=0..1, the
579     // rotation is: 360 degrees, minus the angle [p0,p1,p2], minus the angle [p1,p2,p3].
580     return 2*SK_ScalarPI - SkMeasureAngleBetweenVectors(a,-b) - SkMeasureAngleBetweenVectors(b,-c);
581 }
582 
fma(const Sk4f & f,float m,const Sk4f & a)583 static Sk4f fma(const Sk4f& f, float m, const Sk4f& a) {
584     return SkNx_fma(f, Sk4f(m), a);
585 }
586 
587 // Finds the root nearest 0.5. Returns 0.5 if the roots are undefined or outside 0..1.
solve_quadratic_equation_for_midtangent(float a,float b,float c,float discr)588 static float solve_quadratic_equation_for_midtangent(float a, float b, float c, float discr) {
589     // Quadratic formula from Numerical Recipes in C:
590     float q = -.5f * (b + copysignf(sqrtf(discr), b));
591     // The roots are q/a and c/q. Pick the midtangent closer to T=.5.
592     float _5qa = -.5f*q*a;
593     float T = fabsf(q*q + _5qa) < fabsf(a*c + _5qa) ? sk_ieee_float_divide(q,a)
594                                                     : sk_ieee_float_divide(c,q);
595     if (!(T > 0 && T < 1)) {  // Use "!(positive_logic)" so T=NaN will take this branch.
596         // Either the curve is a flat line with no rotation or FP precision failed us. Chop at .5.
597         T = .5;
598     }
599     return T;
600 }
601 
solve_quadratic_equation_for_midtangent(float a,float b,float c)602 static float solve_quadratic_equation_for_midtangent(float a, float b, float c) {
603     return solve_quadratic_equation_for_midtangent(a, b, c, b*b - 4*a*c);
604 }
605 
SkFindCubicMidTangent(const SkPoint src[4])606 float SkFindCubicMidTangent(const SkPoint src[4]) {
607     // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the
608     // midtangent. The bisector of tan0 and -tan1 is orthogonal to the midtangent:
609     //
610     //     bisector dot midtangent == 0
611     //
612     SkVector tan0 = (src[0] == src[1]) ? src[2] - src[0] : src[1] - src[0];
613     SkVector tan1 = (src[2] == src[3]) ? src[3] - src[1] : src[3] - src[2];
614     SkVector bisector = SkFindBisector(tan0, -tan1);
615 
616     // Find the T value at the midtangent. This is a simple quadratic equation:
617     //
618     //     midtangent dot bisector == 0, or using a tangent matrix C' in power basis form:
619     //
620     //                   |C'x  C'y|
621     //     |T^2  T  1| * |.    .  | * |bisector.x| == 0
622     //                   |.    .  |   |bisector.y|
623     //
624     // The coeffs for the quadratic equation we need to solve are therefore:  C' * bisector
625     static const Sk4f kM[4] = {Sk4f(-1,  2, -1,  0),
626                                Sk4f( 3, -4,  1,  0),
627                                Sk4f(-3,  2,  0,  0)};
628     Sk4f C_x = fma(kM[0], src[0].fX,
629                fma(kM[1], src[1].fX,
630                fma(kM[2], src[2].fX, Sk4f(src[3].fX, 0,0,0))));
631     Sk4f C_y = fma(kM[0], src[0].fY,
632                fma(kM[1], src[1].fY,
633                fma(kM[2], src[2].fY, Sk4f(src[3].fY, 0,0,0))));
634     Sk4f coeffs = C_x * bisector.x() + C_y * bisector.y();
635 
636     // Now solve the quadratic for T.
637     float T = 0;
638     float a=coeffs[0], b=coeffs[1], c=coeffs[2];
639     float discr = b*b - 4*a*c;
640     if (discr > 0) {  // This will only be false if the curve is a line.
641         return solve_quadratic_equation_for_midtangent(a, b, c, discr);
642     } else {
643         // This is a 0- or 360-degree flat line. It doesn't have single points of midtangent.
644         // (tangent == midtangent at every point on the curve except the cusp points.)
645         // Chop in between both cusps instead, if any. There can be up to two cusps on a flat line,
646         // both where the tangent is perpendicular to the starting tangent:
647         //
648         //     tangent dot tan0 == 0
649         //
650         coeffs = C_x * tan0.x() + C_y * tan0.y();
651         a = coeffs[0];
652         b = coeffs[1];
653         if (a != 0) {
654             // We want the point in between both cusps. The midpoint of:
655             //
656             //     (-b +/- sqrt(b^2 - 4*a*c)) / (2*a)
657             //
658             // Is equal to:
659             //
660             //     -b / (2*a)
661             T = -b / (2*a);
662         }
663         if (!(T > 0 && T < 1)) {  // Use "!(positive_logic)" so T=NaN will take this branch.
664             // Either the curve is a flat line with no rotation or FP precision failed us. Chop at
665             // .5.
666             T = .5;
667         }
668         return T;
669     }
670 }
671 
flatten_double_cubic_extrema(SkScalar coords[14])672 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
673     coords[4] = coords[8] = coords[6];
674 }
675 
676 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
677     the resulting beziers are monotonic in Y. This is called by the scan
678     converter.  Depending on what is returned, dst[] is treated as follows:
679     0   dst[0..3] is the original cubic
680     1   dst[0..3] and dst[3..6] are the two new cubics
681     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
682     If dst == null, it is ignored and only the count is returned.
683 */
SkChopCubicAtYExtrema(const SkPoint src[4],SkPoint dst[10])684 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
685     SkScalar    tValues[2];
686     int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
687                                            src[3].fY, tValues);
688 
689     SkChopCubicAt(src, dst, tValues, roots);
690     if (dst && roots > 0) {
691         // we do some cleanup to ensure our Y extrema are flat
692         flatten_double_cubic_extrema(&dst[0].fY);
693         if (roots == 2) {
694             flatten_double_cubic_extrema(&dst[3].fY);
695         }
696     }
697     return roots;
698 }
699 
SkChopCubicAtXExtrema(const SkPoint src[4],SkPoint dst[10])700 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
701     SkScalar    tValues[2];
702     int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
703                                            src[3].fX, tValues);
704 
705     SkChopCubicAt(src, dst, tValues, roots);
706     if (dst && roots > 0) {
707         // we do some cleanup to ensure our Y extrema are flat
708         flatten_double_cubic_extrema(&dst[0].fX);
709         if (roots == 2) {
710             flatten_double_cubic_extrema(&dst[3].fX);
711         }
712     }
713     return roots;
714 }
715 
716 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
717 
718     Inflection means that curvature is zero.
719     Curvature is [F' x F''] / [F'^3]
720     So we solve F'x X F''y - F'y X F''y == 0
721     After some canceling of the cubic term, we get
722     A = b - a
723     B = c - 2b + a
724     C = d - 3c + 3b - a
725     (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
726 */
SkFindCubicInflections(const SkPoint src[4],SkScalar tValues[])727 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
728     SkScalar    Ax = src[1].fX - src[0].fX;
729     SkScalar    Ay = src[1].fY - src[0].fY;
730     SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
731     SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
732     SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
733     SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
734 
735     return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
736                                Ax*Cy - Ay*Cx,
737                                Ax*By - Ay*Bx,
738                                tValues);
739 }
740 
SkChopCubicAtInflections(const SkPoint src[],SkPoint dst[10])741 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
742     SkScalar    tValues[2];
743     int         count = SkFindCubicInflections(src, tValues);
744 
745     if (dst) {
746         if (count == 0) {
747             memcpy(dst, src, 4 * sizeof(SkPoint));
748         } else {
749             SkChopCubicAt(src, dst, tValues, count);
750         }
751     }
752     return count + 1;
753 }
754 
755 // Assumes the third component of points is 1.
756 // Calcs p0 . (p1 x p2)
calc_dot_cross_cubic(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2)757 static double calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
758     const double xComp = (double) p0.fX * ((double) p1.fY - (double) p2.fY);
759     const double yComp = (double) p0.fY * ((double) p2.fX - (double) p1.fX);
760     const double wComp = (double) p1.fX * (double) p2.fY - (double) p1.fY * (double) p2.fX;
761     return (xComp + yComp + wComp);
762 }
763 
764 // Returns a positive power of 2 that, when multiplied by n, and excepting the two edge cases listed
765 // below, shifts the exponent of n to yield a magnitude somewhere inside [1..2).
766 // Returns 2^1023 if abs(n) < 2^-1022 (including 0).
767 // Returns NaN if n is Inf or NaN.
previous_inverse_pow2(double n)768 inline static double previous_inverse_pow2(double n) {
769     uint64_t bits;
770     memcpy(&bits, &n, sizeof(double));
771     bits = ((1023llu*2 << 52) + ((1llu << 52) - 1)) - bits; // exp=-exp
772     bits &= (0x7ffllu) << 52; // mantissa=1.0, sign=0
773     memcpy(&n, &bits, sizeof(double));
774     return n;
775 }
776 
write_cubic_inflection_roots(double t0,double s0,double t1,double s1,double * t,double * s)777 inline static void write_cubic_inflection_roots(double t0, double s0, double t1, double s1,
778                                                 double* t, double* s) {
779     t[0] = t0;
780     s[0] = s0;
781 
782     // This copysign/abs business orients the implicit function so positive values are always on the
783     // "left" side of the curve.
784     t[1] = -copysign(t1, t1 * s1);
785     s[1] = -fabs(s1);
786 
787     // Ensure t[0]/s[0] <= t[1]/s[1] (s[1] is negative from above).
788     if (copysign(s[1], s[0]) * t[0] > -fabs(s[0]) * t[1]) {
789         using std::swap;
790         swap(t[0], t[1]);
791         swap(s[0], s[1]);
792     }
793 }
794 
SkClassifyCubic(const SkPoint P[4],double t[2],double s[2],double d[4])795 SkCubicType SkClassifyCubic(const SkPoint P[4], double t[2], double s[2], double d[4]) {
796     // Find the cubic's inflection function, I = [T^3  -3T^2  3T  -1] dot D. (D0 will always be 0
797     // for integral cubics.)
798     //
799     // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware",
800     // 4.2 Curve Categorization:
801     //
802     // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
803     double A1 = calc_dot_cross_cubic(P[0], P[3], P[2]);
804     double A2 = calc_dot_cross_cubic(P[1], P[0], P[3]);
805     double A3 = calc_dot_cross_cubic(P[2], P[1], P[0]);
806 
807     double D3 = 3 * A3;
808     double D2 = D3 - A2;
809     double D1 = D2 - A2 + A1;
810 
811     // Shift the exponents in D so the largest magnitude falls somewhere in 1..2. This protects us
812     // from overflow down the road while solving for roots and KLM functionals.
813     double Dmax = std::max(std::max(fabs(D1), fabs(D2)), fabs(D3));
814     double norm = previous_inverse_pow2(Dmax);
815     D1 *= norm;
816     D2 *= norm;
817     D3 *= norm;
818 
819     if (d) {
820         d[3] = D3;
821         d[2] = D2;
822         d[1] = D1;
823         d[0] = 0;
824     }
825 
826     // Now use the inflection function to classify the cubic.
827     //
828     // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware",
829     // 4.4 Integral Cubics:
830     //
831     // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
832     if (0 != D1) {
833         double discr = 3*D2*D2 - 4*D1*D3;
834         if (discr > 0) { // Serpentine.
835             if (t && s) {
836                 double q = 3*D2 + copysign(sqrt(3*discr), D2);
837                 write_cubic_inflection_roots(q, 6*D1, 2*D3, q, t, s);
838             }
839             return SkCubicType::kSerpentine;
840         } else if (discr < 0) { // Loop.
841             if (t && s) {
842                 double q = D2 + copysign(sqrt(-discr), D2);
843                 write_cubic_inflection_roots(q, 2*D1, 2*(D2*D2 - D3*D1), D1*q, t, s);
844             }
845             return SkCubicType::kLoop;
846         } else { // Cusp.
847             if (t && s) {
848                 write_cubic_inflection_roots(D2, 2*D1, D2, 2*D1, t, s);
849             }
850             return SkCubicType::kLocalCusp;
851         }
852     } else {
853         if (0 != D2) { // Cusp at T=infinity.
854             if (t && s) {
855                 write_cubic_inflection_roots(D3, 3*D2, 1, 0, t, s); // T1=infinity.
856             }
857             return SkCubicType::kCuspAtInfinity;
858         } else { // Degenerate.
859             if (t && s) {
860                 write_cubic_inflection_roots(1, 0, 1, 0, t, s); // T0=T1=infinity.
861             }
862             return 0 != D3 ? SkCubicType::kQuadratic : SkCubicType::kLineOrPoint;
863         }
864     }
865 }
866 
bubble_sort(T array[],int count)867 template <typename T> void bubble_sort(T array[], int count) {
868     for (int i = count - 1; i > 0; --i)
869         for (int j = i; j > 0; --j)
870             if (array[j] < array[j-1])
871             {
872                 T   tmp(array[j]);
873                 array[j] = array[j-1];
874                 array[j-1] = tmp;
875             }
876 }
877 
878 /**
879  *  Given an array and count, remove all pair-wise duplicates from the array,
880  *  keeping the existing sorting, and return the new count
881  */
collaps_duplicates(SkScalar array[],int count)882 static int collaps_duplicates(SkScalar array[], int count) {
883     for (int n = count; n > 1; --n) {
884         if (array[0] == array[1]) {
885             for (int i = 1; i < n; ++i) {
886                 array[i - 1] = array[i];
887             }
888             count -= 1;
889         } else {
890             array += 1;
891         }
892     }
893     return count;
894 }
895 
896 #ifdef SK_DEBUG
897 
898 #define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
899 
test_collaps_duplicates()900 static void test_collaps_duplicates() {
901     static bool gOnce;
902     if (gOnce) { return; }
903     gOnce = true;
904     const SkScalar src0[] = { 0 };
905     const SkScalar src1[] = { 0, 0 };
906     const SkScalar src2[] = { 0, 1 };
907     const SkScalar src3[] = { 0, 0, 0 };
908     const SkScalar src4[] = { 0, 0, 1 };
909     const SkScalar src5[] = { 0, 1, 1 };
910     const SkScalar src6[] = { 0, 1, 2 };
911     const struct {
912         const SkScalar* fData;
913         int fCount;
914         int fCollapsedCount;
915     } data[] = {
916         { TEST_COLLAPS_ENTRY(src0), 1 },
917         { TEST_COLLAPS_ENTRY(src1), 1 },
918         { TEST_COLLAPS_ENTRY(src2), 2 },
919         { TEST_COLLAPS_ENTRY(src3), 1 },
920         { TEST_COLLAPS_ENTRY(src4), 2 },
921         { TEST_COLLAPS_ENTRY(src5), 2 },
922         { TEST_COLLAPS_ENTRY(src6), 3 },
923     };
924     for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
925         SkScalar dst[3];
926         memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
927         int count = collaps_duplicates(dst, data[i].fCount);
928         SkASSERT(data[i].fCollapsedCount == count);
929         for (int j = 1; j < count; ++j) {
930             SkASSERT(dst[j-1] < dst[j]);
931         }
932     }
933 }
934 #endif
935 
SkScalarCubeRoot(SkScalar x)936 static SkScalar SkScalarCubeRoot(SkScalar x) {
937     return SkScalarPow(x, 0.3333333f);
938 }
939 
940 /*  Solve coeff(t) == 0, returning the number of roots that
941     lie withing 0 < t < 1.
942     coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
943 
944     Eliminates repeated roots (so that all tValues are distinct, and are always
945     in increasing order.
946 */
solve_cubic_poly(const SkScalar coeff[4],SkScalar tValues[3])947 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
948     if (SkScalarNearlyZero(coeff[0])) {  // we're just a quadratic
949         return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
950     }
951 
952     SkScalar a, b, c, Q, R;
953 
954     {
955         SkASSERT(coeff[0] != 0);
956 
957         SkScalar inva = SkScalarInvert(coeff[0]);
958         a = coeff[1] * inva;
959         b = coeff[2] * inva;
960         c = coeff[3] * inva;
961     }
962     Q = (a*a - b*3) / 9;
963     R = (2*a*a*a - 9*a*b + 27*c) / 54;
964 
965     SkScalar Q3 = Q * Q * Q;
966     SkScalar R2MinusQ3 = R * R - Q3;
967     SkScalar adiv3 = a / 3;
968 
969     if (R2MinusQ3 < 0) { // we have 3 real roots
970         // the divide/root can, due to finite precisions, be slightly outside of -1...1
971         SkScalar theta = SkScalarACos(SkTPin(R / SkScalarSqrt(Q3), -1.0f, 1.0f));
972         SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
973 
974         tValues[0] = SkTPin(neg2RootQ * SkScalarCos(theta/3) - adiv3, 0.0f, 1.0f);
975         tValues[1] = SkTPin(neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3, 0.0f, 1.0f);
976         tValues[2] = SkTPin(neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3, 0.0f, 1.0f);
977         SkDEBUGCODE(test_collaps_duplicates();)
978 
979         // now sort the roots
980         bubble_sort(tValues, 3);
981         return collaps_duplicates(tValues, 3);
982     } else {              // we have 1 real root
983         SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
984         A = SkScalarCubeRoot(A);
985         if (R > 0) {
986             A = -A;
987         }
988         if (A != 0) {
989             A += Q / A;
990         }
991         tValues[0] = SkTPin(A - adiv3, 0.0f, 1.0f);
992         return 1;
993     }
994 }
995 
996 /*  Looking for F' dot F'' == 0
997 
998     A = b - a
999     B = c - 2b + a
1000     C = d - 3c + 3b - a
1001 
1002     F' = 3Ct^2 + 6Bt + 3A
1003     F'' = 6Ct + 6B
1004 
1005     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
1006 */
formulate_F1DotF2(const SkScalar src[],SkScalar coeff[4])1007 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
1008     SkScalar    a = src[2] - src[0];
1009     SkScalar    b = src[4] - 2 * src[2] + src[0];
1010     SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
1011 
1012     coeff[0] = c * c;
1013     coeff[1] = 3 * b * c;
1014     coeff[2] = 2 * b * b + c * a;
1015     coeff[3] = a * b;
1016 }
1017 
1018 /*  Looking for F' dot F'' == 0
1019 
1020     A = b - a
1021     B = c - 2b + a
1022     C = d - 3c + 3b - a
1023 
1024     F' = 3Ct^2 + 6Bt + 3A
1025     F'' = 6Ct + 6B
1026 
1027     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
1028 */
SkFindCubicMaxCurvature(const SkPoint src[4],SkScalar tValues[3])1029 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
1030     SkScalar coeffX[4], coeffY[4];
1031     int      i;
1032 
1033     formulate_F1DotF2(&src[0].fX, coeffX);
1034     formulate_F1DotF2(&src[0].fY, coeffY);
1035 
1036     for (i = 0; i < 4; i++) {
1037         coeffX[i] += coeffY[i];
1038     }
1039 
1040     int numRoots = solve_cubic_poly(coeffX, tValues);
1041     // now remove extrema where the curvature is zero (mins)
1042     // !!!! need a test for this !!!!
1043     return numRoots;
1044 }
1045 
SkChopCubicAtMaxCurvature(const SkPoint src[4],SkPoint dst[13],SkScalar tValues[3])1046 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
1047                               SkScalar tValues[3]) {
1048     SkScalar    t_storage[3];
1049 
1050     if (tValues == nullptr) {
1051         tValues = t_storage;
1052     }
1053 
1054     SkScalar roots[3];
1055     int rootCount = SkFindCubicMaxCurvature(src, roots);
1056 
1057     // Throw out values not inside 0..1.
1058     int count = 0;
1059     for (int i = 0; i < rootCount; ++i) {
1060         if (0 < roots[i] && roots[i] < 1) {
1061             tValues[count++] = roots[i];
1062         }
1063     }
1064 
1065     if (dst) {
1066         if (count == 0) {
1067             memcpy(dst, src, 4 * sizeof(SkPoint));
1068         } else {
1069             SkChopCubicAt(src, dst, tValues, count);
1070         }
1071     }
1072     return count + 1;
1073 }
1074 
1075 // Returns a constant proportional to the dimensions of the cubic.
1076 // Constant found through experimentation -- maybe there's a better way....
calc_cubic_precision(const SkPoint src[4])1077 static SkScalar calc_cubic_precision(const SkPoint src[4]) {
1078     return (SkPointPriv::DistanceToSqd(src[1], src[0]) + SkPointPriv::DistanceToSqd(src[2], src[1])
1079             + SkPointPriv::DistanceToSqd(src[3], src[2])) * 1e-8f;
1080 }
1081 
1082 // Returns true if both points src[testIndex], src[testIndex+1] are in the same half plane defined
1083 // by the line segment src[lineIndex], src[lineIndex+1].
on_same_side(const SkPoint src[4],int testIndex,int lineIndex)1084 static bool on_same_side(const SkPoint src[4], int testIndex, int lineIndex) {
1085     SkPoint origin = src[lineIndex];
1086     SkVector line = src[lineIndex + 1] - origin;
1087     SkScalar crosses[2];
1088     for (int index = 0; index < 2; ++index) {
1089         SkVector testLine = src[testIndex + index] - origin;
1090         crosses[index] = line.cross(testLine);
1091     }
1092     return crosses[0] * crosses[1] >= 0;
1093 }
1094 
1095 // Return location (in t) of cubic cusp, if there is one.
1096 // Note that classify cubic code does not reliably return all cusp'd cubics, so
1097 // it is not called here.
SkFindCubicCusp(const SkPoint src[4])1098 SkScalar SkFindCubicCusp(const SkPoint src[4]) {
1099     // When the adjacent control point matches the end point, it behaves as if
1100     // the cubic has a cusp: there's a point of max curvature where the derivative
1101     // goes to zero. Ideally, this would be where t is zero or one, but math
1102     // error makes not so. It is not uncommon to create cubics this way; skip them.
1103     if (src[0] == src[1]) {
1104         return -1;
1105     }
1106     if (src[2] == src[3]) {
1107         return -1;
1108     }
1109     // Cubics only have a cusp if the line segments formed by the control and end points cross.
1110     // Detect crossing if line ends are on opposite sides of plane formed by the other line.
1111     if (on_same_side(src, 0, 2) || on_same_side(src, 2, 0)) {
1112         return -1;
1113     }
1114     // Cubics may have multiple points of maximum curvature, although at most only
1115     // one is a cusp.
1116     SkScalar maxCurvature[3];
1117     int roots = SkFindCubicMaxCurvature(src, maxCurvature);
1118     for (int index = 0; index < roots; ++index) {
1119         SkScalar testT = maxCurvature[index];
1120         if (0 >= testT || testT >= 1) {  // no need to consider max curvature on the end
1121             continue;
1122         }
1123         // A cusp is at the max curvature, and also has a derivative close to zero.
1124         // Choose the 'close to zero' meaning by comparing the derivative length
1125         // with the overall cubic size.
1126         SkVector dPt = eval_cubic_derivative(src, testT);
1127         SkScalar dPtMagnitude = SkPointPriv::LengthSqd(dPt);
1128         SkScalar precision = calc_cubic_precision(src);
1129         if (dPtMagnitude < precision) {
1130             // All three max curvature t values may be close to the cusp;
1131             // return the first one.
1132             return testT;
1133         }
1134     }
1135     return -1;
1136 }
1137 
1138 #include "src/pathops/SkPathOpsCubic.h"
1139 
1140 typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
1141 
cubic_dchop_at_intercept(const SkPoint src[4],SkScalar intercept,SkPoint dst[7],InterceptProc method)1142 static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
1143                                      InterceptProc method) {
1144     SkDCubic cubic;
1145     double roots[3];
1146     int count = (cubic.set(src).*method)(intercept, roots);
1147     if (count > 0) {
1148         SkDCubicPair pair = cubic.chopAt(roots[0]);
1149         for (int i = 0; i < 7; ++i) {
1150             dst[i] = pair.pts[i].asSkPoint();
1151         }
1152         return true;
1153     }
1154     return false;
1155 }
1156 
SkChopMonoCubicAtY(SkPoint src[4],SkScalar y,SkPoint dst[7])1157 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
1158     return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
1159 }
1160 
SkChopMonoCubicAtX(SkPoint src[4],SkScalar x,SkPoint dst[7])1161 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
1162     return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
1163 }
1164 
1165 ///////////////////////////////////////////////////////////////////////////////
1166 //
1167 // NURB representation for conics.  Helpful explanations at:
1168 //
1169 // http://citeseerx.ist.psu.edu/viewdoc/
1170 //   download?doi=10.1.1.44.5740&rep=rep1&type=ps
1171 // and
1172 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
1173 //
1174 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
1175 //     ------------------------------------------
1176 //         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
1177 //
1178 //   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
1179 //     ------------------------------------------------
1180 //             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
1181 //
1182 
1183 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
1184 //
1185 //  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
1186 //  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
1187 //  t^0 : -2 P0 w + 2 P1 w
1188 //
1189 //  We disregard magnitude, so we can freely ignore the denominator of F', and
1190 //  divide the numerator by 2
1191 //
1192 //    coeff[0] for t^2
1193 //    coeff[1] for t^1
1194 //    coeff[2] for t^0
1195 //
conic_deriv_coeff(const SkScalar src[],SkScalar w,SkScalar coeff[3])1196 static void conic_deriv_coeff(const SkScalar src[],
1197                               SkScalar w,
1198                               SkScalar coeff[3]) {
1199     const SkScalar P20 = src[4] - src[0];
1200     const SkScalar P10 = src[2] - src[0];
1201     const SkScalar wP10 = w * P10;
1202     coeff[0] = w * P20 - P20;
1203     coeff[1] = P20 - 2 * wP10;
1204     coeff[2] = wP10;
1205 }
1206 
conic_find_extrema(const SkScalar src[],SkScalar w,SkScalar * t)1207 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
1208     SkScalar coeff[3];
1209     conic_deriv_coeff(src, w, coeff);
1210 
1211     SkScalar tValues[2];
1212     int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
1213     SkASSERT(0 == roots || 1 == roots);
1214 
1215     if (1 == roots) {
1216         *t = tValues[0];
1217         return true;
1218     }
1219     return false;
1220 }
1221 
1222 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
p3d_interp(const SkScalar src[7],SkScalar dst[7],SkScalar t)1223 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
1224     SkScalar ab = SkScalarInterp(src[0], src[3], t);
1225     SkScalar bc = SkScalarInterp(src[3], src[6], t);
1226     dst[0] = ab;
1227     dst[3] = SkScalarInterp(ab, bc, t);
1228     dst[6] = bc;
1229 }
1230 
ratquad_mapTo3D(const SkPoint src[3],SkScalar w,SkPoint3 dst[3])1231 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkPoint3 dst[3]) {
1232     dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
1233     dst[1].set(src[1].fX * w, src[1].fY * w, w);
1234     dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
1235 }
1236 
project_down(const SkPoint3 & src)1237 static SkPoint project_down(const SkPoint3& src) {
1238     return {src.fX / src.fZ, src.fY / src.fZ};
1239 }
1240 
1241 // return false if infinity or NaN is generated; caller must check
chopAt(SkScalar t,SkConic dst[2]) const1242 bool SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
1243     SkPoint3 tmp[3], tmp2[3];
1244 
1245     ratquad_mapTo3D(fPts, fW, tmp);
1246 
1247     p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
1248     p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
1249     p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
1250 
1251     dst[0].fPts[0] = fPts[0];
1252     dst[0].fPts[1] = project_down(tmp2[0]);
1253     dst[0].fPts[2] = project_down(tmp2[1]); dst[1].fPts[0] = dst[0].fPts[2];
1254     dst[1].fPts[1] = project_down(tmp2[2]);
1255     dst[1].fPts[2] = fPts[2];
1256 
1257     // to put in "standard form", where w0 and w2 are both 1, we compute the
1258     // new w1 as sqrt(w1*w1/w0*w2)
1259     // or
1260     // w1 /= sqrt(w0*w2)
1261     //
1262     // However, in our case, we know that for dst[0]:
1263     //     w0 == 1, and for dst[1], w2 == 1
1264     //
1265     SkScalar root = SkScalarSqrt(tmp2[1].fZ);
1266     dst[0].fW = tmp2[0].fZ / root;
1267     dst[1].fW = tmp2[2].fZ / root;
1268     SkASSERT(sizeof(dst[0]) == sizeof(SkScalar) * 7);
1269     SkASSERT(0 == offsetof(SkConic, fPts[0].fX));
1270     return SkScalarsAreFinite(&dst[0].fPts[0].fX, 7 * 2);
1271 }
1272 
chopAt(SkScalar t1,SkScalar t2,SkConic * dst) const1273 void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
1274     if (0 == t1 || 1 == t2) {
1275         if (0 == t1 && 1 == t2) {
1276             *dst = *this;
1277             return;
1278         } else {
1279             SkConic pair[2];
1280             if (this->chopAt(t1 ? t1 : t2, pair)) {
1281                 *dst = pair[SkToBool(t1)];
1282                 return;
1283             }
1284         }
1285     }
1286     SkConicCoeff coeff(*this);
1287     Sk2s tt1(t1);
1288     Sk2s aXY = coeff.fNumer.eval(tt1);
1289     Sk2s aZZ = coeff.fDenom.eval(tt1);
1290     Sk2s midTT((t1 + t2) / 2);
1291     Sk2s dXY = coeff.fNumer.eval(midTT);
1292     Sk2s dZZ = coeff.fDenom.eval(midTT);
1293     Sk2s tt2(t2);
1294     Sk2s cXY = coeff.fNumer.eval(tt2);
1295     Sk2s cZZ = coeff.fDenom.eval(tt2);
1296     Sk2s bXY = times_2(dXY) - (aXY + cXY) * Sk2s(0.5f);
1297     Sk2s bZZ = times_2(dZZ) - (aZZ + cZZ) * Sk2s(0.5f);
1298     dst->fPts[0] = to_point(aXY / aZZ);
1299     dst->fPts[1] = to_point(bXY / bZZ);
1300     dst->fPts[2] = to_point(cXY / cZZ);
1301     Sk2s ww = bZZ / (aZZ * cZZ).sqrt();
1302     dst->fW = ww[0];
1303 }
1304 
evalAt(SkScalar t) const1305 SkPoint SkConic::evalAt(SkScalar t) const {
1306     return to_point(SkConicCoeff(*this).eval(t));
1307 }
1308 
evalTangentAt(SkScalar t) const1309 SkVector SkConic::evalTangentAt(SkScalar t) const {
1310     // The derivative equation returns a zero tangent vector when t is 0 or 1,
1311     // and the control point is equal to the end point.
1312     // In this case, use the conic endpoints to compute the tangent.
1313     if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
1314         return fPts[2] - fPts[0];
1315     }
1316     Sk2s p0 = from_point(fPts[0]);
1317     Sk2s p1 = from_point(fPts[1]);
1318     Sk2s p2 = from_point(fPts[2]);
1319     Sk2s ww(fW);
1320 
1321     Sk2s p20 = p2 - p0;
1322     Sk2s p10 = p1 - p0;
1323 
1324     Sk2s C = ww * p10;
1325     Sk2s A = ww * p20 - p20;
1326     Sk2s B = p20 - C - C;
1327 
1328     return to_vector(SkQuadCoeff(A, B, C).eval(t));
1329 }
1330 
evalAt(SkScalar t,SkPoint * pt,SkVector * tangent) const1331 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1332     SkASSERT(t >= 0 && t <= SK_Scalar1);
1333 
1334     if (pt) {
1335         *pt = this->evalAt(t);
1336     }
1337     if (tangent) {
1338         *tangent = this->evalTangentAt(t);
1339     }
1340 }
1341 
subdivide_w_value(SkScalar w)1342 static SkScalar subdivide_w_value(SkScalar w) {
1343     return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
1344 }
1345 
chop(SkConic * SK_RESTRICT dst) const1346 void SkConic::chop(SkConic * SK_RESTRICT dst) const {
1347     Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
1348     SkScalar newW = subdivide_w_value(fW);
1349 
1350     Sk2s p0 = from_point(fPts[0]);
1351     Sk2s p1 = from_point(fPts[1]);
1352     Sk2s p2 = from_point(fPts[2]);
1353     Sk2s ww(fW);
1354 
1355     Sk2s wp1 = ww * p1;
1356     Sk2s m = (p0 + times_2(wp1) + p2) * scale * Sk2s(0.5f);
1357     SkPoint mPt = to_point(m);
1358     if (!mPt.isFinite()) {
1359         double w_d = fW;
1360         double w_2 = w_d * 2;
1361         double scale_half = 1 / (1 + w_d) * 0.5;
1362         mPt.fX = SkDoubleToScalar((fPts[0].fX + w_2 * fPts[1].fX + fPts[2].fX) * scale_half);
1363         mPt.fY = SkDoubleToScalar((fPts[0].fY + w_2 * fPts[1].fY + fPts[2].fY) * scale_half);
1364     }
1365     dst[0].fPts[0] = fPts[0];
1366     dst[0].fPts[1] = to_point((p0 + wp1) * scale);
1367     dst[0].fPts[2] = dst[1].fPts[0] = mPt;
1368     dst[1].fPts[1] = to_point((wp1 + p2) * scale);
1369     dst[1].fPts[2] = fPts[2];
1370 
1371     dst[0].fW = dst[1].fW = newW;
1372 }
1373 
1374 /*
1375  *  "High order approximation of conic sections by quadratic splines"
1376  *      by Michael Floater, 1993
1377  */
1378 #define AS_QUAD_ERROR_SETUP                                         \
1379     SkScalar a = fW - 1;                                            \
1380     SkScalar k = a / (4 * (2 + a));                                 \
1381     SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
1382     SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1383 
computeAsQuadError(SkVector * err) const1384 void SkConic::computeAsQuadError(SkVector* err) const {
1385     AS_QUAD_ERROR_SETUP
1386     err->set(x, y);
1387 }
1388 
asQuadTol(SkScalar tol) const1389 bool SkConic::asQuadTol(SkScalar tol) const {
1390     AS_QUAD_ERROR_SETUP
1391     return (x * x + y * y) <= tol * tol;
1392 }
1393 
1394 // Limit the number of suggested quads to approximate a conic
1395 #define kMaxConicToQuadPOW2     5
1396 
computeQuadPOW2(SkScalar tol) const1397 int SkConic::computeQuadPOW2(SkScalar tol) const {
1398     if (tol < 0 || !SkScalarIsFinite(tol) || !SkPointPriv::AreFinite(fPts, 3)) {
1399         return 0;
1400     }
1401 
1402     AS_QUAD_ERROR_SETUP
1403 
1404     SkScalar error = SkScalarSqrt(x * x + y * y);
1405     int pow2;
1406     for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
1407         if (error <= tol) {
1408             break;
1409         }
1410         error *= 0.25f;
1411     }
1412     // float version -- using ceil gives the same results as the above.
1413     if (false) {
1414         SkScalar err = SkScalarSqrt(x * x + y * y);
1415         if (err <= tol) {
1416             return 0;
1417         }
1418         SkScalar tol2 = tol * tol;
1419         if (tol2 == 0) {
1420             return kMaxConicToQuadPOW2;
1421         }
1422         SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
1423         int altPow2 = SkScalarCeilToInt(fpow2);
1424         if (altPow2 != pow2) {
1425             SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
1426         }
1427         pow2 = altPow2;
1428     }
1429     return pow2;
1430 }
1431 
1432 // This was originally developed and tested for pathops: see SkOpTypes.h
1433 // returns true if (a <= b <= c) || (a >= b >= c)
between(SkScalar a,SkScalar b,SkScalar c)1434 static bool between(SkScalar a, SkScalar b, SkScalar c) {
1435     return (a - b) * (c - b) <= 0;
1436 }
1437 
subdivide(const SkConic & src,SkPoint pts[],int level)1438 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1439     SkASSERT(level >= 0);
1440 
1441     if (0 == level) {
1442         memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1443         return pts + 2;
1444     } else {
1445         SkConic dst[2];
1446         src.chop(dst);
1447         const SkScalar startY = src.fPts[0].fY;
1448         SkScalar endY = src.fPts[2].fY;
1449         if (between(startY, src.fPts[1].fY, endY)) {
1450             // If the input is monotonic and the output is not, the scan converter hangs.
1451             // Ensure that the chopped conics maintain their y-order.
1452             SkScalar midY = dst[0].fPts[2].fY;
1453             if (!between(startY, midY, endY)) {
1454                 // If the computed midpoint is outside the ends, move it to the closer one.
1455                 SkScalar closerY = SkTAbs(midY - startY) < SkTAbs(midY - endY) ? startY : endY;
1456                 dst[0].fPts[2].fY = dst[1].fPts[0].fY = closerY;
1457             }
1458             if (!between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY)) {
1459                 // If the 1st control is not between the start and end, put it at the start.
1460                 // This also reduces the quad to a line.
1461                 dst[0].fPts[1].fY = startY;
1462             }
1463             if (!between(dst[1].fPts[0].fY, dst[1].fPts[1].fY, endY)) {
1464                 // If the 2nd control is not between the start and end, put it at the end.
1465                 // This also reduces the quad to a line.
1466                 dst[1].fPts[1].fY = endY;
1467             }
1468             // Verify that all five points are in order.
1469             SkASSERT(between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY));
1470             SkASSERT(between(dst[0].fPts[1].fY, dst[0].fPts[2].fY, dst[1].fPts[1].fY));
1471             SkASSERT(between(dst[0].fPts[2].fY, dst[1].fPts[1].fY, endY));
1472         }
1473         --level;
1474         pts = subdivide(dst[0], pts, level);
1475         return subdivide(dst[1], pts, level);
1476     }
1477 }
1478 
chopIntoQuadsPOW2(SkPoint pts[],int pow2) const1479 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1480     SkASSERT(pow2 >= 0);
1481     *pts = fPts[0];
1482     SkDEBUGCODE(SkPoint* endPts);
1483     if (pow2 == kMaxConicToQuadPOW2) {  // If an extreme weight generates many quads ...
1484         SkConic dst[2];
1485         this->chop(dst);
1486         // check to see if the first chop generates a pair of lines
1487         if (SkPointPriv::EqualsWithinTolerance(dst[0].fPts[1], dst[0].fPts[2]) &&
1488                 SkPointPriv::EqualsWithinTolerance(dst[1].fPts[0], dst[1].fPts[1])) {
1489             pts[1] = pts[2] = pts[3] = dst[0].fPts[1];  // set ctrl == end to make lines
1490             pts[4] = dst[1].fPts[2];
1491             pow2 = 1;
1492             SkDEBUGCODE(endPts = &pts[5]);
1493             goto commonFinitePtCheck;
1494         }
1495     }
1496     SkDEBUGCODE(endPts = ) subdivide(*this, pts + 1, pow2);
1497 commonFinitePtCheck:
1498     const int quadCount = 1 << pow2;
1499     const int ptCount = 2 * quadCount + 1;
1500     SkASSERT(endPts - pts == ptCount);
1501     if (!SkPointPriv::AreFinite(pts, ptCount)) {
1502         // if we generated a non-finite, pin ourselves to the middle of the hull,
1503         // as our first and last are already on the first/last pts of the hull.
1504         for (int i = 1; i < ptCount - 1; ++i) {
1505             pts[i] = fPts[1];
1506         }
1507     }
1508     return 1 << pow2;
1509 }
1510 
findMidTangent() const1511 float SkConic::findMidTangent() const {
1512     // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the
1513     // midtangent. The bisector of tan0 and -tan1 is orthogonal to the midtangent:
1514     //
1515     //     bisector dot midtangent = 0
1516     //
1517     SkVector tan0 = fPts[1] - fPts[0];
1518     SkVector tan1 = fPts[2] - fPts[1];
1519     SkVector bisector = SkFindBisector(tan0, -tan1);
1520 
1521     // Start by finding the tangent function's power basis coefficients. These define a tangent
1522     // direction (scaled by some uniform value) as:
1523     //                                                |T^2|
1524     //     Tangent_Direction(T) = dx,dy = |A  B  C| * |T  |
1525     //                                    |.  .  .|   |1  |
1526     //
1527     // The derivative of a conic has a cumbersome order-4 denominator. However, this isn't necessary
1528     // if we are only interested in a vector in the same *direction* as a given tangent line. Since
1529     // the denominator scales dx and dy uniformly, we can throw it out completely after evaluating
1530     // the derivative with the standard quotient rule. This leaves us with a simpler quadratic
1531     // function that we use to find a tangent.
1532     SkVector A = (fPts[2] - fPts[0]) * (fW - 1);
1533     SkVector B = (fPts[2] - fPts[0]) - (fPts[1] - fPts[0]) * (fW*2);
1534     SkVector C = (fPts[1] - fPts[0]) * fW;
1535 
1536     // Now solve for "bisector dot midtangent = 0":
1537     //
1538     //                            |T^2|
1539     //     bisector * |A  B  C| * |T  | = 0
1540     //                |.  .  .|   |1  |
1541     //
1542     float a = bisector.dot(A);
1543     float b = bisector.dot(B);
1544     float c = bisector.dot(C);
1545     return solve_quadratic_equation_for_midtangent(a, b, c);
1546 }
1547 
findXExtrema(SkScalar * t) const1548 bool SkConic::findXExtrema(SkScalar* t) const {
1549     return conic_find_extrema(&fPts[0].fX, fW, t);
1550 }
1551 
findYExtrema(SkScalar * t) const1552 bool SkConic::findYExtrema(SkScalar* t) const {
1553     return conic_find_extrema(&fPts[0].fY, fW, t);
1554 }
1555 
chopAtXExtrema(SkConic dst[2]) const1556 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
1557     SkScalar t;
1558     if (this->findXExtrema(&t)) {
1559         if (!this->chopAt(t, dst)) {
1560             // if chop can't return finite values, don't chop
1561             return false;
1562         }
1563         // now clean-up the middle, since we know t was meant to be at
1564         // an X-extrema
1565         SkScalar value = dst[0].fPts[2].fX;
1566         dst[0].fPts[1].fX = value;
1567         dst[1].fPts[0].fX = value;
1568         dst[1].fPts[1].fX = value;
1569         return true;
1570     }
1571     return false;
1572 }
1573 
chopAtYExtrema(SkConic dst[2]) const1574 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
1575     SkScalar t;
1576     if (this->findYExtrema(&t)) {
1577         if (!this->chopAt(t, dst)) {
1578             // if chop can't return finite values, don't chop
1579             return false;
1580         }
1581         // now clean-up the middle, since we know t was meant to be at
1582         // an Y-extrema
1583         SkScalar value = dst[0].fPts[2].fY;
1584         dst[0].fPts[1].fY = value;
1585         dst[1].fPts[0].fY = value;
1586         dst[1].fPts[1].fY = value;
1587         return true;
1588     }
1589     return false;
1590 }
1591 
computeTightBounds(SkRect * bounds) const1592 void SkConic::computeTightBounds(SkRect* bounds) const {
1593     SkPoint pts[4];
1594     pts[0] = fPts[0];
1595     pts[1] = fPts[2];
1596     int count = 2;
1597 
1598     SkScalar t;
1599     if (this->findXExtrema(&t)) {
1600         this->evalAt(t, &pts[count++]);
1601     }
1602     if (this->findYExtrema(&t)) {
1603         this->evalAt(t, &pts[count++]);
1604     }
1605     bounds->setBounds(pts, count);
1606 }
1607 
computeFastBounds(SkRect * bounds) const1608 void SkConic::computeFastBounds(SkRect* bounds) const {
1609     bounds->setBounds(fPts, 3);
1610 }
1611 
1612 #if 0  // unimplemented
1613 bool SkConic::findMaxCurvature(SkScalar* t) const {
1614     // TODO: Implement me
1615     return false;
1616 }
1617 #endif
1618 
TransformW(const SkPoint pts[],SkScalar w,const SkMatrix & matrix)1619 SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w, const SkMatrix& matrix) {
1620     if (!matrix.hasPerspective()) {
1621         return w;
1622     }
1623 
1624     SkPoint3 src[3], dst[3];
1625 
1626     ratquad_mapTo3D(pts, w, src);
1627 
1628     matrix.mapHomogeneousPoints(dst, src, 3);
1629 
1630     // w' = sqrt(w1*w1/w0*w2)
1631     // use doubles temporarily, to handle small numer/denom
1632     double w0 = dst[0].fZ;
1633     double w1 = dst[1].fZ;
1634     double w2 = dst[2].fZ;
1635     return sk_double_to_float(sqrt(sk_ieee_double_divide(w1 * w1, w0 * w2)));
1636 }
1637 
BuildUnitArc(const SkVector & uStart,const SkVector & uStop,SkRotationDirection dir,const SkMatrix * userMatrix,SkConic dst[kMaxConicsForArc])1638 int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
1639                           const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
1640     // rotate by x,y so that uStart is (1.0)
1641     SkScalar x = SkPoint::DotProduct(uStart, uStop);
1642     SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1643 
1644     SkScalar absY = SkScalarAbs(y);
1645 
1646     // check for (effectively) coincident vectors
1647     // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1648     // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1649     if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
1650                                                  (y <= 0 && kCCW_SkRotationDirection == dir))) {
1651         return 0;
1652     }
1653 
1654     if (dir == kCCW_SkRotationDirection) {
1655         y = -y;
1656     }
1657 
1658     // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
1659     //      0 == [0  .. 90)
1660     //      1 == [90 ..180)
1661     //      2 == [180..270)
1662     //      3 == [270..360)
1663     //
1664     int quadrant = 0;
1665     if (0 == y) {
1666         quadrant = 2;        // 180
1667         SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1668     } else if (0 == x) {
1669         SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1670         quadrant = y > 0 ? 1 : 3; // 90 : 270
1671     } else {
1672         if (y < 0) {
1673             quadrant += 2;
1674         }
1675         if ((x < 0) != (y < 0)) {
1676             quadrant += 1;
1677         }
1678     }
1679 
1680     const SkPoint quadrantPts[] = {
1681         { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
1682     };
1683     const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
1684 
1685     int conicCount = quadrant;
1686     for (int i = 0; i < conicCount; ++i) {
1687         dst[i].set(&quadrantPts[i * 2], quadrantWeight);
1688     }
1689 
1690     // Now compute any remaing (sub-90-degree) arc for the last conic
1691     const SkPoint finalP = { x, y };
1692     const SkPoint& lastQ = quadrantPts[quadrant * 2];  // will already be a unit-vector
1693     const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
1694     SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
1695 
1696     if (dot < 1) {
1697         SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
1698         // compute the bisector vector, and then rescale to be the off-curve point.
1699         // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
1700         // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
1701         // This is nice, since our computed weight is cos(theta/2) as well!
1702         //
1703         const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
1704         offCurve.setLength(SkScalarInvert(cosThetaOver2));
1705         if (!SkPointPriv::EqualsWithinTolerance(lastQ, offCurve)) {
1706             dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
1707             conicCount += 1;
1708         }
1709     }
1710 
1711     // now handle counter-clockwise and the initial unitStart rotation
1712     SkMatrix    matrix;
1713     matrix.setSinCos(uStart.fY, uStart.fX);
1714     if (dir == kCCW_SkRotationDirection) {
1715         matrix.preScale(SK_Scalar1, -SK_Scalar1);
1716     }
1717     if (userMatrix) {
1718         matrix.postConcat(*userMatrix);
1719     }
1720     for (int i = 0; i < conicCount; ++i) {
1721         matrix.mapPoints(dst[i].fPts, 3);
1722     }
1723     return conicCount;
1724 }
1725