1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/GuardUtils.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/Utils/Local.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/InstrTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Use.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/GenericDomTree.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Cloning.h"
52 #include "llvm/Transforms/Utils/LoopUtils.h"
53 #include "llvm/Transforms/Utils/ValueMapper.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <iterator>
57 #include <numeric>
58 #include <utility>
59
60 #define DEBUG_TYPE "simple-loop-unswitch"
61
62 using namespace llvm;
63
64 STATISTIC(NumBranches, "Number of branches unswitched");
65 STATISTIC(NumSwitches, "Number of switches unswitched");
66 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
67 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
68 STATISTIC(
69 NumCostMultiplierSkipped,
70 "Number of unswitch candidates that had their cost multiplier skipped");
71
72 static cl::opt<bool> EnableNonTrivialUnswitch(
73 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
74 cl::desc("Forcibly enables non-trivial loop unswitching rather than "
75 "following the configuration passed into the pass."));
76
77 static cl::opt<int>
78 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
79 cl::desc("The cost threshold for unswitching a loop."));
80
81 static cl::opt<bool> EnableUnswitchCostMultiplier(
82 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
83 cl::desc("Enable unswitch cost multiplier that prohibits exponential "
84 "explosion in nontrivial unswitch."));
85 static cl::opt<int> UnswitchSiblingsToplevelDiv(
86 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
87 cl::desc("Toplevel siblings divisor for cost multiplier."));
88 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
89 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
90 cl::desc("Number of unswitch candidates that are ignored when calculating "
91 "cost multiplier."));
92 static cl::opt<bool> UnswitchGuards(
93 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
94 cl::desc("If enabled, simple loop unswitching will also consider "
95 "llvm.experimental.guard intrinsics as unswitch candidates."));
96
97 /// Collect all of the loop invariant input values transitively used by the
98 /// homogeneous instruction graph from a given root.
99 ///
100 /// This essentially walks from a root recursively through loop variant operands
101 /// which have the exact same opcode and finds all inputs which are loop
102 /// invariant. For some operations these can be re-associated and unswitched out
103 /// of the loop entirely.
104 static TinyPtrVector<Value *>
collectHomogenousInstGraphLoopInvariants(Loop & L,Instruction & Root,LoopInfo & LI)105 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
106 LoopInfo &LI) {
107 assert(!L.isLoopInvariant(&Root) &&
108 "Only need to walk the graph if root itself is not invariant.");
109 TinyPtrVector<Value *> Invariants;
110
111 // Build a worklist and recurse through operators collecting invariants.
112 SmallVector<Instruction *, 4> Worklist;
113 SmallPtrSet<Instruction *, 8> Visited;
114 Worklist.push_back(&Root);
115 Visited.insert(&Root);
116 do {
117 Instruction &I = *Worklist.pop_back_val();
118 for (Value *OpV : I.operand_values()) {
119 // Skip constants as unswitching isn't interesting for them.
120 if (isa<Constant>(OpV))
121 continue;
122
123 // Add it to our result if loop invariant.
124 if (L.isLoopInvariant(OpV)) {
125 Invariants.push_back(OpV);
126 continue;
127 }
128
129 // If not an instruction with the same opcode, nothing we can do.
130 Instruction *OpI = dyn_cast<Instruction>(OpV);
131 if (!OpI || OpI->getOpcode() != Root.getOpcode())
132 continue;
133
134 // Visit this operand.
135 if (Visited.insert(OpI).second)
136 Worklist.push_back(OpI);
137 }
138 } while (!Worklist.empty());
139
140 return Invariants;
141 }
142
replaceLoopInvariantUses(Loop & L,Value * Invariant,Constant & Replacement)143 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
144 Constant &Replacement) {
145 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
146
147 // Replace uses of LIC in the loop with the given constant.
148 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
149 // Grab the use and walk past it so we can clobber it in the use list.
150 Use *U = &*UI++;
151 Instruction *UserI = dyn_cast<Instruction>(U->getUser());
152
153 // Replace this use within the loop body.
154 if (UserI && L.contains(UserI))
155 U->set(&Replacement);
156 }
157 }
158
159 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
160 /// incoming values along this edge.
areLoopExitPHIsLoopInvariant(Loop & L,BasicBlock & ExitingBB,BasicBlock & ExitBB)161 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
162 BasicBlock &ExitBB) {
163 for (Instruction &I : ExitBB) {
164 auto *PN = dyn_cast<PHINode>(&I);
165 if (!PN)
166 // No more PHIs to check.
167 return true;
168
169 // If the incoming value for this edge isn't loop invariant the unswitch
170 // won't be trivial.
171 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
172 return false;
173 }
174 llvm_unreachable("Basic blocks should never be empty!");
175 }
176
177 /// Insert code to test a set of loop invariant values, and conditionally branch
178 /// on them.
buildPartialUnswitchConditionalBranch(BasicBlock & BB,ArrayRef<Value * > Invariants,bool Direction,BasicBlock & UnswitchedSucc,BasicBlock & NormalSucc)179 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
180 ArrayRef<Value *> Invariants,
181 bool Direction,
182 BasicBlock &UnswitchedSucc,
183 BasicBlock &NormalSucc) {
184 IRBuilder<> IRB(&BB);
185
186 Value *Cond = Direction ? IRB.CreateOr(Invariants) :
187 IRB.CreateAnd(Invariants);
188 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
189 Direction ? &NormalSucc : &UnswitchedSucc);
190 }
191
192 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
193 ///
194 /// Requires that the loop exit and unswitched basic block are the same, and
195 /// that the exiting block was a unique predecessor of that block. Rewrites the
196 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
197 /// PHI nodes from the old preheader that now contains the unswitched
198 /// terminator.
rewritePHINodesForUnswitchedExitBlock(BasicBlock & UnswitchedBB,BasicBlock & OldExitingBB,BasicBlock & OldPH)199 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
200 BasicBlock &OldExitingBB,
201 BasicBlock &OldPH) {
202 for (PHINode &PN : UnswitchedBB.phis()) {
203 // When the loop exit is directly unswitched we just need to update the
204 // incoming basic block. We loop to handle weird cases with repeated
205 // incoming blocks, but expect to typically only have one operand here.
206 for (auto i : seq<int>(0, PN.getNumOperands())) {
207 assert(PN.getIncomingBlock(i) == &OldExitingBB &&
208 "Found incoming block different from unique predecessor!");
209 PN.setIncomingBlock(i, &OldPH);
210 }
211 }
212 }
213
214 /// Rewrite the PHI nodes in the loop exit basic block and the split off
215 /// unswitched block.
216 ///
217 /// Because the exit block remains an exit from the loop, this rewrites the
218 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
219 /// nodes into the unswitched basic block to select between the value in the
220 /// old preheader and the loop exit.
rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock & ExitBB,BasicBlock & UnswitchedBB,BasicBlock & OldExitingBB,BasicBlock & OldPH,bool FullUnswitch)221 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
222 BasicBlock &UnswitchedBB,
223 BasicBlock &OldExitingBB,
224 BasicBlock &OldPH,
225 bool FullUnswitch) {
226 assert(&ExitBB != &UnswitchedBB &&
227 "Must have different loop exit and unswitched blocks!");
228 Instruction *InsertPt = &*UnswitchedBB.begin();
229 for (PHINode &PN : ExitBB.phis()) {
230 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
231 PN.getName() + ".split", InsertPt);
232
233 // Walk backwards over the old PHI node's inputs to minimize the cost of
234 // removing each one. We have to do this weird loop manually so that we
235 // create the same number of new incoming edges in the new PHI as we expect
236 // each case-based edge to be included in the unswitched switch in some
237 // cases.
238 // FIXME: This is really, really gross. It would be much cleaner if LLVM
239 // allowed us to create a single entry for a predecessor block without
240 // having separate entries for each "edge" even though these edges are
241 // required to produce identical results.
242 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
243 if (PN.getIncomingBlock(i) != &OldExitingBB)
244 continue;
245
246 Value *Incoming = PN.getIncomingValue(i);
247 if (FullUnswitch)
248 // No more edge from the old exiting block to the exit block.
249 PN.removeIncomingValue(i);
250
251 NewPN->addIncoming(Incoming, &OldPH);
252 }
253
254 // Now replace the old PHI with the new one and wire the old one in as an
255 // input to the new one.
256 PN.replaceAllUsesWith(NewPN);
257 NewPN->addIncoming(&PN, &ExitBB);
258 }
259 }
260
261 /// Hoist the current loop up to the innermost loop containing a remaining exit.
262 ///
263 /// Because we've removed an exit from the loop, we may have changed the set of
264 /// loops reachable and need to move the current loop up the loop nest or even
265 /// to an entirely separate nest.
hoistLoopToNewParent(Loop & L,BasicBlock & Preheader,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU,ScalarEvolution * SE)266 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
267 DominatorTree &DT, LoopInfo &LI,
268 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
269 // If the loop is already at the top level, we can't hoist it anywhere.
270 Loop *OldParentL = L.getParentLoop();
271 if (!OldParentL)
272 return;
273
274 SmallVector<BasicBlock *, 4> Exits;
275 L.getExitBlocks(Exits);
276 Loop *NewParentL = nullptr;
277 for (auto *ExitBB : Exits)
278 if (Loop *ExitL = LI.getLoopFor(ExitBB))
279 if (!NewParentL || NewParentL->contains(ExitL))
280 NewParentL = ExitL;
281
282 if (NewParentL == OldParentL)
283 return;
284
285 // The new parent loop (if different) should always contain the old one.
286 if (NewParentL)
287 assert(NewParentL->contains(OldParentL) &&
288 "Can only hoist this loop up the nest!");
289
290 // The preheader will need to move with the body of this loop. However,
291 // because it isn't in this loop we also need to update the primary loop map.
292 assert(OldParentL == LI.getLoopFor(&Preheader) &&
293 "Parent loop of this loop should contain this loop's preheader!");
294 LI.changeLoopFor(&Preheader, NewParentL);
295
296 // Remove this loop from its old parent.
297 OldParentL->removeChildLoop(&L);
298
299 // Add the loop either to the new parent or as a top-level loop.
300 if (NewParentL)
301 NewParentL->addChildLoop(&L);
302 else
303 LI.addTopLevelLoop(&L);
304
305 // Remove this loops blocks from the old parent and every other loop up the
306 // nest until reaching the new parent. Also update all of these
307 // no-longer-containing loops to reflect the nesting change.
308 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
309 OldContainingL = OldContainingL->getParentLoop()) {
310 llvm::erase_if(OldContainingL->getBlocksVector(),
311 [&](const BasicBlock *BB) {
312 return BB == &Preheader || L.contains(BB);
313 });
314
315 OldContainingL->getBlocksSet().erase(&Preheader);
316 for (BasicBlock *BB : L.blocks())
317 OldContainingL->getBlocksSet().erase(BB);
318
319 // Because we just hoisted a loop out of this one, we have essentially
320 // created new exit paths from it. That means we need to form LCSSA PHI
321 // nodes for values used in the no-longer-nested loop.
322 formLCSSA(*OldContainingL, DT, &LI, SE);
323
324 // We shouldn't need to form dedicated exits because the exit introduced
325 // here is the (just split by unswitching) preheader. However, after trivial
326 // unswitching it is possible to get new non-dedicated exits out of parent
327 // loop so let's conservatively form dedicated exit blocks and figure out
328 // if we can optimize later.
329 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
330 /*PreserveLCSSA*/ true);
331 }
332 }
333
334 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
335 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
336 // as exiting block.
getTopMostExitingLoop(BasicBlock * ExitBB,LoopInfo & LI)337 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
338 Loop *TopMost = LI.getLoopFor(ExitBB);
339 Loop *Current = TopMost;
340 while (Current) {
341 if (Current->isLoopExiting(ExitBB))
342 TopMost = Current;
343 Current = Current->getParentLoop();
344 }
345 return TopMost;
346 }
347
348 /// Unswitch a trivial branch if the condition is loop invariant.
349 ///
350 /// This routine should only be called when loop code leading to the branch has
351 /// been validated as trivial (no side effects). This routine checks if the
352 /// condition is invariant and one of the successors is a loop exit. This
353 /// allows us to unswitch without duplicating the loop, making it trivial.
354 ///
355 /// If this routine fails to unswitch the branch it returns false.
356 ///
357 /// If the branch can be unswitched, this routine splits the preheader and
358 /// hoists the branch above that split. Preserves loop simplified form
359 /// (splitting the exit block as necessary). It simplifies the branch within
360 /// the loop to an unconditional branch but doesn't remove it entirely. Further
361 /// cleanup can be done with some simplify-cfg like pass.
362 ///
363 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
364 /// invalidated by this.
unswitchTrivialBranch(Loop & L,BranchInst & BI,DominatorTree & DT,LoopInfo & LI,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)365 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
366 LoopInfo &LI, ScalarEvolution *SE,
367 MemorySSAUpdater *MSSAU) {
368 assert(BI.isConditional() && "Can only unswitch a conditional branch!");
369 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
370
371 // The loop invariant values that we want to unswitch.
372 TinyPtrVector<Value *> Invariants;
373
374 // When true, we're fully unswitching the branch rather than just unswitching
375 // some input conditions to the branch.
376 bool FullUnswitch = false;
377
378 if (L.isLoopInvariant(BI.getCondition())) {
379 Invariants.push_back(BI.getCondition());
380 FullUnswitch = true;
381 } else {
382 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
383 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
384 if (Invariants.empty())
385 // Couldn't find invariant inputs!
386 return false;
387 }
388
389 // Check that one of the branch's successors exits, and which one.
390 bool ExitDirection = true;
391 int LoopExitSuccIdx = 0;
392 auto *LoopExitBB = BI.getSuccessor(0);
393 if (L.contains(LoopExitBB)) {
394 ExitDirection = false;
395 LoopExitSuccIdx = 1;
396 LoopExitBB = BI.getSuccessor(1);
397 if (L.contains(LoopExitBB))
398 return false;
399 }
400 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
401 auto *ParentBB = BI.getParent();
402 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
403 return false;
404
405 // When unswitching only part of the branch's condition, we need the exit
406 // block to be reached directly from the partially unswitched input. This can
407 // be done when the exit block is along the true edge and the branch condition
408 // is a graph of `or` operations, or the exit block is along the false edge
409 // and the condition is a graph of `and` operations.
410 if (!FullUnswitch) {
411 if (ExitDirection) {
412 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
413 return false;
414 } else {
415 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
416 return false;
417 }
418 }
419
420 LLVM_DEBUG({
421 dbgs() << " unswitching trivial invariant conditions for: " << BI
422 << "\n";
423 for (Value *Invariant : Invariants) {
424 dbgs() << " " << *Invariant << " == true";
425 if (Invariant != Invariants.back())
426 dbgs() << " ||";
427 dbgs() << "\n";
428 }
429 });
430
431 // If we have scalar evolutions, we need to invalidate them including this
432 // loop, the loop containing the exit block and the topmost parent loop
433 // exiting via LoopExitBB.
434 if (SE) {
435 if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
436 SE->forgetLoop(ExitL);
437 else
438 // Forget the entire nest as this exits the entire nest.
439 SE->forgetTopmostLoop(&L);
440 }
441
442 if (MSSAU && VerifyMemorySSA)
443 MSSAU->getMemorySSA()->verifyMemorySSA();
444
445 // Split the preheader, so that we know that there is a safe place to insert
446 // the conditional branch. We will change the preheader to have a conditional
447 // branch on LoopCond.
448 BasicBlock *OldPH = L.getLoopPreheader();
449 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
450
451 // Now that we have a place to insert the conditional branch, create a place
452 // to branch to: this is the exit block out of the loop that we are
453 // unswitching. We need to split this if there are other loop predecessors.
454 // Because the loop is in simplified form, *any* other predecessor is enough.
455 BasicBlock *UnswitchedBB;
456 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
457 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
458 "A branch's parent isn't a predecessor!");
459 UnswitchedBB = LoopExitBB;
460 } else {
461 UnswitchedBB =
462 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
463 }
464
465 if (MSSAU && VerifyMemorySSA)
466 MSSAU->getMemorySSA()->verifyMemorySSA();
467
468 // Actually move the invariant uses into the unswitched position. If possible,
469 // we do this by moving the instructions, but when doing partial unswitching
470 // we do it by building a new merge of the values in the unswitched position.
471 OldPH->getTerminator()->eraseFromParent();
472 if (FullUnswitch) {
473 // If fully unswitching, we can use the existing branch instruction.
474 // Splice it into the old PH to gate reaching the new preheader and re-point
475 // its successors.
476 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
477 BI);
478 if (MSSAU) {
479 // Temporarily clone the terminator, to make MSSA update cheaper by
480 // separating "insert edge" updates from "remove edge" ones.
481 ParentBB->getInstList().push_back(BI.clone());
482 } else {
483 // Create a new unconditional branch that will continue the loop as a new
484 // terminator.
485 BranchInst::Create(ContinueBB, ParentBB);
486 }
487 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
488 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
489 } else {
490 // Only unswitching a subset of inputs to the condition, so we will need to
491 // build a new branch that merges the invariant inputs.
492 if (ExitDirection)
493 assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
494 Instruction::Or &&
495 "Must have an `or` of `i1`s for the condition!");
496 else
497 assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
498 Instruction::And &&
499 "Must have an `and` of `i1`s for the condition!");
500 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
501 *UnswitchedBB, *NewPH);
502 }
503
504 // Update the dominator tree with the added edge.
505 DT.insertEdge(OldPH, UnswitchedBB);
506
507 // After the dominator tree was updated with the added edge, update MemorySSA
508 // if available.
509 if (MSSAU) {
510 SmallVector<CFGUpdate, 1> Updates;
511 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
512 MSSAU->applyInsertUpdates(Updates, DT);
513 }
514
515 // Finish updating dominator tree and memory ssa for full unswitch.
516 if (FullUnswitch) {
517 if (MSSAU) {
518 // Remove the cloned branch instruction.
519 ParentBB->getTerminator()->eraseFromParent();
520 // Create unconditional branch now.
521 BranchInst::Create(ContinueBB, ParentBB);
522 MSSAU->removeEdge(ParentBB, LoopExitBB);
523 }
524 DT.deleteEdge(ParentBB, LoopExitBB);
525 }
526
527 if (MSSAU && VerifyMemorySSA)
528 MSSAU->getMemorySSA()->verifyMemorySSA();
529
530 // Rewrite the relevant PHI nodes.
531 if (UnswitchedBB == LoopExitBB)
532 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
533 else
534 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
535 *ParentBB, *OldPH, FullUnswitch);
536
537 // The constant we can replace all of our invariants with inside the loop
538 // body. If any of the invariants have a value other than this the loop won't
539 // be entered.
540 ConstantInt *Replacement = ExitDirection
541 ? ConstantInt::getFalse(BI.getContext())
542 : ConstantInt::getTrue(BI.getContext());
543
544 // Since this is an i1 condition we can also trivially replace uses of it
545 // within the loop with a constant.
546 for (Value *Invariant : Invariants)
547 replaceLoopInvariantUses(L, Invariant, *Replacement);
548
549 // If this was full unswitching, we may have changed the nesting relationship
550 // for this loop so hoist it to its correct parent if needed.
551 if (FullUnswitch)
552 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
553
554 if (MSSAU && VerifyMemorySSA)
555 MSSAU->getMemorySSA()->verifyMemorySSA();
556
557 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n");
558 ++NumTrivial;
559 ++NumBranches;
560 return true;
561 }
562
563 /// Unswitch a trivial switch if the condition is loop invariant.
564 ///
565 /// This routine should only be called when loop code leading to the switch has
566 /// been validated as trivial (no side effects). This routine checks if the
567 /// condition is invariant and that at least one of the successors is a loop
568 /// exit. This allows us to unswitch without duplicating the loop, making it
569 /// trivial.
570 ///
571 /// If this routine fails to unswitch the switch it returns false.
572 ///
573 /// If the switch can be unswitched, this routine splits the preheader and
574 /// copies the switch above that split. If the default case is one of the
575 /// exiting cases, it copies the non-exiting cases and points them at the new
576 /// preheader. If the default case is not exiting, it copies the exiting cases
577 /// and points the default at the preheader. It preserves loop simplified form
578 /// (splitting the exit blocks as necessary). It simplifies the switch within
579 /// the loop by removing now-dead cases. If the default case is one of those
580 /// unswitched, it replaces its destination with a new basic block containing
581 /// only unreachable. Such basic blocks, while technically loop exits, are not
582 /// considered for unswitching so this is a stable transform and the same
583 /// switch will not be revisited. If after unswitching there is only a single
584 /// in-loop successor, the switch is further simplified to an unconditional
585 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
586 ///
587 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
588 /// invalidated by this.
unswitchTrivialSwitch(Loop & L,SwitchInst & SI,DominatorTree & DT,LoopInfo & LI,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)589 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
590 LoopInfo &LI, ScalarEvolution *SE,
591 MemorySSAUpdater *MSSAU) {
592 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
593 Value *LoopCond = SI.getCondition();
594
595 // If this isn't switching on an invariant condition, we can't unswitch it.
596 if (!L.isLoopInvariant(LoopCond))
597 return false;
598
599 auto *ParentBB = SI.getParent();
600
601 SmallVector<int, 4> ExitCaseIndices;
602 for (auto Case : SI.cases()) {
603 auto *SuccBB = Case.getCaseSuccessor();
604 if (!L.contains(SuccBB) &&
605 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
606 ExitCaseIndices.push_back(Case.getCaseIndex());
607 }
608 BasicBlock *DefaultExitBB = nullptr;
609 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
610 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
611 if (!L.contains(SI.getDefaultDest()) &&
612 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
613 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) {
614 DefaultExitBB = SI.getDefaultDest();
615 } else if (ExitCaseIndices.empty())
616 return false;
617
618 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n");
619
620 if (MSSAU && VerifyMemorySSA)
621 MSSAU->getMemorySSA()->verifyMemorySSA();
622
623 // We may need to invalidate SCEVs for the outermost loop reached by any of
624 // the exits.
625 Loop *OuterL = &L;
626
627 if (DefaultExitBB) {
628 // Clear out the default destination temporarily to allow accurate
629 // predecessor lists to be examined below.
630 SI.setDefaultDest(nullptr);
631 // Check the loop containing this exit.
632 Loop *ExitL = LI.getLoopFor(DefaultExitBB);
633 if (!ExitL || ExitL->contains(OuterL))
634 OuterL = ExitL;
635 }
636
637 // Store the exit cases into a separate data structure and remove them from
638 // the switch.
639 SmallVector<std::tuple<ConstantInt *, BasicBlock *,
640 SwitchInstProfUpdateWrapper::CaseWeightOpt>,
641 4> ExitCases;
642 ExitCases.reserve(ExitCaseIndices.size());
643 SwitchInstProfUpdateWrapper SIW(SI);
644 // We walk the case indices backwards so that we remove the last case first
645 // and don't disrupt the earlier indices.
646 for (unsigned Index : reverse(ExitCaseIndices)) {
647 auto CaseI = SI.case_begin() + Index;
648 // Compute the outer loop from this exit.
649 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
650 if (!ExitL || ExitL->contains(OuterL))
651 OuterL = ExitL;
652 // Save the value of this case.
653 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
654 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
655 // Delete the unswitched cases.
656 SIW.removeCase(CaseI);
657 }
658
659 if (SE) {
660 if (OuterL)
661 SE->forgetLoop(OuterL);
662 else
663 SE->forgetTopmostLoop(&L);
664 }
665
666 // Check if after this all of the remaining cases point at the same
667 // successor.
668 BasicBlock *CommonSuccBB = nullptr;
669 if (SI.getNumCases() > 0 &&
670 std::all_of(std::next(SI.case_begin()), SI.case_end(),
671 [&SI](const SwitchInst::CaseHandle &Case) {
672 return Case.getCaseSuccessor() ==
673 SI.case_begin()->getCaseSuccessor();
674 }))
675 CommonSuccBB = SI.case_begin()->getCaseSuccessor();
676 if (!DefaultExitBB) {
677 // If we're not unswitching the default, we need it to match any cases to
678 // have a common successor or if we have no cases it is the common
679 // successor.
680 if (SI.getNumCases() == 0)
681 CommonSuccBB = SI.getDefaultDest();
682 else if (SI.getDefaultDest() != CommonSuccBB)
683 CommonSuccBB = nullptr;
684 }
685
686 // Split the preheader, so that we know that there is a safe place to insert
687 // the switch.
688 BasicBlock *OldPH = L.getLoopPreheader();
689 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
690 OldPH->getTerminator()->eraseFromParent();
691
692 // Now add the unswitched switch.
693 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
694 SwitchInstProfUpdateWrapper NewSIW(*NewSI);
695
696 // Rewrite the IR for the unswitched basic blocks. This requires two steps.
697 // First, we split any exit blocks with remaining in-loop predecessors. Then
698 // we update the PHIs in one of two ways depending on if there was a split.
699 // We walk in reverse so that we split in the same order as the cases
700 // appeared. This is purely for convenience of reading the resulting IR, but
701 // it doesn't cost anything really.
702 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
703 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
704 // Handle the default exit if necessary.
705 // FIXME: It'd be great if we could merge this with the loop below but LLVM's
706 // ranges aren't quite powerful enough yet.
707 if (DefaultExitBB) {
708 if (pred_empty(DefaultExitBB)) {
709 UnswitchedExitBBs.insert(DefaultExitBB);
710 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
711 } else {
712 auto *SplitBB =
713 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
714 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
715 *ParentBB, *OldPH,
716 /*FullUnswitch*/ true);
717 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
718 }
719 }
720 // Note that we must use a reference in the for loop so that we update the
721 // container.
722 for (auto &ExitCase : reverse(ExitCases)) {
723 // Grab a reference to the exit block in the pair so that we can update it.
724 BasicBlock *ExitBB = std::get<1>(ExitCase);
725
726 // If this case is the last edge into the exit block, we can simply reuse it
727 // as it will no longer be a loop exit. No mapping necessary.
728 if (pred_empty(ExitBB)) {
729 // Only rewrite once.
730 if (UnswitchedExitBBs.insert(ExitBB).second)
731 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
732 continue;
733 }
734
735 // Otherwise we need to split the exit block so that we retain an exit
736 // block from the loop and a target for the unswitched condition.
737 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
738 if (!SplitExitBB) {
739 // If this is the first time we see this, do the split and remember it.
740 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
741 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
742 *ParentBB, *OldPH,
743 /*FullUnswitch*/ true);
744 }
745 // Update the case pair to point to the split block.
746 std::get<1>(ExitCase) = SplitExitBB;
747 }
748
749 // Now add the unswitched cases. We do this in reverse order as we built them
750 // in reverse order.
751 for (auto &ExitCase : reverse(ExitCases)) {
752 ConstantInt *CaseVal = std::get<0>(ExitCase);
753 BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
754
755 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
756 }
757
758 // If the default was unswitched, re-point it and add explicit cases for
759 // entering the loop.
760 if (DefaultExitBB) {
761 NewSIW->setDefaultDest(DefaultExitBB);
762 NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
763
764 // We removed all the exit cases, so we just copy the cases to the
765 // unswitched switch.
766 for (const auto &Case : SI.cases())
767 NewSIW.addCase(Case.getCaseValue(), NewPH,
768 SIW.getSuccessorWeight(Case.getSuccessorIndex()));
769 } else if (DefaultCaseWeight) {
770 // We have to set branch weight of the default case.
771 uint64_t SW = *DefaultCaseWeight;
772 for (const auto &Case : SI.cases()) {
773 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
774 assert(W &&
775 "case weight must be defined as default case weight is defined");
776 SW += *W;
777 }
778 NewSIW.setSuccessorWeight(0, SW);
779 }
780
781 // If we ended up with a common successor for every path through the switch
782 // after unswitching, rewrite it to an unconditional branch to make it easy
783 // to recognize. Otherwise we potentially have to recognize the default case
784 // pointing at unreachable and other complexity.
785 if (CommonSuccBB) {
786 BasicBlock *BB = SI.getParent();
787 // We may have had multiple edges to this common successor block, so remove
788 // them as predecessors. We skip the first one, either the default or the
789 // actual first case.
790 bool SkippedFirst = DefaultExitBB == nullptr;
791 for (auto Case : SI.cases()) {
792 assert(Case.getCaseSuccessor() == CommonSuccBB &&
793 "Non-common successor!");
794 (void)Case;
795 if (!SkippedFirst) {
796 SkippedFirst = true;
797 continue;
798 }
799 CommonSuccBB->removePredecessor(BB,
800 /*KeepOneInputPHIs*/ true);
801 }
802 // Now nuke the switch and replace it with a direct branch.
803 SIW.eraseFromParent();
804 BranchInst::Create(CommonSuccBB, BB);
805 } else if (DefaultExitBB) {
806 assert(SI.getNumCases() > 0 &&
807 "If we had no cases we'd have a common successor!");
808 // Move the last case to the default successor. This is valid as if the
809 // default got unswitched it cannot be reached. This has the advantage of
810 // being simple and keeping the number of edges from this switch to
811 // successors the same, and avoiding any PHI update complexity.
812 auto LastCaseI = std::prev(SI.case_end());
813
814 SI.setDefaultDest(LastCaseI->getCaseSuccessor());
815 SIW.setSuccessorWeight(
816 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
817 SIW.removeCase(LastCaseI);
818 }
819
820 // Walk the unswitched exit blocks and the unswitched split blocks and update
821 // the dominator tree based on the CFG edits. While we are walking unordered
822 // containers here, the API for applyUpdates takes an unordered list of
823 // updates and requires them to not contain duplicates.
824 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
825 for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
826 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
827 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
828 }
829 for (auto SplitUnswitchedPair : SplitExitBBMap) {
830 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
831 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
832 }
833 DT.applyUpdates(DTUpdates);
834
835 if (MSSAU) {
836 MSSAU->applyUpdates(DTUpdates, DT);
837 if (VerifyMemorySSA)
838 MSSAU->getMemorySSA()->verifyMemorySSA();
839 }
840
841 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
842
843 // We may have changed the nesting relationship for this loop so hoist it to
844 // its correct parent if needed.
845 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
846
847 if (MSSAU && VerifyMemorySSA)
848 MSSAU->getMemorySSA()->verifyMemorySSA();
849
850 ++NumTrivial;
851 ++NumSwitches;
852 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n");
853 return true;
854 }
855
856 /// This routine scans the loop to find a branch or switch which occurs before
857 /// any side effects occur. These can potentially be unswitched without
858 /// duplicating the loop. If a branch or switch is successfully unswitched the
859 /// scanning continues to see if subsequent branches or switches have become
860 /// trivial. Once all trivial candidates have been unswitched, this routine
861 /// returns.
862 ///
863 /// The return value indicates whether anything was unswitched (and therefore
864 /// changed).
865 ///
866 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
867 /// invalidated by this.
unswitchAllTrivialConditions(Loop & L,DominatorTree & DT,LoopInfo & LI,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)868 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
869 LoopInfo &LI, ScalarEvolution *SE,
870 MemorySSAUpdater *MSSAU) {
871 bool Changed = false;
872
873 // If loop header has only one reachable successor we should keep looking for
874 // trivial condition candidates in the successor as well. An alternative is
875 // to constant fold conditions and merge successors into loop header (then we
876 // only need to check header's terminator). The reason for not doing this in
877 // LoopUnswitch pass is that it could potentially break LoopPassManager's
878 // invariants. Folding dead branches could either eliminate the current loop
879 // or make other loops unreachable. LCSSA form might also not be preserved
880 // after deleting branches. The following code keeps traversing loop header's
881 // successors until it finds the trivial condition candidate (condition that
882 // is not a constant). Since unswitching generates branches with constant
883 // conditions, this scenario could be very common in practice.
884 BasicBlock *CurrentBB = L.getHeader();
885 SmallPtrSet<BasicBlock *, 8> Visited;
886 Visited.insert(CurrentBB);
887 do {
888 // Check if there are any side-effecting instructions (e.g. stores, calls,
889 // volatile loads) in the part of the loop that the code *would* execute
890 // without unswitching.
891 if (MSSAU) // Possible early exit with MSSA
892 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
893 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
894 return Changed;
895 if (llvm::any_of(*CurrentBB,
896 [](Instruction &I) { return I.mayHaveSideEffects(); }))
897 return Changed;
898
899 Instruction *CurrentTerm = CurrentBB->getTerminator();
900
901 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
902 // Don't bother trying to unswitch past a switch with a constant
903 // condition. This should be removed prior to running this pass by
904 // simplify-cfg.
905 if (isa<Constant>(SI->getCondition()))
906 return Changed;
907
908 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
909 // Couldn't unswitch this one so we're done.
910 return Changed;
911
912 // Mark that we managed to unswitch something.
913 Changed = true;
914
915 // If unswitching turned the terminator into an unconditional branch then
916 // we can continue. The unswitching logic specifically works to fold any
917 // cases it can into an unconditional branch to make it easier to
918 // recognize here.
919 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
920 if (!BI || BI->isConditional())
921 return Changed;
922
923 CurrentBB = BI->getSuccessor(0);
924 continue;
925 }
926
927 auto *BI = dyn_cast<BranchInst>(CurrentTerm);
928 if (!BI)
929 // We do not understand other terminator instructions.
930 return Changed;
931
932 // Don't bother trying to unswitch past an unconditional branch or a branch
933 // with a constant value. These should be removed by simplify-cfg prior to
934 // running this pass.
935 if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
936 return Changed;
937
938 // Found a trivial condition candidate: non-foldable conditional branch. If
939 // we fail to unswitch this, we can't do anything else that is trivial.
940 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
941 return Changed;
942
943 // Mark that we managed to unswitch something.
944 Changed = true;
945
946 // If we only unswitched some of the conditions feeding the branch, we won't
947 // have collapsed it to a single successor.
948 BI = cast<BranchInst>(CurrentBB->getTerminator());
949 if (BI->isConditional())
950 return Changed;
951
952 // Follow the newly unconditional branch into its successor.
953 CurrentBB = BI->getSuccessor(0);
954
955 // When continuing, if we exit the loop or reach a previous visited block,
956 // then we can not reach any trivial condition candidates (unfoldable
957 // branch instructions or switch instructions) and no unswitch can happen.
958 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
959
960 return Changed;
961 }
962
963 /// Build the cloned blocks for an unswitched copy of the given loop.
964 ///
965 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
966 /// after the split block (`SplitBB`) that will be used to select between the
967 /// cloned and original loop.
968 ///
969 /// This routine handles cloning all of the necessary loop blocks and exit
970 /// blocks including rewriting their instructions and the relevant PHI nodes.
971 /// Any loop blocks or exit blocks which are dominated by a different successor
972 /// than the one for this clone of the loop blocks can be trivially skipped. We
973 /// use the `DominatingSucc` map to determine whether a block satisfies that
974 /// property with a simple map lookup.
975 ///
976 /// It also correctly creates the unconditional branch in the cloned
977 /// unswitched parent block to only point at the unswitched successor.
978 ///
979 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
980 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
981 /// the cloned blocks (and their loops) are left without full `LoopInfo`
982 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
983 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
984 /// instead the caller must recompute an accurate DT. It *does* correctly
985 /// update the `AssumptionCache` provided in `AC`.
buildClonedLoopBlocks(Loop & L,BasicBlock * LoopPH,BasicBlock * SplitBB,ArrayRef<BasicBlock * > ExitBlocks,BasicBlock * ParentBB,BasicBlock * UnswitchedSuccBB,BasicBlock * ContinueSuccBB,const SmallDenseMap<BasicBlock *,BasicBlock *,16> & DominatingSucc,ValueToValueMapTy & VMap,SmallVectorImpl<DominatorTree::UpdateType> & DTUpdates,AssumptionCache & AC,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU)986 static BasicBlock *buildClonedLoopBlocks(
987 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
988 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
989 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
990 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
991 ValueToValueMapTy &VMap,
992 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
993 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
994 SmallVector<BasicBlock *, 4> NewBlocks;
995 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
996
997 // We will need to clone a bunch of blocks, wrap up the clone operation in
998 // a helper.
999 auto CloneBlock = [&](BasicBlock *OldBB) {
1000 // Clone the basic block and insert it before the new preheader.
1001 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1002 NewBB->moveBefore(LoopPH);
1003
1004 // Record this block and the mapping.
1005 NewBlocks.push_back(NewBB);
1006 VMap[OldBB] = NewBB;
1007
1008 return NewBB;
1009 };
1010
1011 // We skip cloning blocks when they have a dominating succ that is not the
1012 // succ we are cloning for.
1013 auto SkipBlock = [&](BasicBlock *BB) {
1014 auto It = DominatingSucc.find(BB);
1015 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1016 };
1017
1018 // First, clone the preheader.
1019 auto *ClonedPH = CloneBlock(LoopPH);
1020
1021 // Then clone all the loop blocks, skipping the ones that aren't necessary.
1022 for (auto *LoopBB : L.blocks())
1023 if (!SkipBlock(LoopBB))
1024 CloneBlock(LoopBB);
1025
1026 // Split all the loop exit edges so that when we clone the exit blocks, if
1027 // any of the exit blocks are *also* a preheader for some other loop, we
1028 // don't create multiple predecessors entering the loop header.
1029 for (auto *ExitBB : ExitBlocks) {
1030 if (SkipBlock(ExitBB))
1031 continue;
1032
1033 // When we are going to clone an exit, we don't need to clone all the
1034 // instructions in the exit block and we want to ensure we have an easy
1035 // place to merge the CFG, so split the exit first. This is always safe to
1036 // do because there cannot be any non-loop predecessors of a loop exit in
1037 // loop simplified form.
1038 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1039
1040 // Rearrange the names to make it easier to write test cases by having the
1041 // exit block carry the suffix rather than the merge block carrying the
1042 // suffix.
1043 MergeBB->takeName(ExitBB);
1044 ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1045
1046 // Now clone the original exit block.
1047 auto *ClonedExitBB = CloneBlock(ExitBB);
1048 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1049 "Exit block should have been split to have one successor!");
1050 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1051 "Cloned exit block has the wrong successor!");
1052
1053 // Remap any cloned instructions and create a merge phi node for them.
1054 for (auto ZippedInsts : llvm::zip_first(
1055 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1056 llvm::make_range(ClonedExitBB->begin(),
1057 std::prev(ClonedExitBB->end())))) {
1058 Instruction &I = std::get<0>(ZippedInsts);
1059 Instruction &ClonedI = std::get<1>(ZippedInsts);
1060
1061 // The only instructions in the exit block should be PHI nodes and
1062 // potentially a landing pad.
1063 assert(
1064 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1065 "Bad instruction in exit block!");
1066 // We should have a value map between the instruction and its clone.
1067 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1068
1069 auto *MergePN =
1070 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1071 &*MergeBB->getFirstInsertionPt());
1072 I.replaceAllUsesWith(MergePN);
1073 MergePN->addIncoming(&I, ExitBB);
1074 MergePN->addIncoming(&ClonedI, ClonedExitBB);
1075 }
1076 }
1077
1078 // Rewrite the instructions in the cloned blocks to refer to the instructions
1079 // in the cloned blocks. We have to do this as a second pass so that we have
1080 // everything available. Also, we have inserted new instructions which may
1081 // include assume intrinsics, so we update the assumption cache while
1082 // processing this.
1083 for (auto *ClonedBB : NewBlocks)
1084 for (Instruction &I : *ClonedBB) {
1085 RemapInstruction(&I, VMap,
1086 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1087 if (auto *II = dyn_cast<IntrinsicInst>(&I))
1088 if (II->getIntrinsicID() == Intrinsic::assume)
1089 AC.registerAssumption(II);
1090 }
1091
1092 // Update any PHI nodes in the cloned successors of the skipped blocks to not
1093 // have spurious incoming values.
1094 for (auto *LoopBB : L.blocks())
1095 if (SkipBlock(LoopBB))
1096 for (auto *SuccBB : successors(LoopBB))
1097 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1098 for (PHINode &PN : ClonedSuccBB->phis())
1099 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1100
1101 // Remove the cloned parent as a predecessor of any successor we ended up
1102 // cloning other than the unswitched one.
1103 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1104 for (auto *SuccBB : successors(ParentBB)) {
1105 if (SuccBB == UnswitchedSuccBB)
1106 continue;
1107
1108 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1109 if (!ClonedSuccBB)
1110 continue;
1111
1112 ClonedSuccBB->removePredecessor(ClonedParentBB,
1113 /*KeepOneInputPHIs*/ true);
1114 }
1115
1116 // Replace the cloned branch with an unconditional branch to the cloned
1117 // unswitched successor.
1118 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1119 ClonedParentBB->getTerminator()->eraseFromParent();
1120 BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1121
1122 // If there are duplicate entries in the PHI nodes because of multiple edges
1123 // to the unswitched successor, we need to nuke all but one as we replaced it
1124 // with a direct branch.
1125 for (PHINode &PN : ClonedSuccBB->phis()) {
1126 bool Found = false;
1127 // Loop over the incoming operands backwards so we can easily delete as we
1128 // go without invalidating the index.
1129 for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1130 if (PN.getIncomingBlock(i) != ClonedParentBB)
1131 continue;
1132 if (!Found) {
1133 Found = true;
1134 continue;
1135 }
1136 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1137 }
1138 }
1139
1140 // Record the domtree updates for the new blocks.
1141 SmallPtrSet<BasicBlock *, 4> SuccSet;
1142 for (auto *ClonedBB : NewBlocks) {
1143 for (auto *SuccBB : successors(ClonedBB))
1144 if (SuccSet.insert(SuccBB).second)
1145 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1146 SuccSet.clear();
1147 }
1148
1149 return ClonedPH;
1150 }
1151
1152 /// Recursively clone the specified loop and all of its children.
1153 ///
1154 /// The target parent loop for the clone should be provided, or can be null if
1155 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1156 /// with the provided value map. The entire original loop must be present in
1157 /// the value map. The cloned loop is returned.
cloneLoopNest(Loop & OrigRootL,Loop * RootParentL,const ValueToValueMapTy & VMap,LoopInfo & LI)1158 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1159 const ValueToValueMapTy &VMap, LoopInfo &LI) {
1160 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1161 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1162 ClonedL.reserveBlocks(OrigL.getNumBlocks());
1163 for (auto *BB : OrigL.blocks()) {
1164 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1165 ClonedL.addBlockEntry(ClonedBB);
1166 if (LI.getLoopFor(BB) == &OrigL)
1167 LI.changeLoopFor(ClonedBB, &ClonedL);
1168 }
1169 };
1170
1171 // We specially handle the first loop because it may get cloned into
1172 // a different parent and because we most commonly are cloning leaf loops.
1173 Loop *ClonedRootL = LI.AllocateLoop();
1174 if (RootParentL)
1175 RootParentL->addChildLoop(ClonedRootL);
1176 else
1177 LI.addTopLevelLoop(ClonedRootL);
1178 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1179
1180 if (OrigRootL.empty())
1181 return ClonedRootL;
1182
1183 // If we have a nest, we can quickly clone the entire loop nest using an
1184 // iterative approach because it is a tree. We keep the cloned parent in the
1185 // data structure to avoid repeatedly querying through a map to find it.
1186 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1187 // Build up the loops to clone in reverse order as we'll clone them from the
1188 // back.
1189 for (Loop *ChildL : llvm::reverse(OrigRootL))
1190 LoopsToClone.push_back({ClonedRootL, ChildL});
1191 do {
1192 Loop *ClonedParentL, *L;
1193 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1194 Loop *ClonedL = LI.AllocateLoop();
1195 ClonedParentL->addChildLoop(ClonedL);
1196 AddClonedBlocksToLoop(*L, *ClonedL);
1197 for (Loop *ChildL : llvm::reverse(*L))
1198 LoopsToClone.push_back({ClonedL, ChildL});
1199 } while (!LoopsToClone.empty());
1200
1201 return ClonedRootL;
1202 }
1203
1204 /// Build the cloned loops of an original loop from unswitching.
1205 ///
1206 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1207 /// operation. We need to re-verify that there even is a loop (as the backedge
1208 /// may not have been cloned), and even if there are remaining backedges the
1209 /// backedge set may be different. However, we know that each child loop is
1210 /// undisturbed, we only need to find where to place each child loop within
1211 /// either any parent loop or within a cloned version of the original loop.
1212 ///
1213 /// Because child loops may end up cloned outside of any cloned version of the
1214 /// original loop, multiple cloned sibling loops may be created. All of them
1215 /// are returned so that the newly introduced loop nest roots can be
1216 /// identified.
buildClonedLoops(Loop & OrigL,ArrayRef<BasicBlock * > ExitBlocks,const ValueToValueMapTy & VMap,LoopInfo & LI,SmallVectorImpl<Loop * > & NonChildClonedLoops)1217 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1218 const ValueToValueMapTy &VMap, LoopInfo &LI,
1219 SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1220 Loop *ClonedL = nullptr;
1221
1222 auto *OrigPH = OrigL.getLoopPreheader();
1223 auto *OrigHeader = OrigL.getHeader();
1224
1225 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1226 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1227
1228 // We need to know the loops of the cloned exit blocks to even compute the
1229 // accurate parent loop. If we only clone exits to some parent of the
1230 // original parent, we want to clone into that outer loop. We also keep track
1231 // of the loops that our cloned exit blocks participate in.
1232 Loop *ParentL = nullptr;
1233 SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1234 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1235 ClonedExitsInLoops.reserve(ExitBlocks.size());
1236 for (auto *ExitBB : ExitBlocks)
1237 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1238 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1239 ExitLoopMap[ClonedExitBB] = ExitL;
1240 ClonedExitsInLoops.push_back(ClonedExitBB);
1241 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1242 ParentL = ExitL;
1243 }
1244 assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1245 ParentL->contains(OrigL.getParentLoop())) &&
1246 "The computed parent loop should always contain (or be) the parent of "
1247 "the original loop.");
1248
1249 // We build the set of blocks dominated by the cloned header from the set of
1250 // cloned blocks out of the original loop. While not all of these will
1251 // necessarily be in the cloned loop, it is enough to establish that they
1252 // aren't in unreachable cycles, etc.
1253 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1254 for (auto *BB : OrigL.blocks())
1255 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1256 ClonedLoopBlocks.insert(ClonedBB);
1257
1258 // Rebuild the set of blocks that will end up in the cloned loop. We may have
1259 // skipped cloning some region of this loop which can in turn skip some of
1260 // the backedges so we have to rebuild the blocks in the loop based on the
1261 // backedges that remain after cloning.
1262 SmallVector<BasicBlock *, 16> Worklist;
1263 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1264 for (auto *Pred : predecessors(ClonedHeader)) {
1265 // The only possible non-loop header predecessor is the preheader because
1266 // we know we cloned the loop in simplified form.
1267 if (Pred == ClonedPH)
1268 continue;
1269
1270 // Because the loop was in simplified form, the only non-loop predecessor
1271 // should be the preheader.
1272 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1273 "header other than the preheader "
1274 "that is not part of the loop!");
1275
1276 // Insert this block into the loop set and on the first visit (and if it
1277 // isn't the header we're currently walking) put it into the worklist to
1278 // recurse through.
1279 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1280 Worklist.push_back(Pred);
1281 }
1282
1283 // If we had any backedges then there *is* a cloned loop. Put the header into
1284 // the loop set and then walk the worklist backwards to find all the blocks
1285 // that remain within the loop after cloning.
1286 if (!BlocksInClonedLoop.empty()) {
1287 BlocksInClonedLoop.insert(ClonedHeader);
1288
1289 while (!Worklist.empty()) {
1290 BasicBlock *BB = Worklist.pop_back_val();
1291 assert(BlocksInClonedLoop.count(BB) &&
1292 "Didn't put block into the loop set!");
1293
1294 // Insert any predecessors that are in the possible set into the cloned
1295 // set, and if the insert is successful, add them to the worklist. Note
1296 // that we filter on the blocks that are definitely reachable via the
1297 // backedge to the loop header so we may prune out dead code within the
1298 // cloned loop.
1299 for (auto *Pred : predecessors(BB))
1300 if (ClonedLoopBlocks.count(Pred) &&
1301 BlocksInClonedLoop.insert(Pred).second)
1302 Worklist.push_back(Pred);
1303 }
1304
1305 ClonedL = LI.AllocateLoop();
1306 if (ParentL) {
1307 ParentL->addBasicBlockToLoop(ClonedPH, LI);
1308 ParentL->addChildLoop(ClonedL);
1309 } else {
1310 LI.addTopLevelLoop(ClonedL);
1311 }
1312 NonChildClonedLoops.push_back(ClonedL);
1313
1314 ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1315 // We don't want to just add the cloned loop blocks based on how we
1316 // discovered them. The original order of blocks was carefully built in
1317 // a way that doesn't rely on predecessor ordering. Rather than re-invent
1318 // that logic, we just re-walk the original blocks (and those of the child
1319 // loops) and filter them as we add them into the cloned loop.
1320 for (auto *BB : OrigL.blocks()) {
1321 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1322 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1323 continue;
1324
1325 // Directly add the blocks that are only in this loop.
1326 if (LI.getLoopFor(BB) == &OrigL) {
1327 ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1328 continue;
1329 }
1330
1331 // We want to manually add it to this loop and parents.
1332 // Registering it with LoopInfo will happen when we clone the top
1333 // loop for this block.
1334 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1335 PL->addBlockEntry(ClonedBB);
1336 }
1337
1338 // Now add each child loop whose header remains within the cloned loop. All
1339 // of the blocks within the loop must satisfy the same constraints as the
1340 // header so once we pass the header checks we can just clone the entire
1341 // child loop nest.
1342 for (Loop *ChildL : OrigL) {
1343 auto *ClonedChildHeader =
1344 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1345 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1346 continue;
1347
1348 #ifndef NDEBUG
1349 // We should never have a cloned child loop header but fail to have
1350 // all of the blocks for that child loop.
1351 for (auto *ChildLoopBB : ChildL->blocks())
1352 assert(BlocksInClonedLoop.count(
1353 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1354 "Child cloned loop has a header within the cloned outer "
1355 "loop but not all of its blocks!");
1356 #endif
1357
1358 cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1359 }
1360 }
1361
1362 // Now that we've handled all the components of the original loop that were
1363 // cloned into a new loop, we still need to handle anything from the original
1364 // loop that wasn't in a cloned loop.
1365
1366 // Figure out what blocks are left to place within any loop nest containing
1367 // the unswitched loop. If we never formed a loop, the cloned PH is one of
1368 // them.
1369 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1370 if (BlocksInClonedLoop.empty())
1371 UnloopedBlockSet.insert(ClonedPH);
1372 for (auto *ClonedBB : ClonedLoopBlocks)
1373 if (!BlocksInClonedLoop.count(ClonedBB))
1374 UnloopedBlockSet.insert(ClonedBB);
1375
1376 // Copy the cloned exits and sort them in ascending loop depth, we'll work
1377 // backwards across these to process them inside out. The order shouldn't
1378 // matter as we're just trying to build up the map from inside-out; we use
1379 // the map in a more stably ordered way below.
1380 auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1381 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1382 return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1383 ExitLoopMap.lookup(RHS)->getLoopDepth();
1384 });
1385
1386 // Populate the existing ExitLoopMap with everything reachable from each
1387 // exit, starting from the inner most exit.
1388 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1389 assert(Worklist.empty() && "Didn't clear worklist!");
1390
1391 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1392 Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1393
1394 // Walk the CFG back until we hit the cloned PH adding everything reachable
1395 // and in the unlooped set to this exit block's loop.
1396 Worklist.push_back(ExitBB);
1397 do {
1398 BasicBlock *BB = Worklist.pop_back_val();
1399 // We can stop recursing at the cloned preheader (if we get there).
1400 if (BB == ClonedPH)
1401 continue;
1402
1403 for (BasicBlock *PredBB : predecessors(BB)) {
1404 // If this pred has already been moved to our set or is part of some
1405 // (inner) loop, no update needed.
1406 if (!UnloopedBlockSet.erase(PredBB)) {
1407 assert(
1408 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1409 "Predecessor not mapped to a loop!");
1410 continue;
1411 }
1412
1413 // We just insert into the loop set here. We'll add these blocks to the
1414 // exit loop after we build up the set in an order that doesn't rely on
1415 // predecessor order (which in turn relies on use list order).
1416 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1417 (void)Inserted;
1418 assert(Inserted && "Should only visit an unlooped block once!");
1419
1420 // And recurse through to its predecessors.
1421 Worklist.push_back(PredBB);
1422 }
1423 } while (!Worklist.empty());
1424 }
1425
1426 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
1427 // blocks to their outer loops, walk the cloned blocks and the cloned exits
1428 // in their original order adding them to the correct loop.
1429
1430 // We need a stable insertion order. We use the order of the original loop
1431 // order and map into the correct parent loop.
1432 for (auto *BB : llvm::concat<BasicBlock *const>(
1433 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1434 if (Loop *OuterL = ExitLoopMap.lookup(BB))
1435 OuterL->addBasicBlockToLoop(BB, LI);
1436
1437 #ifndef NDEBUG
1438 for (auto &BBAndL : ExitLoopMap) {
1439 auto *BB = BBAndL.first;
1440 auto *OuterL = BBAndL.second;
1441 assert(LI.getLoopFor(BB) == OuterL &&
1442 "Failed to put all blocks into outer loops!");
1443 }
1444 #endif
1445
1446 // Now that all the blocks are placed into the correct containing loop in the
1447 // absence of child loops, find all the potentially cloned child loops and
1448 // clone them into whatever outer loop we placed their header into.
1449 for (Loop *ChildL : OrigL) {
1450 auto *ClonedChildHeader =
1451 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1452 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1453 continue;
1454
1455 #ifndef NDEBUG
1456 for (auto *ChildLoopBB : ChildL->blocks())
1457 assert(VMap.count(ChildLoopBB) &&
1458 "Cloned a child loop header but not all of that loops blocks!");
1459 #endif
1460
1461 NonChildClonedLoops.push_back(cloneLoopNest(
1462 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1463 }
1464 }
1465
1466 static void
deleteDeadClonedBlocks(Loop & L,ArrayRef<BasicBlock * > ExitBlocks,ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,DominatorTree & DT,MemorySSAUpdater * MSSAU)1467 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1468 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1469 DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1470 // Find all the dead clones, and remove them from their successors.
1471 SmallVector<BasicBlock *, 16> DeadBlocks;
1472 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1473 for (auto &VMap : VMaps)
1474 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1475 if (!DT.isReachableFromEntry(ClonedBB)) {
1476 for (BasicBlock *SuccBB : successors(ClonedBB))
1477 SuccBB->removePredecessor(ClonedBB);
1478 DeadBlocks.push_back(ClonedBB);
1479 }
1480
1481 // Remove all MemorySSA in the dead blocks
1482 if (MSSAU) {
1483 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1484 DeadBlocks.end());
1485 MSSAU->removeBlocks(DeadBlockSet);
1486 }
1487
1488 // Drop any remaining references to break cycles.
1489 for (BasicBlock *BB : DeadBlocks)
1490 BB->dropAllReferences();
1491 // Erase them from the IR.
1492 for (BasicBlock *BB : DeadBlocks)
1493 BB->eraseFromParent();
1494 }
1495
deleteDeadBlocksFromLoop(Loop & L,SmallVectorImpl<BasicBlock * > & ExitBlocks,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU)1496 static void deleteDeadBlocksFromLoop(Loop &L,
1497 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1498 DominatorTree &DT, LoopInfo &LI,
1499 MemorySSAUpdater *MSSAU) {
1500 // Find all the dead blocks tied to this loop, and remove them from their
1501 // successors.
1502 SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1503
1504 // Start with loop/exit blocks and get a transitive closure of reachable dead
1505 // blocks.
1506 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1507 ExitBlocks.end());
1508 DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1509 while (!DeathCandidates.empty()) {
1510 auto *BB = DeathCandidates.pop_back_val();
1511 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1512 for (BasicBlock *SuccBB : successors(BB)) {
1513 SuccBB->removePredecessor(BB);
1514 DeathCandidates.push_back(SuccBB);
1515 }
1516 DeadBlockSet.insert(BB);
1517 }
1518 }
1519
1520 // Remove all MemorySSA in the dead blocks
1521 if (MSSAU)
1522 MSSAU->removeBlocks(DeadBlockSet);
1523
1524 // Filter out the dead blocks from the exit blocks list so that it can be
1525 // used in the caller.
1526 llvm::erase_if(ExitBlocks,
1527 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1528
1529 // Walk from this loop up through its parents removing all of the dead blocks.
1530 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1531 for (auto *BB : DeadBlockSet)
1532 ParentL->getBlocksSet().erase(BB);
1533 llvm::erase_if(ParentL->getBlocksVector(),
1534 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1535 }
1536
1537 // Now delete the dead child loops. This raw delete will clear them
1538 // recursively.
1539 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1540 if (!DeadBlockSet.count(ChildL->getHeader()))
1541 return false;
1542
1543 assert(llvm::all_of(ChildL->blocks(),
1544 [&](BasicBlock *ChildBB) {
1545 return DeadBlockSet.count(ChildBB);
1546 }) &&
1547 "If the child loop header is dead all blocks in the child loop must "
1548 "be dead as well!");
1549 LI.destroy(ChildL);
1550 return true;
1551 });
1552
1553 // Remove the loop mappings for the dead blocks and drop all the references
1554 // from these blocks to others to handle cyclic references as we start
1555 // deleting the blocks themselves.
1556 for (auto *BB : DeadBlockSet) {
1557 // Check that the dominator tree has already been updated.
1558 assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1559 LI.changeLoopFor(BB, nullptr);
1560 BB->dropAllReferences();
1561 }
1562
1563 // Actually delete the blocks now that they've been fully unhooked from the
1564 // IR.
1565 for (auto *BB : DeadBlockSet)
1566 BB->eraseFromParent();
1567 }
1568
1569 /// Recompute the set of blocks in a loop after unswitching.
1570 ///
1571 /// This walks from the original headers predecessors to rebuild the loop. We
1572 /// take advantage of the fact that new blocks can't have been added, and so we
1573 /// filter by the original loop's blocks. This also handles potentially
1574 /// unreachable code that we don't want to explore but might be found examining
1575 /// the predecessors of the header.
1576 ///
1577 /// If the original loop is no longer a loop, this will return an empty set. If
1578 /// it remains a loop, all the blocks within it will be added to the set
1579 /// (including those blocks in inner loops).
recomputeLoopBlockSet(Loop & L,LoopInfo & LI)1580 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1581 LoopInfo &LI) {
1582 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1583
1584 auto *PH = L.getLoopPreheader();
1585 auto *Header = L.getHeader();
1586
1587 // A worklist to use while walking backwards from the header.
1588 SmallVector<BasicBlock *, 16> Worklist;
1589
1590 // First walk the predecessors of the header to find the backedges. This will
1591 // form the basis of our walk.
1592 for (auto *Pred : predecessors(Header)) {
1593 // Skip the preheader.
1594 if (Pred == PH)
1595 continue;
1596
1597 // Because the loop was in simplified form, the only non-loop predecessor
1598 // is the preheader.
1599 assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1600 "than the preheader that is not part of the "
1601 "loop!");
1602
1603 // Insert this block into the loop set and on the first visit and, if it
1604 // isn't the header we're currently walking, put it into the worklist to
1605 // recurse through.
1606 if (LoopBlockSet.insert(Pred).second && Pred != Header)
1607 Worklist.push_back(Pred);
1608 }
1609
1610 // If no backedges were found, we're done.
1611 if (LoopBlockSet.empty())
1612 return LoopBlockSet;
1613
1614 // We found backedges, recurse through them to identify the loop blocks.
1615 while (!Worklist.empty()) {
1616 BasicBlock *BB = Worklist.pop_back_val();
1617 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1618
1619 // No need to walk past the header.
1620 if (BB == Header)
1621 continue;
1622
1623 // Because we know the inner loop structure remains valid we can use the
1624 // loop structure to jump immediately across the entire nested loop.
1625 // Further, because it is in loop simplified form, we can directly jump
1626 // to its preheader afterward.
1627 if (Loop *InnerL = LI.getLoopFor(BB))
1628 if (InnerL != &L) {
1629 assert(L.contains(InnerL) &&
1630 "Should not reach a loop *outside* this loop!");
1631 // The preheader is the only possible predecessor of the loop so
1632 // insert it into the set and check whether it was already handled.
1633 auto *InnerPH = InnerL->getLoopPreheader();
1634 assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1635 "but not contain the inner loop "
1636 "preheader!");
1637 if (!LoopBlockSet.insert(InnerPH).second)
1638 // The only way to reach the preheader is through the loop body
1639 // itself so if it has been visited the loop is already handled.
1640 continue;
1641
1642 // Insert all of the blocks (other than those already present) into
1643 // the loop set. We expect at least the block that led us to find the
1644 // inner loop to be in the block set, but we may also have other loop
1645 // blocks if they were already enqueued as predecessors of some other
1646 // outer loop block.
1647 for (auto *InnerBB : InnerL->blocks()) {
1648 if (InnerBB == BB) {
1649 assert(LoopBlockSet.count(InnerBB) &&
1650 "Block should already be in the set!");
1651 continue;
1652 }
1653
1654 LoopBlockSet.insert(InnerBB);
1655 }
1656
1657 // Add the preheader to the worklist so we will continue past the
1658 // loop body.
1659 Worklist.push_back(InnerPH);
1660 continue;
1661 }
1662
1663 // Insert any predecessors that were in the original loop into the new
1664 // set, and if the insert is successful, add them to the worklist.
1665 for (auto *Pred : predecessors(BB))
1666 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1667 Worklist.push_back(Pred);
1668 }
1669
1670 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1671
1672 // We've found all the blocks participating in the loop, return our completed
1673 // set.
1674 return LoopBlockSet;
1675 }
1676
1677 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1678 ///
1679 /// The removal may have removed some child loops entirely but cannot have
1680 /// disturbed any remaining child loops. However, they may need to be hoisted
1681 /// to the parent loop (or to be top-level loops). The original loop may be
1682 /// completely removed.
1683 ///
1684 /// The sibling loops resulting from this update are returned. If the original
1685 /// loop remains a valid loop, it will be the first entry in this list with all
1686 /// of the newly sibling loops following it.
1687 ///
1688 /// Returns true if the loop remains a loop after unswitching, and false if it
1689 /// is no longer a loop after unswitching (and should not continue to be
1690 /// referenced).
rebuildLoopAfterUnswitch(Loop & L,ArrayRef<BasicBlock * > ExitBlocks,LoopInfo & LI,SmallVectorImpl<Loop * > & HoistedLoops)1691 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1692 LoopInfo &LI,
1693 SmallVectorImpl<Loop *> &HoistedLoops) {
1694 auto *PH = L.getLoopPreheader();
1695
1696 // Compute the actual parent loop from the exit blocks. Because we may have
1697 // pruned some exits the loop may be different from the original parent.
1698 Loop *ParentL = nullptr;
1699 SmallVector<Loop *, 4> ExitLoops;
1700 SmallVector<BasicBlock *, 4> ExitsInLoops;
1701 ExitsInLoops.reserve(ExitBlocks.size());
1702 for (auto *ExitBB : ExitBlocks)
1703 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1704 ExitLoops.push_back(ExitL);
1705 ExitsInLoops.push_back(ExitBB);
1706 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1707 ParentL = ExitL;
1708 }
1709
1710 // Recompute the blocks participating in this loop. This may be empty if it
1711 // is no longer a loop.
1712 auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1713
1714 // If we still have a loop, we need to re-set the loop's parent as the exit
1715 // block set changing may have moved it within the loop nest. Note that this
1716 // can only happen when this loop has a parent as it can only hoist the loop
1717 // *up* the nest.
1718 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1719 // Remove this loop's (original) blocks from all of the intervening loops.
1720 for (Loop *IL = L.getParentLoop(); IL != ParentL;
1721 IL = IL->getParentLoop()) {
1722 IL->getBlocksSet().erase(PH);
1723 for (auto *BB : L.blocks())
1724 IL->getBlocksSet().erase(BB);
1725 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1726 return BB == PH || L.contains(BB);
1727 });
1728 }
1729
1730 LI.changeLoopFor(PH, ParentL);
1731 L.getParentLoop()->removeChildLoop(&L);
1732 if (ParentL)
1733 ParentL->addChildLoop(&L);
1734 else
1735 LI.addTopLevelLoop(&L);
1736 }
1737
1738 // Now we update all the blocks which are no longer within the loop.
1739 auto &Blocks = L.getBlocksVector();
1740 auto BlocksSplitI =
1741 LoopBlockSet.empty()
1742 ? Blocks.begin()
1743 : std::stable_partition(
1744 Blocks.begin(), Blocks.end(),
1745 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1746
1747 // Before we erase the list of unlooped blocks, build a set of them.
1748 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1749 if (LoopBlockSet.empty())
1750 UnloopedBlocks.insert(PH);
1751
1752 // Now erase these blocks from the loop.
1753 for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1754 L.getBlocksSet().erase(BB);
1755 Blocks.erase(BlocksSplitI, Blocks.end());
1756
1757 // Sort the exits in ascending loop depth, we'll work backwards across these
1758 // to process them inside out.
1759 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1760 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1761 });
1762
1763 // We'll build up a set for each exit loop.
1764 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1765 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1766
1767 auto RemoveUnloopedBlocksFromLoop =
1768 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1769 for (auto *BB : UnloopedBlocks)
1770 L.getBlocksSet().erase(BB);
1771 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1772 return UnloopedBlocks.count(BB);
1773 });
1774 };
1775
1776 SmallVector<BasicBlock *, 16> Worklist;
1777 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1778 assert(Worklist.empty() && "Didn't clear worklist!");
1779 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1780
1781 // Grab the next exit block, in decreasing loop depth order.
1782 BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1783 Loop &ExitL = *LI.getLoopFor(ExitBB);
1784 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1785
1786 // Erase all of the unlooped blocks from the loops between the previous
1787 // exit loop and this exit loop. This works because the ExitInLoops list is
1788 // sorted in increasing order of loop depth and thus we visit loops in
1789 // decreasing order of loop depth.
1790 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1791 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1792
1793 // Walk the CFG back until we hit the cloned PH adding everything reachable
1794 // and in the unlooped set to this exit block's loop.
1795 Worklist.push_back(ExitBB);
1796 do {
1797 BasicBlock *BB = Worklist.pop_back_val();
1798 // We can stop recursing at the cloned preheader (if we get there).
1799 if (BB == PH)
1800 continue;
1801
1802 for (BasicBlock *PredBB : predecessors(BB)) {
1803 // If this pred has already been moved to our set or is part of some
1804 // (inner) loop, no update needed.
1805 if (!UnloopedBlocks.erase(PredBB)) {
1806 assert((NewExitLoopBlocks.count(PredBB) ||
1807 ExitL.contains(LI.getLoopFor(PredBB))) &&
1808 "Predecessor not in a nested loop (or already visited)!");
1809 continue;
1810 }
1811
1812 // We just insert into the loop set here. We'll add these blocks to the
1813 // exit loop after we build up the set in a deterministic order rather
1814 // than the predecessor-influenced visit order.
1815 bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1816 (void)Inserted;
1817 assert(Inserted && "Should only visit an unlooped block once!");
1818
1819 // And recurse through to its predecessors.
1820 Worklist.push_back(PredBB);
1821 }
1822 } while (!Worklist.empty());
1823
1824 // If blocks in this exit loop were directly part of the original loop (as
1825 // opposed to a child loop) update the map to point to this exit loop. This
1826 // just updates a map and so the fact that the order is unstable is fine.
1827 for (auto *BB : NewExitLoopBlocks)
1828 if (Loop *BBL = LI.getLoopFor(BB))
1829 if (BBL == &L || !L.contains(BBL))
1830 LI.changeLoopFor(BB, &ExitL);
1831
1832 // We will remove the remaining unlooped blocks from this loop in the next
1833 // iteration or below.
1834 NewExitLoopBlocks.clear();
1835 }
1836
1837 // Any remaining unlooped blocks are no longer part of any loop unless they
1838 // are part of some child loop.
1839 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1840 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1841 for (auto *BB : UnloopedBlocks)
1842 if (Loop *BBL = LI.getLoopFor(BB))
1843 if (BBL == &L || !L.contains(BBL))
1844 LI.changeLoopFor(BB, nullptr);
1845
1846 // Sink all the child loops whose headers are no longer in the loop set to
1847 // the parent (or to be top level loops). We reach into the loop and directly
1848 // update its subloop vector to make this batch update efficient.
1849 auto &SubLoops = L.getSubLoopsVector();
1850 auto SubLoopsSplitI =
1851 LoopBlockSet.empty()
1852 ? SubLoops.begin()
1853 : std::stable_partition(
1854 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1855 return LoopBlockSet.count(SubL->getHeader());
1856 });
1857 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1858 HoistedLoops.push_back(HoistedL);
1859 HoistedL->setParentLoop(nullptr);
1860
1861 // To compute the new parent of this hoisted loop we look at where we
1862 // placed the preheader above. We can't lookup the header itself because we
1863 // retained the mapping from the header to the hoisted loop. But the
1864 // preheader and header should have the exact same new parent computed
1865 // based on the set of exit blocks from the original loop as the preheader
1866 // is a predecessor of the header and so reached in the reverse walk. And
1867 // because the loops were all in simplified form the preheader of the
1868 // hoisted loop can't be part of some *other* loop.
1869 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1870 NewParentL->addChildLoop(HoistedL);
1871 else
1872 LI.addTopLevelLoop(HoistedL);
1873 }
1874 SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1875
1876 // Actually delete the loop if nothing remained within it.
1877 if (Blocks.empty()) {
1878 assert(SubLoops.empty() &&
1879 "Failed to remove all subloops from the original loop!");
1880 if (Loop *ParentL = L.getParentLoop())
1881 ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1882 else
1883 LI.removeLoop(llvm::find(LI, &L));
1884 LI.destroy(&L);
1885 return false;
1886 }
1887
1888 return true;
1889 }
1890
1891 /// Helper to visit a dominator subtree, invoking a callable on each node.
1892 ///
1893 /// Returning false at any point will stop walking past that node of the tree.
1894 template <typename CallableT>
visitDomSubTree(DominatorTree & DT,BasicBlock * BB,CallableT Callable)1895 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1896 SmallVector<DomTreeNode *, 4> DomWorklist;
1897 DomWorklist.push_back(DT[BB]);
1898 #ifndef NDEBUG
1899 SmallPtrSet<DomTreeNode *, 4> Visited;
1900 Visited.insert(DT[BB]);
1901 #endif
1902 do {
1903 DomTreeNode *N = DomWorklist.pop_back_val();
1904
1905 // Visit this node.
1906 if (!Callable(N->getBlock()))
1907 continue;
1908
1909 // Accumulate the child nodes.
1910 for (DomTreeNode *ChildN : *N) {
1911 assert(Visited.insert(ChildN).second &&
1912 "Cannot visit a node twice when walking a tree!");
1913 DomWorklist.push_back(ChildN);
1914 }
1915 } while (!DomWorklist.empty());
1916 }
1917
unswitchNontrivialInvariants(Loop & L,Instruction & TI,ArrayRef<Value * > Invariants,SmallVectorImpl<BasicBlock * > & ExitBlocks,DominatorTree & DT,LoopInfo & LI,AssumptionCache & AC,function_ref<void (bool,ArrayRef<Loop * >)> UnswitchCB,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)1918 static void unswitchNontrivialInvariants(
1919 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
1920 SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
1921 AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
1922 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
1923 auto *ParentBB = TI.getParent();
1924 BranchInst *BI = dyn_cast<BranchInst>(&TI);
1925 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
1926
1927 // We can only unswitch switches, conditional branches with an invariant
1928 // condition, or combining invariant conditions with an instruction.
1929 assert((SI || (BI && BI->isConditional())) &&
1930 "Can only unswitch switches and conditional branch!");
1931 bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
1932 if (FullUnswitch)
1933 assert(Invariants.size() == 1 &&
1934 "Cannot have other invariants with full unswitching!");
1935 else
1936 assert(isa<Instruction>(BI->getCondition()) &&
1937 "Partial unswitching requires an instruction as the condition!");
1938
1939 if (MSSAU && VerifyMemorySSA)
1940 MSSAU->getMemorySSA()->verifyMemorySSA();
1941
1942 // Constant and BBs tracking the cloned and continuing successor. When we are
1943 // unswitching the entire condition, this can just be trivially chosen to
1944 // unswitch towards `true`. However, when we are unswitching a set of
1945 // invariants combined with `and` or `or`, the combining operation determines
1946 // the best direction to unswitch: we want to unswitch the direction that will
1947 // collapse the branch.
1948 bool Direction = true;
1949 int ClonedSucc = 0;
1950 if (!FullUnswitch) {
1951 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
1952 assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
1953 Instruction::And &&
1954 "Only `or` and `and` instructions can combine invariants being "
1955 "unswitched.");
1956 Direction = false;
1957 ClonedSucc = 1;
1958 }
1959 }
1960
1961 BasicBlock *RetainedSuccBB =
1962 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
1963 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
1964 if (BI)
1965 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
1966 else
1967 for (auto Case : SI->cases())
1968 if (Case.getCaseSuccessor() != RetainedSuccBB)
1969 UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
1970
1971 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
1972 "Should not unswitch the same successor we are retaining!");
1973
1974 // The branch should be in this exact loop. Any inner loop's invariant branch
1975 // should be handled by unswitching that inner loop. The caller of this
1976 // routine should filter out any candidates that remain (but were skipped for
1977 // whatever reason).
1978 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1979
1980 // Compute the parent loop now before we start hacking on things.
1981 Loop *ParentL = L.getParentLoop();
1982 // Get blocks in RPO order for MSSA update, before changing the CFG.
1983 LoopBlocksRPO LBRPO(&L);
1984 if (MSSAU)
1985 LBRPO.perform(&LI);
1986
1987 // Compute the outer-most loop containing one of our exit blocks. This is the
1988 // furthest up our loopnest which can be mutated, which we will use below to
1989 // update things.
1990 Loop *OuterExitL = &L;
1991 for (auto *ExitBB : ExitBlocks) {
1992 Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1993 if (!NewOuterExitL) {
1994 // We exited the entire nest with this block, so we're done.
1995 OuterExitL = nullptr;
1996 break;
1997 }
1998 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1999 OuterExitL = NewOuterExitL;
2000 }
2001
2002 // At this point, we're definitely going to unswitch something so invalidate
2003 // any cached information in ScalarEvolution for the outer most loop
2004 // containing an exit block and all nested loops.
2005 if (SE) {
2006 if (OuterExitL)
2007 SE->forgetLoop(OuterExitL);
2008 else
2009 SE->forgetTopmostLoop(&L);
2010 }
2011
2012 // If the edge from this terminator to a successor dominates that successor,
2013 // store a map from each block in its dominator subtree to it. This lets us
2014 // tell when cloning for a particular successor if a block is dominated by
2015 // some *other* successor with a single data structure. We use this to
2016 // significantly reduce cloning.
2017 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2018 for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2019 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2020 if (SuccBB->getUniquePredecessor() ||
2021 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2022 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2023 }))
2024 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2025 DominatingSucc[BB] = SuccBB;
2026 return true;
2027 });
2028
2029 // Split the preheader, so that we know that there is a safe place to insert
2030 // the conditional branch. We will change the preheader to have a conditional
2031 // branch on LoopCond. The original preheader will become the split point
2032 // between the unswitched versions, and we will have a new preheader for the
2033 // original loop.
2034 BasicBlock *SplitBB = L.getLoopPreheader();
2035 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2036
2037 // Keep track of the dominator tree updates needed.
2038 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2039
2040 // Clone the loop for each unswitched successor.
2041 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2042 VMaps.reserve(UnswitchedSuccBBs.size());
2043 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2044 for (auto *SuccBB : UnswitchedSuccBBs) {
2045 VMaps.emplace_back(new ValueToValueMapTy());
2046 ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2047 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2048 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2049 }
2050
2051 // The stitching of the branched code back together depends on whether we're
2052 // doing full unswitching or not with the exception that we always want to
2053 // nuke the initial terminator placed in the split block.
2054 SplitBB->getTerminator()->eraseFromParent();
2055 if (FullUnswitch) {
2056 // Splice the terminator from the original loop and rewrite its
2057 // successors.
2058 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2059
2060 // Keep a clone of the terminator for MSSA updates.
2061 Instruction *NewTI = TI.clone();
2062 ParentBB->getInstList().push_back(NewTI);
2063
2064 // First wire up the moved terminator to the preheaders.
2065 if (BI) {
2066 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2067 BI->setSuccessor(ClonedSucc, ClonedPH);
2068 BI->setSuccessor(1 - ClonedSucc, LoopPH);
2069 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2070 } else {
2071 assert(SI && "Must either be a branch or switch!");
2072
2073 // Walk the cases and directly update their successors.
2074 assert(SI->getDefaultDest() == RetainedSuccBB &&
2075 "Not retaining default successor!");
2076 SI->setDefaultDest(LoopPH);
2077 for (auto &Case : SI->cases())
2078 if (Case.getCaseSuccessor() == RetainedSuccBB)
2079 Case.setSuccessor(LoopPH);
2080 else
2081 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2082
2083 // We need to use the set to populate domtree updates as even when there
2084 // are multiple cases pointing at the same successor we only want to
2085 // remove and insert one edge in the domtree.
2086 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2087 DTUpdates.push_back(
2088 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2089 }
2090
2091 if (MSSAU) {
2092 DT.applyUpdates(DTUpdates);
2093 DTUpdates.clear();
2094
2095 // Remove all but one edge to the retained block and all unswitched
2096 // blocks. This is to avoid having duplicate entries in the cloned Phis,
2097 // when we know we only keep a single edge for each case.
2098 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2099 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2100 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2101
2102 for (auto &VMap : VMaps)
2103 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2104 /*IgnoreIncomingWithNoClones=*/true);
2105 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2106
2107 // Remove all edges to unswitched blocks.
2108 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2109 MSSAU->removeEdge(ParentBB, SuccBB);
2110 }
2111
2112 // Now unhook the successor relationship as we'll be replacing
2113 // the terminator with a direct branch. This is much simpler for branches
2114 // than switches so we handle those first.
2115 if (BI) {
2116 // Remove the parent as a predecessor of the unswitched successor.
2117 assert(UnswitchedSuccBBs.size() == 1 &&
2118 "Only one possible unswitched block for a branch!");
2119 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2120 UnswitchedSuccBB->removePredecessor(ParentBB,
2121 /*KeepOneInputPHIs*/ true);
2122 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2123 } else {
2124 // Note that we actually want to remove the parent block as a predecessor
2125 // of *every* case successor. The case successor is either unswitched,
2126 // completely eliminating an edge from the parent to that successor, or it
2127 // is a duplicate edge to the retained successor as the retained successor
2128 // is always the default successor and as we'll replace this with a direct
2129 // branch we no longer need the duplicate entries in the PHI nodes.
2130 SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2131 assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2132 "Not retaining default successor!");
2133 for (auto &Case : NewSI->cases())
2134 Case.getCaseSuccessor()->removePredecessor(
2135 ParentBB,
2136 /*KeepOneInputPHIs*/ true);
2137
2138 // We need to use the set to populate domtree updates as even when there
2139 // are multiple cases pointing at the same successor we only want to
2140 // remove and insert one edge in the domtree.
2141 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2142 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2143 }
2144
2145 // After MSSAU update, remove the cloned terminator instruction NewTI.
2146 ParentBB->getTerminator()->eraseFromParent();
2147
2148 // Create a new unconditional branch to the continuing block (as opposed to
2149 // the one cloned).
2150 BranchInst::Create(RetainedSuccBB, ParentBB);
2151 } else {
2152 assert(BI && "Only branches have partial unswitching.");
2153 assert(UnswitchedSuccBBs.size() == 1 &&
2154 "Only one possible unswitched block for a branch!");
2155 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2156 // When doing a partial unswitch, we have to do a bit more work to build up
2157 // the branch in the split block.
2158 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2159 *ClonedPH, *LoopPH);
2160 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2161
2162 if (MSSAU) {
2163 DT.applyUpdates(DTUpdates);
2164 DTUpdates.clear();
2165
2166 // Perform MSSA cloning updates.
2167 for (auto &VMap : VMaps)
2168 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2169 /*IgnoreIncomingWithNoClones=*/true);
2170 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2171 }
2172 }
2173
2174 // Apply the updates accumulated above to get an up-to-date dominator tree.
2175 DT.applyUpdates(DTUpdates);
2176
2177 // Now that we have an accurate dominator tree, first delete the dead cloned
2178 // blocks so that we can accurately build any cloned loops. It is important to
2179 // not delete the blocks from the original loop yet because we still want to
2180 // reference the original loop to understand the cloned loop's structure.
2181 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2182
2183 // Build the cloned loop structure itself. This may be substantially
2184 // different from the original structure due to the simplified CFG. This also
2185 // handles inserting all the cloned blocks into the correct loops.
2186 SmallVector<Loop *, 4> NonChildClonedLoops;
2187 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2188 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2189
2190 // Now that our cloned loops have been built, we can update the original loop.
2191 // First we delete the dead blocks from it and then we rebuild the loop
2192 // structure taking these deletions into account.
2193 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);
2194
2195 if (MSSAU && VerifyMemorySSA)
2196 MSSAU->getMemorySSA()->verifyMemorySSA();
2197
2198 SmallVector<Loop *, 4> HoistedLoops;
2199 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2200
2201 if (MSSAU && VerifyMemorySSA)
2202 MSSAU->getMemorySSA()->verifyMemorySSA();
2203
2204 // This transformation has a high risk of corrupting the dominator tree, and
2205 // the below steps to rebuild loop structures will result in hard to debug
2206 // errors in that case so verify that the dominator tree is sane first.
2207 // FIXME: Remove this when the bugs stop showing up and rely on existing
2208 // verification steps.
2209 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2210
2211 if (BI) {
2212 // If we unswitched a branch which collapses the condition to a known
2213 // constant we want to replace all the uses of the invariants within both
2214 // the original and cloned blocks. We do this here so that we can use the
2215 // now updated dominator tree to identify which side the users are on.
2216 assert(UnswitchedSuccBBs.size() == 1 &&
2217 "Only one possible unswitched block for a branch!");
2218 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2219
2220 // When considering multiple partially-unswitched invariants
2221 // we cant just go replace them with constants in both branches.
2222 //
2223 // For 'AND' we infer that true branch ("continue") means true
2224 // for each invariant operand.
2225 // For 'OR' we can infer that false branch ("continue") means false
2226 // for each invariant operand.
2227 // So it happens that for multiple-partial case we dont replace
2228 // in the unswitched branch.
2229 bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1);
2230
2231 ConstantInt *UnswitchedReplacement =
2232 Direction ? ConstantInt::getTrue(BI->getContext())
2233 : ConstantInt::getFalse(BI->getContext());
2234 ConstantInt *ContinueReplacement =
2235 Direction ? ConstantInt::getFalse(BI->getContext())
2236 : ConstantInt::getTrue(BI->getContext());
2237 for (Value *Invariant : Invariants)
2238 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
2239 UI != UE;) {
2240 // Grab the use and walk past it so we can clobber it in the use list.
2241 Use *U = &*UI++;
2242 Instruction *UserI = dyn_cast<Instruction>(U->getUser());
2243 if (!UserI)
2244 continue;
2245
2246 // Replace it with the 'continue' side if in the main loop body, and the
2247 // unswitched if in the cloned blocks.
2248 if (DT.dominates(LoopPH, UserI->getParent()))
2249 U->set(ContinueReplacement);
2250 else if (ReplaceUnswitched &&
2251 DT.dominates(ClonedPH, UserI->getParent()))
2252 U->set(UnswitchedReplacement);
2253 }
2254 }
2255
2256 // We can change which blocks are exit blocks of all the cloned sibling
2257 // loops, the current loop, and any parent loops which shared exit blocks
2258 // with the current loop. As a consequence, we need to re-form LCSSA for
2259 // them. But we shouldn't need to re-form LCSSA for any child loops.
2260 // FIXME: This could be made more efficient by tracking which exit blocks are
2261 // new, and focusing on them, but that isn't likely to be necessary.
2262 //
2263 // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2264 // loop nest and update every loop that could have had its exits changed. We
2265 // also need to cover any intervening loops. We add all of these loops to
2266 // a list and sort them by loop depth to achieve this without updating
2267 // unnecessary loops.
2268 auto UpdateLoop = [&](Loop &UpdateL) {
2269 #ifndef NDEBUG
2270 UpdateL.verifyLoop();
2271 for (Loop *ChildL : UpdateL) {
2272 ChildL->verifyLoop();
2273 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2274 "Perturbed a child loop's LCSSA form!");
2275 }
2276 #endif
2277 // First build LCSSA for this loop so that we can preserve it when
2278 // forming dedicated exits. We don't want to perturb some other loop's
2279 // LCSSA while doing that CFG edit.
2280 formLCSSA(UpdateL, DT, &LI, SE);
2281
2282 // For loops reached by this loop's original exit blocks we may
2283 // introduced new, non-dedicated exits. At least try to re-form dedicated
2284 // exits for these loops. This may fail if they couldn't have dedicated
2285 // exits to start with.
2286 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2287 };
2288
2289 // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2290 // and we can do it in any order as they don't nest relative to each other.
2291 //
2292 // Also check if any of the loops we have updated have become top-level loops
2293 // as that will necessitate widening the outer loop scope.
2294 for (Loop *UpdatedL :
2295 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2296 UpdateLoop(*UpdatedL);
2297 if (!UpdatedL->getParentLoop())
2298 OuterExitL = nullptr;
2299 }
2300 if (IsStillLoop) {
2301 UpdateLoop(L);
2302 if (!L.getParentLoop())
2303 OuterExitL = nullptr;
2304 }
2305
2306 // If the original loop had exit blocks, walk up through the outer most loop
2307 // of those exit blocks to update LCSSA and form updated dedicated exits.
2308 if (OuterExitL != &L)
2309 for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2310 OuterL = OuterL->getParentLoop())
2311 UpdateLoop(*OuterL);
2312
2313 #ifndef NDEBUG
2314 // Verify the entire loop structure to catch any incorrect updates before we
2315 // progress in the pass pipeline.
2316 LI.verify(DT);
2317 #endif
2318
2319 // Now that we've unswitched something, make callbacks to report the changes.
2320 // For that we need to merge together the updated loops and the cloned loops
2321 // and check whether the original loop survived.
2322 SmallVector<Loop *, 4> SibLoops;
2323 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2324 if (UpdatedL->getParentLoop() == ParentL)
2325 SibLoops.push_back(UpdatedL);
2326 UnswitchCB(IsStillLoop, SibLoops);
2327
2328 if (MSSAU && VerifyMemorySSA)
2329 MSSAU->getMemorySSA()->verifyMemorySSA();
2330
2331 if (BI)
2332 ++NumBranches;
2333 else
2334 ++NumSwitches;
2335 }
2336
2337 /// Recursively compute the cost of a dominator subtree based on the per-block
2338 /// cost map provided.
2339 ///
2340 /// The recursive computation is memozied into the provided DT-indexed cost map
2341 /// to allow querying it for most nodes in the domtree without it becoming
2342 /// quadratic.
2343 static int
computeDomSubtreeCost(DomTreeNode & N,const SmallDenseMap<BasicBlock *,int,4> & BBCostMap,SmallDenseMap<DomTreeNode *,int,4> & DTCostMap)2344 computeDomSubtreeCost(DomTreeNode &N,
2345 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
2346 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
2347 // Don't accumulate cost (or recurse through) blocks not in our block cost
2348 // map and thus not part of the duplication cost being considered.
2349 auto BBCostIt = BBCostMap.find(N.getBlock());
2350 if (BBCostIt == BBCostMap.end())
2351 return 0;
2352
2353 // Lookup this node to see if we already computed its cost.
2354 auto DTCostIt = DTCostMap.find(&N);
2355 if (DTCostIt != DTCostMap.end())
2356 return DTCostIt->second;
2357
2358 // If not, we have to compute it. We can't use insert above and update
2359 // because computing the cost may insert more things into the map.
2360 int Cost = std::accumulate(
2361 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
2362 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2363 });
2364 bool Inserted = DTCostMap.insert({&N, Cost}).second;
2365 (void)Inserted;
2366 assert(Inserted && "Should not insert a node while visiting children!");
2367 return Cost;
2368 }
2369
2370 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2371 /// making the following replacement:
2372 ///
2373 /// --code before guard--
2374 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2375 /// --code after guard--
2376 ///
2377 /// into
2378 ///
2379 /// --code before guard--
2380 /// br i1 %cond, label %guarded, label %deopt
2381 ///
2382 /// guarded:
2383 /// --code after guard--
2384 ///
2385 /// deopt:
2386 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2387 /// unreachable
2388 ///
2389 /// It also makes all relevant DT and LI updates, so that all structures are in
2390 /// valid state after this transform.
2391 static BranchInst *
turnGuardIntoBranch(IntrinsicInst * GI,Loop & L,SmallVectorImpl<BasicBlock * > & ExitBlocks,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU)2392 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2393 SmallVectorImpl<BasicBlock *> &ExitBlocks,
2394 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2395 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2396 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2397 BasicBlock *CheckBB = GI->getParent();
2398
2399 if (MSSAU && VerifyMemorySSA)
2400 MSSAU->getMemorySSA()->verifyMemorySSA();
2401
2402 // Remove all CheckBB's successors from DomTree. A block can be seen among
2403 // successors more than once, but for DomTree it should be added only once.
2404 SmallPtrSet<BasicBlock *, 4> Successors;
2405 for (auto *Succ : successors(CheckBB))
2406 if (Successors.insert(Succ).second)
2407 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2408
2409 Instruction *DeoptBlockTerm =
2410 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2411 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2412 // SplitBlockAndInsertIfThen inserts control flow that branches to
2413 // DeoptBlockTerm if the condition is true. We want the opposite.
2414 CheckBI->swapSuccessors();
2415
2416 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2417 GuardedBlock->setName("guarded");
2418 CheckBI->getSuccessor(1)->setName("deopt");
2419 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2420
2421 // We now have a new exit block.
2422 ExitBlocks.push_back(CheckBI->getSuccessor(1));
2423
2424 if (MSSAU)
2425 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2426
2427 GI->moveBefore(DeoptBlockTerm);
2428 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2429
2430 // Add new successors of CheckBB into DomTree.
2431 for (auto *Succ : successors(CheckBB))
2432 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2433
2434 // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2435 // successors.
2436 for (auto *Succ : Successors)
2437 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2438
2439 // Make proper changes to DT.
2440 DT.applyUpdates(DTUpdates);
2441 // Inform LI of a new loop block.
2442 L.addBasicBlockToLoop(GuardedBlock, LI);
2443
2444 if (MSSAU) {
2445 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2446 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2447 if (VerifyMemorySSA)
2448 MSSAU->getMemorySSA()->verifyMemorySSA();
2449 }
2450
2451 ++NumGuards;
2452 return CheckBI;
2453 }
2454
2455 /// Cost multiplier is a way to limit potentially exponential behavior
2456 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2457 /// candidates available. Also accounting for the number of "sibling" loops with
2458 /// the idea to account for previous unswitches that already happened on this
2459 /// cluster of loops. There was an attempt to keep this formula simple,
2460 /// just enough to limit the worst case behavior. Even if it is not that simple
2461 /// now it is still not an attempt to provide a detailed heuristic size
2462 /// prediction.
2463 ///
2464 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2465 /// unswitch candidates, making adequate predictions instead of wild guesses.
2466 /// That requires knowing not just the number of "remaining" candidates but
2467 /// also costs of unswitching for each of these candidates.
calculateUnswitchCostMultiplier(Instruction & TI,Loop & L,LoopInfo & LI,DominatorTree & DT,ArrayRef<std::pair<Instruction *,TinyPtrVector<Value * >>> UnswitchCandidates)2468 static int calculateUnswitchCostMultiplier(
2469 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2470 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2471 UnswitchCandidates) {
2472
2473 // Guards and other exiting conditions do not contribute to exponential
2474 // explosion as soon as they dominate the latch (otherwise there might be
2475 // another path to the latch remaining that does not allow to eliminate the
2476 // loop copy on unswitch).
2477 BasicBlock *Latch = L.getLoopLatch();
2478 BasicBlock *CondBlock = TI.getParent();
2479 if (DT.dominates(CondBlock, Latch) &&
2480 (isGuard(&TI) ||
2481 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2482 return L.contains(SuccBB);
2483 }) <= 1)) {
2484 NumCostMultiplierSkipped++;
2485 return 1;
2486 }
2487
2488 auto *ParentL = L.getParentLoop();
2489 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2490 : std::distance(LI.begin(), LI.end()));
2491 // Count amount of clones that all the candidates might cause during
2492 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2493 int UnswitchedClones = 0;
2494 for (auto Candidate : UnswitchCandidates) {
2495 Instruction *CI = Candidate.first;
2496 BasicBlock *CondBlock = CI->getParent();
2497 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2498 if (isGuard(CI)) {
2499 if (!SkipExitingSuccessors)
2500 UnswitchedClones++;
2501 continue;
2502 }
2503 int NonExitingSuccessors = llvm::count_if(
2504 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2505 return !SkipExitingSuccessors || L.contains(SuccBB);
2506 });
2507 UnswitchedClones += Log2_32(NonExitingSuccessors);
2508 }
2509
2510 // Ignore up to the "unscaled candidates" number of unswitch candidates
2511 // when calculating the power-of-two scaling of the cost. The main idea
2512 // with this control is to allow a small number of unswitches to happen
2513 // and rely more on siblings multiplier (see below) when the number
2514 // of candidates is small.
2515 unsigned ClonesPower =
2516 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2517
2518 // Allowing top-level loops to spread a bit more than nested ones.
2519 int SiblingsMultiplier =
2520 std::max((ParentL ? SiblingsCount
2521 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2522 1);
2523 // Compute the cost multiplier in a way that won't overflow by saturating
2524 // at an upper bound.
2525 int CostMultiplier;
2526 if (ClonesPower > Log2_32(UnswitchThreshold) ||
2527 SiblingsMultiplier > UnswitchThreshold)
2528 CostMultiplier = UnswitchThreshold;
2529 else
2530 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2531 (int)UnswitchThreshold);
2532
2533 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier
2534 << " (siblings " << SiblingsMultiplier << " * clones "
2535 << (1 << ClonesPower) << ")"
2536 << " for unswitch candidate: " << TI << "\n");
2537 return CostMultiplier;
2538 }
2539
2540 static bool
unswitchBestCondition(Loop & L,DominatorTree & DT,LoopInfo & LI,AssumptionCache & AC,TargetTransformInfo & TTI,function_ref<void (bool,ArrayRef<Loop * >)> UnswitchCB,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)2541 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
2542 AssumptionCache &AC, TargetTransformInfo &TTI,
2543 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2544 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2545 // Collect all invariant conditions within this loop (as opposed to an inner
2546 // loop which would be handled when visiting that inner loop).
2547 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2548 UnswitchCandidates;
2549
2550 // Whether or not we should also collect guards in the loop.
2551 bool CollectGuards = false;
2552 if (UnswitchGuards) {
2553 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2554 Intrinsic::getName(Intrinsic::experimental_guard));
2555 if (GuardDecl && !GuardDecl->use_empty())
2556 CollectGuards = true;
2557 }
2558
2559 for (auto *BB : L.blocks()) {
2560 if (LI.getLoopFor(BB) != &L)
2561 continue;
2562
2563 if (CollectGuards)
2564 for (auto &I : *BB)
2565 if (isGuard(&I)) {
2566 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2567 // TODO: Support AND, OR conditions and partial unswitching.
2568 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2569 UnswitchCandidates.push_back({&I, {Cond}});
2570 }
2571
2572 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2573 // We can only consider fully loop-invariant switch conditions as we need
2574 // to completely eliminate the switch after unswitching.
2575 if (!isa<Constant>(SI->getCondition()) &&
2576 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2577 UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2578 continue;
2579 }
2580
2581 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2582 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2583 BI->getSuccessor(0) == BI->getSuccessor(1))
2584 continue;
2585
2586 if (L.isLoopInvariant(BI->getCondition())) {
2587 UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2588 continue;
2589 }
2590
2591 Instruction &CondI = *cast<Instruction>(BI->getCondition());
2592 if (CondI.getOpcode() != Instruction::And &&
2593 CondI.getOpcode() != Instruction::Or)
2594 continue;
2595
2596 TinyPtrVector<Value *> Invariants =
2597 collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2598 if (Invariants.empty())
2599 continue;
2600
2601 UnswitchCandidates.push_back({BI, std::move(Invariants)});
2602 }
2603
2604 // If we didn't find any candidates, we're done.
2605 if (UnswitchCandidates.empty())
2606 return false;
2607
2608 // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2609 // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2610 // irreducible control flow into reducible control flow and introduce new
2611 // loops "out of thin air". If we ever discover important use cases for doing
2612 // this, we can add support to loop unswitch, but it is a lot of complexity
2613 // for what seems little or no real world benefit.
2614 LoopBlocksRPO RPOT(&L);
2615 RPOT.perform(&LI);
2616 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2617 return false;
2618
2619 SmallVector<BasicBlock *, 4> ExitBlocks;
2620 L.getUniqueExitBlocks(ExitBlocks);
2621
2622 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
2623 // don't know how to split those exit blocks.
2624 // FIXME: We should teach SplitBlock to handle this and remove this
2625 // restriction.
2626 for (auto *ExitBB : ExitBlocks)
2627 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
2628 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
2629 return false;
2630 }
2631
2632 LLVM_DEBUG(
2633 dbgs() << "Considering " << UnswitchCandidates.size()
2634 << " non-trivial loop invariant conditions for unswitching.\n");
2635
2636 // Given that unswitching these terminators will require duplicating parts of
2637 // the loop, so we need to be able to model that cost. Compute the ephemeral
2638 // values and set up a data structure to hold per-BB costs. We cache each
2639 // block's cost so that we don't recompute this when considering different
2640 // subsets of the loop for duplication during unswitching.
2641 SmallPtrSet<const Value *, 4> EphValues;
2642 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2643 SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2644
2645 // Compute the cost of each block, as well as the total loop cost. Also, bail
2646 // out if we see instructions which are incompatible with loop unswitching
2647 // (convergent, noduplicate, or cross-basic-block tokens).
2648 // FIXME: We might be able to safely handle some of these in non-duplicated
2649 // regions.
2650 int LoopCost = 0;
2651 for (auto *BB : L.blocks()) {
2652 int Cost = 0;
2653 for (auto &I : *BB) {
2654 if (EphValues.count(&I))
2655 continue;
2656
2657 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2658 return false;
2659 if (auto CS = CallSite(&I))
2660 if (CS.isConvergent() || CS.cannotDuplicate())
2661 return false;
2662
2663 Cost += TTI.getUserCost(&I);
2664 }
2665 assert(Cost >= 0 && "Must not have negative costs!");
2666 LoopCost += Cost;
2667 assert(LoopCost >= 0 && "Must not have negative loop costs!");
2668 BBCostMap[BB] = Cost;
2669 }
2670 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n");
2671
2672 // Now we find the best candidate by searching for the one with the following
2673 // properties in order:
2674 //
2675 // 1) An unswitching cost below the threshold
2676 // 2) The smallest number of duplicated unswitch candidates (to avoid
2677 // creating redundant subsequent unswitching)
2678 // 3) The smallest cost after unswitching.
2679 //
2680 // We prioritize reducing fanout of unswitch candidates provided the cost
2681 // remains below the threshold because this has a multiplicative effect.
2682 //
2683 // This requires memoizing each dominator subtree to avoid redundant work.
2684 //
2685 // FIXME: Need to actually do the number of candidates part above.
2686 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2687 // Given a terminator which might be unswitched, computes the non-duplicated
2688 // cost for that terminator.
2689 auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
2690 BasicBlock &BB = *TI.getParent();
2691 SmallPtrSet<BasicBlock *, 4> Visited;
2692
2693 int Cost = LoopCost;
2694 for (BasicBlock *SuccBB : successors(&BB)) {
2695 // Don't count successors more than once.
2696 if (!Visited.insert(SuccBB).second)
2697 continue;
2698
2699 // If this is a partial unswitch candidate, then it must be a conditional
2700 // branch with a condition of either `or` or `and`. In that case, one of
2701 // the successors is necessarily duplicated, so don't even try to remove
2702 // its cost.
2703 if (!FullUnswitch) {
2704 auto &BI = cast<BranchInst>(TI);
2705 if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2706 Instruction::And) {
2707 if (SuccBB == BI.getSuccessor(1))
2708 continue;
2709 } else {
2710 assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
2711 Instruction::Or &&
2712 "Only `and` and `or` conditions can result in a partial "
2713 "unswitch!");
2714 if (SuccBB == BI.getSuccessor(0))
2715 continue;
2716 }
2717 }
2718
2719 // This successor's domtree will not need to be duplicated after
2720 // unswitching if the edge to the successor dominates it (and thus the
2721 // entire tree). This essentially means there is no other path into this
2722 // subtree and so it will end up live in only one clone of the loop.
2723 if (SuccBB->getUniquePredecessor() ||
2724 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2725 return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2726 })) {
2727 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2728 assert(Cost >= 0 &&
2729 "Non-duplicated cost should never exceed total loop cost!");
2730 }
2731 }
2732
2733 // Now scale the cost by the number of unique successors minus one. We
2734 // subtract one because there is already at least one copy of the entire
2735 // loop. This is computing the new cost of unswitching a condition.
2736 // Note that guards always have 2 unique successors that are implicit and
2737 // will be materialized if we decide to unswitch it.
2738 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2739 assert(SuccessorsCount > 1 &&
2740 "Cannot unswitch a condition without multiple distinct successors!");
2741 return Cost * (SuccessorsCount - 1);
2742 };
2743 Instruction *BestUnswitchTI = nullptr;
2744 int BestUnswitchCost = 0;
2745 ArrayRef<Value *> BestUnswitchInvariants;
2746 for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2747 Instruction &TI = *TerminatorAndInvariants.first;
2748 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2749 BranchInst *BI = dyn_cast<BranchInst>(&TI);
2750 int CandidateCost = ComputeUnswitchedCost(
2751 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2752 Invariants[0] == BI->getCondition()));
2753 // Calculate cost multiplier which is a tool to limit potentially
2754 // exponential behavior of loop-unswitch.
2755 if (EnableUnswitchCostMultiplier) {
2756 int CostMultiplier =
2757 calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2758 assert(
2759 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2760 "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2761 CandidateCost *= CostMultiplier;
2762 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
2763 << " (multiplier: " << CostMultiplier << ")"
2764 << " for unswitch candidate: " << TI << "\n");
2765 } else {
2766 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
2767 << " for unswitch candidate: " << TI << "\n");
2768 }
2769
2770 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2771 BestUnswitchTI = &TI;
2772 BestUnswitchCost = CandidateCost;
2773 BestUnswitchInvariants = Invariants;
2774 }
2775 }
2776 assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
2777
2778 if (BestUnswitchCost >= UnswitchThreshold) {
2779 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2780 << BestUnswitchCost << "\n");
2781 return false;
2782 }
2783
2784 // If the best candidate is a guard, turn it into a branch.
2785 if (isGuard(BestUnswitchTI))
2786 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2787 ExitBlocks, DT, LI, MSSAU);
2788
2789 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = "
2790 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2791 << "\n");
2792 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2793 ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU);
2794 return true;
2795 }
2796
2797 /// Unswitch control flow predicated on loop invariant conditions.
2798 ///
2799 /// This first hoists all branches or switches which are trivial (IE, do not
2800 /// require duplicating any part of the loop) out of the loop body. It then
2801 /// looks at other loop invariant control flows and tries to unswitch those as
2802 /// well by cloning the loop if the result is small enough.
2803 ///
2804 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
2805 /// updated based on the unswitch.
2806 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled).
2807 ///
2808 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2809 /// true, we will attempt to do non-trivial unswitching as well as trivial
2810 /// unswitching.
2811 ///
2812 /// The `UnswitchCB` callback provided will be run after unswitching is
2813 /// complete, with the first parameter set to `true` if the provided loop
2814 /// remains a loop, and a list of new sibling loops created.
2815 ///
2816 /// If `SE` is non-null, we will update that analysis based on the unswitching
2817 /// done.
unswitchLoop(Loop & L,DominatorTree & DT,LoopInfo & LI,AssumptionCache & AC,TargetTransformInfo & TTI,bool NonTrivial,function_ref<void (bool,ArrayRef<Loop * >)> UnswitchCB,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)2818 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
2819 AssumptionCache &AC, TargetTransformInfo &TTI,
2820 bool NonTrivial,
2821 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2822 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2823 assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2824 "Loops must be in LCSSA form before unswitching.");
2825 bool Changed = false;
2826
2827 // Must be in loop simplified form: we need a preheader and dedicated exits.
2828 if (!L.isLoopSimplifyForm())
2829 return false;
2830
2831 // Try trivial unswitch first before loop over other basic blocks in the loop.
2832 if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
2833 // If we unswitched successfully we will want to clean up the loop before
2834 // processing it further so just mark it as unswitched and return.
2835 UnswitchCB(/*CurrentLoopValid*/ true, {});
2836 return true;
2837 }
2838
2839 // If we're not doing non-trivial unswitching, we're done. We both accept
2840 // a parameter but also check a local flag that can be used for testing
2841 // a debugging.
2842 if (!NonTrivial && !EnableNonTrivialUnswitch)
2843 return false;
2844
2845 // For non-trivial unswitching, because it often creates new loops, we rely on
2846 // the pass manager to iterate on the loops rather than trying to immediately
2847 // reach a fixed point. There is no substantial advantage to iterating
2848 // internally, and if any of the new loops are simplified enough to contain
2849 // trivial unswitching we want to prefer those.
2850
2851 // Try to unswitch the best invariant condition. We prefer this full unswitch to
2852 // a partial unswitch when possible below the threshold.
2853 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU))
2854 return true;
2855
2856 // No other opportunities to unswitch.
2857 return Changed;
2858 }
2859
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)2860 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2861 LoopStandardAnalysisResults &AR,
2862 LPMUpdater &U) {
2863 Function &F = *L.getHeader()->getParent();
2864 (void)F;
2865
2866 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2867 << "\n");
2868
2869 // Save the current loop name in a variable so that we can report it even
2870 // after it has been deleted.
2871 std::string LoopName = L.getName();
2872
2873 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2874 ArrayRef<Loop *> NewLoops) {
2875 // If we did a non-trivial unswitch, we have added new (cloned) loops.
2876 if (!NewLoops.empty())
2877 U.addSiblingLoops(NewLoops);
2878
2879 // If the current loop remains valid, we should revisit it to catch any
2880 // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2881 if (CurrentLoopValid)
2882 U.revisitCurrentLoop();
2883 else
2884 U.markLoopAsDeleted(L, LoopName);
2885 };
2886
2887 Optional<MemorySSAUpdater> MSSAU;
2888 if (AR.MSSA) {
2889 MSSAU = MemorySSAUpdater(AR.MSSA);
2890 if (VerifyMemorySSA)
2891 AR.MSSA->verifyMemorySSA();
2892 }
2893 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
2894 &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
2895 return PreservedAnalyses::all();
2896
2897 if (AR.MSSA && VerifyMemorySSA)
2898 AR.MSSA->verifyMemorySSA();
2899
2900 // Historically this pass has had issues with the dominator tree so verify it
2901 // in asserts builds.
2902 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
2903
2904 auto PA = getLoopPassPreservedAnalyses();
2905 if (AR.MSSA)
2906 PA.preserve<MemorySSAAnalysis>();
2907 return PA;
2908 }
2909
2910 namespace {
2911
2912 class SimpleLoopUnswitchLegacyPass : public LoopPass {
2913 bool NonTrivial;
2914
2915 public:
2916 static char ID; // Pass ID, replacement for typeid
2917
SimpleLoopUnswitchLegacyPass(bool NonTrivial=false)2918 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2919 : LoopPass(ID), NonTrivial(NonTrivial) {
2920 initializeSimpleLoopUnswitchLegacyPassPass(
2921 *PassRegistry::getPassRegistry());
2922 }
2923
2924 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2925
getAnalysisUsage(AnalysisUsage & AU) const2926 void getAnalysisUsage(AnalysisUsage &AU) const override {
2927 AU.addRequired<AssumptionCacheTracker>();
2928 AU.addRequired<TargetTransformInfoWrapperPass>();
2929 if (EnableMSSALoopDependency) {
2930 AU.addRequired<MemorySSAWrapperPass>();
2931 AU.addPreserved<MemorySSAWrapperPass>();
2932 }
2933 getLoopAnalysisUsage(AU);
2934 }
2935 };
2936
2937 } // end anonymous namespace
2938
runOnLoop(Loop * L,LPPassManager & LPM)2939 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2940 if (skipLoop(L))
2941 return false;
2942
2943 Function &F = *L->getHeader()->getParent();
2944
2945 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
2946 << "\n");
2947
2948 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2949 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2950 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2951 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2952 MemorySSA *MSSA = nullptr;
2953 Optional<MemorySSAUpdater> MSSAU;
2954 if (EnableMSSALoopDependency) {
2955 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
2956 MSSAU = MemorySSAUpdater(MSSA);
2957 }
2958
2959 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
2960 auto *SE = SEWP ? &SEWP->getSE() : nullptr;
2961
2962 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2963 ArrayRef<Loop *> NewLoops) {
2964 // If we did a non-trivial unswitch, we have added new (cloned) loops.
2965 for (auto *NewL : NewLoops)
2966 LPM.addLoop(*NewL);
2967
2968 // If the current loop remains valid, re-add it to the queue. This is
2969 // a little wasteful as we'll finish processing the current loop as well,
2970 // but it is the best we can do in the old PM.
2971 if (CurrentLoopValid)
2972 LPM.addLoop(*L);
2973 else
2974 LPM.markLoopAsDeleted(*L);
2975 };
2976
2977 if (MSSA && VerifyMemorySSA)
2978 MSSA->verifyMemorySSA();
2979
2980 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE,
2981 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
2982
2983 if (MSSA && VerifyMemorySSA)
2984 MSSA->verifyMemorySSA();
2985
2986 // If anything was unswitched, also clear any cached information about this
2987 // loop.
2988 LPM.deleteSimpleAnalysisLoop(L);
2989
2990 // Historically this pass has had issues with the dominator tree so verify it
2991 // in asserts builds.
2992 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2993
2994 return Changed;
2995 }
2996
2997 char SimpleLoopUnswitchLegacyPass::ID = 0;
2998 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2999 "Simple unswitch loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)3000 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3001 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3002 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3003 INITIALIZE_PASS_DEPENDENCY(LoopPass)
3004 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3005 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3006 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3007 "Simple unswitch loops", false, false)
3008
3009 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3010 return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3011 }
3012