1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Image transforms and color space conversion methods for lossless decoder.
11 //
12 // Authors: Vikas Arora (vikaas.arora@gmail.com)
13 // Jyrki Alakuijala (jyrki@google.com)
14 // Urvang Joshi (urvang@google.com)
15
16 #include "src/dsp/dsp.h"
17
18 #include <assert.h>
19 #include <math.h>
20 #include <stdlib.h>
21 #include "src/dec/vp8li_dec.h"
22 #include "src/utils/endian_inl_utils.h"
23 #include "src/dsp/lossless.h"
24 #include "src/dsp/lossless_common.h"
25
26 //------------------------------------------------------------------------------
27 // Image transforms.
28
Average2(uint32_t a0,uint32_t a1)29 static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
30 return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1);
31 }
32
Average3(uint32_t a0,uint32_t a1,uint32_t a2)33 static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
34 return Average2(Average2(a0, a2), a1);
35 }
36
Average4(uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)37 static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
38 uint32_t a2, uint32_t a3) {
39 return Average2(Average2(a0, a1), Average2(a2, a3));
40 }
41
Clip255(uint32_t a)42 static WEBP_INLINE uint32_t Clip255(uint32_t a) {
43 if (a < 256) {
44 return a;
45 }
46 // return 0, when a is a negative integer.
47 // return 255, when a is positive.
48 return ~a >> 24;
49 }
50
AddSubtractComponentFull(int a,int b,int c)51 static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) {
52 return Clip255(a + b - c);
53 }
54
ClampedAddSubtractFull(uint32_t c0,uint32_t c1,uint32_t c2)55 static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1,
56 uint32_t c2) {
57 const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24);
58 const int r = AddSubtractComponentFull((c0 >> 16) & 0xff,
59 (c1 >> 16) & 0xff,
60 (c2 >> 16) & 0xff);
61 const int g = AddSubtractComponentFull((c0 >> 8) & 0xff,
62 (c1 >> 8) & 0xff,
63 (c2 >> 8) & 0xff);
64 const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff);
65 return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
66 }
67
AddSubtractComponentHalf(int a,int b)68 static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) {
69 return Clip255(a + (a - b) / 2);
70 }
71
ClampedAddSubtractHalf(uint32_t c0,uint32_t c1,uint32_t c2)72 static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1,
73 uint32_t c2) {
74 const uint32_t ave = Average2(c0, c1);
75 const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24);
76 const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff);
77 const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff);
78 const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff);
79 return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
80 }
81
82 // gcc <= 4.9 on ARM generates incorrect code in Select() when Sub3() is
83 // inlined.
84 #if defined(__arm__) && defined(__GNUC__) && LOCAL_GCC_VERSION <= 0x409
85 # define LOCAL_INLINE __attribute__ ((noinline))
86 #else
87 # define LOCAL_INLINE WEBP_INLINE
88 #endif
89
Sub3(int a,int b,int c)90 static LOCAL_INLINE int Sub3(int a, int b, int c) {
91 const int pb = b - c;
92 const int pa = a - c;
93 return abs(pb) - abs(pa);
94 }
95
96 #undef LOCAL_INLINE
97
Select(uint32_t a,uint32_t b,uint32_t c)98 static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
99 const int pa_minus_pb =
100 Sub3((a >> 24) , (b >> 24) , (c >> 24) ) +
101 Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) +
102 Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) +
103 Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff);
104 return (pa_minus_pb <= 0) ? a : b;
105 }
106
107 //------------------------------------------------------------------------------
108 // Predictors
109
VP8LPredictor0_C(uint32_t left,const uint32_t * const top)110 uint32_t VP8LPredictor0_C(uint32_t left, const uint32_t* const top) {
111 (void)top;
112 (void)left;
113 return ARGB_BLACK;
114 }
VP8LPredictor1_C(uint32_t left,const uint32_t * const top)115 uint32_t VP8LPredictor1_C(uint32_t left, const uint32_t* const top) {
116 (void)top;
117 return left;
118 }
VP8LPredictor2_C(uint32_t left,const uint32_t * const top)119 uint32_t VP8LPredictor2_C(uint32_t left, const uint32_t* const top) {
120 (void)left;
121 return top[0];
122 }
VP8LPredictor3_C(uint32_t left,const uint32_t * const top)123 uint32_t VP8LPredictor3_C(uint32_t left, const uint32_t* const top) {
124 (void)left;
125 return top[1];
126 }
VP8LPredictor4_C(uint32_t left,const uint32_t * const top)127 uint32_t VP8LPredictor4_C(uint32_t left, const uint32_t* const top) {
128 (void)left;
129 return top[-1];
130 }
VP8LPredictor5_C(uint32_t left,const uint32_t * const top)131 uint32_t VP8LPredictor5_C(uint32_t left, const uint32_t* const top) {
132 const uint32_t pred = Average3(left, top[0], top[1]);
133 return pred;
134 }
VP8LPredictor6_C(uint32_t left,const uint32_t * const top)135 uint32_t VP8LPredictor6_C(uint32_t left, const uint32_t* const top) {
136 const uint32_t pred = Average2(left, top[-1]);
137 return pred;
138 }
VP8LPredictor7_C(uint32_t left,const uint32_t * const top)139 uint32_t VP8LPredictor7_C(uint32_t left, const uint32_t* const top) {
140 const uint32_t pred = Average2(left, top[0]);
141 return pred;
142 }
VP8LPredictor8_C(uint32_t left,const uint32_t * const top)143 uint32_t VP8LPredictor8_C(uint32_t left, const uint32_t* const top) {
144 const uint32_t pred = Average2(top[-1], top[0]);
145 (void)left;
146 return pred;
147 }
VP8LPredictor9_C(uint32_t left,const uint32_t * const top)148 uint32_t VP8LPredictor9_C(uint32_t left, const uint32_t* const top) {
149 const uint32_t pred = Average2(top[0], top[1]);
150 (void)left;
151 return pred;
152 }
VP8LPredictor10_C(uint32_t left,const uint32_t * const top)153 uint32_t VP8LPredictor10_C(uint32_t left, const uint32_t* const top) {
154 const uint32_t pred = Average4(left, top[-1], top[0], top[1]);
155 return pred;
156 }
VP8LPredictor11_C(uint32_t left,const uint32_t * const top)157 uint32_t VP8LPredictor11_C(uint32_t left, const uint32_t* const top) {
158 const uint32_t pred = Select(top[0], left, top[-1]);
159 return pred;
160 }
VP8LPredictor12_C(uint32_t left,const uint32_t * const top)161 uint32_t VP8LPredictor12_C(uint32_t left, const uint32_t* const top) {
162 const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]);
163 return pred;
164 }
VP8LPredictor13_C(uint32_t left,const uint32_t * const top)165 uint32_t VP8LPredictor13_C(uint32_t left, const uint32_t* const top) {
166 const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]);
167 return pred;
168 }
169
PredictorAdd0_C(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)170 static void PredictorAdd0_C(const uint32_t* in, const uint32_t* upper,
171 int num_pixels, uint32_t* out) {
172 int x;
173 (void)upper;
174 for (x = 0; x < num_pixels; ++x) out[x] = VP8LAddPixels(in[x], ARGB_BLACK);
175 }
PredictorAdd1_C(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)176 static void PredictorAdd1_C(const uint32_t* in, const uint32_t* upper,
177 int num_pixels, uint32_t* out) {
178 int i;
179 uint32_t left = out[-1];
180 (void)upper;
181 for (i = 0; i < num_pixels; ++i) {
182 out[i] = left = VP8LAddPixels(in[i], left);
183 }
184 }
GENERATE_PREDICTOR_ADD(VP8LPredictor2_C,PredictorAdd2_C)185 GENERATE_PREDICTOR_ADD(VP8LPredictor2_C, PredictorAdd2_C)
186 GENERATE_PREDICTOR_ADD(VP8LPredictor3_C, PredictorAdd3_C)
187 GENERATE_PREDICTOR_ADD(VP8LPredictor4_C, PredictorAdd4_C)
188 GENERATE_PREDICTOR_ADD(VP8LPredictor5_C, PredictorAdd5_C)
189 GENERATE_PREDICTOR_ADD(VP8LPredictor6_C, PredictorAdd6_C)
190 GENERATE_PREDICTOR_ADD(VP8LPredictor7_C, PredictorAdd7_C)
191 GENERATE_PREDICTOR_ADD(VP8LPredictor8_C, PredictorAdd8_C)
192 GENERATE_PREDICTOR_ADD(VP8LPredictor9_C, PredictorAdd9_C)
193 GENERATE_PREDICTOR_ADD(VP8LPredictor10_C, PredictorAdd10_C)
194 GENERATE_PREDICTOR_ADD(VP8LPredictor11_C, PredictorAdd11_C)
195 GENERATE_PREDICTOR_ADD(VP8LPredictor12_C, PredictorAdd12_C)
196 GENERATE_PREDICTOR_ADD(VP8LPredictor13_C, PredictorAdd13_C)
197
198 //------------------------------------------------------------------------------
199
200 // Inverse prediction.
201 static void PredictorInverseTransform_C(const VP8LTransform* const transform,
202 int y_start, int y_end,
203 const uint32_t* in, uint32_t* out) {
204 const int width = transform->xsize_;
205 if (y_start == 0) { // First Row follows the L (mode=1) mode.
206 PredictorAdd0_C(in, NULL, 1, out);
207 PredictorAdd1_C(in + 1, NULL, width - 1, out + 1);
208 in += width;
209 out += width;
210 ++y_start;
211 }
212
213 {
214 int y = y_start;
215 const int tile_width = 1 << transform->bits_;
216 const int mask = tile_width - 1;
217 const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
218 const uint32_t* pred_mode_base =
219 transform->data_ + (y >> transform->bits_) * tiles_per_row;
220
221 while (y < y_end) {
222 const uint32_t* pred_mode_src = pred_mode_base;
223 int x = 1;
224 // First pixel follows the T (mode=2) mode.
225 PredictorAdd2_C(in, out - width, 1, out);
226 // .. the rest:
227 while (x < width) {
228 const VP8LPredictorAddSubFunc pred_func =
229 VP8LPredictorsAdd[((*pred_mode_src++) >> 8) & 0xf];
230 int x_end = (x & ~mask) + tile_width;
231 if (x_end > width) x_end = width;
232 pred_func(in + x, out + x - width, x_end - x, out + x);
233 x = x_end;
234 }
235 in += width;
236 out += width;
237 ++y;
238 if ((y & mask) == 0) { // Use the same mask, since tiles are squares.
239 pred_mode_base += tiles_per_row;
240 }
241 }
242 }
243 }
244
245 // Add green to blue and red channels (i.e. perform the inverse transform of
246 // 'subtract green').
VP8LAddGreenToBlueAndRed_C(const uint32_t * src,int num_pixels,uint32_t * dst)247 void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels,
248 uint32_t* dst) {
249 int i;
250 for (i = 0; i < num_pixels; ++i) {
251 const uint32_t argb = src[i];
252 const uint32_t green = ((argb >> 8) & 0xff);
253 uint32_t red_blue = (argb & 0x00ff00ffu);
254 red_blue += (green << 16) | green;
255 red_blue &= 0x00ff00ffu;
256 dst[i] = (argb & 0xff00ff00u) | red_blue;
257 }
258 }
259
ColorTransformDelta(int8_t color_pred,int8_t color)260 static WEBP_INLINE int ColorTransformDelta(int8_t color_pred,
261 int8_t color) {
262 return ((int)color_pred * color) >> 5;
263 }
264
ColorCodeToMultipliers(uint32_t color_code,VP8LMultipliers * const m)265 static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
266 VP8LMultipliers* const m) {
267 m->green_to_red_ = (color_code >> 0) & 0xff;
268 m->green_to_blue_ = (color_code >> 8) & 0xff;
269 m->red_to_blue_ = (color_code >> 16) & 0xff;
270 }
271
VP8LTransformColorInverse_C(const VP8LMultipliers * const m,const uint32_t * src,int num_pixels,uint32_t * dst)272 void VP8LTransformColorInverse_C(const VP8LMultipliers* const m,
273 const uint32_t* src, int num_pixels,
274 uint32_t* dst) {
275 int i;
276 for (i = 0; i < num_pixels; ++i) {
277 const uint32_t argb = src[i];
278 const int8_t green = (int8_t)(argb >> 8);
279 const uint32_t red = argb >> 16;
280 int new_red = red & 0xff;
281 int new_blue = argb & 0xff;
282 new_red += ColorTransformDelta(m->green_to_red_, green);
283 new_red &= 0xff;
284 new_blue += ColorTransformDelta(m->green_to_blue_, green);
285 new_blue += ColorTransformDelta(m->red_to_blue_, (int8_t)new_red);
286 new_blue &= 0xff;
287 dst[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue);
288 }
289 }
290
291 // Color space inverse transform.
ColorSpaceInverseTransform_C(const VP8LTransform * const transform,int y_start,int y_end,const uint32_t * src,uint32_t * dst)292 static void ColorSpaceInverseTransform_C(const VP8LTransform* const transform,
293 int y_start, int y_end,
294 const uint32_t* src, uint32_t* dst) {
295 const int width = transform->xsize_;
296 const int tile_width = 1 << transform->bits_;
297 const int mask = tile_width - 1;
298 const int safe_width = width & ~mask;
299 const int remaining_width = width - safe_width;
300 const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
301 int y = y_start;
302 const uint32_t* pred_row =
303 transform->data_ + (y >> transform->bits_) * tiles_per_row;
304
305 while (y < y_end) {
306 const uint32_t* pred = pred_row;
307 VP8LMultipliers m = { 0, 0, 0 };
308 const uint32_t* const src_safe_end = src + safe_width;
309 const uint32_t* const src_end = src + width;
310 while (src < src_safe_end) {
311 ColorCodeToMultipliers(*pred++, &m);
312 VP8LTransformColorInverse(&m, src, tile_width, dst);
313 src += tile_width;
314 dst += tile_width;
315 }
316 if (src < src_end) { // Left-overs using C-version.
317 ColorCodeToMultipliers(*pred++, &m);
318 VP8LTransformColorInverse(&m, src, remaining_width, dst);
319 src += remaining_width;
320 dst += remaining_width;
321 }
322 ++y;
323 if ((y & mask) == 0) pred_row += tiles_per_row;
324 }
325 }
326
327 // Separate out pixels packed together using pixel-bundling.
328 // We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t).
329 #define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX, \
330 GET_INDEX, GET_VALUE) \
331 static void F_NAME(const TYPE* src, const uint32_t* const color_map, \
332 TYPE* dst, int y_start, int y_end, int width) { \
333 int y; \
334 for (y = y_start; y < y_end; ++y) { \
335 int x; \
336 for (x = 0; x < width; ++x) { \
337 *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \
338 } \
339 } \
340 } \
341 STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform, \
342 int y_start, int y_end, const TYPE* src, \
343 TYPE* dst) { \
344 int y; \
345 const int bits_per_pixel = 8 >> transform->bits_; \
346 const int width = transform->xsize_; \
347 const uint32_t* const color_map = transform->data_; \
348 if (bits_per_pixel < 8) { \
349 const int pixels_per_byte = 1 << transform->bits_; \
350 const int count_mask = pixels_per_byte - 1; \
351 const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \
352 for (y = y_start; y < y_end; ++y) { \
353 uint32_t packed_pixels = 0; \
354 int x; \
355 for (x = 0; x < width; ++x) { \
356 /* We need to load fresh 'packed_pixels' once every */ \
357 /* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \
358 /* is a power of 2, so can just use a mask for that, instead of */ \
359 /* decrementing a counter. */ \
360 if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \
361 *dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \
362 packed_pixels >>= bits_per_pixel; \
363 } \
364 } \
365 } else { \
366 VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width); \
367 } \
368 }
369
370 COLOR_INDEX_INVERSE(ColorIndexInverseTransform_C, MapARGB_C, static,
371 uint32_t, 32b, VP8GetARGBIndex, VP8GetARGBValue)
372 COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha_C, ,
373 uint8_t, 8b, VP8GetAlphaIndex, VP8GetAlphaValue)
374
375 #undef COLOR_INDEX_INVERSE
376
VP8LInverseTransform(const VP8LTransform * const transform,int row_start,int row_end,const uint32_t * const in,uint32_t * const out)377 void VP8LInverseTransform(const VP8LTransform* const transform,
378 int row_start, int row_end,
379 const uint32_t* const in, uint32_t* const out) {
380 const int width = transform->xsize_;
381 assert(row_start < row_end);
382 assert(row_end <= transform->ysize_);
383 switch (transform->type_) {
384 case SUBTRACT_GREEN:
385 VP8LAddGreenToBlueAndRed(in, (row_end - row_start) * width, out);
386 break;
387 case PREDICTOR_TRANSFORM:
388 PredictorInverseTransform_C(transform, row_start, row_end, in, out);
389 if (row_end != transform->ysize_) {
390 // The last predicted row in this iteration will be the top-pred row
391 // for the first row in next iteration.
392 memcpy(out - width, out + (row_end - row_start - 1) * width,
393 width * sizeof(*out));
394 }
395 break;
396 case CROSS_COLOR_TRANSFORM:
397 ColorSpaceInverseTransform_C(transform, row_start, row_end, in, out);
398 break;
399 case COLOR_INDEXING_TRANSFORM:
400 if (in == out && transform->bits_ > 0) {
401 // Move packed pixels to the end of unpacked region, so that unpacking
402 // can occur seamlessly.
403 // Also, note that this is the only transform that applies on
404 // the effective width of VP8LSubSampleSize(xsize_, bits_). All other
405 // transforms work on effective width of xsize_.
406 const int out_stride = (row_end - row_start) * width;
407 const int in_stride = (row_end - row_start) *
408 VP8LSubSampleSize(transform->xsize_, transform->bits_);
409 uint32_t* const src = out + out_stride - in_stride;
410 memmove(src, out, in_stride * sizeof(*src));
411 ColorIndexInverseTransform_C(transform, row_start, row_end, src, out);
412 } else {
413 ColorIndexInverseTransform_C(transform, row_start, row_end, in, out);
414 }
415 break;
416 }
417 }
418
419 //------------------------------------------------------------------------------
420 // Color space conversion.
421
is_big_endian(void)422 static int is_big_endian(void) {
423 static const union {
424 uint16_t w;
425 uint8_t b[2];
426 } tmp = { 1 };
427 return (tmp.b[0] != 1);
428 }
429
VP8LConvertBGRAToRGB_C(const uint32_t * src,int num_pixels,uint8_t * dst)430 void VP8LConvertBGRAToRGB_C(const uint32_t* src,
431 int num_pixels, uint8_t* dst) {
432 const uint32_t* const src_end = src + num_pixels;
433 while (src < src_end) {
434 const uint32_t argb = *src++;
435 *dst++ = (argb >> 16) & 0xff;
436 *dst++ = (argb >> 8) & 0xff;
437 *dst++ = (argb >> 0) & 0xff;
438 }
439 }
440
VP8LConvertBGRAToRGBA_C(const uint32_t * src,int num_pixels,uint8_t * dst)441 void VP8LConvertBGRAToRGBA_C(const uint32_t* src,
442 int num_pixels, uint8_t* dst) {
443 const uint32_t* const src_end = src + num_pixels;
444 while (src < src_end) {
445 const uint32_t argb = *src++;
446 *dst++ = (argb >> 16) & 0xff;
447 *dst++ = (argb >> 8) & 0xff;
448 *dst++ = (argb >> 0) & 0xff;
449 *dst++ = (argb >> 24) & 0xff;
450 }
451 }
452
VP8LConvertBGRAToRGBA4444_C(const uint32_t * src,int num_pixels,uint8_t * dst)453 void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src,
454 int num_pixels, uint8_t* dst) {
455 const uint32_t* const src_end = src + num_pixels;
456 while (src < src_end) {
457 const uint32_t argb = *src++;
458 const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf);
459 const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf);
460 #if (WEBP_SWAP_16BIT_CSP == 1)
461 *dst++ = ba;
462 *dst++ = rg;
463 #else
464 *dst++ = rg;
465 *dst++ = ba;
466 #endif
467 }
468 }
469
VP8LConvertBGRAToRGB565_C(const uint32_t * src,int num_pixels,uint8_t * dst)470 void VP8LConvertBGRAToRGB565_C(const uint32_t* src,
471 int num_pixels, uint8_t* dst) {
472 const uint32_t* const src_end = src + num_pixels;
473 while (src < src_end) {
474 const uint32_t argb = *src++;
475 const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7);
476 const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f);
477 #if (WEBP_SWAP_16BIT_CSP == 1)
478 *dst++ = gb;
479 *dst++ = rg;
480 #else
481 *dst++ = rg;
482 *dst++ = gb;
483 #endif
484 }
485 }
486
VP8LConvertBGRAToBGR_C(const uint32_t * src,int num_pixels,uint8_t * dst)487 void VP8LConvertBGRAToBGR_C(const uint32_t* src,
488 int num_pixels, uint8_t* dst) {
489 const uint32_t* const src_end = src + num_pixels;
490 while (src < src_end) {
491 const uint32_t argb = *src++;
492 *dst++ = (argb >> 0) & 0xff;
493 *dst++ = (argb >> 8) & 0xff;
494 *dst++ = (argb >> 16) & 0xff;
495 }
496 }
497
CopyOrSwap(const uint32_t * src,int num_pixels,uint8_t * dst,int swap_on_big_endian)498 static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst,
499 int swap_on_big_endian) {
500 if (is_big_endian() == swap_on_big_endian) {
501 const uint32_t* const src_end = src + num_pixels;
502 while (src < src_end) {
503 const uint32_t argb = *src++;
504 WebPUint32ToMem(dst, BSwap32(argb));
505 dst += sizeof(argb);
506 }
507 } else {
508 memcpy(dst, src, num_pixels * sizeof(*src));
509 }
510 }
511
VP8LConvertFromBGRA(const uint32_t * const in_data,int num_pixels,WEBP_CSP_MODE out_colorspace,uint8_t * const rgba)512 void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
513 WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) {
514 switch (out_colorspace) {
515 case MODE_RGB:
516 VP8LConvertBGRAToRGB(in_data, num_pixels, rgba);
517 break;
518 case MODE_RGBA:
519 VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
520 break;
521 case MODE_rgbA:
522 VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
523 WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
524 break;
525 case MODE_BGR:
526 VP8LConvertBGRAToBGR(in_data, num_pixels, rgba);
527 break;
528 case MODE_BGRA:
529 CopyOrSwap(in_data, num_pixels, rgba, 1);
530 break;
531 case MODE_bgrA:
532 CopyOrSwap(in_data, num_pixels, rgba, 1);
533 WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
534 break;
535 case MODE_ARGB:
536 CopyOrSwap(in_data, num_pixels, rgba, 0);
537 break;
538 case MODE_Argb:
539 CopyOrSwap(in_data, num_pixels, rgba, 0);
540 WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0);
541 break;
542 case MODE_RGBA_4444:
543 VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
544 break;
545 case MODE_rgbA_4444:
546 VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
547 WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0);
548 break;
549 case MODE_RGB_565:
550 VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba);
551 break;
552 default:
553 assert(0); // Code flow should not reach here.
554 }
555 }
556
557 //------------------------------------------------------------------------------
558
559 VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed;
560 VP8LPredictorAddSubFunc VP8LPredictorsAdd[16];
561 VP8LPredictorFunc VP8LPredictors[16];
562
563 // exposed plain-C implementations
564 VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16];
565
566 VP8LTransformColorInverseFunc VP8LTransformColorInverse;
567
568 VP8LConvertFunc VP8LConvertBGRAToRGB;
569 VP8LConvertFunc VP8LConvertBGRAToRGBA;
570 VP8LConvertFunc VP8LConvertBGRAToRGBA4444;
571 VP8LConvertFunc VP8LConvertBGRAToRGB565;
572 VP8LConvertFunc VP8LConvertBGRAToBGR;
573
574 VP8LMapARGBFunc VP8LMapColor32b;
575 VP8LMapAlphaFunc VP8LMapColor8b;
576
577 extern void VP8LDspInitSSE2(void);
578 extern void VP8LDspInitSSE41(void);
579 extern void VP8LDspInitNEON(void);
580 extern void VP8LDspInitMIPSdspR2(void);
581 extern void VP8LDspInitMSA(void);
582
583 #define COPY_PREDICTOR_ARRAY(IN, OUT) do { \
584 (OUT)[0] = IN##0_C; \
585 (OUT)[1] = IN##1_C; \
586 (OUT)[2] = IN##2_C; \
587 (OUT)[3] = IN##3_C; \
588 (OUT)[4] = IN##4_C; \
589 (OUT)[5] = IN##5_C; \
590 (OUT)[6] = IN##6_C; \
591 (OUT)[7] = IN##7_C; \
592 (OUT)[8] = IN##8_C; \
593 (OUT)[9] = IN##9_C; \
594 (OUT)[10] = IN##10_C; \
595 (OUT)[11] = IN##11_C; \
596 (OUT)[12] = IN##12_C; \
597 (OUT)[13] = IN##13_C; \
598 (OUT)[14] = IN##0_C; /* <- padding security sentinels*/ \
599 (OUT)[15] = IN##0_C; \
600 } while (0);
601
WEBP_DSP_INIT_FUNC(VP8LDspInit)602 WEBP_DSP_INIT_FUNC(VP8LDspInit) {
603 COPY_PREDICTOR_ARRAY(VP8LPredictor, VP8LPredictors)
604 COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd)
605 COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd_C)
606
607 #if !WEBP_NEON_OMIT_C_CODE
608 VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C;
609
610 VP8LTransformColorInverse = VP8LTransformColorInverse_C;
611
612 VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C;
613 VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C;
614 VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C;
615 #endif
616
617 VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C;
618 VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C;
619
620 VP8LMapColor32b = MapARGB_C;
621 VP8LMapColor8b = MapAlpha_C;
622
623 // If defined, use CPUInfo() to overwrite some pointers with faster versions.
624 if (VP8GetCPUInfo != NULL) {
625 #if defined(WEBP_HAVE_SSE2)
626 if (VP8GetCPUInfo(kSSE2)) {
627 VP8LDspInitSSE2();
628 #if defined(WEBP_HAVE_SSE41)
629 if (VP8GetCPUInfo(kSSE4_1)) {
630 VP8LDspInitSSE41();
631 }
632 #endif
633 }
634 #endif
635 #if defined(WEBP_USE_MIPS_DSP_R2)
636 if (VP8GetCPUInfo(kMIPSdspR2)) {
637 VP8LDspInitMIPSdspR2();
638 }
639 #endif
640 #if defined(WEBP_USE_MSA)
641 if (VP8GetCPUInfo(kMSA)) {
642 VP8LDspInitMSA();
643 }
644 #endif
645 }
646
647 #if defined(WEBP_HAVE_NEON)
648 if (WEBP_NEON_OMIT_C_CODE ||
649 (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) {
650 VP8LDspInitNEON();
651 }
652 #endif
653
654 assert(VP8LAddGreenToBlueAndRed != NULL);
655 assert(VP8LTransformColorInverse != NULL);
656 assert(VP8LConvertBGRAToRGBA != NULL);
657 assert(VP8LConvertBGRAToRGB != NULL);
658 assert(VP8LConvertBGRAToBGR != NULL);
659 assert(VP8LConvertBGRAToRGBA4444 != NULL);
660 assert(VP8LConvertBGRAToRGB565 != NULL);
661 assert(VP8LMapColor32b != NULL);
662 assert(VP8LMapColor8b != NULL);
663 }
664 #undef COPY_PREDICTOR_ARRAY
665
666 //------------------------------------------------------------------------------
667