• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // main entry for the decoder
11 //
12 // Authors: Vikas Arora (vikaas.arora@gmail.com)
13 //          Jyrki Alakuijala (jyrki@google.com)
14 
15 #include <stdlib.h>
16 
17 #include "src/dec/alphai_dec.h"
18 #include "src/dec/vp8li_dec.h"
19 #include "src/dsp/dsp.h"
20 #include "src/dsp/lossless.h"
21 #include "src/dsp/lossless_common.h"
22 #include "src/dsp/yuv.h"
23 #include "src/utils/endian_inl_utils.h"
24 #include "src/utils/huffman_utils.h"
25 #include "src/utils/utils.h"
26 
27 #define NUM_ARGB_CACHE_ROWS          16
28 
29 static const int kCodeLengthLiterals = 16;
30 static const int kCodeLengthRepeatCode = 16;
31 static const uint8_t kCodeLengthExtraBits[3] = { 2, 3, 7 };
32 static const uint8_t kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
33 
34 // -----------------------------------------------------------------------------
35 //  Five Huffman codes are used at each meta code:
36 //  1. green + length prefix codes + color cache codes,
37 //  2. alpha,
38 //  3. red,
39 //  4. blue, and,
40 //  5. distance prefix codes.
41 typedef enum {
42   GREEN = 0,
43   RED   = 1,
44   BLUE  = 2,
45   ALPHA = 3,
46   DIST  = 4
47 } HuffIndex;
48 
49 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
50   NUM_LITERAL_CODES + NUM_LENGTH_CODES,
51   NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
52   NUM_DISTANCE_CODES
53 };
54 
55 static const uint8_t kLiteralMap[HUFFMAN_CODES_PER_META_CODE] = {
56   0, 1, 1, 1, 0
57 };
58 
59 #define NUM_CODE_LENGTH_CODES       19
60 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
61   17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
62 };
63 
64 #define CODE_TO_PLANE_CODES        120
65 static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = {
66   0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
67   0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
68   0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
69   0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
70   0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
71   0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
72   0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
73   0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
74   0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
75   0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
76   0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
77   0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
78 };
79 
80 // Memory needed for lookup tables of one Huffman tree group. Red, blue, alpha
81 // and distance alphabets are constant (256 for red, blue and alpha, 40 for
82 // distance) and lookup table sizes for them in worst case are 630 and 410
83 // respectively. Size of green alphabet depends on color cache size and is equal
84 // to 256 (green component values) + 24 (length prefix values)
85 // + color_cache_size (between 0 and 2048).
86 // All values computed for 8-bit first level lookup with Mark Adler's tool:
87 // http://www.hdfgroup.org/ftp/lib-external/zlib/zlib-1.2.5/examples/enough.c
88 #define FIXED_TABLE_SIZE (630 * 3 + 410)
89 static const uint16_t kTableSize[12] = {
90   FIXED_TABLE_SIZE + 654,
91   FIXED_TABLE_SIZE + 656,
92   FIXED_TABLE_SIZE + 658,
93   FIXED_TABLE_SIZE + 662,
94   FIXED_TABLE_SIZE + 670,
95   FIXED_TABLE_SIZE + 686,
96   FIXED_TABLE_SIZE + 718,
97   FIXED_TABLE_SIZE + 782,
98   FIXED_TABLE_SIZE + 912,
99   FIXED_TABLE_SIZE + 1168,
100   FIXED_TABLE_SIZE + 1680,
101   FIXED_TABLE_SIZE + 2704
102 };
103 
104 static int DecodeImageStream(int xsize, int ysize,
105                              int is_level0,
106                              VP8LDecoder* const dec,
107                              uint32_t** const decoded_data);
108 
109 //------------------------------------------------------------------------------
110 
VP8LCheckSignature(const uint8_t * const data,size_t size)111 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
112   return (size >= VP8L_FRAME_HEADER_SIZE &&
113           data[0] == VP8L_MAGIC_BYTE &&
114           (data[4] >> 5) == 0);  // version
115 }
116 
ReadImageInfo(VP8LBitReader * const br,int * const width,int * const height,int * const has_alpha)117 static int ReadImageInfo(VP8LBitReader* const br,
118                          int* const width, int* const height,
119                          int* const has_alpha) {
120   if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0;
121   *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
122   *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
123   *has_alpha = VP8LReadBits(br, 1);
124   if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0;
125   return !br->eos_;
126 }
127 
VP8LGetInfo(const uint8_t * data,size_t data_size,int * const width,int * const height,int * const has_alpha)128 int VP8LGetInfo(const uint8_t* data, size_t data_size,
129                 int* const width, int* const height, int* const has_alpha) {
130   if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
131     return 0;         // not enough data
132   } else if (!VP8LCheckSignature(data, data_size)) {
133     return 0;         // bad signature
134   } else {
135     int w, h, a;
136     VP8LBitReader br;
137     VP8LInitBitReader(&br, data, data_size);
138     if (!ReadImageInfo(&br, &w, &h, &a)) {
139       return 0;
140     }
141     if (width != NULL) *width = w;
142     if (height != NULL) *height = h;
143     if (has_alpha != NULL) *has_alpha = a;
144     return 1;
145   }
146 }
147 
148 //------------------------------------------------------------------------------
149 
GetCopyDistance(int distance_symbol,VP8LBitReader * const br)150 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
151                                        VP8LBitReader* const br) {
152   int extra_bits, offset;
153   if (distance_symbol < 4) {
154     return distance_symbol + 1;
155   }
156   extra_bits = (distance_symbol - 2) >> 1;
157   offset = (2 + (distance_symbol & 1)) << extra_bits;
158   return offset + VP8LReadBits(br, extra_bits) + 1;
159 }
160 
GetCopyLength(int length_symbol,VP8LBitReader * const br)161 static WEBP_INLINE int GetCopyLength(int length_symbol,
162                                      VP8LBitReader* const br) {
163   // Length and distance prefixes are encoded the same way.
164   return GetCopyDistance(length_symbol, br);
165 }
166 
PlaneCodeToDistance(int xsize,int plane_code)167 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
168   if (plane_code > CODE_TO_PLANE_CODES) {
169     return plane_code - CODE_TO_PLANE_CODES;
170   } else {
171     const int dist_code = kCodeToPlane[plane_code - 1];
172     const int yoffset = dist_code >> 4;
173     const int xoffset = 8 - (dist_code & 0xf);
174     const int dist = yoffset * xsize + xoffset;
175     return (dist >= 1) ? dist : 1;  // dist<1 can happen if xsize is very small
176   }
177 }
178 
179 //------------------------------------------------------------------------------
180 // Decodes the next Huffman code from bit-stream.
181 // FillBitWindow(br) needs to be called at minimum every second call
182 // to ReadSymbol, in order to pre-fetch enough bits.
ReadSymbol(const HuffmanCode * table,VP8LBitReader * const br)183 static WEBP_INLINE int ReadSymbol(const HuffmanCode* table,
184                                   VP8LBitReader* const br) {
185   int nbits;
186   uint32_t val = VP8LPrefetchBits(br);
187   table += val & HUFFMAN_TABLE_MASK;
188   nbits = table->bits - HUFFMAN_TABLE_BITS;
189   if (nbits > 0) {
190     VP8LSetBitPos(br, br->bit_pos_ + HUFFMAN_TABLE_BITS);
191     val = VP8LPrefetchBits(br);
192     table += table->value;
193     table += val & ((1 << nbits) - 1);
194   }
195   VP8LSetBitPos(br, br->bit_pos_ + table->bits);
196   return table->value;
197 }
198 
199 // Reads packed symbol depending on GREEN channel
200 #define BITS_SPECIAL_MARKER 0x100  // something large enough (and a bit-mask)
201 #define PACKED_NON_LITERAL_CODE 0  // must be < NUM_LITERAL_CODES
ReadPackedSymbols(const HTreeGroup * group,VP8LBitReader * const br,uint32_t * const dst)202 static WEBP_INLINE int ReadPackedSymbols(const HTreeGroup* group,
203                                          VP8LBitReader* const br,
204                                          uint32_t* const dst) {
205   const uint32_t val = VP8LPrefetchBits(br) & (HUFFMAN_PACKED_TABLE_SIZE - 1);
206   const HuffmanCode32 code = group->packed_table[val];
207   assert(group->use_packed_table);
208   if (code.bits < BITS_SPECIAL_MARKER) {
209     VP8LSetBitPos(br, br->bit_pos_ + code.bits);
210     *dst = code.value;
211     return PACKED_NON_LITERAL_CODE;
212   } else {
213     VP8LSetBitPos(br, br->bit_pos_ + code.bits - BITS_SPECIAL_MARKER);
214     assert(code.value >= NUM_LITERAL_CODES);
215     return code.value;
216   }
217 }
218 
AccumulateHCode(HuffmanCode hcode,int shift,HuffmanCode32 * const huff)219 static int AccumulateHCode(HuffmanCode hcode, int shift,
220                            HuffmanCode32* const huff) {
221   huff->bits += hcode.bits;
222   huff->value |= (uint32_t)hcode.value << shift;
223   assert(huff->bits <= HUFFMAN_TABLE_BITS);
224   return hcode.bits;
225 }
226 
BuildPackedTable(HTreeGroup * const htree_group)227 static void BuildPackedTable(HTreeGroup* const htree_group) {
228   uint32_t code;
229   for (code = 0; code < HUFFMAN_PACKED_TABLE_SIZE; ++code) {
230     uint32_t bits = code;
231     HuffmanCode32* const huff = &htree_group->packed_table[bits];
232     HuffmanCode hcode = htree_group->htrees[GREEN][bits];
233     if (hcode.value >= NUM_LITERAL_CODES) {
234       huff->bits = hcode.bits + BITS_SPECIAL_MARKER;
235       huff->value = hcode.value;
236     } else {
237       huff->bits = 0;
238       huff->value = 0;
239       bits >>= AccumulateHCode(hcode, 8, huff);
240       bits >>= AccumulateHCode(htree_group->htrees[RED][bits], 16, huff);
241       bits >>= AccumulateHCode(htree_group->htrees[BLUE][bits], 0, huff);
242       bits >>= AccumulateHCode(htree_group->htrees[ALPHA][bits], 24, huff);
243       (void)bits;
244     }
245   }
246 }
247 
ReadHuffmanCodeLengths(VP8LDecoder * const dec,const int * const code_length_code_lengths,int num_symbols,int * const code_lengths)248 static int ReadHuffmanCodeLengths(
249     VP8LDecoder* const dec, const int* const code_length_code_lengths,
250     int num_symbols, int* const code_lengths) {
251   int ok = 0;
252   VP8LBitReader* const br = &dec->br_;
253   int symbol;
254   int max_symbol;
255   int prev_code_len = DEFAULT_CODE_LENGTH;
256   HuffmanTables tables;
257 
258   if (!VP8LHuffmanTablesAllocate(1 << LENGTHS_TABLE_BITS, &tables) ||
259       !VP8LBuildHuffmanTable(&tables, LENGTHS_TABLE_BITS,
260                              code_length_code_lengths, NUM_CODE_LENGTH_CODES)) {
261     goto End;
262   }
263 
264   if (VP8LReadBits(br, 1)) {    // use length
265     const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
266     max_symbol = 2 + VP8LReadBits(br, length_nbits);
267     if (max_symbol > num_symbols) {
268       goto End;
269     }
270   } else {
271     max_symbol = num_symbols;
272   }
273 
274   symbol = 0;
275   while (symbol < num_symbols) {
276     const HuffmanCode* p;
277     int code_len;
278     if (max_symbol-- == 0) break;
279     VP8LFillBitWindow(br);
280     p = &tables.curr_segment->start[VP8LPrefetchBits(br) & LENGTHS_TABLE_MASK];
281     VP8LSetBitPos(br, br->bit_pos_ + p->bits);
282     code_len = p->value;
283     if (code_len < kCodeLengthLiterals) {
284       code_lengths[symbol++] = code_len;
285       if (code_len != 0) prev_code_len = code_len;
286     } else {
287       const int use_prev = (code_len == kCodeLengthRepeatCode);
288       const int slot = code_len - kCodeLengthLiterals;
289       const int extra_bits = kCodeLengthExtraBits[slot];
290       const int repeat_offset = kCodeLengthRepeatOffsets[slot];
291       int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
292       if (symbol + repeat > num_symbols) {
293         goto End;
294       } else {
295         const int length = use_prev ? prev_code_len : 0;
296         while (repeat-- > 0) code_lengths[symbol++] = length;
297       }
298     }
299   }
300   ok = 1;
301 
302  End:
303   VP8LHuffmanTablesDeallocate(&tables);
304   if (!ok) dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
305   return ok;
306 }
307 
308 // 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman
309 // tree.
ReadHuffmanCode(int alphabet_size,VP8LDecoder * const dec,int * const code_lengths,HuffmanTables * const table)310 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
311                            int* const code_lengths,
312                            HuffmanTables* const table) {
313   int ok = 0;
314   int size = 0;
315   VP8LBitReader* const br = &dec->br_;
316   const int simple_code = VP8LReadBits(br, 1);
317 
318   memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths));
319 
320   if (simple_code) {  // Read symbols, codes & code lengths directly.
321     const int num_symbols = VP8LReadBits(br, 1) + 1;
322     const int first_symbol_len_code = VP8LReadBits(br, 1);
323     // The first code is either 1 bit or 8 bit code.
324     int symbol = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
325     code_lengths[symbol] = 1;
326     // The second code (if present), is always 8 bit long.
327     if (num_symbols == 2) {
328       symbol = VP8LReadBits(br, 8);
329       code_lengths[symbol] = 1;
330     }
331     ok = 1;
332   } else {  // Decode Huffman-coded code lengths.
333     int i;
334     int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
335     const int num_codes = VP8LReadBits(br, 4) + 4;
336     if (num_codes > NUM_CODE_LENGTH_CODES) {
337       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
338       return 0;
339     }
340 
341     for (i = 0; i < num_codes; ++i) {
342       code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
343     }
344     ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
345                                 code_lengths);
346   }
347 
348   ok = ok && !br->eos_;
349   if (ok) {
350     size = VP8LBuildHuffmanTable(table, HUFFMAN_TABLE_BITS,
351                                  code_lengths, alphabet_size);
352   }
353   if (!ok || size == 0) {
354     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
355     return 0;
356   }
357   return size;
358 }
359 
ReadHuffmanCodes(VP8LDecoder * const dec,int xsize,int ysize,int color_cache_bits,int allow_recursion)360 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
361                             int color_cache_bits, int allow_recursion) {
362   int i, j;
363   VP8LBitReader* const br = &dec->br_;
364   VP8LMetadata* const hdr = &dec->hdr_;
365   uint32_t* huffman_image = NULL;
366   HTreeGroup* htree_groups = NULL;
367   HuffmanTables* huffman_tables = &hdr->huffman_tables_;
368   int num_htree_groups = 1;
369   int num_htree_groups_max = 1;
370   int max_alphabet_size = 0;
371   int* code_lengths = NULL;
372   const int table_size = kTableSize[color_cache_bits];
373   int* mapping = NULL;
374   int ok = 0;
375 
376   // Check the table has been 0 initialized (through InitMetadata).
377   assert(huffman_tables->root.start == NULL);
378   assert(huffman_tables->curr_segment == NULL);
379 
380   if (allow_recursion && VP8LReadBits(br, 1)) {
381     // use meta Huffman codes.
382     const int huffman_precision = VP8LReadBits(br, 3) + 2;
383     const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
384     const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
385     const int huffman_pixs = huffman_xsize * huffman_ysize;
386     if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
387                            &huffman_image)) {
388       goto Error;
389     }
390     hdr->huffman_subsample_bits_ = huffman_precision;
391     for (i = 0; i < huffman_pixs; ++i) {
392       // The huffman data is stored in red and green bytes.
393       const int group = (huffman_image[i] >> 8) & 0xffff;
394       huffman_image[i] = group;
395       if (group >= num_htree_groups_max) {
396         num_htree_groups_max = group + 1;
397       }
398     }
399     // Check the validity of num_htree_groups_max. If it seems too big, use a
400     // smaller value for later. This will prevent big memory allocations to end
401     // up with a bad bitstream anyway.
402     // The value of 1000 is totally arbitrary. We know that num_htree_groups_max
403     // is smaller than (1 << 16) and should be smaller than the number of pixels
404     // (though the format allows it to be bigger).
405     if (num_htree_groups_max > 1000 || num_htree_groups_max > xsize * ysize) {
406       // Create a mapping from the used indices to the minimal set of used
407       // values [0, num_htree_groups)
408       mapping = (int*)WebPSafeMalloc(num_htree_groups_max, sizeof(*mapping));
409       if (mapping == NULL) {
410         dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
411         goto Error;
412       }
413       // -1 means a value is unmapped, and therefore unused in the Huffman
414       // image.
415       memset(mapping, 0xff, num_htree_groups_max * sizeof(*mapping));
416       for (num_htree_groups = 0, i = 0; i < huffman_pixs; ++i) {
417         // Get the current mapping for the group and remap the Huffman image.
418         int* const mapped_group = &mapping[huffman_image[i]];
419         if (*mapped_group == -1) *mapped_group = num_htree_groups++;
420         huffman_image[i] = *mapped_group;
421       }
422     } else {
423       num_htree_groups = num_htree_groups_max;
424     }
425   }
426 
427   if (br->eos_) goto Error;
428 
429   // Find maximum alphabet size for the htree group.
430   for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
431     int alphabet_size = kAlphabetSize[j];
432     if (j == 0 && color_cache_bits > 0) {
433       alphabet_size += 1 << color_cache_bits;
434     }
435     if (max_alphabet_size < alphabet_size) {
436       max_alphabet_size = alphabet_size;
437     }
438   }
439 
440   code_lengths = (int*)WebPSafeCalloc((uint64_t)max_alphabet_size,
441                                       sizeof(*code_lengths));
442   htree_groups = VP8LHtreeGroupsNew(num_htree_groups);
443 
444   if (htree_groups == NULL || code_lengths == NULL ||
445       !VP8LHuffmanTablesAllocate(num_htree_groups * table_size,
446                                  huffman_tables)) {
447     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
448     goto Error;
449   }
450 
451   for (i = 0; i < num_htree_groups_max; ++i) {
452     // If the index "i" is unused in the Huffman image, just make sure the
453     // coefficients are valid but do not store them.
454     if (mapping != NULL && mapping[i] == -1) {
455       for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
456         int alphabet_size = kAlphabetSize[j];
457         if (j == 0 && color_cache_bits > 0) {
458           alphabet_size += (1 << color_cache_bits);
459         }
460         // Passing in NULL so that nothing gets filled.
461         if (!ReadHuffmanCode(alphabet_size, dec, code_lengths, NULL)) {
462           goto Error;
463         }
464       }
465     } else {
466       HTreeGroup* const htree_group =
467           &htree_groups[(mapping == NULL) ? i : mapping[i]];
468       HuffmanCode** const htrees = htree_group->htrees;
469       int size;
470       int total_size = 0;
471       int is_trivial_literal = 1;
472       int max_bits = 0;
473       for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
474         int alphabet_size = kAlphabetSize[j];
475         if (j == 0 && color_cache_bits > 0) {
476           alphabet_size += (1 << color_cache_bits);
477         }
478         size =
479             ReadHuffmanCode(alphabet_size, dec, code_lengths, huffman_tables);
480         htrees[j] = huffman_tables->curr_segment->curr_table;
481         if (size == 0) {
482           goto Error;
483         }
484         if (is_trivial_literal && kLiteralMap[j] == 1) {
485           is_trivial_literal = (htrees[j]->bits == 0);
486         }
487         total_size += htrees[j]->bits;
488         huffman_tables->curr_segment->curr_table += size;
489         if (j <= ALPHA) {
490           int local_max_bits = code_lengths[0];
491           int k;
492           for (k = 1; k < alphabet_size; ++k) {
493             if (code_lengths[k] > local_max_bits) {
494               local_max_bits = code_lengths[k];
495             }
496           }
497           max_bits += local_max_bits;
498         }
499       }
500       htree_group->is_trivial_literal = is_trivial_literal;
501       htree_group->is_trivial_code = 0;
502       if (is_trivial_literal) {
503         const int red = htrees[RED][0].value;
504         const int blue = htrees[BLUE][0].value;
505         const int alpha = htrees[ALPHA][0].value;
506         htree_group->literal_arb = ((uint32_t)alpha << 24) | (red << 16) | blue;
507         if (total_size == 0 && htrees[GREEN][0].value < NUM_LITERAL_CODES) {
508           htree_group->is_trivial_code = 1;
509           htree_group->literal_arb |= htrees[GREEN][0].value << 8;
510         }
511       }
512       htree_group->use_packed_table =
513           !htree_group->is_trivial_code && (max_bits < HUFFMAN_PACKED_BITS);
514       if (htree_group->use_packed_table) BuildPackedTable(htree_group);
515     }
516   }
517   ok = 1;
518 
519   // All OK. Finalize pointers.
520   hdr->huffman_image_ = huffman_image;
521   hdr->num_htree_groups_ = num_htree_groups;
522   hdr->htree_groups_ = htree_groups;
523 
524  Error:
525   WebPSafeFree(code_lengths);
526   WebPSafeFree(mapping);
527   if (!ok) {
528     WebPSafeFree(huffman_image);
529     VP8LHuffmanTablesDeallocate(huffman_tables);
530     VP8LHtreeGroupsFree(htree_groups);
531   }
532   return ok;
533 }
534 
535 //------------------------------------------------------------------------------
536 // Scaling.
537 
538 #if !defined(WEBP_REDUCE_SIZE)
AllocateAndInitRescaler(VP8LDecoder * const dec,VP8Io * const io)539 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
540   const int num_channels = 4;
541   const int in_width = io->mb_w;
542   const int out_width = io->scaled_width;
543   const int in_height = io->mb_h;
544   const int out_height = io->scaled_height;
545   const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
546   rescaler_t* work;        // Rescaler work area.
547   const uint64_t scaled_data_size = (uint64_t)out_width;
548   uint32_t* scaled_data;  // Temporary storage for scaled BGRA data.
549   const uint64_t memory_size = sizeof(*dec->rescaler) +
550                                work_size * sizeof(*work) +
551                                scaled_data_size * sizeof(*scaled_data);
552   uint8_t* memory = (uint8_t*)WebPSafeMalloc(memory_size, sizeof(*memory));
553   if (memory == NULL) {
554     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
555     return 0;
556   }
557   assert(dec->rescaler_memory == NULL);
558   dec->rescaler_memory = memory;
559 
560   dec->rescaler = (WebPRescaler*)memory;
561   memory += sizeof(*dec->rescaler);
562   work = (rescaler_t*)memory;
563   memory += work_size * sizeof(*work);
564   scaled_data = (uint32_t*)memory;
565 
566   if (!WebPRescalerInit(dec->rescaler, in_width, in_height,
567                         (uint8_t*)scaled_data, out_width, out_height,
568                         0, num_channels, work)) {
569     return 0;
570   }
571   return 1;
572 }
573 #endif   // WEBP_REDUCE_SIZE
574 
575 //------------------------------------------------------------------------------
576 // Export to ARGB
577 
578 #if !defined(WEBP_REDUCE_SIZE)
579 
580 // We have special "export" function since we need to convert from BGRA
Export(WebPRescaler * const rescaler,WEBP_CSP_MODE colorspace,int rgba_stride,uint8_t * const rgba)581 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
582                   int rgba_stride, uint8_t* const rgba) {
583   uint32_t* const src = (uint32_t*)rescaler->dst;
584   uint8_t* dst = rgba;
585   const int dst_width = rescaler->dst_width;
586   int num_lines_out = 0;
587   while (WebPRescalerHasPendingOutput(rescaler)) {
588     WebPRescalerExportRow(rescaler);
589     WebPMultARGBRow(src, dst_width, 1);
590     VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
591     dst += rgba_stride;
592     ++num_lines_out;
593   }
594   return num_lines_out;
595 }
596 
597 // Emit scaled rows.
EmitRescaledRowsRGBA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h,uint8_t * const out,int out_stride)598 static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec,
599                                 uint8_t* in, int in_stride, int mb_h,
600                                 uint8_t* const out, int out_stride) {
601   const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
602   int num_lines_in = 0;
603   int num_lines_out = 0;
604   while (num_lines_in < mb_h) {
605     uint8_t* const row_in = in + (uint64_t)num_lines_in * in_stride;
606     uint8_t* const row_out = out + (uint64_t)num_lines_out * out_stride;
607     const int lines_left = mb_h - num_lines_in;
608     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
609     int lines_imported;
610     assert(needed_lines > 0 && needed_lines <= lines_left);
611     WebPMultARGBRows(row_in, in_stride,
612                      dec->rescaler->src_width, needed_lines, 0);
613     lines_imported =
614         WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride);
615     assert(lines_imported == needed_lines);
616     num_lines_in += lines_imported;
617     num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
618   }
619   return num_lines_out;
620 }
621 
622 #endif   // WEBP_REDUCE_SIZE
623 
624 // Emit rows without any scaling.
EmitRows(WEBP_CSP_MODE colorspace,const uint8_t * row_in,int in_stride,int mb_w,int mb_h,uint8_t * const out,int out_stride)625 static int EmitRows(WEBP_CSP_MODE colorspace,
626                     const uint8_t* row_in, int in_stride,
627                     int mb_w, int mb_h,
628                     uint8_t* const out, int out_stride) {
629   int lines = mb_h;
630   uint8_t* row_out = out;
631   while (lines-- > 0) {
632     VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
633     row_in += in_stride;
634     row_out += out_stride;
635   }
636   return mb_h;  // Num rows out == num rows in.
637 }
638 
639 //------------------------------------------------------------------------------
640 // Export to YUVA
641 
ConvertToYUVA(const uint32_t * const src,int width,int y_pos,const WebPDecBuffer * const output)642 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
643                           const WebPDecBuffer* const output) {
644   const WebPYUVABuffer* const buf = &output->u.YUVA;
645 
646   // first, the luma plane
647   WebPConvertARGBToY(src, buf->y + y_pos * buf->y_stride, width);
648 
649   // then U/V planes
650   {
651     uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
652     uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
653     // even lines: store values
654     // odd lines: average with previous values
655     WebPConvertARGBToUV(src, u, v, width, !(y_pos & 1));
656   }
657   // Lastly, store alpha if needed.
658   if (buf->a != NULL) {
659     uint8_t* const a = buf->a + y_pos * buf->a_stride;
660 #if defined(WORDS_BIGENDIAN)
661     WebPExtractAlpha((uint8_t*)src + 0, 0, width, 1, a, 0);
662 #else
663     WebPExtractAlpha((uint8_t*)src + 3, 0, width, 1, a, 0);
664 #endif
665   }
666 }
667 
ExportYUVA(const VP8LDecoder * const dec,int y_pos)668 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
669   WebPRescaler* const rescaler = dec->rescaler;
670   uint32_t* const src = (uint32_t*)rescaler->dst;
671   const int dst_width = rescaler->dst_width;
672   int num_lines_out = 0;
673   while (WebPRescalerHasPendingOutput(rescaler)) {
674     WebPRescalerExportRow(rescaler);
675     WebPMultARGBRow(src, dst_width, 1);
676     ConvertToYUVA(src, dst_width, y_pos, dec->output_);
677     ++y_pos;
678     ++num_lines_out;
679   }
680   return num_lines_out;
681 }
682 
EmitRescaledRowsYUVA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h)683 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
684                                 uint8_t* in, int in_stride, int mb_h) {
685   int num_lines_in = 0;
686   int y_pos = dec->last_out_row_;
687   while (num_lines_in < mb_h) {
688     const int lines_left = mb_h - num_lines_in;
689     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
690     int lines_imported;
691     WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0);
692     lines_imported =
693         WebPRescalerImport(dec->rescaler, lines_left, in, in_stride);
694     assert(lines_imported == needed_lines);
695     num_lines_in += lines_imported;
696     in += needed_lines * in_stride;
697     y_pos += ExportYUVA(dec, y_pos);
698   }
699   return y_pos;
700 }
701 
EmitRowsYUVA(const VP8LDecoder * const dec,const uint8_t * in,int in_stride,int mb_w,int num_rows)702 static int EmitRowsYUVA(const VP8LDecoder* const dec,
703                         const uint8_t* in, int in_stride,
704                         int mb_w, int num_rows) {
705   int y_pos = dec->last_out_row_;
706   while (num_rows-- > 0) {
707     ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_);
708     in += in_stride;
709     ++y_pos;
710   }
711   return y_pos;
712 }
713 
714 //------------------------------------------------------------------------------
715 // Cropping.
716 
717 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
718 // crop options. Also updates the input data pointer, so that it points to the
719 // start of the cropped window. Note that pixels are in ARGB format even if
720 // 'in_data' is uint8_t*.
721 // Returns true if the crop window is not empty.
SetCropWindow(VP8Io * const io,int y_start,int y_end,uint8_t ** const in_data,int pixel_stride)722 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
723                          uint8_t** const in_data, int pixel_stride) {
724   assert(y_start < y_end);
725   assert(io->crop_left < io->crop_right);
726   if (y_end > io->crop_bottom) {
727     y_end = io->crop_bottom;  // make sure we don't overflow on last row.
728   }
729   if (y_start < io->crop_top) {
730     const int delta = io->crop_top - y_start;
731     y_start = io->crop_top;
732     *in_data += delta * pixel_stride;
733   }
734   if (y_start >= y_end) return 0;  // Crop window is empty.
735 
736   *in_data += io->crop_left * sizeof(uint32_t);
737 
738   io->mb_y = y_start - io->crop_top;
739   io->mb_w = io->crop_right - io->crop_left;
740   io->mb_h = y_end - y_start;
741   return 1;  // Non-empty crop window.
742 }
743 
744 //------------------------------------------------------------------------------
745 
GetMetaIndex(const uint32_t * const image,int xsize,int bits,int x,int y)746 static WEBP_INLINE int GetMetaIndex(
747     const uint32_t* const image, int xsize, int bits, int x, int y) {
748   if (bits == 0) return 0;
749   return image[xsize * (y >> bits) + (x >> bits)];
750 }
751 
GetHtreeGroupForPos(VP8LMetadata * const hdr,int x,int y)752 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
753                                                    int x, int y) {
754   const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
755                                       hdr->huffman_subsample_bits_, x, y);
756   assert(meta_index < hdr->num_htree_groups_);
757   return hdr->htree_groups_ + meta_index;
758 }
759 
760 //------------------------------------------------------------------------------
761 // Main loop, with custom row-processing function
762 
763 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
764 
ApplyInverseTransforms(VP8LDecoder * const dec,int start_row,int num_rows,const uint32_t * const rows)765 static void ApplyInverseTransforms(VP8LDecoder* const dec,
766                                    int start_row, int num_rows,
767                                    const uint32_t* const rows) {
768   int n = dec->next_transform_;
769   const int cache_pixs = dec->width_ * num_rows;
770   const int end_row = start_row + num_rows;
771   const uint32_t* rows_in = rows;
772   uint32_t* const rows_out = dec->argb_cache_;
773 
774   // Inverse transforms.
775   while (n-- > 0) {
776     VP8LTransform* const transform = &dec->transforms_[n];
777     VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
778     rows_in = rows_out;
779   }
780   if (rows_in != rows_out) {
781     // No transform called, hence just copy.
782     memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
783   }
784 }
785 
786 // Processes (transforms, scales & color-converts) the rows decoded after the
787 // last call.
ProcessRows(VP8LDecoder * const dec,int row)788 static void ProcessRows(VP8LDecoder* const dec, int row) {
789   const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_;
790   const int num_rows = row - dec->last_row_;
791 
792   assert(row <= dec->io_->crop_bottom);
793   // We can't process more than NUM_ARGB_CACHE_ROWS at a time (that's the size
794   // of argb_cache_), but we currently don't need more than that.
795   assert(num_rows <= NUM_ARGB_CACHE_ROWS);
796   if (num_rows > 0) {    // Emit output.
797     VP8Io* const io = dec->io_;
798     uint8_t* rows_data = (uint8_t*)dec->argb_cache_;
799     const int in_stride = io->width * sizeof(uint32_t);  // in unit of RGBA
800     ApplyInverseTransforms(dec, dec->last_row_, num_rows, rows);
801     if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) {
802       // Nothing to output (this time).
803     } else {
804       const WebPDecBuffer* const output = dec->output_;
805       if (WebPIsRGBMode(output->colorspace)) {  // convert to RGBA
806         const WebPRGBABuffer* const buf = &output->u.RGBA;
807         uint8_t* const rgba =
808             buf->rgba + (int64_t)dec->last_out_row_ * buf->stride;
809         const int num_rows_out =
810 #if !defined(WEBP_REDUCE_SIZE)
811          io->use_scaling ?
812             EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h,
813                                  rgba, buf->stride) :
814 #endif  // WEBP_REDUCE_SIZE
815             EmitRows(output->colorspace, rows_data, in_stride,
816                      io->mb_w, io->mb_h, rgba, buf->stride);
817         // Update 'last_out_row_'.
818         dec->last_out_row_ += num_rows_out;
819       } else {                              // convert to YUVA
820         dec->last_out_row_ = io->use_scaling ?
821             EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
822             EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
823       }
824       assert(dec->last_out_row_ <= output->height);
825     }
826   }
827 
828   // Update 'last_row_'.
829   dec->last_row_ = row;
830   assert(dec->last_row_ <= dec->height_);
831 }
832 
833 // Row-processing for the special case when alpha data contains only one
834 // transform (color indexing), and trivial non-green literals.
Is8bOptimizable(const VP8LMetadata * const hdr)835 static int Is8bOptimizable(const VP8LMetadata* const hdr) {
836   int i;
837   if (hdr->color_cache_size_ > 0) return 0;
838   // When the Huffman tree contains only one symbol, we can skip the
839   // call to ReadSymbol() for red/blue/alpha channels.
840   for (i = 0; i < hdr->num_htree_groups_; ++i) {
841     HuffmanCode** const htrees = hdr->htree_groups_[i].htrees;
842     if (htrees[RED][0].bits > 0) return 0;
843     if (htrees[BLUE][0].bits > 0) return 0;
844     if (htrees[ALPHA][0].bits > 0) return 0;
845   }
846   return 1;
847 }
848 
AlphaApplyFilter(ALPHDecoder * const alph_dec,int first_row,int last_row,uint8_t * out,int stride)849 static void AlphaApplyFilter(ALPHDecoder* const alph_dec,
850                              int first_row, int last_row,
851                              uint8_t* out, int stride) {
852   if (alph_dec->filter_ != WEBP_FILTER_NONE) {
853     int y;
854     const uint8_t* prev_line = alph_dec->prev_line_;
855     assert(WebPUnfilters[alph_dec->filter_] != NULL);
856     for (y = first_row; y < last_row; ++y) {
857       WebPUnfilters[alph_dec->filter_](prev_line, out, out, stride);
858       prev_line = out;
859       out += stride;
860     }
861     alph_dec->prev_line_ = prev_line;
862   }
863 }
864 
ExtractPalettedAlphaRows(VP8LDecoder * const dec,int last_row)865 static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int last_row) {
866   // For vertical and gradient filtering, we need to decode the part above the
867   // crop_top row, in order to have the correct spatial predictors.
868   ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque;
869   const int top_row =
870       (alph_dec->filter_ == WEBP_FILTER_NONE ||
871        alph_dec->filter_ == WEBP_FILTER_HORIZONTAL) ? dec->io_->crop_top
872                                                     : dec->last_row_;
873   const int first_row = (dec->last_row_ < top_row) ? top_row : dec->last_row_;
874   assert(last_row <= dec->io_->crop_bottom);
875   if (last_row > first_row) {
876     // Special method for paletted alpha data. We only process the cropped area.
877     const int width = dec->io_->width;
878     uint8_t* out = alph_dec->output_ + width * first_row;
879     const uint8_t* const in =
880       (uint8_t*)dec->pixels_ + dec->width_ * first_row;
881     VP8LTransform* const transform = &dec->transforms_[0];
882     assert(dec->next_transform_ == 1);
883     assert(transform->type_ == COLOR_INDEXING_TRANSFORM);
884     VP8LColorIndexInverseTransformAlpha(transform, first_row, last_row,
885                                         in, out);
886     AlphaApplyFilter(alph_dec, first_row, last_row, out, width);
887   }
888   dec->last_row_ = dec->last_out_row_ = last_row;
889 }
890 
891 //------------------------------------------------------------------------------
892 // Helper functions for fast pattern copy (8b and 32b)
893 
894 // cyclic rotation of pattern word
Rotate8b(uint32_t V)895 static WEBP_INLINE uint32_t Rotate8b(uint32_t V) {
896 #if defined(WORDS_BIGENDIAN)
897   return ((V & 0xff000000u) >> 24) | (V << 8);
898 #else
899   return ((V & 0xffu) << 24) | (V >> 8);
900 #endif
901 }
902 
903 // copy 1, 2 or 4-bytes pattern
CopySmallPattern8b(const uint8_t * src,uint8_t * dst,int length,uint32_t pattern)904 static WEBP_INLINE void CopySmallPattern8b(const uint8_t* src, uint8_t* dst,
905                                            int length, uint32_t pattern) {
906   int i;
907   // align 'dst' to 4-bytes boundary. Adjust the pattern along the way.
908   while ((uintptr_t)dst & 3) {
909     *dst++ = *src++;
910     pattern = Rotate8b(pattern);
911     --length;
912   }
913   // Copy the pattern 4 bytes at a time.
914   for (i = 0; i < (length >> 2); ++i) {
915     ((uint32_t*)dst)[i] = pattern;
916   }
917   // Finish with left-overs. 'pattern' is still correctly positioned,
918   // so no Rotate8b() call is needed.
919   for (i <<= 2; i < length; ++i) {
920     dst[i] = src[i];
921   }
922 }
923 
CopyBlock8b(uint8_t * const dst,int dist,int length)924 static WEBP_INLINE void CopyBlock8b(uint8_t* const dst, int dist, int length) {
925   const uint8_t* src = dst - dist;
926   if (length >= 8) {
927     uint32_t pattern = 0;
928     switch (dist) {
929       case 1:
930         pattern = src[0];
931 #if defined(__arm__) || defined(_M_ARM)   // arm doesn't like multiply that much
932         pattern |= pattern << 8;
933         pattern |= pattern << 16;
934 #elif defined(WEBP_USE_MIPS_DSP_R2)
935         __asm__ volatile ("replv.qb %0, %0" : "+r"(pattern));
936 #else
937         pattern = 0x01010101u * pattern;
938 #endif
939         break;
940       case 2:
941 #if !defined(WORDS_BIGENDIAN)
942         memcpy(&pattern, src, sizeof(uint16_t));
943 #else
944         pattern = ((uint32_t)src[0] << 8) | src[1];
945 #endif
946 #if defined(__arm__) || defined(_M_ARM)
947         pattern |= pattern << 16;
948 #elif defined(WEBP_USE_MIPS_DSP_R2)
949         __asm__ volatile ("replv.ph %0, %0" : "+r"(pattern));
950 #else
951         pattern = 0x00010001u * pattern;
952 #endif
953         break;
954       case 4:
955         memcpy(&pattern, src, sizeof(uint32_t));
956         break;
957       default:
958         goto Copy;
959     }
960     CopySmallPattern8b(src, dst, length, pattern);
961     return;
962   }
963  Copy:
964   if (dist >= length) {  // no overlap -> use memcpy()
965     memcpy(dst, src, length * sizeof(*dst));
966   } else {
967     int i;
968     for (i = 0; i < length; ++i) dst[i] = src[i];
969   }
970 }
971 
972 // copy pattern of 1 or 2 uint32_t's
CopySmallPattern32b(const uint32_t * src,uint32_t * dst,int length,uint64_t pattern)973 static WEBP_INLINE void CopySmallPattern32b(const uint32_t* src,
974                                             uint32_t* dst,
975                                             int length, uint64_t pattern) {
976   int i;
977   if ((uintptr_t)dst & 4) {           // Align 'dst' to 8-bytes boundary.
978     *dst++ = *src++;
979     pattern = (pattern >> 32) | (pattern << 32);
980     --length;
981   }
982   assert(0 == ((uintptr_t)dst & 7));
983   for (i = 0; i < (length >> 1); ++i) {
984     ((uint64_t*)dst)[i] = pattern;    // Copy the pattern 8 bytes at a time.
985   }
986   if (length & 1) {                   // Finish with left-over.
987     dst[i << 1] = src[i << 1];
988   }
989 }
990 
CopyBlock32b(uint32_t * const dst,int dist,int length)991 static WEBP_INLINE void CopyBlock32b(uint32_t* const dst,
992                                      int dist, int length) {
993   const uint32_t* const src = dst - dist;
994   if (dist <= 2 && length >= 4 && ((uintptr_t)dst & 3) == 0) {
995     uint64_t pattern;
996     if (dist == 1) {
997       pattern = (uint64_t)src[0];
998       pattern |= pattern << 32;
999     } else {
1000       memcpy(&pattern, src, sizeof(pattern));
1001     }
1002     CopySmallPattern32b(src, dst, length, pattern);
1003   } else if (dist >= length) {  // no overlap
1004     memcpy(dst, src, length * sizeof(*dst));
1005   } else {
1006     int i;
1007     for (i = 0; i < length; ++i) dst[i] = src[i];
1008   }
1009 }
1010 
1011 //------------------------------------------------------------------------------
1012 
DecodeAlphaData(VP8LDecoder * const dec,uint8_t * const data,int width,int height,int last_row)1013 static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data,
1014                            int width, int height, int last_row) {
1015   int ok = 1;
1016   int row = dec->last_pixel_ / width;
1017   int col = dec->last_pixel_ % width;
1018   VP8LBitReader* const br = &dec->br_;
1019   VP8LMetadata* const hdr = &dec->hdr_;
1020   int pos = dec->last_pixel_;         // current position
1021   const int end = width * height;     // End of data
1022   const int last = width * last_row;  // Last pixel to decode
1023   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
1024   const int mask = hdr->huffman_mask_;
1025   const HTreeGroup* htree_group =
1026       (pos < last) ? GetHtreeGroupForPos(hdr, col, row) : NULL;
1027   assert(pos <= end);
1028   assert(last_row <= height);
1029   assert(Is8bOptimizable(hdr));
1030 
1031   while (!br->eos_ && pos < last) {
1032     int code;
1033     // Only update when changing tile.
1034     if ((col & mask) == 0) {
1035       htree_group = GetHtreeGroupForPos(hdr, col, row);
1036     }
1037     assert(htree_group != NULL);
1038     VP8LFillBitWindow(br);
1039     code = ReadSymbol(htree_group->htrees[GREEN], br);
1040     if (code < NUM_LITERAL_CODES) {  // Literal
1041       data[pos] = code;
1042       ++pos;
1043       ++col;
1044       if (col >= width) {
1045         col = 0;
1046         ++row;
1047         if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1048           ExtractPalettedAlphaRows(dec, row);
1049         }
1050       }
1051     } else if (code < len_code_limit) {  // Backward reference
1052       int dist_code, dist;
1053       const int length_sym = code - NUM_LITERAL_CODES;
1054       const int length = GetCopyLength(length_sym, br);
1055       const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
1056       VP8LFillBitWindow(br);
1057       dist_code = GetCopyDistance(dist_symbol, br);
1058       dist = PlaneCodeToDistance(width, dist_code);
1059       if (pos >= dist && end - pos >= length) {
1060         CopyBlock8b(data + pos, dist, length);
1061       } else {
1062         ok = 0;
1063         goto End;
1064       }
1065       pos += length;
1066       col += length;
1067       while (col >= width) {
1068         col -= width;
1069         ++row;
1070         if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1071           ExtractPalettedAlphaRows(dec, row);
1072         }
1073       }
1074       if (pos < last && (col & mask)) {
1075         htree_group = GetHtreeGroupForPos(hdr, col, row);
1076       }
1077     } else {  // Not reached
1078       ok = 0;
1079       goto End;
1080     }
1081     br->eos_ = VP8LIsEndOfStream(br);
1082   }
1083   // Process the remaining rows corresponding to last row-block.
1084   ExtractPalettedAlphaRows(dec, row > last_row ? last_row : row);
1085 
1086  End:
1087   br->eos_ = VP8LIsEndOfStream(br);
1088   if (!ok || (br->eos_ && pos < end)) {
1089     ok = 0;
1090     dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED
1091                             : VP8_STATUS_BITSTREAM_ERROR;
1092   } else {
1093     dec->last_pixel_ = pos;
1094   }
1095   return ok;
1096 }
1097 
SaveState(VP8LDecoder * const dec,int last_pixel)1098 static void SaveState(VP8LDecoder* const dec, int last_pixel) {
1099   assert(dec->incremental_);
1100   dec->saved_br_ = dec->br_;
1101   dec->saved_last_pixel_ = last_pixel;
1102   if (dec->hdr_.color_cache_size_ > 0) {
1103     VP8LColorCacheCopy(&dec->hdr_.color_cache_, &dec->hdr_.saved_color_cache_);
1104   }
1105 }
1106 
RestoreState(VP8LDecoder * const dec)1107 static void RestoreState(VP8LDecoder* const dec) {
1108   assert(dec->br_.eos_);
1109   dec->status_ = VP8_STATUS_SUSPENDED;
1110   dec->br_ = dec->saved_br_;
1111   dec->last_pixel_ = dec->saved_last_pixel_;
1112   if (dec->hdr_.color_cache_size_ > 0) {
1113     VP8LColorCacheCopy(&dec->hdr_.saved_color_cache_, &dec->hdr_.color_cache_);
1114   }
1115 }
1116 
1117 #define SYNC_EVERY_N_ROWS 8  // minimum number of rows between check-points
DecodeImageData(VP8LDecoder * const dec,uint32_t * const data,int width,int height,int last_row,ProcessRowsFunc process_func)1118 static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data,
1119                            int width, int height, int last_row,
1120                            ProcessRowsFunc process_func) {
1121   int row = dec->last_pixel_ / width;
1122   int col = dec->last_pixel_ % width;
1123   VP8LBitReader* const br = &dec->br_;
1124   VP8LMetadata* const hdr = &dec->hdr_;
1125   uint32_t* src = data + dec->last_pixel_;
1126   uint32_t* last_cached = src;
1127   uint32_t* const src_end = data + width * height;     // End of data
1128   uint32_t* const src_last = data + width * last_row;  // Last pixel to decode
1129   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
1130   const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
1131   int next_sync_row = dec->incremental_ ? row : 1 << 24;
1132   VP8LColorCache* const color_cache =
1133       (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
1134   const int mask = hdr->huffman_mask_;
1135   const HTreeGroup* htree_group =
1136       (src < src_last) ? GetHtreeGroupForPos(hdr, col, row) : NULL;
1137   assert(dec->last_row_ < last_row);
1138   assert(src_last <= src_end);
1139 
1140   while (src < src_last) {
1141     int code;
1142     if (row >= next_sync_row) {
1143       SaveState(dec, (int)(src - data));
1144       next_sync_row = row + SYNC_EVERY_N_ROWS;
1145     }
1146     // Only update when changing tile. Note we could use this test:
1147     // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
1148     // but that's actually slower and needs storing the previous col/row.
1149     if ((col & mask) == 0) {
1150       htree_group = GetHtreeGroupForPos(hdr, col, row);
1151     }
1152     assert(htree_group != NULL);
1153     if (htree_group->is_trivial_code) {
1154       *src = htree_group->literal_arb;
1155       goto AdvanceByOne;
1156     }
1157     VP8LFillBitWindow(br);
1158     if (htree_group->use_packed_table) {
1159       code = ReadPackedSymbols(htree_group, br, src);
1160       if (VP8LIsEndOfStream(br)) break;
1161       if (code == PACKED_NON_LITERAL_CODE) goto AdvanceByOne;
1162     } else {
1163       code = ReadSymbol(htree_group->htrees[GREEN], br);
1164     }
1165     if (VP8LIsEndOfStream(br)) break;
1166     if (code < NUM_LITERAL_CODES) {  // Literal
1167       if (htree_group->is_trivial_literal) {
1168         *src = htree_group->literal_arb | (code << 8);
1169       } else {
1170         int red, blue, alpha;
1171         red = ReadSymbol(htree_group->htrees[RED], br);
1172         VP8LFillBitWindow(br);
1173         blue = ReadSymbol(htree_group->htrees[BLUE], br);
1174         alpha = ReadSymbol(htree_group->htrees[ALPHA], br);
1175         if (VP8LIsEndOfStream(br)) break;
1176         *src = ((uint32_t)alpha << 24) | (red << 16) | (code << 8) | blue;
1177       }
1178     AdvanceByOne:
1179       ++src;
1180       ++col;
1181       if (col >= width) {
1182         col = 0;
1183         ++row;
1184         if (process_func != NULL) {
1185           if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1186             process_func(dec, row);
1187           }
1188         }
1189         if (color_cache != NULL) {
1190           while (last_cached < src) {
1191             VP8LColorCacheInsert(color_cache, *last_cached++);
1192           }
1193         }
1194       }
1195     } else if (code < len_code_limit) {  // Backward reference
1196       int dist_code, dist;
1197       const int length_sym = code - NUM_LITERAL_CODES;
1198       const int length = GetCopyLength(length_sym, br);
1199       const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
1200       VP8LFillBitWindow(br);
1201       dist_code = GetCopyDistance(dist_symbol, br);
1202       dist = PlaneCodeToDistance(width, dist_code);
1203 
1204       if (VP8LIsEndOfStream(br)) break;
1205       if (src - data < (ptrdiff_t)dist || src_end - src < (ptrdiff_t)length) {
1206         goto Error;
1207       } else {
1208         CopyBlock32b(src, dist, length);
1209       }
1210       src += length;
1211       col += length;
1212       while (col >= width) {
1213         col -= width;
1214         ++row;
1215         if (process_func != NULL) {
1216           if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1217             process_func(dec, row);
1218           }
1219         }
1220       }
1221       // Because of the check done above (before 'src' was incremented by
1222       // 'length'), the following holds true.
1223       assert(src <= src_end);
1224       if (col & mask) htree_group = GetHtreeGroupForPos(hdr, col, row);
1225       if (color_cache != NULL) {
1226         while (last_cached < src) {
1227           VP8LColorCacheInsert(color_cache, *last_cached++);
1228         }
1229       }
1230     } else if (code < color_cache_limit) {  // Color cache
1231       const int key = code - len_code_limit;
1232       assert(color_cache != NULL);
1233       while (last_cached < src) {
1234         VP8LColorCacheInsert(color_cache, *last_cached++);
1235       }
1236       *src = VP8LColorCacheLookup(color_cache, key);
1237       goto AdvanceByOne;
1238     } else {  // Not reached
1239       goto Error;
1240     }
1241   }
1242 
1243   br->eos_ = VP8LIsEndOfStream(br);
1244   if (dec->incremental_ && br->eos_ && src < src_end) {
1245     RestoreState(dec);
1246   } else if (!br->eos_) {
1247     // Process the remaining rows corresponding to last row-block.
1248     if (process_func != NULL) {
1249       process_func(dec, row > last_row ? last_row : row);
1250     }
1251     dec->status_ = VP8_STATUS_OK;
1252     dec->last_pixel_ = (int)(src - data);  // end-of-scan marker
1253   } else {
1254     // if not incremental, and we are past the end of buffer (eos_=1), then this
1255     // is a real bitstream error.
1256     goto Error;
1257   }
1258   return 1;
1259 
1260  Error:
1261   dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1262   return 0;
1263 }
1264 
1265 // -----------------------------------------------------------------------------
1266 // VP8LTransform
1267 
ClearTransform(VP8LTransform * const transform)1268 static void ClearTransform(VP8LTransform* const transform) {
1269   WebPSafeFree(transform->data_);
1270   transform->data_ = NULL;
1271 }
1272 
1273 // For security reason, we need to remap the color map to span
1274 // the total possible bundled values, and not just the num_colors.
ExpandColorMap(int num_colors,VP8LTransform * const transform)1275 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
1276   int i;
1277   const int final_num_colors = 1 << (8 >> transform->bits_);
1278   uint32_t* const new_color_map =
1279       (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
1280                                 sizeof(*new_color_map));
1281   if (new_color_map == NULL) {
1282     return 0;
1283   } else {
1284     uint8_t* const data = (uint8_t*)transform->data_;
1285     uint8_t* const new_data = (uint8_t*)new_color_map;
1286     new_color_map[0] = transform->data_[0];
1287     for (i = 4; i < 4 * num_colors; ++i) {
1288       // Equivalent to AddPixelEq(), on a byte-basis.
1289       new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
1290     }
1291     for (; i < 4 * final_num_colors; ++i) {
1292       new_data[i] = 0;  // black tail.
1293     }
1294     WebPSafeFree(transform->data_);
1295     transform->data_ = new_color_map;
1296   }
1297   return 1;
1298 }
1299 
ReadTransform(int * const xsize,int const * ysize,VP8LDecoder * const dec)1300 static int ReadTransform(int* const xsize, int const* ysize,
1301                          VP8LDecoder* const dec) {
1302   int ok = 1;
1303   VP8LBitReader* const br = &dec->br_;
1304   VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
1305   const VP8LImageTransformType type =
1306       (VP8LImageTransformType)VP8LReadBits(br, 2);
1307 
1308   // Each transform type can only be present once in the stream.
1309   if (dec->transforms_seen_ & (1U << type)) {
1310     return 0;  // Already there, let's not accept the second same transform.
1311   }
1312   dec->transforms_seen_ |= (1U << type);
1313 
1314   transform->type_ = type;
1315   transform->xsize_ = *xsize;
1316   transform->ysize_ = *ysize;
1317   transform->data_ = NULL;
1318   ++dec->next_transform_;
1319   assert(dec->next_transform_ <= NUM_TRANSFORMS);
1320 
1321   switch (type) {
1322     case PREDICTOR_TRANSFORM:
1323     case CROSS_COLOR_TRANSFORM:
1324       transform->bits_ = VP8LReadBits(br, 3) + 2;
1325       ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
1326                                                transform->bits_),
1327                              VP8LSubSampleSize(transform->ysize_,
1328                                                transform->bits_),
1329                              0, dec, &transform->data_);
1330       break;
1331     case COLOR_INDEXING_TRANSFORM: {
1332        const int num_colors = VP8LReadBits(br, 8) + 1;
1333        const int bits = (num_colors > 16) ? 0
1334                       : (num_colors > 4) ? 1
1335                       : (num_colors > 2) ? 2
1336                       : 3;
1337        *xsize = VP8LSubSampleSize(transform->xsize_, bits);
1338        transform->bits_ = bits;
1339        ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
1340        ok = ok && ExpandColorMap(num_colors, transform);
1341       break;
1342     }
1343     case SUBTRACT_GREEN:
1344       break;
1345     default:
1346       assert(0);    // can't happen
1347       break;
1348   }
1349 
1350   return ok;
1351 }
1352 
1353 // -----------------------------------------------------------------------------
1354 // VP8LMetadata
1355 
InitMetadata(VP8LMetadata * const hdr)1356 static void InitMetadata(VP8LMetadata* const hdr) {
1357   assert(hdr != NULL);
1358   memset(hdr, 0, sizeof(*hdr));
1359 }
1360 
ClearMetadata(VP8LMetadata * const hdr)1361 static void ClearMetadata(VP8LMetadata* const hdr) {
1362   assert(hdr != NULL);
1363 
1364   WebPSafeFree(hdr->huffman_image_);
1365   VP8LHuffmanTablesDeallocate(&hdr->huffman_tables_);
1366   VP8LHtreeGroupsFree(hdr->htree_groups_);
1367   VP8LColorCacheClear(&hdr->color_cache_);
1368   VP8LColorCacheClear(&hdr->saved_color_cache_);
1369   InitMetadata(hdr);
1370 }
1371 
1372 // -----------------------------------------------------------------------------
1373 // VP8LDecoder
1374 
VP8LNew(void)1375 VP8LDecoder* VP8LNew(void) {
1376   VP8LDecoder* const dec = (VP8LDecoder*)WebPSafeCalloc(1ULL, sizeof(*dec));
1377   if (dec == NULL) return NULL;
1378   dec->status_ = VP8_STATUS_OK;
1379   dec->state_ = READ_DIM;
1380 
1381   VP8LDspInit();  // Init critical function pointers.
1382 
1383   return dec;
1384 }
1385 
VP8LClear(VP8LDecoder * const dec)1386 void VP8LClear(VP8LDecoder* const dec) {
1387   int i;
1388   if (dec == NULL) return;
1389   ClearMetadata(&dec->hdr_);
1390 
1391   WebPSafeFree(dec->pixels_);
1392   dec->pixels_ = NULL;
1393   for (i = 0; i < dec->next_transform_; ++i) {
1394     ClearTransform(&dec->transforms_[i]);
1395   }
1396   dec->next_transform_ = 0;
1397   dec->transforms_seen_ = 0;
1398 
1399   WebPSafeFree(dec->rescaler_memory);
1400   dec->rescaler_memory = NULL;
1401 
1402   dec->output_ = NULL;   // leave no trace behind
1403 }
1404 
VP8LDelete(VP8LDecoder * const dec)1405 void VP8LDelete(VP8LDecoder* const dec) {
1406   if (dec != NULL) {
1407     VP8LClear(dec);
1408     WebPSafeFree(dec);
1409   }
1410 }
1411 
UpdateDecoder(VP8LDecoder * const dec,int width,int height)1412 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
1413   VP8LMetadata* const hdr = &dec->hdr_;
1414   const int num_bits = hdr->huffman_subsample_bits_;
1415   dec->width_ = width;
1416   dec->height_ = height;
1417 
1418   hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
1419   hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
1420 }
1421 
DecodeImageStream(int xsize,int ysize,int is_level0,VP8LDecoder * const dec,uint32_t ** const decoded_data)1422 static int DecodeImageStream(int xsize, int ysize,
1423                              int is_level0,
1424                              VP8LDecoder* const dec,
1425                              uint32_t** const decoded_data) {
1426   int ok = 1;
1427   int transform_xsize = xsize;
1428   int transform_ysize = ysize;
1429   VP8LBitReader* const br = &dec->br_;
1430   VP8LMetadata* const hdr = &dec->hdr_;
1431   uint32_t* data = NULL;
1432   int color_cache_bits = 0;
1433 
1434   // Read the transforms (may recurse).
1435   if (is_level0) {
1436     while (ok && VP8LReadBits(br, 1)) {
1437       ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
1438     }
1439   }
1440 
1441   // Color cache
1442   if (ok && VP8LReadBits(br, 1)) {
1443     color_cache_bits = VP8LReadBits(br, 4);
1444     ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
1445     if (!ok) {
1446       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1447       goto End;
1448     }
1449   }
1450 
1451   // Read the Huffman codes (may recurse).
1452   ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
1453                               color_cache_bits, is_level0);
1454   if (!ok) {
1455     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1456     goto End;
1457   }
1458 
1459   // Finish setting up the color-cache
1460   if (color_cache_bits > 0) {
1461     hdr->color_cache_size_ = 1 << color_cache_bits;
1462     if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
1463       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1464       ok = 0;
1465       goto End;
1466     }
1467   } else {
1468     hdr->color_cache_size_ = 0;
1469   }
1470   UpdateDecoder(dec, transform_xsize, transform_ysize);
1471 
1472   if (is_level0) {   // level 0 complete
1473     dec->state_ = READ_HDR;
1474     goto End;
1475   }
1476 
1477   {
1478     const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
1479     data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
1480     if (data == NULL) {
1481       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1482       ok = 0;
1483       goto End;
1484     }
1485   }
1486 
1487   // Use the Huffman trees to decode the LZ77 encoded data.
1488   ok = DecodeImageData(dec, data, transform_xsize, transform_ysize,
1489                        transform_ysize, NULL);
1490   ok = ok && !br->eos_;
1491 
1492  End:
1493   if (!ok) {
1494     WebPSafeFree(data);
1495     ClearMetadata(hdr);
1496   } else {
1497     if (decoded_data != NULL) {
1498       *decoded_data = data;
1499     } else {
1500       // We allocate image data in this function only for transforms. At level 0
1501       // (that is: not the transforms), we shouldn't have allocated anything.
1502       assert(data == NULL);
1503       assert(is_level0);
1504     }
1505     dec->last_pixel_ = 0;  // Reset for future DECODE_DATA_FUNC() calls.
1506     if (!is_level0) ClearMetadata(hdr);  // Clean up temporary data behind.
1507   }
1508   return ok;
1509 }
1510 
1511 //------------------------------------------------------------------------------
1512 // Allocate internal buffers dec->pixels_ and dec->argb_cache_.
AllocateInternalBuffers32b(VP8LDecoder * const dec,int final_width)1513 static int AllocateInternalBuffers32b(VP8LDecoder* const dec, int final_width) {
1514   const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
1515   // Scratch buffer corresponding to top-prediction row for transforming the
1516   // first row in the row-blocks. Not needed for paletted alpha.
1517   const uint64_t cache_top_pixels = (uint16_t)final_width;
1518   // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha.
1519   const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
1520   const uint64_t total_num_pixels =
1521       num_pixels + cache_top_pixels + cache_pixels;
1522 
1523   assert(dec->width_ <= final_width);
1524   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint32_t));
1525   if (dec->pixels_ == NULL) {
1526     dec->argb_cache_ = NULL;    // for soundness
1527     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1528     return 0;
1529   }
1530   dec->argb_cache_ = dec->pixels_ + num_pixels + cache_top_pixels;
1531   return 1;
1532 }
1533 
AllocateInternalBuffers8b(VP8LDecoder * const dec)1534 static int AllocateInternalBuffers8b(VP8LDecoder* const dec) {
1535   const uint64_t total_num_pixels = (uint64_t)dec->width_ * dec->height_;
1536   dec->argb_cache_ = NULL;    // for soundness
1537   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint8_t));
1538   if (dec->pixels_ == NULL) {
1539     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1540     return 0;
1541   }
1542   return 1;
1543 }
1544 
1545 //------------------------------------------------------------------------------
1546 
1547 // Special row-processing that only stores the alpha data.
ExtractAlphaRows(VP8LDecoder * const dec,int last_row)1548 static void ExtractAlphaRows(VP8LDecoder* const dec, int last_row) {
1549   int cur_row = dec->last_row_;
1550   int num_rows = last_row - cur_row;
1551   const uint32_t* in = dec->pixels_ + dec->width_ * cur_row;
1552 
1553   assert(last_row <= dec->io_->crop_bottom);
1554   while (num_rows > 0) {
1555     const int num_rows_to_process =
1556         (num_rows > NUM_ARGB_CACHE_ROWS) ? NUM_ARGB_CACHE_ROWS : num_rows;
1557     // Extract alpha (which is stored in the green plane).
1558     ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque;
1559     uint8_t* const output = alph_dec->output_;
1560     const int width = dec->io_->width;      // the final width (!= dec->width_)
1561     const int cache_pixs = width * num_rows_to_process;
1562     uint8_t* const dst = output + width * cur_row;
1563     const uint32_t* const src = dec->argb_cache_;
1564     ApplyInverseTransforms(dec, cur_row, num_rows_to_process, in);
1565     WebPExtractGreen(src, dst, cache_pixs);
1566     AlphaApplyFilter(alph_dec,
1567                      cur_row, cur_row + num_rows_to_process, dst, width);
1568     num_rows -= num_rows_to_process;
1569     in += num_rows_to_process * dec->width_;
1570     cur_row += num_rows_to_process;
1571   }
1572   assert(cur_row == last_row);
1573   dec->last_row_ = dec->last_out_row_ = last_row;
1574 }
1575 
VP8LDecodeAlphaHeader(ALPHDecoder * const alph_dec,const uint8_t * const data,size_t data_size)1576 int VP8LDecodeAlphaHeader(ALPHDecoder* const alph_dec,
1577                           const uint8_t* const data, size_t data_size) {
1578   int ok = 0;
1579   VP8LDecoder* dec = VP8LNew();
1580 
1581   if (dec == NULL) return 0;
1582 
1583   assert(alph_dec != NULL);
1584 
1585   dec->width_ = alph_dec->width_;
1586   dec->height_ = alph_dec->height_;
1587   dec->io_ = &alph_dec->io_;
1588   dec->io_->opaque = alph_dec;
1589   dec->io_->width = alph_dec->width_;
1590   dec->io_->height = alph_dec->height_;
1591 
1592   dec->status_ = VP8_STATUS_OK;
1593   VP8LInitBitReader(&dec->br_, data, data_size);
1594 
1595   if (!DecodeImageStream(alph_dec->width_, alph_dec->height_, 1, dec, NULL)) {
1596     goto Err;
1597   }
1598 
1599   // Special case: if alpha data uses only the color indexing transform and
1600   // doesn't use color cache (a frequent case), we will use DecodeAlphaData()
1601   // method that only needs allocation of 1 byte per pixel (alpha channel).
1602   if (dec->next_transform_ == 1 &&
1603       dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM &&
1604       Is8bOptimizable(&dec->hdr_)) {
1605     alph_dec->use_8b_decode_ = 1;
1606     ok = AllocateInternalBuffers8b(dec);
1607   } else {
1608     // Allocate internal buffers (note that dec->width_ may have changed here).
1609     alph_dec->use_8b_decode_ = 0;
1610     ok = AllocateInternalBuffers32b(dec, alph_dec->width_);
1611   }
1612 
1613   if (!ok) goto Err;
1614 
1615   // Only set here, once we are sure it is valid (to avoid thread races).
1616   alph_dec->vp8l_dec_ = dec;
1617   return 1;
1618 
1619  Err:
1620   VP8LDelete(dec);
1621   return 0;
1622 }
1623 
VP8LDecodeAlphaImageStream(ALPHDecoder * const alph_dec,int last_row)1624 int VP8LDecodeAlphaImageStream(ALPHDecoder* const alph_dec, int last_row) {
1625   VP8LDecoder* const dec = alph_dec->vp8l_dec_;
1626   assert(dec != NULL);
1627   assert(last_row <= dec->height_);
1628 
1629   if (dec->last_row_ >= last_row) {
1630     return 1;  // done
1631   }
1632 
1633   if (!alph_dec->use_8b_decode_) WebPInitAlphaProcessing();
1634 
1635   // Decode (with special row processing).
1636   return alph_dec->use_8b_decode_ ?
1637       DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_,
1638                       last_row) :
1639       DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1640                       last_row, ExtractAlphaRows);
1641 }
1642 
1643 //------------------------------------------------------------------------------
1644 
VP8LDecodeHeader(VP8LDecoder * const dec,VP8Io * const io)1645 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
1646   int width, height, has_alpha;
1647 
1648   if (dec == NULL) return 0;
1649   if (io == NULL) {
1650     dec->status_ = VP8_STATUS_INVALID_PARAM;
1651     return 0;
1652   }
1653 
1654   dec->io_ = io;
1655   dec->status_ = VP8_STATUS_OK;
1656   VP8LInitBitReader(&dec->br_, io->data, io->data_size);
1657   if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
1658     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1659     goto Error;
1660   }
1661   dec->state_ = READ_DIM;
1662   io->width = width;
1663   io->height = height;
1664 
1665   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
1666   return 1;
1667 
1668  Error:
1669   VP8LClear(dec);
1670   assert(dec->status_ != VP8_STATUS_OK);
1671   return 0;
1672 }
1673 
VP8LDecodeImage(VP8LDecoder * const dec)1674 int VP8LDecodeImage(VP8LDecoder* const dec) {
1675   VP8Io* io = NULL;
1676   WebPDecParams* params = NULL;
1677 
1678   if (dec == NULL) return 0;
1679 
1680   assert(dec->hdr_.huffman_tables_.root.start != NULL);
1681   assert(dec->hdr_.htree_groups_ != NULL);
1682   assert(dec->hdr_.num_htree_groups_ > 0);
1683 
1684   io = dec->io_;
1685   assert(io != NULL);
1686   params = (WebPDecParams*)io->opaque;
1687   assert(params != NULL);
1688 
1689   // Initialization.
1690   if (dec->state_ != READ_DATA) {
1691     dec->output_ = params->output;
1692     assert(dec->output_ != NULL);
1693 
1694     if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
1695       dec->status_ = VP8_STATUS_INVALID_PARAM;
1696       goto Err;
1697     }
1698 
1699     if (!AllocateInternalBuffers32b(dec, io->width)) goto Err;
1700 
1701 #if !defined(WEBP_REDUCE_SIZE)
1702     if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
1703 #else
1704     if (io->use_scaling) {
1705       dec->status_ = VP8_STATUS_INVALID_PARAM;
1706       goto Err;
1707     }
1708 #endif
1709     if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) {
1710       // need the alpha-multiply functions for premultiplied output or rescaling
1711       WebPInitAlphaProcessing();
1712     }
1713 
1714     if (!WebPIsRGBMode(dec->output_->colorspace)) {
1715       WebPInitConvertARGBToYUV();
1716       if (dec->output_->u.YUVA.a != NULL) WebPInitAlphaProcessing();
1717     }
1718     if (dec->incremental_) {
1719       if (dec->hdr_.color_cache_size_ > 0 &&
1720           dec->hdr_.saved_color_cache_.colors_ == NULL) {
1721         if (!VP8LColorCacheInit(&dec->hdr_.saved_color_cache_,
1722                                 dec->hdr_.color_cache_.hash_bits_)) {
1723           dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1724           goto Err;
1725         }
1726       }
1727     }
1728     dec->state_ = READ_DATA;
1729   }
1730 
1731   // Decode.
1732   if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1733                        io->crop_bottom, ProcessRows)) {
1734     goto Err;
1735   }
1736 
1737   params->last_y = dec->last_out_row_;
1738   return 1;
1739 
1740  Err:
1741   VP8LClear(dec);
1742   assert(dec->status_ != VP8_STATUS_OK);
1743   return 0;
1744 }
1745 
1746 //------------------------------------------------------------------------------
1747