• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Utilities for building and looking up Huffman trees.
11 //
12 // Author: Urvang Joshi (urvang@google.com)
13 
14 #include <assert.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include "src/utils/huffman_utils.h"
18 #include "src/utils/utils.h"
19 #include "src/webp/format_constants.h"
20 
21 // Huffman data read via DecodeImageStream is represented in two (red and green)
22 // bytes.
23 #define MAX_HTREE_GROUPS    0x10000
24 
VP8LHtreeGroupsNew(int num_htree_groups)25 HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) {
26   HTreeGroup* const htree_groups =
27       (HTreeGroup*)WebPSafeMalloc(num_htree_groups, sizeof(*htree_groups));
28   if (htree_groups == NULL) {
29     return NULL;
30   }
31   assert(num_htree_groups <= MAX_HTREE_GROUPS);
32   return htree_groups;
33 }
34 
VP8LHtreeGroupsFree(HTreeGroup * const htree_groups)35 void VP8LHtreeGroupsFree(HTreeGroup* const htree_groups) {
36   if (htree_groups != NULL) {
37     WebPSafeFree(htree_groups);
38   }
39 }
40 
41 // Returns reverse(reverse(key, len) + 1, len), where reverse(key, len) is the
42 // bit-wise reversal of the len least significant bits of key.
GetNextKey(uint32_t key,int len)43 static WEBP_INLINE uint32_t GetNextKey(uint32_t key, int len) {
44   uint32_t step = 1 << (len - 1);
45   while (key & step) {
46     step >>= 1;
47   }
48   return step ? (key & (step - 1)) + step : key;
49 }
50 
51 // Stores code in table[0], table[step], table[2*step], ..., table[end].
52 // Assumes that end is an integer multiple of step.
ReplicateValue(HuffmanCode * table,int step,int end,HuffmanCode code)53 static WEBP_INLINE void ReplicateValue(HuffmanCode* table,
54                                        int step, int end,
55                                        HuffmanCode code) {
56   assert(end % step == 0);
57   do {
58     end -= step;
59     table[end] = code;
60   } while (end > 0);
61 }
62 
63 // Returns the table width of the next 2nd level table. count is the histogram
64 // of bit lengths for the remaining symbols, len is the code length of the next
65 // processed symbol
NextTableBitSize(const int * const count,int len,int root_bits)66 static WEBP_INLINE int NextTableBitSize(const int* const count,
67                                         int len, int root_bits) {
68   int left = 1 << (len - root_bits);
69   while (len < MAX_ALLOWED_CODE_LENGTH) {
70     left -= count[len];
71     if (left <= 0) break;
72     ++len;
73     left <<= 1;
74   }
75   return len - root_bits;
76 }
77 
78 // sorted[code_lengths_size] is a pre-allocated array for sorting symbols
79 // by code length.
BuildHuffmanTable(HuffmanCode * const root_table,int root_bits,const int code_lengths[],int code_lengths_size,uint16_t sorted[])80 static int BuildHuffmanTable(HuffmanCode* const root_table, int root_bits,
81                              const int code_lengths[], int code_lengths_size,
82                              uint16_t sorted[]) {
83   HuffmanCode* table = root_table;  // next available space in table
84   int total_size = 1 << root_bits;  // total size root table + 2nd level table
85   int len;                          // current code length
86   int symbol;                       // symbol index in original or sorted table
87   // number of codes of each length:
88   int count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
89   // offsets in sorted table for each length:
90   int offset[MAX_ALLOWED_CODE_LENGTH + 1];
91 
92   assert(code_lengths_size != 0);
93   assert(code_lengths != NULL);
94   assert((root_table != NULL && sorted != NULL) ||
95          (root_table == NULL && sorted == NULL));
96   assert(root_bits > 0);
97 
98   // Build histogram of code lengths.
99   for (symbol = 0; symbol < code_lengths_size; ++symbol) {
100     if (code_lengths[symbol] > MAX_ALLOWED_CODE_LENGTH) {
101       return 0;
102     }
103     ++count[code_lengths[symbol]];
104   }
105 
106   // Error, all code lengths are zeros.
107   if (count[0] == code_lengths_size) {
108     return 0;
109   }
110 
111   // Generate offsets into sorted symbol table by code length.
112   offset[1] = 0;
113   for (len = 1; len < MAX_ALLOWED_CODE_LENGTH; ++len) {
114     if (count[len] > (1 << len)) {
115       return 0;
116     }
117     offset[len + 1] = offset[len] + count[len];
118   }
119 
120   // Sort symbols by length, by symbol order within each length.
121   for (symbol = 0; symbol < code_lengths_size; ++symbol) {
122     const int symbol_code_length = code_lengths[symbol];
123     if (code_lengths[symbol] > 0) {
124       if (sorted != NULL) {
125         sorted[offset[symbol_code_length]++] = symbol;
126       } else {
127         offset[symbol_code_length]++;
128       }
129     }
130   }
131 
132   // Special case code with only one value.
133   if (offset[MAX_ALLOWED_CODE_LENGTH] == 1) {
134     if (sorted != NULL) {
135       HuffmanCode code;
136       code.bits = 0;
137       code.value = (uint16_t)sorted[0];
138       ReplicateValue(table, 1, total_size, code);
139     }
140     return total_size;
141   }
142 
143   {
144     int step;              // step size to replicate values in current table
145     uint32_t low = -1;     // low bits for current root entry
146     uint32_t mask = total_size - 1;    // mask for low bits
147     uint32_t key = 0;      // reversed prefix code
148     int num_nodes = 1;     // number of Huffman tree nodes
149     int num_open = 1;      // number of open branches in current tree level
150     int table_bits = root_bits;        // key length of current table
151     int table_size = 1 << table_bits;  // size of current table
152     symbol = 0;
153     // Fill in root table.
154     for (len = 1, step = 2; len <= root_bits; ++len, step <<= 1) {
155       num_open <<= 1;
156       num_nodes += num_open;
157       num_open -= count[len];
158       if (num_open < 0) {
159         return 0;
160       }
161       if (root_table == NULL) continue;
162       for (; count[len] > 0; --count[len]) {
163         HuffmanCode code;
164         code.bits = (uint8_t)len;
165         code.value = (uint16_t)sorted[symbol++];
166         ReplicateValue(&table[key], step, table_size, code);
167         key = GetNextKey(key, len);
168       }
169     }
170 
171     // Fill in 2nd level tables and add pointers to root table.
172     for (len = root_bits + 1, step = 2; len <= MAX_ALLOWED_CODE_LENGTH;
173          ++len, step <<= 1) {
174       num_open <<= 1;
175       num_nodes += num_open;
176       num_open -= count[len];
177       if (num_open < 0) {
178         return 0;
179       }
180       for (; count[len] > 0; --count[len]) {
181         HuffmanCode code;
182         if ((key & mask) != low) {
183           if (root_table != NULL) table += table_size;
184           table_bits = NextTableBitSize(count, len, root_bits);
185           table_size = 1 << table_bits;
186           total_size += table_size;
187           low = key & mask;
188           if (root_table != NULL) {
189             root_table[low].bits = (uint8_t)(table_bits + root_bits);
190             root_table[low].value = (uint16_t)((table - root_table) - low);
191           }
192         }
193         if (root_table != NULL) {
194           code.bits = (uint8_t)(len - root_bits);
195           code.value = (uint16_t)sorted[symbol++];
196           ReplicateValue(&table[key >> root_bits], step, table_size, code);
197         }
198         key = GetNextKey(key, len);
199       }
200     }
201 
202     // Check if tree is full.
203     if (num_nodes != 2 * offset[MAX_ALLOWED_CODE_LENGTH] - 1) {
204       return 0;
205     }
206   }
207 
208   return total_size;
209 }
210 
211 // Maximum code_lengths_size is 2328 (reached for 11-bit color_cache_bits).
212 // More commonly, the value is around ~280.
213 #define MAX_CODE_LENGTHS_SIZE \
214   ((1 << MAX_CACHE_BITS) + NUM_LITERAL_CODES + NUM_LENGTH_CODES)
215 // Cut-off value for switching between heap and stack allocation.
216 #define SORTED_SIZE_CUTOFF 512
VP8LBuildHuffmanTable(HuffmanTables * const root_table,int root_bits,const int code_lengths[],int code_lengths_size)217 int VP8LBuildHuffmanTable(HuffmanTables* const root_table, int root_bits,
218                           const int code_lengths[], int code_lengths_size) {
219   const int total_size =
220       BuildHuffmanTable(NULL, root_bits, code_lengths, code_lengths_size, NULL);
221   assert(code_lengths_size <= MAX_CODE_LENGTHS_SIZE);
222   if (total_size == 0 || root_table == NULL) return total_size;
223 
224   if (root_table->curr_segment->curr_table + total_size >=
225       root_table->curr_segment->start + root_table->curr_segment->size) {
226     // If 'root_table' does not have enough memory, allocate a new segment.
227     // The available part of root_table->curr_segment is left unused because we
228     // need a contiguous buffer.
229     const int segment_size = root_table->curr_segment->size;
230     struct HuffmanTablesSegment* next =
231         (HuffmanTablesSegment*)WebPSafeMalloc(1, sizeof(*next));
232     if (next == NULL) return 0;
233     // Fill the new segment.
234     // We need at least 'total_size' but if that value is small, it is better to
235     // allocate a big chunk to prevent more allocations later. 'segment_size' is
236     // therefore chosen (any other arbitrary value could be chosen).
237     next->size = total_size > segment_size ? total_size : segment_size;
238     next->start =
239         (HuffmanCode*)WebPSafeMalloc(next->size, sizeof(*next->start));
240     if (next->start == NULL) {
241       WebPSafeFree(next);
242       return 0;
243     }
244     next->curr_table = next->start;
245     next->next = NULL;
246     // Point to the new segment.
247     root_table->curr_segment->next = next;
248     root_table->curr_segment = next;
249   }
250   if (code_lengths_size <= SORTED_SIZE_CUTOFF) {
251     // use local stack-allocated array.
252     uint16_t sorted[SORTED_SIZE_CUTOFF];
253     BuildHuffmanTable(root_table->curr_segment->curr_table, root_bits,
254                       code_lengths, code_lengths_size, sorted);
255   } else {  // rare case. Use heap allocation.
256     uint16_t* const sorted =
257         (uint16_t*)WebPSafeMalloc(code_lengths_size, sizeof(*sorted));
258     if (sorted == NULL) return 0;
259     BuildHuffmanTable(root_table->curr_segment->curr_table, root_bits,
260                       code_lengths, code_lengths_size, sorted);
261     WebPSafeFree(sorted);
262   }
263   return total_size;
264 }
265 
VP8LHuffmanTablesAllocate(int size,HuffmanTables * huffman_tables)266 int VP8LHuffmanTablesAllocate(int size, HuffmanTables* huffman_tables) {
267   // Have 'segment' point to the first segment for now, 'root'.
268   HuffmanTablesSegment* const root = &huffman_tables->root;
269   huffman_tables->curr_segment = root;
270   // Allocate root.
271   root->start = (HuffmanCode*)WebPSafeMalloc(size, sizeof(*root->start));
272   if (root->start == NULL) return 0;
273   root->curr_table = root->start;
274   root->next = NULL;
275   root->size = size;
276   return 1;
277 }
278 
VP8LHuffmanTablesDeallocate(HuffmanTables * const huffman_tables)279 void VP8LHuffmanTablesDeallocate(HuffmanTables* const huffman_tables) {
280   HuffmanTablesSegment *current, *next;
281   if (huffman_tables == NULL) return;
282   // Free the root node.
283   current = &huffman_tables->root;
284   next = current->next;
285   WebPSafeFree(current->start);
286   current->start = NULL;
287   current->next = NULL;
288   current = next;
289   // Free the following nodes.
290   while (current != NULL) {
291     next = current->next;
292     WebPSafeFree(current->start);
293     WebPSafeFree(current);
294     current = next;
295   }
296 }
297