1 /**************************************************************** 2 3 The author of this software is David M. Gay. 4 5 Copyright (C) 1998-2000 by Lucent Technologies 6 All Rights Reserved 7 8 Permission to use, copy, modify, and distribute this software and 9 its documentation for any purpose and without fee is hereby 10 granted, provided that the above copyright notice appear in all 11 copies and that both that the copyright notice and this 12 permission notice and warranty disclaimer appear in supporting 13 documentation, and that the name of Lucent or any of its entities 14 not be used in advertising or publicity pertaining to 15 distribution of the software without specific, written prior 16 permission. 17 18 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 19 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. 20 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY 21 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 22 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER 23 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, 24 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF 25 THIS SOFTWARE. 26 27 ****************************************************************/ 28 29 /* $FreeBSD$ */ 30 31 /* This is a variation on dtoa.c that converts arbitary binary 32 floating-point formats to and from decimal notation. It uses 33 double-precision arithmetic internally, so there are still 34 various #ifdefs that adapt the calculations to the native 35 double-precision arithmetic (any of IEEE, VAX D_floating, 36 or IBM mainframe arithmetic). 37 38 Please send bug reports to David M. Gay (dmg at acm dot org, 39 with " at " changed at "@" and " dot " changed to "."). 40 */ 41 42 /* On a machine with IEEE extended-precision registers, it is 43 * necessary to specify double-precision (53-bit) rounding precision 44 * before invoking strtod or dtoa. If the machine uses (the equivalent 45 * of) Intel 80x87 arithmetic, the call 46 * _control87(PC_53, MCW_PC); 47 * does this with many compilers. Whether this or another call is 48 * appropriate depends on the compiler; for this to work, it may be 49 * necessary to #include "float.h" or another system-dependent header 50 * file. 51 */ 52 53 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. 54 * 55 * This strtod returns a nearest machine number to the input decimal 56 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are 57 * broken by the IEEE round-even rule. Otherwise ties are broken by 58 * biased rounding (add half and chop). 59 * 60 * Inspired loosely by William D. Clinger's paper "How to Read Floating 61 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126]. 62 * 63 * Modifications: 64 * 65 * 1. We only require IEEE, IBM, or VAX double-precision 66 * arithmetic (not IEEE double-extended). 67 * 2. We get by with floating-point arithmetic in a case that 68 * Clinger missed -- when we're computing d * 10^n 69 * for a small integer d and the integer n is not too 70 * much larger than 22 (the maximum integer k for which 71 * we can represent 10^k exactly), we may be able to 72 * compute (d*10^k) * 10^(e-k) with just one roundoff. 73 * 3. Rather than a bit-at-a-time adjustment of the binary 74 * result in the hard case, we use floating-point 75 * arithmetic to determine the adjustment to within 76 * one bit; only in really hard cases do we need to 77 * compute a second residual. 78 * 4. Because of 3., we don't need a large table of powers of 10 79 * for ten-to-e (just some small tables, e.g. of 10^k 80 * for 0 <= k <= 22). 81 */ 82 83 /* 84 * #define IEEE_8087 for IEEE-arithmetic machines where the least 85 * significant byte has the lowest address. 86 * #define IEEE_MC68k for IEEE-arithmetic machines where the most 87 * significant byte has the lowest address. 88 * #define Long int on machines with 32-bit ints and 64-bit longs. 89 * #define Sudden_Underflow for IEEE-format machines without gradual 90 * underflow (i.e., that flush to zero on underflow). 91 * #define IBM for IBM mainframe-style floating-point arithmetic. 92 * #define VAX for VAX-style floating-point arithmetic (D_floating). 93 * #define No_leftright to omit left-right logic in fast floating-point 94 * computation of dtoa. 95 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. 96 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines 97 * that use extended-precision instructions to compute rounded 98 * products and quotients) with IBM. 99 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic 100 * that rounds toward +Infinity. 101 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased 102 * rounding when the underlying floating-point arithmetic uses 103 * unbiased rounding. This prevent using ordinary floating-point 104 * arithmetic when the result could be computed with one rounding error. 105 * #define Inaccurate_Divide for IEEE-format with correctly rounded 106 * products but inaccurate quotients, e.g., for Intel i860. 107 * #define NO_LONG_LONG on machines that do not have a "long long" 108 * integer type (of >= 64 bits). On such machines, you can 109 * #define Just_16 to store 16 bits per 32-bit Long when doing 110 * high-precision integer arithmetic. Whether this speeds things 111 * up or slows things down depends on the machine and the number 112 * being converted. If long long is available and the name is 113 * something other than "long long", #define Llong to be the name, 114 * and if "unsigned Llong" does not work as an unsigned version of 115 * Llong, #define #ULLong to be the corresponding unsigned type. 116 * #define KR_headers for old-style C function headers. 117 * #define Bad_float_h if your system lacks a float.h or if it does not 118 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, 119 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. 120 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) 121 * if memory is available and otherwise does something you deem 122 * appropriate. If MALLOC is undefined, malloc will be invoked 123 * directly -- and assumed always to succeed. Similarly, if you 124 * want something other than the system's free() to be called to 125 * recycle memory acquired from MALLOC, #define FREE to be the 126 * name of the alternate routine. (FREE or free is only called in 127 * pathological cases, e.g., in a gdtoa call after a gdtoa return in 128 * mode 3 with thousands of digits requested.) 129 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making 130 * memory allocations from a private pool of memory when possible. 131 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, 132 * unless #defined to be a different length. This default length 133 * suffices to get rid of MALLOC calls except for unusual cases, 134 * such as decimal-to-binary conversion of a very long string of 135 * digits. When converting IEEE double precision values, the 136 * longest string gdtoa can return is about 751 bytes long. For 137 * conversions by strtod of strings of 800 digits and all gdtoa 138 * conversions of IEEE doubles in single-threaded executions with 139 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with 140 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate. 141 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK 142 * #defined automatically on IEEE systems. On such systems, 143 * when INFNAN_CHECK is #defined, strtod checks 144 * for Infinity and NaN (case insensitively). 145 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, 146 * strtodg also accepts (case insensitively) strings of the form 147 * NaN(x), where x is a string of hexadecimal digits (optionally 148 * preceded by 0x or 0X) and spaces; if there is only one string 149 * of hexadecimal digits, it is taken for the fraction bits of the 150 * resulting NaN; if there are two or more strings of hexadecimal 151 * digits, each string is assigned to the next available sequence 152 * of 32-bit words of fractions bits (starting with the most 153 * significant), right-aligned in each sequence. 154 * Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)" 155 * is consumed even when ... has the wrong form (in which case the 156 * "(...)" is consumed but ignored). 157 * #define MULTIPLE_THREADS if the system offers preemptively scheduled 158 * multiple threads. In this case, you must provide (or suitably 159 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed 160 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed 161 * in pow5mult, ensures lazy evaluation of only one copy of high 162 * powers of 5; omitting this lock would introduce a small 163 * probability of wasting memory, but would otherwise be harmless.) 164 * You must also invoke freedtoa(s) to free the value s returned by 165 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. 166 * #define IMPRECISE_INEXACT if you do not care about the setting of 167 * the STRTOG_Inexact bits in the special case of doing IEEE double 168 * precision conversions (which could also be done by the strtod in 169 * dtoa.c). 170 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal 171 * floating-point constants. 172 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and 173 * strtodg.c). 174 * #define NO_STRING_H to use private versions of memcpy. 175 * On some K&R systems, it may also be necessary to 176 * #define DECLARE_SIZE_T in this case. 177 * #define USE_LOCALE to use the current locale's decimal_point value. 178 */ 179 180 #ifndef GDTOAIMP_H_INCLUDED 181 #define GDTOAIMP_H_INCLUDED 182 183 #define Long int 184 185 #include "gdtoa.h" 186 #include "gd_qnan.h" 187 #ifdef Honor_FLT_ROUNDS 188 #include <fenv.h> 189 #endif 190 191 #ifdef DEBUG 192 #include "stdio.h" 193 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} 194 #endif 195 196 #define __isthreaded 1 197 #define _pthread_mutex_lock pthread_mutex_lock 198 #define _pthread_mutex_unlock pthread_mutex_unlock 199 200 #include "stdlib.h" 201 #include "string.h" 202 #include <pthread.h> 203 204 #ifdef KR_headers 205 #define Char char 206 #else 207 #define Char void 208 #endif 209 210 #ifdef MALLOC 211 extern Char *MALLOC ANSI((size_t)); 212 #else 213 #define MALLOC malloc 214 #endif 215 216 #define INFNAN_CHECK 217 #define NO_LOCALE_CACHE 218 #define Honor_FLT_ROUNDS 219 #define Trust_FLT_ROUNDS 220 221 #undef IEEE_Arith 222 #undef Avoid_Underflow 223 #ifdef IEEE_MC68k 224 #define IEEE_Arith 225 #endif 226 #ifdef IEEE_8087 227 #define IEEE_Arith 228 #endif 229 230 #include "errno.h" 231 #ifdef Bad_float_h 232 233 #ifdef IEEE_Arith 234 #define DBL_DIG 15 235 #define DBL_MAX_10_EXP 308 236 #define DBL_MAX_EXP 1024 237 #define FLT_RADIX 2 238 #define DBL_MAX 1.7976931348623157e+308 239 #endif 240 241 #ifdef IBM 242 #define DBL_DIG 16 243 #define DBL_MAX_10_EXP 75 244 #define DBL_MAX_EXP 63 245 #define FLT_RADIX 16 246 #define DBL_MAX 7.2370055773322621e+75 247 #endif 248 249 #ifdef VAX 250 #define DBL_DIG 16 251 #define DBL_MAX_10_EXP 38 252 #define DBL_MAX_EXP 127 253 #define FLT_RADIX 2 254 #define DBL_MAX 1.7014118346046923e+38 255 #define n_bigtens 2 256 #endif 257 258 #ifndef LONG_MAX 259 #define LONG_MAX 2147483647 260 #endif 261 262 #else /* ifndef Bad_float_h */ 263 #include "float.h" 264 #endif /* Bad_float_h */ 265 266 #ifdef IEEE_Arith 267 #define Scale_Bit 0x10 268 #define n_bigtens 5 269 #endif 270 271 #ifdef IBM 272 #define n_bigtens 3 273 #endif 274 275 #ifdef VAX 276 #define n_bigtens 2 277 #endif 278 279 #ifndef __MATH_H__ 280 #include "math.h" 281 #endif 282 283 #ifdef __cplusplus 284 extern "C" { 285 #endif 286 287 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 288 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. 289 #endif 290 291 typedef union { double d; ULong L[2]; } U; 292 293 #ifdef IEEE_8087 294 #define word0(x) (x)->L[1] 295 #define word1(x) (x)->L[0] 296 #else 297 #define word0(x) (x)->L[0] 298 #define word1(x) (x)->L[1] 299 #endif 300 #define dval(x) (x)->d 301 302 /* The following definition of Storeinc is appropriate for MIPS processors. 303 * An alternative that might be better on some machines is 304 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) 305 */ 306 #if defined(IEEE_8087) + defined(VAX) 307 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ 308 ((unsigned short *)a)[0] = (unsigned short)c, a++) 309 #else 310 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ 311 ((unsigned short *)a)[1] = (unsigned short)c, a++) 312 #endif 313 314 /* #define P DBL_MANT_DIG */ 315 /* Ten_pmax = floor(P*log(2)/log(5)) */ 316 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ 317 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ 318 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ 319 320 #ifdef IEEE_Arith 321 #define Exp_shift 20 322 #define Exp_shift1 20 323 #define Exp_msk1 0x100000 324 #define Exp_msk11 0x100000 325 #define Exp_mask 0x7ff00000 326 #define P 53 327 #define Bias 1023 328 #define Emin (-1022) 329 #define Exp_1 0x3ff00000 330 #define Exp_11 0x3ff00000 331 #define Ebits 11 332 #define Frac_mask 0xfffff 333 #define Frac_mask1 0xfffff 334 #define Ten_pmax 22 335 #define Bletch 0x10 336 #define Bndry_mask 0xfffff 337 #define Bndry_mask1 0xfffff 338 #define LSB 1 339 #define Sign_bit 0x80000000 340 #define Log2P 1 341 #define Tiny0 0 342 #define Tiny1 1 343 #define Quick_max 14 344 #define Int_max 14 345 346 #ifndef Flt_Rounds 347 #ifdef FLT_ROUNDS 348 #define Flt_Rounds FLT_ROUNDS 349 #else 350 #define Flt_Rounds 1 351 #endif 352 #endif /*Flt_Rounds*/ 353 354 #else /* ifndef IEEE_Arith */ 355 #undef Sudden_Underflow 356 #define Sudden_Underflow 357 #ifdef IBM 358 #undef Flt_Rounds 359 #define Flt_Rounds 0 360 #define Exp_shift 24 361 #define Exp_shift1 24 362 #define Exp_msk1 0x1000000 363 #define Exp_msk11 0x1000000 364 #define Exp_mask 0x7f000000 365 #define P 14 366 #define Bias 65 367 #define Exp_1 0x41000000 368 #define Exp_11 0x41000000 369 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ 370 #define Frac_mask 0xffffff 371 #define Frac_mask1 0xffffff 372 #define Bletch 4 373 #define Ten_pmax 22 374 #define Bndry_mask 0xefffff 375 #define Bndry_mask1 0xffffff 376 #define LSB 1 377 #define Sign_bit 0x80000000 378 #define Log2P 4 379 #define Tiny0 0x100000 380 #define Tiny1 0 381 #define Quick_max 14 382 #define Int_max 15 383 #else /* VAX */ 384 #undef Flt_Rounds 385 #define Flt_Rounds 1 386 #define Exp_shift 23 387 #define Exp_shift1 7 388 #define Exp_msk1 0x80 389 #define Exp_msk11 0x800000 390 #define Exp_mask 0x7f80 391 #define P 56 392 #define Bias 129 393 #define Exp_1 0x40800000 394 #define Exp_11 0x4080 395 #define Ebits 8 396 #define Frac_mask 0x7fffff 397 #define Frac_mask1 0xffff007f 398 #define Ten_pmax 24 399 #define Bletch 2 400 #define Bndry_mask 0xffff007f 401 #define Bndry_mask1 0xffff007f 402 #define LSB 0x10000 403 #define Sign_bit 0x8000 404 #define Log2P 1 405 #define Tiny0 0x80 406 #define Tiny1 0 407 #define Quick_max 15 408 #define Int_max 15 409 #endif /* IBM, VAX */ 410 #endif /* IEEE_Arith */ 411 412 #ifndef IEEE_Arith 413 #define ROUND_BIASED 414 #else 415 #ifdef ROUND_BIASED_without_Round_Up 416 #undef ROUND_BIASED 417 #define ROUND_BIASED 418 #endif 419 #endif 420 421 #ifdef RND_PRODQUOT 422 #define rounded_product(a,b) a = rnd_prod(a, b) 423 #define rounded_quotient(a,b) a = rnd_quot(a, b) 424 #ifdef KR_headers 425 extern double rnd_prod(), rnd_quot(); 426 #else 427 extern double rnd_prod(double, double), rnd_quot(double, double); 428 #endif 429 #else 430 #define rounded_product(a,b) a *= b 431 #define rounded_quotient(a,b) a /= b 432 #endif 433 434 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) 435 #define Big1 0xffffffff 436 437 #undef Pack_16 438 #ifndef Pack_32 439 #define Pack_32 440 #endif 441 442 #ifdef NO_LONG_LONG 443 #undef ULLong 444 #ifdef Just_16 445 #undef Pack_32 446 #define Pack_16 447 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long. 448 * This makes some inner loops simpler and sometimes saves work 449 * during multiplications, but it often seems to make things slightly 450 * slower. Hence the default is now to store 32 bits per Long. 451 */ 452 #endif 453 #else /* long long available */ 454 #ifndef Llong 455 #define Llong long long 456 #endif 457 #ifndef ULLong 458 #define ULLong unsigned Llong 459 #endif 460 #endif /* NO_LONG_LONG */ 461 462 #ifdef Pack_32 463 #define ULbits 32 464 #define kshift 5 465 #define kmask 31 466 #define ALL_ON 0xffffffff 467 #else 468 #define ULbits 16 469 #define kshift 4 470 #define kmask 15 471 #define ALL_ON 0xffff 472 #endif 473 474 #define MULTIPLE_THREADS 475 extern pthread_mutex_t __gdtoa_locks[2]; 476 #define ACQUIRE_DTOA_LOCK(n) do { \ 477 if (__isthreaded) \ 478 _pthread_mutex_lock(&__gdtoa_locks[n]); \ 479 } while(0) 480 #define FREE_DTOA_LOCK(n) do { \ 481 if (__isthreaded) \ 482 _pthread_mutex_unlock(&__gdtoa_locks[n]); \ 483 } while(0) 484 485 #define Kmax 9 486 487 struct 488 Bigint { 489 struct Bigint *next; 490 int k, maxwds, sign, wds; 491 ULong x[1]; 492 }; 493 494 typedef struct Bigint Bigint; 495 496 #ifdef NO_STRING_H 497 #ifdef DECLARE_SIZE_T 498 typedef unsigned int size_t; 499 #endif 500 extern void memcpy_D2A ANSI((void*, const void*, size_t)); 501 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) 502 #else /* !NO_STRING_H */ 503 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int)) 504 #endif /* NO_STRING_H */ 505 506 /* 507 * Paranoia: Protect exported symbols, including ones in files we don't 508 * compile right now. The standard strtof and strtod survive. 509 */ 510 #define dtoa __dtoa 511 #define gdtoa __gdtoa 512 #define freedtoa __freedtoa 513 #define strtodg __strtodg 514 #define g_ddfmt __g_ddfmt 515 #define g_dfmt __g_dfmt 516 #define g_ffmt __g_ffmt 517 #define g_Qfmt __g_Qfmt 518 #define g_xfmt __g_xfmt 519 #define g_xLfmt __g_xLfmt 520 #define strtoId __strtoId 521 #define strtoIdd __strtoIdd 522 #define strtoIf __strtoIf 523 #define strtoIQ __strtoIQ 524 #define strtoIx __strtoIx 525 #define strtoIxL __strtoIxL 526 #define strtord_l __strtord_l 527 #define strtordd __strtordd 528 #define strtorf __strtorf 529 #define strtorQ_l __strtorQ_l 530 #define strtorx_l __strtorx_l 531 #define strtorxL __strtorxL 532 #define strtodI __strtodI 533 #define strtopd __strtopd 534 #define strtopdd __strtopdd 535 #define strtopf __strtopf 536 #define strtopQ __strtopQ 537 #define strtopx __strtopx 538 #define strtopxL __strtopxL 539 540 /* Protect gdtoa-internal symbols */ 541 #define Balloc __Balloc_D2A 542 #define Bfree __Bfree_D2A 543 #define ULtoQ __ULtoQ_D2A 544 #define ULtof __ULtof_D2A 545 #define ULtod __ULtod_D2A 546 #define ULtodd __ULtodd_D2A 547 #define ULtox __ULtox_D2A 548 #define ULtoxL __ULtoxL_D2A 549 #define any_on __any_on_D2A 550 #define b2d __b2d_D2A 551 #define bigtens __bigtens_D2A 552 #define cmp __cmp_D2A 553 #define copybits __copybits_D2A 554 #define d2b __d2b_D2A 555 #define decrement __decrement_D2A 556 #define diff __diff_D2A 557 #define dtoa_result __dtoa_result_D2A 558 #define g__fmt __g__fmt_D2A 559 #define gethex __gethex_D2A 560 #define hexdig __hexdig_D2A 561 #define hexdig_init_D2A __hexdig_init_D2A 562 #define hexnan __hexnan_D2A 563 #define hi0bits __hi0bits_D2A 564 #define hi0bits_D2A __hi0bits_D2A 565 #define i2b __i2b_D2A 566 #define increment __increment_D2A 567 #define lo0bits __lo0bits_D2A 568 #define lshift __lshift_D2A 569 #define match __match_D2A 570 #define mult __mult_D2A 571 #define multadd __multadd_D2A 572 #define nrv_alloc __nrv_alloc_D2A 573 #define pow5mult __pow5mult_D2A 574 #define quorem __quorem_D2A 575 #define ratio __ratio_D2A 576 #define rshift __rshift_D2A 577 #define rv_alloc __rv_alloc_D2A 578 #define s2b __s2b_D2A 579 #define set_ones __set_ones_D2A 580 #define strcp __strcp_D2A 581 #define strcp_D2A __strcp_D2A 582 #define strtoIg __strtoIg_D2A 583 #define sum __sum_D2A 584 #define tens __tens_D2A 585 #define tinytens __tinytens_D2A 586 #define tinytens __tinytens_D2A 587 #define trailz __trailz_D2A 588 #define ulp __ulp_D2A 589 590 extern char *dtoa_result; 591 extern CONST double bigtens[], tens[], tinytens[]; 592 extern unsigned char hexdig[]; 593 594 extern Bigint *Balloc ANSI((int)); 595 extern void Bfree ANSI((Bigint*)); 596 extern void ULtof ANSI((ULong*, ULong*, Long, int)); 597 extern void ULtod ANSI((ULong*, ULong*, Long, int)); 598 extern void ULtodd ANSI((ULong*, ULong*, Long, int)); 599 extern void ULtoQ ANSI((ULong*, ULong*, Long, int)); 600 extern void ULtox ANSI((UShort*, ULong*, Long, int)); 601 extern void ULtoxL ANSI((ULong*, ULong*, Long, int)); 602 extern ULong any_on ANSI((Bigint*, int)); 603 extern double b2d ANSI((Bigint*, int*)); 604 extern int cmp ANSI((Bigint*, Bigint*)); 605 extern void copybits ANSI((ULong*, int, Bigint*)); 606 extern Bigint *d2b ANSI((double, int*, int*)); 607 extern void decrement ANSI((Bigint*)); 608 extern Bigint *diff ANSI((Bigint*, Bigint*)); 609 extern char *dtoa ANSI((double d, int mode, int ndigits, 610 int *decpt, int *sign, char **rve)); 611 extern void freedtoa ANSI((char*)); 612 extern char *gdtoa ANSI((FPI *fpi, int be, ULong *bits, int *kindp, 613 int mode, int ndigits, int *decpt, char **rve)); 614 extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t)); 615 extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int)); 616 extern void hexdig_init_D2A(Void); 617 extern int hexnan ANSI((CONST char**, FPI*, ULong*)); 618 extern int hi0bits ANSI((ULong)); 619 extern Bigint *i2b ANSI((int)); 620 extern Bigint *increment ANSI((Bigint*)); 621 extern int lo0bits ANSI((ULong*)); 622 extern Bigint *lshift ANSI((Bigint*, int)); 623 extern int match ANSI((CONST char**, char*)); 624 extern Bigint *mult ANSI((Bigint*, Bigint*)); 625 extern Bigint *multadd ANSI((Bigint*, int, int)); 626 extern char *nrv_alloc ANSI((char*, char **, int)); 627 extern Bigint *pow5mult ANSI((Bigint*, int)); 628 extern int quorem ANSI((Bigint*, Bigint*)); 629 extern double ratio ANSI((Bigint*, Bigint*)); 630 extern void rshift ANSI((Bigint*, int)); 631 extern char *rv_alloc ANSI((int)); 632 extern Bigint *s2b ANSI((CONST char*, int, int, ULong, int)); 633 extern Bigint *set_ones ANSI((Bigint*, int)); 634 extern char *strcp ANSI((char*, const char*)); 635 extern int strtodg_l ANSI((CONST char*, char**, FPI*, Long*, ULong*, locale_t)); 636 637 extern int strtoId ANSI((CONST char *, char **, double *, double *)); 638 extern int strtoIdd ANSI((CONST char *, char **, double *, double *)); 639 extern int strtoIf ANSI((CONST char *, char **, float *, float *)); 640 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*)); 641 extern int strtoIQ ANSI((CONST char *, char **, void *, void *)); 642 extern int strtoIx ANSI((CONST char *, char **, void *, void *)); 643 extern int strtoIxL ANSI((CONST char *, char **, void *, void *)); 644 extern double strtod ANSI((const char *s00, char **se)); 645 extern int strtopQ ANSI((CONST char *, char **, Void *)); 646 extern int strtopf ANSI((CONST char *, char **, float *)); 647 extern int strtopd ANSI((CONST char *, char **, double *)); 648 extern int strtopdd ANSI((CONST char *, char **, double *)); 649 extern int strtopx ANSI((CONST char *, char **, Void *)); 650 extern int strtopxL ANSI((CONST char *, char **, Void *)); 651 extern int strtord_l ANSI((CONST char *, char **, int, double *, locale_t)); 652 extern int strtordd ANSI((CONST char *, char **, int, double *)); 653 extern int strtorf ANSI((CONST char *, char **, int, float *)); 654 extern int strtorQ_l ANSI((CONST char *, char **, int, void *, locale_t)); 655 extern int strtorx_l ANSI((CONST char *, char **, int, void *, locale_t)); 656 extern int strtorxL ANSI((CONST char *, char **, int, void *)); 657 extern Bigint *sum ANSI((Bigint*, Bigint*)); 658 extern int trailz ANSI((Bigint*)); 659 extern double ulp ANSI((U*)); 660 661 #ifdef __cplusplus 662 } 663 #endif 664 /* 665 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to 666 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0, 667 * respectively), but now are determined by compiling and running 668 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1. 669 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=... 670 * and -DNAN_WORD1=... values if necessary. This should still work. 671 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) 672 */ 673 #ifdef IEEE_Arith 674 #ifndef NO_INFNAN_CHECK 675 #undef INFNAN_CHECK 676 #define INFNAN_CHECK 677 #endif 678 #ifdef IEEE_MC68k 679 #define _0 0 680 #define _1 1 681 #ifndef NAN_WORD0 682 #define NAN_WORD0 d_QNAN0 683 #endif 684 #ifndef NAN_WORD1 685 #define NAN_WORD1 d_QNAN1 686 #endif 687 #else 688 #define _0 1 689 #define _1 0 690 #ifndef NAN_WORD0 691 #define NAN_WORD0 d_QNAN1 692 #endif 693 #ifndef NAN_WORD1 694 #define NAN_WORD1 d_QNAN0 695 #endif 696 #endif 697 #else 698 #undef INFNAN_CHECK 699 #endif 700 701 #undef SI 702 #ifdef Sudden_Underflow 703 #define SI 1 704 #else 705 #define SI 0 706 #endif 707 708 #endif /* GDTOAIMP_H_INCLUDED */ 709