1 //===- SpillPlacement.cpp - Optimal Spill Code Placement ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the spill code placement analysis.
10 //
11 // Each edge bundle corresponds to a node in a Hopfield network. Constraints on
12 // basic blocks are weighted by the block frequency and added to become the node
13 // bias.
14 //
15 // Transparent basic blocks have the variable live through, but don't care if it
16 // is spilled or in a register. These blocks become connections in the Hopfield
17 // network, again weighted by block frequency.
18 //
19 // The Hopfield network minimizes (possibly locally) its energy function:
20 //
21 // E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
22 //
23 // The energy function represents the expected spill code execution frequency,
24 // or the cost of spilling. This is a Lyapunov function which never increases
25 // when a node is updated. It is guaranteed to converge to a local minimum.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #include "SpillPlacement.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/SparseSet.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineLoopInfo.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/BlockFrequency.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstdint>
46 #include <utility>
47
48 using namespace llvm;
49
50 #define DEBUG_TYPE "spill-code-placement"
51
52 char SpillPlacement::ID = 0;
53
54 char &llvm::SpillPlacementID = SpillPlacement::ID;
55
56 INITIALIZE_PASS_BEGIN(SpillPlacement, DEBUG_TYPE,
57 "Spill Code Placement Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(EdgeBundles)58 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
59 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
60 INITIALIZE_PASS_END(SpillPlacement, DEBUG_TYPE,
61 "Spill Code Placement Analysis", true, true)
62
63 void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
64 AU.setPreservesAll();
65 AU.addRequired<MachineBlockFrequencyInfo>();
66 AU.addRequiredTransitive<EdgeBundles>();
67 AU.addRequiredTransitive<MachineLoopInfo>();
68 MachineFunctionPass::getAnalysisUsage(AU);
69 }
70
71 /// Node - Each edge bundle corresponds to a Hopfield node.
72 ///
73 /// The node contains precomputed frequency data that only depends on the CFG,
74 /// but Bias and Links are computed each time placeSpills is called.
75 ///
76 /// The node Value is positive when the variable should be in a register. The
77 /// value can change when linked nodes change, but convergence is very fast
78 /// because all weights are positive.
79 struct SpillPlacement::Node {
80 /// BiasN - Sum of blocks that prefer a spill.
81 BlockFrequency BiasN;
82
83 /// BiasP - Sum of blocks that prefer a register.
84 BlockFrequency BiasP;
85
86 /// Value - Output value of this node computed from the Bias and links.
87 /// This is always on of the values {-1, 0, 1}. A positive number means the
88 /// variable should go in a register through this bundle.
89 int Value;
90
91 using LinkVector = SmallVector<std::pair<BlockFrequency, unsigned>, 4>;
92
93 /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
94 /// bundles. The weights are all positive block frequencies.
95 LinkVector Links;
96
97 /// SumLinkWeights - Cached sum of the weights of all links + ThresHold.
98 BlockFrequency SumLinkWeights;
99
100 /// preferReg - Return true when this node prefers to be in a register.
preferRegSpillPlacement::Node101 bool preferReg() const {
102 // Undecided nodes (Value==0) go on the stack.
103 return Value > 0;
104 }
105
106 /// mustSpill - Return True if this node is so biased that it must spill.
mustSpillSpillPlacement::Node107 bool mustSpill() const {
108 // We must spill if Bias < -sum(weights) or the MustSpill flag was set.
109 // BiasN is saturated when MustSpill is set, make sure this still returns
110 // true when the RHS saturates. Note that SumLinkWeights includes Threshold.
111 return BiasN >= BiasP + SumLinkWeights;
112 }
113
114 /// clear - Reset per-query data, but preserve frequencies that only depend on
115 /// the CFG.
clearSpillPlacement::Node116 void clear(const BlockFrequency &Threshold) {
117 BiasN = BiasP = Value = 0;
118 SumLinkWeights = Threshold;
119 Links.clear();
120 }
121
122 /// addLink - Add a link to bundle b with weight w.
addLinkSpillPlacement::Node123 void addLink(unsigned b, BlockFrequency w) {
124 // Update cached sum.
125 SumLinkWeights += w;
126
127 // There can be multiple links to the same bundle, add them up.
128 for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
129 if (I->second == b) {
130 I->first += w;
131 return;
132 }
133 // This must be the first link to b.
134 Links.push_back(std::make_pair(w, b));
135 }
136
137 /// addBias - Bias this node.
addBiasSpillPlacement::Node138 void addBias(BlockFrequency freq, BorderConstraint direction) {
139 switch (direction) {
140 default:
141 break;
142 case PrefReg:
143 BiasP += freq;
144 break;
145 case PrefSpill:
146 BiasN += freq;
147 break;
148 case MustSpill:
149 BiasN = BlockFrequency::getMaxFrequency();
150 break;
151 }
152 }
153
154 /// update - Recompute Value from Bias and Links. Return true when node
155 /// preference changes.
updateSpillPlacement::Node156 bool update(const Node nodes[], const BlockFrequency &Threshold) {
157 // Compute the weighted sum of inputs.
158 BlockFrequency SumN = BiasN;
159 BlockFrequency SumP = BiasP;
160 for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) {
161 if (nodes[I->second].Value == -1)
162 SumN += I->first;
163 else if (nodes[I->second].Value == 1)
164 SumP += I->first;
165 }
166
167 // Each weighted sum is going to be less than the total frequency of the
168 // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we
169 // will add a dead zone around 0 for two reasons:
170 //
171 // 1. It avoids arbitrary bias when all links are 0 as is possible during
172 // initial iterations.
173 // 2. It helps tame rounding errors when the links nominally sum to 0.
174 //
175 bool Before = preferReg();
176 if (SumN >= SumP + Threshold)
177 Value = -1;
178 else if (SumP >= SumN + Threshold)
179 Value = 1;
180 else
181 Value = 0;
182 return Before != preferReg();
183 }
184
getDissentingNeighborsSpillPlacement::Node185 void getDissentingNeighbors(SparseSet<unsigned> &List,
186 const Node nodes[]) const {
187 for (const auto &Elt : Links) {
188 unsigned n = Elt.second;
189 // Neighbors that already have the same value are not going to
190 // change because of this node changing.
191 if (Value != nodes[n].Value)
192 List.insert(n);
193 }
194 }
195 };
196
runOnMachineFunction(MachineFunction & mf)197 bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
198 MF = &mf;
199 bundles = &getAnalysis<EdgeBundles>();
200 loops = &getAnalysis<MachineLoopInfo>();
201
202 assert(!nodes && "Leaking node array");
203 nodes = new Node[bundles->getNumBundles()];
204 TodoList.clear();
205 TodoList.setUniverse(bundles->getNumBundles());
206
207 // Compute total ingoing and outgoing block frequencies for all bundles.
208 BlockFrequencies.resize(mf.getNumBlockIDs());
209 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
210 setThreshold(MBFI->getEntryFreq());
211 for (auto &I : mf) {
212 unsigned Num = I.getNumber();
213 BlockFrequencies[Num] = MBFI->getBlockFreq(&I);
214 }
215
216 // We never change the function.
217 return false;
218 }
219
releaseMemory()220 void SpillPlacement::releaseMemory() {
221 delete[] nodes;
222 nodes = nullptr;
223 TodoList.clear();
224 }
225
226 /// activate - mark node n as active if it wasn't already.
activate(unsigned n)227 void SpillPlacement::activate(unsigned n) {
228 TodoList.insert(n);
229 if (ActiveNodes->test(n))
230 return;
231 ActiveNodes->set(n);
232 nodes[n].clear(Threshold);
233
234 // Very large bundles usually come from big switches, indirect branches,
235 // landing pads, or loops with many 'continue' statements. It is difficult to
236 // allocate registers when so many different blocks are involved.
237 //
238 // Give a small negative bias to large bundles such that a substantial
239 // fraction of the connected blocks need to be interested before we consider
240 // expanding the region through the bundle. This helps compile time by
241 // limiting the number of blocks visited and the number of links in the
242 // Hopfield network.
243 if (bundles->getBlocks(n).size() > 100) {
244 nodes[n].BiasP = 0;
245 nodes[n].BiasN = (MBFI->getEntryFreq() / 16);
246 }
247 }
248
249 /// Set the threshold for a given entry frequency.
250 ///
251 /// Set the threshold relative to \c Entry. Since the threshold is used as a
252 /// bound on the open interval (-Threshold;Threshold), 1 is the minimum
253 /// threshold.
setThreshold(const BlockFrequency & Entry)254 void SpillPlacement::setThreshold(const BlockFrequency &Entry) {
255 // Apparently 2 is a good threshold when Entry==2^14, but we need to scale
256 // it. Divide by 2^13, rounding as appropriate.
257 uint64_t Freq = Entry.getFrequency();
258 uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12));
259 Threshold = std::max(UINT64_C(1), Scaled);
260 }
261
262 /// addConstraints - Compute node biases and weights from a set of constraints.
263 /// Set a bit in NodeMask for each active node.
addConstraints(ArrayRef<BlockConstraint> LiveBlocks)264 void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
265 for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
266 E = LiveBlocks.end(); I != E; ++I) {
267 BlockFrequency Freq = BlockFrequencies[I->Number];
268
269 // Live-in to block?
270 if (I->Entry != DontCare) {
271 unsigned ib = bundles->getBundle(I->Number, false);
272 activate(ib);
273 nodes[ib].addBias(Freq, I->Entry);
274 }
275
276 // Live-out from block?
277 if (I->Exit != DontCare) {
278 unsigned ob = bundles->getBundle(I->Number, true);
279 activate(ob);
280 nodes[ob].addBias(Freq, I->Exit);
281 }
282 }
283 }
284
285 /// addPrefSpill - Same as addConstraints(PrefSpill)
addPrefSpill(ArrayRef<unsigned> Blocks,bool Strong)286 void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
287 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
288 I != E; ++I) {
289 BlockFrequency Freq = BlockFrequencies[*I];
290 if (Strong)
291 Freq += Freq;
292 unsigned ib = bundles->getBundle(*I, false);
293 unsigned ob = bundles->getBundle(*I, true);
294 activate(ib);
295 activate(ob);
296 nodes[ib].addBias(Freq, PrefSpill);
297 nodes[ob].addBias(Freq, PrefSpill);
298 }
299 }
300
addLinks(ArrayRef<unsigned> Links)301 void SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
302 for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
303 ++I) {
304 unsigned Number = *I;
305 unsigned ib = bundles->getBundle(Number, false);
306 unsigned ob = bundles->getBundle(Number, true);
307
308 // Ignore self-loops.
309 if (ib == ob)
310 continue;
311 activate(ib);
312 activate(ob);
313 BlockFrequency Freq = BlockFrequencies[Number];
314 nodes[ib].addLink(ob, Freq);
315 nodes[ob].addLink(ib, Freq);
316 }
317 }
318
scanActiveBundles()319 bool SpillPlacement::scanActiveBundles() {
320 RecentPositive.clear();
321 for (unsigned n : ActiveNodes->set_bits()) {
322 update(n);
323 // A node that must spill, or a node without any links is not going to
324 // change its value ever again, so exclude it from iterations.
325 if (nodes[n].mustSpill())
326 continue;
327 if (nodes[n].preferReg())
328 RecentPositive.push_back(n);
329 }
330 return !RecentPositive.empty();
331 }
332
update(unsigned n)333 bool SpillPlacement::update(unsigned n) {
334 if (!nodes[n].update(nodes, Threshold))
335 return false;
336 nodes[n].getDissentingNeighbors(TodoList, nodes);
337 return true;
338 }
339
340 /// iterate - Repeatedly update the Hopfield nodes until stability or the
341 /// maximum number of iterations is reached.
iterate()342 void SpillPlacement::iterate() {
343 // We do not need to push those node in the todolist.
344 // They are already been proceeded as part of the previous iteration.
345 RecentPositive.clear();
346
347 // Since the last iteration, the todolist have been augmented by calls
348 // to addConstraints, addLinks, and co.
349 // Update the network energy starting at this new frontier.
350 // The call to ::update will add the nodes that changed into the todolist.
351 unsigned Limit = bundles->getNumBundles() * 10;
352 while(Limit-- > 0 && !TodoList.empty()) {
353 unsigned n = TodoList.pop_back_val();
354 if (!update(n))
355 continue;
356 if (nodes[n].preferReg())
357 RecentPositive.push_back(n);
358 }
359 }
360
prepare(BitVector & RegBundles)361 void SpillPlacement::prepare(BitVector &RegBundles) {
362 RecentPositive.clear();
363 TodoList.clear();
364 // Reuse RegBundles as our ActiveNodes vector.
365 ActiveNodes = &RegBundles;
366 ActiveNodes->clear();
367 ActiveNodes->resize(bundles->getNumBundles());
368 }
369
370 bool
finish()371 SpillPlacement::finish() {
372 assert(ActiveNodes && "Call prepare() first");
373
374 // Write preferences back to ActiveNodes.
375 bool Perfect = true;
376 for (unsigned n : ActiveNodes->set_bits())
377 if (!nodes[n].preferReg()) {
378 ActiveNodes->reset(n);
379 Perfect = false;
380 }
381 ActiveNodes = nullptr;
382 return Perfect;
383 }
384