1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/memblock.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
19 #include <linux/efi.h> /* efi_recover_from_page_fault()*/
20 #include <linux/mm_types.h>
21
22 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
23 #include <asm/traps.h> /* dotraplinkage, ... */
24 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
25 #include <asm/vsyscall.h> /* emulate_vsyscall */
26 #include <asm/vm86.h> /* struct vm86 */
27 #include <asm/mmu_context.h> /* vma_pkey() */
28 #include <asm/efi.h> /* efi_recover_from_page_fault()*/
29 #include <asm/desc.h> /* store_idt(), ... */
30 #include <asm/cpu_entry_area.h> /* exception stack */
31 #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
32 #include <asm/kvm_para.h> /* kvm_handle_async_pf */
33
34 #define CREATE_TRACE_POINTS
35 #include <asm/trace/exceptions.h>
36
37 /*
38 * Returns 0 if mmiotrace is disabled, or if the fault is not
39 * handled by mmiotrace:
40 */
41 static nokprobe_inline int
kmmio_fault(struct pt_regs * regs,unsigned long addr)42 kmmio_fault(struct pt_regs *regs, unsigned long addr)
43 {
44 if (unlikely(is_kmmio_active()))
45 if (kmmio_handler(regs, addr) == 1)
46 return -1;
47 return 0;
48 }
49
50 /*
51 * Prefetch quirks:
52 *
53 * 32-bit mode:
54 *
55 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
56 * Check that here and ignore it. This is AMD erratum #91.
57 *
58 * 64-bit mode:
59 *
60 * Sometimes the CPU reports invalid exceptions on prefetch.
61 * Check that here and ignore it.
62 *
63 * Opcode checker based on code by Richard Brunner.
64 */
65 static inline int
check_prefetch_opcode(struct pt_regs * regs,unsigned char * instr,unsigned char opcode,int * prefetch)66 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
67 unsigned char opcode, int *prefetch)
68 {
69 unsigned char instr_hi = opcode & 0xf0;
70 unsigned char instr_lo = opcode & 0x0f;
71
72 switch (instr_hi) {
73 case 0x20:
74 case 0x30:
75 /*
76 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
77 * In X86_64 long mode, the CPU will signal invalid
78 * opcode if some of these prefixes are present so
79 * X86_64 will never get here anyway
80 */
81 return ((instr_lo & 7) == 0x6);
82 #ifdef CONFIG_X86_64
83 case 0x40:
84 /*
85 * In 64-bit mode 0x40..0x4F are valid REX prefixes
86 */
87 return (!user_mode(regs) || user_64bit_mode(regs));
88 #endif
89 case 0x60:
90 /* 0x64 thru 0x67 are valid prefixes in all modes. */
91 return (instr_lo & 0xC) == 0x4;
92 case 0xF0:
93 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
94 return !instr_lo || (instr_lo>>1) == 1;
95 case 0x00:
96 /* Prefetch instruction is 0x0F0D or 0x0F18 */
97 if (get_kernel_nofault(opcode, instr))
98 return 0;
99
100 *prefetch = (instr_lo == 0xF) &&
101 (opcode == 0x0D || opcode == 0x18);
102 return 0;
103 default:
104 return 0;
105 }
106 }
107
108 static int
is_prefetch(struct pt_regs * regs,unsigned long error_code,unsigned long addr)109 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
110 {
111 unsigned char *max_instr;
112 unsigned char *instr;
113 int prefetch = 0;
114
115 /*
116 * If it was a exec (instruction fetch) fault on NX page, then
117 * do not ignore the fault:
118 */
119 if (error_code & X86_PF_INSTR)
120 return 0;
121
122 instr = (void *)convert_ip_to_linear(current, regs);
123 max_instr = instr + 15;
124
125 /*
126 * This code has historically always bailed out if IP points to a
127 * not-present page (e.g. due to a race). No one has ever
128 * complained about this.
129 */
130 pagefault_disable();
131
132 while (instr < max_instr) {
133 unsigned char opcode;
134
135 if (user_mode(regs)) {
136 if (get_user(opcode, instr))
137 break;
138 } else {
139 if (get_kernel_nofault(opcode, instr))
140 break;
141 }
142
143 instr++;
144
145 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
146 break;
147 }
148
149 pagefault_enable();
150 return prefetch;
151 }
152
153 DEFINE_SPINLOCK(pgd_lock);
154 LIST_HEAD(pgd_list);
155
156 #ifdef CONFIG_X86_32
vmalloc_sync_one(pgd_t * pgd,unsigned long address)157 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
158 {
159 unsigned index = pgd_index(address);
160 pgd_t *pgd_k;
161 p4d_t *p4d, *p4d_k;
162 pud_t *pud, *pud_k;
163 pmd_t *pmd, *pmd_k;
164
165 pgd += index;
166 pgd_k = init_mm.pgd + index;
167
168 if (!pgd_present(*pgd_k))
169 return NULL;
170
171 /*
172 * set_pgd(pgd, *pgd_k); here would be useless on PAE
173 * and redundant with the set_pmd() on non-PAE. As would
174 * set_p4d/set_pud.
175 */
176 p4d = p4d_offset(pgd, address);
177 p4d_k = p4d_offset(pgd_k, address);
178 if (!p4d_present(*p4d_k))
179 return NULL;
180
181 pud = pud_offset(p4d, address);
182 pud_k = pud_offset(p4d_k, address);
183 if (!pud_present(*pud_k))
184 return NULL;
185
186 pmd = pmd_offset(pud, address);
187 pmd_k = pmd_offset(pud_k, address);
188
189 if (pmd_present(*pmd) != pmd_present(*pmd_k))
190 set_pmd(pmd, *pmd_k);
191
192 if (!pmd_present(*pmd_k))
193 return NULL;
194 else
195 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
196
197 return pmd_k;
198 }
199
200 /*
201 * Handle a fault on the vmalloc or module mapping area
202 *
203 * This is needed because there is a race condition between the time
204 * when the vmalloc mapping code updates the PMD to the point in time
205 * where it synchronizes this update with the other page-tables in the
206 * system.
207 *
208 * In this race window another thread/CPU can map an area on the same
209 * PMD, finds it already present and does not synchronize it with the
210 * rest of the system yet. As a result v[mz]alloc might return areas
211 * which are not mapped in every page-table in the system, causing an
212 * unhandled page-fault when they are accessed.
213 */
vmalloc_fault(unsigned long address)214 static noinline int vmalloc_fault(unsigned long address)
215 {
216 unsigned long pgd_paddr;
217 pmd_t *pmd_k;
218 pte_t *pte_k;
219
220 /* Make sure we are in vmalloc area: */
221 if (!(address >= VMALLOC_START && address < VMALLOC_END))
222 return -1;
223
224 /*
225 * Synchronize this task's top level page-table
226 * with the 'reference' page table.
227 *
228 * Do _not_ use "current" here. We might be inside
229 * an interrupt in the middle of a task switch..
230 */
231 pgd_paddr = read_cr3_pa();
232 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
233 if (!pmd_k)
234 return -1;
235
236 if (pmd_large(*pmd_k))
237 return 0;
238
239 pte_k = pte_offset_kernel(pmd_k, address);
240 if (!pte_present(*pte_k))
241 return -1;
242
243 return 0;
244 }
245 NOKPROBE_SYMBOL(vmalloc_fault);
246
arch_sync_kernel_mappings(unsigned long start,unsigned long end)247 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
248 {
249 unsigned long addr;
250
251 for (addr = start & PMD_MASK;
252 addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
253 addr += PMD_SIZE) {
254 struct page *page;
255
256 spin_lock(&pgd_lock);
257 list_for_each_entry(page, &pgd_list, lru) {
258 spinlock_t *pgt_lock;
259
260 /* the pgt_lock only for Xen */
261 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
262
263 spin_lock(pgt_lock);
264 vmalloc_sync_one(page_address(page), addr);
265 spin_unlock(pgt_lock);
266 }
267 spin_unlock(&pgd_lock);
268 }
269 }
270
271 /*
272 * Did it hit the DOS screen memory VA from vm86 mode?
273 */
274 static inline void
check_v8086_mode(struct pt_regs * regs,unsigned long address,struct task_struct * tsk)275 check_v8086_mode(struct pt_regs *regs, unsigned long address,
276 struct task_struct *tsk)
277 {
278 #ifdef CONFIG_VM86
279 unsigned long bit;
280
281 if (!v8086_mode(regs) || !tsk->thread.vm86)
282 return;
283
284 bit = (address - 0xA0000) >> PAGE_SHIFT;
285 if (bit < 32)
286 tsk->thread.vm86->screen_bitmap |= 1 << bit;
287 #endif
288 }
289
low_pfn(unsigned long pfn)290 static bool low_pfn(unsigned long pfn)
291 {
292 return pfn < max_low_pfn;
293 }
294
dump_pagetable(unsigned long address)295 static void dump_pagetable(unsigned long address)
296 {
297 pgd_t *base = __va(read_cr3_pa());
298 pgd_t *pgd = &base[pgd_index(address)];
299 p4d_t *p4d;
300 pud_t *pud;
301 pmd_t *pmd;
302 pte_t *pte;
303
304 #ifdef CONFIG_X86_PAE
305 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
306 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
307 goto out;
308 #define pr_pde pr_cont
309 #else
310 #define pr_pde pr_info
311 #endif
312 p4d = p4d_offset(pgd, address);
313 pud = pud_offset(p4d, address);
314 pmd = pmd_offset(pud, address);
315 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
316 #undef pr_pde
317
318 /*
319 * We must not directly access the pte in the highpte
320 * case if the page table is located in highmem.
321 * And let's rather not kmap-atomic the pte, just in case
322 * it's allocated already:
323 */
324 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
325 goto out;
326
327 pte = pte_offset_kernel(pmd, address);
328 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
329 out:
330 pr_cont("\n");
331 }
332
333 #else /* CONFIG_X86_64: */
334
335 #ifdef CONFIG_CPU_SUP_AMD
336 static const char errata93_warning[] =
337 KERN_ERR
338 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
339 "******* Working around it, but it may cause SEGVs or burn power.\n"
340 "******* Please consider a BIOS update.\n"
341 "******* Disabling USB legacy in the BIOS may also help.\n";
342 #endif
343
344 /*
345 * No vm86 mode in 64-bit mode:
346 */
347 static inline void
check_v8086_mode(struct pt_regs * regs,unsigned long address,struct task_struct * tsk)348 check_v8086_mode(struct pt_regs *regs, unsigned long address,
349 struct task_struct *tsk)
350 {
351 }
352
bad_address(void * p)353 static int bad_address(void *p)
354 {
355 unsigned long dummy;
356
357 return get_kernel_nofault(dummy, (unsigned long *)p);
358 }
359
dump_pagetable(unsigned long address)360 static void dump_pagetable(unsigned long address)
361 {
362 pgd_t *base = __va(read_cr3_pa());
363 pgd_t *pgd = base + pgd_index(address);
364 p4d_t *p4d;
365 pud_t *pud;
366 pmd_t *pmd;
367 pte_t *pte;
368
369 if (bad_address(pgd))
370 goto bad;
371
372 pr_info("PGD %lx ", pgd_val(*pgd));
373
374 if (!pgd_present(*pgd))
375 goto out;
376
377 p4d = p4d_offset(pgd, address);
378 if (bad_address(p4d))
379 goto bad;
380
381 pr_cont("P4D %lx ", p4d_val(*p4d));
382 if (!p4d_present(*p4d) || p4d_large(*p4d))
383 goto out;
384
385 pud = pud_offset(p4d, address);
386 if (bad_address(pud))
387 goto bad;
388
389 pr_cont("PUD %lx ", pud_val(*pud));
390 if (!pud_present(*pud) || pud_large(*pud))
391 goto out;
392
393 pmd = pmd_offset(pud, address);
394 if (bad_address(pmd))
395 goto bad;
396
397 pr_cont("PMD %lx ", pmd_val(*pmd));
398 if (!pmd_present(*pmd) || pmd_large(*pmd))
399 goto out;
400
401 pte = pte_offset_kernel(pmd, address);
402 if (bad_address(pte))
403 goto bad;
404
405 pr_cont("PTE %lx", pte_val(*pte));
406 out:
407 pr_cont("\n");
408 return;
409 bad:
410 pr_info("BAD\n");
411 }
412
413 #endif /* CONFIG_X86_64 */
414
415 /*
416 * Workaround for K8 erratum #93 & buggy BIOS.
417 *
418 * BIOS SMM functions are required to use a specific workaround
419 * to avoid corruption of the 64bit RIP register on C stepping K8.
420 *
421 * A lot of BIOS that didn't get tested properly miss this.
422 *
423 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
424 * Try to work around it here.
425 *
426 * Note we only handle faults in kernel here.
427 * Does nothing on 32-bit.
428 */
is_errata93(struct pt_regs * regs,unsigned long address)429 static int is_errata93(struct pt_regs *regs, unsigned long address)
430 {
431 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
432 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
433 || boot_cpu_data.x86 != 0xf)
434 return 0;
435
436 if (address != regs->ip)
437 return 0;
438
439 if ((address >> 32) != 0)
440 return 0;
441
442 address |= 0xffffffffUL << 32;
443 if ((address >= (u64)_stext && address <= (u64)_etext) ||
444 (address >= MODULES_VADDR && address <= MODULES_END)) {
445 printk_once(errata93_warning);
446 regs->ip = address;
447 return 1;
448 }
449 #endif
450 return 0;
451 }
452
453 /*
454 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
455 * to illegal addresses >4GB.
456 *
457 * We catch this in the page fault handler because these addresses
458 * are not reachable. Just detect this case and return. Any code
459 * segment in LDT is compatibility mode.
460 */
is_errata100(struct pt_regs * regs,unsigned long address)461 static int is_errata100(struct pt_regs *regs, unsigned long address)
462 {
463 #ifdef CONFIG_X86_64
464 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
465 return 1;
466 #endif
467 return 0;
468 }
469
470 /* Pentium F0 0F C7 C8 bug workaround: */
is_f00f_bug(struct pt_regs * regs,unsigned long address)471 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
472 {
473 #ifdef CONFIG_X86_F00F_BUG
474 if (boot_cpu_has_bug(X86_BUG_F00F) && idt_is_f00f_address(address)) {
475 handle_invalid_op(regs);
476 return 1;
477 }
478 #endif
479 return 0;
480 }
481
show_ldttss(const struct desc_ptr * gdt,const char * name,u16 index)482 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
483 {
484 u32 offset = (index >> 3) * sizeof(struct desc_struct);
485 unsigned long addr;
486 struct ldttss_desc desc;
487
488 if (index == 0) {
489 pr_alert("%s: NULL\n", name);
490 return;
491 }
492
493 if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
494 pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
495 return;
496 }
497
498 if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
499 sizeof(struct ldttss_desc))) {
500 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
501 name, index);
502 return;
503 }
504
505 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
506 #ifdef CONFIG_X86_64
507 addr |= ((u64)desc.base3 << 32);
508 #endif
509 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
510 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
511 }
512
513 static void
show_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)514 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
515 {
516 if (!oops_may_print())
517 return;
518
519 if (error_code & X86_PF_INSTR) {
520 unsigned int level;
521 pgd_t *pgd;
522 pte_t *pte;
523
524 pgd = __va(read_cr3_pa());
525 pgd += pgd_index(address);
526
527 pte = lookup_address_in_pgd(pgd, address, &level);
528
529 if (pte && pte_present(*pte) && !pte_exec(*pte))
530 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
531 from_kuid(&init_user_ns, current_uid()));
532 if (pte && pte_present(*pte) && pte_exec(*pte) &&
533 (pgd_flags(*pgd) & _PAGE_USER) &&
534 (__read_cr4() & X86_CR4_SMEP))
535 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
536 from_kuid(&init_user_ns, current_uid()));
537 }
538
539 if (address < PAGE_SIZE && !user_mode(regs))
540 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
541 (void *)address);
542 else
543 pr_alert("BUG: unable to handle page fault for address: %px\n",
544 (void *)address);
545
546 pr_alert("#PF: %s %s in %s mode\n",
547 (error_code & X86_PF_USER) ? "user" : "supervisor",
548 (error_code & X86_PF_INSTR) ? "instruction fetch" :
549 (error_code & X86_PF_WRITE) ? "write access" :
550 "read access",
551 user_mode(regs) ? "user" : "kernel");
552 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
553 !(error_code & X86_PF_PROT) ? "not-present page" :
554 (error_code & X86_PF_RSVD) ? "reserved bit violation" :
555 (error_code & X86_PF_PK) ? "protection keys violation" :
556 "permissions violation");
557
558 if (!(error_code & X86_PF_USER) && user_mode(regs)) {
559 struct desc_ptr idt, gdt;
560 u16 ldtr, tr;
561
562 /*
563 * This can happen for quite a few reasons. The more obvious
564 * ones are faults accessing the GDT, or LDT. Perhaps
565 * surprisingly, if the CPU tries to deliver a benign or
566 * contributory exception from user code and gets a page fault
567 * during delivery, the page fault can be delivered as though
568 * it originated directly from user code. This could happen
569 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
570 * kernel or IST stack.
571 */
572 store_idt(&idt);
573
574 /* Usable even on Xen PV -- it's just slow. */
575 native_store_gdt(&gdt);
576
577 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
578 idt.address, idt.size, gdt.address, gdt.size);
579
580 store_ldt(ldtr);
581 show_ldttss(&gdt, "LDTR", ldtr);
582
583 store_tr(tr);
584 show_ldttss(&gdt, "TR", tr);
585 }
586
587 dump_pagetable(address);
588 }
589
590 static noinline void
pgtable_bad(struct pt_regs * regs,unsigned long error_code,unsigned long address)591 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
592 unsigned long address)
593 {
594 struct task_struct *tsk;
595 unsigned long flags;
596 int sig;
597
598 flags = oops_begin();
599 tsk = current;
600 sig = SIGKILL;
601
602 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
603 tsk->comm, address);
604 dump_pagetable(address);
605
606 if (__die("Bad pagetable", regs, error_code))
607 sig = 0;
608
609 oops_end(flags, regs, sig);
610 }
611
set_signal_archinfo(unsigned long address,unsigned long error_code)612 static void set_signal_archinfo(unsigned long address,
613 unsigned long error_code)
614 {
615 struct task_struct *tsk = current;
616
617 /*
618 * To avoid leaking information about the kernel page
619 * table layout, pretend that user-mode accesses to
620 * kernel addresses are always protection faults.
621 *
622 * NB: This means that failed vsyscalls with vsyscall=none
623 * will have the PROT bit. This doesn't leak any
624 * information and does not appear to cause any problems.
625 */
626 if (address >= TASK_SIZE_MAX)
627 error_code |= X86_PF_PROT;
628
629 tsk->thread.trap_nr = X86_TRAP_PF;
630 tsk->thread.error_code = error_code | X86_PF_USER;
631 tsk->thread.cr2 = address;
632 }
633
634 static noinline void
no_context(struct pt_regs * regs,unsigned long error_code,unsigned long address,int signal,int si_code)635 no_context(struct pt_regs *regs, unsigned long error_code,
636 unsigned long address, int signal, int si_code)
637 {
638 struct task_struct *tsk = current;
639 unsigned long flags;
640 int sig;
641
642 if (user_mode(regs)) {
643 /*
644 * This is an implicit supervisor-mode access from user
645 * mode. Bypass all the kernel-mode recovery code and just
646 * OOPS.
647 */
648 goto oops;
649 }
650
651 /* Are we prepared to handle this kernel fault? */
652 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
653 /*
654 * Any interrupt that takes a fault gets the fixup. This makes
655 * the below recursive fault logic only apply to a faults from
656 * task context.
657 */
658 if (in_interrupt())
659 return;
660
661 /*
662 * Per the above we're !in_interrupt(), aka. task context.
663 *
664 * In this case we need to make sure we're not recursively
665 * faulting through the emulate_vsyscall() logic.
666 */
667 if (current->thread.sig_on_uaccess_err && signal) {
668 set_signal_archinfo(address, error_code);
669
670 /* XXX: hwpoison faults will set the wrong code. */
671 force_sig_fault(signal, si_code, (void __user *)address);
672 }
673
674 /*
675 * Barring that, we can do the fixup and be happy.
676 */
677 return;
678 }
679
680 #ifdef CONFIG_VMAP_STACK
681 /*
682 * Stack overflow? During boot, we can fault near the initial
683 * stack in the direct map, but that's not an overflow -- check
684 * that we're in vmalloc space to avoid this.
685 */
686 if (is_vmalloc_addr((void *)address) &&
687 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
688 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
689 unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
690 /*
691 * We're likely to be running with very little stack space
692 * left. It's plausible that we'd hit this condition but
693 * double-fault even before we get this far, in which case
694 * we're fine: the double-fault handler will deal with it.
695 *
696 * We don't want to make it all the way into the oops code
697 * and then double-fault, though, because we're likely to
698 * break the console driver and lose most of the stack dump.
699 */
700 asm volatile ("movq %[stack], %%rsp\n\t"
701 "call handle_stack_overflow\n\t"
702 "1: jmp 1b"
703 : ASM_CALL_CONSTRAINT
704 : "D" ("kernel stack overflow (page fault)"),
705 "S" (regs), "d" (address),
706 [stack] "rm" (stack));
707 unreachable();
708 }
709 #endif
710
711 /*
712 * 32-bit:
713 *
714 * Valid to do another page fault here, because if this fault
715 * had been triggered by is_prefetch fixup_exception would have
716 * handled it.
717 *
718 * 64-bit:
719 *
720 * Hall of shame of CPU/BIOS bugs.
721 */
722 if (is_prefetch(regs, error_code, address))
723 return;
724
725 if (is_errata93(regs, address))
726 return;
727
728 /*
729 * Buggy firmware could access regions which might page fault, try to
730 * recover from such faults.
731 */
732 if (IS_ENABLED(CONFIG_EFI))
733 efi_recover_from_page_fault(address);
734
735 oops:
736 /*
737 * Oops. The kernel tried to access some bad page. We'll have to
738 * terminate things with extreme prejudice:
739 */
740 flags = oops_begin();
741
742 show_fault_oops(regs, error_code, address);
743
744 if (task_stack_end_corrupted(tsk))
745 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
746
747 sig = SIGKILL;
748 if (__die("Oops", regs, error_code))
749 sig = 0;
750
751 /* Executive summary in case the body of the oops scrolled away */
752 printk(KERN_DEFAULT "CR2: %016lx\n", address);
753
754 oops_end(flags, regs, sig);
755 }
756
757 /*
758 * Print out info about fatal segfaults, if the show_unhandled_signals
759 * sysctl is set:
760 */
761 static inline void
show_signal_msg(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct task_struct * tsk)762 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
763 unsigned long address, struct task_struct *tsk)
764 {
765 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
766
767 if (!unhandled_signal(tsk, SIGSEGV))
768 return;
769
770 if (!printk_ratelimit())
771 return;
772
773 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
774 loglvl, tsk->comm, task_pid_nr(tsk), address,
775 (void *)regs->ip, (void *)regs->sp, error_code);
776
777 print_vma_addr(KERN_CONT " in ", regs->ip);
778
779 printk(KERN_CONT "\n");
780
781 show_opcodes(regs, loglvl);
782 }
783
784 /*
785 * The (legacy) vsyscall page is the long page in the kernel portion
786 * of the address space that has user-accessible permissions.
787 */
is_vsyscall_vaddr(unsigned long vaddr)788 static bool is_vsyscall_vaddr(unsigned long vaddr)
789 {
790 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
791 }
792
793 static void
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)794 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
795 unsigned long address, u32 pkey, int si_code)
796 {
797 struct task_struct *tsk = current;
798
799 /* User mode accesses just cause a SIGSEGV */
800 if (user_mode(regs) && (error_code & X86_PF_USER)) {
801 /*
802 * It's possible to have interrupts off here:
803 */
804 local_irq_enable();
805
806 /*
807 * Valid to do another page fault here because this one came
808 * from user space:
809 */
810 if (is_prefetch(regs, error_code, address))
811 return;
812
813 if (is_errata100(regs, address))
814 return;
815
816 /*
817 * To avoid leaking information about the kernel page table
818 * layout, pretend that user-mode accesses to kernel addresses
819 * are always protection faults.
820 */
821 if (address >= TASK_SIZE_MAX)
822 error_code |= X86_PF_PROT;
823
824 if (likely(show_unhandled_signals))
825 show_signal_msg(regs, error_code, address, tsk);
826
827 set_signal_archinfo(address, error_code);
828
829 if (si_code == SEGV_PKUERR)
830 force_sig_pkuerr((void __user *)address, pkey);
831
832 force_sig_fault(SIGSEGV, si_code, (void __user *)address);
833
834 local_irq_disable();
835
836 return;
837 }
838
839 if (is_f00f_bug(regs, address))
840 return;
841
842 no_context(regs, error_code, address, SIGSEGV, si_code);
843 }
844
845 static noinline void
bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address)846 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
847 unsigned long address)
848 {
849 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
850 }
851
852 static void
__bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)853 __bad_area(struct pt_regs *regs, unsigned long error_code,
854 unsigned long address, u32 pkey, int si_code)
855 {
856 struct mm_struct *mm = current->mm;
857 /*
858 * Something tried to access memory that isn't in our memory map..
859 * Fix it, but check if it's kernel or user first..
860 */
861 mmap_read_unlock(mm);
862
863 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
864 }
865
866 static noinline void
bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address)867 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
868 {
869 __bad_area(regs, error_code, address, 0, SEGV_MAPERR);
870 }
871
bad_area_access_from_pkeys(unsigned long error_code,struct vm_area_struct * vma)872 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
873 struct vm_area_struct *vma)
874 {
875 /* This code is always called on the current mm */
876 bool foreign = false;
877
878 if (!boot_cpu_has(X86_FEATURE_OSPKE))
879 return false;
880 if (error_code & X86_PF_PK)
881 return true;
882 /* this checks permission keys on the VMA: */
883 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
884 (error_code & X86_PF_INSTR), foreign))
885 return true;
886 return false;
887 }
888
889 static noinline void
bad_area_access_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct vm_area_struct * vma)890 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
891 unsigned long address, struct vm_area_struct *vma)
892 {
893 /*
894 * This OSPKE check is not strictly necessary at runtime.
895 * But, doing it this way allows compiler optimizations
896 * if pkeys are compiled out.
897 */
898 if (bad_area_access_from_pkeys(error_code, vma)) {
899 /*
900 * A protection key fault means that the PKRU value did not allow
901 * access to some PTE. Userspace can figure out what PKRU was
902 * from the XSAVE state. This function captures the pkey from
903 * the vma and passes it to userspace so userspace can discover
904 * which protection key was set on the PTE.
905 *
906 * If we get here, we know that the hardware signaled a X86_PF_PK
907 * fault and that there was a VMA once we got in the fault
908 * handler. It does *not* guarantee that the VMA we find here
909 * was the one that we faulted on.
910 *
911 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
912 * 2. T1 : set PKRU to deny access to pkey=4, touches page
913 * 3. T1 : faults...
914 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
915 * 5. T1 : enters fault handler, takes mmap_lock, etc...
916 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
917 * faulted on a pte with its pkey=4.
918 */
919 u32 pkey = vma_pkey(vma);
920
921 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
922 } else {
923 __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
924 }
925 }
926
927 static void
do_sigbus(struct pt_regs * regs,unsigned long error_code,unsigned long address,vm_fault_t fault)928 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
929 vm_fault_t fault)
930 {
931 /* Kernel mode? Handle exceptions or die: */
932 if (!(error_code & X86_PF_USER)) {
933 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
934 return;
935 }
936
937 /* User-space => ok to do another page fault: */
938 if (is_prefetch(regs, error_code, address))
939 return;
940
941 set_signal_archinfo(address, error_code);
942
943 #ifdef CONFIG_MEMORY_FAILURE
944 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
945 struct task_struct *tsk = current;
946 unsigned lsb = 0;
947
948 pr_err(
949 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
950 tsk->comm, tsk->pid, address);
951 if (fault & VM_FAULT_HWPOISON_LARGE)
952 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
953 if (fault & VM_FAULT_HWPOISON)
954 lsb = PAGE_SHIFT;
955 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
956 return;
957 }
958 #endif
959 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
960 }
961
962 static noinline void
mm_fault_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,vm_fault_t fault)963 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
964 unsigned long address, vm_fault_t fault)
965 {
966 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
967 no_context(regs, error_code, address, 0, 0);
968 return;
969 }
970
971 if (fault & VM_FAULT_OOM) {
972 /* Kernel mode? Handle exceptions or die: */
973 if (!(error_code & X86_PF_USER)) {
974 no_context(regs, error_code, address,
975 SIGSEGV, SEGV_MAPERR);
976 return;
977 }
978
979 /*
980 * We ran out of memory, call the OOM killer, and return the
981 * userspace (which will retry the fault, or kill us if we got
982 * oom-killed):
983 */
984 pagefault_out_of_memory();
985 } else {
986 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
987 VM_FAULT_HWPOISON_LARGE))
988 do_sigbus(regs, error_code, address, fault);
989 else if (fault & VM_FAULT_SIGSEGV)
990 bad_area_nosemaphore(regs, error_code, address);
991 else
992 BUG();
993 }
994 }
995
spurious_kernel_fault_check(unsigned long error_code,pte_t * pte)996 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
997 {
998 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
999 return 0;
1000
1001 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1002 return 0;
1003
1004 return 1;
1005 }
1006
1007 /*
1008 * Handle a spurious fault caused by a stale TLB entry.
1009 *
1010 * This allows us to lazily refresh the TLB when increasing the
1011 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1012 * eagerly is very expensive since that implies doing a full
1013 * cross-processor TLB flush, even if no stale TLB entries exist
1014 * on other processors.
1015 *
1016 * Spurious faults may only occur if the TLB contains an entry with
1017 * fewer permission than the page table entry. Non-present (P = 0)
1018 * and reserved bit (R = 1) faults are never spurious.
1019 *
1020 * There are no security implications to leaving a stale TLB when
1021 * increasing the permissions on a page.
1022 *
1023 * Returns non-zero if a spurious fault was handled, zero otherwise.
1024 *
1025 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1026 * (Optional Invalidation).
1027 */
1028 static noinline int
spurious_kernel_fault(unsigned long error_code,unsigned long address)1029 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1030 {
1031 pgd_t *pgd;
1032 p4d_t *p4d;
1033 pud_t *pud;
1034 pmd_t *pmd;
1035 pte_t *pte;
1036 int ret;
1037
1038 /*
1039 * Only writes to RO or instruction fetches from NX may cause
1040 * spurious faults.
1041 *
1042 * These could be from user or supervisor accesses but the TLB
1043 * is only lazily flushed after a kernel mapping protection
1044 * change, so user accesses are not expected to cause spurious
1045 * faults.
1046 */
1047 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1048 error_code != (X86_PF_INSTR | X86_PF_PROT))
1049 return 0;
1050
1051 pgd = init_mm.pgd + pgd_index(address);
1052 if (!pgd_present(*pgd))
1053 return 0;
1054
1055 p4d = p4d_offset(pgd, address);
1056 if (!p4d_present(*p4d))
1057 return 0;
1058
1059 if (p4d_large(*p4d))
1060 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1061
1062 pud = pud_offset(p4d, address);
1063 if (!pud_present(*pud))
1064 return 0;
1065
1066 if (pud_large(*pud))
1067 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1068
1069 pmd = pmd_offset(pud, address);
1070 if (!pmd_present(*pmd))
1071 return 0;
1072
1073 if (pmd_large(*pmd))
1074 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1075
1076 pte = pte_offset_kernel(pmd, address);
1077 if (!pte_present(*pte))
1078 return 0;
1079
1080 ret = spurious_kernel_fault_check(error_code, pte);
1081 if (!ret)
1082 return 0;
1083
1084 /*
1085 * Make sure we have permissions in PMD.
1086 * If not, then there's a bug in the page tables:
1087 */
1088 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1089 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1090
1091 return ret;
1092 }
1093 NOKPROBE_SYMBOL(spurious_kernel_fault);
1094
1095 int show_unhandled_signals = 1;
1096
1097 static inline int
access_error(unsigned long error_code,struct vm_area_struct * vma)1098 access_error(unsigned long error_code, struct vm_area_struct *vma)
1099 {
1100 /* This is only called for the current mm, so: */
1101 bool foreign = false;
1102
1103 /*
1104 * Read or write was blocked by protection keys. This is
1105 * always an unconditional error and can never result in
1106 * a follow-up action to resolve the fault, like a COW.
1107 */
1108 if (error_code & X86_PF_PK)
1109 return 1;
1110
1111 /*
1112 * Make sure to check the VMA so that we do not perform
1113 * faults just to hit a X86_PF_PK as soon as we fill in a
1114 * page.
1115 */
1116 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1117 (error_code & X86_PF_INSTR), foreign))
1118 return 1;
1119
1120 if (error_code & X86_PF_WRITE) {
1121 /* write, present and write, not present: */
1122 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1123 return 1;
1124 return 0;
1125 }
1126
1127 /* read, present: */
1128 if (unlikely(error_code & X86_PF_PROT))
1129 return 1;
1130
1131 /* read, not present: */
1132 if (unlikely(!vma_is_accessible(vma)))
1133 return 1;
1134
1135 return 0;
1136 }
1137
fault_in_kernel_space(unsigned long address)1138 bool fault_in_kernel_space(unsigned long address)
1139 {
1140 /*
1141 * On 64-bit systems, the vsyscall page is at an address above
1142 * TASK_SIZE_MAX, but is not considered part of the kernel
1143 * address space.
1144 */
1145 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1146 return false;
1147
1148 return address >= TASK_SIZE_MAX;
1149 }
1150
1151 /*
1152 * Called for all faults where 'address' is part of the kernel address
1153 * space. Might get called for faults that originate from *code* that
1154 * ran in userspace or the kernel.
1155 */
1156 static void
do_kern_addr_fault(struct pt_regs * regs,unsigned long hw_error_code,unsigned long address)1157 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1158 unsigned long address)
1159 {
1160 /*
1161 * Protection keys exceptions only happen on user pages. We
1162 * have no user pages in the kernel portion of the address
1163 * space, so do not expect them here.
1164 */
1165 WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1166
1167 #ifdef CONFIG_X86_32
1168 /*
1169 * We can fault-in kernel-space virtual memory on-demand. The
1170 * 'reference' page table is init_mm.pgd.
1171 *
1172 * NOTE! We MUST NOT take any locks for this case. We may
1173 * be in an interrupt or a critical region, and should
1174 * only copy the information from the master page table,
1175 * nothing more.
1176 *
1177 * Before doing this on-demand faulting, ensure that the
1178 * fault is not any of the following:
1179 * 1. A fault on a PTE with a reserved bit set.
1180 * 2. A fault caused by a user-mode access. (Do not demand-
1181 * fault kernel memory due to user-mode accesses).
1182 * 3. A fault caused by a page-level protection violation.
1183 * (A demand fault would be on a non-present page which
1184 * would have X86_PF_PROT==0).
1185 *
1186 * This is only needed to close a race condition on x86-32 in
1187 * the vmalloc mapping/unmapping code. See the comment above
1188 * vmalloc_fault() for details. On x86-64 the race does not
1189 * exist as the vmalloc mappings don't need to be synchronized
1190 * there.
1191 */
1192 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1193 if (vmalloc_fault(address) >= 0)
1194 return;
1195 }
1196 #endif
1197
1198 /* Was the fault spurious, caused by lazy TLB invalidation? */
1199 if (spurious_kernel_fault(hw_error_code, address))
1200 return;
1201
1202 /* kprobes don't want to hook the spurious faults: */
1203 if (kprobe_page_fault(regs, X86_TRAP_PF))
1204 return;
1205
1206 /*
1207 * Note, despite being a "bad area", there are quite a few
1208 * acceptable reasons to get here, such as erratum fixups
1209 * and handling kernel code that can fault, like get_user().
1210 *
1211 * Don't take the mm semaphore here. If we fixup a prefetch
1212 * fault we could otherwise deadlock:
1213 */
1214 bad_area_nosemaphore(regs, hw_error_code, address);
1215 }
1216 NOKPROBE_SYMBOL(do_kern_addr_fault);
1217
1218 /* Handle faults in the user portion of the address space */
1219 static inline
do_user_addr_fault(struct pt_regs * regs,unsigned long hw_error_code,unsigned long address)1220 void do_user_addr_fault(struct pt_regs *regs,
1221 unsigned long hw_error_code,
1222 unsigned long address)
1223 {
1224 struct vm_area_struct *vma;
1225 struct task_struct *tsk;
1226 struct mm_struct *mm;
1227 vm_fault_t fault;
1228 unsigned int flags = FAULT_FLAG_DEFAULT;
1229
1230 tsk = current;
1231 mm = tsk->mm;
1232
1233 /* kprobes don't want to hook the spurious faults: */
1234 if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1235 return;
1236
1237 /*
1238 * Reserved bits are never expected to be set on
1239 * entries in the user portion of the page tables.
1240 */
1241 if (unlikely(hw_error_code & X86_PF_RSVD))
1242 pgtable_bad(regs, hw_error_code, address);
1243
1244 /*
1245 * If SMAP is on, check for invalid kernel (supervisor) access to user
1246 * pages in the user address space. The odd case here is WRUSS,
1247 * which, according to the preliminary documentation, does not respect
1248 * SMAP and will have the USER bit set so, in all cases, SMAP
1249 * enforcement appears to be consistent with the USER bit.
1250 */
1251 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1252 !(hw_error_code & X86_PF_USER) &&
1253 !(regs->flags & X86_EFLAGS_AC)))
1254 {
1255 bad_area_nosemaphore(regs, hw_error_code, address);
1256 return;
1257 }
1258
1259 /*
1260 * If we're in an interrupt, have no user context or are running
1261 * in a region with pagefaults disabled then we must not take the fault
1262 */
1263 if (unlikely(faulthandler_disabled() || !mm)) {
1264 bad_area_nosemaphore(regs, hw_error_code, address);
1265 return;
1266 }
1267
1268 /*
1269 * It's safe to allow irq's after cr2 has been saved and the
1270 * vmalloc fault has been handled.
1271 *
1272 * User-mode registers count as a user access even for any
1273 * potential system fault or CPU buglet:
1274 */
1275 if (user_mode(regs)) {
1276 local_irq_enable();
1277 flags |= FAULT_FLAG_USER;
1278 } else {
1279 if (regs->flags & X86_EFLAGS_IF)
1280 local_irq_enable();
1281 }
1282
1283 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1284
1285 if (hw_error_code & X86_PF_WRITE)
1286 flags |= FAULT_FLAG_WRITE;
1287 if (hw_error_code & X86_PF_INSTR)
1288 flags |= FAULT_FLAG_INSTRUCTION;
1289
1290 #ifdef CONFIG_X86_64
1291 /*
1292 * Faults in the vsyscall page might need emulation. The
1293 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1294 * considered to be part of the user address space.
1295 *
1296 * The vsyscall page does not have a "real" VMA, so do this
1297 * emulation before we go searching for VMAs.
1298 *
1299 * PKRU never rejects instruction fetches, so we don't need
1300 * to consider the PF_PK bit.
1301 */
1302 if (is_vsyscall_vaddr(address)) {
1303 if (emulate_vsyscall(hw_error_code, regs, address))
1304 return;
1305 }
1306 #endif
1307
1308 /*
1309 * Kernel-mode access to the user address space should only occur
1310 * on well-defined single instructions listed in the exception
1311 * tables. But, an erroneous kernel fault occurring outside one of
1312 * those areas which also holds mmap_lock might deadlock attempting
1313 * to validate the fault against the address space.
1314 *
1315 * Only do the expensive exception table search when we might be at
1316 * risk of a deadlock. This happens if we
1317 * 1. Failed to acquire mmap_lock, and
1318 * 2. The access did not originate in userspace.
1319 */
1320 if (unlikely(!mmap_read_trylock(mm))) {
1321 if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1322 /*
1323 * Fault from code in kernel from
1324 * which we do not expect faults.
1325 */
1326 bad_area_nosemaphore(regs, hw_error_code, address);
1327 return;
1328 }
1329 retry:
1330 mmap_read_lock(mm);
1331 } else {
1332 /*
1333 * The above down_read_trylock() might have succeeded in
1334 * which case we'll have missed the might_sleep() from
1335 * down_read():
1336 */
1337 might_sleep();
1338 }
1339
1340 vma = find_vma(mm, address);
1341 if (unlikely(!vma)) {
1342 bad_area(regs, hw_error_code, address);
1343 return;
1344 }
1345 if (likely(vma->vm_start <= address))
1346 goto good_area;
1347 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1348 bad_area(regs, hw_error_code, address);
1349 return;
1350 }
1351 if (unlikely(expand_stack(vma, address))) {
1352 bad_area(regs, hw_error_code, address);
1353 return;
1354 }
1355
1356 /*
1357 * Ok, we have a good vm_area for this memory access, so
1358 * we can handle it..
1359 */
1360 good_area:
1361 if (unlikely(access_error(hw_error_code, vma))) {
1362 bad_area_access_error(regs, hw_error_code, address, vma);
1363 return;
1364 }
1365
1366 /*
1367 * If for any reason at all we couldn't handle the fault,
1368 * make sure we exit gracefully rather than endlessly redo
1369 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1370 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1371 *
1372 * Note that handle_userfault() may also release and reacquire mmap_lock
1373 * (and not return with VM_FAULT_RETRY), when returning to userland to
1374 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1375 * (potentially after handling any pending signal during the return to
1376 * userland). The return to userland is identified whenever
1377 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1378 */
1379 fault = handle_mm_fault(vma, address, flags, regs);
1380
1381 /* Quick path to respond to signals */
1382 if (fault_signal_pending(fault, regs)) {
1383 if (!user_mode(regs))
1384 no_context(regs, hw_error_code, address, SIGBUS,
1385 BUS_ADRERR);
1386 return;
1387 }
1388
1389 /*
1390 * If we need to retry the mmap_lock has already been released,
1391 * and if there is a fatal signal pending there is no guarantee
1392 * that we made any progress. Handle this case first.
1393 */
1394 if (unlikely((fault & VM_FAULT_RETRY) &&
1395 (flags & FAULT_FLAG_ALLOW_RETRY))) {
1396 flags |= FAULT_FLAG_TRIED;
1397 goto retry;
1398 }
1399
1400 mmap_read_unlock(mm);
1401 if (unlikely(fault & VM_FAULT_ERROR)) {
1402 mm_fault_error(regs, hw_error_code, address, fault);
1403 return;
1404 }
1405
1406 check_v8086_mode(regs, address, tsk);
1407 }
1408 NOKPROBE_SYMBOL(do_user_addr_fault);
1409
1410 static __always_inline void
trace_page_fault_entries(struct pt_regs * regs,unsigned long error_code,unsigned long address)1411 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1412 unsigned long address)
1413 {
1414 if (!trace_pagefault_enabled())
1415 return;
1416
1417 if (user_mode(regs))
1418 trace_page_fault_user(address, regs, error_code);
1419 else
1420 trace_page_fault_kernel(address, regs, error_code);
1421 }
1422
1423 static __always_inline void
handle_page_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1424 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1425 unsigned long address)
1426 {
1427 trace_page_fault_entries(regs, error_code, address);
1428
1429 if (unlikely(kmmio_fault(regs, address)))
1430 return;
1431
1432 /* Was the fault on kernel-controlled part of the address space? */
1433 if (unlikely(fault_in_kernel_space(address))) {
1434 do_kern_addr_fault(regs, error_code, address);
1435 } else {
1436 do_user_addr_fault(regs, error_code, address);
1437 /*
1438 * User address page fault handling might have reenabled
1439 * interrupts. Fixing up all potential exit points of
1440 * do_user_addr_fault() and its leaf functions is just not
1441 * doable w/o creating an unholy mess or turning the code
1442 * upside down.
1443 */
1444 local_irq_disable();
1445 }
1446 }
1447
DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)1448 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1449 {
1450 unsigned long address = read_cr2();
1451 irqentry_state_t state;
1452
1453 prefetchw(¤t->mm->mmap_lock);
1454
1455 /*
1456 * KVM uses #PF vector to deliver 'page not present' events to guests
1457 * (asynchronous page fault mechanism). The event happens when a
1458 * userspace task is trying to access some valid (from guest's point of
1459 * view) memory which is not currently mapped by the host (e.g. the
1460 * memory is swapped out). Note, the corresponding "page ready" event
1461 * which is injected when the memory becomes available, is delived via
1462 * an interrupt mechanism and not a #PF exception
1463 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1464 *
1465 * We are relying on the interrupted context being sane (valid RSP,
1466 * relevant locks not held, etc.), which is fine as long as the
1467 * interrupted context had IF=1. We are also relying on the KVM
1468 * async pf type field and CR2 being read consistently instead of
1469 * getting values from real and async page faults mixed up.
1470 *
1471 * Fingers crossed.
1472 *
1473 * The async #PF handling code takes care of idtentry handling
1474 * itself.
1475 */
1476 if (kvm_handle_async_pf(regs, (u32)address))
1477 return;
1478
1479 /*
1480 * Entry handling for valid #PF from kernel mode is slightly
1481 * different: RCU is already watching and rcu_irq_enter() must not
1482 * be invoked because a kernel fault on a user space address might
1483 * sleep.
1484 *
1485 * In case the fault hit a RCU idle region the conditional entry
1486 * code reenabled RCU to avoid subsequent wreckage which helps
1487 * debugability.
1488 */
1489 state = irqentry_enter(regs);
1490
1491 instrumentation_begin();
1492 handle_page_fault(regs, error_code, address);
1493 instrumentation_end();
1494
1495 irqentry_exit(regs, state);
1496 }
1497