• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/memblock.h>		/* max_low_pfn			*/
12 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
13 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
14 #include <linux/perf_event.h>		/* perf_sw_event		*/
15 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
16 #include <linux/prefetch.h>		/* prefetchw			*/
17 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
18 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
19 #include <linux/efi.h>			/* efi_recover_from_page_fault()*/
20 #include <linux/mm_types.h>
21 
22 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
23 #include <asm/traps.h>			/* dotraplinkage, ...		*/
24 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
25 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
26 #include <asm/vm86.h>			/* struct vm86			*/
27 #include <asm/mmu_context.h>		/* vma_pkey()			*/
28 #include <asm/efi.h>			/* efi_recover_from_page_fault()*/
29 #include <asm/desc.h>			/* store_idt(), ...		*/
30 #include <asm/cpu_entry_area.h>		/* exception stack		*/
31 #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
32 #include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
33 
34 #define CREATE_TRACE_POINTS
35 #include <asm/trace/exceptions.h>
36 
37 /*
38  * Returns 0 if mmiotrace is disabled, or if the fault is not
39  * handled by mmiotrace:
40  */
41 static nokprobe_inline int
kmmio_fault(struct pt_regs * regs,unsigned long addr)42 kmmio_fault(struct pt_regs *regs, unsigned long addr)
43 {
44 	if (unlikely(is_kmmio_active()))
45 		if (kmmio_handler(regs, addr) == 1)
46 			return -1;
47 	return 0;
48 }
49 
50 /*
51  * Prefetch quirks:
52  *
53  * 32-bit mode:
54  *
55  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
56  *   Check that here and ignore it.  This is AMD erratum #91.
57  *
58  * 64-bit mode:
59  *
60  *   Sometimes the CPU reports invalid exceptions on prefetch.
61  *   Check that here and ignore it.
62  *
63  * Opcode checker based on code by Richard Brunner.
64  */
65 static inline int
check_prefetch_opcode(struct pt_regs * regs,unsigned char * instr,unsigned char opcode,int * prefetch)66 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
67 		      unsigned char opcode, int *prefetch)
68 {
69 	unsigned char instr_hi = opcode & 0xf0;
70 	unsigned char instr_lo = opcode & 0x0f;
71 
72 	switch (instr_hi) {
73 	case 0x20:
74 	case 0x30:
75 		/*
76 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
77 		 * In X86_64 long mode, the CPU will signal invalid
78 		 * opcode if some of these prefixes are present so
79 		 * X86_64 will never get here anyway
80 		 */
81 		return ((instr_lo & 7) == 0x6);
82 #ifdef CONFIG_X86_64
83 	case 0x40:
84 		/*
85 		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
86 		 */
87 		return (!user_mode(regs) || user_64bit_mode(regs));
88 #endif
89 	case 0x60:
90 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
91 		return (instr_lo & 0xC) == 0x4;
92 	case 0xF0:
93 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
94 		return !instr_lo || (instr_lo>>1) == 1;
95 	case 0x00:
96 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
97 		if (get_kernel_nofault(opcode, instr))
98 			return 0;
99 
100 		*prefetch = (instr_lo == 0xF) &&
101 			(opcode == 0x0D || opcode == 0x18);
102 		return 0;
103 	default:
104 		return 0;
105 	}
106 }
107 
108 static int
is_prefetch(struct pt_regs * regs,unsigned long error_code,unsigned long addr)109 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
110 {
111 	unsigned char *max_instr;
112 	unsigned char *instr;
113 	int prefetch = 0;
114 
115 	/*
116 	 * If it was a exec (instruction fetch) fault on NX page, then
117 	 * do not ignore the fault:
118 	 */
119 	if (error_code & X86_PF_INSTR)
120 		return 0;
121 
122 	instr = (void *)convert_ip_to_linear(current, regs);
123 	max_instr = instr + 15;
124 
125 	/*
126 	 * This code has historically always bailed out if IP points to a
127 	 * not-present page (e.g. due to a race).  No one has ever
128 	 * complained about this.
129 	 */
130 	pagefault_disable();
131 
132 	while (instr < max_instr) {
133 		unsigned char opcode;
134 
135 		if (user_mode(regs)) {
136 			if (get_user(opcode, instr))
137 				break;
138 		} else {
139 			if (get_kernel_nofault(opcode, instr))
140 				break;
141 		}
142 
143 		instr++;
144 
145 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
146 			break;
147 	}
148 
149 	pagefault_enable();
150 	return prefetch;
151 }
152 
153 DEFINE_SPINLOCK(pgd_lock);
154 LIST_HEAD(pgd_list);
155 
156 #ifdef CONFIG_X86_32
vmalloc_sync_one(pgd_t * pgd,unsigned long address)157 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
158 {
159 	unsigned index = pgd_index(address);
160 	pgd_t *pgd_k;
161 	p4d_t *p4d, *p4d_k;
162 	pud_t *pud, *pud_k;
163 	pmd_t *pmd, *pmd_k;
164 
165 	pgd += index;
166 	pgd_k = init_mm.pgd + index;
167 
168 	if (!pgd_present(*pgd_k))
169 		return NULL;
170 
171 	/*
172 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
173 	 * and redundant with the set_pmd() on non-PAE. As would
174 	 * set_p4d/set_pud.
175 	 */
176 	p4d = p4d_offset(pgd, address);
177 	p4d_k = p4d_offset(pgd_k, address);
178 	if (!p4d_present(*p4d_k))
179 		return NULL;
180 
181 	pud = pud_offset(p4d, address);
182 	pud_k = pud_offset(p4d_k, address);
183 	if (!pud_present(*pud_k))
184 		return NULL;
185 
186 	pmd = pmd_offset(pud, address);
187 	pmd_k = pmd_offset(pud_k, address);
188 
189 	if (pmd_present(*pmd) != pmd_present(*pmd_k))
190 		set_pmd(pmd, *pmd_k);
191 
192 	if (!pmd_present(*pmd_k))
193 		return NULL;
194 	else
195 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
196 
197 	return pmd_k;
198 }
199 
200 /*
201  *   Handle a fault on the vmalloc or module mapping area
202  *
203  *   This is needed because there is a race condition between the time
204  *   when the vmalloc mapping code updates the PMD to the point in time
205  *   where it synchronizes this update with the other page-tables in the
206  *   system.
207  *
208  *   In this race window another thread/CPU can map an area on the same
209  *   PMD, finds it already present and does not synchronize it with the
210  *   rest of the system yet. As a result v[mz]alloc might return areas
211  *   which are not mapped in every page-table in the system, causing an
212  *   unhandled page-fault when they are accessed.
213  */
vmalloc_fault(unsigned long address)214 static noinline int vmalloc_fault(unsigned long address)
215 {
216 	unsigned long pgd_paddr;
217 	pmd_t *pmd_k;
218 	pte_t *pte_k;
219 
220 	/* Make sure we are in vmalloc area: */
221 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
222 		return -1;
223 
224 	/*
225 	 * Synchronize this task's top level page-table
226 	 * with the 'reference' page table.
227 	 *
228 	 * Do _not_ use "current" here. We might be inside
229 	 * an interrupt in the middle of a task switch..
230 	 */
231 	pgd_paddr = read_cr3_pa();
232 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
233 	if (!pmd_k)
234 		return -1;
235 
236 	if (pmd_large(*pmd_k))
237 		return 0;
238 
239 	pte_k = pte_offset_kernel(pmd_k, address);
240 	if (!pte_present(*pte_k))
241 		return -1;
242 
243 	return 0;
244 }
245 NOKPROBE_SYMBOL(vmalloc_fault);
246 
arch_sync_kernel_mappings(unsigned long start,unsigned long end)247 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
248 {
249 	unsigned long addr;
250 
251 	for (addr = start & PMD_MASK;
252 	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
253 	     addr += PMD_SIZE) {
254 		struct page *page;
255 
256 		spin_lock(&pgd_lock);
257 		list_for_each_entry(page, &pgd_list, lru) {
258 			spinlock_t *pgt_lock;
259 
260 			/* the pgt_lock only for Xen */
261 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
262 
263 			spin_lock(pgt_lock);
264 			vmalloc_sync_one(page_address(page), addr);
265 			spin_unlock(pgt_lock);
266 		}
267 		spin_unlock(&pgd_lock);
268 	}
269 }
270 
271 /*
272  * Did it hit the DOS screen memory VA from vm86 mode?
273  */
274 static inline void
check_v8086_mode(struct pt_regs * regs,unsigned long address,struct task_struct * tsk)275 check_v8086_mode(struct pt_regs *regs, unsigned long address,
276 		 struct task_struct *tsk)
277 {
278 #ifdef CONFIG_VM86
279 	unsigned long bit;
280 
281 	if (!v8086_mode(regs) || !tsk->thread.vm86)
282 		return;
283 
284 	bit = (address - 0xA0000) >> PAGE_SHIFT;
285 	if (bit < 32)
286 		tsk->thread.vm86->screen_bitmap |= 1 << bit;
287 #endif
288 }
289 
low_pfn(unsigned long pfn)290 static bool low_pfn(unsigned long pfn)
291 {
292 	return pfn < max_low_pfn;
293 }
294 
dump_pagetable(unsigned long address)295 static void dump_pagetable(unsigned long address)
296 {
297 	pgd_t *base = __va(read_cr3_pa());
298 	pgd_t *pgd = &base[pgd_index(address)];
299 	p4d_t *p4d;
300 	pud_t *pud;
301 	pmd_t *pmd;
302 	pte_t *pte;
303 
304 #ifdef CONFIG_X86_PAE
305 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
306 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
307 		goto out;
308 #define pr_pde pr_cont
309 #else
310 #define pr_pde pr_info
311 #endif
312 	p4d = p4d_offset(pgd, address);
313 	pud = pud_offset(p4d, address);
314 	pmd = pmd_offset(pud, address);
315 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
316 #undef pr_pde
317 
318 	/*
319 	 * We must not directly access the pte in the highpte
320 	 * case if the page table is located in highmem.
321 	 * And let's rather not kmap-atomic the pte, just in case
322 	 * it's allocated already:
323 	 */
324 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
325 		goto out;
326 
327 	pte = pte_offset_kernel(pmd, address);
328 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
329 out:
330 	pr_cont("\n");
331 }
332 
333 #else /* CONFIG_X86_64: */
334 
335 #ifdef CONFIG_CPU_SUP_AMD
336 static const char errata93_warning[] =
337 KERN_ERR
338 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
339 "******* Working around it, but it may cause SEGVs or burn power.\n"
340 "******* Please consider a BIOS update.\n"
341 "******* Disabling USB legacy in the BIOS may also help.\n";
342 #endif
343 
344 /*
345  * No vm86 mode in 64-bit mode:
346  */
347 static inline void
check_v8086_mode(struct pt_regs * regs,unsigned long address,struct task_struct * tsk)348 check_v8086_mode(struct pt_regs *regs, unsigned long address,
349 		 struct task_struct *tsk)
350 {
351 }
352 
bad_address(void * p)353 static int bad_address(void *p)
354 {
355 	unsigned long dummy;
356 
357 	return get_kernel_nofault(dummy, (unsigned long *)p);
358 }
359 
dump_pagetable(unsigned long address)360 static void dump_pagetable(unsigned long address)
361 {
362 	pgd_t *base = __va(read_cr3_pa());
363 	pgd_t *pgd = base + pgd_index(address);
364 	p4d_t *p4d;
365 	pud_t *pud;
366 	pmd_t *pmd;
367 	pte_t *pte;
368 
369 	if (bad_address(pgd))
370 		goto bad;
371 
372 	pr_info("PGD %lx ", pgd_val(*pgd));
373 
374 	if (!pgd_present(*pgd))
375 		goto out;
376 
377 	p4d = p4d_offset(pgd, address);
378 	if (bad_address(p4d))
379 		goto bad;
380 
381 	pr_cont("P4D %lx ", p4d_val(*p4d));
382 	if (!p4d_present(*p4d) || p4d_large(*p4d))
383 		goto out;
384 
385 	pud = pud_offset(p4d, address);
386 	if (bad_address(pud))
387 		goto bad;
388 
389 	pr_cont("PUD %lx ", pud_val(*pud));
390 	if (!pud_present(*pud) || pud_large(*pud))
391 		goto out;
392 
393 	pmd = pmd_offset(pud, address);
394 	if (bad_address(pmd))
395 		goto bad;
396 
397 	pr_cont("PMD %lx ", pmd_val(*pmd));
398 	if (!pmd_present(*pmd) || pmd_large(*pmd))
399 		goto out;
400 
401 	pte = pte_offset_kernel(pmd, address);
402 	if (bad_address(pte))
403 		goto bad;
404 
405 	pr_cont("PTE %lx", pte_val(*pte));
406 out:
407 	pr_cont("\n");
408 	return;
409 bad:
410 	pr_info("BAD\n");
411 }
412 
413 #endif /* CONFIG_X86_64 */
414 
415 /*
416  * Workaround for K8 erratum #93 & buggy BIOS.
417  *
418  * BIOS SMM functions are required to use a specific workaround
419  * to avoid corruption of the 64bit RIP register on C stepping K8.
420  *
421  * A lot of BIOS that didn't get tested properly miss this.
422  *
423  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
424  * Try to work around it here.
425  *
426  * Note we only handle faults in kernel here.
427  * Does nothing on 32-bit.
428  */
is_errata93(struct pt_regs * regs,unsigned long address)429 static int is_errata93(struct pt_regs *regs, unsigned long address)
430 {
431 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
432 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
433 	    || boot_cpu_data.x86 != 0xf)
434 		return 0;
435 
436 	if (address != regs->ip)
437 		return 0;
438 
439 	if ((address >> 32) != 0)
440 		return 0;
441 
442 	address |= 0xffffffffUL << 32;
443 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
444 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
445 		printk_once(errata93_warning);
446 		regs->ip = address;
447 		return 1;
448 	}
449 #endif
450 	return 0;
451 }
452 
453 /*
454  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
455  * to illegal addresses >4GB.
456  *
457  * We catch this in the page fault handler because these addresses
458  * are not reachable. Just detect this case and return.  Any code
459  * segment in LDT is compatibility mode.
460  */
is_errata100(struct pt_regs * regs,unsigned long address)461 static int is_errata100(struct pt_regs *regs, unsigned long address)
462 {
463 #ifdef CONFIG_X86_64
464 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
465 		return 1;
466 #endif
467 	return 0;
468 }
469 
470 /* Pentium F0 0F C7 C8 bug workaround: */
is_f00f_bug(struct pt_regs * regs,unsigned long address)471 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
472 {
473 #ifdef CONFIG_X86_F00F_BUG
474 	if (boot_cpu_has_bug(X86_BUG_F00F) && idt_is_f00f_address(address)) {
475 		handle_invalid_op(regs);
476 		return 1;
477 	}
478 #endif
479 	return 0;
480 }
481 
show_ldttss(const struct desc_ptr * gdt,const char * name,u16 index)482 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
483 {
484 	u32 offset = (index >> 3) * sizeof(struct desc_struct);
485 	unsigned long addr;
486 	struct ldttss_desc desc;
487 
488 	if (index == 0) {
489 		pr_alert("%s: NULL\n", name);
490 		return;
491 	}
492 
493 	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
494 		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
495 		return;
496 	}
497 
498 	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
499 			      sizeof(struct ldttss_desc))) {
500 		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
501 			 name, index);
502 		return;
503 	}
504 
505 	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
506 #ifdef CONFIG_X86_64
507 	addr |= ((u64)desc.base3 << 32);
508 #endif
509 	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
510 		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
511 }
512 
513 static void
show_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)514 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
515 {
516 	if (!oops_may_print())
517 		return;
518 
519 	if (error_code & X86_PF_INSTR) {
520 		unsigned int level;
521 		pgd_t *pgd;
522 		pte_t *pte;
523 
524 		pgd = __va(read_cr3_pa());
525 		pgd += pgd_index(address);
526 
527 		pte = lookup_address_in_pgd(pgd, address, &level);
528 
529 		if (pte && pte_present(*pte) && !pte_exec(*pte))
530 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
531 				from_kuid(&init_user_ns, current_uid()));
532 		if (pte && pte_present(*pte) && pte_exec(*pte) &&
533 				(pgd_flags(*pgd) & _PAGE_USER) &&
534 				(__read_cr4() & X86_CR4_SMEP))
535 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
536 				from_kuid(&init_user_ns, current_uid()));
537 	}
538 
539 	if (address < PAGE_SIZE && !user_mode(regs))
540 		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
541 			(void *)address);
542 	else
543 		pr_alert("BUG: unable to handle page fault for address: %px\n",
544 			(void *)address);
545 
546 	pr_alert("#PF: %s %s in %s mode\n",
547 		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
548 		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
549 		 (error_code & X86_PF_WRITE) ? "write access" :
550 					       "read access",
551 			     user_mode(regs) ? "user" : "kernel");
552 	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
553 		 !(error_code & X86_PF_PROT) ? "not-present page" :
554 		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
555 		 (error_code & X86_PF_PK)    ? "protection keys violation" :
556 					       "permissions violation");
557 
558 	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
559 		struct desc_ptr idt, gdt;
560 		u16 ldtr, tr;
561 
562 		/*
563 		 * This can happen for quite a few reasons.  The more obvious
564 		 * ones are faults accessing the GDT, or LDT.  Perhaps
565 		 * surprisingly, if the CPU tries to deliver a benign or
566 		 * contributory exception from user code and gets a page fault
567 		 * during delivery, the page fault can be delivered as though
568 		 * it originated directly from user code.  This could happen
569 		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
570 		 * kernel or IST stack.
571 		 */
572 		store_idt(&idt);
573 
574 		/* Usable even on Xen PV -- it's just slow. */
575 		native_store_gdt(&gdt);
576 
577 		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
578 			 idt.address, idt.size, gdt.address, gdt.size);
579 
580 		store_ldt(ldtr);
581 		show_ldttss(&gdt, "LDTR", ldtr);
582 
583 		store_tr(tr);
584 		show_ldttss(&gdt, "TR", tr);
585 	}
586 
587 	dump_pagetable(address);
588 }
589 
590 static noinline void
pgtable_bad(struct pt_regs * regs,unsigned long error_code,unsigned long address)591 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
592 	    unsigned long address)
593 {
594 	struct task_struct *tsk;
595 	unsigned long flags;
596 	int sig;
597 
598 	flags = oops_begin();
599 	tsk = current;
600 	sig = SIGKILL;
601 
602 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
603 	       tsk->comm, address);
604 	dump_pagetable(address);
605 
606 	if (__die("Bad pagetable", regs, error_code))
607 		sig = 0;
608 
609 	oops_end(flags, regs, sig);
610 }
611 
set_signal_archinfo(unsigned long address,unsigned long error_code)612 static void set_signal_archinfo(unsigned long address,
613 				unsigned long error_code)
614 {
615 	struct task_struct *tsk = current;
616 
617 	/*
618 	 * To avoid leaking information about the kernel page
619 	 * table layout, pretend that user-mode accesses to
620 	 * kernel addresses are always protection faults.
621 	 *
622 	 * NB: This means that failed vsyscalls with vsyscall=none
623 	 * will have the PROT bit.  This doesn't leak any
624 	 * information and does not appear to cause any problems.
625 	 */
626 	if (address >= TASK_SIZE_MAX)
627 		error_code |= X86_PF_PROT;
628 
629 	tsk->thread.trap_nr = X86_TRAP_PF;
630 	tsk->thread.error_code = error_code | X86_PF_USER;
631 	tsk->thread.cr2 = address;
632 }
633 
634 static noinline void
no_context(struct pt_regs * regs,unsigned long error_code,unsigned long address,int signal,int si_code)635 no_context(struct pt_regs *regs, unsigned long error_code,
636 	   unsigned long address, int signal, int si_code)
637 {
638 	struct task_struct *tsk = current;
639 	unsigned long flags;
640 	int sig;
641 
642 	if (user_mode(regs)) {
643 		/*
644 		 * This is an implicit supervisor-mode access from user
645 		 * mode.  Bypass all the kernel-mode recovery code and just
646 		 * OOPS.
647 		 */
648 		goto oops;
649 	}
650 
651 	/* Are we prepared to handle this kernel fault? */
652 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
653 		/*
654 		 * Any interrupt that takes a fault gets the fixup. This makes
655 		 * the below recursive fault logic only apply to a faults from
656 		 * task context.
657 		 */
658 		if (in_interrupt())
659 			return;
660 
661 		/*
662 		 * Per the above we're !in_interrupt(), aka. task context.
663 		 *
664 		 * In this case we need to make sure we're not recursively
665 		 * faulting through the emulate_vsyscall() logic.
666 		 */
667 		if (current->thread.sig_on_uaccess_err && signal) {
668 			set_signal_archinfo(address, error_code);
669 
670 			/* XXX: hwpoison faults will set the wrong code. */
671 			force_sig_fault(signal, si_code, (void __user *)address);
672 		}
673 
674 		/*
675 		 * Barring that, we can do the fixup and be happy.
676 		 */
677 		return;
678 	}
679 
680 #ifdef CONFIG_VMAP_STACK
681 	/*
682 	 * Stack overflow?  During boot, we can fault near the initial
683 	 * stack in the direct map, but that's not an overflow -- check
684 	 * that we're in vmalloc space to avoid this.
685 	 */
686 	if (is_vmalloc_addr((void *)address) &&
687 	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
688 	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
689 		unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
690 		/*
691 		 * We're likely to be running with very little stack space
692 		 * left.  It's plausible that we'd hit this condition but
693 		 * double-fault even before we get this far, in which case
694 		 * we're fine: the double-fault handler will deal with it.
695 		 *
696 		 * We don't want to make it all the way into the oops code
697 		 * and then double-fault, though, because we're likely to
698 		 * break the console driver and lose most of the stack dump.
699 		 */
700 		asm volatile ("movq %[stack], %%rsp\n\t"
701 			      "call handle_stack_overflow\n\t"
702 			      "1: jmp 1b"
703 			      : ASM_CALL_CONSTRAINT
704 			      : "D" ("kernel stack overflow (page fault)"),
705 				"S" (regs), "d" (address),
706 				[stack] "rm" (stack));
707 		unreachable();
708 	}
709 #endif
710 
711 	/*
712 	 * 32-bit:
713 	 *
714 	 *   Valid to do another page fault here, because if this fault
715 	 *   had been triggered by is_prefetch fixup_exception would have
716 	 *   handled it.
717 	 *
718 	 * 64-bit:
719 	 *
720 	 *   Hall of shame of CPU/BIOS bugs.
721 	 */
722 	if (is_prefetch(regs, error_code, address))
723 		return;
724 
725 	if (is_errata93(regs, address))
726 		return;
727 
728 	/*
729 	 * Buggy firmware could access regions which might page fault, try to
730 	 * recover from such faults.
731 	 */
732 	if (IS_ENABLED(CONFIG_EFI))
733 		efi_recover_from_page_fault(address);
734 
735 oops:
736 	/*
737 	 * Oops. The kernel tried to access some bad page. We'll have to
738 	 * terminate things with extreme prejudice:
739 	 */
740 	flags = oops_begin();
741 
742 	show_fault_oops(regs, error_code, address);
743 
744 	if (task_stack_end_corrupted(tsk))
745 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
746 
747 	sig = SIGKILL;
748 	if (__die("Oops", regs, error_code))
749 		sig = 0;
750 
751 	/* Executive summary in case the body of the oops scrolled away */
752 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
753 
754 	oops_end(flags, regs, sig);
755 }
756 
757 /*
758  * Print out info about fatal segfaults, if the show_unhandled_signals
759  * sysctl is set:
760  */
761 static inline void
show_signal_msg(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct task_struct * tsk)762 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
763 		unsigned long address, struct task_struct *tsk)
764 {
765 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
766 
767 	if (!unhandled_signal(tsk, SIGSEGV))
768 		return;
769 
770 	if (!printk_ratelimit())
771 		return;
772 
773 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
774 		loglvl, tsk->comm, task_pid_nr(tsk), address,
775 		(void *)regs->ip, (void *)regs->sp, error_code);
776 
777 	print_vma_addr(KERN_CONT " in ", regs->ip);
778 
779 	printk(KERN_CONT "\n");
780 
781 	show_opcodes(regs, loglvl);
782 }
783 
784 /*
785  * The (legacy) vsyscall page is the long page in the kernel portion
786  * of the address space that has user-accessible permissions.
787  */
is_vsyscall_vaddr(unsigned long vaddr)788 static bool is_vsyscall_vaddr(unsigned long vaddr)
789 {
790 	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
791 }
792 
793 static void
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)794 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
795 		       unsigned long address, u32 pkey, int si_code)
796 {
797 	struct task_struct *tsk = current;
798 
799 	/* User mode accesses just cause a SIGSEGV */
800 	if (user_mode(regs) && (error_code & X86_PF_USER)) {
801 		/*
802 		 * It's possible to have interrupts off here:
803 		 */
804 		local_irq_enable();
805 
806 		/*
807 		 * Valid to do another page fault here because this one came
808 		 * from user space:
809 		 */
810 		if (is_prefetch(regs, error_code, address))
811 			return;
812 
813 		if (is_errata100(regs, address))
814 			return;
815 
816 		/*
817 		 * To avoid leaking information about the kernel page table
818 		 * layout, pretend that user-mode accesses to kernel addresses
819 		 * are always protection faults.
820 		 */
821 		if (address >= TASK_SIZE_MAX)
822 			error_code |= X86_PF_PROT;
823 
824 		if (likely(show_unhandled_signals))
825 			show_signal_msg(regs, error_code, address, tsk);
826 
827 		set_signal_archinfo(address, error_code);
828 
829 		if (si_code == SEGV_PKUERR)
830 			force_sig_pkuerr((void __user *)address, pkey);
831 
832 		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
833 
834 		local_irq_disable();
835 
836 		return;
837 	}
838 
839 	if (is_f00f_bug(regs, address))
840 		return;
841 
842 	no_context(regs, error_code, address, SIGSEGV, si_code);
843 }
844 
845 static noinline void
bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address)846 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
847 		     unsigned long address)
848 {
849 	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
850 }
851 
852 static void
__bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)853 __bad_area(struct pt_regs *regs, unsigned long error_code,
854 	   unsigned long address, u32 pkey, int si_code)
855 {
856 	struct mm_struct *mm = current->mm;
857 	/*
858 	 * Something tried to access memory that isn't in our memory map..
859 	 * Fix it, but check if it's kernel or user first..
860 	 */
861 	mmap_read_unlock(mm);
862 
863 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
864 }
865 
866 static noinline void
bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address)867 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
868 {
869 	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
870 }
871 
bad_area_access_from_pkeys(unsigned long error_code,struct vm_area_struct * vma)872 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
873 		struct vm_area_struct *vma)
874 {
875 	/* This code is always called on the current mm */
876 	bool foreign = false;
877 
878 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
879 		return false;
880 	if (error_code & X86_PF_PK)
881 		return true;
882 	/* this checks permission keys on the VMA: */
883 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
884 				       (error_code & X86_PF_INSTR), foreign))
885 		return true;
886 	return false;
887 }
888 
889 static noinline void
bad_area_access_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct vm_area_struct * vma)890 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
891 		      unsigned long address, struct vm_area_struct *vma)
892 {
893 	/*
894 	 * This OSPKE check is not strictly necessary at runtime.
895 	 * But, doing it this way allows compiler optimizations
896 	 * if pkeys are compiled out.
897 	 */
898 	if (bad_area_access_from_pkeys(error_code, vma)) {
899 		/*
900 		 * A protection key fault means that the PKRU value did not allow
901 		 * access to some PTE.  Userspace can figure out what PKRU was
902 		 * from the XSAVE state.  This function captures the pkey from
903 		 * the vma and passes it to userspace so userspace can discover
904 		 * which protection key was set on the PTE.
905 		 *
906 		 * If we get here, we know that the hardware signaled a X86_PF_PK
907 		 * fault and that there was a VMA once we got in the fault
908 		 * handler.  It does *not* guarantee that the VMA we find here
909 		 * was the one that we faulted on.
910 		 *
911 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
912 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
913 		 * 3. T1   : faults...
914 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
915 		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
916 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
917 		 *	     faulted on a pte with its pkey=4.
918 		 */
919 		u32 pkey = vma_pkey(vma);
920 
921 		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
922 	} else {
923 		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
924 	}
925 }
926 
927 static void
do_sigbus(struct pt_regs * regs,unsigned long error_code,unsigned long address,vm_fault_t fault)928 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
929 	  vm_fault_t fault)
930 {
931 	/* Kernel mode? Handle exceptions or die: */
932 	if (!(error_code & X86_PF_USER)) {
933 		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
934 		return;
935 	}
936 
937 	/* User-space => ok to do another page fault: */
938 	if (is_prefetch(regs, error_code, address))
939 		return;
940 
941 	set_signal_archinfo(address, error_code);
942 
943 #ifdef CONFIG_MEMORY_FAILURE
944 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
945 		struct task_struct *tsk = current;
946 		unsigned lsb = 0;
947 
948 		pr_err(
949 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
950 			tsk->comm, tsk->pid, address);
951 		if (fault & VM_FAULT_HWPOISON_LARGE)
952 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
953 		if (fault & VM_FAULT_HWPOISON)
954 			lsb = PAGE_SHIFT;
955 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
956 		return;
957 	}
958 #endif
959 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
960 }
961 
962 static noinline void
mm_fault_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,vm_fault_t fault)963 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
964 	       unsigned long address, vm_fault_t fault)
965 {
966 	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
967 		no_context(regs, error_code, address, 0, 0);
968 		return;
969 	}
970 
971 	if (fault & VM_FAULT_OOM) {
972 		/* Kernel mode? Handle exceptions or die: */
973 		if (!(error_code & X86_PF_USER)) {
974 			no_context(regs, error_code, address,
975 				   SIGSEGV, SEGV_MAPERR);
976 			return;
977 		}
978 
979 		/*
980 		 * We ran out of memory, call the OOM killer, and return the
981 		 * userspace (which will retry the fault, or kill us if we got
982 		 * oom-killed):
983 		 */
984 		pagefault_out_of_memory();
985 	} else {
986 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
987 			     VM_FAULT_HWPOISON_LARGE))
988 			do_sigbus(regs, error_code, address, fault);
989 		else if (fault & VM_FAULT_SIGSEGV)
990 			bad_area_nosemaphore(regs, error_code, address);
991 		else
992 			BUG();
993 	}
994 }
995 
spurious_kernel_fault_check(unsigned long error_code,pte_t * pte)996 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
997 {
998 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
999 		return 0;
1000 
1001 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1002 		return 0;
1003 
1004 	return 1;
1005 }
1006 
1007 /*
1008  * Handle a spurious fault caused by a stale TLB entry.
1009  *
1010  * This allows us to lazily refresh the TLB when increasing the
1011  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1012  * eagerly is very expensive since that implies doing a full
1013  * cross-processor TLB flush, even if no stale TLB entries exist
1014  * on other processors.
1015  *
1016  * Spurious faults may only occur if the TLB contains an entry with
1017  * fewer permission than the page table entry.  Non-present (P = 0)
1018  * and reserved bit (R = 1) faults are never spurious.
1019  *
1020  * There are no security implications to leaving a stale TLB when
1021  * increasing the permissions on a page.
1022  *
1023  * Returns non-zero if a spurious fault was handled, zero otherwise.
1024  *
1025  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1026  * (Optional Invalidation).
1027  */
1028 static noinline int
spurious_kernel_fault(unsigned long error_code,unsigned long address)1029 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1030 {
1031 	pgd_t *pgd;
1032 	p4d_t *p4d;
1033 	pud_t *pud;
1034 	pmd_t *pmd;
1035 	pte_t *pte;
1036 	int ret;
1037 
1038 	/*
1039 	 * Only writes to RO or instruction fetches from NX may cause
1040 	 * spurious faults.
1041 	 *
1042 	 * These could be from user or supervisor accesses but the TLB
1043 	 * is only lazily flushed after a kernel mapping protection
1044 	 * change, so user accesses are not expected to cause spurious
1045 	 * faults.
1046 	 */
1047 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1048 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1049 		return 0;
1050 
1051 	pgd = init_mm.pgd + pgd_index(address);
1052 	if (!pgd_present(*pgd))
1053 		return 0;
1054 
1055 	p4d = p4d_offset(pgd, address);
1056 	if (!p4d_present(*p4d))
1057 		return 0;
1058 
1059 	if (p4d_large(*p4d))
1060 		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1061 
1062 	pud = pud_offset(p4d, address);
1063 	if (!pud_present(*pud))
1064 		return 0;
1065 
1066 	if (pud_large(*pud))
1067 		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1068 
1069 	pmd = pmd_offset(pud, address);
1070 	if (!pmd_present(*pmd))
1071 		return 0;
1072 
1073 	if (pmd_large(*pmd))
1074 		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1075 
1076 	pte = pte_offset_kernel(pmd, address);
1077 	if (!pte_present(*pte))
1078 		return 0;
1079 
1080 	ret = spurious_kernel_fault_check(error_code, pte);
1081 	if (!ret)
1082 		return 0;
1083 
1084 	/*
1085 	 * Make sure we have permissions in PMD.
1086 	 * If not, then there's a bug in the page tables:
1087 	 */
1088 	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1089 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1090 
1091 	return ret;
1092 }
1093 NOKPROBE_SYMBOL(spurious_kernel_fault);
1094 
1095 int show_unhandled_signals = 1;
1096 
1097 static inline int
access_error(unsigned long error_code,struct vm_area_struct * vma)1098 access_error(unsigned long error_code, struct vm_area_struct *vma)
1099 {
1100 	/* This is only called for the current mm, so: */
1101 	bool foreign = false;
1102 
1103 	/*
1104 	 * Read or write was blocked by protection keys.  This is
1105 	 * always an unconditional error and can never result in
1106 	 * a follow-up action to resolve the fault, like a COW.
1107 	 */
1108 	if (error_code & X86_PF_PK)
1109 		return 1;
1110 
1111 	/*
1112 	 * Make sure to check the VMA so that we do not perform
1113 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1114 	 * page.
1115 	 */
1116 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1117 				       (error_code & X86_PF_INSTR), foreign))
1118 		return 1;
1119 
1120 	if (error_code & X86_PF_WRITE) {
1121 		/* write, present and write, not present: */
1122 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1123 			return 1;
1124 		return 0;
1125 	}
1126 
1127 	/* read, present: */
1128 	if (unlikely(error_code & X86_PF_PROT))
1129 		return 1;
1130 
1131 	/* read, not present: */
1132 	if (unlikely(!vma_is_accessible(vma)))
1133 		return 1;
1134 
1135 	return 0;
1136 }
1137 
fault_in_kernel_space(unsigned long address)1138 bool fault_in_kernel_space(unsigned long address)
1139 {
1140 	/*
1141 	 * On 64-bit systems, the vsyscall page is at an address above
1142 	 * TASK_SIZE_MAX, but is not considered part of the kernel
1143 	 * address space.
1144 	 */
1145 	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1146 		return false;
1147 
1148 	return address >= TASK_SIZE_MAX;
1149 }
1150 
1151 /*
1152  * Called for all faults where 'address' is part of the kernel address
1153  * space.  Might get called for faults that originate from *code* that
1154  * ran in userspace or the kernel.
1155  */
1156 static void
do_kern_addr_fault(struct pt_regs * regs,unsigned long hw_error_code,unsigned long address)1157 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1158 		   unsigned long address)
1159 {
1160 	/*
1161 	 * Protection keys exceptions only happen on user pages.  We
1162 	 * have no user pages in the kernel portion of the address
1163 	 * space, so do not expect them here.
1164 	 */
1165 	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1166 
1167 #ifdef CONFIG_X86_32
1168 	/*
1169 	 * We can fault-in kernel-space virtual memory on-demand. The
1170 	 * 'reference' page table is init_mm.pgd.
1171 	 *
1172 	 * NOTE! We MUST NOT take any locks for this case. We may
1173 	 * be in an interrupt or a critical region, and should
1174 	 * only copy the information from the master page table,
1175 	 * nothing more.
1176 	 *
1177 	 * Before doing this on-demand faulting, ensure that the
1178 	 * fault is not any of the following:
1179 	 * 1. A fault on a PTE with a reserved bit set.
1180 	 * 2. A fault caused by a user-mode access.  (Do not demand-
1181 	 *    fault kernel memory due to user-mode accesses).
1182 	 * 3. A fault caused by a page-level protection violation.
1183 	 *    (A demand fault would be on a non-present page which
1184 	 *     would have X86_PF_PROT==0).
1185 	 *
1186 	 * This is only needed to close a race condition on x86-32 in
1187 	 * the vmalloc mapping/unmapping code. See the comment above
1188 	 * vmalloc_fault() for details. On x86-64 the race does not
1189 	 * exist as the vmalloc mappings don't need to be synchronized
1190 	 * there.
1191 	 */
1192 	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1193 		if (vmalloc_fault(address) >= 0)
1194 			return;
1195 	}
1196 #endif
1197 
1198 	/* Was the fault spurious, caused by lazy TLB invalidation? */
1199 	if (spurious_kernel_fault(hw_error_code, address))
1200 		return;
1201 
1202 	/* kprobes don't want to hook the spurious faults: */
1203 	if (kprobe_page_fault(regs, X86_TRAP_PF))
1204 		return;
1205 
1206 	/*
1207 	 * Note, despite being a "bad area", there are quite a few
1208 	 * acceptable reasons to get here, such as erratum fixups
1209 	 * and handling kernel code that can fault, like get_user().
1210 	 *
1211 	 * Don't take the mm semaphore here. If we fixup a prefetch
1212 	 * fault we could otherwise deadlock:
1213 	 */
1214 	bad_area_nosemaphore(regs, hw_error_code, address);
1215 }
1216 NOKPROBE_SYMBOL(do_kern_addr_fault);
1217 
1218 /* Handle faults in the user portion of the address space */
1219 static inline
do_user_addr_fault(struct pt_regs * regs,unsigned long hw_error_code,unsigned long address)1220 void do_user_addr_fault(struct pt_regs *regs,
1221 			unsigned long hw_error_code,
1222 			unsigned long address)
1223 {
1224 	struct vm_area_struct *vma;
1225 	struct task_struct *tsk;
1226 	struct mm_struct *mm;
1227 	vm_fault_t fault;
1228 	unsigned int flags = FAULT_FLAG_DEFAULT;
1229 
1230 	tsk = current;
1231 	mm = tsk->mm;
1232 
1233 	/* kprobes don't want to hook the spurious faults: */
1234 	if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1235 		return;
1236 
1237 	/*
1238 	 * Reserved bits are never expected to be set on
1239 	 * entries in the user portion of the page tables.
1240 	 */
1241 	if (unlikely(hw_error_code & X86_PF_RSVD))
1242 		pgtable_bad(regs, hw_error_code, address);
1243 
1244 	/*
1245 	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1246 	 * pages in the user address space.  The odd case here is WRUSS,
1247 	 * which, according to the preliminary documentation, does not respect
1248 	 * SMAP and will have the USER bit set so, in all cases, SMAP
1249 	 * enforcement appears to be consistent with the USER bit.
1250 	 */
1251 	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1252 		     !(hw_error_code & X86_PF_USER) &&
1253 		     !(regs->flags & X86_EFLAGS_AC)))
1254 	{
1255 		bad_area_nosemaphore(regs, hw_error_code, address);
1256 		return;
1257 	}
1258 
1259 	/*
1260 	 * If we're in an interrupt, have no user context or are running
1261 	 * in a region with pagefaults disabled then we must not take the fault
1262 	 */
1263 	if (unlikely(faulthandler_disabled() || !mm)) {
1264 		bad_area_nosemaphore(regs, hw_error_code, address);
1265 		return;
1266 	}
1267 
1268 	/*
1269 	 * It's safe to allow irq's after cr2 has been saved and the
1270 	 * vmalloc fault has been handled.
1271 	 *
1272 	 * User-mode registers count as a user access even for any
1273 	 * potential system fault or CPU buglet:
1274 	 */
1275 	if (user_mode(regs)) {
1276 		local_irq_enable();
1277 		flags |= FAULT_FLAG_USER;
1278 	} else {
1279 		if (regs->flags & X86_EFLAGS_IF)
1280 			local_irq_enable();
1281 	}
1282 
1283 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1284 
1285 	if (hw_error_code & X86_PF_WRITE)
1286 		flags |= FAULT_FLAG_WRITE;
1287 	if (hw_error_code & X86_PF_INSTR)
1288 		flags |= FAULT_FLAG_INSTRUCTION;
1289 
1290 #ifdef CONFIG_X86_64
1291 	/*
1292 	 * Faults in the vsyscall page might need emulation.  The
1293 	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1294 	 * considered to be part of the user address space.
1295 	 *
1296 	 * The vsyscall page does not have a "real" VMA, so do this
1297 	 * emulation before we go searching for VMAs.
1298 	 *
1299 	 * PKRU never rejects instruction fetches, so we don't need
1300 	 * to consider the PF_PK bit.
1301 	 */
1302 	if (is_vsyscall_vaddr(address)) {
1303 		if (emulate_vsyscall(hw_error_code, regs, address))
1304 			return;
1305 	}
1306 #endif
1307 
1308 	/*
1309 	 * Kernel-mode access to the user address space should only occur
1310 	 * on well-defined single instructions listed in the exception
1311 	 * tables.  But, an erroneous kernel fault occurring outside one of
1312 	 * those areas which also holds mmap_lock might deadlock attempting
1313 	 * to validate the fault against the address space.
1314 	 *
1315 	 * Only do the expensive exception table search when we might be at
1316 	 * risk of a deadlock.  This happens if we
1317 	 * 1. Failed to acquire mmap_lock, and
1318 	 * 2. The access did not originate in userspace.
1319 	 */
1320 	if (unlikely(!mmap_read_trylock(mm))) {
1321 		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1322 			/*
1323 			 * Fault from code in kernel from
1324 			 * which we do not expect faults.
1325 			 */
1326 			bad_area_nosemaphore(regs, hw_error_code, address);
1327 			return;
1328 		}
1329 retry:
1330 		mmap_read_lock(mm);
1331 	} else {
1332 		/*
1333 		 * The above down_read_trylock() might have succeeded in
1334 		 * which case we'll have missed the might_sleep() from
1335 		 * down_read():
1336 		 */
1337 		might_sleep();
1338 	}
1339 
1340 	vma = find_vma(mm, address);
1341 	if (unlikely(!vma)) {
1342 		bad_area(regs, hw_error_code, address);
1343 		return;
1344 	}
1345 	if (likely(vma->vm_start <= address))
1346 		goto good_area;
1347 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1348 		bad_area(regs, hw_error_code, address);
1349 		return;
1350 	}
1351 	if (unlikely(expand_stack(vma, address))) {
1352 		bad_area(regs, hw_error_code, address);
1353 		return;
1354 	}
1355 
1356 	/*
1357 	 * Ok, we have a good vm_area for this memory access, so
1358 	 * we can handle it..
1359 	 */
1360 good_area:
1361 	if (unlikely(access_error(hw_error_code, vma))) {
1362 		bad_area_access_error(regs, hw_error_code, address, vma);
1363 		return;
1364 	}
1365 
1366 	/*
1367 	 * If for any reason at all we couldn't handle the fault,
1368 	 * make sure we exit gracefully rather than endlessly redo
1369 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1370 	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1371 	 *
1372 	 * Note that handle_userfault() may also release and reacquire mmap_lock
1373 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1374 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1375 	 * (potentially after handling any pending signal during the return to
1376 	 * userland). The return to userland is identified whenever
1377 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1378 	 */
1379 	fault = handle_mm_fault(vma, address, flags, regs);
1380 
1381 	/* Quick path to respond to signals */
1382 	if (fault_signal_pending(fault, regs)) {
1383 		if (!user_mode(regs))
1384 			no_context(regs, hw_error_code, address, SIGBUS,
1385 				   BUS_ADRERR);
1386 		return;
1387 	}
1388 
1389 	/*
1390 	 * If we need to retry the mmap_lock has already been released,
1391 	 * and if there is a fatal signal pending there is no guarantee
1392 	 * that we made any progress. Handle this case first.
1393 	 */
1394 	if (unlikely((fault & VM_FAULT_RETRY) &&
1395 		     (flags & FAULT_FLAG_ALLOW_RETRY))) {
1396 		flags |= FAULT_FLAG_TRIED;
1397 		goto retry;
1398 	}
1399 
1400 	mmap_read_unlock(mm);
1401 	if (unlikely(fault & VM_FAULT_ERROR)) {
1402 		mm_fault_error(regs, hw_error_code, address, fault);
1403 		return;
1404 	}
1405 
1406 	check_v8086_mode(regs, address, tsk);
1407 }
1408 NOKPROBE_SYMBOL(do_user_addr_fault);
1409 
1410 static __always_inline void
trace_page_fault_entries(struct pt_regs * regs,unsigned long error_code,unsigned long address)1411 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1412 			 unsigned long address)
1413 {
1414 	if (!trace_pagefault_enabled())
1415 		return;
1416 
1417 	if (user_mode(regs))
1418 		trace_page_fault_user(address, regs, error_code);
1419 	else
1420 		trace_page_fault_kernel(address, regs, error_code);
1421 }
1422 
1423 static __always_inline void
handle_page_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1424 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1425 			      unsigned long address)
1426 {
1427 	trace_page_fault_entries(regs, error_code, address);
1428 
1429 	if (unlikely(kmmio_fault(regs, address)))
1430 		return;
1431 
1432 	/* Was the fault on kernel-controlled part of the address space? */
1433 	if (unlikely(fault_in_kernel_space(address))) {
1434 		do_kern_addr_fault(regs, error_code, address);
1435 	} else {
1436 		do_user_addr_fault(regs, error_code, address);
1437 		/*
1438 		 * User address page fault handling might have reenabled
1439 		 * interrupts. Fixing up all potential exit points of
1440 		 * do_user_addr_fault() and its leaf functions is just not
1441 		 * doable w/o creating an unholy mess or turning the code
1442 		 * upside down.
1443 		 */
1444 		local_irq_disable();
1445 	}
1446 }
1447 
DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)1448 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1449 {
1450 	unsigned long address = read_cr2();
1451 	irqentry_state_t state;
1452 
1453 	prefetchw(&current->mm->mmap_lock);
1454 
1455 	/*
1456 	 * KVM uses #PF vector to deliver 'page not present' events to guests
1457 	 * (asynchronous page fault mechanism). The event happens when a
1458 	 * userspace task is trying to access some valid (from guest's point of
1459 	 * view) memory which is not currently mapped by the host (e.g. the
1460 	 * memory is swapped out). Note, the corresponding "page ready" event
1461 	 * which is injected when the memory becomes available, is delived via
1462 	 * an interrupt mechanism and not a #PF exception
1463 	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1464 	 *
1465 	 * We are relying on the interrupted context being sane (valid RSP,
1466 	 * relevant locks not held, etc.), which is fine as long as the
1467 	 * interrupted context had IF=1.  We are also relying on the KVM
1468 	 * async pf type field and CR2 being read consistently instead of
1469 	 * getting values from real and async page faults mixed up.
1470 	 *
1471 	 * Fingers crossed.
1472 	 *
1473 	 * The async #PF handling code takes care of idtentry handling
1474 	 * itself.
1475 	 */
1476 	if (kvm_handle_async_pf(regs, (u32)address))
1477 		return;
1478 
1479 	/*
1480 	 * Entry handling for valid #PF from kernel mode is slightly
1481 	 * different: RCU is already watching and rcu_irq_enter() must not
1482 	 * be invoked because a kernel fault on a user space address might
1483 	 * sleep.
1484 	 *
1485 	 * In case the fault hit a RCU idle region the conditional entry
1486 	 * code reenabled RCU to avoid subsequent wreckage which helps
1487 	 * debugability.
1488 	 */
1489 	state = irqentry_enter(regs);
1490 
1491 	instrumentation_begin();
1492 	handle_page_fault(regs, error_code, address);
1493 	instrumentation_end();
1494 
1495 	irqentry_exit(regs, state);
1496 }
1497