• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkBlitRow_opts_DEFINED
9 #define SkBlitRow_opts_DEFINED
10 
11 #include "include/private/SkColorData.h"
12 #include "include/private/SkVx.h"
13 #include "src/core/SkMSAN.h"
14 
15 // Helpers for blit_row_s32a_opaque(),
16 // then blit_row_s32a_opaque() itself,
17 // then unrelated blit_row_color32() at the bottom.
18 //
19 // To keep Skia resistant to timing attacks, it's important not to branch on pixel data.
20 // In particular, don't be tempted to [v]ptest, pmovmskb, etc. to branch on the source alpha.
21 
22 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX
23     #include <immintrin.h>
24 
SkPMSrcOver_SKX(const __m512i & src,const __m512i & dst)25     static inline __m512i SkPMSrcOver_SKX(const __m512i& src, const __m512i& dst) {
26         // Detailed explanations in SkPMSrcOver_AVX2
27         // b = s + (d*(256-srcA)) >> 8
28 
29         // Shuffle each pixel's srcA to the low byte of each 16-bit half of the pixel.
30         const uint8_t _ = -1;   // fills a literal 0 byte.
31         const uint8_t mask[64] = { 3, _,3, _, 7, _,7, _, 11,_,11,_, 15,_,15,_,
32                                    19,_,19,_, 23,_,23,_, 27,_,27,_, 31,_,31,_,
33                                    35,_,35,_, 39,_,39,_, 43,_,43,_, 47,_,47,_,
34                                    51,_,51,_, 55,_,55,_, 59,_,59,_, 63,_,63,_ };
35         __m512i srcA_x2 = _mm512_shuffle_epi8(src, _mm512_loadu_si512(mask));
36         __m512i scale_x2 = _mm512_sub_epi16(_mm512_set1_epi16(256),
37                                             srcA_x2);
38 
39         // Scale red and blue, leaving results in the low byte of each 16-bit lane.
40         __m512i rb = _mm512_and_si512(_mm512_set1_epi32(0x00ff00ff), dst);
41         rb = _mm512_mullo_epi16(rb, scale_x2);
42         rb = _mm512_srli_epi16(rb, 8);
43 
44         // Scale green and alpha, leaving results in the high byte, masking off the low bits.
45         __m512i ga = _mm512_srli_epi16(dst, 8);
46         ga = _mm512_mullo_epi16(ga, scale_x2);
47         ga = _mm512_andnot_si512(_mm512_set1_epi32(0x00ff00ff), ga);
48 
49         return _mm512_add_epi32(src, _mm512_or_si512(rb, ga));
50     }
51 #endif
52 
53 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
54     #include <immintrin.h>
55 
SkPMSrcOver_AVX2(const __m256i & src,const __m256i & dst)56     static inline __m256i SkPMSrcOver_AVX2(const __m256i& src, const __m256i& dst) {
57         // Abstractly srcover is
58         //     b = s + d*(1-srcA)
59         //
60         // In terms of unorm8 bytes, that works out to
61         //     b = s + (d*(255-srcA) + 127) / 255
62         //
63         // But we approximate that to within a bit with
64         //     b = s + (d*(255-srcA) + d) / 256
65         // a.k.a
66         //     b = s + (d*(256-srcA)) >> 8
67 
68         // The bottleneck of this math is the multiply, and we want to do it as
69         // narrowly as possible, here getting inputs into 16-bit lanes and
70         // using 16-bit multiplies.  We can do twice as many multiplies at once
71         // as using naive 32-bit multiplies, and on top of that, the 16-bit multiplies
72         // are themselves a couple cycles quicker.  Win-win.
73 
74         // We'll get everything in 16-bit lanes for two multiplies, one
75         // handling dst red and blue, the other green and alpha.  (They're
76         // conveniently 16-bits apart, you see.) We don't need the individual
77         // src channels beyond alpha until the very end when we do the "s + "
78         // add, and we don't even need to unpack them; the adds cannot overflow.
79 
80         // Shuffle each pixel's srcA to the low byte of each 16-bit half of the pixel.
81         const int _ = -1;   // fills a literal 0 byte.
82         __m256i srcA_x2 = _mm256_shuffle_epi8(src,
83                 _mm256_setr_epi8(3,_,3,_, 7,_,7,_, 11,_,11,_, 15,_,15,_,
84                                  3,_,3,_, 7,_,7,_, 11,_,11,_, 15,_,15,_));
85         __m256i scale_x2 = _mm256_sub_epi16(_mm256_set1_epi16(256),
86                                             srcA_x2);
87 
88         // Scale red and blue, leaving results in the low byte of each 16-bit lane.
89         __m256i rb = _mm256_and_si256(_mm256_set1_epi32(0x00ff00ff), dst);
90         rb = _mm256_mullo_epi16(rb, scale_x2);
91         rb = _mm256_srli_epi16 (rb, 8);
92 
93         // Scale green and alpha, leaving results in the high byte, masking off the low bits.
94         __m256i ga = _mm256_srli_epi16(dst, 8);
95         ga = _mm256_mullo_epi16(ga, scale_x2);
96         ga = _mm256_andnot_si256(_mm256_set1_epi32(0x00ff00ff), ga);
97 
98         return _mm256_add_epi32(src, _mm256_or_si256(rb, ga));
99     }
100 #endif
101 
102 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
103     #include <immintrin.h>
104 
SkPMSrcOver_SSE2(const __m128i & src,const __m128i & dst)105     static inline __m128i SkPMSrcOver_SSE2(const __m128i& src, const __m128i& dst) {
106         __m128i scale = _mm_sub_epi32(_mm_set1_epi32(256),
107                                       _mm_srli_epi32(src, 24));
108         __m128i scale_x2 = _mm_or_si128(_mm_slli_epi32(scale, 16), scale);
109 
110         __m128i rb = _mm_and_si128(_mm_set1_epi32(0x00ff00ff), dst);
111         rb = _mm_mullo_epi16(rb, scale_x2);
112         rb = _mm_srli_epi16(rb, 8);
113 
114         __m128i ga = _mm_srli_epi16(dst, 8);
115         ga = _mm_mullo_epi16(ga, scale_x2);
116         ga = _mm_andnot_si128(_mm_set1_epi32(0x00ff00ff), ga);
117 
118         return _mm_add_epi32(src, _mm_or_si128(rb, ga));
119     }
120 #endif
121 
122 #if defined(SK_ARM_HAS_NEON)
123     #include <arm_neon.h>
124 
125     // SkMulDiv255Round() applied to each lane.
SkMulDiv255Round_neon8(uint8x8_t x,uint8x8_t y)126     static inline uint8x8_t SkMulDiv255Round_neon8(uint8x8_t x, uint8x8_t y) {
127         uint16x8_t prod = vmull_u8(x, y);
128         return vraddhn_u16(prod, vrshrq_n_u16(prod, 8));
129     }
130 
SkPMSrcOver_neon8(uint8x8x4_t dst,uint8x8x4_t src)131     static inline uint8x8x4_t SkPMSrcOver_neon8(uint8x8x4_t dst, uint8x8x4_t src) {
132         uint8x8_t nalphas = vmvn_u8(src.val[3]);  // 256 - alpha
133         return {
134             vadd_u8(src.val[0], SkMulDiv255Round_neon8(nalphas,  dst.val[0])),
135             vadd_u8(src.val[1], SkMulDiv255Round_neon8(nalphas,  dst.val[1])),
136             vadd_u8(src.val[2], SkMulDiv255Round_neon8(nalphas,  dst.val[2])),
137             vadd_u8(src.val[3], SkMulDiv255Round_neon8(nalphas,  dst.val[3])),
138         };
139     }
140 
141     // Variant assuming dst and src contain the color components of two consecutive pixels.
SkPMSrcOver_neon2(uint8x8_t dst,uint8x8_t src)142     static inline uint8x8_t SkPMSrcOver_neon2(uint8x8_t dst, uint8x8_t src) {
143         const uint8x8_t alpha_indices = vcreate_u8(0x0707070703030303);
144         uint8x8_t nalphas = vmvn_u8(vtbl1_u8(src, alpha_indices));
145         return vadd_u8(src, SkMulDiv255Round_neon8(nalphas, dst));
146     }
147 
148 #endif
149 
150 namespace SK_OPTS_NS {
151 
152 /*not static*/
blit_row_s32a_opaque(SkPMColor * dst,const SkPMColor * src,int len,U8CPU alpha)153 inline void blit_row_s32a_opaque(SkPMColor* dst, const SkPMColor* src, int len, U8CPU alpha) {
154     SkASSERT(alpha == 0xFF);
155     sk_msan_assert_initialized(src, src+len);
156 
157 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX
158     while (len >= 16) {
159         _mm512_storeu_si512((__m512*)dst,
160                             SkPMSrcOver_SKX(_mm512_loadu_si512((const __m512i*)src),
161                                             _mm512_loadu_si512((const __m512i*)dst)));
162         src += 16;
163         dst += 16;
164         len -= 16;
165     }
166 #endif
167 
168 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
169     while (len >= 8) {
170         _mm256_storeu_si256((__m256i*)dst,
171                             SkPMSrcOver_AVX2(_mm256_loadu_si256((const __m256i*)src),
172                                              _mm256_loadu_si256((const __m256i*)dst)));
173         src += 8;
174         dst += 8;
175         len -= 8;
176     }
177 #endif
178 
179 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
180     while (len >= 4) {
181         _mm_storeu_si128((__m128i*)dst, SkPMSrcOver_SSE2(_mm_loadu_si128((const __m128i*)src),
182                                                          _mm_loadu_si128((const __m128i*)dst)));
183         src += 4;
184         dst += 4;
185         len -= 4;
186     }
187 #endif
188 
189 #if defined(SK_ARM_HAS_NEON)
190     while (len >= 8) {
191         vst4_u8((uint8_t*)dst, SkPMSrcOver_neon8(vld4_u8((const uint8_t*)dst),
192                                                  vld4_u8((const uint8_t*)src)));
193         src += 8;
194         dst += 8;
195         len -= 8;
196     }
197 
198     while (len >= 2) {
199         vst1_u8((uint8_t*)dst, SkPMSrcOver_neon2(vld1_u8((const uint8_t*)dst),
200                                                  vld1_u8((const uint8_t*)src)));
201         src += 2;
202         dst += 2;
203         len -= 2;
204     }
205 
206     if (len != 0) {
207         uint8x8_t result = SkPMSrcOver_neon2(vcreate_u8((uint64_t)*dst),
208                                              vcreate_u8((uint64_t)*src));
209         vst1_lane_u32(dst, vreinterpret_u32_u8(result), 0);
210     }
211     return;
212 #endif
213 
214     while (len --> 0) {
215         *dst = SkPMSrcOver(*src, *dst);
216         src++;
217         dst++;
218     }
219 }
220 
221 // Blend constant color over count src pixels, writing into dst.
222 /*not static*/
blit_row_color32(SkPMColor * dst,const SkPMColor * src,int count,SkPMColor color)223 inline void blit_row_color32(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) {
224     constexpr int N = 4;  // 8, 16 also reasonable choices
225     using U32 = skvx::Vec<  N, uint32_t>;
226     using U16 = skvx::Vec<4*N, uint16_t>;
227     using U8  = skvx::Vec<4*N, uint8_t>;
228 
229     auto kernel = [color](U32 src) {
230         unsigned invA = 255 - SkGetPackedA32(color);
231         invA += invA >> 7;
232         SkASSERT(0 < invA && invA < 256);  // We handle alpha == 0 or alpha == 255 specially.
233 
234         // (src * invA + (color << 8) + 128) >> 8
235         // Should all fit in 16 bits.
236         U8 s = skvx::bit_pun<U8>(src),
237            a = U8(invA);
238         U16 c = skvx::cast<uint16_t>(skvx::bit_pun<U8>(U32(color))),
239             d = (mull(s,a) + (c << 8) + 128)>>8;
240         return skvx::bit_pun<U32>(skvx::cast<uint8_t>(d));
241     };
242 
243     while (count >= N) {
244         kernel(U32::Load(src)).store(dst);
245         src   += N;
246         dst   += N;
247         count -= N;
248     }
249     while (count --> 0) {
250         *dst++ = kernel(U32{*src++})[0];
251     }
252 }
253 
254 }  // namespace SK_OPTS_NS
255 
256 #endif//SkBlitRow_opts_DEFINED
257