1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/blk-pm.h>
22 #include <linux/highmem.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/writeback.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/fault-inject.h>
34 #include <linux/list_sort.h>
35 #include <linux/delay.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/blk-cgroup.h>
39 #include <linux/t10-pi.h>
40 #include <linux/debugfs.h>
41 #include <linux/bpf.h>
42 #include <linux/psi.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
48
49 #include "blk.h"
50 #include "blk-mq.h"
51 #include "blk-mq-sched.h"
52 #include "blk-pm.h"
53 #include "blk-rq-qos.h"
54
55 struct dentry *blk_debugfs_root;
56
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62
63 DEFINE_IDA(blk_queue_ida);
64
65 /*
66 * For queue allocation
67 */
68 struct kmem_cache *blk_requestq_cachep;
69
70 /*
71 * Controlling structure to kblockd
72 */
73 static struct workqueue_struct *kblockd_workqueue;
74
75 /**
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
78 * @q: request queue
79 */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 {
82 set_bit(flag, &q->queue_flags);
83 }
84 EXPORT_SYMBOL(blk_queue_flag_set);
85
86 /**
87 * blk_queue_flag_clear - atomically clear a queue flag
88 * @flag: flag to be cleared
89 * @q: request queue
90 */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92 {
93 clear_bit(flag, &q->queue_flags);
94 }
95 EXPORT_SYMBOL(blk_queue_flag_clear);
96
97 /**
98 * blk_queue_flag_test_and_set - atomically test and set a queue flag
99 * @flag: flag to be set
100 * @q: request queue
101 *
102 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103 * the flag was already set.
104 */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)105 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
106 {
107 return test_and_set_bit(flag, &q->queue_flags);
108 }
109 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
110
blk_rq_init(struct request_queue * q,struct request * rq)111 void blk_rq_init(struct request_queue *q, struct request *rq)
112 {
113 memset(rq, 0, sizeof(*rq));
114
115 INIT_LIST_HEAD(&rq->queuelist);
116 rq->q = q;
117 rq->__sector = (sector_t) -1;
118 INIT_HLIST_NODE(&rq->hash);
119 RB_CLEAR_NODE(&rq->rb_node);
120 rq->tag = BLK_MQ_NO_TAG;
121 rq->internal_tag = BLK_MQ_NO_TAG;
122 rq->start_time_ns = ktime_get_ns();
123 rq->part = NULL;
124 blk_crypto_rq_set_defaults(rq);
125 }
126 EXPORT_SYMBOL(blk_rq_init);
127
128 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
129 static const char *const blk_op_name[] = {
130 REQ_OP_NAME(READ),
131 REQ_OP_NAME(WRITE),
132 REQ_OP_NAME(FLUSH),
133 REQ_OP_NAME(DISCARD),
134 REQ_OP_NAME(SECURE_ERASE),
135 REQ_OP_NAME(ZONE_RESET),
136 REQ_OP_NAME(ZONE_RESET_ALL),
137 REQ_OP_NAME(ZONE_OPEN),
138 REQ_OP_NAME(ZONE_CLOSE),
139 REQ_OP_NAME(ZONE_FINISH),
140 REQ_OP_NAME(ZONE_APPEND),
141 REQ_OP_NAME(WRITE_SAME),
142 REQ_OP_NAME(WRITE_ZEROES),
143 REQ_OP_NAME(SCSI_IN),
144 REQ_OP_NAME(SCSI_OUT),
145 REQ_OP_NAME(DRV_IN),
146 REQ_OP_NAME(DRV_OUT),
147 };
148 #undef REQ_OP_NAME
149
150 /**
151 * blk_op_str - Return string XXX in the REQ_OP_XXX.
152 * @op: REQ_OP_XXX.
153 *
154 * Description: Centralize block layer function to convert REQ_OP_XXX into
155 * string format. Useful in the debugging and tracing bio or request. For
156 * invalid REQ_OP_XXX it returns string "UNKNOWN".
157 */
blk_op_str(unsigned int op)158 inline const char *blk_op_str(unsigned int op)
159 {
160 const char *op_str = "UNKNOWN";
161
162 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
163 op_str = blk_op_name[op];
164
165 return op_str;
166 }
167 EXPORT_SYMBOL_GPL(blk_op_str);
168
169 static const struct {
170 int errno;
171 const char *name;
172 } blk_errors[] = {
173 [BLK_STS_OK] = { 0, "" },
174 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
175 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
176 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
177 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
178 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
179 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
180 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
181 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
182 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
183 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
184 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
185
186 /* device mapper special case, should not leak out: */
187 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
188
189 /* zone device specific errors */
190 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
191 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
192
193 /* everything else not covered above: */
194 [BLK_STS_IOERR] = { -EIO, "I/O" },
195 };
196
errno_to_blk_status(int errno)197 blk_status_t errno_to_blk_status(int errno)
198 {
199 int i;
200
201 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
202 if (blk_errors[i].errno == errno)
203 return (__force blk_status_t)i;
204 }
205
206 return BLK_STS_IOERR;
207 }
208 EXPORT_SYMBOL_GPL(errno_to_blk_status);
209
blk_status_to_errno(blk_status_t status)210 int blk_status_to_errno(blk_status_t status)
211 {
212 int idx = (__force int)status;
213
214 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
215 return -EIO;
216 return blk_errors[idx].errno;
217 }
218 EXPORT_SYMBOL_GPL(blk_status_to_errno);
219
print_req_error(struct request * req,blk_status_t status,const char * caller)220 static void print_req_error(struct request *req, blk_status_t status,
221 const char *caller)
222 {
223 int idx = (__force int)status;
224
225 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
226 return;
227
228 printk_ratelimited(KERN_ERR
229 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
230 "phys_seg %u prio class %u\n",
231 caller, blk_errors[idx].name,
232 req->rq_disk ? req->rq_disk->disk_name : "?",
233 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
234 req->cmd_flags & ~REQ_OP_MASK,
235 req->nr_phys_segments,
236 IOPRIO_PRIO_CLASS(req->ioprio));
237 }
238
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)239 static void req_bio_endio(struct request *rq, struct bio *bio,
240 unsigned int nbytes, blk_status_t error)
241 {
242 if (error)
243 bio->bi_status = error;
244
245 if (unlikely(rq->rq_flags & RQF_QUIET))
246 bio_set_flag(bio, BIO_QUIET);
247
248 bio_advance(bio, nbytes);
249
250 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
251 /*
252 * Partial zone append completions cannot be supported as the
253 * BIO fragments may end up not being written sequentially.
254 */
255 if (bio->bi_iter.bi_size)
256 bio->bi_status = BLK_STS_IOERR;
257 else
258 bio->bi_iter.bi_sector = rq->__sector;
259 }
260
261 /* don't actually finish bio if it's part of flush sequence */
262 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
263 bio_endio(bio);
264 }
265
blk_dump_rq_flags(struct request * rq,char * msg)266 void blk_dump_rq_flags(struct request *rq, char *msg)
267 {
268 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
269 rq->rq_disk ? rq->rq_disk->disk_name : "?",
270 (unsigned long long) rq->cmd_flags);
271
272 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
273 (unsigned long long)blk_rq_pos(rq),
274 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
275 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
276 rq->bio, rq->biotail, blk_rq_bytes(rq));
277 }
278 EXPORT_SYMBOL(blk_dump_rq_flags);
279
280 /**
281 * blk_sync_queue - cancel any pending callbacks on a queue
282 * @q: the queue
283 *
284 * Description:
285 * The block layer may perform asynchronous callback activity
286 * on a queue, such as calling the unplug function after a timeout.
287 * A block device may call blk_sync_queue to ensure that any
288 * such activity is cancelled, thus allowing it to release resources
289 * that the callbacks might use. The caller must already have made sure
290 * that its ->submit_bio will not re-add plugging prior to calling
291 * this function.
292 *
293 * This function does not cancel any asynchronous activity arising
294 * out of elevator or throttling code. That would require elevator_exit()
295 * and blkcg_exit_queue() to be called with queue lock initialized.
296 *
297 */
blk_sync_queue(struct request_queue * q)298 void blk_sync_queue(struct request_queue *q)
299 {
300 del_timer_sync(&q->timeout);
301 cancel_work_sync(&q->timeout_work);
302 }
303 EXPORT_SYMBOL(blk_sync_queue);
304
305 /**
306 * blk_set_pm_only - increment pm_only counter
307 * @q: request queue pointer
308 */
blk_set_pm_only(struct request_queue * q)309 void blk_set_pm_only(struct request_queue *q)
310 {
311 atomic_inc(&q->pm_only);
312 }
313 EXPORT_SYMBOL_GPL(blk_set_pm_only);
314
blk_clear_pm_only(struct request_queue * q)315 void blk_clear_pm_only(struct request_queue *q)
316 {
317 int pm_only;
318
319 pm_only = atomic_dec_return(&q->pm_only);
320 WARN_ON_ONCE(pm_only < 0);
321 if (pm_only == 0)
322 wake_up_all(&q->mq_freeze_wq);
323 }
324 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
325
326 /**
327 * blk_put_queue - decrement the request_queue refcount
328 * @q: the request_queue structure to decrement the refcount for
329 *
330 * Decrements the refcount of the request_queue kobject. When this reaches 0
331 * we'll have blk_release_queue() called.
332 *
333 * Context: Any context, but the last reference must not be dropped from
334 * atomic context.
335 */
blk_put_queue(struct request_queue * q)336 void blk_put_queue(struct request_queue *q)
337 {
338 kobject_put(&q->kobj);
339 }
340 EXPORT_SYMBOL(blk_put_queue);
341
blk_set_queue_dying(struct request_queue * q)342 void blk_set_queue_dying(struct request_queue *q)
343 {
344 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
345
346 /*
347 * When queue DYING flag is set, we need to block new req
348 * entering queue, so we call blk_freeze_queue_start() to
349 * prevent I/O from crossing blk_queue_enter().
350 */
351 blk_freeze_queue_start(q);
352
353 if (queue_is_mq(q))
354 blk_mq_wake_waiters(q);
355
356 /* Make blk_queue_enter() reexamine the DYING flag. */
357 wake_up_all(&q->mq_freeze_wq);
358 }
359 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
360
361 /**
362 * blk_cleanup_queue - shutdown a request queue
363 * @q: request queue to shutdown
364 *
365 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
366 * put it. All future requests will be failed immediately with -ENODEV.
367 *
368 * Context: can sleep
369 */
blk_cleanup_queue(struct request_queue * q)370 void blk_cleanup_queue(struct request_queue *q)
371 {
372 /* cannot be called from atomic context */
373 might_sleep();
374
375 WARN_ON_ONCE(blk_queue_registered(q));
376
377 /* mark @q DYING, no new request or merges will be allowed afterwards */
378 blk_set_queue_dying(q);
379
380 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
381 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
382
383 /*
384 * Drain all requests queued before DYING marking. Set DEAD flag to
385 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
386 * after draining finished.
387 */
388 blk_freeze_queue(q);
389
390 rq_qos_exit(q);
391
392 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
393
394 /* for synchronous bio-based driver finish in-flight integrity i/o */
395 blk_flush_integrity();
396
397 /* @q won't process any more request, flush async actions */
398 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
399 blk_sync_queue(q);
400
401 if (queue_is_mq(q))
402 blk_mq_exit_queue(q);
403
404 /*
405 * In theory, request pool of sched_tags belongs to request queue.
406 * However, the current implementation requires tag_set for freeing
407 * requests, so free the pool now.
408 *
409 * Queue has become frozen, there can't be any in-queue requests, so
410 * it is safe to free requests now.
411 */
412 mutex_lock(&q->sysfs_lock);
413 if (q->elevator)
414 blk_mq_sched_free_requests(q);
415 mutex_unlock(&q->sysfs_lock);
416
417 percpu_ref_exit(&q->q_usage_counter);
418
419 /* @q is and will stay empty, shutdown and put */
420 blk_put_queue(q);
421 }
422 EXPORT_SYMBOL(blk_cleanup_queue);
423
424 /**
425 * blk_queue_enter() - try to increase q->q_usage_counter
426 * @q: request queue pointer
427 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
428 */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)429 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
430 {
431 const bool pm = flags & BLK_MQ_REQ_PM;
432
433 while (true) {
434 bool success = false;
435
436 rcu_read_lock();
437 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
438 /*
439 * The code that increments the pm_only counter is
440 * responsible for ensuring that that counter is
441 * globally visible before the queue is unfrozen.
442 */
443 if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
444 !blk_queue_pm_only(q)) {
445 success = true;
446 } else {
447 percpu_ref_put(&q->q_usage_counter);
448 }
449 }
450 rcu_read_unlock();
451
452 if (success)
453 return 0;
454
455 if (flags & BLK_MQ_REQ_NOWAIT)
456 return -EBUSY;
457
458 /*
459 * read pair of barrier in blk_freeze_queue_start(),
460 * we need to order reading __PERCPU_REF_DEAD flag of
461 * .q_usage_counter and reading .mq_freeze_depth or
462 * queue dying flag, otherwise the following wait may
463 * never return if the two reads are reordered.
464 */
465 smp_rmb();
466
467 wait_event(q->mq_freeze_wq,
468 (!q->mq_freeze_depth &&
469 blk_pm_resume_queue(pm, q)) ||
470 blk_queue_dying(q));
471 if (blk_queue_dying(q))
472 return -ENODEV;
473 }
474 }
475
bio_queue_enter(struct bio * bio)476 static inline int bio_queue_enter(struct bio *bio)
477 {
478 struct request_queue *q = bio->bi_disk->queue;
479 bool nowait = bio->bi_opf & REQ_NOWAIT;
480 int ret;
481
482 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
483 if (unlikely(ret)) {
484 if (nowait && !blk_queue_dying(q))
485 bio_wouldblock_error(bio);
486 else
487 bio_io_error(bio);
488 }
489
490 return ret;
491 }
492
blk_queue_exit(struct request_queue * q)493 void blk_queue_exit(struct request_queue *q)
494 {
495 percpu_ref_put(&q->q_usage_counter);
496 }
497
blk_queue_usage_counter_release(struct percpu_ref * ref)498 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
499 {
500 struct request_queue *q =
501 container_of(ref, struct request_queue, q_usage_counter);
502
503 wake_up_all(&q->mq_freeze_wq);
504 }
505
blk_rq_timed_out_timer(struct timer_list * t)506 static void blk_rq_timed_out_timer(struct timer_list *t)
507 {
508 struct request_queue *q = from_timer(q, t, timeout);
509
510 kblockd_schedule_work(&q->timeout_work);
511 }
512
blk_timeout_work(struct work_struct * work)513 static void blk_timeout_work(struct work_struct *work)
514 {
515 }
516
blk_alloc_queue(int node_id)517 struct request_queue *blk_alloc_queue(int node_id)
518 {
519 struct request_queue *q;
520 int ret;
521
522 q = kmem_cache_alloc_node(blk_requestq_cachep,
523 GFP_KERNEL | __GFP_ZERO, node_id);
524 if (!q)
525 return NULL;
526
527 q->last_merge = NULL;
528
529 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
530 if (q->id < 0)
531 goto fail_q;
532
533 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
534 if (ret)
535 goto fail_id;
536
537 q->backing_dev_info = bdi_alloc(node_id);
538 if (!q->backing_dev_info)
539 goto fail_split;
540
541 q->stats = blk_alloc_queue_stats();
542 if (!q->stats)
543 goto fail_stats;
544
545 q->node = node_id;
546
547 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
548
549 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
550 laptop_mode_timer_fn, 0);
551 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
552 INIT_WORK(&q->timeout_work, blk_timeout_work);
553 INIT_LIST_HEAD(&q->icq_list);
554 #ifdef CONFIG_BLK_CGROUP
555 INIT_LIST_HEAD(&q->blkg_list);
556 #endif
557
558 kobject_init(&q->kobj, &blk_queue_ktype);
559
560 mutex_init(&q->debugfs_mutex);
561 mutex_init(&q->sysfs_lock);
562 mutex_init(&q->sysfs_dir_lock);
563 spin_lock_init(&q->queue_lock);
564
565 init_waitqueue_head(&q->mq_freeze_wq);
566 mutex_init(&q->mq_freeze_lock);
567
568 /*
569 * Init percpu_ref in atomic mode so that it's faster to shutdown.
570 * See blk_register_queue() for details.
571 */
572 if (percpu_ref_init(&q->q_usage_counter,
573 blk_queue_usage_counter_release,
574 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
575 goto fail_bdi;
576
577 if (blkcg_init_queue(q))
578 goto fail_ref;
579
580 blk_queue_dma_alignment(q, 511);
581 blk_set_default_limits(&q->limits);
582 q->nr_requests = BLKDEV_MAX_RQ;
583
584 return q;
585
586 fail_ref:
587 percpu_ref_exit(&q->q_usage_counter);
588 fail_bdi:
589 blk_free_queue_stats(q->stats);
590 fail_stats:
591 bdi_put(q->backing_dev_info);
592 fail_split:
593 bioset_exit(&q->bio_split);
594 fail_id:
595 ida_simple_remove(&blk_queue_ida, q->id);
596 fail_q:
597 kmem_cache_free(blk_requestq_cachep, q);
598 return NULL;
599 }
600 EXPORT_SYMBOL(blk_alloc_queue);
601
602 /**
603 * blk_get_queue - increment the request_queue refcount
604 * @q: the request_queue structure to increment the refcount for
605 *
606 * Increment the refcount of the request_queue kobject.
607 *
608 * Context: Any context.
609 */
blk_get_queue(struct request_queue * q)610 bool blk_get_queue(struct request_queue *q)
611 {
612 if (likely(!blk_queue_dying(q))) {
613 __blk_get_queue(q);
614 return true;
615 }
616
617 return false;
618 }
619 EXPORT_SYMBOL(blk_get_queue);
620
621 /**
622 * blk_get_request - allocate a request
623 * @q: request queue to allocate a request for
624 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
625 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
626 */
blk_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)627 struct request *blk_get_request(struct request_queue *q, unsigned int op,
628 blk_mq_req_flags_t flags)
629 {
630 struct request *req;
631
632 WARN_ON_ONCE(op & REQ_NOWAIT);
633 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
634
635 req = blk_mq_alloc_request(q, op, flags);
636 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
637 q->mq_ops->initialize_rq_fn(req);
638
639 return req;
640 }
641 EXPORT_SYMBOL(blk_get_request);
642
blk_put_request(struct request * req)643 void blk_put_request(struct request *req)
644 {
645 blk_mq_free_request(req);
646 }
647 EXPORT_SYMBOL(blk_put_request);
648
handle_bad_sector(struct bio * bio,sector_t maxsector)649 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
650 {
651 char b[BDEVNAME_SIZE];
652
653 pr_info_ratelimited("attempt to access beyond end of device\n"
654 "%s: rw=%d, want=%llu, limit=%llu\n",
655 bio_devname(bio, b), bio->bi_opf,
656 bio_end_sector(bio), maxsector);
657 }
658
659 #ifdef CONFIG_FAIL_MAKE_REQUEST
660
661 static DECLARE_FAULT_ATTR(fail_make_request);
662
setup_fail_make_request(char * str)663 static int __init setup_fail_make_request(char *str)
664 {
665 return setup_fault_attr(&fail_make_request, str);
666 }
667 __setup("fail_make_request=", setup_fail_make_request);
668
should_fail_request(struct hd_struct * part,unsigned int bytes)669 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
670 {
671 return part->make_it_fail && should_fail(&fail_make_request, bytes);
672 }
673
fail_make_request_debugfs(void)674 static int __init fail_make_request_debugfs(void)
675 {
676 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
677 NULL, &fail_make_request);
678
679 return PTR_ERR_OR_ZERO(dir);
680 }
681
682 late_initcall(fail_make_request_debugfs);
683
684 #else /* CONFIG_FAIL_MAKE_REQUEST */
685
should_fail_request(struct hd_struct * part,unsigned int bytes)686 static inline bool should_fail_request(struct hd_struct *part,
687 unsigned int bytes)
688 {
689 return false;
690 }
691
692 #endif /* CONFIG_FAIL_MAKE_REQUEST */
693
bio_check_ro(struct bio * bio,struct hd_struct * part)694 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
695 {
696 const int op = bio_op(bio);
697
698 if (part->policy && op_is_write(op)) {
699 char b[BDEVNAME_SIZE];
700
701 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
702 return false;
703 pr_warn("Trying to write to read-only block-device %s (partno %d)\n",
704 bio_devname(bio, b), part->partno);
705 /* Older lvm-tools actually trigger this */
706 return false;
707 }
708
709 return false;
710 }
711
should_fail_bio(struct bio * bio)712 static noinline int should_fail_bio(struct bio *bio)
713 {
714 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
715 return -EIO;
716 return 0;
717 }
718 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
719
720 /*
721 * Check whether this bio extends beyond the end of the device or partition.
722 * This may well happen - the kernel calls bread() without checking the size of
723 * the device, e.g., when mounting a file system.
724 */
bio_check_eod(struct bio * bio,sector_t maxsector)725 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
726 {
727 unsigned int nr_sectors = bio_sectors(bio);
728
729 if (nr_sectors && maxsector &&
730 (nr_sectors > maxsector ||
731 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
732 handle_bad_sector(bio, maxsector);
733 return -EIO;
734 }
735 return 0;
736 }
737
738 /*
739 * Remap block n of partition p to block n+start(p) of the disk.
740 */
blk_partition_remap(struct bio * bio)741 static inline int blk_partition_remap(struct bio *bio)
742 {
743 struct hd_struct *p;
744 int ret = -EIO;
745
746 rcu_read_lock();
747 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
748 if (unlikely(!p))
749 goto out;
750 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
751 goto out;
752 if (unlikely(bio_check_ro(bio, p)))
753 goto out;
754
755 if (bio_sectors(bio)) {
756 if (bio_check_eod(bio, part_nr_sects_read(p)))
757 goto out;
758 bio->bi_iter.bi_sector += p->start_sect;
759 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
760 bio->bi_iter.bi_sector - p->start_sect);
761 }
762 bio->bi_partno = 0;
763 ret = 0;
764 out:
765 rcu_read_unlock();
766 return ret;
767 }
768
769 /*
770 * Check write append to a zoned block device.
771 */
blk_check_zone_append(struct request_queue * q,struct bio * bio)772 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
773 struct bio *bio)
774 {
775 sector_t pos = bio->bi_iter.bi_sector;
776 int nr_sectors = bio_sectors(bio);
777
778 /* Only applicable to zoned block devices */
779 if (!blk_queue_is_zoned(q))
780 return BLK_STS_NOTSUPP;
781
782 /* The bio sector must point to the start of a sequential zone */
783 if (pos & (blk_queue_zone_sectors(q) - 1) ||
784 !blk_queue_zone_is_seq(q, pos))
785 return BLK_STS_IOERR;
786
787 /*
788 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
789 * split and could result in non-contiguous sectors being written in
790 * different zones.
791 */
792 if (nr_sectors > q->limits.chunk_sectors)
793 return BLK_STS_IOERR;
794
795 /* Make sure the BIO is small enough and will not get split */
796 if (nr_sectors > q->limits.max_zone_append_sectors)
797 return BLK_STS_IOERR;
798
799 bio->bi_opf |= REQ_NOMERGE;
800
801 return BLK_STS_OK;
802 }
803
submit_bio_checks(struct bio * bio)804 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
805 {
806 struct request_queue *q = bio->bi_disk->queue;
807 blk_status_t status = BLK_STS_IOERR;
808 struct blk_plug *plug;
809
810 might_sleep();
811
812 plug = blk_mq_plug(q, bio);
813 if (plug && plug->nowait)
814 bio->bi_opf |= REQ_NOWAIT;
815
816 /*
817 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
818 * if queue does not support NOWAIT.
819 */
820 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
821 goto not_supported;
822
823 if (should_fail_bio(bio))
824 goto end_io;
825
826 if (bio->bi_partno) {
827 if (unlikely(blk_partition_remap(bio)))
828 goto end_io;
829 } else {
830 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
831 goto end_io;
832 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
833 goto end_io;
834 }
835
836 /*
837 * Filter flush bio's early so that bio based drivers without flush
838 * support don't have to worry about them.
839 */
840 if (op_is_flush(bio->bi_opf) &&
841 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
842 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
843 if (!bio_sectors(bio)) {
844 status = BLK_STS_OK;
845 goto end_io;
846 }
847 }
848
849 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
850 bio->bi_opf &= ~REQ_HIPRI;
851
852 switch (bio_op(bio)) {
853 case REQ_OP_DISCARD:
854 if (!blk_queue_discard(q))
855 goto not_supported;
856 break;
857 case REQ_OP_SECURE_ERASE:
858 if (!blk_queue_secure_erase(q))
859 goto not_supported;
860 break;
861 case REQ_OP_WRITE_SAME:
862 if (!q->limits.max_write_same_sectors)
863 goto not_supported;
864 break;
865 case REQ_OP_ZONE_APPEND:
866 status = blk_check_zone_append(q, bio);
867 if (status != BLK_STS_OK)
868 goto end_io;
869 break;
870 case REQ_OP_ZONE_RESET:
871 case REQ_OP_ZONE_OPEN:
872 case REQ_OP_ZONE_CLOSE:
873 case REQ_OP_ZONE_FINISH:
874 if (!blk_queue_is_zoned(q))
875 goto not_supported;
876 break;
877 case REQ_OP_ZONE_RESET_ALL:
878 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
879 goto not_supported;
880 break;
881 case REQ_OP_WRITE_ZEROES:
882 if (!q->limits.max_write_zeroes_sectors)
883 goto not_supported;
884 break;
885 default:
886 break;
887 }
888
889 /*
890 * Various block parts want %current->io_context, so allocate it up
891 * front rather than dealing with lots of pain to allocate it only
892 * where needed. This may fail and the block layer knows how to live
893 * with it.
894 */
895 if (unlikely(!current->io_context))
896 create_task_io_context(current, GFP_ATOMIC, q->node);
897
898 if (blk_throtl_bio(bio))
899 return false;
900
901 blk_cgroup_bio_start(bio);
902 blkcg_bio_issue_init(bio);
903
904 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
905 trace_block_bio_queue(q, bio);
906 /* Now that enqueuing has been traced, we need to trace
907 * completion as well.
908 */
909 bio_set_flag(bio, BIO_TRACE_COMPLETION);
910 }
911 return true;
912
913 not_supported:
914 status = BLK_STS_NOTSUPP;
915 end_io:
916 bio->bi_status = status;
917 bio_endio(bio);
918 return false;
919 }
920
__submit_bio(struct bio * bio)921 static blk_qc_t __submit_bio(struct bio *bio)
922 {
923 struct gendisk *disk = bio->bi_disk;
924 blk_qc_t ret = BLK_QC_T_NONE;
925
926 if (blk_crypto_bio_prep(&bio)) {
927 if (!disk->fops->submit_bio)
928 return blk_mq_submit_bio(bio);
929 ret = disk->fops->submit_bio(bio);
930 }
931 blk_queue_exit(disk->queue);
932 return ret;
933 }
934
935 /*
936 * The loop in this function may be a bit non-obvious, and so deserves some
937 * explanation:
938 *
939 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
940 * that), so we have a list with a single bio.
941 * - We pretend that we have just taken it off a longer list, so we assign
942 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
943 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
944 * bios through a recursive call to submit_bio_noacct. If it did, we find a
945 * non-NULL value in bio_list and re-enter the loop from the top.
946 * - In this case we really did just take the bio of the top of the list (no
947 * pretending) and so remove it from bio_list, and call into ->submit_bio()
948 * again.
949 *
950 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
951 * bio_list_on_stack[1] contains bios that were submitted before the current
952 * ->submit_bio_bio, but that haven't been processed yet.
953 */
__submit_bio_noacct(struct bio * bio)954 static blk_qc_t __submit_bio_noacct(struct bio *bio)
955 {
956 struct bio_list bio_list_on_stack[2];
957 blk_qc_t ret = BLK_QC_T_NONE;
958
959 BUG_ON(bio->bi_next);
960
961 bio_list_init(&bio_list_on_stack[0]);
962 current->bio_list = bio_list_on_stack;
963
964 do {
965 struct request_queue *q = bio->bi_disk->queue;
966 struct bio_list lower, same;
967
968 if (unlikely(bio_queue_enter(bio) != 0))
969 continue;
970
971 /*
972 * Create a fresh bio_list for all subordinate requests.
973 */
974 bio_list_on_stack[1] = bio_list_on_stack[0];
975 bio_list_init(&bio_list_on_stack[0]);
976
977 ret = __submit_bio(bio);
978
979 /*
980 * Sort new bios into those for a lower level and those for the
981 * same level.
982 */
983 bio_list_init(&lower);
984 bio_list_init(&same);
985 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
986 if (q == bio->bi_disk->queue)
987 bio_list_add(&same, bio);
988 else
989 bio_list_add(&lower, bio);
990
991 /*
992 * Now assemble so we handle the lowest level first.
993 */
994 bio_list_merge(&bio_list_on_stack[0], &lower);
995 bio_list_merge(&bio_list_on_stack[0], &same);
996 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
997 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
998
999 current->bio_list = NULL;
1000 return ret;
1001 }
1002
__submit_bio_noacct_mq(struct bio * bio)1003 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1004 {
1005 struct bio_list bio_list[2] = { };
1006 blk_qc_t ret = BLK_QC_T_NONE;
1007
1008 current->bio_list = bio_list;
1009
1010 do {
1011 struct gendisk *disk = bio->bi_disk;
1012
1013 if (unlikely(bio_queue_enter(bio) != 0))
1014 continue;
1015
1016 if (!blk_crypto_bio_prep(&bio)) {
1017 blk_queue_exit(disk->queue);
1018 ret = BLK_QC_T_NONE;
1019 continue;
1020 }
1021
1022 ret = blk_mq_submit_bio(bio);
1023 } while ((bio = bio_list_pop(&bio_list[0])));
1024
1025 current->bio_list = NULL;
1026 return ret;
1027 }
1028
1029 /**
1030 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1031 * @bio: The bio describing the location in memory and on the device.
1032 *
1033 * This is a version of submit_bio() that shall only be used for I/O that is
1034 * resubmitted to lower level drivers by stacking block drivers. All file
1035 * systems and other upper level users of the block layer should use
1036 * submit_bio() instead.
1037 */
submit_bio_noacct(struct bio * bio)1038 blk_qc_t submit_bio_noacct(struct bio *bio)
1039 {
1040 if (!submit_bio_checks(bio))
1041 return BLK_QC_T_NONE;
1042
1043 /*
1044 * We only want one ->submit_bio to be active at a time, else stack
1045 * usage with stacked devices could be a problem. Use current->bio_list
1046 * to collect a list of requests submited by a ->submit_bio method while
1047 * it is active, and then process them after it returned.
1048 */
1049 if (current->bio_list) {
1050 bio_list_add(¤t->bio_list[0], bio);
1051 return BLK_QC_T_NONE;
1052 }
1053
1054 if (!bio->bi_disk->fops->submit_bio)
1055 return __submit_bio_noacct_mq(bio);
1056 return __submit_bio_noacct(bio);
1057 }
1058 EXPORT_SYMBOL(submit_bio_noacct);
1059
1060 /**
1061 * submit_bio - submit a bio to the block device layer for I/O
1062 * @bio: The &struct bio which describes the I/O
1063 *
1064 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1065 * fully set up &struct bio that describes the I/O that needs to be done. The
1066 * bio will be send to the device described by the bi_disk and bi_partno fields.
1067 *
1068 * The success/failure status of the request, along with notification of
1069 * completion, is delivered asynchronously through the ->bi_end_io() callback
1070 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1071 * been called.
1072 */
submit_bio(struct bio * bio)1073 blk_qc_t submit_bio(struct bio *bio)
1074 {
1075 if (blkcg_punt_bio_submit(bio))
1076 return BLK_QC_T_NONE;
1077
1078 /*
1079 * If it's a regular read/write or a barrier with data attached,
1080 * go through the normal accounting stuff before submission.
1081 */
1082 if (bio_has_data(bio)) {
1083 unsigned int count;
1084
1085 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1086 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1087 else
1088 count = bio_sectors(bio);
1089
1090 if (op_is_write(bio_op(bio))) {
1091 count_vm_events(PGPGOUT, count);
1092 } else {
1093 task_io_account_read(bio->bi_iter.bi_size);
1094 count_vm_events(PGPGIN, count);
1095 }
1096 }
1097
1098 /*
1099 * If we're reading data that is part of the userspace workingset, count
1100 * submission time as memory stall. When the device is congested, or
1101 * the submitting cgroup IO-throttled, submission can be a significant
1102 * part of overall IO time.
1103 */
1104 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1105 bio_flagged(bio, BIO_WORKINGSET))) {
1106 unsigned long pflags;
1107 blk_qc_t ret;
1108
1109 psi_memstall_enter(&pflags);
1110 ret = submit_bio_noacct(bio);
1111 psi_memstall_leave(&pflags);
1112
1113 return ret;
1114 }
1115
1116 return submit_bio_noacct(bio);
1117 }
1118 EXPORT_SYMBOL(submit_bio);
1119
1120 /**
1121 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1122 * for the new queue limits
1123 * @q: the queue
1124 * @rq: the request being checked
1125 *
1126 * Description:
1127 * @rq may have been made based on weaker limitations of upper-level queues
1128 * in request stacking drivers, and it may violate the limitation of @q.
1129 * Since the block layer and the underlying device driver trust @rq
1130 * after it is inserted to @q, it should be checked against @q before
1131 * the insertion using this generic function.
1132 *
1133 * Request stacking drivers like request-based dm may change the queue
1134 * limits when retrying requests on other queues. Those requests need
1135 * to be checked against the new queue limits again during dispatch.
1136 */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)1137 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1138 struct request *rq)
1139 {
1140 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1141
1142 if (blk_rq_sectors(rq) > max_sectors) {
1143 /*
1144 * SCSI device does not have a good way to return if
1145 * Write Same/Zero is actually supported. If a device rejects
1146 * a non-read/write command (discard, write same,etc.) the
1147 * low-level device driver will set the relevant queue limit to
1148 * 0 to prevent blk-lib from issuing more of the offending
1149 * operations. Commands queued prior to the queue limit being
1150 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1151 * errors being propagated to upper layers.
1152 */
1153 if (max_sectors == 0)
1154 return BLK_STS_NOTSUPP;
1155
1156 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1157 __func__, blk_rq_sectors(rq), max_sectors);
1158 return BLK_STS_IOERR;
1159 }
1160
1161 /*
1162 * queue's settings related to segment counting like q->bounce_pfn
1163 * may differ from that of other stacking queues.
1164 * Recalculate it to check the request correctly on this queue's
1165 * limitation.
1166 */
1167 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1168 if (rq->nr_phys_segments > queue_max_segments(q)) {
1169 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1170 __func__, rq->nr_phys_segments, queue_max_segments(q));
1171 return BLK_STS_IOERR;
1172 }
1173
1174 return BLK_STS_OK;
1175 }
1176
1177 /**
1178 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1179 * @q: the queue to submit the request
1180 * @rq: the request being queued
1181 */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)1182 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1183 {
1184 blk_status_t ret;
1185
1186 ret = blk_cloned_rq_check_limits(q, rq);
1187 if (ret != BLK_STS_OK)
1188 return ret;
1189
1190 if (rq->rq_disk &&
1191 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1192 return BLK_STS_IOERR;
1193
1194 if (blk_crypto_insert_cloned_request(rq))
1195 return BLK_STS_IOERR;
1196
1197 if (blk_queue_io_stat(q))
1198 blk_account_io_start(rq);
1199
1200 /*
1201 * Since we have a scheduler attached on the top device,
1202 * bypass a potential scheduler on the bottom device for
1203 * insert.
1204 */
1205 return blk_mq_request_issue_directly(rq, true);
1206 }
1207 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1208
1209 /**
1210 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1211 * @rq: request to examine
1212 *
1213 * Description:
1214 * A request could be merge of IOs which require different failure
1215 * handling. This function determines the number of bytes which
1216 * can be failed from the beginning of the request without
1217 * crossing into area which need to be retried further.
1218 *
1219 * Return:
1220 * The number of bytes to fail.
1221 */
blk_rq_err_bytes(const struct request * rq)1222 unsigned int blk_rq_err_bytes(const struct request *rq)
1223 {
1224 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1225 unsigned int bytes = 0;
1226 struct bio *bio;
1227
1228 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1229 return blk_rq_bytes(rq);
1230
1231 /*
1232 * Currently the only 'mixing' which can happen is between
1233 * different fastfail types. We can safely fail portions
1234 * which have all the failfast bits that the first one has -
1235 * the ones which are at least as eager to fail as the first
1236 * one.
1237 */
1238 for (bio = rq->bio; bio; bio = bio->bi_next) {
1239 if ((bio->bi_opf & ff) != ff)
1240 break;
1241 bytes += bio->bi_iter.bi_size;
1242 }
1243
1244 /* this could lead to infinite loop */
1245 BUG_ON(blk_rq_bytes(rq) && !bytes);
1246 return bytes;
1247 }
1248 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1249
update_io_ticks(struct hd_struct * part,unsigned long now,bool end)1250 static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1251 {
1252 unsigned long stamp;
1253 again:
1254 stamp = READ_ONCE(part->stamp);
1255 if (unlikely(stamp != now)) {
1256 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
1257 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1258 }
1259 if (part->partno) {
1260 part = &part_to_disk(part)->part0;
1261 goto again;
1262 }
1263 }
1264
blk_account_io_completion(struct request * req,unsigned int bytes)1265 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1266 {
1267 if (req->part && blk_do_io_stat(req)) {
1268 const int sgrp = op_stat_group(req_op(req));
1269 struct hd_struct *part;
1270
1271 part_stat_lock();
1272 part = req->part;
1273 part_stat_add(part, sectors[sgrp], bytes >> 9);
1274 part_stat_unlock();
1275 }
1276 }
1277
blk_account_io_done(struct request * req,u64 now)1278 void blk_account_io_done(struct request *req, u64 now)
1279 {
1280 /*
1281 * Account IO completion. flush_rq isn't accounted as a
1282 * normal IO on queueing nor completion. Accounting the
1283 * containing request is enough.
1284 */
1285 if (req->part && blk_do_io_stat(req) &&
1286 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1287 const int sgrp = op_stat_group(req_op(req));
1288 struct hd_struct *part;
1289
1290 part_stat_lock();
1291 part = req->part;
1292
1293 update_io_ticks(part, jiffies, true);
1294 part_stat_inc(part, ios[sgrp]);
1295 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1296 part_stat_unlock();
1297
1298 hd_struct_put(part);
1299 }
1300 }
1301
blk_account_io_start(struct request * rq)1302 void blk_account_io_start(struct request *rq)
1303 {
1304 if (!blk_do_io_stat(rq))
1305 return;
1306
1307 rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1308
1309 part_stat_lock();
1310 update_io_ticks(rq->part, jiffies, false);
1311 part_stat_unlock();
1312 }
1313
__part_start_io_acct(struct hd_struct * part,unsigned int sectors,unsigned int op)1314 static unsigned long __part_start_io_acct(struct hd_struct *part,
1315 unsigned int sectors, unsigned int op)
1316 {
1317 const int sgrp = op_stat_group(op);
1318 unsigned long now = READ_ONCE(jiffies);
1319
1320 part_stat_lock();
1321 update_io_ticks(part, now, false);
1322 part_stat_inc(part, ios[sgrp]);
1323 part_stat_add(part, sectors[sgrp], sectors);
1324 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1325 part_stat_unlock();
1326
1327 return now;
1328 }
1329
part_start_io_acct(struct gendisk * disk,struct hd_struct ** part,struct bio * bio)1330 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
1331 struct bio *bio)
1332 {
1333 *part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);
1334
1335 return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
1336 }
1337 EXPORT_SYMBOL_GPL(part_start_io_acct);
1338
disk_start_io_acct(struct gendisk * disk,unsigned int sectors,unsigned int op)1339 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1340 unsigned int op)
1341 {
1342 return __part_start_io_acct(&disk->part0, sectors, op);
1343 }
1344 EXPORT_SYMBOL(disk_start_io_acct);
1345
__part_end_io_acct(struct hd_struct * part,unsigned int op,unsigned long start_time)1346 static void __part_end_io_acct(struct hd_struct *part, unsigned int op,
1347 unsigned long start_time)
1348 {
1349 const int sgrp = op_stat_group(op);
1350 unsigned long now = READ_ONCE(jiffies);
1351 unsigned long duration = now - start_time;
1352
1353 part_stat_lock();
1354 update_io_ticks(part, now, true);
1355 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1356 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1357 part_stat_unlock();
1358 }
1359
part_end_io_acct(struct hd_struct * part,struct bio * bio,unsigned long start_time)1360 void part_end_io_acct(struct hd_struct *part, struct bio *bio,
1361 unsigned long start_time)
1362 {
1363 __part_end_io_acct(part, bio_op(bio), start_time);
1364 hd_struct_put(part);
1365 }
1366 EXPORT_SYMBOL_GPL(part_end_io_acct);
1367
disk_end_io_acct(struct gendisk * disk,unsigned int op,unsigned long start_time)1368 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1369 unsigned long start_time)
1370 {
1371 __part_end_io_acct(&disk->part0, op, start_time);
1372 }
1373 EXPORT_SYMBOL(disk_end_io_acct);
1374
1375 /*
1376 * Steal bios from a request and add them to a bio list.
1377 * The request must not have been partially completed before.
1378 */
blk_steal_bios(struct bio_list * list,struct request * rq)1379 void blk_steal_bios(struct bio_list *list, struct request *rq)
1380 {
1381 if (rq->bio) {
1382 if (list->tail)
1383 list->tail->bi_next = rq->bio;
1384 else
1385 list->head = rq->bio;
1386 list->tail = rq->biotail;
1387
1388 rq->bio = NULL;
1389 rq->biotail = NULL;
1390 }
1391
1392 rq->__data_len = 0;
1393 }
1394 EXPORT_SYMBOL_GPL(blk_steal_bios);
1395
1396 /**
1397 * blk_update_request - Special helper function for request stacking drivers
1398 * @req: the request being processed
1399 * @error: block status code
1400 * @nr_bytes: number of bytes to complete @req
1401 *
1402 * Description:
1403 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1404 * the request structure even if @req doesn't have leftover.
1405 * If @req has leftover, sets it up for the next range of segments.
1406 *
1407 * This special helper function is only for request stacking drivers
1408 * (e.g. request-based dm) so that they can handle partial completion.
1409 * Actual device drivers should use blk_mq_end_request instead.
1410 *
1411 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1412 * %false return from this function.
1413 *
1414 * Note:
1415 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1416 * blk_rq_bytes() and in blk_update_request().
1417 *
1418 * Return:
1419 * %false - this request doesn't have any more data
1420 * %true - this request has more data
1421 **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)1422 bool blk_update_request(struct request *req, blk_status_t error,
1423 unsigned int nr_bytes)
1424 {
1425 int total_bytes;
1426
1427 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1428
1429 if (!req->bio)
1430 return false;
1431
1432 #ifdef CONFIG_BLK_DEV_INTEGRITY
1433 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1434 error == BLK_STS_OK)
1435 req->q->integrity.profile->complete_fn(req, nr_bytes);
1436 #endif
1437
1438 /*
1439 * Upper layers may call blk_crypto_evict_key() anytime after the last
1440 * bio_endio(). Therefore, the keyslot must be released before that.
1441 */
1442 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
1443 __blk_crypto_rq_put_keyslot(req);
1444
1445 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1446 !(req->rq_flags & RQF_QUIET)))
1447 print_req_error(req, error, __func__);
1448
1449 blk_account_io_completion(req, nr_bytes);
1450
1451 total_bytes = 0;
1452 while (req->bio) {
1453 struct bio *bio = req->bio;
1454 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1455
1456 if (bio_bytes == bio->bi_iter.bi_size)
1457 req->bio = bio->bi_next;
1458
1459 /* Completion has already been traced */
1460 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1461 req_bio_endio(req, bio, bio_bytes, error);
1462
1463 total_bytes += bio_bytes;
1464 nr_bytes -= bio_bytes;
1465
1466 if (!nr_bytes)
1467 break;
1468 }
1469
1470 /*
1471 * completely done
1472 */
1473 if (!req->bio) {
1474 /*
1475 * Reset counters so that the request stacking driver
1476 * can find how many bytes remain in the request
1477 * later.
1478 */
1479 req->__data_len = 0;
1480 return false;
1481 }
1482
1483 req->__data_len -= total_bytes;
1484
1485 /* update sector only for requests with clear definition of sector */
1486 if (!blk_rq_is_passthrough(req))
1487 req->__sector += total_bytes >> 9;
1488
1489 /* mixed attributes always follow the first bio */
1490 if (req->rq_flags & RQF_MIXED_MERGE) {
1491 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1492 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1493 }
1494
1495 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1496 /*
1497 * If total number of sectors is less than the first segment
1498 * size, something has gone terribly wrong.
1499 */
1500 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1501 blk_dump_rq_flags(req, "request botched");
1502 req->__data_len = blk_rq_cur_bytes(req);
1503 }
1504
1505 /* recalculate the number of segments */
1506 req->nr_phys_segments = blk_recalc_rq_segments(req);
1507 }
1508
1509 return true;
1510 }
1511 EXPORT_SYMBOL_GPL(blk_update_request);
1512
1513 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1514 /**
1515 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1516 * @rq: the request to be flushed
1517 *
1518 * Description:
1519 * Flush all pages in @rq.
1520 */
rq_flush_dcache_pages(struct request * rq)1521 void rq_flush_dcache_pages(struct request *rq)
1522 {
1523 struct req_iterator iter;
1524 struct bio_vec bvec;
1525
1526 rq_for_each_segment(bvec, rq, iter)
1527 flush_dcache_page(bvec.bv_page);
1528 }
1529 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1530 #endif
1531
1532 /**
1533 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1534 * @q : the queue of the device being checked
1535 *
1536 * Description:
1537 * Check if underlying low-level drivers of a device are busy.
1538 * If the drivers want to export their busy state, they must set own
1539 * exporting function using blk_queue_lld_busy() first.
1540 *
1541 * Basically, this function is used only by request stacking drivers
1542 * to stop dispatching requests to underlying devices when underlying
1543 * devices are busy. This behavior helps more I/O merging on the queue
1544 * of the request stacking driver and prevents I/O throughput regression
1545 * on burst I/O load.
1546 *
1547 * Return:
1548 * 0 - Not busy (The request stacking driver should dispatch request)
1549 * 1 - Busy (The request stacking driver should stop dispatching request)
1550 */
blk_lld_busy(struct request_queue * q)1551 int blk_lld_busy(struct request_queue *q)
1552 {
1553 if (queue_is_mq(q) && q->mq_ops->busy)
1554 return q->mq_ops->busy(q);
1555
1556 return 0;
1557 }
1558 EXPORT_SYMBOL_GPL(blk_lld_busy);
1559
1560 /**
1561 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1562 * @rq: the clone request to be cleaned up
1563 *
1564 * Description:
1565 * Free all bios in @rq for a cloned request.
1566 */
blk_rq_unprep_clone(struct request * rq)1567 void blk_rq_unprep_clone(struct request *rq)
1568 {
1569 struct bio *bio;
1570
1571 while ((bio = rq->bio) != NULL) {
1572 rq->bio = bio->bi_next;
1573
1574 bio_put(bio);
1575 }
1576 }
1577 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1578
1579 /**
1580 * blk_rq_prep_clone - Helper function to setup clone request
1581 * @rq: the request to be setup
1582 * @rq_src: original request to be cloned
1583 * @bs: bio_set that bios for clone are allocated from
1584 * @gfp_mask: memory allocation mask for bio
1585 * @bio_ctr: setup function to be called for each clone bio.
1586 * Returns %0 for success, non %0 for failure.
1587 * @data: private data to be passed to @bio_ctr
1588 *
1589 * Description:
1590 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1591 * Also, pages which the original bios are pointing to are not copied
1592 * and the cloned bios just point same pages.
1593 * So cloned bios must be completed before original bios, which means
1594 * the caller must complete @rq before @rq_src.
1595 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)1596 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1597 struct bio_set *bs, gfp_t gfp_mask,
1598 int (*bio_ctr)(struct bio *, struct bio *, void *),
1599 void *data)
1600 {
1601 struct bio *bio, *bio_src;
1602
1603 if (!bs)
1604 bs = &fs_bio_set;
1605
1606 __rq_for_each_bio(bio_src, rq_src) {
1607 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1608 if (!bio)
1609 goto free_and_out;
1610
1611 if (bio_ctr && bio_ctr(bio, bio_src, data))
1612 goto free_and_out;
1613
1614 if (rq->bio) {
1615 rq->biotail->bi_next = bio;
1616 rq->biotail = bio;
1617 } else {
1618 rq->bio = rq->biotail = bio;
1619 }
1620 bio = NULL;
1621 }
1622
1623 /* Copy attributes of the original request to the clone request. */
1624 rq->__sector = blk_rq_pos(rq_src);
1625 rq->__data_len = blk_rq_bytes(rq_src);
1626 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1627 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1628 rq->special_vec = rq_src->special_vec;
1629 }
1630 rq->nr_phys_segments = rq_src->nr_phys_segments;
1631 rq->ioprio = rq_src->ioprio;
1632
1633 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1634 goto free_and_out;
1635
1636 return 0;
1637
1638 free_and_out:
1639 if (bio)
1640 bio_put(bio);
1641 blk_rq_unprep_clone(rq);
1642
1643 return -ENOMEM;
1644 }
1645 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1646
kblockd_schedule_work(struct work_struct * work)1647 int kblockd_schedule_work(struct work_struct *work)
1648 {
1649 return queue_work(kblockd_workqueue, work);
1650 }
1651 EXPORT_SYMBOL(kblockd_schedule_work);
1652
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1653 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1654 unsigned long delay)
1655 {
1656 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1657 }
1658 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1659
1660 /**
1661 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1662 * @plug: The &struct blk_plug that needs to be initialized
1663 *
1664 * Description:
1665 * blk_start_plug() indicates to the block layer an intent by the caller
1666 * to submit multiple I/O requests in a batch. The block layer may use
1667 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1668 * is called. However, the block layer may choose to submit requests
1669 * before a call to blk_finish_plug() if the number of queued I/Os
1670 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1671 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1672 * the task schedules (see below).
1673 *
1674 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1675 * pending I/O should the task end up blocking between blk_start_plug() and
1676 * blk_finish_plug(). This is important from a performance perspective, but
1677 * also ensures that we don't deadlock. For instance, if the task is blocking
1678 * for a memory allocation, memory reclaim could end up wanting to free a
1679 * page belonging to that request that is currently residing in our private
1680 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1681 * this kind of deadlock.
1682 */
blk_start_plug(struct blk_plug * plug)1683 void blk_start_plug(struct blk_plug *plug)
1684 {
1685 struct task_struct *tsk = current;
1686
1687 /*
1688 * If this is a nested plug, don't actually assign it.
1689 */
1690 if (tsk->plug)
1691 return;
1692
1693 INIT_LIST_HEAD(&plug->mq_list);
1694 INIT_LIST_HEAD(&plug->cb_list);
1695 plug->rq_count = 0;
1696 plug->multiple_queues = false;
1697 plug->nowait = false;
1698
1699 /*
1700 * Store ordering should not be needed here, since a potential
1701 * preempt will imply a full memory barrier
1702 */
1703 tsk->plug = plug;
1704 }
1705 EXPORT_SYMBOL(blk_start_plug);
1706
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1707 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1708 {
1709 LIST_HEAD(callbacks);
1710
1711 while (!list_empty(&plug->cb_list)) {
1712 list_splice_init(&plug->cb_list, &callbacks);
1713
1714 while (!list_empty(&callbacks)) {
1715 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1716 struct blk_plug_cb,
1717 list);
1718 list_del(&cb->list);
1719 cb->callback(cb, from_schedule);
1720 }
1721 }
1722 }
1723
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1724 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1725 int size)
1726 {
1727 struct blk_plug *plug = current->plug;
1728 struct blk_plug_cb *cb;
1729
1730 if (!plug)
1731 return NULL;
1732
1733 list_for_each_entry(cb, &plug->cb_list, list)
1734 if (cb->callback == unplug && cb->data == data)
1735 return cb;
1736
1737 /* Not currently on the callback list */
1738 BUG_ON(size < sizeof(*cb));
1739 cb = kzalloc(size, GFP_ATOMIC);
1740 if (cb) {
1741 cb->data = data;
1742 cb->callback = unplug;
1743 list_add(&cb->list, &plug->cb_list);
1744 }
1745 return cb;
1746 }
1747 EXPORT_SYMBOL(blk_check_plugged);
1748
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)1749 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1750 {
1751 flush_plug_callbacks(plug, from_schedule);
1752
1753 if (!list_empty(&plug->mq_list))
1754 blk_mq_flush_plug_list(plug, from_schedule);
1755 }
1756
1757 /**
1758 * blk_finish_plug - mark the end of a batch of submitted I/O
1759 * @plug: The &struct blk_plug passed to blk_start_plug()
1760 *
1761 * Description:
1762 * Indicate that a batch of I/O submissions is complete. This function
1763 * must be paired with an initial call to blk_start_plug(). The intent
1764 * is to allow the block layer to optimize I/O submission. See the
1765 * documentation for blk_start_plug() for more information.
1766 */
blk_finish_plug(struct blk_plug * plug)1767 void blk_finish_plug(struct blk_plug *plug)
1768 {
1769 if (plug != current->plug)
1770 return;
1771 blk_flush_plug_list(plug, false);
1772
1773 current->plug = NULL;
1774 }
1775 EXPORT_SYMBOL(blk_finish_plug);
1776
blk_io_schedule(void)1777 void blk_io_schedule(void)
1778 {
1779 /* Prevent hang_check timer from firing at us during very long I/O */
1780 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1781
1782 if (timeout)
1783 io_schedule_timeout(timeout);
1784 else
1785 io_schedule();
1786 }
1787 EXPORT_SYMBOL_GPL(blk_io_schedule);
1788
blk_dev_init(void)1789 int __init blk_dev_init(void)
1790 {
1791 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1792 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1793 sizeof_field(struct request, cmd_flags));
1794 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1795 sizeof_field(struct bio, bi_opf));
1796
1797 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1798 kblockd_workqueue = alloc_workqueue("kblockd",
1799 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1800 if (!kblockd_workqueue)
1801 panic("Failed to create kblockd\n");
1802
1803 blk_requestq_cachep = kmem_cache_create("request_queue",
1804 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1805
1806 blk_debugfs_root = debugfs_create_dir("block", NULL);
1807
1808 return 0;
1809 }
1810