• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
blk_mq_poll_stats_bkt(const struct request * rq)49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct hd_struct *part;
99 	unsigned int inflight[2];
100 };
101 
blk_mq_check_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if ((!mi->part->partno || rq->part == mi->part) &&
109 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 		mi->inflight[rq_data_dir(rq)]++;
111 
112 	return true;
113 }
114 
blk_mq_in_flight(struct request_queue * q,struct hd_struct * part)115 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
116 {
117 	struct mq_inflight mi = { .part = part };
118 
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 
121 	return mi.inflight[0] + mi.inflight[1];
122 }
123 
blk_mq_in_flight_rw(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])124 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
125 			 unsigned int inflight[2])
126 {
127 	struct mq_inflight mi = { .part = part };
128 
129 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
130 	inflight[0] = mi.inflight[0];
131 	inflight[1] = mi.inflight[1];
132 }
133 
blk_freeze_queue_start(struct request_queue * q)134 void blk_freeze_queue_start(struct request_queue *q)
135 {
136 	mutex_lock(&q->mq_freeze_lock);
137 	if (++q->mq_freeze_depth == 1) {
138 		percpu_ref_kill(&q->q_usage_counter);
139 		mutex_unlock(&q->mq_freeze_lock);
140 		if (queue_is_mq(q))
141 			blk_mq_run_hw_queues(q, false);
142 	} else {
143 		mutex_unlock(&q->mq_freeze_lock);
144 	}
145 }
146 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
147 
blk_mq_freeze_queue_wait(struct request_queue * q)148 void blk_mq_freeze_queue_wait(struct request_queue *q)
149 {
150 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
151 }
152 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
153 
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)154 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
155 				     unsigned long timeout)
156 {
157 	return wait_event_timeout(q->mq_freeze_wq,
158 					percpu_ref_is_zero(&q->q_usage_counter),
159 					timeout);
160 }
161 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
162 
163 /*
164  * Guarantee no request is in use, so we can change any data structure of
165  * the queue afterward.
166  */
blk_freeze_queue(struct request_queue * q)167 void blk_freeze_queue(struct request_queue *q)
168 {
169 	/*
170 	 * In the !blk_mq case we are only calling this to kill the
171 	 * q_usage_counter, otherwise this increases the freeze depth
172 	 * and waits for it to return to zero.  For this reason there is
173 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
174 	 * exported to drivers as the only user for unfreeze is blk_mq.
175 	 */
176 	blk_freeze_queue_start(q);
177 	blk_mq_freeze_queue_wait(q);
178 }
179 
blk_mq_freeze_queue(struct request_queue * q)180 void blk_mq_freeze_queue(struct request_queue *q)
181 {
182 	/*
183 	 * ...just an alias to keep freeze and unfreeze actions balanced
184 	 * in the blk_mq_* namespace
185 	 */
186 	blk_freeze_queue(q);
187 }
188 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
189 
blk_mq_unfreeze_queue(struct request_queue * q)190 void blk_mq_unfreeze_queue(struct request_queue *q)
191 {
192 	mutex_lock(&q->mq_freeze_lock);
193 	q->mq_freeze_depth--;
194 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
195 	if (!q->mq_freeze_depth) {
196 		percpu_ref_resurrect(&q->q_usage_counter);
197 		wake_up_all(&q->mq_freeze_wq);
198 	}
199 	mutex_unlock(&q->mq_freeze_lock);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
202 
203 /*
204  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
205  * mpt3sas driver such that this function can be removed.
206  */
blk_mq_quiesce_queue_nowait(struct request_queue * q)207 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
208 {
209 	unsigned long flags;
210 
211 	spin_lock_irqsave(&q->queue_lock, flags);
212 	if (!q->quiesce_depth++)
213 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 	spin_unlock_irqrestore(&q->queue_lock, flags);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
217 
218 /**
219  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
220  * @q: request queue.
221  *
222  * Note: this function does not prevent that the struct request end_io()
223  * callback function is invoked. Once this function is returned, we make
224  * sure no dispatch can happen until the queue is unquiesced via
225  * blk_mq_unquiesce_queue().
226  */
blk_mq_quiesce_queue(struct request_queue * q)227 void blk_mq_quiesce_queue(struct request_queue *q)
228 {
229 	struct blk_mq_hw_ctx *hctx;
230 	unsigned int i;
231 	bool rcu = false;
232 
233 	blk_mq_quiesce_queue_nowait(q);
234 
235 	queue_for_each_hw_ctx(q, hctx, i) {
236 		if (hctx->flags & BLK_MQ_F_BLOCKING)
237 			synchronize_srcu(hctx->srcu);
238 		else
239 			rcu = true;
240 	}
241 	if (rcu)
242 		synchronize_rcu();
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
245 
246 /*
247  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
248  * @q: request queue.
249  *
250  * This function recovers queue into the state before quiescing
251  * which is done by blk_mq_quiesce_queue.
252  */
blk_mq_unquiesce_queue(struct request_queue * q)253 void blk_mq_unquiesce_queue(struct request_queue *q)
254 {
255 	unsigned long flags;
256 	bool run_queue = false;
257 
258 	spin_lock_irqsave(&q->queue_lock, flags);
259 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
260 		;
261 	} else if (!--q->quiesce_depth) {
262 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
263 		run_queue = true;
264 	}
265 	spin_unlock_irqrestore(&q->queue_lock, flags);
266 
267 	/* dispatch requests which are inserted during quiescing */
268 	if (run_queue)
269 		blk_mq_run_hw_queues(q, true);
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
272 
blk_mq_wake_waiters(struct request_queue * q)273 void blk_mq_wake_waiters(struct request_queue *q)
274 {
275 	struct blk_mq_hw_ctx *hctx;
276 	unsigned int i;
277 
278 	queue_for_each_hw_ctx(q, hctx, i)
279 		if (blk_mq_hw_queue_mapped(hctx))
280 			blk_mq_tag_wakeup_all(hctx->tags, true);
281 }
282 
283 /*
284  * Only need start/end time stamping if we have iostat or
285  * blk stats enabled, or using an IO scheduler.
286  */
blk_mq_need_time_stamp(struct request * rq)287 static inline bool blk_mq_need_time_stamp(struct request *rq)
288 {
289 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
290 }
291 
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,unsigned int tag,u64 alloc_time_ns)292 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
293 		unsigned int tag, u64 alloc_time_ns)
294 {
295 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
296 	struct request *rq = tags->static_rqs[tag];
297 
298 	if (data->q->elevator) {
299 		rq->tag = BLK_MQ_NO_TAG;
300 		rq->internal_tag = tag;
301 	} else {
302 		rq->tag = tag;
303 		rq->internal_tag = BLK_MQ_NO_TAG;
304 	}
305 
306 	/* csd/requeue_work/fifo_time is initialized before use */
307 	rq->q = data->q;
308 	rq->mq_ctx = data->ctx;
309 	rq->mq_hctx = data->hctx;
310 	rq->rq_flags = 0;
311 	rq->cmd_flags = data->cmd_flags;
312 	if (data->flags & BLK_MQ_REQ_PM)
313 		rq->rq_flags |= RQF_PM;
314 	if (blk_queue_io_stat(data->q))
315 		rq->rq_flags |= RQF_IO_STAT;
316 	INIT_LIST_HEAD(&rq->queuelist);
317 	INIT_HLIST_NODE(&rq->hash);
318 	RB_CLEAR_NODE(&rq->rb_node);
319 	rq->rq_disk = NULL;
320 	rq->part = NULL;
321 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
322 	rq->alloc_time_ns = alloc_time_ns;
323 #endif
324 	if (blk_mq_need_time_stamp(rq))
325 		rq->start_time_ns = ktime_get_ns();
326 	else
327 		rq->start_time_ns = 0;
328 	rq->io_start_time_ns = 0;
329 	rq->stats_sectors = 0;
330 	rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332 	rq->nr_integrity_segments = 0;
333 #endif
334 	blk_crypto_rq_set_defaults(rq);
335 	/* tag was already set */
336 	WRITE_ONCE(rq->deadline, 0);
337 
338 	rq->timeout = 0;
339 
340 	rq->end_io = NULL;
341 	rq->end_io_data = NULL;
342 
343 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
344 	refcount_set(&rq->ref, 1);
345 
346 	if (!op_is_flush(data->cmd_flags)) {
347 		struct elevator_queue *e = data->q->elevator;
348 
349 		rq->elv.icq = NULL;
350 		if (e && e->type->ops.prepare_request) {
351 			if (e->type->icq_cache)
352 				blk_mq_sched_assign_ioc(rq);
353 
354 			e->type->ops.prepare_request(rq);
355 			rq->rq_flags |= RQF_ELVPRIV;
356 		}
357 	}
358 
359 	data->hctx->queued++;
360 	return rq;
361 }
362 
__blk_mq_alloc_request(struct blk_mq_alloc_data * data)363 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
364 {
365 	struct request_queue *q = data->q;
366 	struct elevator_queue *e = q->elevator;
367 	u64 alloc_time_ns = 0;
368 	unsigned int tag;
369 
370 	/* alloc_time includes depth and tag waits */
371 	if (blk_queue_rq_alloc_time(q))
372 		alloc_time_ns = ktime_get_ns();
373 
374 	if (data->cmd_flags & REQ_NOWAIT)
375 		data->flags |= BLK_MQ_REQ_NOWAIT;
376 
377 	if (e) {
378 		/*
379 		 * Flush requests are special and go directly to the
380 		 * dispatch list. Don't include reserved tags in the
381 		 * limiting, as it isn't useful.
382 		 */
383 		if (!op_is_flush(data->cmd_flags) &&
384 		    e->type->ops.limit_depth &&
385 		    !(data->flags & BLK_MQ_REQ_RESERVED))
386 			e->type->ops.limit_depth(data->cmd_flags, data);
387 	}
388 
389 retry:
390 	data->ctx = blk_mq_get_ctx(q);
391 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
392 	if (!e)
393 		blk_mq_tag_busy(data->hctx);
394 
395 	/*
396 	 * Waiting allocations only fail because of an inactive hctx.  In that
397 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
398 	 * should have migrated us to an online CPU by now.
399 	 */
400 	tag = blk_mq_get_tag(data);
401 	if (tag == BLK_MQ_NO_TAG) {
402 		if (data->flags & BLK_MQ_REQ_NOWAIT)
403 			return NULL;
404 
405 		/*
406 		 * Give up the CPU and sleep for a random short time to ensure
407 		 * that thread using a realtime scheduling class are migrated
408 		 * off the CPU, and thus off the hctx that is going away.
409 		 */
410 		msleep(3);
411 		goto retry;
412 	}
413 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
414 }
415 
blk_mq_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)416 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
417 		blk_mq_req_flags_t flags)
418 {
419 	struct blk_mq_alloc_data data = {
420 		.q		= q,
421 		.flags		= flags,
422 		.cmd_flags	= op,
423 	};
424 	struct request *rq;
425 	int ret;
426 
427 	ret = blk_queue_enter(q, flags);
428 	if (ret)
429 		return ERR_PTR(ret);
430 
431 	rq = __blk_mq_alloc_request(&data);
432 	if (!rq)
433 		goto out_queue_exit;
434 	rq->__data_len = 0;
435 	rq->__sector = (sector_t) -1;
436 	rq->bio = rq->biotail = NULL;
437 	return rq;
438 out_queue_exit:
439 	blk_queue_exit(q);
440 	return ERR_PTR(-EWOULDBLOCK);
441 }
442 EXPORT_SYMBOL(blk_mq_alloc_request);
443 
blk_mq_alloc_request_hctx(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags,unsigned int hctx_idx)444 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
445 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
446 {
447 	struct blk_mq_alloc_data data = {
448 		.q		= q,
449 		.flags		= flags,
450 		.cmd_flags	= op,
451 	};
452 	u64 alloc_time_ns = 0;
453 	unsigned int cpu;
454 	unsigned int tag;
455 	int ret;
456 
457 	/* alloc_time includes depth and tag waits */
458 	if (blk_queue_rq_alloc_time(q))
459 		alloc_time_ns = ktime_get_ns();
460 
461 	/*
462 	 * If the tag allocator sleeps we could get an allocation for a
463 	 * different hardware context.  No need to complicate the low level
464 	 * allocator for this for the rare use case of a command tied to
465 	 * a specific queue.
466 	 */
467 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
468 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
469 		return ERR_PTR(-EINVAL);
470 
471 	if (hctx_idx >= q->nr_hw_queues)
472 		return ERR_PTR(-EIO);
473 
474 	ret = blk_queue_enter(q, flags);
475 	if (ret)
476 		return ERR_PTR(ret);
477 
478 	/*
479 	 * Check if the hardware context is actually mapped to anything.
480 	 * If not tell the caller that it should skip this queue.
481 	 */
482 	ret = -EXDEV;
483 	data.hctx = q->queue_hw_ctx[hctx_idx];
484 	if (!blk_mq_hw_queue_mapped(data.hctx))
485 		goto out_queue_exit;
486 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
487 	if (cpu >= nr_cpu_ids)
488 		goto out_queue_exit;
489 	data.ctx = __blk_mq_get_ctx(q, cpu);
490 
491 	if (!q->elevator)
492 		blk_mq_tag_busy(data.hctx);
493 
494 	ret = -EWOULDBLOCK;
495 	tag = blk_mq_get_tag(&data);
496 	if (tag == BLK_MQ_NO_TAG)
497 		goto out_queue_exit;
498 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
499 
500 out_queue_exit:
501 	blk_queue_exit(q);
502 	return ERR_PTR(ret);
503 }
504 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
505 
__blk_mq_free_request(struct request * rq)506 static void __blk_mq_free_request(struct request *rq)
507 {
508 	struct request_queue *q = rq->q;
509 	struct blk_mq_ctx *ctx = rq->mq_ctx;
510 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
511 	const int sched_tag = rq->internal_tag;
512 
513 	blk_crypto_free_request(rq);
514 	blk_pm_mark_last_busy(rq);
515 	rq->mq_hctx = NULL;
516 	if (rq->tag != BLK_MQ_NO_TAG)
517 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
518 	if (sched_tag != BLK_MQ_NO_TAG)
519 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
520 	blk_mq_sched_restart(hctx);
521 	blk_queue_exit(q);
522 }
523 
blk_mq_free_request(struct request * rq)524 void blk_mq_free_request(struct request *rq)
525 {
526 	struct request_queue *q = rq->q;
527 	struct elevator_queue *e = q->elevator;
528 	struct blk_mq_ctx *ctx = rq->mq_ctx;
529 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
530 
531 	if (rq->rq_flags & RQF_ELVPRIV) {
532 		if (e && e->type->ops.finish_request)
533 			e->type->ops.finish_request(rq);
534 		if (rq->elv.icq) {
535 			put_io_context(rq->elv.icq->ioc);
536 			rq->elv.icq = NULL;
537 		}
538 	}
539 
540 	ctx->rq_completed[rq_is_sync(rq)]++;
541 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
542 		__blk_mq_dec_active_requests(hctx);
543 
544 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
545 		laptop_io_completion(q->backing_dev_info);
546 
547 	rq_qos_done(q, rq);
548 
549 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
550 	if (refcount_dec_and_test(&rq->ref))
551 		__blk_mq_free_request(rq);
552 }
553 EXPORT_SYMBOL_GPL(blk_mq_free_request);
554 
__blk_mq_end_request(struct request * rq,blk_status_t error)555 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
556 {
557 	u64 now = 0;
558 
559 	if (blk_mq_need_time_stamp(rq))
560 		now = ktime_get_ns();
561 
562 	if (rq->rq_flags & RQF_STATS) {
563 		blk_mq_poll_stats_start(rq->q);
564 		blk_stat_add(rq, now);
565 	}
566 
567 	blk_mq_sched_completed_request(rq, now);
568 
569 	blk_account_io_done(rq, now);
570 
571 	if (rq->end_io) {
572 		rq_qos_done(rq->q, rq);
573 		rq->end_io(rq, error);
574 	} else {
575 		blk_mq_free_request(rq);
576 	}
577 }
578 EXPORT_SYMBOL(__blk_mq_end_request);
579 
blk_mq_end_request(struct request * rq,blk_status_t error)580 void blk_mq_end_request(struct request *rq, blk_status_t error)
581 {
582 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
583 		BUG();
584 	__blk_mq_end_request(rq, error);
585 }
586 EXPORT_SYMBOL(blk_mq_end_request);
587 
588 /*
589  * Softirq action handler - move entries to local list and loop over them
590  * while passing them to the queue registered handler.
591  */
blk_done_softirq(struct softirq_action * h)592 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
593 {
594 	struct list_head *cpu_list, local_list;
595 
596 	local_irq_disable();
597 	cpu_list = this_cpu_ptr(&blk_cpu_done);
598 	list_replace_init(cpu_list, &local_list);
599 	local_irq_enable();
600 
601 	while (!list_empty(&local_list)) {
602 		struct request *rq;
603 
604 		rq = list_entry(local_list.next, struct request, ipi_list);
605 		list_del_init(&rq->ipi_list);
606 		rq->q->mq_ops->complete(rq);
607 	}
608 }
609 
blk_mq_trigger_softirq(struct request * rq)610 static void blk_mq_trigger_softirq(struct request *rq)
611 {
612 	struct list_head *list;
613 	unsigned long flags;
614 
615 	local_irq_save(flags);
616 	list = this_cpu_ptr(&blk_cpu_done);
617 	list_add_tail(&rq->ipi_list, list);
618 
619 	/*
620 	 * If the list only contains our just added request, signal a raise of
621 	 * the softirq.  If there are already entries there, someone already
622 	 * raised the irq but it hasn't run yet.
623 	 */
624 	if (list->next == &rq->ipi_list)
625 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
626 	local_irq_restore(flags);
627 }
628 
blk_softirq_cpu_dead(unsigned int cpu)629 static int blk_softirq_cpu_dead(unsigned int cpu)
630 {
631 	/*
632 	 * If a CPU goes away, splice its entries to the current CPU
633 	 * and trigger a run of the softirq
634 	 */
635 	local_irq_disable();
636 	list_splice_init(&per_cpu(blk_cpu_done, cpu),
637 			 this_cpu_ptr(&blk_cpu_done));
638 	raise_softirq_irqoff(BLOCK_SOFTIRQ);
639 	local_irq_enable();
640 
641 	return 0;
642 }
643 
644 
__blk_mq_complete_request_remote(void * data)645 static void __blk_mq_complete_request_remote(void *data)
646 {
647 	struct request *rq = data;
648 
649 	/*
650 	 * For most of single queue controllers, there is only one irq vector
651 	 * for handling I/O completion, and the only irq's affinity is set
652 	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
653 	 * is handled on one specific CPU.
654 	 *
655 	 * So complete I/O requests in softirq context in case of single queue
656 	 * devices to avoid degrading I/O performance due to irqsoff latency.
657 	 */
658 	if (rq->q->nr_hw_queues == 1)
659 		blk_mq_trigger_softirq(rq);
660 	else
661 		rq->q->mq_ops->complete(rq);
662 }
663 
blk_mq_complete_need_ipi(struct request * rq)664 static inline bool blk_mq_complete_need_ipi(struct request *rq)
665 {
666 	int cpu = raw_smp_processor_id();
667 
668 	if (!IS_ENABLED(CONFIG_SMP) ||
669 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
670 		return false;
671 
672 	/* same CPU or cache domain?  Complete locally */
673 	if (cpu == rq->mq_ctx->cpu ||
674 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
675 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
676 		return false;
677 
678 	/* don't try to IPI to an offline CPU */
679 	return cpu_online(rq->mq_ctx->cpu);
680 }
681 
blk_mq_complete_request_remote(struct request * rq)682 bool blk_mq_complete_request_remote(struct request *rq)
683 {
684 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
685 
686 	/*
687 	 * For a polled request, always complete locallly, it's pointless
688 	 * to redirect the completion.
689 	 */
690 	if (rq->cmd_flags & REQ_HIPRI)
691 		return false;
692 
693 	if (blk_mq_complete_need_ipi(rq)) {
694 		rq->csd.func = __blk_mq_complete_request_remote;
695 		rq->csd.info = rq;
696 		rq->csd.flags = 0;
697 		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
698 	} else {
699 		if (rq->q->nr_hw_queues > 1)
700 			return false;
701 		blk_mq_trigger_softirq(rq);
702 	}
703 
704 	return true;
705 }
706 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
707 
708 /**
709  * blk_mq_complete_request - end I/O on a request
710  * @rq:		the request being processed
711  *
712  * Description:
713  *	Complete a request by scheduling the ->complete_rq operation.
714  **/
blk_mq_complete_request(struct request * rq)715 void blk_mq_complete_request(struct request *rq)
716 {
717 	if (!blk_mq_complete_request_remote(rq))
718 		rq->q->mq_ops->complete(rq);
719 }
720 EXPORT_SYMBOL(blk_mq_complete_request);
721 
hctx_unlock(struct blk_mq_hw_ctx * hctx,int srcu_idx)722 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
723 	__releases(hctx->srcu)
724 {
725 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
726 		rcu_read_unlock();
727 	else
728 		srcu_read_unlock(hctx->srcu, srcu_idx);
729 }
730 
hctx_lock(struct blk_mq_hw_ctx * hctx,int * srcu_idx)731 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
732 	__acquires(hctx->srcu)
733 {
734 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
735 		/* shut up gcc false positive */
736 		*srcu_idx = 0;
737 		rcu_read_lock();
738 	} else
739 		*srcu_idx = srcu_read_lock(hctx->srcu);
740 }
741 
742 /**
743  * blk_mq_start_request - Start processing a request
744  * @rq: Pointer to request to be started
745  *
746  * Function used by device drivers to notify the block layer that a request
747  * is going to be processed now, so blk layer can do proper initializations
748  * such as starting the timeout timer.
749  */
blk_mq_start_request(struct request * rq)750 void blk_mq_start_request(struct request *rq)
751 {
752 	struct request_queue *q = rq->q;
753 
754 	trace_block_rq_issue(rq);
755 
756 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
757 		rq->io_start_time_ns = ktime_get_ns();
758 		rq->stats_sectors = blk_rq_sectors(rq);
759 		rq->rq_flags |= RQF_STATS;
760 		rq_qos_issue(q, rq);
761 	}
762 
763 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
764 
765 	blk_add_timer(rq);
766 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
767 
768 #ifdef CONFIG_BLK_DEV_INTEGRITY
769 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
770 		q->integrity.profile->prepare_fn(rq);
771 #endif
772 }
773 EXPORT_SYMBOL(blk_mq_start_request);
774 
__blk_mq_requeue_request(struct request * rq)775 static void __blk_mq_requeue_request(struct request *rq)
776 {
777 	struct request_queue *q = rq->q;
778 
779 	blk_mq_put_driver_tag(rq);
780 
781 	trace_block_rq_requeue(rq);
782 	rq_qos_requeue(q, rq);
783 
784 	if (blk_mq_request_started(rq)) {
785 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
786 		rq->rq_flags &= ~RQF_TIMED_OUT;
787 	}
788 }
789 
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)790 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
791 {
792 	__blk_mq_requeue_request(rq);
793 
794 	/* this request will be re-inserted to io scheduler queue */
795 	blk_mq_sched_requeue_request(rq);
796 
797 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
798 }
799 EXPORT_SYMBOL(blk_mq_requeue_request);
800 
blk_mq_requeue_work(struct work_struct * work)801 static void blk_mq_requeue_work(struct work_struct *work)
802 {
803 	struct request_queue *q =
804 		container_of(work, struct request_queue, requeue_work.work);
805 	LIST_HEAD(rq_list);
806 	struct request *rq, *next;
807 
808 	spin_lock_irq(&q->requeue_lock);
809 	list_splice_init(&q->requeue_list, &rq_list);
810 	spin_unlock_irq(&q->requeue_lock);
811 
812 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
813 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
814 			continue;
815 
816 		rq->rq_flags &= ~RQF_SOFTBARRIER;
817 		list_del_init(&rq->queuelist);
818 		/*
819 		 * If RQF_DONTPREP, rq has contained some driver specific
820 		 * data, so insert it to hctx dispatch list to avoid any
821 		 * merge.
822 		 */
823 		if (rq->rq_flags & RQF_DONTPREP)
824 			blk_mq_request_bypass_insert(rq, false, false);
825 		else
826 			blk_mq_sched_insert_request(rq, true, false, false);
827 	}
828 
829 	while (!list_empty(&rq_list)) {
830 		rq = list_entry(rq_list.next, struct request, queuelist);
831 		list_del_init(&rq->queuelist);
832 		blk_mq_sched_insert_request(rq, false, false, false);
833 	}
834 
835 	blk_mq_run_hw_queues(q, false);
836 }
837 
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)838 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
839 				bool kick_requeue_list)
840 {
841 	struct request_queue *q = rq->q;
842 	unsigned long flags;
843 
844 	/*
845 	 * We abuse this flag that is otherwise used by the I/O scheduler to
846 	 * request head insertion from the workqueue.
847 	 */
848 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
849 
850 	spin_lock_irqsave(&q->requeue_lock, flags);
851 	if (at_head) {
852 		rq->rq_flags |= RQF_SOFTBARRIER;
853 		list_add(&rq->queuelist, &q->requeue_list);
854 	} else {
855 		list_add_tail(&rq->queuelist, &q->requeue_list);
856 	}
857 	spin_unlock_irqrestore(&q->requeue_lock, flags);
858 
859 	if (kick_requeue_list)
860 		blk_mq_kick_requeue_list(q);
861 }
862 
blk_mq_kick_requeue_list(struct request_queue * q)863 void blk_mq_kick_requeue_list(struct request_queue *q)
864 {
865 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
866 }
867 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
868 
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)869 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
870 				    unsigned long msecs)
871 {
872 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
873 				    msecs_to_jiffies(msecs));
874 }
875 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
876 
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)877 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
878 {
879 	if (tag < tags->nr_tags) {
880 		prefetch(tags->rqs[tag]);
881 		return tags->rqs[tag];
882 	}
883 
884 	return NULL;
885 }
886 EXPORT_SYMBOL(blk_mq_tag_to_rq);
887 
blk_mq_rq_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)888 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
889 			       void *priv, bool reserved)
890 {
891 	/*
892 	 * If we find a request that isn't idle and the queue matches,
893 	 * we know the queue is busy. Return false to stop the iteration.
894 	 */
895 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
896 		bool *busy = priv;
897 
898 		*busy = true;
899 		return false;
900 	}
901 
902 	return true;
903 }
904 
blk_mq_queue_inflight(struct request_queue * q)905 bool blk_mq_queue_inflight(struct request_queue *q)
906 {
907 	bool busy = false;
908 
909 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
910 	return busy;
911 }
912 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
913 
blk_mq_rq_timed_out(struct request * req,bool reserved)914 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
915 {
916 	req->rq_flags |= RQF_TIMED_OUT;
917 	if (req->q->mq_ops->timeout) {
918 		enum blk_eh_timer_return ret;
919 
920 		ret = req->q->mq_ops->timeout(req, reserved);
921 		if (ret == BLK_EH_DONE)
922 			return;
923 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
924 	}
925 
926 	blk_add_timer(req);
927 }
928 
blk_mq_req_expired(struct request * rq,unsigned long * next)929 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
930 {
931 	unsigned long deadline;
932 
933 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
934 		return false;
935 	if (rq->rq_flags & RQF_TIMED_OUT)
936 		return false;
937 
938 	deadline = READ_ONCE(rq->deadline);
939 	if (time_after_eq(jiffies, deadline))
940 		return true;
941 
942 	if (*next == 0)
943 		*next = deadline;
944 	else if (time_after(*next, deadline))
945 		*next = deadline;
946 	return false;
947 }
948 
blk_mq_put_rq_ref(struct request * rq)949 void blk_mq_put_rq_ref(struct request *rq)
950 {
951 	if (is_flush_rq(rq))
952 		rq->end_io(rq, 0);
953 	else if (refcount_dec_and_test(&rq->ref))
954 		__blk_mq_free_request(rq);
955 }
956 
blk_mq_check_expired(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)957 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
958 		struct request *rq, void *priv, bool reserved)
959 {
960 	unsigned long *next = priv;
961 
962 	/*
963 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
964 	 * be reallocated underneath the timeout handler's processing, then
965 	 * the expire check is reliable. If the request is not expired, then
966 	 * it was completed and reallocated as a new request after returning
967 	 * from blk_mq_check_expired().
968 	 */
969 	if (blk_mq_req_expired(rq, next))
970 		blk_mq_rq_timed_out(rq, reserved);
971 	return true;
972 }
973 
blk_mq_timeout_work(struct work_struct * work)974 static void blk_mq_timeout_work(struct work_struct *work)
975 {
976 	struct request_queue *q =
977 		container_of(work, struct request_queue, timeout_work);
978 	unsigned long next = 0;
979 	struct blk_mq_hw_ctx *hctx;
980 	int i;
981 
982 	/* A deadlock might occur if a request is stuck requiring a
983 	 * timeout at the same time a queue freeze is waiting
984 	 * completion, since the timeout code would not be able to
985 	 * acquire the queue reference here.
986 	 *
987 	 * That's why we don't use blk_queue_enter here; instead, we use
988 	 * percpu_ref_tryget directly, because we need to be able to
989 	 * obtain a reference even in the short window between the queue
990 	 * starting to freeze, by dropping the first reference in
991 	 * blk_freeze_queue_start, and the moment the last request is
992 	 * consumed, marked by the instant q_usage_counter reaches
993 	 * zero.
994 	 */
995 	if (!percpu_ref_tryget(&q->q_usage_counter))
996 		return;
997 
998 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
999 
1000 	if (next != 0) {
1001 		mod_timer(&q->timeout, next);
1002 	} else {
1003 		/*
1004 		 * Request timeouts are handled as a forward rolling timer. If
1005 		 * we end up here it means that no requests are pending and
1006 		 * also that no request has been pending for a while. Mark
1007 		 * each hctx as idle.
1008 		 */
1009 		queue_for_each_hw_ctx(q, hctx, i) {
1010 			/* the hctx may be unmapped, so check it here */
1011 			if (blk_mq_hw_queue_mapped(hctx))
1012 				blk_mq_tag_idle(hctx);
1013 		}
1014 	}
1015 	blk_queue_exit(q);
1016 }
1017 
1018 struct flush_busy_ctx_data {
1019 	struct blk_mq_hw_ctx *hctx;
1020 	struct list_head *list;
1021 };
1022 
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1023 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1024 {
1025 	struct flush_busy_ctx_data *flush_data = data;
1026 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1027 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1028 	enum hctx_type type = hctx->type;
1029 
1030 	spin_lock(&ctx->lock);
1031 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1032 	sbitmap_clear_bit(sb, bitnr);
1033 	spin_unlock(&ctx->lock);
1034 	return true;
1035 }
1036 
1037 /*
1038  * Process software queues that have been marked busy, splicing them
1039  * to the for-dispatch
1040  */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1041 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1042 {
1043 	struct flush_busy_ctx_data data = {
1044 		.hctx = hctx,
1045 		.list = list,
1046 	};
1047 
1048 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1049 }
1050 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1051 
1052 struct dispatch_rq_data {
1053 	struct blk_mq_hw_ctx *hctx;
1054 	struct request *rq;
1055 };
1056 
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1057 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1058 		void *data)
1059 {
1060 	struct dispatch_rq_data *dispatch_data = data;
1061 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1062 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1063 	enum hctx_type type = hctx->type;
1064 
1065 	spin_lock(&ctx->lock);
1066 	if (!list_empty(&ctx->rq_lists[type])) {
1067 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1068 		list_del_init(&dispatch_data->rq->queuelist);
1069 		if (list_empty(&ctx->rq_lists[type]))
1070 			sbitmap_clear_bit(sb, bitnr);
1071 	}
1072 	spin_unlock(&ctx->lock);
1073 
1074 	return !dispatch_data->rq;
1075 }
1076 
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1077 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1078 					struct blk_mq_ctx *start)
1079 {
1080 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1081 	struct dispatch_rq_data data = {
1082 		.hctx = hctx,
1083 		.rq   = NULL,
1084 	};
1085 
1086 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1087 			       dispatch_rq_from_ctx, &data);
1088 
1089 	return data.rq;
1090 }
1091 
queued_to_index(unsigned int queued)1092 static inline unsigned int queued_to_index(unsigned int queued)
1093 {
1094 	if (!queued)
1095 		return 0;
1096 
1097 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1098 }
1099 
__blk_mq_get_driver_tag(struct request * rq)1100 static bool __blk_mq_get_driver_tag(struct request *rq)
1101 {
1102 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1103 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1104 	int tag;
1105 
1106 	blk_mq_tag_busy(rq->mq_hctx);
1107 
1108 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1109 		bt = rq->mq_hctx->tags->breserved_tags;
1110 		tag_offset = 0;
1111 	} else {
1112 		if (!hctx_may_queue(rq->mq_hctx, bt))
1113 			return false;
1114 	}
1115 
1116 	tag = __sbitmap_queue_get(bt);
1117 	if (tag == BLK_MQ_NO_TAG)
1118 		return false;
1119 
1120 	rq->tag = tag + tag_offset;
1121 	return true;
1122 }
1123 
blk_mq_get_driver_tag(struct request * rq)1124 static bool blk_mq_get_driver_tag(struct request *rq)
1125 {
1126 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1127 
1128 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1129 		return false;
1130 
1131 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1132 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1133 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1134 		__blk_mq_inc_active_requests(hctx);
1135 	}
1136 	hctx->tags->rqs[rq->tag] = rq;
1137 	return true;
1138 }
1139 
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1140 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1141 				int flags, void *key)
1142 {
1143 	struct blk_mq_hw_ctx *hctx;
1144 
1145 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1146 
1147 	spin_lock(&hctx->dispatch_wait_lock);
1148 	if (!list_empty(&wait->entry)) {
1149 		struct sbitmap_queue *sbq;
1150 
1151 		list_del_init(&wait->entry);
1152 		sbq = hctx->tags->bitmap_tags;
1153 		atomic_dec(&sbq->ws_active);
1154 	}
1155 	spin_unlock(&hctx->dispatch_wait_lock);
1156 
1157 	blk_mq_run_hw_queue(hctx, true);
1158 	return 1;
1159 }
1160 
1161 /*
1162  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1163  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1164  * restart. For both cases, take care to check the condition again after
1165  * marking us as waiting.
1166  */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1167 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1168 				 struct request *rq)
1169 {
1170 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1171 	struct wait_queue_head *wq;
1172 	wait_queue_entry_t *wait;
1173 	bool ret;
1174 
1175 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1176 		blk_mq_sched_mark_restart_hctx(hctx);
1177 
1178 		/*
1179 		 * It's possible that a tag was freed in the window between the
1180 		 * allocation failure and adding the hardware queue to the wait
1181 		 * queue.
1182 		 *
1183 		 * Don't clear RESTART here, someone else could have set it.
1184 		 * At most this will cost an extra queue run.
1185 		 */
1186 		return blk_mq_get_driver_tag(rq);
1187 	}
1188 
1189 	wait = &hctx->dispatch_wait;
1190 	if (!list_empty_careful(&wait->entry))
1191 		return false;
1192 
1193 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1194 
1195 	spin_lock_irq(&wq->lock);
1196 	spin_lock(&hctx->dispatch_wait_lock);
1197 	if (!list_empty(&wait->entry)) {
1198 		spin_unlock(&hctx->dispatch_wait_lock);
1199 		spin_unlock_irq(&wq->lock);
1200 		return false;
1201 	}
1202 
1203 	atomic_inc(&sbq->ws_active);
1204 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1205 	__add_wait_queue(wq, wait);
1206 
1207 	/*
1208 	 * It's possible that a tag was freed in the window between the
1209 	 * allocation failure and adding the hardware queue to the wait
1210 	 * queue.
1211 	 */
1212 	ret = blk_mq_get_driver_tag(rq);
1213 	if (!ret) {
1214 		spin_unlock(&hctx->dispatch_wait_lock);
1215 		spin_unlock_irq(&wq->lock);
1216 		return false;
1217 	}
1218 
1219 	/*
1220 	 * We got a tag, remove ourselves from the wait queue to ensure
1221 	 * someone else gets the wakeup.
1222 	 */
1223 	list_del_init(&wait->entry);
1224 	atomic_dec(&sbq->ws_active);
1225 	spin_unlock(&hctx->dispatch_wait_lock);
1226 	spin_unlock_irq(&wq->lock);
1227 
1228 	return true;
1229 }
1230 
1231 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1232 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1233 /*
1234  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1235  * - EWMA is one simple way to compute running average value
1236  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1237  * - take 4 as factor for avoiding to get too small(0) result, and this
1238  *   factor doesn't matter because EWMA decreases exponentially
1239  */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1240 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1241 {
1242 	unsigned int ewma;
1243 
1244 	ewma = hctx->dispatch_busy;
1245 
1246 	if (!ewma && !busy)
1247 		return;
1248 
1249 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1250 	if (busy)
1251 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1252 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1253 
1254 	hctx->dispatch_busy = ewma;
1255 }
1256 
1257 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1258 
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1259 static void blk_mq_handle_dev_resource(struct request *rq,
1260 				       struct list_head *list)
1261 {
1262 	struct request *next =
1263 		list_first_entry_or_null(list, struct request, queuelist);
1264 
1265 	/*
1266 	 * If an I/O scheduler has been configured and we got a driver tag for
1267 	 * the next request already, free it.
1268 	 */
1269 	if (next)
1270 		blk_mq_put_driver_tag(next);
1271 
1272 	list_add(&rq->queuelist, list);
1273 	__blk_mq_requeue_request(rq);
1274 }
1275 
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1276 static void blk_mq_handle_zone_resource(struct request *rq,
1277 					struct list_head *zone_list)
1278 {
1279 	/*
1280 	 * If we end up here it is because we cannot dispatch a request to a
1281 	 * specific zone due to LLD level zone-write locking or other zone
1282 	 * related resource not being available. In this case, set the request
1283 	 * aside in zone_list for retrying it later.
1284 	 */
1285 	list_add(&rq->queuelist, zone_list);
1286 	__blk_mq_requeue_request(rq);
1287 }
1288 
1289 enum prep_dispatch {
1290 	PREP_DISPATCH_OK,
1291 	PREP_DISPATCH_NO_TAG,
1292 	PREP_DISPATCH_NO_BUDGET,
1293 };
1294 
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1295 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1296 						  bool need_budget)
1297 {
1298 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1299 
1300 	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1301 		blk_mq_put_driver_tag(rq);
1302 		return PREP_DISPATCH_NO_BUDGET;
1303 	}
1304 
1305 	if (!blk_mq_get_driver_tag(rq)) {
1306 		/*
1307 		 * The initial allocation attempt failed, so we need to
1308 		 * rerun the hardware queue when a tag is freed. The
1309 		 * waitqueue takes care of that. If the queue is run
1310 		 * before we add this entry back on the dispatch list,
1311 		 * we'll re-run it below.
1312 		 */
1313 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1314 			/*
1315 			 * All budgets not got from this function will be put
1316 			 * together during handling partial dispatch
1317 			 */
1318 			if (need_budget)
1319 				blk_mq_put_dispatch_budget(rq->q);
1320 			return PREP_DISPATCH_NO_TAG;
1321 		}
1322 	}
1323 
1324 	return PREP_DISPATCH_OK;
1325 }
1326 
1327 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,unsigned int nr_budgets)1328 static void blk_mq_release_budgets(struct request_queue *q,
1329 		unsigned int nr_budgets)
1330 {
1331 	int i;
1332 
1333 	for (i = 0; i < nr_budgets; i++)
1334 		blk_mq_put_dispatch_budget(q);
1335 }
1336 
1337 /*
1338  * Returns true if we did some work AND can potentially do more.
1339  */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)1340 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1341 			     unsigned int nr_budgets)
1342 {
1343 	enum prep_dispatch prep;
1344 	struct request_queue *q = hctx->queue;
1345 	struct request *rq, *nxt;
1346 	int errors, queued;
1347 	blk_status_t ret = BLK_STS_OK;
1348 	LIST_HEAD(zone_list);
1349 	bool needs_resource = false;
1350 
1351 	if (list_empty(list))
1352 		return false;
1353 
1354 	/*
1355 	 * Now process all the entries, sending them to the driver.
1356 	 */
1357 	errors = queued = 0;
1358 	do {
1359 		struct blk_mq_queue_data bd;
1360 
1361 		rq = list_first_entry(list, struct request, queuelist);
1362 
1363 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1364 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1365 		if (prep != PREP_DISPATCH_OK)
1366 			break;
1367 
1368 		list_del_init(&rq->queuelist);
1369 
1370 		bd.rq = rq;
1371 
1372 		/*
1373 		 * Flag last if we have no more requests, or if we have more
1374 		 * but can't assign a driver tag to it.
1375 		 */
1376 		if (list_empty(list))
1377 			bd.last = true;
1378 		else {
1379 			nxt = list_first_entry(list, struct request, queuelist);
1380 			bd.last = !blk_mq_get_driver_tag(nxt);
1381 		}
1382 
1383 		/*
1384 		 * once the request is queued to lld, no need to cover the
1385 		 * budget any more
1386 		 */
1387 		if (nr_budgets)
1388 			nr_budgets--;
1389 		ret = q->mq_ops->queue_rq(hctx, &bd);
1390 		switch (ret) {
1391 		case BLK_STS_OK:
1392 			queued++;
1393 			break;
1394 		case BLK_STS_RESOURCE:
1395 			needs_resource = true;
1396 			fallthrough;
1397 		case BLK_STS_DEV_RESOURCE:
1398 			blk_mq_handle_dev_resource(rq, list);
1399 			goto out;
1400 		case BLK_STS_ZONE_RESOURCE:
1401 			/*
1402 			 * Move the request to zone_list and keep going through
1403 			 * the dispatch list to find more requests the drive can
1404 			 * accept.
1405 			 */
1406 			blk_mq_handle_zone_resource(rq, &zone_list);
1407 			needs_resource = true;
1408 			break;
1409 		default:
1410 			errors++;
1411 			blk_mq_end_request(rq, BLK_STS_IOERR);
1412 		}
1413 	} while (!list_empty(list));
1414 out:
1415 	if (!list_empty(&zone_list))
1416 		list_splice_tail_init(&zone_list, list);
1417 
1418 	hctx->dispatched[queued_to_index(queued)]++;
1419 
1420 	/* If we didn't flush the entire list, we could have told the driver
1421 	 * there was more coming, but that turned out to be a lie.
1422 	 */
1423 	if ((!list_empty(list) || errors || needs_resource ||
1424 	     ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
1425 		q->mq_ops->commit_rqs(hctx);
1426 	/*
1427 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1428 	 * that is where we will continue on next queue run.
1429 	 */
1430 	if (!list_empty(list)) {
1431 		bool needs_restart;
1432 		/* For non-shared tags, the RESTART check will suffice */
1433 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1434 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1435 
1436 		blk_mq_release_budgets(q, nr_budgets);
1437 
1438 		spin_lock(&hctx->lock);
1439 		list_splice_tail_init(list, &hctx->dispatch);
1440 		spin_unlock(&hctx->lock);
1441 
1442 		/*
1443 		 * Order adding requests to hctx->dispatch and checking
1444 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1445 		 * in blk_mq_sched_restart(). Avoid restart code path to
1446 		 * miss the new added requests to hctx->dispatch, meantime
1447 		 * SCHED_RESTART is observed here.
1448 		 */
1449 		smp_mb();
1450 
1451 		/*
1452 		 * If SCHED_RESTART was set by the caller of this function and
1453 		 * it is no longer set that means that it was cleared by another
1454 		 * thread and hence that a queue rerun is needed.
1455 		 *
1456 		 * If 'no_tag' is set, that means that we failed getting
1457 		 * a driver tag with an I/O scheduler attached. If our dispatch
1458 		 * waitqueue is no longer active, ensure that we run the queue
1459 		 * AFTER adding our entries back to the list.
1460 		 *
1461 		 * If no I/O scheduler has been configured it is possible that
1462 		 * the hardware queue got stopped and restarted before requests
1463 		 * were pushed back onto the dispatch list. Rerun the queue to
1464 		 * avoid starvation. Notes:
1465 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1466 		 *   been stopped before rerunning a queue.
1467 		 * - Some but not all block drivers stop a queue before
1468 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1469 		 *   and dm-rq.
1470 		 *
1471 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1472 		 * bit is set, run queue after a delay to avoid IO stalls
1473 		 * that could otherwise occur if the queue is idle.  We'll do
1474 		 * similar if we couldn't get budget or couldn't lock a zone
1475 		 * and SCHED_RESTART is set.
1476 		 */
1477 		needs_restart = blk_mq_sched_needs_restart(hctx);
1478 		if (prep == PREP_DISPATCH_NO_BUDGET)
1479 			needs_resource = true;
1480 		if (!needs_restart ||
1481 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1482 			blk_mq_run_hw_queue(hctx, true);
1483 		else if (needs_restart && needs_resource)
1484 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1485 
1486 		blk_mq_update_dispatch_busy(hctx, true);
1487 		return false;
1488 	} else
1489 		blk_mq_update_dispatch_busy(hctx, false);
1490 
1491 	return (queued + errors) != 0;
1492 }
1493 
1494 /**
1495  * __blk_mq_run_hw_queue - Run a hardware queue.
1496  * @hctx: Pointer to the hardware queue to run.
1497  *
1498  * Send pending requests to the hardware.
1499  */
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)1500 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1501 {
1502 	int srcu_idx;
1503 
1504 	/*
1505 	 * We should be running this queue from one of the CPUs that
1506 	 * are mapped to it.
1507 	 *
1508 	 * There are at least two related races now between setting
1509 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1510 	 * __blk_mq_run_hw_queue():
1511 	 *
1512 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1513 	 *   but later it becomes online, then this warning is harmless
1514 	 *   at all
1515 	 *
1516 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1517 	 *   but later it becomes offline, then the warning can't be
1518 	 *   triggered, and we depend on blk-mq timeout handler to
1519 	 *   handle dispatched requests to this hctx
1520 	 */
1521 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1522 		cpu_online(hctx->next_cpu)) {
1523 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1524 			raw_smp_processor_id(),
1525 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1526 		dump_stack();
1527 	}
1528 
1529 	/*
1530 	 * We can't run the queue inline with ints disabled. Ensure that
1531 	 * we catch bad users of this early.
1532 	 */
1533 	WARN_ON_ONCE(in_interrupt());
1534 
1535 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1536 
1537 	hctx_lock(hctx, &srcu_idx);
1538 	blk_mq_sched_dispatch_requests(hctx);
1539 	hctx_unlock(hctx, srcu_idx);
1540 }
1541 
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)1542 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1543 {
1544 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1545 
1546 	if (cpu >= nr_cpu_ids)
1547 		cpu = cpumask_first(hctx->cpumask);
1548 	return cpu;
1549 }
1550 
1551 /*
1552  * It'd be great if the workqueue API had a way to pass
1553  * in a mask and had some smarts for more clever placement.
1554  * For now we just round-robin here, switching for every
1555  * BLK_MQ_CPU_WORK_BATCH queued items.
1556  */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)1557 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1558 {
1559 	bool tried = false;
1560 	int next_cpu = hctx->next_cpu;
1561 
1562 	if (hctx->queue->nr_hw_queues == 1)
1563 		return WORK_CPU_UNBOUND;
1564 
1565 	if (--hctx->next_cpu_batch <= 0) {
1566 select_cpu:
1567 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1568 				cpu_online_mask);
1569 		if (next_cpu >= nr_cpu_ids)
1570 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1571 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1572 	}
1573 
1574 	/*
1575 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1576 	 * and it should only happen in the path of handling CPU DEAD.
1577 	 */
1578 	if (!cpu_online(next_cpu)) {
1579 		if (!tried) {
1580 			tried = true;
1581 			goto select_cpu;
1582 		}
1583 
1584 		/*
1585 		 * Make sure to re-select CPU next time once after CPUs
1586 		 * in hctx->cpumask become online again.
1587 		 */
1588 		hctx->next_cpu = next_cpu;
1589 		hctx->next_cpu_batch = 1;
1590 		return WORK_CPU_UNBOUND;
1591 	}
1592 
1593 	hctx->next_cpu = next_cpu;
1594 	return next_cpu;
1595 }
1596 
1597 /**
1598  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1599  * @hctx: Pointer to the hardware queue to run.
1600  * @async: If we want to run the queue asynchronously.
1601  * @msecs: Microseconds of delay to wait before running the queue.
1602  *
1603  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1604  * with a delay of @msecs.
1605  */
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)1606 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1607 					unsigned long msecs)
1608 {
1609 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1610 		return;
1611 
1612 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1613 		int cpu = get_cpu();
1614 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1615 			__blk_mq_run_hw_queue(hctx);
1616 			put_cpu();
1617 			return;
1618 		}
1619 
1620 		put_cpu();
1621 	}
1622 
1623 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1624 				    msecs_to_jiffies(msecs));
1625 }
1626 
1627 /**
1628  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1629  * @hctx: Pointer to the hardware queue to run.
1630  * @msecs: Microseconds of delay to wait before running the queue.
1631  *
1632  * Run a hardware queue asynchronously with a delay of @msecs.
1633  */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)1634 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1635 {
1636 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1637 }
1638 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1639 
1640 /**
1641  * blk_mq_run_hw_queue - Start to run a hardware queue.
1642  * @hctx: Pointer to the hardware queue to run.
1643  * @async: If we want to run the queue asynchronously.
1644  *
1645  * Check if the request queue is not in a quiesced state and if there are
1646  * pending requests to be sent. If this is true, run the queue to send requests
1647  * to hardware.
1648  */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1649 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1650 {
1651 	int srcu_idx;
1652 	bool need_run;
1653 
1654 	/*
1655 	 * When queue is quiesced, we may be switching io scheduler, or
1656 	 * updating nr_hw_queues, or other things, and we can't run queue
1657 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1658 	 *
1659 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1660 	 * quiesced.
1661 	 */
1662 	hctx_lock(hctx, &srcu_idx);
1663 	need_run = !blk_queue_quiesced(hctx->queue) &&
1664 		blk_mq_hctx_has_pending(hctx);
1665 	hctx_unlock(hctx, srcu_idx);
1666 
1667 	if (need_run)
1668 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1669 }
1670 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1671 
1672 /**
1673  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1674  * @q: Pointer to the request queue to run.
1675  * @async: If we want to run the queue asynchronously.
1676  */
blk_mq_run_hw_queues(struct request_queue * q,bool async)1677 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1678 {
1679 	struct blk_mq_hw_ctx *hctx;
1680 	int i;
1681 
1682 	queue_for_each_hw_ctx(q, hctx, i) {
1683 		if (blk_mq_hctx_stopped(hctx))
1684 			continue;
1685 
1686 		blk_mq_run_hw_queue(hctx, async);
1687 	}
1688 }
1689 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1690 
1691 /**
1692  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1693  * @q: Pointer to the request queue to run.
1694  * @msecs: Microseconds of delay to wait before running the queues.
1695  */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)1696 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1697 {
1698 	struct blk_mq_hw_ctx *hctx;
1699 	int i;
1700 
1701 	queue_for_each_hw_ctx(q, hctx, i) {
1702 		if (blk_mq_hctx_stopped(hctx))
1703 			continue;
1704 
1705 		blk_mq_delay_run_hw_queue(hctx, msecs);
1706 	}
1707 }
1708 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1709 
1710 /**
1711  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1712  * @q: request queue.
1713  *
1714  * The caller is responsible for serializing this function against
1715  * blk_mq_{start,stop}_hw_queue().
1716  */
blk_mq_queue_stopped(struct request_queue * q)1717 bool blk_mq_queue_stopped(struct request_queue *q)
1718 {
1719 	struct blk_mq_hw_ctx *hctx;
1720 	int i;
1721 
1722 	queue_for_each_hw_ctx(q, hctx, i)
1723 		if (blk_mq_hctx_stopped(hctx))
1724 			return true;
1725 
1726 	return false;
1727 }
1728 EXPORT_SYMBOL(blk_mq_queue_stopped);
1729 
1730 /*
1731  * This function is often used for pausing .queue_rq() by driver when
1732  * there isn't enough resource or some conditions aren't satisfied, and
1733  * BLK_STS_RESOURCE is usually returned.
1734  *
1735  * We do not guarantee that dispatch can be drained or blocked
1736  * after blk_mq_stop_hw_queue() returns. Please use
1737  * blk_mq_quiesce_queue() for that requirement.
1738  */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)1739 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1740 {
1741 	cancel_delayed_work(&hctx->run_work);
1742 
1743 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1744 }
1745 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1746 
1747 /*
1748  * This function is often used for pausing .queue_rq() by driver when
1749  * there isn't enough resource or some conditions aren't satisfied, and
1750  * BLK_STS_RESOURCE is usually returned.
1751  *
1752  * We do not guarantee that dispatch can be drained or blocked
1753  * after blk_mq_stop_hw_queues() returns. Please use
1754  * blk_mq_quiesce_queue() for that requirement.
1755  */
blk_mq_stop_hw_queues(struct request_queue * q)1756 void blk_mq_stop_hw_queues(struct request_queue *q)
1757 {
1758 	struct blk_mq_hw_ctx *hctx;
1759 	int i;
1760 
1761 	queue_for_each_hw_ctx(q, hctx, i)
1762 		blk_mq_stop_hw_queue(hctx);
1763 }
1764 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1765 
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)1766 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1767 {
1768 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1769 
1770 	blk_mq_run_hw_queue(hctx, false);
1771 }
1772 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1773 
blk_mq_start_hw_queues(struct request_queue * q)1774 void blk_mq_start_hw_queues(struct request_queue *q)
1775 {
1776 	struct blk_mq_hw_ctx *hctx;
1777 	int i;
1778 
1779 	queue_for_each_hw_ctx(q, hctx, i)
1780 		blk_mq_start_hw_queue(hctx);
1781 }
1782 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1783 
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1784 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1785 {
1786 	if (!blk_mq_hctx_stopped(hctx))
1787 		return;
1788 
1789 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1790 	blk_mq_run_hw_queue(hctx, async);
1791 }
1792 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1793 
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)1794 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1795 {
1796 	struct blk_mq_hw_ctx *hctx;
1797 	int i;
1798 
1799 	queue_for_each_hw_ctx(q, hctx, i)
1800 		blk_mq_start_stopped_hw_queue(hctx, async);
1801 }
1802 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1803 
blk_mq_run_work_fn(struct work_struct * work)1804 static void blk_mq_run_work_fn(struct work_struct *work)
1805 {
1806 	struct blk_mq_hw_ctx *hctx;
1807 
1808 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1809 
1810 	/*
1811 	 * If we are stopped, don't run the queue.
1812 	 */
1813 	if (blk_mq_hctx_stopped(hctx))
1814 		return;
1815 
1816 	__blk_mq_run_hw_queue(hctx);
1817 }
1818 
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1819 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1820 					    struct request *rq,
1821 					    bool at_head)
1822 {
1823 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1824 	enum hctx_type type = hctx->type;
1825 
1826 	lockdep_assert_held(&ctx->lock);
1827 
1828 	trace_block_rq_insert(rq);
1829 
1830 	if (at_head)
1831 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1832 	else
1833 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1834 }
1835 
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1836 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1837 			     bool at_head)
1838 {
1839 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1840 
1841 	lockdep_assert_held(&ctx->lock);
1842 
1843 	__blk_mq_insert_req_list(hctx, rq, at_head);
1844 	blk_mq_hctx_mark_pending(hctx, ctx);
1845 }
1846 
1847 /**
1848  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1849  * @rq: Pointer to request to be inserted.
1850  * @at_head: true if the request should be inserted at the head of the list.
1851  * @run_queue: If we should run the hardware queue after inserting the request.
1852  *
1853  * Should only be used carefully, when the caller knows we want to
1854  * bypass a potential IO scheduler on the target device.
1855  */
blk_mq_request_bypass_insert(struct request * rq,bool at_head,bool run_queue)1856 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1857 				  bool run_queue)
1858 {
1859 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1860 
1861 	spin_lock(&hctx->lock);
1862 	if (at_head)
1863 		list_add(&rq->queuelist, &hctx->dispatch);
1864 	else
1865 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1866 	spin_unlock(&hctx->lock);
1867 
1868 	if (run_queue)
1869 		blk_mq_run_hw_queue(hctx, false);
1870 }
1871 
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)1872 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1873 			    struct list_head *list)
1874 
1875 {
1876 	struct request *rq;
1877 	enum hctx_type type = hctx->type;
1878 
1879 	/*
1880 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1881 	 * offline now
1882 	 */
1883 	list_for_each_entry(rq, list, queuelist) {
1884 		BUG_ON(rq->mq_ctx != ctx);
1885 		trace_block_rq_insert(rq);
1886 	}
1887 
1888 	spin_lock(&ctx->lock);
1889 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1890 	blk_mq_hctx_mark_pending(hctx, ctx);
1891 	spin_unlock(&ctx->lock);
1892 }
1893 
plug_rq_cmp(void * priv,const struct list_head * a,const struct list_head * b)1894 static int plug_rq_cmp(void *priv, const struct list_head *a,
1895 		       const struct list_head *b)
1896 {
1897 	struct request *rqa = container_of(a, struct request, queuelist);
1898 	struct request *rqb = container_of(b, struct request, queuelist);
1899 
1900 	if (rqa->mq_ctx != rqb->mq_ctx)
1901 		return rqa->mq_ctx > rqb->mq_ctx;
1902 	if (rqa->mq_hctx != rqb->mq_hctx)
1903 		return rqa->mq_hctx > rqb->mq_hctx;
1904 
1905 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1906 }
1907 
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)1908 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1909 {
1910 	LIST_HEAD(list);
1911 
1912 	if (list_empty(&plug->mq_list))
1913 		return;
1914 	list_splice_init(&plug->mq_list, &list);
1915 
1916 	if (plug->rq_count > 2 && plug->multiple_queues)
1917 		list_sort(NULL, &list, plug_rq_cmp);
1918 
1919 	plug->rq_count = 0;
1920 
1921 	do {
1922 		struct list_head rq_list;
1923 		struct request *rq, *head_rq = list_entry_rq(list.next);
1924 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1925 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1926 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1927 		unsigned int depth = 1;
1928 
1929 		list_for_each_continue(pos, &list) {
1930 			rq = list_entry_rq(pos);
1931 			BUG_ON(!rq->q);
1932 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1933 				break;
1934 			depth++;
1935 		}
1936 
1937 		list_cut_before(&rq_list, &list, pos);
1938 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1939 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1940 						from_schedule);
1941 	} while(!list_empty(&list));
1942 }
1943 
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)1944 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1945 		unsigned int nr_segs)
1946 {
1947 	int err;
1948 
1949 	if (bio->bi_opf & REQ_RAHEAD)
1950 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1951 
1952 	rq->__sector = bio->bi_iter.bi_sector;
1953 	rq->write_hint = bio->bi_write_hint;
1954 	blk_rq_bio_prep(rq, bio, nr_segs);
1955 
1956 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1957 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1958 	WARN_ON_ONCE(err);
1959 
1960 	blk_account_io_start(rq);
1961 }
1962 
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool last)1963 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1964 					    struct request *rq,
1965 					    blk_qc_t *cookie, bool last)
1966 {
1967 	struct request_queue *q = rq->q;
1968 	struct blk_mq_queue_data bd = {
1969 		.rq = rq,
1970 		.last = last,
1971 	};
1972 	blk_qc_t new_cookie;
1973 	blk_status_t ret;
1974 
1975 	new_cookie = request_to_qc_t(hctx, rq);
1976 
1977 	/*
1978 	 * For OK queue, we are done. For error, caller may kill it.
1979 	 * Any other error (busy), just add it to our list as we
1980 	 * previously would have done.
1981 	 */
1982 	ret = q->mq_ops->queue_rq(hctx, &bd);
1983 	switch (ret) {
1984 	case BLK_STS_OK:
1985 		blk_mq_update_dispatch_busy(hctx, false);
1986 		*cookie = new_cookie;
1987 		break;
1988 	case BLK_STS_RESOURCE:
1989 	case BLK_STS_DEV_RESOURCE:
1990 		blk_mq_update_dispatch_busy(hctx, true);
1991 		__blk_mq_requeue_request(rq);
1992 		break;
1993 	default:
1994 		blk_mq_update_dispatch_busy(hctx, false);
1995 		*cookie = BLK_QC_T_NONE;
1996 		break;
1997 	}
1998 
1999 	return ret;
2000 }
2001 
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool bypass_insert,bool last)2002 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2003 						struct request *rq,
2004 						blk_qc_t *cookie,
2005 						bool bypass_insert, bool last)
2006 {
2007 	struct request_queue *q = rq->q;
2008 	bool run_queue = true;
2009 
2010 	/*
2011 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2012 	 *
2013 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2014 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2015 	 * and avoid driver to try to dispatch again.
2016 	 */
2017 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2018 		run_queue = false;
2019 		bypass_insert = false;
2020 		goto insert;
2021 	}
2022 
2023 	if (q->elevator && !bypass_insert)
2024 		goto insert;
2025 
2026 	if (!blk_mq_get_dispatch_budget(q))
2027 		goto insert;
2028 
2029 	if (!blk_mq_get_driver_tag(rq)) {
2030 		blk_mq_put_dispatch_budget(q);
2031 		goto insert;
2032 	}
2033 
2034 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2035 insert:
2036 	if (bypass_insert)
2037 		return BLK_STS_RESOURCE;
2038 
2039 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2040 
2041 	return BLK_STS_OK;
2042 }
2043 
2044 /**
2045  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2046  * @hctx: Pointer of the associated hardware queue.
2047  * @rq: Pointer to request to be sent.
2048  * @cookie: Request queue cookie.
2049  *
2050  * If the device has enough resources to accept a new request now, send the
2051  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2052  * we can try send it another time in the future. Requests inserted at this
2053  * queue have higher priority.
2054  */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)2055 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2056 		struct request *rq, blk_qc_t *cookie)
2057 {
2058 	blk_status_t ret;
2059 	int srcu_idx;
2060 
2061 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2062 
2063 	hctx_lock(hctx, &srcu_idx);
2064 
2065 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2066 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2067 		blk_mq_request_bypass_insert(rq, false, true);
2068 	else if (ret != BLK_STS_OK)
2069 		blk_mq_end_request(rq, ret);
2070 
2071 	hctx_unlock(hctx, srcu_idx);
2072 }
2073 
blk_mq_request_issue_directly(struct request * rq,bool last)2074 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2075 {
2076 	blk_status_t ret;
2077 	int srcu_idx;
2078 	blk_qc_t unused_cookie;
2079 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2080 
2081 	hctx_lock(hctx, &srcu_idx);
2082 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2083 	hctx_unlock(hctx, srcu_idx);
2084 
2085 	return ret;
2086 }
2087 
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2088 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2089 		struct list_head *list)
2090 {
2091 	int queued = 0;
2092 	int errors = 0;
2093 
2094 	while (!list_empty(list)) {
2095 		blk_status_t ret;
2096 		struct request *rq = list_first_entry(list, struct request,
2097 				queuelist);
2098 
2099 		list_del_init(&rq->queuelist);
2100 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2101 		if (ret != BLK_STS_OK) {
2102 			errors++;
2103 			if (ret == BLK_STS_RESOURCE ||
2104 					ret == BLK_STS_DEV_RESOURCE) {
2105 				blk_mq_request_bypass_insert(rq, false,
2106 							list_empty(list));
2107 				break;
2108 			}
2109 			blk_mq_end_request(rq, ret);
2110 		} else
2111 			queued++;
2112 	}
2113 
2114 	/*
2115 	 * If we didn't flush the entire list, we could have told
2116 	 * the driver there was more coming, but that turned out to
2117 	 * be a lie.
2118 	 */
2119 	if ((!list_empty(list) || errors) &&
2120 	     hctx->queue->mq_ops->commit_rqs && queued)
2121 		hctx->queue->mq_ops->commit_rqs(hctx);
2122 }
2123 
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)2124 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2125 {
2126 	list_add_tail(&rq->queuelist, &plug->mq_list);
2127 	plug->rq_count++;
2128 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2129 		struct request *tmp;
2130 
2131 		tmp = list_first_entry(&plug->mq_list, struct request,
2132 						queuelist);
2133 		if (tmp->q != rq->q)
2134 			plug->multiple_queues = true;
2135 	}
2136 }
2137 
2138 /*
2139  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2140  * queues. This is important for md arrays to benefit from merging
2141  * requests.
2142  */
blk_plug_max_rq_count(struct blk_plug * plug)2143 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2144 {
2145 	if (plug->multiple_queues)
2146 		return BLK_MAX_REQUEST_COUNT * 2;
2147 	return BLK_MAX_REQUEST_COUNT;
2148 }
2149 
2150 /**
2151  * blk_mq_submit_bio - Create and send a request to block device.
2152  * @bio: Bio pointer.
2153  *
2154  * Builds up a request structure from @q and @bio and send to the device. The
2155  * request may not be queued directly to hardware if:
2156  * * This request can be merged with another one
2157  * * We want to place request at plug queue for possible future merging
2158  * * There is an IO scheduler active at this queue
2159  *
2160  * It will not queue the request if there is an error with the bio, or at the
2161  * request creation.
2162  *
2163  * Returns: Request queue cookie.
2164  */
blk_mq_submit_bio(struct bio * bio)2165 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2166 {
2167 	struct request_queue *q = bio->bi_disk->queue;
2168 	const int is_sync = op_is_sync(bio->bi_opf);
2169 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2170 	struct blk_mq_alloc_data data = {
2171 		.q		= q,
2172 	};
2173 	struct request *rq;
2174 	struct blk_plug *plug;
2175 	struct request *same_queue_rq = NULL;
2176 	unsigned int nr_segs;
2177 	blk_qc_t cookie;
2178 	blk_status_t ret;
2179 
2180 	blk_queue_bounce(q, &bio);
2181 	__blk_queue_split(&bio, &nr_segs);
2182 
2183 	if (!bio_integrity_prep(bio))
2184 		goto queue_exit;
2185 
2186 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2187 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2188 		goto queue_exit;
2189 
2190 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2191 		goto queue_exit;
2192 
2193 	rq_qos_throttle(q, bio);
2194 
2195 	data.cmd_flags = bio->bi_opf;
2196 	rq = __blk_mq_alloc_request(&data);
2197 	if (unlikely(!rq)) {
2198 		rq_qos_cleanup(q, bio);
2199 		if (bio->bi_opf & REQ_NOWAIT)
2200 			bio_wouldblock_error(bio);
2201 		goto queue_exit;
2202 	}
2203 
2204 	trace_block_getrq(q, bio, bio->bi_opf);
2205 
2206 	rq_qos_track(q, rq, bio);
2207 
2208 	cookie = request_to_qc_t(data.hctx, rq);
2209 
2210 	blk_mq_bio_to_request(rq, bio, nr_segs);
2211 
2212 	ret = blk_crypto_rq_get_keyslot(rq);
2213 	if (ret != BLK_STS_OK) {
2214 		bio->bi_status = ret;
2215 		bio_endio(bio);
2216 		blk_mq_free_request(rq);
2217 		return BLK_QC_T_NONE;
2218 	}
2219 
2220 	plug = blk_mq_plug(q, bio);
2221 	if (unlikely(is_flush_fua)) {
2222 		/* Bypass scheduler for flush requests */
2223 		blk_insert_flush(rq);
2224 		blk_mq_run_hw_queue(data.hctx, true);
2225 	} else if (plug && (q->nr_hw_queues == 1 ||
2226 		   blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2227 		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2228 		/*
2229 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2230 		 * we know the driver uses bd->last in a smart fashion.
2231 		 *
2232 		 * Use normal plugging if this disk is slow HDD, as sequential
2233 		 * IO may benefit a lot from plug merging.
2234 		 */
2235 		unsigned int request_count = plug->rq_count;
2236 		struct request *last = NULL;
2237 
2238 		if (!request_count)
2239 			trace_block_plug(q);
2240 		else
2241 			last = list_entry_rq(plug->mq_list.prev);
2242 
2243 		if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2244 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2245 			blk_flush_plug_list(plug, false);
2246 			trace_block_plug(q);
2247 		}
2248 
2249 		blk_add_rq_to_plug(plug, rq);
2250 	} else if (q->elevator) {
2251 		/* Insert the request at the IO scheduler queue */
2252 		blk_mq_sched_insert_request(rq, false, true, true);
2253 	} else if (plug && !blk_queue_nomerges(q)) {
2254 		/*
2255 		 * We do limited plugging. If the bio can be merged, do that.
2256 		 * Otherwise the existing request in the plug list will be
2257 		 * issued. So the plug list will have one request at most
2258 		 * The plug list might get flushed before this. If that happens,
2259 		 * the plug list is empty, and same_queue_rq is invalid.
2260 		 */
2261 		if (list_empty(&plug->mq_list))
2262 			same_queue_rq = NULL;
2263 		if (same_queue_rq) {
2264 			list_del_init(&same_queue_rq->queuelist);
2265 			plug->rq_count--;
2266 		}
2267 		blk_add_rq_to_plug(plug, rq);
2268 		trace_block_plug(q);
2269 
2270 		if (same_queue_rq) {
2271 			data.hctx = same_queue_rq->mq_hctx;
2272 			trace_block_unplug(q, 1, true);
2273 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2274 					&cookie);
2275 		}
2276 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2277 			!data.hctx->dispatch_busy) {
2278 		/*
2279 		 * There is no scheduler and we can try to send directly
2280 		 * to the hardware.
2281 		 */
2282 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2283 	} else {
2284 		/* Default case. */
2285 		blk_mq_sched_insert_request(rq, false, true, true);
2286 	}
2287 
2288 	return cookie;
2289 queue_exit:
2290 	blk_queue_exit(q);
2291 	return BLK_QC_T_NONE;
2292 }
2293 
order_to_size(unsigned int order)2294 static size_t order_to_size(unsigned int order)
2295 {
2296 	return (size_t)PAGE_SIZE << order;
2297 }
2298 
2299 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2300 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2301 		struct blk_mq_tags *tags, unsigned int hctx_idx)
2302 {
2303 	struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2304 	struct page *page;
2305 	unsigned long flags;
2306 
2307 	list_for_each_entry(page, &tags->page_list, lru) {
2308 		unsigned long start = (unsigned long)page_address(page);
2309 		unsigned long end = start + order_to_size(page->private);
2310 		int i;
2311 
2312 		for (i = 0; i < set->queue_depth; i++) {
2313 			struct request *rq = drv_tags->rqs[i];
2314 			unsigned long rq_addr = (unsigned long)rq;
2315 
2316 			if (rq_addr >= start && rq_addr < end) {
2317 				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2318 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
2319 			}
2320 		}
2321 	}
2322 
2323 	/*
2324 	 * Wait until all pending iteration is done.
2325 	 *
2326 	 * Request reference is cleared and it is guaranteed to be observed
2327 	 * after the ->lock is released.
2328 	 */
2329 	spin_lock_irqsave(&drv_tags->lock, flags);
2330 	spin_unlock_irqrestore(&drv_tags->lock, flags);
2331 }
2332 
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2333 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2334 		     unsigned int hctx_idx)
2335 {
2336 	struct page *page;
2337 
2338 	if (tags->rqs && set->ops->exit_request) {
2339 		int i;
2340 
2341 		for (i = 0; i < tags->nr_tags; i++) {
2342 			struct request *rq = tags->static_rqs[i];
2343 
2344 			if (!rq)
2345 				continue;
2346 			set->ops->exit_request(set, rq, hctx_idx);
2347 			tags->static_rqs[i] = NULL;
2348 		}
2349 	}
2350 
2351 	blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2352 
2353 	while (!list_empty(&tags->page_list)) {
2354 		page = list_first_entry(&tags->page_list, struct page, lru);
2355 		list_del_init(&page->lru);
2356 		/*
2357 		 * Remove kmemleak object previously allocated in
2358 		 * blk_mq_alloc_rqs().
2359 		 */
2360 		kmemleak_free(page_address(page));
2361 		__free_pages(page, page->private);
2362 	}
2363 }
2364 
blk_mq_free_rq_map(struct blk_mq_tags * tags,unsigned int flags)2365 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2366 {
2367 	kfree(tags->rqs);
2368 	tags->rqs = NULL;
2369 	kfree(tags->static_rqs);
2370 	tags->static_rqs = NULL;
2371 
2372 	blk_mq_free_tags(tags, flags);
2373 }
2374 
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags,unsigned int flags)2375 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2376 					unsigned int hctx_idx,
2377 					unsigned int nr_tags,
2378 					unsigned int reserved_tags,
2379 					unsigned int flags)
2380 {
2381 	struct blk_mq_tags *tags;
2382 	int node;
2383 
2384 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2385 	if (node == NUMA_NO_NODE)
2386 		node = set->numa_node;
2387 
2388 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2389 	if (!tags)
2390 		return NULL;
2391 
2392 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2393 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2394 				 node);
2395 	if (!tags->rqs) {
2396 		blk_mq_free_tags(tags, flags);
2397 		return NULL;
2398 	}
2399 
2400 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2401 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2402 					node);
2403 	if (!tags->static_rqs) {
2404 		kfree(tags->rqs);
2405 		blk_mq_free_tags(tags, flags);
2406 		return NULL;
2407 	}
2408 
2409 	return tags;
2410 }
2411 
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)2412 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2413 			       unsigned int hctx_idx, int node)
2414 {
2415 	int ret;
2416 
2417 	if (set->ops->init_request) {
2418 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2419 		if (ret)
2420 			return ret;
2421 	}
2422 
2423 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2424 	return 0;
2425 }
2426 
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)2427 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2428 		     unsigned int hctx_idx, unsigned int depth)
2429 {
2430 	unsigned int i, j, entries_per_page, max_order = 4;
2431 	size_t rq_size, left;
2432 	int node;
2433 
2434 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2435 	if (node == NUMA_NO_NODE)
2436 		node = set->numa_node;
2437 
2438 	INIT_LIST_HEAD(&tags->page_list);
2439 
2440 	/*
2441 	 * rq_size is the size of the request plus driver payload, rounded
2442 	 * to the cacheline size
2443 	 */
2444 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2445 				cache_line_size());
2446 	left = rq_size * depth;
2447 
2448 	for (i = 0; i < depth; ) {
2449 		int this_order = max_order;
2450 		struct page *page;
2451 		int to_do;
2452 		void *p;
2453 
2454 		while (this_order && left < order_to_size(this_order - 1))
2455 			this_order--;
2456 
2457 		do {
2458 			page = alloc_pages_node(node,
2459 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2460 				this_order);
2461 			if (page)
2462 				break;
2463 			if (!this_order--)
2464 				break;
2465 			if (order_to_size(this_order) < rq_size)
2466 				break;
2467 		} while (1);
2468 
2469 		if (!page)
2470 			goto fail;
2471 
2472 		page->private = this_order;
2473 		list_add_tail(&page->lru, &tags->page_list);
2474 
2475 		p = page_address(page);
2476 		/*
2477 		 * Allow kmemleak to scan these pages as they contain pointers
2478 		 * to additional allocations like via ops->init_request().
2479 		 */
2480 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2481 		entries_per_page = order_to_size(this_order) / rq_size;
2482 		to_do = min(entries_per_page, depth - i);
2483 		left -= to_do * rq_size;
2484 		for (j = 0; j < to_do; j++) {
2485 			struct request *rq = p;
2486 
2487 			tags->static_rqs[i] = rq;
2488 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2489 				tags->static_rqs[i] = NULL;
2490 				goto fail;
2491 			}
2492 
2493 			p += rq_size;
2494 			i++;
2495 		}
2496 	}
2497 	return 0;
2498 
2499 fail:
2500 	blk_mq_free_rqs(set, tags, hctx_idx);
2501 	return -ENOMEM;
2502 }
2503 
2504 struct rq_iter_data {
2505 	struct blk_mq_hw_ctx *hctx;
2506 	bool has_rq;
2507 };
2508 
blk_mq_has_request(struct request * rq,void * data,bool reserved)2509 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2510 {
2511 	struct rq_iter_data *iter_data = data;
2512 
2513 	if (rq->mq_hctx != iter_data->hctx)
2514 		return true;
2515 	iter_data->has_rq = true;
2516 	return false;
2517 }
2518 
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)2519 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2520 {
2521 	struct blk_mq_tags *tags = hctx->sched_tags ?
2522 			hctx->sched_tags : hctx->tags;
2523 	struct rq_iter_data data = {
2524 		.hctx	= hctx,
2525 	};
2526 
2527 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2528 	return data.has_rq;
2529 }
2530 
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)2531 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2532 		struct blk_mq_hw_ctx *hctx)
2533 {
2534 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2535 		return false;
2536 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2537 		return false;
2538 	return true;
2539 }
2540 
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)2541 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2542 {
2543 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2544 			struct blk_mq_hw_ctx, cpuhp_online);
2545 
2546 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2547 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2548 		return 0;
2549 
2550 	/*
2551 	 * Prevent new request from being allocated on the current hctx.
2552 	 *
2553 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2554 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2555 	 * seen once we return from the tag allocator.
2556 	 */
2557 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2558 	smp_mb__after_atomic();
2559 
2560 	/*
2561 	 * Try to grab a reference to the queue and wait for any outstanding
2562 	 * requests.  If we could not grab a reference the queue has been
2563 	 * frozen and there are no requests.
2564 	 */
2565 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2566 		while (blk_mq_hctx_has_requests(hctx))
2567 			msleep(5);
2568 		percpu_ref_put(&hctx->queue->q_usage_counter);
2569 	}
2570 
2571 	return 0;
2572 }
2573 
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)2574 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2575 {
2576 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2577 			struct blk_mq_hw_ctx, cpuhp_online);
2578 
2579 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2580 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2581 	return 0;
2582 }
2583 
2584 /*
2585  * 'cpu' is going away. splice any existing rq_list entries from this
2586  * software queue to the hw queue dispatch list, and ensure that it
2587  * gets run.
2588  */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)2589 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2590 {
2591 	struct blk_mq_hw_ctx *hctx;
2592 	struct blk_mq_ctx *ctx;
2593 	LIST_HEAD(tmp);
2594 	enum hctx_type type;
2595 
2596 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2597 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2598 		return 0;
2599 
2600 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2601 	type = hctx->type;
2602 
2603 	spin_lock(&ctx->lock);
2604 	if (!list_empty(&ctx->rq_lists[type])) {
2605 		list_splice_init(&ctx->rq_lists[type], &tmp);
2606 		blk_mq_hctx_clear_pending(hctx, ctx);
2607 	}
2608 	spin_unlock(&ctx->lock);
2609 
2610 	if (list_empty(&tmp))
2611 		return 0;
2612 
2613 	spin_lock(&hctx->lock);
2614 	list_splice_tail_init(&tmp, &hctx->dispatch);
2615 	spin_unlock(&hctx->lock);
2616 
2617 	blk_mq_run_hw_queue(hctx, true);
2618 	return 0;
2619 }
2620 
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)2621 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2622 {
2623 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2624 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2625 						    &hctx->cpuhp_online);
2626 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2627 					    &hctx->cpuhp_dead);
2628 }
2629 
2630 /*
2631  * Before freeing hw queue, clearing the flush request reference in
2632  * tags->rqs[] for avoiding potential UAF.
2633  */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)2634 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2635 		unsigned int queue_depth, struct request *flush_rq)
2636 {
2637 	int i;
2638 	unsigned long flags;
2639 
2640 	/* The hw queue may not be mapped yet */
2641 	if (!tags)
2642 		return;
2643 
2644 	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2645 
2646 	for (i = 0; i < queue_depth; i++)
2647 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
2648 
2649 	/*
2650 	 * Wait until all pending iteration is done.
2651 	 *
2652 	 * Request reference is cleared and it is guaranteed to be observed
2653 	 * after the ->lock is released.
2654 	 */
2655 	spin_lock_irqsave(&tags->lock, flags);
2656 	spin_unlock_irqrestore(&tags->lock, flags);
2657 }
2658 
2659 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)2660 static void blk_mq_exit_hctx(struct request_queue *q,
2661 		struct blk_mq_tag_set *set,
2662 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2663 {
2664 	struct request *flush_rq = hctx->fq->flush_rq;
2665 
2666 	if (blk_mq_hw_queue_mapped(hctx))
2667 		blk_mq_tag_idle(hctx);
2668 
2669 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2670 			set->queue_depth, flush_rq);
2671 	if (set->ops->exit_request)
2672 		set->ops->exit_request(set, flush_rq, hctx_idx);
2673 
2674 	if (set->ops->exit_hctx)
2675 		set->ops->exit_hctx(hctx, hctx_idx);
2676 
2677 	blk_mq_remove_cpuhp(hctx);
2678 
2679 	spin_lock(&q->unused_hctx_lock);
2680 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2681 	spin_unlock(&q->unused_hctx_lock);
2682 }
2683 
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)2684 static void blk_mq_exit_hw_queues(struct request_queue *q,
2685 		struct blk_mq_tag_set *set, int nr_queue)
2686 {
2687 	struct blk_mq_hw_ctx *hctx;
2688 	unsigned int i;
2689 
2690 	queue_for_each_hw_ctx(q, hctx, i) {
2691 		if (i == nr_queue)
2692 			break;
2693 		blk_mq_debugfs_unregister_hctx(hctx);
2694 		blk_mq_exit_hctx(q, set, hctx, i);
2695 	}
2696 }
2697 
blk_mq_hw_ctx_size(struct blk_mq_tag_set * tag_set)2698 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2699 {
2700 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2701 
2702 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2703 			   __alignof__(struct blk_mq_hw_ctx)) !=
2704 		     sizeof(struct blk_mq_hw_ctx));
2705 
2706 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2707 		hw_ctx_size += sizeof(struct srcu_struct);
2708 
2709 	return hw_ctx_size;
2710 }
2711 
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)2712 static int blk_mq_init_hctx(struct request_queue *q,
2713 		struct blk_mq_tag_set *set,
2714 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2715 {
2716 	hctx->queue_num = hctx_idx;
2717 
2718 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2719 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2720 				&hctx->cpuhp_online);
2721 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2722 
2723 	hctx->tags = set->tags[hctx_idx];
2724 
2725 	if (set->ops->init_hctx &&
2726 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2727 		goto unregister_cpu_notifier;
2728 
2729 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2730 				hctx->numa_node))
2731 		goto exit_hctx;
2732 	return 0;
2733 
2734  exit_hctx:
2735 	if (set->ops->exit_hctx)
2736 		set->ops->exit_hctx(hctx, hctx_idx);
2737  unregister_cpu_notifier:
2738 	blk_mq_remove_cpuhp(hctx);
2739 	return -1;
2740 }
2741 
2742 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)2743 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2744 		int node)
2745 {
2746 	struct blk_mq_hw_ctx *hctx;
2747 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2748 
2749 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2750 	if (!hctx)
2751 		goto fail_alloc_hctx;
2752 
2753 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2754 		goto free_hctx;
2755 
2756 	atomic_set(&hctx->nr_active, 0);
2757 	atomic_set(&hctx->elevator_queued, 0);
2758 	if (node == NUMA_NO_NODE)
2759 		node = set->numa_node;
2760 	hctx->numa_node = node;
2761 
2762 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2763 	spin_lock_init(&hctx->lock);
2764 	INIT_LIST_HEAD(&hctx->dispatch);
2765 	hctx->queue = q;
2766 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2767 
2768 	INIT_LIST_HEAD(&hctx->hctx_list);
2769 
2770 	/*
2771 	 * Allocate space for all possible cpus to avoid allocation at
2772 	 * runtime
2773 	 */
2774 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2775 			gfp, node);
2776 	if (!hctx->ctxs)
2777 		goto free_cpumask;
2778 
2779 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2780 				gfp, node))
2781 		goto free_ctxs;
2782 	hctx->nr_ctx = 0;
2783 
2784 	spin_lock_init(&hctx->dispatch_wait_lock);
2785 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2786 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2787 
2788 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2789 	if (!hctx->fq)
2790 		goto free_bitmap;
2791 
2792 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2793 		init_srcu_struct(hctx->srcu);
2794 	blk_mq_hctx_kobj_init(hctx);
2795 
2796 	return hctx;
2797 
2798  free_bitmap:
2799 	sbitmap_free(&hctx->ctx_map);
2800  free_ctxs:
2801 	kfree(hctx->ctxs);
2802  free_cpumask:
2803 	free_cpumask_var(hctx->cpumask);
2804  free_hctx:
2805 	kfree(hctx);
2806  fail_alloc_hctx:
2807 	return NULL;
2808 }
2809 
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)2810 static void blk_mq_init_cpu_queues(struct request_queue *q,
2811 				   unsigned int nr_hw_queues)
2812 {
2813 	struct blk_mq_tag_set *set = q->tag_set;
2814 	unsigned int i, j;
2815 
2816 	for_each_possible_cpu(i) {
2817 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2818 		struct blk_mq_hw_ctx *hctx;
2819 		int k;
2820 
2821 		__ctx->cpu = i;
2822 		spin_lock_init(&__ctx->lock);
2823 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2824 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2825 
2826 		__ctx->queue = q;
2827 
2828 		/*
2829 		 * Set local node, IFF we have more than one hw queue. If
2830 		 * not, we remain on the home node of the device
2831 		 */
2832 		for (j = 0; j < set->nr_maps; j++) {
2833 			hctx = blk_mq_map_queue_type(q, j, i);
2834 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2835 				hctx->numa_node = cpu_to_node(i);
2836 		}
2837 	}
2838 }
2839 
__blk_mq_alloc_map_and_request(struct blk_mq_tag_set * set,int hctx_idx)2840 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2841 					int hctx_idx)
2842 {
2843 	unsigned int flags = set->flags;
2844 	int ret = 0;
2845 
2846 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2847 					set->queue_depth, set->reserved_tags, flags);
2848 	if (!set->tags[hctx_idx])
2849 		return false;
2850 
2851 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2852 				set->queue_depth);
2853 	if (!ret)
2854 		return true;
2855 
2856 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2857 	set->tags[hctx_idx] = NULL;
2858 	return false;
2859 }
2860 
blk_mq_free_map_and_requests(struct blk_mq_tag_set * set,unsigned int hctx_idx)2861 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2862 					 unsigned int hctx_idx)
2863 {
2864 	unsigned int flags = set->flags;
2865 
2866 	if (set->tags && set->tags[hctx_idx]) {
2867 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2868 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2869 		set->tags[hctx_idx] = NULL;
2870 	}
2871 }
2872 
blk_mq_map_swqueue(struct request_queue * q)2873 static void blk_mq_map_swqueue(struct request_queue *q)
2874 {
2875 	unsigned int i, j, hctx_idx;
2876 	struct blk_mq_hw_ctx *hctx;
2877 	struct blk_mq_ctx *ctx;
2878 	struct blk_mq_tag_set *set = q->tag_set;
2879 
2880 	queue_for_each_hw_ctx(q, hctx, i) {
2881 		cpumask_clear(hctx->cpumask);
2882 		hctx->nr_ctx = 0;
2883 		hctx->dispatch_from = NULL;
2884 	}
2885 
2886 	/*
2887 	 * Map software to hardware queues.
2888 	 *
2889 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2890 	 */
2891 	for_each_possible_cpu(i) {
2892 
2893 		ctx = per_cpu_ptr(q->queue_ctx, i);
2894 		for (j = 0; j < set->nr_maps; j++) {
2895 			if (!set->map[j].nr_queues) {
2896 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2897 						HCTX_TYPE_DEFAULT, i);
2898 				continue;
2899 			}
2900 			hctx_idx = set->map[j].mq_map[i];
2901 			/* unmapped hw queue can be remapped after CPU topo changed */
2902 			if (!set->tags[hctx_idx] &&
2903 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2904 				/*
2905 				 * If tags initialization fail for some hctx,
2906 				 * that hctx won't be brought online.  In this
2907 				 * case, remap the current ctx to hctx[0] which
2908 				 * is guaranteed to always have tags allocated
2909 				 */
2910 				set->map[j].mq_map[i] = 0;
2911 			}
2912 
2913 			hctx = blk_mq_map_queue_type(q, j, i);
2914 			ctx->hctxs[j] = hctx;
2915 			/*
2916 			 * If the CPU is already set in the mask, then we've
2917 			 * mapped this one already. This can happen if
2918 			 * devices share queues across queue maps.
2919 			 */
2920 			if (cpumask_test_cpu(i, hctx->cpumask))
2921 				continue;
2922 
2923 			cpumask_set_cpu(i, hctx->cpumask);
2924 			hctx->type = j;
2925 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2926 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2927 
2928 			/*
2929 			 * If the nr_ctx type overflows, we have exceeded the
2930 			 * amount of sw queues we can support.
2931 			 */
2932 			BUG_ON(!hctx->nr_ctx);
2933 		}
2934 
2935 		for (; j < HCTX_MAX_TYPES; j++)
2936 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2937 					HCTX_TYPE_DEFAULT, i);
2938 	}
2939 
2940 	queue_for_each_hw_ctx(q, hctx, i) {
2941 		/*
2942 		 * If no software queues are mapped to this hardware queue,
2943 		 * disable it and free the request entries.
2944 		 */
2945 		if (!hctx->nr_ctx) {
2946 			/* Never unmap queue 0.  We need it as a
2947 			 * fallback in case of a new remap fails
2948 			 * allocation
2949 			 */
2950 			if (i && set->tags[i])
2951 				blk_mq_free_map_and_requests(set, i);
2952 
2953 			hctx->tags = NULL;
2954 			continue;
2955 		}
2956 
2957 		hctx->tags = set->tags[i];
2958 		WARN_ON(!hctx->tags);
2959 
2960 		/*
2961 		 * Set the map size to the number of mapped software queues.
2962 		 * This is more accurate and more efficient than looping
2963 		 * over all possibly mapped software queues.
2964 		 */
2965 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2966 
2967 		/*
2968 		 * Initialize batch roundrobin counts
2969 		 */
2970 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2971 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2972 	}
2973 }
2974 
2975 /*
2976  * Caller needs to ensure that we're either frozen/quiesced, or that
2977  * the queue isn't live yet.
2978  */
queue_set_hctx_shared(struct request_queue * q,bool shared)2979 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2980 {
2981 	struct blk_mq_hw_ctx *hctx;
2982 	int i;
2983 
2984 	queue_for_each_hw_ctx(q, hctx, i) {
2985 		if (shared) {
2986 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2987 		} else {
2988 			blk_mq_tag_idle(hctx);
2989 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2990 		}
2991 	}
2992 }
2993 
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)2994 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2995 					 bool shared)
2996 {
2997 	struct request_queue *q;
2998 
2999 	lockdep_assert_held(&set->tag_list_lock);
3000 
3001 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3002 		blk_mq_freeze_queue(q);
3003 		queue_set_hctx_shared(q, shared);
3004 		blk_mq_unfreeze_queue(q);
3005 	}
3006 }
3007 
blk_mq_del_queue_tag_set(struct request_queue * q)3008 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3009 {
3010 	struct blk_mq_tag_set *set = q->tag_set;
3011 
3012 	mutex_lock(&set->tag_list_lock);
3013 	list_del(&q->tag_set_list);
3014 	if (list_is_singular(&set->tag_list)) {
3015 		/* just transitioned to unshared */
3016 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3017 		/* update existing queue */
3018 		blk_mq_update_tag_set_shared(set, false);
3019 	}
3020 	mutex_unlock(&set->tag_list_lock);
3021 	INIT_LIST_HEAD(&q->tag_set_list);
3022 }
3023 
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)3024 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3025 				     struct request_queue *q)
3026 {
3027 	mutex_lock(&set->tag_list_lock);
3028 
3029 	/*
3030 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3031 	 */
3032 	if (!list_empty(&set->tag_list) &&
3033 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3034 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3035 		/* update existing queue */
3036 		blk_mq_update_tag_set_shared(set, true);
3037 	}
3038 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3039 		queue_set_hctx_shared(q, true);
3040 	list_add_tail(&q->tag_set_list, &set->tag_list);
3041 
3042 	mutex_unlock(&set->tag_list_lock);
3043 }
3044 
3045 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)3046 static int blk_mq_alloc_ctxs(struct request_queue *q)
3047 {
3048 	struct blk_mq_ctxs *ctxs;
3049 	int cpu;
3050 
3051 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3052 	if (!ctxs)
3053 		return -ENOMEM;
3054 
3055 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3056 	if (!ctxs->queue_ctx)
3057 		goto fail;
3058 
3059 	for_each_possible_cpu(cpu) {
3060 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3061 		ctx->ctxs = ctxs;
3062 	}
3063 
3064 	q->mq_kobj = &ctxs->kobj;
3065 	q->queue_ctx = ctxs->queue_ctx;
3066 
3067 	return 0;
3068  fail:
3069 	kfree(ctxs);
3070 	return -ENOMEM;
3071 }
3072 
3073 /*
3074  * It is the actual release handler for mq, but we do it from
3075  * request queue's release handler for avoiding use-after-free
3076  * and headache because q->mq_kobj shouldn't have been introduced,
3077  * but we can't group ctx/kctx kobj without it.
3078  */
blk_mq_release(struct request_queue * q)3079 void blk_mq_release(struct request_queue *q)
3080 {
3081 	struct blk_mq_hw_ctx *hctx, *next;
3082 	int i;
3083 
3084 	queue_for_each_hw_ctx(q, hctx, i)
3085 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3086 
3087 	/* all hctx are in .unused_hctx_list now */
3088 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3089 		list_del_init(&hctx->hctx_list);
3090 		kobject_put(&hctx->kobj);
3091 	}
3092 
3093 	kfree(q->queue_hw_ctx);
3094 
3095 	/*
3096 	 * release .mq_kobj and sw queue's kobject now because
3097 	 * both share lifetime with request queue.
3098 	 */
3099 	blk_mq_sysfs_deinit(q);
3100 }
3101 
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)3102 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3103 		void *queuedata)
3104 {
3105 	struct request_queue *uninit_q, *q;
3106 
3107 	uninit_q = blk_alloc_queue(set->numa_node);
3108 	if (!uninit_q)
3109 		return ERR_PTR(-ENOMEM);
3110 	uninit_q->queuedata = queuedata;
3111 
3112 	/*
3113 	 * Initialize the queue without an elevator. device_add_disk() will do
3114 	 * the initialization.
3115 	 */
3116 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3117 	if (IS_ERR(q))
3118 		blk_cleanup_queue(uninit_q);
3119 
3120 	return q;
3121 }
3122 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3123 
blk_mq_init_queue(struct blk_mq_tag_set * set)3124 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3125 {
3126 	return blk_mq_init_queue_data(set, NULL);
3127 }
3128 EXPORT_SYMBOL(blk_mq_init_queue);
3129 
3130 /*
3131  * Helper for setting up a queue with mq ops, given queue depth, and
3132  * the passed in mq ops flags.
3133  */
blk_mq_init_sq_queue(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)3134 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3135 					   const struct blk_mq_ops *ops,
3136 					   unsigned int queue_depth,
3137 					   unsigned int set_flags)
3138 {
3139 	struct request_queue *q;
3140 	int ret;
3141 
3142 	memset(set, 0, sizeof(*set));
3143 	set->ops = ops;
3144 	set->nr_hw_queues = 1;
3145 	set->nr_maps = 1;
3146 	set->queue_depth = queue_depth;
3147 	set->numa_node = NUMA_NO_NODE;
3148 	set->flags = set_flags;
3149 
3150 	ret = blk_mq_alloc_tag_set(set);
3151 	if (ret)
3152 		return ERR_PTR(ret);
3153 
3154 	q = blk_mq_init_queue(set);
3155 	if (IS_ERR(q)) {
3156 		blk_mq_free_tag_set(set);
3157 		return q;
3158 	}
3159 
3160 	return q;
3161 }
3162 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3163 
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)3164 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3165 		struct blk_mq_tag_set *set, struct request_queue *q,
3166 		int hctx_idx, int node)
3167 {
3168 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3169 
3170 	/* reuse dead hctx first */
3171 	spin_lock(&q->unused_hctx_lock);
3172 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3173 		if (tmp->numa_node == node) {
3174 			hctx = tmp;
3175 			break;
3176 		}
3177 	}
3178 	if (hctx)
3179 		list_del_init(&hctx->hctx_list);
3180 	spin_unlock(&q->unused_hctx_lock);
3181 
3182 	if (!hctx)
3183 		hctx = blk_mq_alloc_hctx(q, set, node);
3184 	if (!hctx)
3185 		goto fail;
3186 
3187 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3188 		goto free_hctx;
3189 
3190 	return hctx;
3191 
3192  free_hctx:
3193 	kobject_put(&hctx->kobj);
3194  fail:
3195 	return NULL;
3196 }
3197 
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)3198 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3199 						struct request_queue *q)
3200 {
3201 	int i, j, end;
3202 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3203 
3204 	if (q->nr_hw_queues < set->nr_hw_queues) {
3205 		struct blk_mq_hw_ctx **new_hctxs;
3206 
3207 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3208 				       sizeof(*new_hctxs), GFP_KERNEL,
3209 				       set->numa_node);
3210 		if (!new_hctxs)
3211 			return;
3212 		if (hctxs)
3213 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3214 			       sizeof(*hctxs));
3215 		q->queue_hw_ctx = new_hctxs;
3216 		kfree(hctxs);
3217 		hctxs = new_hctxs;
3218 	}
3219 
3220 	/* protect against switching io scheduler  */
3221 	mutex_lock(&q->sysfs_lock);
3222 	for (i = 0; i < set->nr_hw_queues; i++) {
3223 		int node;
3224 		struct blk_mq_hw_ctx *hctx;
3225 
3226 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3227 		/*
3228 		 * If the hw queue has been mapped to another numa node,
3229 		 * we need to realloc the hctx. If allocation fails, fallback
3230 		 * to use the previous one.
3231 		 */
3232 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3233 			continue;
3234 
3235 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3236 		if (hctx) {
3237 			if (hctxs[i])
3238 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3239 			hctxs[i] = hctx;
3240 		} else {
3241 			if (hctxs[i])
3242 				pr_warn("Allocate new hctx on node %d fails,\
3243 						fallback to previous one on node %d\n",
3244 						node, hctxs[i]->numa_node);
3245 			else
3246 				break;
3247 		}
3248 	}
3249 	/*
3250 	 * Increasing nr_hw_queues fails. Free the newly allocated
3251 	 * hctxs and keep the previous q->nr_hw_queues.
3252 	 */
3253 	if (i != set->nr_hw_queues) {
3254 		j = q->nr_hw_queues;
3255 		end = i;
3256 	} else {
3257 		j = i;
3258 		end = q->nr_hw_queues;
3259 		q->nr_hw_queues = set->nr_hw_queues;
3260 	}
3261 
3262 	for (; j < end; j++) {
3263 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3264 
3265 		if (hctx) {
3266 			blk_mq_exit_hctx(q, set, hctx, j);
3267 			hctxs[j] = NULL;
3268 		}
3269 	}
3270 	mutex_unlock(&q->sysfs_lock);
3271 }
3272 
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q,bool elevator_init)3273 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3274 						  struct request_queue *q,
3275 						  bool elevator_init)
3276 {
3277 	/* mark the queue as mq asap */
3278 	q->mq_ops = set->ops;
3279 
3280 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3281 					     blk_mq_poll_stats_bkt,
3282 					     BLK_MQ_POLL_STATS_BKTS, q);
3283 	if (!q->poll_cb)
3284 		goto err_exit;
3285 
3286 	if (blk_mq_alloc_ctxs(q))
3287 		goto err_poll;
3288 
3289 	/* init q->mq_kobj and sw queues' kobjects */
3290 	blk_mq_sysfs_init(q);
3291 
3292 	INIT_LIST_HEAD(&q->unused_hctx_list);
3293 	spin_lock_init(&q->unused_hctx_lock);
3294 
3295 	blk_mq_realloc_hw_ctxs(set, q);
3296 	if (!q->nr_hw_queues)
3297 		goto err_hctxs;
3298 
3299 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3300 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3301 
3302 	q->tag_set = set;
3303 
3304 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3305 	if (set->nr_maps > HCTX_TYPE_POLL &&
3306 	    set->map[HCTX_TYPE_POLL].nr_queues)
3307 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3308 
3309 	q->sg_reserved_size = INT_MAX;
3310 
3311 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3312 	INIT_LIST_HEAD(&q->requeue_list);
3313 	spin_lock_init(&q->requeue_lock);
3314 
3315 	q->nr_requests = set->queue_depth;
3316 
3317 	/*
3318 	 * Default to classic polling
3319 	 */
3320 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3321 
3322 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3323 	blk_mq_add_queue_tag_set(set, q);
3324 	blk_mq_map_swqueue(q);
3325 
3326 	if (elevator_init)
3327 		elevator_init_mq(q);
3328 
3329 	return q;
3330 
3331 err_hctxs:
3332 	kfree(q->queue_hw_ctx);
3333 	q->nr_hw_queues = 0;
3334 	blk_mq_sysfs_deinit(q);
3335 err_poll:
3336 	blk_stat_free_callback(q->poll_cb);
3337 	q->poll_cb = NULL;
3338 err_exit:
3339 	q->mq_ops = NULL;
3340 	return ERR_PTR(-ENOMEM);
3341 }
3342 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3343 
3344 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)3345 void blk_mq_exit_queue(struct request_queue *q)
3346 {
3347 	struct blk_mq_tag_set *set = q->tag_set;
3348 
3349 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3350 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3351 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3352 	blk_mq_del_queue_tag_set(q);
3353 }
3354 
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)3355 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3356 {
3357 	int i;
3358 
3359 	for (i = 0; i < set->nr_hw_queues; i++) {
3360 		if (!__blk_mq_alloc_map_and_request(set, i))
3361 			goto out_unwind;
3362 		cond_resched();
3363 	}
3364 
3365 	return 0;
3366 
3367 out_unwind:
3368 	while (--i >= 0)
3369 		blk_mq_free_map_and_requests(set, i);
3370 
3371 	return -ENOMEM;
3372 }
3373 
3374 /*
3375  * Allocate the request maps associated with this tag_set. Note that this
3376  * may reduce the depth asked for, if memory is tight. set->queue_depth
3377  * will be updated to reflect the allocated depth.
3378  */
blk_mq_alloc_map_and_requests(struct blk_mq_tag_set * set)3379 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3380 {
3381 	unsigned int depth;
3382 	int err;
3383 
3384 	depth = set->queue_depth;
3385 	do {
3386 		err = __blk_mq_alloc_rq_maps(set);
3387 		if (!err)
3388 			break;
3389 
3390 		set->queue_depth >>= 1;
3391 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3392 			err = -ENOMEM;
3393 			break;
3394 		}
3395 	} while (set->queue_depth);
3396 
3397 	if (!set->queue_depth || err) {
3398 		pr_err("blk-mq: failed to allocate request map\n");
3399 		return -ENOMEM;
3400 	}
3401 
3402 	if (depth != set->queue_depth)
3403 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3404 						depth, set->queue_depth);
3405 
3406 	return 0;
3407 }
3408 
blk_mq_update_queue_map(struct blk_mq_tag_set * set)3409 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3410 {
3411 	/*
3412 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3413 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3414 	 * number of hardware queues.
3415 	 */
3416 	if (set->nr_maps == 1)
3417 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3418 
3419 	if (set->ops->map_queues && !is_kdump_kernel()) {
3420 		int i;
3421 
3422 		/*
3423 		 * transport .map_queues is usually done in the following
3424 		 * way:
3425 		 *
3426 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3427 		 * 	mask = get_cpu_mask(queue)
3428 		 * 	for_each_cpu(cpu, mask)
3429 		 * 		set->map[x].mq_map[cpu] = queue;
3430 		 * }
3431 		 *
3432 		 * When we need to remap, the table has to be cleared for
3433 		 * killing stale mapping since one CPU may not be mapped
3434 		 * to any hw queue.
3435 		 */
3436 		for (i = 0; i < set->nr_maps; i++)
3437 			blk_mq_clear_mq_map(&set->map[i]);
3438 
3439 		return set->ops->map_queues(set);
3440 	} else {
3441 		BUG_ON(set->nr_maps > 1);
3442 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3443 	}
3444 }
3445 
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int cur_nr_hw_queues,int new_nr_hw_queues)3446 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3447 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3448 {
3449 	struct blk_mq_tags **new_tags;
3450 
3451 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3452 		return 0;
3453 
3454 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3455 				GFP_KERNEL, set->numa_node);
3456 	if (!new_tags)
3457 		return -ENOMEM;
3458 
3459 	if (set->tags)
3460 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3461 		       sizeof(*set->tags));
3462 	kfree(set->tags);
3463 	set->tags = new_tags;
3464 	set->nr_hw_queues = new_nr_hw_queues;
3465 
3466 	return 0;
3467 }
3468 
3469 /*
3470  * Alloc a tag set to be associated with one or more request queues.
3471  * May fail with EINVAL for various error conditions. May adjust the
3472  * requested depth down, if it's too large. In that case, the set
3473  * value will be stored in set->queue_depth.
3474  */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)3475 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3476 {
3477 	int i, ret;
3478 
3479 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3480 
3481 	if (!set->nr_hw_queues)
3482 		return -EINVAL;
3483 	if (!set->queue_depth)
3484 		return -EINVAL;
3485 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3486 		return -EINVAL;
3487 
3488 	if (!set->ops->queue_rq)
3489 		return -EINVAL;
3490 
3491 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3492 		return -EINVAL;
3493 
3494 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3495 		pr_info("blk-mq: reduced tag depth to %u\n",
3496 			BLK_MQ_MAX_DEPTH);
3497 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3498 	}
3499 
3500 	if (!set->nr_maps)
3501 		set->nr_maps = 1;
3502 	else if (set->nr_maps > HCTX_MAX_TYPES)
3503 		return -EINVAL;
3504 
3505 	/*
3506 	 * If a crashdump is active, then we are potentially in a very
3507 	 * memory constrained environment. Limit us to 1 queue and
3508 	 * 64 tags to prevent using too much memory.
3509 	 */
3510 	if (is_kdump_kernel()) {
3511 		set->nr_hw_queues = 1;
3512 		set->nr_maps = 1;
3513 		set->queue_depth = min(64U, set->queue_depth);
3514 	}
3515 	/*
3516 	 * There is no use for more h/w queues than cpus if we just have
3517 	 * a single map
3518 	 */
3519 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3520 		set->nr_hw_queues = nr_cpu_ids;
3521 
3522 	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3523 		return -ENOMEM;
3524 
3525 	ret = -ENOMEM;
3526 	for (i = 0; i < set->nr_maps; i++) {
3527 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3528 						  sizeof(set->map[i].mq_map[0]),
3529 						  GFP_KERNEL, set->numa_node);
3530 		if (!set->map[i].mq_map)
3531 			goto out_free_mq_map;
3532 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3533 	}
3534 
3535 	ret = blk_mq_update_queue_map(set);
3536 	if (ret)
3537 		goto out_free_mq_map;
3538 
3539 	ret = blk_mq_alloc_map_and_requests(set);
3540 	if (ret)
3541 		goto out_free_mq_map;
3542 
3543 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3544 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3545 
3546 		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3547 			ret = -ENOMEM;
3548 			goto out_free_mq_rq_maps;
3549 		}
3550 	}
3551 
3552 	mutex_init(&set->tag_list_lock);
3553 	INIT_LIST_HEAD(&set->tag_list);
3554 
3555 	return 0;
3556 
3557 out_free_mq_rq_maps:
3558 	for (i = 0; i < set->nr_hw_queues; i++)
3559 		blk_mq_free_map_and_requests(set, i);
3560 out_free_mq_map:
3561 	for (i = 0; i < set->nr_maps; i++) {
3562 		kfree(set->map[i].mq_map);
3563 		set->map[i].mq_map = NULL;
3564 	}
3565 	kfree(set->tags);
3566 	set->tags = NULL;
3567 	return ret;
3568 }
3569 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3570 
blk_mq_free_tag_set(struct blk_mq_tag_set * set)3571 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3572 {
3573 	int i, j;
3574 
3575 	for (i = 0; i < set->nr_hw_queues; i++)
3576 		blk_mq_free_map_and_requests(set, i);
3577 
3578 	if (blk_mq_is_sbitmap_shared(set->flags))
3579 		blk_mq_exit_shared_sbitmap(set);
3580 
3581 	for (j = 0; j < set->nr_maps; j++) {
3582 		kfree(set->map[j].mq_map);
3583 		set->map[j].mq_map = NULL;
3584 	}
3585 
3586 	kfree(set->tags);
3587 	set->tags = NULL;
3588 }
3589 EXPORT_SYMBOL(blk_mq_free_tag_set);
3590 
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)3591 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3592 {
3593 	struct blk_mq_tag_set *set = q->tag_set;
3594 	struct blk_mq_hw_ctx *hctx;
3595 	int i, ret;
3596 
3597 	if (!set)
3598 		return -EINVAL;
3599 
3600 	if (q->nr_requests == nr)
3601 		return 0;
3602 
3603 	blk_mq_freeze_queue(q);
3604 	blk_mq_quiesce_queue(q);
3605 
3606 	ret = 0;
3607 	queue_for_each_hw_ctx(q, hctx, i) {
3608 		if (!hctx->tags)
3609 			continue;
3610 		/*
3611 		 * If we're using an MQ scheduler, just update the scheduler
3612 		 * queue depth. This is similar to what the old code would do.
3613 		 */
3614 		if (!hctx->sched_tags) {
3615 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3616 							false);
3617 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3618 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3619 		} else {
3620 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3621 							nr, true);
3622 		}
3623 		if (ret)
3624 			break;
3625 		if (q->elevator && q->elevator->type->ops.depth_updated)
3626 			q->elevator->type->ops.depth_updated(hctx);
3627 	}
3628 
3629 	if (!ret)
3630 		q->nr_requests = nr;
3631 
3632 	blk_mq_unquiesce_queue(q);
3633 	blk_mq_unfreeze_queue(q);
3634 
3635 	return ret;
3636 }
3637 
3638 /*
3639  * request_queue and elevator_type pair.
3640  * It is just used by __blk_mq_update_nr_hw_queues to cache
3641  * the elevator_type associated with a request_queue.
3642  */
3643 struct blk_mq_qe_pair {
3644 	struct list_head node;
3645 	struct request_queue *q;
3646 	struct elevator_type *type;
3647 };
3648 
3649 /*
3650  * Cache the elevator_type in qe pair list and switch the
3651  * io scheduler to 'none'
3652  */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)3653 static bool blk_mq_elv_switch_none(struct list_head *head,
3654 		struct request_queue *q)
3655 {
3656 	struct blk_mq_qe_pair *qe;
3657 
3658 	if (!q->elevator)
3659 		return true;
3660 
3661 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3662 	if (!qe)
3663 		return false;
3664 
3665 	INIT_LIST_HEAD(&qe->node);
3666 	qe->q = q;
3667 	qe->type = q->elevator->type;
3668 	list_add(&qe->node, head);
3669 
3670 	mutex_lock(&q->sysfs_lock);
3671 	/*
3672 	 * After elevator_switch_mq, the previous elevator_queue will be
3673 	 * released by elevator_release. The reference of the io scheduler
3674 	 * module get by elevator_get will also be put. So we need to get
3675 	 * a reference of the io scheduler module here to prevent it to be
3676 	 * removed.
3677 	 */
3678 	__module_get(qe->type->elevator_owner);
3679 	elevator_switch_mq(q, NULL);
3680 	mutex_unlock(&q->sysfs_lock);
3681 
3682 	return true;
3683 }
3684 
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)3685 static void blk_mq_elv_switch_back(struct list_head *head,
3686 		struct request_queue *q)
3687 {
3688 	struct blk_mq_qe_pair *qe;
3689 	struct elevator_type *t = NULL;
3690 
3691 	list_for_each_entry(qe, head, node)
3692 		if (qe->q == q) {
3693 			t = qe->type;
3694 			break;
3695 		}
3696 
3697 	if (!t)
3698 		return;
3699 
3700 	list_del(&qe->node);
3701 	kfree(qe);
3702 
3703 	mutex_lock(&q->sysfs_lock);
3704 	elevator_switch_mq(q, t);
3705 	mutex_unlock(&q->sysfs_lock);
3706 }
3707 
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3708 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3709 							int nr_hw_queues)
3710 {
3711 	struct request_queue *q;
3712 	LIST_HEAD(head);
3713 	int prev_nr_hw_queues;
3714 
3715 	lockdep_assert_held(&set->tag_list_lock);
3716 
3717 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3718 		nr_hw_queues = nr_cpu_ids;
3719 	if (nr_hw_queues < 1)
3720 		return;
3721 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3722 		return;
3723 
3724 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3725 		blk_mq_freeze_queue(q);
3726 	/*
3727 	 * Switch IO scheduler to 'none', cleaning up the data associated
3728 	 * with the previous scheduler. We will switch back once we are done
3729 	 * updating the new sw to hw queue mappings.
3730 	 */
3731 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3732 		if (!blk_mq_elv_switch_none(&head, q))
3733 			goto switch_back;
3734 
3735 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3736 		blk_mq_debugfs_unregister_hctxs(q);
3737 		blk_mq_sysfs_unregister(q);
3738 	}
3739 
3740 	prev_nr_hw_queues = set->nr_hw_queues;
3741 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3742 	    0)
3743 		goto reregister;
3744 
3745 	set->nr_hw_queues = nr_hw_queues;
3746 fallback:
3747 	blk_mq_update_queue_map(set);
3748 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3749 		blk_mq_realloc_hw_ctxs(set, q);
3750 		if (q->nr_hw_queues != set->nr_hw_queues) {
3751 			int i = prev_nr_hw_queues;
3752 
3753 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3754 					nr_hw_queues, prev_nr_hw_queues);
3755 			for (; i < set->nr_hw_queues; i++)
3756 				blk_mq_free_map_and_requests(set, i);
3757 
3758 			set->nr_hw_queues = prev_nr_hw_queues;
3759 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3760 			goto fallback;
3761 		}
3762 		blk_mq_map_swqueue(q);
3763 	}
3764 
3765 reregister:
3766 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3767 		blk_mq_sysfs_register(q);
3768 		blk_mq_debugfs_register_hctxs(q);
3769 	}
3770 
3771 switch_back:
3772 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3773 		blk_mq_elv_switch_back(&head, q);
3774 
3775 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3776 		blk_mq_unfreeze_queue(q);
3777 }
3778 
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3779 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3780 {
3781 	mutex_lock(&set->tag_list_lock);
3782 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3783 	mutex_unlock(&set->tag_list_lock);
3784 }
3785 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3786 
3787 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)3788 static bool blk_poll_stats_enable(struct request_queue *q)
3789 {
3790 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3791 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3792 		return true;
3793 	blk_stat_add_callback(q, q->poll_cb);
3794 	return false;
3795 }
3796 
blk_mq_poll_stats_start(struct request_queue * q)3797 static void blk_mq_poll_stats_start(struct request_queue *q)
3798 {
3799 	/*
3800 	 * We don't arm the callback if polling stats are not enabled or the
3801 	 * callback is already active.
3802 	 */
3803 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3804 	    blk_stat_is_active(q->poll_cb))
3805 		return;
3806 
3807 	blk_stat_activate_msecs(q->poll_cb, 100);
3808 }
3809 
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)3810 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3811 {
3812 	struct request_queue *q = cb->data;
3813 	int bucket;
3814 
3815 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3816 		if (cb->stat[bucket].nr_samples)
3817 			q->poll_stat[bucket] = cb->stat[bucket];
3818 	}
3819 }
3820 
blk_mq_poll_nsecs(struct request_queue * q,struct request * rq)3821 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3822 				       struct request *rq)
3823 {
3824 	unsigned long ret = 0;
3825 	int bucket;
3826 
3827 	/*
3828 	 * If stats collection isn't on, don't sleep but turn it on for
3829 	 * future users
3830 	 */
3831 	if (!blk_poll_stats_enable(q))
3832 		return 0;
3833 
3834 	/*
3835 	 * As an optimistic guess, use half of the mean service time
3836 	 * for this type of request. We can (and should) make this smarter.
3837 	 * For instance, if the completion latencies are tight, we can
3838 	 * get closer than just half the mean. This is especially
3839 	 * important on devices where the completion latencies are longer
3840 	 * than ~10 usec. We do use the stats for the relevant IO size
3841 	 * if available which does lead to better estimates.
3842 	 */
3843 	bucket = blk_mq_poll_stats_bkt(rq);
3844 	if (bucket < 0)
3845 		return ret;
3846 
3847 	if (q->poll_stat[bucket].nr_samples)
3848 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3849 
3850 	return ret;
3851 }
3852 
blk_mq_poll_hybrid_sleep(struct request_queue * q,struct request * rq)3853 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3854 				     struct request *rq)
3855 {
3856 	struct hrtimer_sleeper hs;
3857 	enum hrtimer_mode mode;
3858 	unsigned int nsecs;
3859 	ktime_t kt;
3860 
3861 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3862 		return false;
3863 
3864 	/*
3865 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3866 	 *
3867 	 *  0:	use half of prev avg
3868 	 * >0:	use this specific value
3869 	 */
3870 	if (q->poll_nsec > 0)
3871 		nsecs = q->poll_nsec;
3872 	else
3873 		nsecs = blk_mq_poll_nsecs(q, rq);
3874 
3875 	if (!nsecs)
3876 		return false;
3877 
3878 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3879 
3880 	/*
3881 	 * This will be replaced with the stats tracking code, using
3882 	 * 'avg_completion_time / 2' as the pre-sleep target.
3883 	 */
3884 	kt = nsecs;
3885 
3886 	mode = HRTIMER_MODE_REL;
3887 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3888 	hrtimer_set_expires(&hs.timer, kt);
3889 
3890 	do {
3891 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3892 			break;
3893 		set_current_state(TASK_UNINTERRUPTIBLE);
3894 		hrtimer_sleeper_start_expires(&hs, mode);
3895 		if (hs.task)
3896 			io_schedule();
3897 		hrtimer_cancel(&hs.timer);
3898 		mode = HRTIMER_MODE_ABS;
3899 	} while (hs.task && !signal_pending(current));
3900 
3901 	__set_current_state(TASK_RUNNING);
3902 	destroy_hrtimer_on_stack(&hs.timer);
3903 	return true;
3904 }
3905 
blk_mq_poll_hybrid(struct request_queue * q,struct blk_mq_hw_ctx * hctx,blk_qc_t cookie)3906 static bool blk_mq_poll_hybrid(struct request_queue *q,
3907 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3908 {
3909 	struct request *rq;
3910 
3911 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3912 		return false;
3913 
3914 	if (!blk_qc_t_is_internal(cookie))
3915 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3916 	else {
3917 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3918 		/*
3919 		 * With scheduling, if the request has completed, we'll
3920 		 * get a NULL return here, as we clear the sched tag when
3921 		 * that happens. The request still remains valid, like always,
3922 		 * so we should be safe with just the NULL check.
3923 		 */
3924 		if (!rq)
3925 			return false;
3926 	}
3927 
3928 	return blk_mq_poll_hybrid_sleep(q, rq);
3929 }
3930 
3931 /**
3932  * blk_poll - poll for IO completions
3933  * @q:  the queue
3934  * @cookie: cookie passed back at IO submission time
3935  * @spin: whether to spin for completions
3936  *
3937  * Description:
3938  *    Poll for completions on the passed in queue. Returns number of
3939  *    completed entries found. If @spin is true, then blk_poll will continue
3940  *    looping until at least one completion is found, unless the task is
3941  *    otherwise marked running (or we need to reschedule).
3942  */
blk_poll(struct request_queue * q,blk_qc_t cookie,bool spin)3943 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3944 {
3945 	struct blk_mq_hw_ctx *hctx;
3946 	long state;
3947 
3948 	if (!blk_qc_t_valid(cookie) ||
3949 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3950 		return 0;
3951 
3952 	if (current->plug)
3953 		blk_flush_plug_list(current->plug, false);
3954 
3955 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3956 
3957 	/*
3958 	 * If we sleep, have the caller restart the poll loop to reset
3959 	 * the state. Like for the other success return cases, the
3960 	 * caller is responsible for checking if the IO completed. If
3961 	 * the IO isn't complete, we'll get called again and will go
3962 	 * straight to the busy poll loop.
3963 	 */
3964 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3965 		return 1;
3966 
3967 	hctx->poll_considered++;
3968 
3969 	state = current->state;
3970 	do {
3971 		int ret;
3972 
3973 		hctx->poll_invoked++;
3974 
3975 		ret = q->mq_ops->poll(hctx);
3976 		if (ret > 0) {
3977 			hctx->poll_success++;
3978 			__set_current_state(TASK_RUNNING);
3979 			return ret;
3980 		}
3981 
3982 		if (signal_pending_state(state, current))
3983 			__set_current_state(TASK_RUNNING);
3984 
3985 		if (current->state == TASK_RUNNING)
3986 			return 1;
3987 		if (ret < 0 || !spin)
3988 			break;
3989 		cpu_relax();
3990 	} while (!need_resched());
3991 
3992 	__set_current_state(TASK_RUNNING);
3993 	return 0;
3994 }
3995 EXPORT_SYMBOL_GPL(blk_poll);
3996 
blk_mq_rq_cpu(struct request * rq)3997 unsigned int blk_mq_rq_cpu(struct request *rq)
3998 {
3999 	return rq->mq_ctx->cpu;
4000 }
4001 EXPORT_SYMBOL(blk_mq_rq_cpu);
4002 
blk_mq_cancel_work_sync(struct request_queue * q)4003 void blk_mq_cancel_work_sync(struct request_queue *q)
4004 {
4005 	if (queue_is_mq(q)) {
4006 		struct blk_mq_hw_ctx *hctx;
4007 		int i;
4008 
4009 		cancel_delayed_work_sync(&q->requeue_work);
4010 
4011 		queue_for_each_hw_ctx(q, hctx, i)
4012 			cancel_delayed_work_sync(&hctx->run_work);
4013 	}
4014 }
4015 
blk_mq_init(void)4016 static int __init blk_mq_init(void)
4017 {
4018 	int i;
4019 
4020 	for_each_possible_cpu(i)
4021 		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
4022 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4023 
4024 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4025 				  "block/softirq:dead", NULL,
4026 				  blk_softirq_cpu_dead);
4027 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4028 				blk_mq_hctx_notify_dead);
4029 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4030 				blk_mq_hctx_notify_online,
4031 				blk_mq_hctx_notify_offline);
4032 	return 0;
4033 }
4034 subsys_initcall(blk_mq_init);
4035