1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30
31 #include <trace/events/block.h>
32
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48
blk_mq_poll_stats_bkt(const struct request * rq)49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 int ddir, sectors, bucket;
52
53 ddir = rq_data_dir(rq);
54 sectors = blk_rq_stats_sectors(rq);
55
56 bucket = ddir + 2 * ilog2(sectors);
57
58 if (bucket < 0)
59 return -1;
60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62
63 return bucket;
64 }
65
66 /*
67 * Check if any of the ctx, dispatch list or elevator
68 * have pending work in this hardware queue.
69 */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 return !list_empty_careful(&hctx->dispatch) ||
73 sbitmap_any_bit_set(&hctx->ctx_map) ||
74 blk_mq_sched_has_work(hctx);
75 }
76
77 /*
78 * Mark this ctx as having pending work in this hardware queue
79 */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 struct blk_mq_ctx *ctx)
82 {
83 const int bit = ctx->index_hw[hctx->type];
84
85 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 struct blk_mq_ctx *ctx)
91 {
92 const int bit = ctx->index_hw[hctx->type];
93
94 sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96
97 struct mq_inflight {
98 struct hd_struct *part;
99 unsigned int inflight[2];
100 };
101
blk_mq_check_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 struct request *rq, void *priv,
104 bool reserved)
105 {
106 struct mq_inflight *mi = priv;
107
108 if ((!mi->part->partno || rq->part == mi->part) &&
109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 mi->inflight[rq_data_dir(rq)]++;
111
112 return true;
113 }
114
blk_mq_in_flight(struct request_queue * q,struct hd_struct * part)115 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
116 {
117 struct mq_inflight mi = { .part = part };
118
119 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120
121 return mi.inflight[0] + mi.inflight[1];
122 }
123
blk_mq_in_flight_rw(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])124 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
125 unsigned int inflight[2])
126 {
127 struct mq_inflight mi = { .part = part };
128
129 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
130 inflight[0] = mi.inflight[0];
131 inflight[1] = mi.inflight[1];
132 }
133
blk_freeze_queue_start(struct request_queue * q)134 void blk_freeze_queue_start(struct request_queue *q)
135 {
136 mutex_lock(&q->mq_freeze_lock);
137 if (++q->mq_freeze_depth == 1) {
138 percpu_ref_kill(&q->q_usage_counter);
139 mutex_unlock(&q->mq_freeze_lock);
140 if (queue_is_mq(q))
141 blk_mq_run_hw_queues(q, false);
142 } else {
143 mutex_unlock(&q->mq_freeze_lock);
144 }
145 }
146 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
147
blk_mq_freeze_queue_wait(struct request_queue * q)148 void blk_mq_freeze_queue_wait(struct request_queue *q)
149 {
150 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
151 }
152 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
153
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)154 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
155 unsigned long timeout)
156 {
157 return wait_event_timeout(q->mq_freeze_wq,
158 percpu_ref_is_zero(&q->q_usage_counter),
159 timeout);
160 }
161 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
162
163 /*
164 * Guarantee no request is in use, so we can change any data structure of
165 * the queue afterward.
166 */
blk_freeze_queue(struct request_queue * q)167 void blk_freeze_queue(struct request_queue *q)
168 {
169 /*
170 * In the !blk_mq case we are only calling this to kill the
171 * q_usage_counter, otherwise this increases the freeze depth
172 * and waits for it to return to zero. For this reason there is
173 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
174 * exported to drivers as the only user for unfreeze is blk_mq.
175 */
176 blk_freeze_queue_start(q);
177 blk_mq_freeze_queue_wait(q);
178 }
179
blk_mq_freeze_queue(struct request_queue * q)180 void blk_mq_freeze_queue(struct request_queue *q)
181 {
182 /*
183 * ...just an alias to keep freeze and unfreeze actions balanced
184 * in the blk_mq_* namespace
185 */
186 blk_freeze_queue(q);
187 }
188 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
189
blk_mq_unfreeze_queue(struct request_queue * q)190 void blk_mq_unfreeze_queue(struct request_queue *q)
191 {
192 mutex_lock(&q->mq_freeze_lock);
193 q->mq_freeze_depth--;
194 WARN_ON_ONCE(q->mq_freeze_depth < 0);
195 if (!q->mq_freeze_depth) {
196 percpu_ref_resurrect(&q->q_usage_counter);
197 wake_up_all(&q->mq_freeze_wq);
198 }
199 mutex_unlock(&q->mq_freeze_lock);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
202
203 /*
204 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
205 * mpt3sas driver such that this function can be removed.
206 */
blk_mq_quiesce_queue_nowait(struct request_queue * q)207 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
208 {
209 unsigned long flags;
210
211 spin_lock_irqsave(&q->queue_lock, flags);
212 if (!q->quiesce_depth++)
213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 spin_unlock_irqrestore(&q->queue_lock, flags);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
217
218 /**
219 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
220 * @q: request queue.
221 *
222 * Note: this function does not prevent that the struct request end_io()
223 * callback function is invoked. Once this function is returned, we make
224 * sure no dispatch can happen until the queue is unquiesced via
225 * blk_mq_unquiesce_queue().
226 */
blk_mq_quiesce_queue(struct request_queue * q)227 void blk_mq_quiesce_queue(struct request_queue *q)
228 {
229 struct blk_mq_hw_ctx *hctx;
230 unsigned int i;
231 bool rcu = false;
232
233 blk_mq_quiesce_queue_nowait(q);
234
235 queue_for_each_hw_ctx(q, hctx, i) {
236 if (hctx->flags & BLK_MQ_F_BLOCKING)
237 synchronize_srcu(hctx->srcu);
238 else
239 rcu = true;
240 }
241 if (rcu)
242 synchronize_rcu();
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
245
246 /*
247 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
248 * @q: request queue.
249 *
250 * This function recovers queue into the state before quiescing
251 * which is done by blk_mq_quiesce_queue.
252 */
blk_mq_unquiesce_queue(struct request_queue * q)253 void blk_mq_unquiesce_queue(struct request_queue *q)
254 {
255 unsigned long flags;
256 bool run_queue = false;
257
258 spin_lock_irqsave(&q->queue_lock, flags);
259 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
260 ;
261 } else if (!--q->quiesce_depth) {
262 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
263 run_queue = true;
264 }
265 spin_unlock_irqrestore(&q->queue_lock, flags);
266
267 /* dispatch requests which are inserted during quiescing */
268 if (run_queue)
269 blk_mq_run_hw_queues(q, true);
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
272
blk_mq_wake_waiters(struct request_queue * q)273 void blk_mq_wake_waiters(struct request_queue *q)
274 {
275 struct blk_mq_hw_ctx *hctx;
276 unsigned int i;
277
278 queue_for_each_hw_ctx(q, hctx, i)
279 if (blk_mq_hw_queue_mapped(hctx))
280 blk_mq_tag_wakeup_all(hctx->tags, true);
281 }
282
283 /*
284 * Only need start/end time stamping if we have iostat or
285 * blk stats enabled, or using an IO scheduler.
286 */
blk_mq_need_time_stamp(struct request * rq)287 static inline bool blk_mq_need_time_stamp(struct request *rq)
288 {
289 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
290 }
291
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,unsigned int tag,u64 alloc_time_ns)292 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
293 unsigned int tag, u64 alloc_time_ns)
294 {
295 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
296 struct request *rq = tags->static_rqs[tag];
297
298 if (data->q->elevator) {
299 rq->tag = BLK_MQ_NO_TAG;
300 rq->internal_tag = tag;
301 } else {
302 rq->tag = tag;
303 rq->internal_tag = BLK_MQ_NO_TAG;
304 }
305
306 /* csd/requeue_work/fifo_time is initialized before use */
307 rq->q = data->q;
308 rq->mq_ctx = data->ctx;
309 rq->mq_hctx = data->hctx;
310 rq->rq_flags = 0;
311 rq->cmd_flags = data->cmd_flags;
312 if (data->flags & BLK_MQ_REQ_PM)
313 rq->rq_flags |= RQF_PM;
314 if (blk_queue_io_stat(data->q))
315 rq->rq_flags |= RQF_IO_STAT;
316 INIT_LIST_HEAD(&rq->queuelist);
317 INIT_HLIST_NODE(&rq->hash);
318 RB_CLEAR_NODE(&rq->rb_node);
319 rq->rq_disk = NULL;
320 rq->part = NULL;
321 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
322 rq->alloc_time_ns = alloc_time_ns;
323 #endif
324 if (blk_mq_need_time_stamp(rq))
325 rq->start_time_ns = ktime_get_ns();
326 else
327 rq->start_time_ns = 0;
328 rq->io_start_time_ns = 0;
329 rq->stats_sectors = 0;
330 rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332 rq->nr_integrity_segments = 0;
333 #endif
334 blk_crypto_rq_set_defaults(rq);
335 /* tag was already set */
336 WRITE_ONCE(rq->deadline, 0);
337
338 rq->timeout = 0;
339
340 rq->end_io = NULL;
341 rq->end_io_data = NULL;
342
343 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
344 refcount_set(&rq->ref, 1);
345
346 if (!op_is_flush(data->cmd_flags)) {
347 struct elevator_queue *e = data->q->elevator;
348
349 rq->elv.icq = NULL;
350 if (e && e->type->ops.prepare_request) {
351 if (e->type->icq_cache)
352 blk_mq_sched_assign_ioc(rq);
353
354 e->type->ops.prepare_request(rq);
355 rq->rq_flags |= RQF_ELVPRIV;
356 }
357 }
358
359 data->hctx->queued++;
360 return rq;
361 }
362
__blk_mq_alloc_request(struct blk_mq_alloc_data * data)363 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
364 {
365 struct request_queue *q = data->q;
366 struct elevator_queue *e = q->elevator;
367 u64 alloc_time_ns = 0;
368 unsigned int tag;
369
370 /* alloc_time includes depth and tag waits */
371 if (blk_queue_rq_alloc_time(q))
372 alloc_time_ns = ktime_get_ns();
373
374 if (data->cmd_flags & REQ_NOWAIT)
375 data->flags |= BLK_MQ_REQ_NOWAIT;
376
377 if (e) {
378 /*
379 * Flush requests are special and go directly to the
380 * dispatch list. Don't include reserved tags in the
381 * limiting, as it isn't useful.
382 */
383 if (!op_is_flush(data->cmd_flags) &&
384 e->type->ops.limit_depth &&
385 !(data->flags & BLK_MQ_REQ_RESERVED))
386 e->type->ops.limit_depth(data->cmd_flags, data);
387 }
388
389 retry:
390 data->ctx = blk_mq_get_ctx(q);
391 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
392 if (!e)
393 blk_mq_tag_busy(data->hctx);
394
395 /*
396 * Waiting allocations only fail because of an inactive hctx. In that
397 * case just retry the hctx assignment and tag allocation as CPU hotplug
398 * should have migrated us to an online CPU by now.
399 */
400 tag = blk_mq_get_tag(data);
401 if (tag == BLK_MQ_NO_TAG) {
402 if (data->flags & BLK_MQ_REQ_NOWAIT)
403 return NULL;
404
405 /*
406 * Give up the CPU and sleep for a random short time to ensure
407 * that thread using a realtime scheduling class are migrated
408 * off the CPU, and thus off the hctx that is going away.
409 */
410 msleep(3);
411 goto retry;
412 }
413 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
414 }
415
blk_mq_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)416 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
417 blk_mq_req_flags_t flags)
418 {
419 struct blk_mq_alloc_data data = {
420 .q = q,
421 .flags = flags,
422 .cmd_flags = op,
423 };
424 struct request *rq;
425 int ret;
426
427 ret = blk_queue_enter(q, flags);
428 if (ret)
429 return ERR_PTR(ret);
430
431 rq = __blk_mq_alloc_request(&data);
432 if (!rq)
433 goto out_queue_exit;
434 rq->__data_len = 0;
435 rq->__sector = (sector_t) -1;
436 rq->bio = rq->biotail = NULL;
437 return rq;
438 out_queue_exit:
439 blk_queue_exit(q);
440 return ERR_PTR(-EWOULDBLOCK);
441 }
442 EXPORT_SYMBOL(blk_mq_alloc_request);
443
blk_mq_alloc_request_hctx(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags,unsigned int hctx_idx)444 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
445 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
446 {
447 struct blk_mq_alloc_data data = {
448 .q = q,
449 .flags = flags,
450 .cmd_flags = op,
451 };
452 u64 alloc_time_ns = 0;
453 unsigned int cpu;
454 unsigned int tag;
455 int ret;
456
457 /* alloc_time includes depth and tag waits */
458 if (blk_queue_rq_alloc_time(q))
459 alloc_time_ns = ktime_get_ns();
460
461 /*
462 * If the tag allocator sleeps we could get an allocation for a
463 * different hardware context. No need to complicate the low level
464 * allocator for this for the rare use case of a command tied to
465 * a specific queue.
466 */
467 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
468 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
469 return ERR_PTR(-EINVAL);
470
471 if (hctx_idx >= q->nr_hw_queues)
472 return ERR_PTR(-EIO);
473
474 ret = blk_queue_enter(q, flags);
475 if (ret)
476 return ERR_PTR(ret);
477
478 /*
479 * Check if the hardware context is actually mapped to anything.
480 * If not tell the caller that it should skip this queue.
481 */
482 ret = -EXDEV;
483 data.hctx = q->queue_hw_ctx[hctx_idx];
484 if (!blk_mq_hw_queue_mapped(data.hctx))
485 goto out_queue_exit;
486 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
487 if (cpu >= nr_cpu_ids)
488 goto out_queue_exit;
489 data.ctx = __blk_mq_get_ctx(q, cpu);
490
491 if (!q->elevator)
492 blk_mq_tag_busy(data.hctx);
493
494 ret = -EWOULDBLOCK;
495 tag = blk_mq_get_tag(&data);
496 if (tag == BLK_MQ_NO_TAG)
497 goto out_queue_exit;
498 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
499
500 out_queue_exit:
501 blk_queue_exit(q);
502 return ERR_PTR(ret);
503 }
504 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
505
__blk_mq_free_request(struct request * rq)506 static void __blk_mq_free_request(struct request *rq)
507 {
508 struct request_queue *q = rq->q;
509 struct blk_mq_ctx *ctx = rq->mq_ctx;
510 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
511 const int sched_tag = rq->internal_tag;
512
513 blk_crypto_free_request(rq);
514 blk_pm_mark_last_busy(rq);
515 rq->mq_hctx = NULL;
516 if (rq->tag != BLK_MQ_NO_TAG)
517 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
518 if (sched_tag != BLK_MQ_NO_TAG)
519 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
520 blk_mq_sched_restart(hctx);
521 blk_queue_exit(q);
522 }
523
blk_mq_free_request(struct request * rq)524 void blk_mq_free_request(struct request *rq)
525 {
526 struct request_queue *q = rq->q;
527 struct elevator_queue *e = q->elevator;
528 struct blk_mq_ctx *ctx = rq->mq_ctx;
529 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
530
531 if (rq->rq_flags & RQF_ELVPRIV) {
532 if (e && e->type->ops.finish_request)
533 e->type->ops.finish_request(rq);
534 if (rq->elv.icq) {
535 put_io_context(rq->elv.icq->ioc);
536 rq->elv.icq = NULL;
537 }
538 }
539
540 ctx->rq_completed[rq_is_sync(rq)]++;
541 if (rq->rq_flags & RQF_MQ_INFLIGHT)
542 __blk_mq_dec_active_requests(hctx);
543
544 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
545 laptop_io_completion(q->backing_dev_info);
546
547 rq_qos_done(q, rq);
548
549 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
550 if (refcount_dec_and_test(&rq->ref))
551 __blk_mq_free_request(rq);
552 }
553 EXPORT_SYMBOL_GPL(blk_mq_free_request);
554
__blk_mq_end_request(struct request * rq,blk_status_t error)555 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
556 {
557 u64 now = 0;
558
559 if (blk_mq_need_time_stamp(rq))
560 now = ktime_get_ns();
561
562 if (rq->rq_flags & RQF_STATS) {
563 blk_mq_poll_stats_start(rq->q);
564 blk_stat_add(rq, now);
565 }
566
567 blk_mq_sched_completed_request(rq, now);
568
569 blk_account_io_done(rq, now);
570
571 if (rq->end_io) {
572 rq_qos_done(rq->q, rq);
573 rq->end_io(rq, error);
574 } else {
575 blk_mq_free_request(rq);
576 }
577 }
578 EXPORT_SYMBOL(__blk_mq_end_request);
579
blk_mq_end_request(struct request * rq,blk_status_t error)580 void blk_mq_end_request(struct request *rq, blk_status_t error)
581 {
582 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
583 BUG();
584 __blk_mq_end_request(rq, error);
585 }
586 EXPORT_SYMBOL(blk_mq_end_request);
587
588 /*
589 * Softirq action handler - move entries to local list and loop over them
590 * while passing them to the queue registered handler.
591 */
blk_done_softirq(struct softirq_action * h)592 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
593 {
594 struct list_head *cpu_list, local_list;
595
596 local_irq_disable();
597 cpu_list = this_cpu_ptr(&blk_cpu_done);
598 list_replace_init(cpu_list, &local_list);
599 local_irq_enable();
600
601 while (!list_empty(&local_list)) {
602 struct request *rq;
603
604 rq = list_entry(local_list.next, struct request, ipi_list);
605 list_del_init(&rq->ipi_list);
606 rq->q->mq_ops->complete(rq);
607 }
608 }
609
blk_mq_trigger_softirq(struct request * rq)610 static void blk_mq_trigger_softirq(struct request *rq)
611 {
612 struct list_head *list;
613 unsigned long flags;
614
615 local_irq_save(flags);
616 list = this_cpu_ptr(&blk_cpu_done);
617 list_add_tail(&rq->ipi_list, list);
618
619 /*
620 * If the list only contains our just added request, signal a raise of
621 * the softirq. If there are already entries there, someone already
622 * raised the irq but it hasn't run yet.
623 */
624 if (list->next == &rq->ipi_list)
625 raise_softirq_irqoff(BLOCK_SOFTIRQ);
626 local_irq_restore(flags);
627 }
628
blk_softirq_cpu_dead(unsigned int cpu)629 static int blk_softirq_cpu_dead(unsigned int cpu)
630 {
631 /*
632 * If a CPU goes away, splice its entries to the current CPU
633 * and trigger a run of the softirq
634 */
635 local_irq_disable();
636 list_splice_init(&per_cpu(blk_cpu_done, cpu),
637 this_cpu_ptr(&blk_cpu_done));
638 raise_softirq_irqoff(BLOCK_SOFTIRQ);
639 local_irq_enable();
640
641 return 0;
642 }
643
644
__blk_mq_complete_request_remote(void * data)645 static void __blk_mq_complete_request_remote(void *data)
646 {
647 struct request *rq = data;
648
649 /*
650 * For most of single queue controllers, there is only one irq vector
651 * for handling I/O completion, and the only irq's affinity is set
652 * to all possible CPUs. On most of ARCHs, this affinity means the irq
653 * is handled on one specific CPU.
654 *
655 * So complete I/O requests in softirq context in case of single queue
656 * devices to avoid degrading I/O performance due to irqsoff latency.
657 */
658 if (rq->q->nr_hw_queues == 1)
659 blk_mq_trigger_softirq(rq);
660 else
661 rq->q->mq_ops->complete(rq);
662 }
663
blk_mq_complete_need_ipi(struct request * rq)664 static inline bool blk_mq_complete_need_ipi(struct request *rq)
665 {
666 int cpu = raw_smp_processor_id();
667
668 if (!IS_ENABLED(CONFIG_SMP) ||
669 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
670 return false;
671
672 /* same CPU or cache domain? Complete locally */
673 if (cpu == rq->mq_ctx->cpu ||
674 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
675 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
676 return false;
677
678 /* don't try to IPI to an offline CPU */
679 return cpu_online(rq->mq_ctx->cpu);
680 }
681
blk_mq_complete_request_remote(struct request * rq)682 bool blk_mq_complete_request_remote(struct request *rq)
683 {
684 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
685
686 /*
687 * For a polled request, always complete locallly, it's pointless
688 * to redirect the completion.
689 */
690 if (rq->cmd_flags & REQ_HIPRI)
691 return false;
692
693 if (blk_mq_complete_need_ipi(rq)) {
694 rq->csd.func = __blk_mq_complete_request_remote;
695 rq->csd.info = rq;
696 rq->csd.flags = 0;
697 smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
698 } else {
699 if (rq->q->nr_hw_queues > 1)
700 return false;
701 blk_mq_trigger_softirq(rq);
702 }
703
704 return true;
705 }
706 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
707
708 /**
709 * blk_mq_complete_request - end I/O on a request
710 * @rq: the request being processed
711 *
712 * Description:
713 * Complete a request by scheduling the ->complete_rq operation.
714 **/
blk_mq_complete_request(struct request * rq)715 void blk_mq_complete_request(struct request *rq)
716 {
717 if (!blk_mq_complete_request_remote(rq))
718 rq->q->mq_ops->complete(rq);
719 }
720 EXPORT_SYMBOL(blk_mq_complete_request);
721
hctx_unlock(struct blk_mq_hw_ctx * hctx,int srcu_idx)722 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
723 __releases(hctx->srcu)
724 {
725 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
726 rcu_read_unlock();
727 else
728 srcu_read_unlock(hctx->srcu, srcu_idx);
729 }
730
hctx_lock(struct blk_mq_hw_ctx * hctx,int * srcu_idx)731 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
732 __acquires(hctx->srcu)
733 {
734 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
735 /* shut up gcc false positive */
736 *srcu_idx = 0;
737 rcu_read_lock();
738 } else
739 *srcu_idx = srcu_read_lock(hctx->srcu);
740 }
741
742 /**
743 * blk_mq_start_request - Start processing a request
744 * @rq: Pointer to request to be started
745 *
746 * Function used by device drivers to notify the block layer that a request
747 * is going to be processed now, so blk layer can do proper initializations
748 * such as starting the timeout timer.
749 */
blk_mq_start_request(struct request * rq)750 void blk_mq_start_request(struct request *rq)
751 {
752 struct request_queue *q = rq->q;
753
754 trace_block_rq_issue(rq);
755
756 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
757 rq->io_start_time_ns = ktime_get_ns();
758 rq->stats_sectors = blk_rq_sectors(rq);
759 rq->rq_flags |= RQF_STATS;
760 rq_qos_issue(q, rq);
761 }
762
763 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
764
765 blk_add_timer(rq);
766 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
767
768 #ifdef CONFIG_BLK_DEV_INTEGRITY
769 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
770 q->integrity.profile->prepare_fn(rq);
771 #endif
772 }
773 EXPORT_SYMBOL(blk_mq_start_request);
774
__blk_mq_requeue_request(struct request * rq)775 static void __blk_mq_requeue_request(struct request *rq)
776 {
777 struct request_queue *q = rq->q;
778
779 blk_mq_put_driver_tag(rq);
780
781 trace_block_rq_requeue(rq);
782 rq_qos_requeue(q, rq);
783
784 if (blk_mq_request_started(rq)) {
785 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
786 rq->rq_flags &= ~RQF_TIMED_OUT;
787 }
788 }
789
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)790 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
791 {
792 __blk_mq_requeue_request(rq);
793
794 /* this request will be re-inserted to io scheduler queue */
795 blk_mq_sched_requeue_request(rq);
796
797 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
798 }
799 EXPORT_SYMBOL(blk_mq_requeue_request);
800
blk_mq_requeue_work(struct work_struct * work)801 static void blk_mq_requeue_work(struct work_struct *work)
802 {
803 struct request_queue *q =
804 container_of(work, struct request_queue, requeue_work.work);
805 LIST_HEAD(rq_list);
806 struct request *rq, *next;
807
808 spin_lock_irq(&q->requeue_lock);
809 list_splice_init(&q->requeue_list, &rq_list);
810 spin_unlock_irq(&q->requeue_lock);
811
812 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
813 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
814 continue;
815
816 rq->rq_flags &= ~RQF_SOFTBARRIER;
817 list_del_init(&rq->queuelist);
818 /*
819 * If RQF_DONTPREP, rq has contained some driver specific
820 * data, so insert it to hctx dispatch list to avoid any
821 * merge.
822 */
823 if (rq->rq_flags & RQF_DONTPREP)
824 blk_mq_request_bypass_insert(rq, false, false);
825 else
826 blk_mq_sched_insert_request(rq, true, false, false);
827 }
828
829 while (!list_empty(&rq_list)) {
830 rq = list_entry(rq_list.next, struct request, queuelist);
831 list_del_init(&rq->queuelist);
832 blk_mq_sched_insert_request(rq, false, false, false);
833 }
834
835 blk_mq_run_hw_queues(q, false);
836 }
837
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)838 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
839 bool kick_requeue_list)
840 {
841 struct request_queue *q = rq->q;
842 unsigned long flags;
843
844 /*
845 * We abuse this flag that is otherwise used by the I/O scheduler to
846 * request head insertion from the workqueue.
847 */
848 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
849
850 spin_lock_irqsave(&q->requeue_lock, flags);
851 if (at_head) {
852 rq->rq_flags |= RQF_SOFTBARRIER;
853 list_add(&rq->queuelist, &q->requeue_list);
854 } else {
855 list_add_tail(&rq->queuelist, &q->requeue_list);
856 }
857 spin_unlock_irqrestore(&q->requeue_lock, flags);
858
859 if (kick_requeue_list)
860 blk_mq_kick_requeue_list(q);
861 }
862
blk_mq_kick_requeue_list(struct request_queue * q)863 void blk_mq_kick_requeue_list(struct request_queue *q)
864 {
865 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
866 }
867 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
868
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)869 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
870 unsigned long msecs)
871 {
872 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
873 msecs_to_jiffies(msecs));
874 }
875 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
876
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)877 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
878 {
879 if (tag < tags->nr_tags) {
880 prefetch(tags->rqs[tag]);
881 return tags->rqs[tag];
882 }
883
884 return NULL;
885 }
886 EXPORT_SYMBOL(blk_mq_tag_to_rq);
887
blk_mq_rq_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)888 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
889 void *priv, bool reserved)
890 {
891 /*
892 * If we find a request that isn't idle and the queue matches,
893 * we know the queue is busy. Return false to stop the iteration.
894 */
895 if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
896 bool *busy = priv;
897
898 *busy = true;
899 return false;
900 }
901
902 return true;
903 }
904
blk_mq_queue_inflight(struct request_queue * q)905 bool blk_mq_queue_inflight(struct request_queue *q)
906 {
907 bool busy = false;
908
909 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
910 return busy;
911 }
912 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
913
blk_mq_rq_timed_out(struct request * req,bool reserved)914 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
915 {
916 req->rq_flags |= RQF_TIMED_OUT;
917 if (req->q->mq_ops->timeout) {
918 enum blk_eh_timer_return ret;
919
920 ret = req->q->mq_ops->timeout(req, reserved);
921 if (ret == BLK_EH_DONE)
922 return;
923 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
924 }
925
926 blk_add_timer(req);
927 }
928
blk_mq_req_expired(struct request * rq,unsigned long * next)929 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
930 {
931 unsigned long deadline;
932
933 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
934 return false;
935 if (rq->rq_flags & RQF_TIMED_OUT)
936 return false;
937
938 deadline = READ_ONCE(rq->deadline);
939 if (time_after_eq(jiffies, deadline))
940 return true;
941
942 if (*next == 0)
943 *next = deadline;
944 else if (time_after(*next, deadline))
945 *next = deadline;
946 return false;
947 }
948
blk_mq_put_rq_ref(struct request * rq)949 void blk_mq_put_rq_ref(struct request *rq)
950 {
951 if (is_flush_rq(rq))
952 rq->end_io(rq, 0);
953 else if (refcount_dec_and_test(&rq->ref))
954 __blk_mq_free_request(rq);
955 }
956
blk_mq_check_expired(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)957 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
958 struct request *rq, void *priv, bool reserved)
959 {
960 unsigned long *next = priv;
961
962 /*
963 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
964 * be reallocated underneath the timeout handler's processing, then
965 * the expire check is reliable. If the request is not expired, then
966 * it was completed and reallocated as a new request after returning
967 * from blk_mq_check_expired().
968 */
969 if (blk_mq_req_expired(rq, next))
970 blk_mq_rq_timed_out(rq, reserved);
971 return true;
972 }
973
blk_mq_timeout_work(struct work_struct * work)974 static void blk_mq_timeout_work(struct work_struct *work)
975 {
976 struct request_queue *q =
977 container_of(work, struct request_queue, timeout_work);
978 unsigned long next = 0;
979 struct blk_mq_hw_ctx *hctx;
980 int i;
981
982 /* A deadlock might occur if a request is stuck requiring a
983 * timeout at the same time a queue freeze is waiting
984 * completion, since the timeout code would not be able to
985 * acquire the queue reference here.
986 *
987 * That's why we don't use blk_queue_enter here; instead, we use
988 * percpu_ref_tryget directly, because we need to be able to
989 * obtain a reference even in the short window between the queue
990 * starting to freeze, by dropping the first reference in
991 * blk_freeze_queue_start, and the moment the last request is
992 * consumed, marked by the instant q_usage_counter reaches
993 * zero.
994 */
995 if (!percpu_ref_tryget(&q->q_usage_counter))
996 return;
997
998 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
999
1000 if (next != 0) {
1001 mod_timer(&q->timeout, next);
1002 } else {
1003 /*
1004 * Request timeouts are handled as a forward rolling timer. If
1005 * we end up here it means that no requests are pending and
1006 * also that no request has been pending for a while. Mark
1007 * each hctx as idle.
1008 */
1009 queue_for_each_hw_ctx(q, hctx, i) {
1010 /* the hctx may be unmapped, so check it here */
1011 if (blk_mq_hw_queue_mapped(hctx))
1012 blk_mq_tag_idle(hctx);
1013 }
1014 }
1015 blk_queue_exit(q);
1016 }
1017
1018 struct flush_busy_ctx_data {
1019 struct blk_mq_hw_ctx *hctx;
1020 struct list_head *list;
1021 };
1022
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1023 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1024 {
1025 struct flush_busy_ctx_data *flush_data = data;
1026 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1027 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1028 enum hctx_type type = hctx->type;
1029
1030 spin_lock(&ctx->lock);
1031 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1032 sbitmap_clear_bit(sb, bitnr);
1033 spin_unlock(&ctx->lock);
1034 return true;
1035 }
1036
1037 /*
1038 * Process software queues that have been marked busy, splicing them
1039 * to the for-dispatch
1040 */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1041 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1042 {
1043 struct flush_busy_ctx_data data = {
1044 .hctx = hctx,
1045 .list = list,
1046 };
1047
1048 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1049 }
1050 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1051
1052 struct dispatch_rq_data {
1053 struct blk_mq_hw_ctx *hctx;
1054 struct request *rq;
1055 };
1056
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1057 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1058 void *data)
1059 {
1060 struct dispatch_rq_data *dispatch_data = data;
1061 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1062 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1063 enum hctx_type type = hctx->type;
1064
1065 spin_lock(&ctx->lock);
1066 if (!list_empty(&ctx->rq_lists[type])) {
1067 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1068 list_del_init(&dispatch_data->rq->queuelist);
1069 if (list_empty(&ctx->rq_lists[type]))
1070 sbitmap_clear_bit(sb, bitnr);
1071 }
1072 spin_unlock(&ctx->lock);
1073
1074 return !dispatch_data->rq;
1075 }
1076
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1077 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1078 struct blk_mq_ctx *start)
1079 {
1080 unsigned off = start ? start->index_hw[hctx->type] : 0;
1081 struct dispatch_rq_data data = {
1082 .hctx = hctx,
1083 .rq = NULL,
1084 };
1085
1086 __sbitmap_for_each_set(&hctx->ctx_map, off,
1087 dispatch_rq_from_ctx, &data);
1088
1089 return data.rq;
1090 }
1091
queued_to_index(unsigned int queued)1092 static inline unsigned int queued_to_index(unsigned int queued)
1093 {
1094 if (!queued)
1095 return 0;
1096
1097 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1098 }
1099
__blk_mq_get_driver_tag(struct request * rq)1100 static bool __blk_mq_get_driver_tag(struct request *rq)
1101 {
1102 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1103 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1104 int tag;
1105
1106 blk_mq_tag_busy(rq->mq_hctx);
1107
1108 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1109 bt = rq->mq_hctx->tags->breserved_tags;
1110 tag_offset = 0;
1111 } else {
1112 if (!hctx_may_queue(rq->mq_hctx, bt))
1113 return false;
1114 }
1115
1116 tag = __sbitmap_queue_get(bt);
1117 if (tag == BLK_MQ_NO_TAG)
1118 return false;
1119
1120 rq->tag = tag + tag_offset;
1121 return true;
1122 }
1123
blk_mq_get_driver_tag(struct request * rq)1124 static bool blk_mq_get_driver_tag(struct request *rq)
1125 {
1126 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1127
1128 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1129 return false;
1130
1131 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1132 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1133 rq->rq_flags |= RQF_MQ_INFLIGHT;
1134 __blk_mq_inc_active_requests(hctx);
1135 }
1136 hctx->tags->rqs[rq->tag] = rq;
1137 return true;
1138 }
1139
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1140 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1141 int flags, void *key)
1142 {
1143 struct blk_mq_hw_ctx *hctx;
1144
1145 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1146
1147 spin_lock(&hctx->dispatch_wait_lock);
1148 if (!list_empty(&wait->entry)) {
1149 struct sbitmap_queue *sbq;
1150
1151 list_del_init(&wait->entry);
1152 sbq = hctx->tags->bitmap_tags;
1153 atomic_dec(&sbq->ws_active);
1154 }
1155 spin_unlock(&hctx->dispatch_wait_lock);
1156
1157 blk_mq_run_hw_queue(hctx, true);
1158 return 1;
1159 }
1160
1161 /*
1162 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1163 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1164 * restart. For both cases, take care to check the condition again after
1165 * marking us as waiting.
1166 */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1167 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1168 struct request *rq)
1169 {
1170 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1171 struct wait_queue_head *wq;
1172 wait_queue_entry_t *wait;
1173 bool ret;
1174
1175 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1176 blk_mq_sched_mark_restart_hctx(hctx);
1177
1178 /*
1179 * It's possible that a tag was freed in the window between the
1180 * allocation failure and adding the hardware queue to the wait
1181 * queue.
1182 *
1183 * Don't clear RESTART here, someone else could have set it.
1184 * At most this will cost an extra queue run.
1185 */
1186 return blk_mq_get_driver_tag(rq);
1187 }
1188
1189 wait = &hctx->dispatch_wait;
1190 if (!list_empty_careful(&wait->entry))
1191 return false;
1192
1193 wq = &bt_wait_ptr(sbq, hctx)->wait;
1194
1195 spin_lock_irq(&wq->lock);
1196 spin_lock(&hctx->dispatch_wait_lock);
1197 if (!list_empty(&wait->entry)) {
1198 spin_unlock(&hctx->dispatch_wait_lock);
1199 spin_unlock_irq(&wq->lock);
1200 return false;
1201 }
1202
1203 atomic_inc(&sbq->ws_active);
1204 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1205 __add_wait_queue(wq, wait);
1206
1207 /*
1208 * It's possible that a tag was freed in the window between the
1209 * allocation failure and adding the hardware queue to the wait
1210 * queue.
1211 */
1212 ret = blk_mq_get_driver_tag(rq);
1213 if (!ret) {
1214 spin_unlock(&hctx->dispatch_wait_lock);
1215 spin_unlock_irq(&wq->lock);
1216 return false;
1217 }
1218
1219 /*
1220 * We got a tag, remove ourselves from the wait queue to ensure
1221 * someone else gets the wakeup.
1222 */
1223 list_del_init(&wait->entry);
1224 atomic_dec(&sbq->ws_active);
1225 spin_unlock(&hctx->dispatch_wait_lock);
1226 spin_unlock_irq(&wq->lock);
1227
1228 return true;
1229 }
1230
1231 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1232 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1233 /*
1234 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1235 * - EWMA is one simple way to compute running average value
1236 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1237 * - take 4 as factor for avoiding to get too small(0) result, and this
1238 * factor doesn't matter because EWMA decreases exponentially
1239 */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1240 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1241 {
1242 unsigned int ewma;
1243
1244 ewma = hctx->dispatch_busy;
1245
1246 if (!ewma && !busy)
1247 return;
1248
1249 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1250 if (busy)
1251 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1252 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1253
1254 hctx->dispatch_busy = ewma;
1255 }
1256
1257 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1258
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1259 static void blk_mq_handle_dev_resource(struct request *rq,
1260 struct list_head *list)
1261 {
1262 struct request *next =
1263 list_first_entry_or_null(list, struct request, queuelist);
1264
1265 /*
1266 * If an I/O scheduler has been configured and we got a driver tag for
1267 * the next request already, free it.
1268 */
1269 if (next)
1270 blk_mq_put_driver_tag(next);
1271
1272 list_add(&rq->queuelist, list);
1273 __blk_mq_requeue_request(rq);
1274 }
1275
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1276 static void blk_mq_handle_zone_resource(struct request *rq,
1277 struct list_head *zone_list)
1278 {
1279 /*
1280 * If we end up here it is because we cannot dispatch a request to a
1281 * specific zone due to LLD level zone-write locking or other zone
1282 * related resource not being available. In this case, set the request
1283 * aside in zone_list for retrying it later.
1284 */
1285 list_add(&rq->queuelist, zone_list);
1286 __blk_mq_requeue_request(rq);
1287 }
1288
1289 enum prep_dispatch {
1290 PREP_DISPATCH_OK,
1291 PREP_DISPATCH_NO_TAG,
1292 PREP_DISPATCH_NO_BUDGET,
1293 };
1294
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1295 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1296 bool need_budget)
1297 {
1298 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1299
1300 if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1301 blk_mq_put_driver_tag(rq);
1302 return PREP_DISPATCH_NO_BUDGET;
1303 }
1304
1305 if (!blk_mq_get_driver_tag(rq)) {
1306 /*
1307 * The initial allocation attempt failed, so we need to
1308 * rerun the hardware queue when a tag is freed. The
1309 * waitqueue takes care of that. If the queue is run
1310 * before we add this entry back on the dispatch list,
1311 * we'll re-run it below.
1312 */
1313 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1314 /*
1315 * All budgets not got from this function will be put
1316 * together during handling partial dispatch
1317 */
1318 if (need_budget)
1319 blk_mq_put_dispatch_budget(rq->q);
1320 return PREP_DISPATCH_NO_TAG;
1321 }
1322 }
1323
1324 return PREP_DISPATCH_OK;
1325 }
1326
1327 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,unsigned int nr_budgets)1328 static void blk_mq_release_budgets(struct request_queue *q,
1329 unsigned int nr_budgets)
1330 {
1331 int i;
1332
1333 for (i = 0; i < nr_budgets; i++)
1334 blk_mq_put_dispatch_budget(q);
1335 }
1336
1337 /*
1338 * Returns true if we did some work AND can potentially do more.
1339 */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)1340 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1341 unsigned int nr_budgets)
1342 {
1343 enum prep_dispatch prep;
1344 struct request_queue *q = hctx->queue;
1345 struct request *rq, *nxt;
1346 int errors, queued;
1347 blk_status_t ret = BLK_STS_OK;
1348 LIST_HEAD(zone_list);
1349 bool needs_resource = false;
1350
1351 if (list_empty(list))
1352 return false;
1353
1354 /*
1355 * Now process all the entries, sending them to the driver.
1356 */
1357 errors = queued = 0;
1358 do {
1359 struct blk_mq_queue_data bd;
1360
1361 rq = list_first_entry(list, struct request, queuelist);
1362
1363 WARN_ON_ONCE(hctx != rq->mq_hctx);
1364 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1365 if (prep != PREP_DISPATCH_OK)
1366 break;
1367
1368 list_del_init(&rq->queuelist);
1369
1370 bd.rq = rq;
1371
1372 /*
1373 * Flag last if we have no more requests, or if we have more
1374 * but can't assign a driver tag to it.
1375 */
1376 if (list_empty(list))
1377 bd.last = true;
1378 else {
1379 nxt = list_first_entry(list, struct request, queuelist);
1380 bd.last = !blk_mq_get_driver_tag(nxt);
1381 }
1382
1383 /*
1384 * once the request is queued to lld, no need to cover the
1385 * budget any more
1386 */
1387 if (nr_budgets)
1388 nr_budgets--;
1389 ret = q->mq_ops->queue_rq(hctx, &bd);
1390 switch (ret) {
1391 case BLK_STS_OK:
1392 queued++;
1393 break;
1394 case BLK_STS_RESOURCE:
1395 needs_resource = true;
1396 fallthrough;
1397 case BLK_STS_DEV_RESOURCE:
1398 blk_mq_handle_dev_resource(rq, list);
1399 goto out;
1400 case BLK_STS_ZONE_RESOURCE:
1401 /*
1402 * Move the request to zone_list and keep going through
1403 * the dispatch list to find more requests the drive can
1404 * accept.
1405 */
1406 blk_mq_handle_zone_resource(rq, &zone_list);
1407 needs_resource = true;
1408 break;
1409 default:
1410 errors++;
1411 blk_mq_end_request(rq, BLK_STS_IOERR);
1412 }
1413 } while (!list_empty(list));
1414 out:
1415 if (!list_empty(&zone_list))
1416 list_splice_tail_init(&zone_list, list);
1417
1418 hctx->dispatched[queued_to_index(queued)]++;
1419
1420 /* If we didn't flush the entire list, we could have told the driver
1421 * there was more coming, but that turned out to be a lie.
1422 */
1423 if ((!list_empty(list) || errors || needs_resource ||
1424 ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
1425 q->mq_ops->commit_rqs(hctx);
1426 /*
1427 * Any items that need requeuing? Stuff them into hctx->dispatch,
1428 * that is where we will continue on next queue run.
1429 */
1430 if (!list_empty(list)) {
1431 bool needs_restart;
1432 /* For non-shared tags, the RESTART check will suffice */
1433 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1434 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1435
1436 blk_mq_release_budgets(q, nr_budgets);
1437
1438 spin_lock(&hctx->lock);
1439 list_splice_tail_init(list, &hctx->dispatch);
1440 spin_unlock(&hctx->lock);
1441
1442 /*
1443 * Order adding requests to hctx->dispatch and checking
1444 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1445 * in blk_mq_sched_restart(). Avoid restart code path to
1446 * miss the new added requests to hctx->dispatch, meantime
1447 * SCHED_RESTART is observed here.
1448 */
1449 smp_mb();
1450
1451 /*
1452 * If SCHED_RESTART was set by the caller of this function and
1453 * it is no longer set that means that it was cleared by another
1454 * thread and hence that a queue rerun is needed.
1455 *
1456 * If 'no_tag' is set, that means that we failed getting
1457 * a driver tag with an I/O scheduler attached. If our dispatch
1458 * waitqueue is no longer active, ensure that we run the queue
1459 * AFTER adding our entries back to the list.
1460 *
1461 * If no I/O scheduler has been configured it is possible that
1462 * the hardware queue got stopped and restarted before requests
1463 * were pushed back onto the dispatch list. Rerun the queue to
1464 * avoid starvation. Notes:
1465 * - blk_mq_run_hw_queue() checks whether or not a queue has
1466 * been stopped before rerunning a queue.
1467 * - Some but not all block drivers stop a queue before
1468 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1469 * and dm-rq.
1470 *
1471 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1472 * bit is set, run queue after a delay to avoid IO stalls
1473 * that could otherwise occur if the queue is idle. We'll do
1474 * similar if we couldn't get budget or couldn't lock a zone
1475 * and SCHED_RESTART is set.
1476 */
1477 needs_restart = blk_mq_sched_needs_restart(hctx);
1478 if (prep == PREP_DISPATCH_NO_BUDGET)
1479 needs_resource = true;
1480 if (!needs_restart ||
1481 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1482 blk_mq_run_hw_queue(hctx, true);
1483 else if (needs_restart && needs_resource)
1484 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1485
1486 blk_mq_update_dispatch_busy(hctx, true);
1487 return false;
1488 } else
1489 blk_mq_update_dispatch_busy(hctx, false);
1490
1491 return (queued + errors) != 0;
1492 }
1493
1494 /**
1495 * __blk_mq_run_hw_queue - Run a hardware queue.
1496 * @hctx: Pointer to the hardware queue to run.
1497 *
1498 * Send pending requests to the hardware.
1499 */
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)1500 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1501 {
1502 int srcu_idx;
1503
1504 /*
1505 * We should be running this queue from one of the CPUs that
1506 * are mapped to it.
1507 *
1508 * There are at least two related races now between setting
1509 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1510 * __blk_mq_run_hw_queue():
1511 *
1512 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1513 * but later it becomes online, then this warning is harmless
1514 * at all
1515 *
1516 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1517 * but later it becomes offline, then the warning can't be
1518 * triggered, and we depend on blk-mq timeout handler to
1519 * handle dispatched requests to this hctx
1520 */
1521 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1522 cpu_online(hctx->next_cpu)) {
1523 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1524 raw_smp_processor_id(),
1525 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1526 dump_stack();
1527 }
1528
1529 /*
1530 * We can't run the queue inline with ints disabled. Ensure that
1531 * we catch bad users of this early.
1532 */
1533 WARN_ON_ONCE(in_interrupt());
1534
1535 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1536
1537 hctx_lock(hctx, &srcu_idx);
1538 blk_mq_sched_dispatch_requests(hctx);
1539 hctx_unlock(hctx, srcu_idx);
1540 }
1541
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)1542 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1543 {
1544 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1545
1546 if (cpu >= nr_cpu_ids)
1547 cpu = cpumask_first(hctx->cpumask);
1548 return cpu;
1549 }
1550
1551 /*
1552 * It'd be great if the workqueue API had a way to pass
1553 * in a mask and had some smarts for more clever placement.
1554 * For now we just round-robin here, switching for every
1555 * BLK_MQ_CPU_WORK_BATCH queued items.
1556 */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)1557 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1558 {
1559 bool tried = false;
1560 int next_cpu = hctx->next_cpu;
1561
1562 if (hctx->queue->nr_hw_queues == 1)
1563 return WORK_CPU_UNBOUND;
1564
1565 if (--hctx->next_cpu_batch <= 0) {
1566 select_cpu:
1567 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1568 cpu_online_mask);
1569 if (next_cpu >= nr_cpu_ids)
1570 next_cpu = blk_mq_first_mapped_cpu(hctx);
1571 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1572 }
1573
1574 /*
1575 * Do unbound schedule if we can't find a online CPU for this hctx,
1576 * and it should only happen in the path of handling CPU DEAD.
1577 */
1578 if (!cpu_online(next_cpu)) {
1579 if (!tried) {
1580 tried = true;
1581 goto select_cpu;
1582 }
1583
1584 /*
1585 * Make sure to re-select CPU next time once after CPUs
1586 * in hctx->cpumask become online again.
1587 */
1588 hctx->next_cpu = next_cpu;
1589 hctx->next_cpu_batch = 1;
1590 return WORK_CPU_UNBOUND;
1591 }
1592
1593 hctx->next_cpu = next_cpu;
1594 return next_cpu;
1595 }
1596
1597 /**
1598 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1599 * @hctx: Pointer to the hardware queue to run.
1600 * @async: If we want to run the queue asynchronously.
1601 * @msecs: Microseconds of delay to wait before running the queue.
1602 *
1603 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1604 * with a delay of @msecs.
1605 */
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)1606 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1607 unsigned long msecs)
1608 {
1609 if (unlikely(blk_mq_hctx_stopped(hctx)))
1610 return;
1611
1612 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1613 int cpu = get_cpu();
1614 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1615 __blk_mq_run_hw_queue(hctx);
1616 put_cpu();
1617 return;
1618 }
1619
1620 put_cpu();
1621 }
1622
1623 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1624 msecs_to_jiffies(msecs));
1625 }
1626
1627 /**
1628 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1629 * @hctx: Pointer to the hardware queue to run.
1630 * @msecs: Microseconds of delay to wait before running the queue.
1631 *
1632 * Run a hardware queue asynchronously with a delay of @msecs.
1633 */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)1634 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1635 {
1636 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1637 }
1638 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1639
1640 /**
1641 * blk_mq_run_hw_queue - Start to run a hardware queue.
1642 * @hctx: Pointer to the hardware queue to run.
1643 * @async: If we want to run the queue asynchronously.
1644 *
1645 * Check if the request queue is not in a quiesced state and if there are
1646 * pending requests to be sent. If this is true, run the queue to send requests
1647 * to hardware.
1648 */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1649 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1650 {
1651 int srcu_idx;
1652 bool need_run;
1653
1654 /*
1655 * When queue is quiesced, we may be switching io scheduler, or
1656 * updating nr_hw_queues, or other things, and we can't run queue
1657 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1658 *
1659 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1660 * quiesced.
1661 */
1662 hctx_lock(hctx, &srcu_idx);
1663 need_run = !blk_queue_quiesced(hctx->queue) &&
1664 blk_mq_hctx_has_pending(hctx);
1665 hctx_unlock(hctx, srcu_idx);
1666
1667 if (need_run)
1668 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1669 }
1670 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1671
1672 /**
1673 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1674 * @q: Pointer to the request queue to run.
1675 * @async: If we want to run the queue asynchronously.
1676 */
blk_mq_run_hw_queues(struct request_queue * q,bool async)1677 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1678 {
1679 struct blk_mq_hw_ctx *hctx;
1680 int i;
1681
1682 queue_for_each_hw_ctx(q, hctx, i) {
1683 if (blk_mq_hctx_stopped(hctx))
1684 continue;
1685
1686 blk_mq_run_hw_queue(hctx, async);
1687 }
1688 }
1689 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1690
1691 /**
1692 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1693 * @q: Pointer to the request queue to run.
1694 * @msecs: Microseconds of delay to wait before running the queues.
1695 */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)1696 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1697 {
1698 struct blk_mq_hw_ctx *hctx;
1699 int i;
1700
1701 queue_for_each_hw_ctx(q, hctx, i) {
1702 if (blk_mq_hctx_stopped(hctx))
1703 continue;
1704
1705 blk_mq_delay_run_hw_queue(hctx, msecs);
1706 }
1707 }
1708 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1709
1710 /**
1711 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1712 * @q: request queue.
1713 *
1714 * The caller is responsible for serializing this function against
1715 * blk_mq_{start,stop}_hw_queue().
1716 */
blk_mq_queue_stopped(struct request_queue * q)1717 bool blk_mq_queue_stopped(struct request_queue *q)
1718 {
1719 struct blk_mq_hw_ctx *hctx;
1720 int i;
1721
1722 queue_for_each_hw_ctx(q, hctx, i)
1723 if (blk_mq_hctx_stopped(hctx))
1724 return true;
1725
1726 return false;
1727 }
1728 EXPORT_SYMBOL(blk_mq_queue_stopped);
1729
1730 /*
1731 * This function is often used for pausing .queue_rq() by driver when
1732 * there isn't enough resource or some conditions aren't satisfied, and
1733 * BLK_STS_RESOURCE is usually returned.
1734 *
1735 * We do not guarantee that dispatch can be drained or blocked
1736 * after blk_mq_stop_hw_queue() returns. Please use
1737 * blk_mq_quiesce_queue() for that requirement.
1738 */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)1739 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1740 {
1741 cancel_delayed_work(&hctx->run_work);
1742
1743 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1744 }
1745 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1746
1747 /*
1748 * This function is often used for pausing .queue_rq() by driver when
1749 * there isn't enough resource or some conditions aren't satisfied, and
1750 * BLK_STS_RESOURCE is usually returned.
1751 *
1752 * We do not guarantee that dispatch can be drained or blocked
1753 * after blk_mq_stop_hw_queues() returns. Please use
1754 * blk_mq_quiesce_queue() for that requirement.
1755 */
blk_mq_stop_hw_queues(struct request_queue * q)1756 void blk_mq_stop_hw_queues(struct request_queue *q)
1757 {
1758 struct blk_mq_hw_ctx *hctx;
1759 int i;
1760
1761 queue_for_each_hw_ctx(q, hctx, i)
1762 blk_mq_stop_hw_queue(hctx);
1763 }
1764 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1765
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)1766 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1767 {
1768 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1769
1770 blk_mq_run_hw_queue(hctx, false);
1771 }
1772 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1773
blk_mq_start_hw_queues(struct request_queue * q)1774 void blk_mq_start_hw_queues(struct request_queue *q)
1775 {
1776 struct blk_mq_hw_ctx *hctx;
1777 int i;
1778
1779 queue_for_each_hw_ctx(q, hctx, i)
1780 blk_mq_start_hw_queue(hctx);
1781 }
1782 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1783
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1784 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1785 {
1786 if (!blk_mq_hctx_stopped(hctx))
1787 return;
1788
1789 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1790 blk_mq_run_hw_queue(hctx, async);
1791 }
1792 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1793
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)1794 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1795 {
1796 struct blk_mq_hw_ctx *hctx;
1797 int i;
1798
1799 queue_for_each_hw_ctx(q, hctx, i)
1800 blk_mq_start_stopped_hw_queue(hctx, async);
1801 }
1802 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1803
blk_mq_run_work_fn(struct work_struct * work)1804 static void blk_mq_run_work_fn(struct work_struct *work)
1805 {
1806 struct blk_mq_hw_ctx *hctx;
1807
1808 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1809
1810 /*
1811 * If we are stopped, don't run the queue.
1812 */
1813 if (blk_mq_hctx_stopped(hctx))
1814 return;
1815
1816 __blk_mq_run_hw_queue(hctx);
1817 }
1818
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1819 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1820 struct request *rq,
1821 bool at_head)
1822 {
1823 struct blk_mq_ctx *ctx = rq->mq_ctx;
1824 enum hctx_type type = hctx->type;
1825
1826 lockdep_assert_held(&ctx->lock);
1827
1828 trace_block_rq_insert(rq);
1829
1830 if (at_head)
1831 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1832 else
1833 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1834 }
1835
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1836 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1837 bool at_head)
1838 {
1839 struct blk_mq_ctx *ctx = rq->mq_ctx;
1840
1841 lockdep_assert_held(&ctx->lock);
1842
1843 __blk_mq_insert_req_list(hctx, rq, at_head);
1844 blk_mq_hctx_mark_pending(hctx, ctx);
1845 }
1846
1847 /**
1848 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1849 * @rq: Pointer to request to be inserted.
1850 * @at_head: true if the request should be inserted at the head of the list.
1851 * @run_queue: If we should run the hardware queue after inserting the request.
1852 *
1853 * Should only be used carefully, when the caller knows we want to
1854 * bypass a potential IO scheduler on the target device.
1855 */
blk_mq_request_bypass_insert(struct request * rq,bool at_head,bool run_queue)1856 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1857 bool run_queue)
1858 {
1859 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1860
1861 spin_lock(&hctx->lock);
1862 if (at_head)
1863 list_add(&rq->queuelist, &hctx->dispatch);
1864 else
1865 list_add_tail(&rq->queuelist, &hctx->dispatch);
1866 spin_unlock(&hctx->lock);
1867
1868 if (run_queue)
1869 blk_mq_run_hw_queue(hctx, false);
1870 }
1871
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)1872 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1873 struct list_head *list)
1874
1875 {
1876 struct request *rq;
1877 enum hctx_type type = hctx->type;
1878
1879 /*
1880 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1881 * offline now
1882 */
1883 list_for_each_entry(rq, list, queuelist) {
1884 BUG_ON(rq->mq_ctx != ctx);
1885 trace_block_rq_insert(rq);
1886 }
1887
1888 spin_lock(&ctx->lock);
1889 list_splice_tail_init(list, &ctx->rq_lists[type]);
1890 blk_mq_hctx_mark_pending(hctx, ctx);
1891 spin_unlock(&ctx->lock);
1892 }
1893
plug_rq_cmp(void * priv,const struct list_head * a,const struct list_head * b)1894 static int plug_rq_cmp(void *priv, const struct list_head *a,
1895 const struct list_head *b)
1896 {
1897 struct request *rqa = container_of(a, struct request, queuelist);
1898 struct request *rqb = container_of(b, struct request, queuelist);
1899
1900 if (rqa->mq_ctx != rqb->mq_ctx)
1901 return rqa->mq_ctx > rqb->mq_ctx;
1902 if (rqa->mq_hctx != rqb->mq_hctx)
1903 return rqa->mq_hctx > rqb->mq_hctx;
1904
1905 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1906 }
1907
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)1908 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1909 {
1910 LIST_HEAD(list);
1911
1912 if (list_empty(&plug->mq_list))
1913 return;
1914 list_splice_init(&plug->mq_list, &list);
1915
1916 if (plug->rq_count > 2 && plug->multiple_queues)
1917 list_sort(NULL, &list, plug_rq_cmp);
1918
1919 plug->rq_count = 0;
1920
1921 do {
1922 struct list_head rq_list;
1923 struct request *rq, *head_rq = list_entry_rq(list.next);
1924 struct list_head *pos = &head_rq->queuelist; /* skip first */
1925 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1926 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1927 unsigned int depth = 1;
1928
1929 list_for_each_continue(pos, &list) {
1930 rq = list_entry_rq(pos);
1931 BUG_ON(!rq->q);
1932 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1933 break;
1934 depth++;
1935 }
1936
1937 list_cut_before(&rq_list, &list, pos);
1938 trace_block_unplug(head_rq->q, depth, !from_schedule);
1939 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1940 from_schedule);
1941 } while(!list_empty(&list));
1942 }
1943
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)1944 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1945 unsigned int nr_segs)
1946 {
1947 int err;
1948
1949 if (bio->bi_opf & REQ_RAHEAD)
1950 rq->cmd_flags |= REQ_FAILFAST_MASK;
1951
1952 rq->__sector = bio->bi_iter.bi_sector;
1953 rq->write_hint = bio->bi_write_hint;
1954 blk_rq_bio_prep(rq, bio, nr_segs);
1955
1956 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1957 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1958 WARN_ON_ONCE(err);
1959
1960 blk_account_io_start(rq);
1961 }
1962
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool last)1963 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1964 struct request *rq,
1965 blk_qc_t *cookie, bool last)
1966 {
1967 struct request_queue *q = rq->q;
1968 struct blk_mq_queue_data bd = {
1969 .rq = rq,
1970 .last = last,
1971 };
1972 blk_qc_t new_cookie;
1973 blk_status_t ret;
1974
1975 new_cookie = request_to_qc_t(hctx, rq);
1976
1977 /*
1978 * For OK queue, we are done. For error, caller may kill it.
1979 * Any other error (busy), just add it to our list as we
1980 * previously would have done.
1981 */
1982 ret = q->mq_ops->queue_rq(hctx, &bd);
1983 switch (ret) {
1984 case BLK_STS_OK:
1985 blk_mq_update_dispatch_busy(hctx, false);
1986 *cookie = new_cookie;
1987 break;
1988 case BLK_STS_RESOURCE:
1989 case BLK_STS_DEV_RESOURCE:
1990 blk_mq_update_dispatch_busy(hctx, true);
1991 __blk_mq_requeue_request(rq);
1992 break;
1993 default:
1994 blk_mq_update_dispatch_busy(hctx, false);
1995 *cookie = BLK_QC_T_NONE;
1996 break;
1997 }
1998
1999 return ret;
2000 }
2001
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool bypass_insert,bool last)2002 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2003 struct request *rq,
2004 blk_qc_t *cookie,
2005 bool bypass_insert, bool last)
2006 {
2007 struct request_queue *q = rq->q;
2008 bool run_queue = true;
2009
2010 /*
2011 * RCU or SRCU read lock is needed before checking quiesced flag.
2012 *
2013 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2014 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2015 * and avoid driver to try to dispatch again.
2016 */
2017 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2018 run_queue = false;
2019 bypass_insert = false;
2020 goto insert;
2021 }
2022
2023 if (q->elevator && !bypass_insert)
2024 goto insert;
2025
2026 if (!blk_mq_get_dispatch_budget(q))
2027 goto insert;
2028
2029 if (!blk_mq_get_driver_tag(rq)) {
2030 blk_mq_put_dispatch_budget(q);
2031 goto insert;
2032 }
2033
2034 return __blk_mq_issue_directly(hctx, rq, cookie, last);
2035 insert:
2036 if (bypass_insert)
2037 return BLK_STS_RESOURCE;
2038
2039 blk_mq_sched_insert_request(rq, false, run_queue, false);
2040
2041 return BLK_STS_OK;
2042 }
2043
2044 /**
2045 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2046 * @hctx: Pointer of the associated hardware queue.
2047 * @rq: Pointer to request to be sent.
2048 * @cookie: Request queue cookie.
2049 *
2050 * If the device has enough resources to accept a new request now, send the
2051 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2052 * we can try send it another time in the future. Requests inserted at this
2053 * queue have higher priority.
2054 */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)2055 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2056 struct request *rq, blk_qc_t *cookie)
2057 {
2058 blk_status_t ret;
2059 int srcu_idx;
2060
2061 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2062
2063 hctx_lock(hctx, &srcu_idx);
2064
2065 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2066 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2067 blk_mq_request_bypass_insert(rq, false, true);
2068 else if (ret != BLK_STS_OK)
2069 blk_mq_end_request(rq, ret);
2070
2071 hctx_unlock(hctx, srcu_idx);
2072 }
2073
blk_mq_request_issue_directly(struct request * rq,bool last)2074 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2075 {
2076 blk_status_t ret;
2077 int srcu_idx;
2078 blk_qc_t unused_cookie;
2079 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2080
2081 hctx_lock(hctx, &srcu_idx);
2082 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2083 hctx_unlock(hctx, srcu_idx);
2084
2085 return ret;
2086 }
2087
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2088 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2089 struct list_head *list)
2090 {
2091 int queued = 0;
2092 int errors = 0;
2093
2094 while (!list_empty(list)) {
2095 blk_status_t ret;
2096 struct request *rq = list_first_entry(list, struct request,
2097 queuelist);
2098
2099 list_del_init(&rq->queuelist);
2100 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2101 if (ret != BLK_STS_OK) {
2102 errors++;
2103 if (ret == BLK_STS_RESOURCE ||
2104 ret == BLK_STS_DEV_RESOURCE) {
2105 blk_mq_request_bypass_insert(rq, false,
2106 list_empty(list));
2107 break;
2108 }
2109 blk_mq_end_request(rq, ret);
2110 } else
2111 queued++;
2112 }
2113
2114 /*
2115 * If we didn't flush the entire list, we could have told
2116 * the driver there was more coming, but that turned out to
2117 * be a lie.
2118 */
2119 if ((!list_empty(list) || errors) &&
2120 hctx->queue->mq_ops->commit_rqs && queued)
2121 hctx->queue->mq_ops->commit_rqs(hctx);
2122 }
2123
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)2124 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2125 {
2126 list_add_tail(&rq->queuelist, &plug->mq_list);
2127 plug->rq_count++;
2128 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2129 struct request *tmp;
2130
2131 tmp = list_first_entry(&plug->mq_list, struct request,
2132 queuelist);
2133 if (tmp->q != rq->q)
2134 plug->multiple_queues = true;
2135 }
2136 }
2137
2138 /*
2139 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2140 * queues. This is important for md arrays to benefit from merging
2141 * requests.
2142 */
blk_plug_max_rq_count(struct blk_plug * plug)2143 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2144 {
2145 if (plug->multiple_queues)
2146 return BLK_MAX_REQUEST_COUNT * 2;
2147 return BLK_MAX_REQUEST_COUNT;
2148 }
2149
2150 /**
2151 * blk_mq_submit_bio - Create and send a request to block device.
2152 * @bio: Bio pointer.
2153 *
2154 * Builds up a request structure from @q and @bio and send to the device. The
2155 * request may not be queued directly to hardware if:
2156 * * This request can be merged with another one
2157 * * We want to place request at plug queue for possible future merging
2158 * * There is an IO scheduler active at this queue
2159 *
2160 * It will not queue the request if there is an error with the bio, or at the
2161 * request creation.
2162 *
2163 * Returns: Request queue cookie.
2164 */
blk_mq_submit_bio(struct bio * bio)2165 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2166 {
2167 struct request_queue *q = bio->bi_disk->queue;
2168 const int is_sync = op_is_sync(bio->bi_opf);
2169 const int is_flush_fua = op_is_flush(bio->bi_opf);
2170 struct blk_mq_alloc_data data = {
2171 .q = q,
2172 };
2173 struct request *rq;
2174 struct blk_plug *plug;
2175 struct request *same_queue_rq = NULL;
2176 unsigned int nr_segs;
2177 blk_qc_t cookie;
2178 blk_status_t ret;
2179
2180 blk_queue_bounce(q, &bio);
2181 __blk_queue_split(&bio, &nr_segs);
2182
2183 if (!bio_integrity_prep(bio))
2184 goto queue_exit;
2185
2186 if (!is_flush_fua && !blk_queue_nomerges(q) &&
2187 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2188 goto queue_exit;
2189
2190 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2191 goto queue_exit;
2192
2193 rq_qos_throttle(q, bio);
2194
2195 data.cmd_flags = bio->bi_opf;
2196 rq = __blk_mq_alloc_request(&data);
2197 if (unlikely(!rq)) {
2198 rq_qos_cleanup(q, bio);
2199 if (bio->bi_opf & REQ_NOWAIT)
2200 bio_wouldblock_error(bio);
2201 goto queue_exit;
2202 }
2203
2204 trace_block_getrq(q, bio, bio->bi_opf);
2205
2206 rq_qos_track(q, rq, bio);
2207
2208 cookie = request_to_qc_t(data.hctx, rq);
2209
2210 blk_mq_bio_to_request(rq, bio, nr_segs);
2211
2212 ret = blk_crypto_rq_get_keyslot(rq);
2213 if (ret != BLK_STS_OK) {
2214 bio->bi_status = ret;
2215 bio_endio(bio);
2216 blk_mq_free_request(rq);
2217 return BLK_QC_T_NONE;
2218 }
2219
2220 plug = blk_mq_plug(q, bio);
2221 if (unlikely(is_flush_fua)) {
2222 /* Bypass scheduler for flush requests */
2223 blk_insert_flush(rq);
2224 blk_mq_run_hw_queue(data.hctx, true);
2225 } else if (plug && (q->nr_hw_queues == 1 ||
2226 blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2227 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2228 /*
2229 * Use plugging if we have a ->commit_rqs() hook as well, as
2230 * we know the driver uses bd->last in a smart fashion.
2231 *
2232 * Use normal plugging if this disk is slow HDD, as sequential
2233 * IO may benefit a lot from plug merging.
2234 */
2235 unsigned int request_count = plug->rq_count;
2236 struct request *last = NULL;
2237
2238 if (!request_count)
2239 trace_block_plug(q);
2240 else
2241 last = list_entry_rq(plug->mq_list.prev);
2242
2243 if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2244 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2245 blk_flush_plug_list(plug, false);
2246 trace_block_plug(q);
2247 }
2248
2249 blk_add_rq_to_plug(plug, rq);
2250 } else if (q->elevator) {
2251 /* Insert the request at the IO scheduler queue */
2252 blk_mq_sched_insert_request(rq, false, true, true);
2253 } else if (plug && !blk_queue_nomerges(q)) {
2254 /*
2255 * We do limited plugging. If the bio can be merged, do that.
2256 * Otherwise the existing request in the plug list will be
2257 * issued. So the plug list will have one request at most
2258 * The plug list might get flushed before this. If that happens,
2259 * the plug list is empty, and same_queue_rq is invalid.
2260 */
2261 if (list_empty(&plug->mq_list))
2262 same_queue_rq = NULL;
2263 if (same_queue_rq) {
2264 list_del_init(&same_queue_rq->queuelist);
2265 plug->rq_count--;
2266 }
2267 blk_add_rq_to_plug(plug, rq);
2268 trace_block_plug(q);
2269
2270 if (same_queue_rq) {
2271 data.hctx = same_queue_rq->mq_hctx;
2272 trace_block_unplug(q, 1, true);
2273 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2274 &cookie);
2275 }
2276 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2277 !data.hctx->dispatch_busy) {
2278 /*
2279 * There is no scheduler and we can try to send directly
2280 * to the hardware.
2281 */
2282 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2283 } else {
2284 /* Default case. */
2285 blk_mq_sched_insert_request(rq, false, true, true);
2286 }
2287
2288 return cookie;
2289 queue_exit:
2290 blk_queue_exit(q);
2291 return BLK_QC_T_NONE;
2292 }
2293
order_to_size(unsigned int order)2294 static size_t order_to_size(unsigned int order)
2295 {
2296 return (size_t)PAGE_SIZE << order;
2297 }
2298
2299 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2300 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2301 struct blk_mq_tags *tags, unsigned int hctx_idx)
2302 {
2303 struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2304 struct page *page;
2305 unsigned long flags;
2306
2307 list_for_each_entry(page, &tags->page_list, lru) {
2308 unsigned long start = (unsigned long)page_address(page);
2309 unsigned long end = start + order_to_size(page->private);
2310 int i;
2311
2312 for (i = 0; i < set->queue_depth; i++) {
2313 struct request *rq = drv_tags->rqs[i];
2314 unsigned long rq_addr = (unsigned long)rq;
2315
2316 if (rq_addr >= start && rq_addr < end) {
2317 WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2318 cmpxchg(&drv_tags->rqs[i], rq, NULL);
2319 }
2320 }
2321 }
2322
2323 /*
2324 * Wait until all pending iteration is done.
2325 *
2326 * Request reference is cleared and it is guaranteed to be observed
2327 * after the ->lock is released.
2328 */
2329 spin_lock_irqsave(&drv_tags->lock, flags);
2330 spin_unlock_irqrestore(&drv_tags->lock, flags);
2331 }
2332
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2333 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2334 unsigned int hctx_idx)
2335 {
2336 struct page *page;
2337
2338 if (tags->rqs && set->ops->exit_request) {
2339 int i;
2340
2341 for (i = 0; i < tags->nr_tags; i++) {
2342 struct request *rq = tags->static_rqs[i];
2343
2344 if (!rq)
2345 continue;
2346 set->ops->exit_request(set, rq, hctx_idx);
2347 tags->static_rqs[i] = NULL;
2348 }
2349 }
2350
2351 blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2352
2353 while (!list_empty(&tags->page_list)) {
2354 page = list_first_entry(&tags->page_list, struct page, lru);
2355 list_del_init(&page->lru);
2356 /*
2357 * Remove kmemleak object previously allocated in
2358 * blk_mq_alloc_rqs().
2359 */
2360 kmemleak_free(page_address(page));
2361 __free_pages(page, page->private);
2362 }
2363 }
2364
blk_mq_free_rq_map(struct blk_mq_tags * tags,unsigned int flags)2365 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2366 {
2367 kfree(tags->rqs);
2368 tags->rqs = NULL;
2369 kfree(tags->static_rqs);
2370 tags->static_rqs = NULL;
2371
2372 blk_mq_free_tags(tags, flags);
2373 }
2374
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags,unsigned int flags)2375 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2376 unsigned int hctx_idx,
2377 unsigned int nr_tags,
2378 unsigned int reserved_tags,
2379 unsigned int flags)
2380 {
2381 struct blk_mq_tags *tags;
2382 int node;
2383
2384 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2385 if (node == NUMA_NO_NODE)
2386 node = set->numa_node;
2387
2388 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2389 if (!tags)
2390 return NULL;
2391
2392 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2393 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2394 node);
2395 if (!tags->rqs) {
2396 blk_mq_free_tags(tags, flags);
2397 return NULL;
2398 }
2399
2400 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2401 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2402 node);
2403 if (!tags->static_rqs) {
2404 kfree(tags->rqs);
2405 blk_mq_free_tags(tags, flags);
2406 return NULL;
2407 }
2408
2409 return tags;
2410 }
2411
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)2412 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2413 unsigned int hctx_idx, int node)
2414 {
2415 int ret;
2416
2417 if (set->ops->init_request) {
2418 ret = set->ops->init_request(set, rq, hctx_idx, node);
2419 if (ret)
2420 return ret;
2421 }
2422
2423 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2424 return 0;
2425 }
2426
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)2427 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2428 unsigned int hctx_idx, unsigned int depth)
2429 {
2430 unsigned int i, j, entries_per_page, max_order = 4;
2431 size_t rq_size, left;
2432 int node;
2433
2434 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2435 if (node == NUMA_NO_NODE)
2436 node = set->numa_node;
2437
2438 INIT_LIST_HEAD(&tags->page_list);
2439
2440 /*
2441 * rq_size is the size of the request plus driver payload, rounded
2442 * to the cacheline size
2443 */
2444 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2445 cache_line_size());
2446 left = rq_size * depth;
2447
2448 for (i = 0; i < depth; ) {
2449 int this_order = max_order;
2450 struct page *page;
2451 int to_do;
2452 void *p;
2453
2454 while (this_order && left < order_to_size(this_order - 1))
2455 this_order--;
2456
2457 do {
2458 page = alloc_pages_node(node,
2459 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2460 this_order);
2461 if (page)
2462 break;
2463 if (!this_order--)
2464 break;
2465 if (order_to_size(this_order) < rq_size)
2466 break;
2467 } while (1);
2468
2469 if (!page)
2470 goto fail;
2471
2472 page->private = this_order;
2473 list_add_tail(&page->lru, &tags->page_list);
2474
2475 p = page_address(page);
2476 /*
2477 * Allow kmemleak to scan these pages as they contain pointers
2478 * to additional allocations like via ops->init_request().
2479 */
2480 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2481 entries_per_page = order_to_size(this_order) / rq_size;
2482 to_do = min(entries_per_page, depth - i);
2483 left -= to_do * rq_size;
2484 for (j = 0; j < to_do; j++) {
2485 struct request *rq = p;
2486
2487 tags->static_rqs[i] = rq;
2488 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2489 tags->static_rqs[i] = NULL;
2490 goto fail;
2491 }
2492
2493 p += rq_size;
2494 i++;
2495 }
2496 }
2497 return 0;
2498
2499 fail:
2500 blk_mq_free_rqs(set, tags, hctx_idx);
2501 return -ENOMEM;
2502 }
2503
2504 struct rq_iter_data {
2505 struct blk_mq_hw_ctx *hctx;
2506 bool has_rq;
2507 };
2508
blk_mq_has_request(struct request * rq,void * data,bool reserved)2509 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2510 {
2511 struct rq_iter_data *iter_data = data;
2512
2513 if (rq->mq_hctx != iter_data->hctx)
2514 return true;
2515 iter_data->has_rq = true;
2516 return false;
2517 }
2518
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)2519 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2520 {
2521 struct blk_mq_tags *tags = hctx->sched_tags ?
2522 hctx->sched_tags : hctx->tags;
2523 struct rq_iter_data data = {
2524 .hctx = hctx,
2525 };
2526
2527 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2528 return data.has_rq;
2529 }
2530
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)2531 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2532 struct blk_mq_hw_ctx *hctx)
2533 {
2534 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2535 return false;
2536 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2537 return false;
2538 return true;
2539 }
2540
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)2541 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2542 {
2543 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2544 struct blk_mq_hw_ctx, cpuhp_online);
2545
2546 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2547 !blk_mq_last_cpu_in_hctx(cpu, hctx))
2548 return 0;
2549
2550 /*
2551 * Prevent new request from being allocated on the current hctx.
2552 *
2553 * The smp_mb__after_atomic() Pairs with the implied barrier in
2554 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
2555 * seen once we return from the tag allocator.
2556 */
2557 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2558 smp_mb__after_atomic();
2559
2560 /*
2561 * Try to grab a reference to the queue and wait for any outstanding
2562 * requests. If we could not grab a reference the queue has been
2563 * frozen and there are no requests.
2564 */
2565 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2566 while (blk_mq_hctx_has_requests(hctx))
2567 msleep(5);
2568 percpu_ref_put(&hctx->queue->q_usage_counter);
2569 }
2570
2571 return 0;
2572 }
2573
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)2574 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2575 {
2576 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2577 struct blk_mq_hw_ctx, cpuhp_online);
2578
2579 if (cpumask_test_cpu(cpu, hctx->cpumask))
2580 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2581 return 0;
2582 }
2583
2584 /*
2585 * 'cpu' is going away. splice any existing rq_list entries from this
2586 * software queue to the hw queue dispatch list, and ensure that it
2587 * gets run.
2588 */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)2589 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2590 {
2591 struct blk_mq_hw_ctx *hctx;
2592 struct blk_mq_ctx *ctx;
2593 LIST_HEAD(tmp);
2594 enum hctx_type type;
2595
2596 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2597 if (!cpumask_test_cpu(cpu, hctx->cpumask))
2598 return 0;
2599
2600 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2601 type = hctx->type;
2602
2603 spin_lock(&ctx->lock);
2604 if (!list_empty(&ctx->rq_lists[type])) {
2605 list_splice_init(&ctx->rq_lists[type], &tmp);
2606 blk_mq_hctx_clear_pending(hctx, ctx);
2607 }
2608 spin_unlock(&ctx->lock);
2609
2610 if (list_empty(&tmp))
2611 return 0;
2612
2613 spin_lock(&hctx->lock);
2614 list_splice_tail_init(&tmp, &hctx->dispatch);
2615 spin_unlock(&hctx->lock);
2616
2617 blk_mq_run_hw_queue(hctx, true);
2618 return 0;
2619 }
2620
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)2621 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2622 {
2623 if (!(hctx->flags & BLK_MQ_F_STACKING))
2624 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2625 &hctx->cpuhp_online);
2626 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2627 &hctx->cpuhp_dead);
2628 }
2629
2630 /*
2631 * Before freeing hw queue, clearing the flush request reference in
2632 * tags->rqs[] for avoiding potential UAF.
2633 */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)2634 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2635 unsigned int queue_depth, struct request *flush_rq)
2636 {
2637 int i;
2638 unsigned long flags;
2639
2640 /* The hw queue may not be mapped yet */
2641 if (!tags)
2642 return;
2643
2644 WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2645
2646 for (i = 0; i < queue_depth; i++)
2647 cmpxchg(&tags->rqs[i], flush_rq, NULL);
2648
2649 /*
2650 * Wait until all pending iteration is done.
2651 *
2652 * Request reference is cleared and it is guaranteed to be observed
2653 * after the ->lock is released.
2654 */
2655 spin_lock_irqsave(&tags->lock, flags);
2656 spin_unlock_irqrestore(&tags->lock, flags);
2657 }
2658
2659 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)2660 static void blk_mq_exit_hctx(struct request_queue *q,
2661 struct blk_mq_tag_set *set,
2662 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2663 {
2664 struct request *flush_rq = hctx->fq->flush_rq;
2665
2666 if (blk_mq_hw_queue_mapped(hctx))
2667 blk_mq_tag_idle(hctx);
2668
2669 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2670 set->queue_depth, flush_rq);
2671 if (set->ops->exit_request)
2672 set->ops->exit_request(set, flush_rq, hctx_idx);
2673
2674 if (set->ops->exit_hctx)
2675 set->ops->exit_hctx(hctx, hctx_idx);
2676
2677 blk_mq_remove_cpuhp(hctx);
2678
2679 spin_lock(&q->unused_hctx_lock);
2680 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2681 spin_unlock(&q->unused_hctx_lock);
2682 }
2683
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)2684 static void blk_mq_exit_hw_queues(struct request_queue *q,
2685 struct blk_mq_tag_set *set, int nr_queue)
2686 {
2687 struct blk_mq_hw_ctx *hctx;
2688 unsigned int i;
2689
2690 queue_for_each_hw_ctx(q, hctx, i) {
2691 if (i == nr_queue)
2692 break;
2693 blk_mq_debugfs_unregister_hctx(hctx);
2694 blk_mq_exit_hctx(q, set, hctx, i);
2695 }
2696 }
2697
blk_mq_hw_ctx_size(struct blk_mq_tag_set * tag_set)2698 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2699 {
2700 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2701
2702 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2703 __alignof__(struct blk_mq_hw_ctx)) !=
2704 sizeof(struct blk_mq_hw_ctx));
2705
2706 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2707 hw_ctx_size += sizeof(struct srcu_struct);
2708
2709 return hw_ctx_size;
2710 }
2711
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)2712 static int blk_mq_init_hctx(struct request_queue *q,
2713 struct blk_mq_tag_set *set,
2714 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2715 {
2716 hctx->queue_num = hctx_idx;
2717
2718 if (!(hctx->flags & BLK_MQ_F_STACKING))
2719 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2720 &hctx->cpuhp_online);
2721 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2722
2723 hctx->tags = set->tags[hctx_idx];
2724
2725 if (set->ops->init_hctx &&
2726 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2727 goto unregister_cpu_notifier;
2728
2729 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2730 hctx->numa_node))
2731 goto exit_hctx;
2732 return 0;
2733
2734 exit_hctx:
2735 if (set->ops->exit_hctx)
2736 set->ops->exit_hctx(hctx, hctx_idx);
2737 unregister_cpu_notifier:
2738 blk_mq_remove_cpuhp(hctx);
2739 return -1;
2740 }
2741
2742 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)2743 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2744 int node)
2745 {
2746 struct blk_mq_hw_ctx *hctx;
2747 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2748
2749 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2750 if (!hctx)
2751 goto fail_alloc_hctx;
2752
2753 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2754 goto free_hctx;
2755
2756 atomic_set(&hctx->nr_active, 0);
2757 atomic_set(&hctx->elevator_queued, 0);
2758 if (node == NUMA_NO_NODE)
2759 node = set->numa_node;
2760 hctx->numa_node = node;
2761
2762 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2763 spin_lock_init(&hctx->lock);
2764 INIT_LIST_HEAD(&hctx->dispatch);
2765 hctx->queue = q;
2766 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2767
2768 INIT_LIST_HEAD(&hctx->hctx_list);
2769
2770 /*
2771 * Allocate space for all possible cpus to avoid allocation at
2772 * runtime
2773 */
2774 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2775 gfp, node);
2776 if (!hctx->ctxs)
2777 goto free_cpumask;
2778
2779 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2780 gfp, node))
2781 goto free_ctxs;
2782 hctx->nr_ctx = 0;
2783
2784 spin_lock_init(&hctx->dispatch_wait_lock);
2785 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2786 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2787
2788 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2789 if (!hctx->fq)
2790 goto free_bitmap;
2791
2792 if (hctx->flags & BLK_MQ_F_BLOCKING)
2793 init_srcu_struct(hctx->srcu);
2794 blk_mq_hctx_kobj_init(hctx);
2795
2796 return hctx;
2797
2798 free_bitmap:
2799 sbitmap_free(&hctx->ctx_map);
2800 free_ctxs:
2801 kfree(hctx->ctxs);
2802 free_cpumask:
2803 free_cpumask_var(hctx->cpumask);
2804 free_hctx:
2805 kfree(hctx);
2806 fail_alloc_hctx:
2807 return NULL;
2808 }
2809
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)2810 static void blk_mq_init_cpu_queues(struct request_queue *q,
2811 unsigned int nr_hw_queues)
2812 {
2813 struct blk_mq_tag_set *set = q->tag_set;
2814 unsigned int i, j;
2815
2816 for_each_possible_cpu(i) {
2817 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2818 struct blk_mq_hw_ctx *hctx;
2819 int k;
2820
2821 __ctx->cpu = i;
2822 spin_lock_init(&__ctx->lock);
2823 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2824 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2825
2826 __ctx->queue = q;
2827
2828 /*
2829 * Set local node, IFF we have more than one hw queue. If
2830 * not, we remain on the home node of the device
2831 */
2832 for (j = 0; j < set->nr_maps; j++) {
2833 hctx = blk_mq_map_queue_type(q, j, i);
2834 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2835 hctx->numa_node = cpu_to_node(i);
2836 }
2837 }
2838 }
2839
__blk_mq_alloc_map_and_request(struct blk_mq_tag_set * set,int hctx_idx)2840 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2841 int hctx_idx)
2842 {
2843 unsigned int flags = set->flags;
2844 int ret = 0;
2845
2846 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2847 set->queue_depth, set->reserved_tags, flags);
2848 if (!set->tags[hctx_idx])
2849 return false;
2850
2851 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2852 set->queue_depth);
2853 if (!ret)
2854 return true;
2855
2856 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2857 set->tags[hctx_idx] = NULL;
2858 return false;
2859 }
2860
blk_mq_free_map_and_requests(struct blk_mq_tag_set * set,unsigned int hctx_idx)2861 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2862 unsigned int hctx_idx)
2863 {
2864 unsigned int flags = set->flags;
2865
2866 if (set->tags && set->tags[hctx_idx]) {
2867 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2868 blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2869 set->tags[hctx_idx] = NULL;
2870 }
2871 }
2872
blk_mq_map_swqueue(struct request_queue * q)2873 static void blk_mq_map_swqueue(struct request_queue *q)
2874 {
2875 unsigned int i, j, hctx_idx;
2876 struct blk_mq_hw_ctx *hctx;
2877 struct blk_mq_ctx *ctx;
2878 struct blk_mq_tag_set *set = q->tag_set;
2879
2880 queue_for_each_hw_ctx(q, hctx, i) {
2881 cpumask_clear(hctx->cpumask);
2882 hctx->nr_ctx = 0;
2883 hctx->dispatch_from = NULL;
2884 }
2885
2886 /*
2887 * Map software to hardware queues.
2888 *
2889 * If the cpu isn't present, the cpu is mapped to first hctx.
2890 */
2891 for_each_possible_cpu(i) {
2892
2893 ctx = per_cpu_ptr(q->queue_ctx, i);
2894 for (j = 0; j < set->nr_maps; j++) {
2895 if (!set->map[j].nr_queues) {
2896 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2897 HCTX_TYPE_DEFAULT, i);
2898 continue;
2899 }
2900 hctx_idx = set->map[j].mq_map[i];
2901 /* unmapped hw queue can be remapped after CPU topo changed */
2902 if (!set->tags[hctx_idx] &&
2903 !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2904 /*
2905 * If tags initialization fail for some hctx,
2906 * that hctx won't be brought online. In this
2907 * case, remap the current ctx to hctx[0] which
2908 * is guaranteed to always have tags allocated
2909 */
2910 set->map[j].mq_map[i] = 0;
2911 }
2912
2913 hctx = blk_mq_map_queue_type(q, j, i);
2914 ctx->hctxs[j] = hctx;
2915 /*
2916 * If the CPU is already set in the mask, then we've
2917 * mapped this one already. This can happen if
2918 * devices share queues across queue maps.
2919 */
2920 if (cpumask_test_cpu(i, hctx->cpumask))
2921 continue;
2922
2923 cpumask_set_cpu(i, hctx->cpumask);
2924 hctx->type = j;
2925 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2926 hctx->ctxs[hctx->nr_ctx++] = ctx;
2927
2928 /*
2929 * If the nr_ctx type overflows, we have exceeded the
2930 * amount of sw queues we can support.
2931 */
2932 BUG_ON(!hctx->nr_ctx);
2933 }
2934
2935 for (; j < HCTX_MAX_TYPES; j++)
2936 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2937 HCTX_TYPE_DEFAULT, i);
2938 }
2939
2940 queue_for_each_hw_ctx(q, hctx, i) {
2941 /*
2942 * If no software queues are mapped to this hardware queue,
2943 * disable it and free the request entries.
2944 */
2945 if (!hctx->nr_ctx) {
2946 /* Never unmap queue 0. We need it as a
2947 * fallback in case of a new remap fails
2948 * allocation
2949 */
2950 if (i && set->tags[i])
2951 blk_mq_free_map_and_requests(set, i);
2952
2953 hctx->tags = NULL;
2954 continue;
2955 }
2956
2957 hctx->tags = set->tags[i];
2958 WARN_ON(!hctx->tags);
2959
2960 /*
2961 * Set the map size to the number of mapped software queues.
2962 * This is more accurate and more efficient than looping
2963 * over all possibly mapped software queues.
2964 */
2965 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2966
2967 /*
2968 * Initialize batch roundrobin counts
2969 */
2970 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2971 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2972 }
2973 }
2974
2975 /*
2976 * Caller needs to ensure that we're either frozen/quiesced, or that
2977 * the queue isn't live yet.
2978 */
queue_set_hctx_shared(struct request_queue * q,bool shared)2979 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2980 {
2981 struct blk_mq_hw_ctx *hctx;
2982 int i;
2983
2984 queue_for_each_hw_ctx(q, hctx, i) {
2985 if (shared) {
2986 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
2987 } else {
2988 blk_mq_tag_idle(hctx);
2989 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
2990 }
2991 }
2992 }
2993
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)2994 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
2995 bool shared)
2996 {
2997 struct request_queue *q;
2998
2999 lockdep_assert_held(&set->tag_list_lock);
3000
3001 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3002 blk_mq_freeze_queue(q);
3003 queue_set_hctx_shared(q, shared);
3004 blk_mq_unfreeze_queue(q);
3005 }
3006 }
3007
blk_mq_del_queue_tag_set(struct request_queue * q)3008 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3009 {
3010 struct blk_mq_tag_set *set = q->tag_set;
3011
3012 mutex_lock(&set->tag_list_lock);
3013 list_del(&q->tag_set_list);
3014 if (list_is_singular(&set->tag_list)) {
3015 /* just transitioned to unshared */
3016 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3017 /* update existing queue */
3018 blk_mq_update_tag_set_shared(set, false);
3019 }
3020 mutex_unlock(&set->tag_list_lock);
3021 INIT_LIST_HEAD(&q->tag_set_list);
3022 }
3023
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)3024 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3025 struct request_queue *q)
3026 {
3027 mutex_lock(&set->tag_list_lock);
3028
3029 /*
3030 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3031 */
3032 if (!list_empty(&set->tag_list) &&
3033 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3034 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3035 /* update existing queue */
3036 blk_mq_update_tag_set_shared(set, true);
3037 }
3038 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3039 queue_set_hctx_shared(q, true);
3040 list_add_tail(&q->tag_set_list, &set->tag_list);
3041
3042 mutex_unlock(&set->tag_list_lock);
3043 }
3044
3045 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)3046 static int blk_mq_alloc_ctxs(struct request_queue *q)
3047 {
3048 struct blk_mq_ctxs *ctxs;
3049 int cpu;
3050
3051 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3052 if (!ctxs)
3053 return -ENOMEM;
3054
3055 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3056 if (!ctxs->queue_ctx)
3057 goto fail;
3058
3059 for_each_possible_cpu(cpu) {
3060 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3061 ctx->ctxs = ctxs;
3062 }
3063
3064 q->mq_kobj = &ctxs->kobj;
3065 q->queue_ctx = ctxs->queue_ctx;
3066
3067 return 0;
3068 fail:
3069 kfree(ctxs);
3070 return -ENOMEM;
3071 }
3072
3073 /*
3074 * It is the actual release handler for mq, but we do it from
3075 * request queue's release handler for avoiding use-after-free
3076 * and headache because q->mq_kobj shouldn't have been introduced,
3077 * but we can't group ctx/kctx kobj without it.
3078 */
blk_mq_release(struct request_queue * q)3079 void blk_mq_release(struct request_queue *q)
3080 {
3081 struct blk_mq_hw_ctx *hctx, *next;
3082 int i;
3083
3084 queue_for_each_hw_ctx(q, hctx, i)
3085 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3086
3087 /* all hctx are in .unused_hctx_list now */
3088 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3089 list_del_init(&hctx->hctx_list);
3090 kobject_put(&hctx->kobj);
3091 }
3092
3093 kfree(q->queue_hw_ctx);
3094
3095 /*
3096 * release .mq_kobj and sw queue's kobject now because
3097 * both share lifetime with request queue.
3098 */
3099 blk_mq_sysfs_deinit(q);
3100 }
3101
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)3102 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3103 void *queuedata)
3104 {
3105 struct request_queue *uninit_q, *q;
3106
3107 uninit_q = blk_alloc_queue(set->numa_node);
3108 if (!uninit_q)
3109 return ERR_PTR(-ENOMEM);
3110 uninit_q->queuedata = queuedata;
3111
3112 /*
3113 * Initialize the queue without an elevator. device_add_disk() will do
3114 * the initialization.
3115 */
3116 q = blk_mq_init_allocated_queue(set, uninit_q, false);
3117 if (IS_ERR(q))
3118 blk_cleanup_queue(uninit_q);
3119
3120 return q;
3121 }
3122 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3123
blk_mq_init_queue(struct blk_mq_tag_set * set)3124 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3125 {
3126 return blk_mq_init_queue_data(set, NULL);
3127 }
3128 EXPORT_SYMBOL(blk_mq_init_queue);
3129
3130 /*
3131 * Helper for setting up a queue with mq ops, given queue depth, and
3132 * the passed in mq ops flags.
3133 */
blk_mq_init_sq_queue(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)3134 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3135 const struct blk_mq_ops *ops,
3136 unsigned int queue_depth,
3137 unsigned int set_flags)
3138 {
3139 struct request_queue *q;
3140 int ret;
3141
3142 memset(set, 0, sizeof(*set));
3143 set->ops = ops;
3144 set->nr_hw_queues = 1;
3145 set->nr_maps = 1;
3146 set->queue_depth = queue_depth;
3147 set->numa_node = NUMA_NO_NODE;
3148 set->flags = set_flags;
3149
3150 ret = blk_mq_alloc_tag_set(set);
3151 if (ret)
3152 return ERR_PTR(ret);
3153
3154 q = blk_mq_init_queue(set);
3155 if (IS_ERR(q)) {
3156 blk_mq_free_tag_set(set);
3157 return q;
3158 }
3159
3160 return q;
3161 }
3162 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3163
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)3164 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3165 struct blk_mq_tag_set *set, struct request_queue *q,
3166 int hctx_idx, int node)
3167 {
3168 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3169
3170 /* reuse dead hctx first */
3171 spin_lock(&q->unused_hctx_lock);
3172 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3173 if (tmp->numa_node == node) {
3174 hctx = tmp;
3175 break;
3176 }
3177 }
3178 if (hctx)
3179 list_del_init(&hctx->hctx_list);
3180 spin_unlock(&q->unused_hctx_lock);
3181
3182 if (!hctx)
3183 hctx = blk_mq_alloc_hctx(q, set, node);
3184 if (!hctx)
3185 goto fail;
3186
3187 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3188 goto free_hctx;
3189
3190 return hctx;
3191
3192 free_hctx:
3193 kobject_put(&hctx->kobj);
3194 fail:
3195 return NULL;
3196 }
3197
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)3198 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3199 struct request_queue *q)
3200 {
3201 int i, j, end;
3202 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3203
3204 if (q->nr_hw_queues < set->nr_hw_queues) {
3205 struct blk_mq_hw_ctx **new_hctxs;
3206
3207 new_hctxs = kcalloc_node(set->nr_hw_queues,
3208 sizeof(*new_hctxs), GFP_KERNEL,
3209 set->numa_node);
3210 if (!new_hctxs)
3211 return;
3212 if (hctxs)
3213 memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3214 sizeof(*hctxs));
3215 q->queue_hw_ctx = new_hctxs;
3216 kfree(hctxs);
3217 hctxs = new_hctxs;
3218 }
3219
3220 /* protect against switching io scheduler */
3221 mutex_lock(&q->sysfs_lock);
3222 for (i = 0; i < set->nr_hw_queues; i++) {
3223 int node;
3224 struct blk_mq_hw_ctx *hctx;
3225
3226 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3227 /*
3228 * If the hw queue has been mapped to another numa node,
3229 * we need to realloc the hctx. If allocation fails, fallback
3230 * to use the previous one.
3231 */
3232 if (hctxs[i] && (hctxs[i]->numa_node == node))
3233 continue;
3234
3235 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3236 if (hctx) {
3237 if (hctxs[i])
3238 blk_mq_exit_hctx(q, set, hctxs[i], i);
3239 hctxs[i] = hctx;
3240 } else {
3241 if (hctxs[i])
3242 pr_warn("Allocate new hctx on node %d fails,\
3243 fallback to previous one on node %d\n",
3244 node, hctxs[i]->numa_node);
3245 else
3246 break;
3247 }
3248 }
3249 /*
3250 * Increasing nr_hw_queues fails. Free the newly allocated
3251 * hctxs and keep the previous q->nr_hw_queues.
3252 */
3253 if (i != set->nr_hw_queues) {
3254 j = q->nr_hw_queues;
3255 end = i;
3256 } else {
3257 j = i;
3258 end = q->nr_hw_queues;
3259 q->nr_hw_queues = set->nr_hw_queues;
3260 }
3261
3262 for (; j < end; j++) {
3263 struct blk_mq_hw_ctx *hctx = hctxs[j];
3264
3265 if (hctx) {
3266 blk_mq_exit_hctx(q, set, hctx, j);
3267 hctxs[j] = NULL;
3268 }
3269 }
3270 mutex_unlock(&q->sysfs_lock);
3271 }
3272
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q,bool elevator_init)3273 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3274 struct request_queue *q,
3275 bool elevator_init)
3276 {
3277 /* mark the queue as mq asap */
3278 q->mq_ops = set->ops;
3279
3280 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3281 blk_mq_poll_stats_bkt,
3282 BLK_MQ_POLL_STATS_BKTS, q);
3283 if (!q->poll_cb)
3284 goto err_exit;
3285
3286 if (blk_mq_alloc_ctxs(q))
3287 goto err_poll;
3288
3289 /* init q->mq_kobj and sw queues' kobjects */
3290 blk_mq_sysfs_init(q);
3291
3292 INIT_LIST_HEAD(&q->unused_hctx_list);
3293 spin_lock_init(&q->unused_hctx_lock);
3294
3295 blk_mq_realloc_hw_ctxs(set, q);
3296 if (!q->nr_hw_queues)
3297 goto err_hctxs;
3298
3299 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3300 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3301
3302 q->tag_set = set;
3303
3304 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3305 if (set->nr_maps > HCTX_TYPE_POLL &&
3306 set->map[HCTX_TYPE_POLL].nr_queues)
3307 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3308
3309 q->sg_reserved_size = INT_MAX;
3310
3311 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3312 INIT_LIST_HEAD(&q->requeue_list);
3313 spin_lock_init(&q->requeue_lock);
3314
3315 q->nr_requests = set->queue_depth;
3316
3317 /*
3318 * Default to classic polling
3319 */
3320 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3321
3322 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3323 blk_mq_add_queue_tag_set(set, q);
3324 blk_mq_map_swqueue(q);
3325
3326 if (elevator_init)
3327 elevator_init_mq(q);
3328
3329 return q;
3330
3331 err_hctxs:
3332 kfree(q->queue_hw_ctx);
3333 q->nr_hw_queues = 0;
3334 blk_mq_sysfs_deinit(q);
3335 err_poll:
3336 blk_stat_free_callback(q->poll_cb);
3337 q->poll_cb = NULL;
3338 err_exit:
3339 q->mq_ops = NULL;
3340 return ERR_PTR(-ENOMEM);
3341 }
3342 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3343
3344 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)3345 void blk_mq_exit_queue(struct request_queue *q)
3346 {
3347 struct blk_mq_tag_set *set = q->tag_set;
3348
3349 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3350 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3351 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3352 blk_mq_del_queue_tag_set(q);
3353 }
3354
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)3355 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3356 {
3357 int i;
3358
3359 for (i = 0; i < set->nr_hw_queues; i++) {
3360 if (!__blk_mq_alloc_map_and_request(set, i))
3361 goto out_unwind;
3362 cond_resched();
3363 }
3364
3365 return 0;
3366
3367 out_unwind:
3368 while (--i >= 0)
3369 blk_mq_free_map_and_requests(set, i);
3370
3371 return -ENOMEM;
3372 }
3373
3374 /*
3375 * Allocate the request maps associated with this tag_set. Note that this
3376 * may reduce the depth asked for, if memory is tight. set->queue_depth
3377 * will be updated to reflect the allocated depth.
3378 */
blk_mq_alloc_map_and_requests(struct blk_mq_tag_set * set)3379 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3380 {
3381 unsigned int depth;
3382 int err;
3383
3384 depth = set->queue_depth;
3385 do {
3386 err = __blk_mq_alloc_rq_maps(set);
3387 if (!err)
3388 break;
3389
3390 set->queue_depth >>= 1;
3391 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3392 err = -ENOMEM;
3393 break;
3394 }
3395 } while (set->queue_depth);
3396
3397 if (!set->queue_depth || err) {
3398 pr_err("blk-mq: failed to allocate request map\n");
3399 return -ENOMEM;
3400 }
3401
3402 if (depth != set->queue_depth)
3403 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3404 depth, set->queue_depth);
3405
3406 return 0;
3407 }
3408
blk_mq_update_queue_map(struct blk_mq_tag_set * set)3409 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3410 {
3411 /*
3412 * blk_mq_map_queues() and multiple .map_queues() implementations
3413 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3414 * number of hardware queues.
3415 */
3416 if (set->nr_maps == 1)
3417 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3418
3419 if (set->ops->map_queues && !is_kdump_kernel()) {
3420 int i;
3421
3422 /*
3423 * transport .map_queues is usually done in the following
3424 * way:
3425 *
3426 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3427 * mask = get_cpu_mask(queue)
3428 * for_each_cpu(cpu, mask)
3429 * set->map[x].mq_map[cpu] = queue;
3430 * }
3431 *
3432 * When we need to remap, the table has to be cleared for
3433 * killing stale mapping since one CPU may not be mapped
3434 * to any hw queue.
3435 */
3436 for (i = 0; i < set->nr_maps; i++)
3437 blk_mq_clear_mq_map(&set->map[i]);
3438
3439 return set->ops->map_queues(set);
3440 } else {
3441 BUG_ON(set->nr_maps > 1);
3442 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3443 }
3444 }
3445
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int cur_nr_hw_queues,int new_nr_hw_queues)3446 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3447 int cur_nr_hw_queues, int new_nr_hw_queues)
3448 {
3449 struct blk_mq_tags **new_tags;
3450
3451 if (cur_nr_hw_queues >= new_nr_hw_queues)
3452 return 0;
3453
3454 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3455 GFP_KERNEL, set->numa_node);
3456 if (!new_tags)
3457 return -ENOMEM;
3458
3459 if (set->tags)
3460 memcpy(new_tags, set->tags, cur_nr_hw_queues *
3461 sizeof(*set->tags));
3462 kfree(set->tags);
3463 set->tags = new_tags;
3464 set->nr_hw_queues = new_nr_hw_queues;
3465
3466 return 0;
3467 }
3468
3469 /*
3470 * Alloc a tag set to be associated with one or more request queues.
3471 * May fail with EINVAL for various error conditions. May adjust the
3472 * requested depth down, if it's too large. In that case, the set
3473 * value will be stored in set->queue_depth.
3474 */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)3475 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3476 {
3477 int i, ret;
3478
3479 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3480
3481 if (!set->nr_hw_queues)
3482 return -EINVAL;
3483 if (!set->queue_depth)
3484 return -EINVAL;
3485 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3486 return -EINVAL;
3487
3488 if (!set->ops->queue_rq)
3489 return -EINVAL;
3490
3491 if (!set->ops->get_budget ^ !set->ops->put_budget)
3492 return -EINVAL;
3493
3494 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3495 pr_info("blk-mq: reduced tag depth to %u\n",
3496 BLK_MQ_MAX_DEPTH);
3497 set->queue_depth = BLK_MQ_MAX_DEPTH;
3498 }
3499
3500 if (!set->nr_maps)
3501 set->nr_maps = 1;
3502 else if (set->nr_maps > HCTX_MAX_TYPES)
3503 return -EINVAL;
3504
3505 /*
3506 * If a crashdump is active, then we are potentially in a very
3507 * memory constrained environment. Limit us to 1 queue and
3508 * 64 tags to prevent using too much memory.
3509 */
3510 if (is_kdump_kernel()) {
3511 set->nr_hw_queues = 1;
3512 set->nr_maps = 1;
3513 set->queue_depth = min(64U, set->queue_depth);
3514 }
3515 /*
3516 * There is no use for more h/w queues than cpus if we just have
3517 * a single map
3518 */
3519 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3520 set->nr_hw_queues = nr_cpu_ids;
3521
3522 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3523 return -ENOMEM;
3524
3525 ret = -ENOMEM;
3526 for (i = 0; i < set->nr_maps; i++) {
3527 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3528 sizeof(set->map[i].mq_map[0]),
3529 GFP_KERNEL, set->numa_node);
3530 if (!set->map[i].mq_map)
3531 goto out_free_mq_map;
3532 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3533 }
3534
3535 ret = blk_mq_update_queue_map(set);
3536 if (ret)
3537 goto out_free_mq_map;
3538
3539 ret = blk_mq_alloc_map_and_requests(set);
3540 if (ret)
3541 goto out_free_mq_map;
3542
3543 if (blk_mq_is_sbitmap_shared(set->flags)) {
3544 atomic_set(&set->active_queues_shared_sbitmap, 0);
3545
3546 if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3547 ret = -ENOMEM;
3548 goto out_free_mq_rq_maps;
3549 }
3550 }
3551
3552 mutex_init(&set->tag_list_lock);
3553 INIT_LIST_HEAD(&set->tag_list);
3554
3555 return 0;
3556
3557 out_free_mq_rq_maps:
3558 for (i = 0; i < set->nr_hw_queues; i++)
3559 blk_mq_free_map_and_requests(set, i);
3560 out_free_mq_map:
3561 for (i = 0; i < set->nr_maps; i++) {
3562 kfree(set->map[i].mq_map);
3563 set->map[i].mq_map = NULL;
3564 }
3565 kfree(set->tags);
3566 set->tags = NULL;
3567 return ret;
3568 }
3569 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3570
blk_mq_free_tag_set(struct blk_mq_tag_set * set)3571 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3572 {
3573 int i, j;
3574
3575 for (i = 0; i < set->nr_hw_queues; i++)
3576 blk_mq_free_map_and_requests(set, i);
3577
3578 if (blk_mq_is_sbitmap_shared(set->flags))
3579 blk_mq_exit_shared_sbitmap(set);
3580
3581 for (j = 0; j < set->nr_maps; j++) {
3582 kfree(set->map[j].mq_map);
3583 set->map[j].mq_map = NULL;
3584 }
3585
3586 kfree(set->tags);
3587 set->tags = NULL;
3588 }
3589 EXPORT_SYMBOL(blk_mq_free_tag_set);
3590
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)3591 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3592 {
3593 struct blk_mq_tag_set *set = q->tag_set;
3594 struct blk_mq_hw_ctx *hctx;
3595 int i, ret;
3596
3597 if (!set)
3598 return -EINVAL;
3599
3600 if (q->nr_requests == nr)
3601 return 0;
3602
3603 blk_mq_freeze_queue(q);
3604 blk_mq_quiesce_queue(q);
3605
3606 ret = 0;
3607 queue_for_each_hw_ctx(q, hctx, i) {
3608 if (!hctx->tags)
3609 continue;
3610 /*
3611 * If we're using an MQ scheduler, just update the scheduler
3612 * queue depth. This is similar to what the old code would do.
3613 */
3614 if (!hctx->sched_tags) {
3615 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3616 false);
3617 if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3618 blk_mq_tag_resize_shared_sbitmap(set, nr);
3619 } else {
3620 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3621 nr, true);
3622 }
3623 if (ret)
3624 break;
3625 if (q->elevator && q->elevator->type->ops.depth_updated)
3626 q->elevator->type->ops.depth_updated(hctx);
3627 }
3628
3629 if (!ret)
3630 q->nr_requests = nr;
3631
3632 blk_mq_unquiesce_queue(q);
3633 blk_mq_unfreeze_queue(q);
3634
3635 return ret;
3636 }
3637
3638 /*
3639 * request_queue and elevator_type pair.
3640 * It is just used by __blk_mq_update_nr_hw_queues to cache
3641 * the elevator_type associated with a request_queue.
3642 */
3643 struct blk_mq_qe_pair {
3644 struct list_head node;
3645 struct request_queue *q;
3646 struct elevator_type *type;
3647 };
3648
3649 /*
3650 * Cache the elevator_type in qe pair list and switch the
3651 * io scheduler to 'none'
3652 */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)3653 static bool blk_mq_elv_switch_none(struct list_head *head,
3654 struct request_queue *q)
3655 {
3656 struct blk_mq_qe_pair *qe;
3657
3658 if (!q->elevator)
3659 return true;
3660
3661 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3662 if (!qe)
3663 return false;
3664
3665 INIT_LIST_HEAD(&qe->node);
3666 qe->q = q;
3667 qe->type = q->elevator->type;
3668 list_add(&qe->node, head);
3669
3670 mutex_lock(&q->sysfs_lock);
3671 /*
3672 * After elevator_switch_mq, the previous elevator_queue will be
3673 * released by elevator_release. The reference of the io scheduler
3674 * module get by elevator_get will also be put. So we need to get
3675 * a reference of the io scheduler module here to prevent it to be
3676 * removed.
3677 */
3678 __module_get(qe->type->elevator_owner);
3679 elevator_switch_mq(q, NULL);
3680 mutex_unlock(&q->sysfs_lock);
3681
3682 return true;
3683 }
3684
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)3685 static void blk_mq_elv_switch_back(struct list_head *head,
3686 struct request_queue *q)
3687 {
3688 struct blk_mq_qe_pair *qe;
3689 struct elevator_type *t = NULL;
3690
3691 list_for_each_entry(qe, head, node)
3692 if (qe->q == q) {
3693 t = qe->type;
3694 break;
3695 }
3696
3697 if (!t)
3698 return;
3699
3700 list_del(&qe->node);
3701 kfree(qe);
3702
3703 mutex_lock(&q->sysfs_lock);
3704 elevator_switch_mq(q, t);
3705 mutex_unlock(&q->sysfs_lock);
3706 }
3707
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3708 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3709 int nr_hw_queues)
3710 {
3711 struct request_queue *q;
3712 LIST_HEAD(head);
3713 int prev_nr_hw_queues;
3714
3715 lockdep_assert_held(&set->tag_list_lock);
3716
3717 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3718 nr_hw_queues = nr_cpu_ids;
3719 if (nr_hw_queues < 1)
3720 return;
3721 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3722 return;
3723
3724 list_for_each_entry(q, &set->tag_list, tag_set_list)
3725 blk_mq_freeze_queue(q);
3726 /*
3727 * Switch IO scheduler to 'none', cleaning up the data associated
3728 * with the previous scheduler. We will switch back once we are done
3729 * updating the new sw to hw queue mappings.
3730 */
3731 list_for_each_entry(q, &set->tag_list, tag_set_list)
3732 if (!blk_mq_elv_switch_none(&head, q))
3733 goto switch_back;
3734
3735 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3736 blk_mq_debugfs_unregister_hctxs(q);
3737 blk_mq_sysfs_unregister(q);
3738 }
3739
3740 prev_nr_hw_queues = set->nr_hw_queues;
3741 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3742 0)
3743 goto reregister;
3744
3745 set->nr_hw_queues = nr_hw_queues;
3746 fallback:
3747 blk_mq_update_queue_map(set);
3748 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3749 blk_mq_realloc_hw_ctxs(set, q);
3750 if (q->nr_hw_queues != set->nr_hw_queues) {
3751 int i = prev_nr_hw_queues;
3752
3753 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3754 nr_hw_queues, prev_nr_hw_queues);
3755 for (; i < set->nr_hw_queues; i++)
3756 blk_mq_free_map_and_requests(set, i);
3757
3758 set->nr_hw_queues = prev_nr_hw_queues;
3759 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3760 goto fallback;
3761 }
3762 blk_mq_map_swqueue(q);
3763 }
3764
3765 reregister:
3766 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3767 blk_mq_sysfs_register(q);
3768 blk_mq_debugfs_register_hctxs(q);
3769 }
3770
3771 switch_back:
3772 list_for_each_entry(q, &set->tag_list, tag_set_list)
3773 blk_mq_elv_switch_back(&head, q);
3774
3775 list_for_each_entry(q, &set->tag_list, tag_set_list)
3776 blk_mq_unfreeze_queue(q);
3777 }
3778
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3779 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3780 {
3781 mutex_lock(&set->tag_list_lock);
3782 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3783 mutex_unlock(&set->tag_list_lock);
3784 }
3785 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3786
3787 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)3788 static bool blk_poll_stats_enable(struct request_queue *q)
3789 {
3790 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3791 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3792 return true;
3793 blk_stat_add_callback(q, q->poll_cb);
3794 return false;
3795 }
3796
blk_mq_poll_stats_start(struct request_queue * q)3797 static void blk_mq_poll_stats_start(struct request_queue *q)
3798 {
3799 /*
3800 * We don't arm the callback if polling stats are not enabled or the
3801 * callback is already active.
3802 */
3803 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3804 blk_stat_is_active(q->poll_cb))
3805 return;
3806
3807 blk_stat_activate_msecs(q->poll_cb, 100);
3808 }
3809
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)3810 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3811 {
3812 struct request_queue *q = cb->data;
3813 int bucket;
3814
3815 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3816 if (cb->stat[bucket].nr_samples)
3817 q->poll_stat[bucket] = cb->stat[bucket];
3818 }
3819 }
3820
blk_mq_poll_nsecs(struct request_queue * q,struct request * rq)3821 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3822 struct request *rq)
3823 {
3824 unsigned long ret = 0;
3825 int bucket;
3826
3827 /*
3828 * If stats collection isn't on, don't sleep but turn it on for
3829 * future users
3830 */
3831 if (!blk_poll_stats_enable(q))
3832 return 0;
3833
3834 /*
3835 * As an optimistic guess, use half of the mean service time
3836 * for this type of request. We can (and should) make this smarter.
3837 * For instance, if the completion latencies are tight, we can
3838 * get closer than just half the mean. This is especially
3839 * important on devices where the completion latencies are longer
3840 * than ~10 usec. We do use the stats for the relevant IO size
3841 * if available which does lead to better estimates.
3842 */
3843 bucket = blk_mq_poll_stats_bkt(rq);
3844 if (bucket < 0)
3845 return ret;
3846
3847 if (q->poll_stat[bucket].nr_samples)
3848 ret = (q->poll_stat[bucket].mean + 1) / 2;
3849
3850 return ret;
3851 }
3852
blk_mq_poll_hybrid_sleep(struct request_queue * q,struct request * rq)3853 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3854 struct request *rq)
3855 {
3856 struct hrtimer_sleeper hs;
3857 enum hrtimer_mode mode;
3858 unsigned int nsecs;
3859 ktime_t kt;
3860
3861 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3862 return false;
3863
3864 /*
3865 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3866 *
3867 * 0: use half of prev avg
3868 * >0: use this specific value
3869 */
3870 if (q->poll_nsec > 0)
3871 nsecs = q->poll_nsec;
3872 else
3873 nsecs = blk_mq_poll_nsecs(q, rq);
3874
3875 if (!nsecs)
3876 return false;
3877
3878 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3879
3880 /*
3881 * This will be replaced with the stats tracking code, using
3882 * 'avg_completion_time / 2' as the pre-sleep target.
3883 */
3884 kt = nsecs;
3885
3886 mode = HRTIMER_MODE_REL;
3887 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3888 hrtimer_set_expires(&hs.timer, kt);
3889
3890 do {
3891 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3892 break;
3893 set_current_state(TASK_UNINTERRUPTIBLE);
3894 hrtimer_sleeper_start_expires(&hs, mode);
3895 if (hs.task)
3896 io_schedule();
3897 hrtimer_cancel(&hs.timer);
3898 mode = HRTIMER_MODE_ABS;
3899 } while (hs.task && !signal_pending(current));
3900
3901 __set_current_state(TASK_RUNNING);
3902 destroy_hrtimer_on_stack(&hs.timer);
3903 return true;
3904 }
3905
blk_mq_poll_hybrid(struct request_queue * q,struct blk_mq_hw_ctx * hctx,blk_qc_t cookie)3906 static bool blk_mq_poll_hybrid(struct request_queue *q,
3907 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3908 {
3909 struct request *rq;
3910
3911 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3912 return false;
3913
3914 if (!blk_qc_t_is_internal(cookie))
3915 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3916 else {
3917 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3918 /*
3919 * With scheduling, if the request has completed, we'll
3920 * get a NULL return here, as we clear the sched tag when
3921 * that happens. The request still remains valid, like always,
3922 * so we should be safe with just the NULL check.
3923 */
3924 if (!rq)
3925 return false;
3926 }
3927
3928 return blk_mq_poll_hybrid_sleep(q, rq);
3929 }
3930
3931 /**
3932 * blk_poll - poll for IO completions
3933 * @q: the queue
3934 * @cookie: cookie passed back at IO submission time
3935 * @spin: whether to spin for completions
3936 *
3937 * Description:
3938 * Poll for completions on the passed in queue. Returns number of
3939 * completed entries found. If @spin is true, then blk_poll will continue
3940 * looping until at least one completion is found, unless the task is
3941 * otherwise marked running (or we need to reschedule).
3942 */
blk_poll(struct request_queue * q,blk_qc_t cookie,bool spin)3943 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3944 {
3945 struct blk_mq_hw_ctx *hctx;
3946 long state;
3947
3948 if (!blk_qc_t_valid(cookie) ||
3949 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3950 return 0;
3951
3952 if (current->plug)
3953 blk_flush_plug_list(current->plug, false);
3954
3955 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3956
3957 /*
3958 * If we sleep, have the caller restart the poll loop to reset
3959 * the state. Like for the other success return cases, the
3960 * caller is responsible for checking if the IO completed. If
3961 * the IO isn't complete, we'll get called again and will go
3962 * straight to the busy poll loop.
3963 */
3964 if (blk_mq_poll_hybrid(q, hctx, cookie))
3965 return 1;
3966
3967 hctx->poll_considered++;
3968
3969 state = current->state;
3970 do {
3971 int ret;
3972
3973 hctx->poll_invoked++;
3974
3975 ret = q->mq_ops->poll(hctx);
3976 if (ret > 0) {
3977 hctx->poll_success++;
3978 __set_current_state(TASK_RUNNING);
3979 return ret;
3980 }
3981
3982 if (signal_pending_state(state, current))
3983 __set_current_state(TASK_RUNNING);
3984
3985 if (current->state == TASK_RUNNING)
3986 return 1;
3987 if (ret < 0 || !spin)
3988 break;
3989 cpu_relax();
3990 } while (!need_resched());
3991
3992 __set_current_state(TASK_RUNNING);
3993 return 0;
3994 }
3995 EXPORT_SYMBOL_GPL(blk_poll);
3996
blk_mq_rq_cpu(struct request * rq)3997 unsigned int blk_mq_rq_cpu(struct request *rq)
3998 {
3999 return rq->mq_ctx->cpu;
4000 }
4001 EXPORT_SYMBOL(blk_mq_rq_cpu);
4002
blk_mq_cancel_work_sync(struct request_queue * q)4003 void blk_mq_cancel_work_sync(struct request_queue *q)
4004 {
4005 if (queue_is_mq(q)) {
4006 struct blk_mq_hw_ctx *hctx;
4007 int i;
4008
4009 cancel_delayed_work_sync(&q->requeue_work);
4010
4011 queue_for_each_hw_ctx(q, hctx, i)
4012 cancel_delayed_work_sync(&hctx->run_work);
4013 }
4014 }
4015
blk_mq_init(void)4016 static int __init blk_mq_init(void)
4017 {
4018 int i;
4019
4020 for_each_possible_cpu(i)
4021 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
4022 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4023
4024 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4025 "block/softirq:dead", NULL,
4026 blk_softirq_cpu_dead);
4027 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4028 blk_mq_hctx_notify_dead);
4029 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4030 blk_mq_hctx_notify_online,
4031 blk_mq_hctx_notify_offline);
4032 return 0;
4033 }
4034 subsys_initcall(blk_mq_init);
4035