1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * blk-mq scheduling framework
4 *
5 * Copyright (C) 2016 Jens Axboe
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 #include <linux/list_sort.h>
11
12 #include <trace/events/block.h>
13
14 #include "blk.h"
15 #include "blk-mq.h"
16 #include "blk-mq-debugfs.h"
17 #include "blk-mq-sched.h"
18 #include "blk-mq-tag.h"
19 #include "blk-wbt.h"
20
blk_mq_sched_assign_ioc(struct request * rq)21 void blk_mq_sched_assign_ioc(struct request *rq)
22 {
23 struct request_queue *q = rq->q;
24 struct io_context *ioc;
25 struct io_cq *icq;
26
27 /*
28 * May not have an IO context if it's a passthrough request
29 */
30 ioc = current->io_context;
31 if (!ioc)
32 return;
33
34 spin_lock_irq(&q->queue_lock);
35 icq = ioc_lookup_icq(ioc, q);
36 spin_unlock_irq(&q->queue_lock);
37
38 if (!icq) {
39 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
40 if (!icq)
41 return;
42 }
43 get_io_context(icq->ioc);
44 rq->elv.icq = icq;
45 }
46
47 /*
48 * Mark a hardware queue as needing a restart.
49 */
blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx * hctx)50 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
51 {
52 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
53 return;
54
55 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
56 }
57 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
58
blk_mq_sched_restart(struct blk_mq_hw_ctx * hctx)59 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
60 {
61 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
62 return;
63 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
64
65 /*
66 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
67 * in blk_mq_run_hw_queue(). Its pair is the barrier in
68 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
69 * meantime new request added to hctx->dispatch is missed to check in
70 * blk_mq_run_hw_queue().
71 */
72 smp_mb();
73
74 blk_mq_run_hw_queue(hctx, true);
75 }
76
sched_rq_cmp(void * priv,const struct list_head * a,const struct list_head * b)77 static int sched_rq_cmp(void *priv, const struct list_head *a,
78 const struct list_head *b)
79 {
80 struct request *rqa = container_of(a, struct request, queuelist);
81 struct request *rqb = container_of(b, struct request, queuelist);
82
83 return rqa->mq_hctx > rqb->mq_hctx;
84 }
85
blk_mq_dispatch_hctx_list(struct list_head * rq_list)86 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
87 {
88 struct blk_mq_hw_ctx *hctx =
89 list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
90 struct request *rq;
91 LIST_HEAD(hctx_list);
92 unsigned int count = 0;
93
94 list_for_each_entry(rq, rq_list, queuelist) {
95 if (rq->mq_hctx != hctx) {
96 list_cut_before(&hctx_list, rq_list, &rq->queuelist);
97 goto dispatch;
98 }
99 count++;
100 }
101 list_splice_tail_init(rq_list, &hctx_list);
102
103 dispatch:
104 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
105 }
106
107 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */
108
109 /*
110 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
111 * its queue by itself in its completion handler, so we don't need to
112 * restart queue if .get_budget() fails to get the budget.
113 *
114 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
115 * be run again. This is necessary to avoid starving flushes.
116 */
__blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)117 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
118 {
119 struct request_queue *q = hctx->queue;
120 struct elevator_queue *e = q->elevator;
121 bool multi_hctxs = false, run_queue = false;
122 bool dispatched = false, busy = false;
123 unsigned int max_dispatch;
124 LIST_HEAD(rq_list);
125 int count = 0;
126
127 if (hctx->dispatch_busy)
128 max_dispatch = 1;
129 else
130 max_dispatch = hctx->queue->nr_requests;
131
132 do {
133 struct request *rq;
134
135 if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
136 break;
137
138 if (!list_empty_careful(&hctx->dispatch)) {
139 busy = true;
140 break;
141 }
142
143 if (!blk_mq_get_dispatch_budget(q))
144 break;
145
146 rq = e->type->ops.dispatch_request(hctx);
147 if (!rq) {
148 blk_mq_put_dispatch_budget(q);
149 /*
150 * We're releasing without dispatching. Holding the
151 * budget could have blocked any "hctx"s with the
152 * same queue and if we didn't dispatch then there's
153 * no guarantee anyone will kick the queue. Kick it
154 * ourselves.
155 */
156 run_queue = true;
157 break;
158 }
159
160 /*
161 * Now this rq owns the budget which has to be released
162 * if this rq won't be queued to driver via .queue_rq()
163 * in blk_mq_dispatch_rq_list().
164 */
165 list_add_tail(&rq->queuelist, &rq_list);
166 if (rq->mq_hctx != hctx)
167 multi_hctxs = true;
168 } while (++count < max_dispatch);
169
170 if (!count) {
171 if (run_queue)
172 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
173 } else if (multi_hctxs) {
174 /*
175 * Requests from different hctx may be dequeued from some
176 * schedulers, such as bfq and deadline.
177 *
178 * Sort the requests in the list according to their hctx,
179 * dispatch batching requests from same hctx at a time.
180 */
181 list_sort(NULL, &rq_list, sched_rq_cmp);
182 do {
183 dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
184 } while (!list_empty(&rq_list));
185 } else {
186 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
187 }
188
189 if (busy)
190 return -EAGAIN;
191 return !!dispatched;
192 }
193
blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)194 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
195 {
196 unsigned long end = jiffies + HZ;
197 int ret;
198
199 do {
200 ret = __blk_mq_do_dispatch_sched(hctx);
201 if (ret != 1)
202 break;
203 if (need_resched() || time_is_before_jiffies(end)) {
204 blk_mq_delay_run_hw_queue(hctx, 0);
205 break;
206 }
207 } while (1);
208
209 return ret;
210 }
211
blk_mq_next_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)212 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
213 struct blk_mq_ctx *ctx)
214 {
215 unsigned short idx = ctx->index_hw[hctx->type];
216
217 if (++idx == hctx->nr_ctx)
218 idx = 0;
219
220 return hctx->ctxs[idx];
221 }
222
223 /*
224 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
225 * its queue by itself in its completion handler, so we don't need to
226 * restart queue if .get_budget() fails to get the budget.
227 *
228 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
229 * be run again. This is necessary to avoid starving flushes.
230 */
blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx * hctx)231 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
232 {
233 struct request_queue *q = hctx->queue;
234 LIST_HEAD(rq_list);
235 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
236 int ret = 0;
237 struct request *rq;
238
239 do {
240 if (!list_empty_careful(&hctx->dispatch)) {
241 ret = -EAGAIN;
242 break;
243 }
244
245 if (!sbitmap_any_bit_set(&hctx->ctx_map))
246 break;
247
248 if (!blk_mq_get_dispatch_budget(q))
249 break;
250
251 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
252 if (!rq) {
253 blk_mq_put_dispatch_budget(q);
254 /*
255 * We're releasing without dispatching. Holding the
256 * budget could have blocked any "hctx"s with the
257 * same queue and if we didn't dispatch then there's
258 * no guarantee anyone will kick the queue. Kick it
259 * ourselves.
260 */
261 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
262 break;
263 }
264
265 /*
266 * Now this rq owns the budget which has to be released
267 * if this rq won't be queued to driver via .queue_rq()
268 * in blk_mq_dispatch_rq_list().
269 */
270 list_add(&rq->queuelist, &rq_list);
271
272 /* round robin for fair dispatch */
273 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
274
275 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
276
277 WRITE_ONCE(hctx->dispatch_from, ctx);
278 return ret;
279 }
280
__blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)281 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
282 {
283 struct request_queue *q = hctx->queue;
284 struct elevator_queue *e = q->elevator;
285 const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
286 int ret = 0;
287 LIST_HEAD(rq_list);
288
289 /*
290 * If we have previous entries on our dispatch list, grab them first for
291 * more fair dispatch.
292 */
293 if (!list_empty_careful(&hctx->dispatch)) {
294 spin_lock(&hctx->lock);
295 if (!list_empty(&hctx->dispatch))
296 list_splice_init(&hctx->dispatch, &rq_list);
297 spin_unlock(&hctx->lock);
298 }
299
300 /*
301 * Only ask the scheduler for requests, if we didn't have residual
302 * requests from the dispatch list. This is to avoid the case where
303 * we only ever dispatch a fraction of the requests available because
304 * of low device queue depth. Once we pull requests out of the IO
305 * scheduler, we can no longer merge or sort them. So it's best to
306 * leave them there for as long as we can. Mark the hw queue as
307 * needing a restart in that case.
308 *
309 * We want to dispatch from the scheduler if there was nothing
310 * on the dispatch list or we were able to dispatch from the
311 * dispatch list.
312 */
313 if (!list_empty(&rq_list)) {
314 blk_mq_sched_mark_restart_hctx(hctx);
315 if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
316 if (has_sched_dispatch)
317 ret = blk_mq_do_dispatch_sched(hctx);
318 else
319 ret = blk_mq_do_dispatch_ctx(hctx);
320 }
321 } else if (has_sched_dispatch) {
322 ret = blk_mq_do_dispatch_sched(hctx);
323 } else if (hctx->dispatch_busy) {
324 /* dequeue request one by one from sw queue if queue is busy */
325 ret = blk_mq_do_dispatch_ctx(hctx);
326 } else {
327 blk_mq_flush_busy_ctxs(hctx, &rq_list);
328 blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
329 }
330
331 return ret;
332 }
333
blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)334 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
335 {
336 struct request_queue *q = hctx->queue;
337
338 /* RCU or SRCU read lock is needed before checking quiesced flag */
339 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
340 return;
341
342 hctx->run++;
343
344 /*
345 * A return of -EAGAIN is an indication that hctx->dispatch is not
346 * empty and we must run again in order to avoid starving flushes.
347 */
348 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
349 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
350 blk_mq_run_hw_queue(hctx, true);
351 }
352 }
353
__blk_mq_sched_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)354 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
355 unsigned int nr_segs)
356 {
357 struct elevator_queue *e = q->elevator;
358 struct blk_mq_ctx *ctx;
359 struct blk_mq_hw_ctx *hctx;
360 bool ret = false;
361 enum hctx_type type;
362
363 if (e && e->type->ops.bio_merge)
364 return e->type->ops.bio_merge(q, bio, nr_segs);
365
366 ctx = blk_mq_get_ctx(q);
367 hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
368 type = hctx->type;
369 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
370 list_empty_careful(&ctx->rq_lists[type]))
371 return false;
372
373 /* default per sw-queue merge */
374 spin_lock(&ctx->lock);
375 /*
376 * Reverse check our software queue for entries that we could
377 * potentially merge with. Currently includes a hand-wavy stop
378 * count of 8, to not spend too much time checking for merges.
379 */
380 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
381 ctx->rq_merged++;
382 ret = true;
383 }
384
385 spin_unlock(&ctx->lock);
386
387 return ret;
388 }
389
blk_mq_sched_try_insert_merge(struct request_queue * q,struct request * rq,struct list_head * free)390 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
391 struct list_head *free)
392 {
393 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
394 }
395 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
396
blk_mq_sched_request_inserted(struct request * rq)397 void blk_mq_sched_request_inserted(struct request *rq)
398 {
399 trace_block_rq_insert(rq);
400 }
401 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
402
blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx * hctx,bool has_sched,struct request * rq)403 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
404 bool has_sched,
405 struct request *rq)
406 {
407 /*
408 * dispatch flush and passthrough rq directly
409 *
410 * passthrough request has to be added to hctx->dispatch directly.
411 * For some reason, device may be in one situation which can't
412 * handle FS request, so STS_RESOURCE is always returned and the
413 * FS request will be added to hctx->dispatch. However passthrough
414 * request may be required at that time for fixing the problem. If
415 * passthrough request is added to scheduler queue, there isn't any
416 * chance to dispatch it given we prioritize requests in hctx->dispatch.
417 */
418 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
419 return true;
420
421 if (has_sched)
422 rq->rq_flags |= RQF_SORTED;
423
424 return false;
425 }
426
blk_mq_sched_insert_request(struct request * rq,bool at_head,bool run_queue,bool async)427 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
428 bool run_queue, bool async)
429 {
430 struct request_queue *q = rq->q;
431 struct elevator_queue *e = q->elevator;
432 struct blk_mq_ctx *ctx = rq->mq_ctx;
433 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
434
435 WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
436
437 if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
438 /*
439 * Firstly normal IO request is inserted to scheduler queue or
440 * sw queue, meantime we add flush request to dispatch queue(
441 * hctx->dispatch) directly and there is at most one in-flight
442 * flush request for each hw queue, so it doesn't matter to add
443 * flush request to tail or front of the dispatch queue.
444 *
445 * Secondly in case of NCQ, flush request belongs to non-NCQ
446 * command, and queueing it will fail when there is any
447 * in-flight normal IO request(NCQ command). When adding flush
448 * rq to the front of hctx->dispatch, it is easier to introduce
449 * extra time to flush rq's latency because of S_SCHED_RESTART
450 * compared with adding to the tail of dispatch queue, then
451 * chance of flush merge is increased, and less flush requests
452 * will be issued to controller. It is observed that ~10% time
453 * is saved in blktests block/004 on disk attached to AHCI/NCQ
454 * drive when adding flush rq to the front of hctx->dispatch.
455 *
456 * Simply queue flush rq to the front of hctx->dispatch so that
457 * intensive flush workloads can benefit in case of NCQ HW.
458 */
459 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
460 blk_mq_request_bypass_insert(rq, at_head, false);
461 goto run;
462 }
463
464 if (e && e->type->ops.insert_requests) {
465 LIST_HEAD(list);
466
467 list_add(&rq->queuelist, &list);
468 e->type->ops.insert_requests(hctx, &list, at_head);
469 } else {
470 spin_lock(&ctx->lock);
471 __blk_mq_insert_request(hctx, rq, at_head);
472 spin_unlock(&ctx->lock);
473 }
474
475 run:
476 if (run_queue)
477 blk_mq_run_hw_queue(hctx, async);
478 }
479
blk_mq_sched_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)480 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
481 struct blk_mq_ctx *ctx,
482 struct list_head *list, bool run_queue_async)
483 {
484 struct elevator_queue *e;
485 struct request_queue *q = hctx->queue;
486
487 /*
488 * blk_mq_sched_insert_requests() is called from flush plug
489 * context only, and hold one usage counter to prevent queue
490 * from being released.
491 */
492 percpu_ref_get(&q->q_usage_counter);
493
494 e = hctx->queue->elevator;
495 if (e && e->type->ops.insert_requests)
496 e->type->ops.insert_requests(hctx, list, false);
497 else {
498 /*
499 * try to issue requests directly if the hw queue isn't
500 * busy in case of 'none' scheduler, and this way may save
501 * us one extra enqueue & dequeue to sw queue.
502 */
503 if (!hctx->dispatch_busy && !e && !run_queue_async) {
504 blk_mq_try_issue_list_directly(hctx, list);
505 if (list_empty(list))
506 goto out;
507 }
508 blk_mq_insert_requests(hctx, ctx, list);
509 }
510
511 blk_mq_run_hw_queue(hctx, run_queue_async);
512 out:
513 percpu_ref_put(&q->q_usage_counter);
514 }
515
blk_mq_sched_alloc_tags(struct request_queue * q,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)516 static int blk_mq_sched_alloc_tags(struct request_queue *q,
517 struct blk_mq_hw_ctx *hctx,
518 unsigned int hctx_idx)
519 {
520 struct blk_mq_tag_set *set = q->tag_set;
521 /* Clear HCTX_SHARED so tags are init'ed */
522 unsigned int flags = set->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
523 int ret;
524
525 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
526 set->reserved_tags, flags);
527 if (!hctx->sched_tags)
528 return -ENOMEM;
529
530 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
531 if (ret) {
532 blk_mq_free_rq_map(hctx->sched_tags, flags);
533 hctx->sched_tags = NULL;
534 }
535
536 return ret;
537 }
538
539 /* called in queue's release handler, tagset has gone away */
blk_mq_sched_tags_teardown(struct request_queue * q)540 static void blk_mq_sched_tags_teardown(struct request_queue *q)
541 {
542 struct blk_mq_hw_ctx *hctx;
543 int i;
544
545 queue_for_each_hw_ctx(q, hctx, i) {
546 /* Clear HCTX_SHARED so tags are freed */
547 unsigned int flags = hctx->flags & ~BLK_MQ_F_TAG_HCTX_SHARED;
548
549 if (hctx->sched_tags) {
550 blk_mq_free_rq_map(hctx->sched_tags, flags);
551 hctx->sched_tags = NULL;
552 }
553 }
554 }
555
blk_mq_init_sched(struct request_queue * q,struct elevator_type * e)556 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
557 {
558 struct blk_mq_hw_ctx *hctx;
559 struct elevator_queue *eq;
560 unsigned int i;
561 int ret;
562
563 if (!e) {
564 q->elevator = NULL;
565 q->nr_requests = q->tag_set->queue_depth;
566 return 0;
567 }
568
569 /*
570 * Default to double of smaller one between hw queue_depth and 128,
571 * since we don't split into sync/async like the old code did.
572 * Additionally, this is a per-hw queue depth.
573 */
574 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
575 BLKDEV_MAX_RQ);
576
577 queue_for_each_hw_ctx(q, hctx, i) {
578 ret = blk_mq_sched_alloc_tags(q, hctx, i);
579 if (ret)
580 goto err;
581 }
582
583 ret = e->ops.init_sched(q, e);
584 if (ret)
585 goto err;
586
587 blk_mq_debugfs_register_sched(q);
588
589 queue_for_each_hw_ctx(q, hctx, i) {
590 if (e->ops.init_hctx) {
591 ret = e->ops.init_hctx(hctx, i);
592 if (ret) {
593 eq = q->elevator;
594 blk_mq_sched_free_requests(q);
595 blk_mq_exit_sched(q, eq);
596 kobject_put(&eq->kobj);
597 return ret;
598 }
599 }
600 blk_mq_debugfs_register_sched_hctx(q, hctx);
601 }
602
603 return 0;
604
605 err:
606 blk_mq_sched_free_requests(q);
607 blk_mq_sched_tags_teardown(q);
608 q->elevator = NULL;
609 return ret;
610 }
611
612 /*
613 * called in either blk_queue_cleanup or elevator_switch, tagset
614 * is required for freeing requests
615 */
blk_mq_sched_free_requests(struct request_queue * q)616 void blk_mq_sched_free_requests(struct request_queue *q)
617 {
618 struct blk_mq_hw_ctx *hctx;
619 int i;
620
621 queue_for_each_hw_ctx(q, hctx, i) {
622 if (hctx->sched_tags)
623 blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
624 }
625 }
626
blk_mq_exit_sched(struct request_queue * q,struct elevator_queue * e)627 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
628 {
629 struct blk_mq_hw_ctx *hctx;
630 unsigned int i;
631
632 queue_for_each_hw_ctx(q, hctx, i) {
633 blk_mq_debugfs_unregister_sched_hctx(hctx);
634 if (e->type->ops.exit_hctx && hctx->sched_data) {
635 e->type->ops.exit_hctx(hctx, i);
636 hctx->sched_data = NULL;
637 }
638 }
639 blk_mq_debugfs_unregister_sched(q);
640 if (e->type->ops.exit_sched)
641 e->type->ops.exit_sched(e);
642 blk_mq_sched_tags_teardown(q);
643 q->elevator = NULL;
644 }
645