1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25
26 #include "disasm.h"
27
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 [_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38
39 /* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
51 * analysis is limited to 64k insn, which may be hit even if total number of
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
79 * Most of the time the registers have SCALAR_VALUE type, which
80 * means the register has some value, but it's not a valid pointer.
81 * (like pointer plus pointer becomes SCALAR_VALUE type)
82 *
83 * When verifier sees load or store instructions the type of base register
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
162 */
163
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
170 struct bpf_verifier_state st;
171 int insn_idx;
172 int prev_insn_idx;
173 struct bpf_verifier_stack_elem *next;
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
176 };
177
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
179 #define BPF_COMPLEXITY_LIMIT_STATES 64
180
181 #define BPF_MAP_KEY_POISON (1ULL << 63)
182 #define BPF_MAP_KEY_SEEN (1ULL << 62)
183
184 #define BPF_MAP_PTR_UNPRIV 1UL
185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201 {
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230
231 struct bpf_call_arg_meta {
232 struct bpf_map *map_ptr;
233 bool raw_mode;
234 bool pkt_access;
235 int regno;
236 int access_size;
237 int mem_size;
238 u64 msize_max_value;
239 int ref_obj_id;
240 int func_id;
241 u32 btf_id;
242 u32 ret_btf_id;
243 };
244
245 struct btf *btf_vmlinux;
246
247 static DEFINE_MUTEX(bpf_verifier_lock);
248
249 static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env * env,u32 insn_off)250 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
251 {
252 const struct bpf_line_info *linfo;
253 const struct bpf_prog *prog;
254 u32 i, nr_linfo;
255
256 prog = env->prog;
257 nr_linfo = prog->aux->nr_linfo;
258
259 if (!nr_linfo || insn_off >= prog->len)
260 return NULL;
261
262 linfo = prog->aux->linfo;
263 for (i = 1; i < nr_linfo; i++)
264 if (insn_off < linfo[i].insn_off)
265 break;
266
267 return &linfo[i - 1];
268 }
269
bpf_verifier_vlog(struct bpf_verifier_log * log,const char * fmt,va_list args)270 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
271 va_list args)
272 {
273 unsigned int n;
274
275 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
276
277 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
278 "verifier log line truncated - local buffer too short\n");
279
280 n = min(log->len_total - log->len_used - 1, n);
281 log->kbuf[n] = '\0';
282
283 if (log->level == BPF_LOG_KERNEL) {
284 pr_err("BPF:%s\n", log->kbuf);
285 return;
286 }
287 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
288 log->len_used += n;
289 else
290 log->ubuf = NULL;
291 }
292
bpf_vlog_reset(struct bpf_verifier_log * log,u32 new_pos)293 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
294 {
295 char zero = 0;
296
297 if (!bpf_verifier_log_needed(log))
298 return;
299
300 log->len_used = new_pos;
301 if (put_user(zero, log->ubuf + new_pos))
302 log->ubuf = NULL;
303 }
304
305 /* log_level controls verbosity level of eBPF verifier.
306 * bpf_verifier_log_write() is used to dump the verification trace to the log,
307 * so the user can figure out what's wrong with the program
308 */
bpf_verifier_log_write(struct bpf_verifier_env * env,const char * fmt,...)309 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
310 const char *fmt, ...)
311 {
312 va_list args;
313
314 if (!bpf_verifier_log_needed(&env->log))
315 return;
316
317 va_start(args, fmt);
318 bpf_verifier_vlog(&env->log, fmt, args);
319 va_end(args);
320 }
321 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
322
verbose(void * private_data,const char * fmt,...)323 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
324 {
325 struct bpf_verifier_env *env = private_data;
326 va_list args;
327
328 if (!bpf_verifier_log_needed(&env->log))
329 return;
330
331 va_start(args, fmt);
332 bpf_verifier_vlog(&env->log, fmt, args);
333 va_end(args);
334 }
335
bpf_log(struct bpf_verifier_log * log,const char * fmt,...)336 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
337 const char *fmt, ...)
338 {
339 va_list args;
340
341 if (!bpf_verifier_log_needed(log))
342 return;
343
344 va_start(args, fmt);
345 bpf_verifier_vlog(log, fmt, args);
346 va_end(args);
347 }
348
ltrim(const char * s)349 static const char *ltrim(const char *s)
350 {
351 while (isspace(*s))
352 s++;
353
354 return s;
355 }
356
verbose_linfo(struct bpf_verifier_env * env,u32 insn_off,const char * prefix_fmt,...)357 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
358 u32 insn_off,
359 const char *prefix_fmt, ...)
360 {
361 const struct bpf_line_info *linfo;
362
363 if (!bpf_verifier_log_needed(&env->log))
364 return;
365
366 linfo = find_linfo(env, insn_off);
367 if (!linfo || linfo == env->prev_linfo)
368 return;
369
370 if (prefix_fmt) {
371 va_list args;
372
373 va_start(args, prefix_fmt);
374 bpf_verifier_vlog(&env->log, prefix_fmt, args);
375 va_end(args);
376 }
377
378 verbose(env, "%s\n",
379 ltrim(btf_name_by_offset(env->prog->aux->btf,
380 linfo->line_off)));
381
382 env->prev_linfo = linfo;
383 }
384
type_is_pkt_pointer(enum bpf_reg_type type)385 static bool type_is_pkt_pointer(enum bpf_reg_type type)
386 {
387 return type == PTR_TO_PACKET ||
388 type == PTR_TO_PACKET_META;
389 }
390
type_is_sk_pointer(enum bpf_reg_type type)391 static bool type_is_sk_pointer(enum bpf_reg_type type)
392 {
393 return type == PTR_TO_SOCKET ||
394 type == PTR_TO_SOCK_COMMON ||
395 type == PTR_TO_TCP_SOCK ||
396 type == PTR_TO_XDP_SOCK;
397 }
398
reg_type_not_null(enum bpf_reg_type type)399 static bool reg_type_not_null(enum bpf_reg_type type)
400 {
401 return type == PTR_TO_SOCKET ||
402 type == PTR_TO_TCP_SOCK ||
403 type == PTR_TO_MAP_VALUE ||
404 type == PTR_TO_SOCK_COMMON;
405 }
406
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)407 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
408 {
409 return reg->type == PTR_TO_MAP_VALUE &&
410 map_value_has_spin_lock(reg->map_ptr);
411 }
412
reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)413 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
414 {
415 return base_type(type) == PTR_TO_SOCKET ||
416 base_type(type) == PTR_TO_TCP_SOCK ||
417 base_type(type) == PTR_TO_MEM;
418 }
419
type_is_rdonly_mem(u32 type)420 static bool type_is_rdonly_mem(u32 type)
421 {
422 return type & MEM_RDONLY;
423 }
424
arg_type_may_be_refcounted(enum bpf_arg_type type)425 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
426 {
427 return type == ARG_PTR_TO_SOCK_COMMON;
428 }
429
type_may_be_null(u32 type)430 static bool type_may_be_null(u32 type)
431 {
432 return type & PTR_MAYBE_NULL;
433 }
434
435 /* Determine whether the function releases some resources allocated by another
436 * function call. The first reference type argument will be assumed to be
437 * released by release_reference().
438 */
is_release_function(enum bpf_func_id func_id)439 static bool is_release_function(enum bpf_func_id func_id)
440 {
441 return func_id == BPF_FUNC_sk_release ||
442 func_id == BPF_FUNC_ringbuf_submit ||
443 func_id == BPF_FUNC_ringbuf_discard;
444 }
445
may_be_acquire_function(enum bpf_func_id func_id)446 static bool may_be_acquire_function(enum bpf_func_id func_id)
447 {
448 return func_id == BPF_FUNC_sk_lookup_tcp ||
449 func_id == BPF_FUNC_sk_lookup_udp ||
450 func_id == BPF_FUNC_skc_lookup_tcp ||
451 func_id == BPF_FUNC_map_lookup_elem ||
452 func_id == BPF_FUNC_ringbuf_reserve;
453 }
454
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)455 static bool is_acquire_function(enum bpf_func_id func_id,
456 const struct bpf_map *map)
457 {
458 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
459
460 if (func_id == BPF_FUNC_sk_lookup_tcp ||
461 func_id == BPF_FUNC_sk_lookup_udp ||
462 func_id == BPF_FUNC_skc_lookup_tcp ||
463 func_id == BPF_FUNC_ringbuf_reserve)
464 return true;
465
466 if (func_id == BPF_FUNC_map_lookup_elem &&
467 (map_type == BPF_MAP_TYPE_SOCKMAP ||
468 map_type == BPF_MAP_TYPE_SOCKHASH))
469 return true;
470
471 return false;
472 }
473
is_ptr_cast_function(enum bpf_func_id func_id)474 static bool is_ptr_cast_function(enum bpf_func_id func_id)
475 {
476 return func_id == BPF_FUNC_tcp_sock ||
477 func_id == BPF_FUNC_sk_fullsock ||
478 func_id == BPF_FUNC_skc_to_tcp_sock ||
479 func_id == BPF_FUNC_skc_to_tcp6_sock ||
480 func_id == BPF_FUNC_skc_to_udp6_sock ||
481 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
482 func_id == BPF_FUNC_skc_to_tcp_request_sock;
483 }
484
485 /* string representation of 'enum bpf_reg_type'
486 *
487 * Note that reg_type_str() can not appear more than once in a single verbose()
488 * statement.
489 */
reg_type_str(struct bpf_verifier_env * env,enum bpf_reg_type type)490 static const char *reg_type_str(struct bpf_verifier_env *env,
491 enum bpf_reg_type type)
492 {
493 char postfix[16] = {0}, prefix[16] = {0};
494 static const char * const str[] = {
495 [NOT_INIT] = "?",
496 [SCALAR_VALUE] = "inv",
497 [PTR_TO_CTX] = "ctx",
498 [CONST_PTR_TO_MAP] = "map_ptr",
499 [PTR_TO_MAP_VALUE] = "map_value",
500 [PTR_TO_STACK] = "fp",
501 [PTR_TO_PACKET] = "pkt",
502 [PTR_TO_PACKET_META] = "pkt_meta",
503 [PTR_TO_PACKET_END] = "pkt_end",
504 [PTR_TO_FLOW_KEYS] = "flow_keys",
505 [PTR_TO_SOCKET] = "sock",
506 [PTR_TO_SOCK_COMMON] = "sock_common",
507 [PTR_TO_TCP_SOCK] = "tcp_sock",
508 [PTR_TO_TP_BUFFER] = "tp_buffer",
509 [PTR_TO_XDP_SOCK] = "xdp_sock",
510 [PTR_TO_BTF_ID] = "ptr_",
511 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
512 [PTR_TO_MEM] = "mem",
513 [PTR_TO_BUF] = "buf",
514 };
515
516 if (type & PTR_MAYBE_NULL) {
517 if (base_type(type) == PTR_TO_BTF_ID ||
518 base_type(type) == PTR_TO_PERCPU_BTF_ID)
519 strncpy(postfix, "or_null_", 16);
520 else
521 strncpy(postfix, "_or_null", 16);
522 }
523
524 if (type & MEM_RDONLY)
525 strncpy(prefix, "rdonly_", 16);
526 if (type & MEM_ALLOC)
527 strncpy(prefix, "alloc_", 16);
528
529 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
530 prefix, str[base_type(type)], postfix);
531 return env->type_str_buf;
532 }
533
534 static char slot_type_char[] = {
535 [STACK_INVALID] = '?',
536 [STACK_SPILL] = 'r',
537 [STACK_MISC] = 'm',
538 [STACK_ZERO] = '0',
539 };
540
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)541 static void print_liveness(struct bpf_verifier_env *env,
542 enum bpf_reg_liveness live)
543 {
544 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
545 verbose(env, "_");
546 if (live & REG_LIVE_READ)
547 verbose(env, "r");
548 if (live & REG_LIVE_WRITTEN)
549 verbose(env, "w");
550 if (live & REG_LIVE_DONE)
551 verbose(env, "D");
552 }
553
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)554 static struct bpf_func_state *func(struct bpf_verifier_env *env,
555 const struct bpf_reg_state *reg)
556 {
557 struct bpf_verifier_state *cur = env->cur_state;
558
559 return cur->frame[reg->frameno];
560 }
561
kernel_type_name(u32 id)562 const char *kernel_type_name(u32 id)
563 {
564 return btf_name_by_offset(btf_vmlinux,
565 btf_type_by_id(btf_vmlinux, id)->name_off);
566 }
567
568 /* The reg state of a pointer or a bounded scalar was saved when
569 * it was spilled to the stack.
570 */
is_spilled_reg(const struct bpf_stack_state * stack)571 static bool is_spilled_reg(const struct bpf_stack_state *stack)
572 {
573 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
574 }
575
scrub_spilled_slot(u8 * stype)576 static void scrub_spilled_slot(u8 *stype)
577 {
578 if (*stype != STACK_INVALID)
579 *stype = STACK_MISC;
580 }
581
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)582 static void print_verifier_state(struct bpf_verifier_env *env,
583 const struct bpf_func_state *state)
584 {
585 const struct bpf_reg_state *reg;
586 enum bpf_reg_type t;
587 int i;
588
589 if (state->frameno)
590 verbose(env, " frame%d:", state->frameno);
591 for (i = 0; i < MAX_BPF_REG; i++) {
592 reg = &state->regs[i];
593 t = reg->type;
594 if (t == NOT_INIT)
595 continue;
596 verbose(env, " R%d", i);
597 print_liveness(env, reg->live);
598 verbose(env, "=%s", reg_type_str(env, t));
599 if (t == SCALAR_VALUE && reg->precise)
600 verbose(env, "P");
601 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
602 tnum_is_const(reg->var_off)) {
603 /* reg->off should be 0 for SCALAR_VALUE */
604 verbose(env, "%lld", reg->var_off.value + reg->off);
605 } else {
606 if (base_type(t) == PTR_TO_BTF_ID ||
607 base_type(t) == PTR_TO_PERCPU_BTF_ID)
608 verbose(env, "%s", kernel_type_name(reg->btf_id));
609 verbose(env, "(id=%d", reg->id);
610 if (reg_type_may_be_refcounted_or_null(t))
611 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
612 if (t != SCALAR_VALUE)
613 verbose(env, ",off=%d", reg->off);
614 if (type_is_pkt_pointer(t))
615 verbose(env, ",r=%d", reg->range);
616 else if (base_type(t) == CONST_PTR_TO_MAP ||
617 base_type(t) == PTR_TO_MAP_VALUE)
618 verbose(env, ",ks=%d,vs=%d",
619 reg->map_ptr->key_size,
620 reg->map_ptr->value_size);
621 if (tnum_is_const(reg->var_off)) {
622 /* Typically an immediate SCALAR_VALUE, but
623 * could be a pointer whose offset is too big
624 * for reg->off
625 */
626 verbose(env, ",imm=%llx", reg->var_off.value);
627 } else {
628 if (reg->smin_value != reg->umin_value &&
629 reg->smin_value != S64_MIN)
630 verbose(env, ",smin_value=%lld",
631 (long long)reg->smin_value);
632 if (reg->smax_value != reg->umax_value &&
633 reg->smax_value != S64_MAX)
634 verbose(env, ",smax_value=%lld",
635 (long long)reg->smax_value);
636 if (reg->umin_value != 0)
637 verbose(env, ",umin_value=%llu",
638 (unsigned long long)reg->umin_value);
639 if (reg->umax_value != U64_MAX)
640 verbose(env, ",umax_value=%llu",
641 (unsigned long long)reg->umax_value);
642 if (!tnum_is_unknown(reg->var_off)) {
643 char tn_buf[48];
644
645 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
646 verbose(env, ",var_off=%s", tn_buf);
647 }
648 if (reg->s32_min_value != reg->smin_value &&
649 reg->s32_min_value != S32_MIN)
650 verbose(env, ",s32_min_value=%d",
651 (int)(reg->s32_min_value));
652 if (reg->s32_max_value != reg->smax_value &&
653 reg->s32_max_value != S32_MAX)
654 verbose(env, ",s32_max_value=%d",
655 (int)(reg->s32_max_value));
656 if (reg->u32_min_value != reg->umin_value &&
657 reg->u32_min_value != U32_MIN)
658 verbose(env, ",u32_min_value=%d",
659 (int)(reg->u32_min_value));
660 if (reg->u32_max_value != reg->umax_value &&
661 reg->u32_max_value != U32_MAX)
662 verbose(env, ",u32_max_value=%d",
663 (int)(reg->u32_max_value));
664 }
665 verbose(env, ")");
666 }
667 }
668 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
669 char types_buf[BPF_REG_SIZE + 1];
670 bool valid = false;
671 int j;
672
673 for (j = 0; j < BPF_REG_SIZE; j++) {
674 if (state->stack[i].slot_type[j] != STACK_INVALID)
675 valid = true;
676 types_buf[j] = slot_type_char[
677 state->stack[i].slot_type[j]];
678 }
679 types_buf[BPF_REG_SIZE] = 0;
680 if (!valid)
681 continue;
682 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
683 print_liveness(env, state->stack[i].spilled_ptr.live);
684 if (is_spilled_reg(&state->stack[i])) {
685 reg = &state->stack[i].spilled_ptr;
686 t = reg->type;
687 verbose(env, "=%s", reg_type_str(env, t));
688 if (t == SCALAR_VALUE && reg->precise)
689 verbose(env, "P");
690 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
691 verbose(env, "%lld", reg->var_off.value + reg->off);
692 } else {
693 verbose(env, "=%s", types_buf);
694 }
695 }
696 if (state->acquired_refs && state->refs[0].id) {
697 verbose(env, " refs=%d", state->refs[0].id);
698 for (i = 1; i < state->acquired_refs; i++)
699 if (state->refs[i].id)
700 verbose(env, ",%d", state->refs[i].id);
701 }
702 verbose(env, "\n");
703 }
704
705 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
706 static int copy_##NAME##_state(struct bpf_func_state *dst, \
707 const struct bpf_func_state *src) \
708 { \
709 if (!src->FIELD) \
710 return 0; \
711 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
712 /* internal bug, make state invalid to reject the program */ \
713 memset(dst, 0, sizeof(*dst)); \
714 return -EFAULT; \
715 } \
716 memcpy(dst->FIELD, src->FIELD, \
717 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
718 return 0; \
719 }
720 /* copy_reference_state() */
721 COPY_STATE_FN(reference, acquired_refs, refs, 1)
722 /* copy_stack_state() */
COPY_STATE_FN(stack,allocated_stack,stack,BPF_REG_SIZE)723 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
724 #undef COPY_STATE_FN
725
726 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
727 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
728 bool copy_old) \
729 { \
730 u32 old_size = state->COUNT; \
731 struct bpf_##NAME##_state *new_##FIELD; \
732 int slot = size / SIZE; \
733 \
734 if (size <= old_size || !size) { \
735 if (copy_old) \
736 return 0; \
737 state->COUNT = slot * SIZE; \
738 if (!size && old_size) { \
739 kfree(state->FIELD); \
740 state->FIELD = NULL; \
741 } \
742 return 0; \
743 } \
744 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
745 GFP_KERNEL); \
746 if (!new_##FIELD) \
747 return -ENOMEM; \
748 if (copy_old) { \
749 if (state->FIELD) \
750 memcpy(new_##FIELD, state->FIELD, \
751 sizeof(*new_##FIELD) * (old_size / SIZE)); \
752 memset(new_##FIELD + old_size / SIZE, 0, \
753 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
754 } \
755 state->COUNT = slot * SIZE; \
756 kfree(state->FIELD); \
757 state->FIELD = new_##FIELD; \
758 return 0; \
759 }
760 /* realloc_reference_state() */
761 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
762 /* realloc_stack_state() */
763 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
764 #undef REALLOC_STATE_FN
765
766 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
767 * make it consume minimal amount of memory. check_stack_write() access from
768 * the program calls into realloc_func_state() to grow the stack size.
769 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
770 * which realloc_stack_state() copies over. It points to previous
771 * bpf_verifier_state which is never reallocated.
772 */
773 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
774 int refs_size, bool copy_old)
775 {
776 int err = realloc_reference_state(state, refs_size, copy_old);
777 if (err)
778 return err;
779 return realloc_stack_state(state, stack_size, copy_old);
780 }
781
782 /* Acquire a pointer id from the env and update the state->refs to include
783 * this new pointer reference.
784 * On success, returns a valid pointer id to associate with the register
785 * On failure, returns a negative errno.
786 */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)787 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
788 {
789 struct bpf_func_state *state = cur_func(env);
790 int new_ofs = state->acquired_refs;
791 int id, err;
792
793 err = realloc_reference_state(state, state->acquired_refs + 1, true);
794 if (err)
795 return err;
796 id = ++env->id_gen;
797 state->refs[new_ofs].id = id;
798 state->refs[new_ofs].insn_idx = insn_idx;
799
800 return id;
801 }
802
803 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)804 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
805 {
806 int i, last_idx;
807
808 last_idx = state->acquired_refs - 1;
809 for (i = 0; i < state->acquired_refs; i++) {
810 if (state->refs[i].id == ptr_id) {
811 if (last_idx && i != last_idx)
812 memcpy(&state->refs[i], &state->refs[last_idx],
813 sizeof(*state->refs));
814 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
815 state->acquired_refs--;
816 return 0;
817 }
818 }
819 return -EINVAL;
820 }
821
transfer_reference_state(struct bpf_func_state * dst,struct bpf_func_state * src)822 static int transfer_reference_state(struct bpf_func_state *dst,
823 struct bpf_func_state *src)
824 {
825 int err = realloc_reference_state(dst, src->acquired_refs, false);
826 if (err)
827 return err;
828 err = copy_reference_state(dst, src);
829 if (err)
830 return err;
831 return 0;
832 }
833
free_func_state(struct bpf_func_state * state)834 static void free_func_state(struct bpf_func_state *state)
835 {
836 if (!state)
837 return;
838 kfree(state->refs);
839 kfree(state->stack);
840 kfree(state);
841 }
842
clear_jmp_history(struct bpf_verifier_state * state)843 static void clear_jmp_history(struct bpf_verifier_state *state)
844 {
845 kfree(state->jmp_history);
846 state->jmp_history = NULL;
847 state->jmp_history_cnt = 0;
848 }
849
free_verifier_state(struct bpf_verifier_state * state,bool free_self)850 static void free_verifier_state(struct bpf_verifier_state *state,
851 bool free_self)
852 {
853 int i;
854
855 for (i = 0; i <= state->curframe; i++) {
856 free_func_state(state->frame[i]);
857 state->frame[i] = NULL;
858 }
859 clear_jmp_history(state);
860 if (free_self)
861 kfree(state);
862 }
863
864 /* copy verifier state from src to dst growing dst stack space
865 * when necessary to accommodate larger src stack
866 */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)867 static int copy_func_state(struct bpf_func_state *dst,
868 const struct bpf_func_state *src)
869 {
870 int err;
871
872 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
873 false);
874 if (err)
875 return err;
876 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
877 err = copy_reference_state(dst, src);
878 if (err)
879 return err;
880 return copy_stack_state(dst, src);
881 }
882
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)883 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
884 const struct bpf_verifier_state *src)
885 {
886 struct bpf_func_state *dst;
887 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
888 int i, err;
889
890 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
891 kfree(dst_state->jmp_history);
892 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
893 if (!dst_state->jmp_history)
894 return -ENOMEM;
895 }
896 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
897 dst_state->jmp_history_cnt = src->jmp_history_cnt;
898
899 /* if dst has more stack frames then src frame, free them */
900 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
901 free_func_state(dst_state->frame[i]);
902 dst_state->frame[i] = NULL;
903 }
904 dst_state->speculative = src->speculative;
905 dst_state->curframe = src->curframe;
906 dst_state->active_spin_lock = src->active_spin_lock;
907 dst_state->branches = src->branches;
908 dst_state->parent = src->parent;
909 dst_state->first_insn_idx = src->first_insn_idx;
910 dst_state->last_insn_idx = src->last_insn_idx;
911 for (i = 0; i <= src->curframe; i++) {
912 dst = dst_state->frame[i];
913 if (!dst) {
914 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
915 if (!dst)
916 return -ENOMEM;
917 dst_state->frame[i] = dst;
918 }
919 err = copy_func_state(dst, src->frame[i]);
920 if (err)
921 return err;
922 }
923 return 0;
924 }
925
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)926 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
927 {
928 while (st) {
929 u32 br = --st->branches;
930
931 /* WARN_ON(br > 1) technically makes sense here,
932 * but see comment in push_stack(), hence:
933 */
934 WARN_ONCE((int)br < 0,
935 "BUG update_branch_counts:branches_to_explore=%d\n",
936 br);
937 if (br)
938 break;
939 st = st->parent;
940 }
941 }
942
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)943 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
944 int *insn_idx, bool pop_log)
945 {
946 struct bpf_verifier_state *cur = env->cur_state;
947 struct bpf_verifier_stack_elem *elem, *head = env->head;
948 int err;
949
950 if (env->head == NULL)
951 return -ENOENT;
952
953 if (cur) {
954 err = copy_verifier_state(cur, &head->st);
955 if (err)
956 return err;
957 }
958 if (pop_log)
959 bpf_vlog_reset(&env->log, head->log_pos);
960 if (insn_idx)
961 *insn_idx = head->insn_idx;
962 if (prev_insn_idx)
963 *prev_insn_idx = head->prev_insn_idx;
964 elem = head->next;
965 free_verifier_state(&head->st, false);
966 kfree(head);
967 env->head = elem;
968 env->stack_size--;
969 return 0;
970 }
971
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)972 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
973 int insn_idx, int prev_insn_idx,
974 bool speculative)
975 {
976 struct bpf_verifier_state *cur = env->cur_state;
977 struct bpf_verifier_stack_elem *elem;
978 int err;
979
980 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
981 if (!elem)
982 goto err;
983
984 elem->insn_idx = insn_idx;
985 elem->prev_insn_idx = prev_insn_idx;
986 elem->next = env->head;
987 elem->log_pos = env->log.len_used;
988 env->head = elem;
989 env->stack_size++;
990 err = copy_verifier_state(&elem->st, cur);
991 if (err)
992 goto err;
993 elem->st.speculative |= speculative;
994 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
995 verbose(env, "The sequence of %d jumps is too complex.\n",
996 env->stack_size);
997 goto err;
998 }
999 if (elem->st.parent) {
1000 ++elem->st.parent->branches;
1001 /* WARN_ON(branches > 2) technically makes sense here,
1002 * but
1003 * 1. speculative states will bump 'branches' for non-branch
1004 * instructions
1005 * 2. is_state_visited() heuristics may decide not to create
1006 * a new state for a sequence of branches and all such current
1007 * and cloned states will be pointing to a single parent state
1008 * which might have large 'branches' count.
1009 */
1010 }
1011 return &elem->st;
1012 err:
1013 free_verifier_state(env->cur_state, true);
1014 env->cur_state = NULL;
1015 /* pop all elements and return */
1016 while (!pop_stack(env, NULL, NULL, false));
1017 return NULL;
1018 }
1019
1020 #define CALLER_SAVED_REGS 6
1021 static const int caller_saved[CALLER_SAVED_REGS] = {
1022 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1023 };
1024
1025 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1026 struct bpf_reg_state *reg);
1027
1028 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)1029 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1030 {
1031 reg->var_off = tnum_const(imm);
1032 reg->smin_value = (s64)imm;
1033 reg->smax_value = (s64)imm;
1034 reg->umin_value = imm;
1035 reg->umax_value = imm;
1036
1037 reg->s32_min_value = (s32)imm;
1038 reg->s32_max_value = (s32)imm;
1039 reg->u32_min_value = (u32)imm;
1040 reg->u32_max_value = (u32)imm;
1041 }
1042
1043 /* Mark the unknown part of a register (variable offset or scalar value) as
1044 * known to have the value @imm.
1045 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)1046 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1047 {
1048 /* Clear id, off, and union(map_ptr, range) */
1049 memset(((u8 *)reg) + sizeof(reg->type), 0,
1050 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1051 ___mark_reg_known(reg, imm);
1052 }
1053
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)1054 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1055 {
1056 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1057 reg->s32_min_value = (s32)imm;
1058 reg->s32_max_value = (s32)imm;
1059 reg->u32_min_value = (u32)imm;
1060 reg->u32_max_value = (u32)imm;
1061 }
1062
1063 /* Mark the 'variable offset' part of a register as zero. This should be
1064 * used only on registers holding a pointer type.
1065 */
__mark_reg_known_zero(struct bpf_reg_state * reg)1066 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1067 {
1068 __mark_reg_known(reg, 0);
1069 }
1070
__mark_reg_const_zero(struct bpf_reg_state * reg)1071 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1072 {
1073 __mark_reg_known(reg, 0);
1074 reg->type = SCALAR_VALUE;
1075 }
1076
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1077 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1078 struct bpf_reg_state *regs, u32 regno)
1079 {
1080 if (WARN_ON(regno >= MAX_BPF_REG)) {
1081 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1082 /* Something bad happened, let's kill all regs */
1083 for (regno = 0; regno < MAX_BPF_REG; regno++)
1084 __mark_reg_not_init(env, regs + regno);
1085 return;
1086 }
1087 __mark_reg_known_zero(regs + regno);
1088 }
1089
reg_is_pkt_pointer(const struct bpf_reg_state * reg)1090 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1091 {
1092 return type_is_pkt_pointer(reg->type);
1093 }
1094
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)1095 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1096 {
1097 return reg_is_pkt_pointer(reg) ||
1098 reg->type == PTR_TO_PACKET_END;
1099 }
1100
1101 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)1102 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1103 enum bpf_reg_type which)
1104 {
1105 /* The register can already have a range from prior markings.
1106 * This is fine as long as it hasn't been advanced from its
1107 * origin.
1108 */
1109 return reg->type == which &&
1110 reg->id == 0 &&
1111 reg->off == 0 &&
1112 tnum_equals_const(reg->var_off, 0);
1113 }
1114
1115 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)1116 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1117 {
1118 reg->smin_value = S64_MIN;
1119 reg->smax_value = S64_MAX;
1120 reg->umin_value = 0;
1121 reg->umax_value = U64_MAX;
1122
1123 reg->s32_min_value = S32_MIN;
1124 reg->s32_max_value = S32_MAX;
1125 reg->u32_min_value = 0;
1126 reg->u32_max_value = U32_MAX;
1127 }
1128
__mark_reg64_unbounded(struct bpf_reg_state * reg)1129 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1130 {
1131 reg->smin_value = S64_MIN;
1132 reg->smax_value = S64_MAX;
1133 reg->umin_value = 0;
1134 reg->umax_value = U64_MAX;
1135 }
1136
__mark_reg32_unbounded(struct bpf_reg_state * reg)1137 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1138 {
1139 reg->s32_min_value = S32_MIN;
1140 reg->s32_max_value = S32_MAX;
1141 reg->u32_min_value = 0;
1142 reg->u32_max_value = U32_MAX;
1143 }
1144
__update_reg32_bounds(struct bpf_reg_state * reg)1145 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1146 {
1147 struct tnum var32_off = tnum_subreg(reg->var_off);
1148
1149 /* min signed is max(sign bit) | min(other bits) */
1150 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1151 var32_off.value | (var32_off.mask & S32_MIN));
1152 /* max signed is min(sign bit) | max(other bits) */
1153 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1154 var32_off.value | (var32_off.mask & S32_MAX));
1155 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1156 reg->u32_max_value = min(reg->u32_max_value,
1157 (u32)(var32_off.value | var32_off.mask));
1158 }
1159
__update_reg64_bounds(struct bpf_reg_state * reg)1160 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1161 {
1162 /* min signed is max(sign bit) | min(other bits) */
1163 reg->smin_value = max_t(s64, reg->smin_value,
1164 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1165 /* max signed is min(sign bit) | max(other bits) */
1166 reg->smax_value = min_t(s64, reg->smax_value,
1167 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1168 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1169 reg->umax_value = min(reg->umax_value,
1170 reg->var_off.value | reg->var_off.mask);
1171 }
1172
__update_reg_bounds(struct bpf_reg_state * reg)1173 static void __update_reg_bounds(struct bpf_reg_state *reg)
1174 {
1175 __update_reg32_bounds(reg);
1176 __update_reg64_bounds(reg);
1177 }
1178
1179 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)1180 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1181 {
1182 /* Learn sign from signed bounds.
1183 * If we cannot cross the sign boundary, then signed and unsigned bounds
1184 * are the same, so combine. This works even in the negative case, e.g.
1185 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1186 */
1187 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1188 reg->s32_min_value = reg->u32_min_value =
1189 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1190 reg->s32_max_value = reg->u32_max_value =
1191 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1192 return;
1193 }
1194 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1195 * boundary, so we must be careful.
1196 */
1197 if ((s32)reg->u32_max_value >= 0) {
1198 /* Positive. We can't learn anything from the smin, but smax
1199 * is positive, hence safe.
1200 */
1201 reg->s32_min_value = reg->u32_min_value;
1202 reg->s32_max_value = reg->u32_max_value =
1203 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1204 } else if ((s32)reg->u32_min_value < 0) {
1205 /* Negative. We can't learn anything from the smax, but smin
1206 * is negative, hence safe.
1207 */
1208 reg->s32_min_value = reg->u32_min_value =
1209 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1210 reg->s32_max_value = reg->u32_max_value;
1211 }
1212 }
1213
__reg64_deduce_bounds(struct bpf_reg_state * reg)1214 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1215 {
1216 /* Learn sign from signed bounds.
1217 * If we cannot cross the sign boundary, then signed and unsigned bounds
1218 * are the same, so combine. This works even in the negative case, e.g.
1219 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1220 */
1221 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1222 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1223 reg->umin_value);
1224 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1225 reg->umax_value);
1226 return;
1227 }
1228 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1229 * boundary, so we must be careful.
1230 */
1231 if ((s64)reg->umax_value >= 0) {
1232 /* Positive. We can't learn anything from the smin, but smax
1233 * is positive, hence safe.
1234 */
1235 reg->smin_value = reg->umin_value;
1236 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1237 reg->umax_value);
1238 } else if ((s64)reg->umin_value < 0) {
1239 /* Negative. We can't learn anything from the smax, but smin
1240 * is negative, hence safe.
1241 */
1242 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1243 reg->umin_value);
1244 reg->smax_value = reg->umax_value;
1245 }
1246 }
1247
__reg_deduce_bounds(struct bpf_reg_state * reg)1248 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1249 {
1250 __reg32_deduce_bounds(reg);
1251 __reg64_deduce_bounds(reg);
1252 }
1253
1254 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)1255 static void __reg_bound_offset(struct bpf_reg_state *reg)
1256 {
1257 struct tnum var64_off = tnum_intersect(reg->var_off,
1258 tnum_range(reg->umin_value,
1259 reg->umax_value));
1260 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1261 tnum_range(reg->u32_min_value,
1262 reg->u32_max_value));
1263
1264 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1265 }
1266
reg_bounds_sync(struct bpf_reg_state * reg)1267 static void reg_bounds_sync(struct bpf_reg_state *reg)
1268 {
1269 /* We might have learned new bounds from the var_off. */
1270 __update_reg_bounds(reg);
1271 /* We might have learned something about the sign bit. */
1272 __reg_deduce_bounds(reg);
1273 /* We might have learned some bits from the bounds. */
1274 __reg_bound_offset(reg);
1275 /* Intersecting with the old var_off might have improved our bounds
1276 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1277 * then new var_off is (0; 0x7f...fc) which improves our umax.
1278 */
1279 __update_reg_bounds(reg);
1280 }
1281
__reg32_bound_s64(s32 a)1282 static bool __reg32_bound_s64(s32 a)
1283 {
1284 return a >= 0 && a <= S32_MAX;
1285 }
1286
__reg_assign_32_into_64(struct bpf_reg_state * reg)1287 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1288 {
1289 reg->umin_value = reg->u32_min_value;
1290 reg->umax_value = reg->u32_max_value;
1291
1292 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1293 * be positive otherwise set to worse case bounds and refine later
1294 * from tnum.
1295 */
1296 if (__reg32_bound_s64(reg->s32_min_value) &&
1297 __reg32_bound_s64(reg->s32_max_value)) {
1298 reg->smin_value = reg->s32_min_value;
1299 reg->smax_value = reg->s32_max_value;
1300 } else {
1301 reg->smin_value = 0;
1302 reg->smax_value = U32_MAX;
1303 }
1304 }
1305
__reg_combine_32_into_64(struct bpf_reg_state * reg)1306 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1307 {
1308 /* special case when 64-bit register has upper 32-bit register
1309 * zeroed. Typically happens after zext or <<32, >>32 sequence
1310 * allowing us to use 32-bit bounds directly,
1311 */
1312 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1313 __reg_assign_32_into_64(reg);
1314 } else {
1315 /* Otherwise the best we can do is push lower 32bit known and
1316 * unknown bits into register (var_off set from jmp logic)
1317 * then learn as much as possible from the 64-bit tnum
1318 * known and unknown bits. The previous smin/smax bounds are
1319 * invalid here because of jmp32 compare so mark them unknown
1320 * so they do not impact tnum bounds calculation.
1321 */
1322 __mark_reg64_unbounded(reg);
1323 }
1324 reg_bounds_sync(reg);
1325 }
1326
__reg64_bound_s32(s64 a)1327 static bool __reg64_bound_s32(s64 a)
1328 {
1329 return a >= S32_MIN && a <= S32_MAX;
1330 }
1331
__reg64_bound_u32(u64 a)1332 static bool __reg64_bound_u32(u64 a)
1333 {
1334 return a >= U32_MIN && a <= U32_MAX;
1335 }
1336
__reg_combine_64_into_32(struct bpf_reg_state * reg)1337 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1338 {
1339 __mark_reg32_unbounded(reg);
1340 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1341 reg->s32_min_value = (s32)reg->smin_value;
1342 reg->s32_max_value = (s32)reg->smax_value;
1343 }
1344 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1345 reg->u32_min_value = (u32)reg->umin_value;
1346 reg->u32_max_value = (u32)reg->umax_value;
1347 }
1348 reg_bounds_sync(reg);
1349 }
1350
1351 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1352 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1353 struct bpf_reg_state *reg)
1354 {
1355 /*
1356 * Clear type, id, off, and union(map_ptr, range) and
1357 * padding between 'type' and union
1358 */
1359 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1360 reg->type = SCALAR_VALUE;
1361 reg->var_off = tnum_unknown;
1362 reg->frameno = 0;
1363 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1364 __mark_reg_unbounded(reg);
1365 }
1366
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1367 static void mark_reg_unknown(struct bpf_verifier_env *env,
1368 struct bpf_reg_state *regs, u32 regno)
1369 {
1370 if (WARN_ON(regno >= MAX_BPF_REG)) {
1371 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1372 /* Something bad happened, let's kill all regs except FP */
1373 for (regno = 0; regno < BPF_REG_FP; regno++)
1374 __mark_reg_not_init(env, regs + regno);
1375 return;
1376 }
1377 __mark_reg_unknown(env, regs + regno);
1378 }
1379
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1380 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1381 struct bpf_reg_state *reg)
1382 {
1383 __mark_reg_unknown(env, reg);
1384 reg->type = NOT_INIT;
1385 }
1386
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1387 static void mark_reg_not_init(struct bpf_verifier_env *env,
1388 struct bpf_reg_state *regs, u32 regno)
1389 {
1390 if (WARN_ON(regno >= MAX_BPF_REG)) {
1391 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1392 /* Something bad happened, let's kill all regs except FP */
1393 for (regno = 0; regno < BPF_REG_FP; regno++)
1394 __mark_reg_not_init(env, regs + regno);
1395 return;
1396 }
1397 __mark_reg_not_init(env, regs + regno);
1398 }
1399
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,u32 btf_id)1400 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1401 struct bpf_reg_state *regs, u32 regno,
1402 enum bpf_reg_type reg_type, u32 btf_id)
1403 {
1404 if (reg_type == SCALAR_VALUE) {
1405 mark_reg_unknown(env, regs, regno);
1406 return;
1407 }
1408 mark_reg_known_zero(env, regs, regno);
1409 regs[regno].type = PTR_TO_BTF_ID;
1410 regs[regno].btf_id = btf_id;
1411 }
1412
1413 #define DEF_NOT_SUBREG (0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)1414 static void init_reg_state(struct bpf_verifier_env *env,
1415 struct bpf_func_state *state)
1416 {
1417 struct bpf_reg_state *regs = state->regs;
1418 int i;
1419
1420 for (i = 0; i < MAX_BPF_REG; i++) {
1421 mark_reg_not_init(env, regs, i);
1422 regs[i].live = REG_LIVE_NONE;
1423 regs[i].parent = NULL;
1424 regs[i].subreg_def = DEF_NOT_SUBREG;
1425 }
1426
1427 /* frame pointer */
1428 regs[BPF_REG_FP].type = PTR_TO_STACK;
1429 mark_reg_known_zero(env, regs, BPF_REG_FP);
1430 regs[BPF_REG_FP].frameno = state->frameno;
1431 }
1432
1433 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)1434 static void init_func_state(struct bpf_verifier_env *env,
1435 struct bpf_func_state *state,
1436 int callsite, int frameno, int subprogno)
1437 {
1438 state->callsite = callsite;
1439 state->frameno = frameno;
1440 state->subprogno = subprogno;
1441 init_reg_state(env, state);
1442 }
1443
1444 enum reg_arg_type {
1445 SRC_OP, /* register is used as source operand */
1446 DST_OP, /* register is used as destination operand */
1447 DST_OP_NO_MARK /* same as above, check only, don't mark */
1448 };
1449
cmp_subprogs(const void * a,const void * b)1450 static int cmp_subprogs(const void *a, const void *b)
1451 {
1452 return ((struct bpf_subprog_info *)a)->start -
1453 ((struct bpf_subprog_info *)b)->start;
1454 }
1455
find_subprog(struct bpf_verifier_env * env,int off)1456 static int find_subprog(struct bpf_verifier_env *env, int off)
1457 {
1458 struct bpf_subprog_info *p;
1459
1460 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1461 sizeof(env->subprog_info[0]), cmp_subprogs);
1462 if (!p)
1463 return -ENOENT;
1464 return p - env->subprog_info;
1465
1466 }
1467
add_subprog(struct bpf_verifier_env * env,int off)1468 static int add_subprog(struct bpf_verifier_env *env, int off)
1469 {
1470 int insn_cnt = env->prog->len;
1471 int ret;
1472
1473 if (off >= insn_cnt || off < 0) {
1474 verbose(env, "call to invalid destination\n");
1475 return -EINVAL;
1476 }
1477 ret = find_subprog(env, off);
1478 if (ret >= 0)
1479 return 0;
1480 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1481 verbose(env, "too many subprograms\n");
1482 return -E2BIG;
1483 }
1484 env->subprog_info[env->subprog_cnt++].start = off;
1485 sort(env->subprog_info, env->subprog_cnt,
1486 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1487 return 0;
1488 }
1489
check_subprogs(struct bpf_verifier_env * env)1490 static int check_subprogs(struct bpf_verifier_env *env)
1491 {
1492 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1493 struct bpf_subprog_info *subprog = env->subprog_info;
1494 struct bpf_insn *insn = env->prog->insnsi;
1495 int insn_cnt = env->prog->len;
1496
1497 /* Add entry function. */
1498 ret = add_subprog(env, 0);
1499 if (ret < 0)
1500 return ret;
1501
1502 /* determine subprog starts. The end is one before the next starts */
1503 for (i = 0; i < insn_cnt; i++) {
1504 if (insn[i].code != (BPF_JMP | BPF_CALL))
1505 continue;
1506 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1507 continue;
1508 if (!env->bpf_capable) {
1509 verbose(env,
1510 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1511 return -EPERM;
1512 }
1513 ret = add_subprog(env, i + insn[i].imm + 1);
1514 if (ret < 0)
1515 return ret;
1516 }
1517
1518 /* Add a fake 'exit' subprog which could simplify subprog iteration
1519 * logic. 'subprog_cnt' should not be increased.
1520 */
1521 subprog[env->subprog_cnt].start = insn_cnt;
1522
1523 if (env->log.level & BPF_LOG_LEVEL2)
1524 for (i = 0; i < env->subprog_cnt; i++)
1525 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1526
1527 /* now check that all jumps are within the same subprog */
1528 subprog_start = subprog[cur_subprog].start;
1529 subprog_end = subprog[cur_subprog + 1].start;
1530 for (i = 0; i < insn_cnt; i++) {
1531 u8 code = insn[i].code;
1532
1533 if (code == (BPF_JMP | BPF_CALL) &&
1534 insn[i].imm == BPF_FUNC_tail_call &&
1535 insn[i].src_reg != BPF_PSEUDO_CALL)
1536 subprog[cur_subprog].has_tail_call = true;
1537 if (BPF_CLASS(code) == BPF_LD &&
1538 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1539 subprog[cur_subprog].has_ld_abs = true;
1540 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1541 goto next;
1542 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1543 goto next;
1544 off = i + insn[i].off + 1;
1545 if (off < subprog_start || off >= subprog_end) {
1546 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1547 return -EINVAL;
1548 }
1549 next:
1550 if (i == subprog_end - 1) {
1551 /* to avoid fall-through from one subprog into another
1552 * the last insn of the subprog should be either exit
1553 * or unconditional jump back
1554 */
1555 if (code != (BPF_JMP | BPF_EXIT) &&
1556 code != (BPF_JMP | BPF_JA)) {
1557 verbose(env, "last insn is not an exit or jmp\n");
1558 return -EINVAL;
1559 }
1560 subprog_start = subprog_end;
1561 cur_subprog++;
1562 if (cur_subprog < env->subprog_cnt)
1563 subprog_end = subprog[cur_subprog + 1].start;
1564 }
1565 }
1566 return 0;
1567 }
1568
1569 /* Parentage chain of this register (or stack slot) should take care of all
1570 * issues like callee-saved registers, stack slot allocation time, etc.
1571 */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)1572 static int mark_reg_read(struct bpf_verifier_env *env,
1573 const struct bpf_reg_state *state,
1574 struct bpf_reg_state *parent, u8 flag)
1575 {
1576 bool writes = parent == state->parent; /* Observe write marks */
1577 int cnt = 0;
1578
1579 while (parent) {
1580 /* if read wasn't screened by an earlier write ... */
1581 if (writes && state->live & REG_LIVE_WRITTEN)
1582 break;
1583 if (parent->live & REG_LIVE_DONE) {
1584 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1585 reg_type_str(env, parent->type),
1586 parent->var_off.value, parent->off);
1587 return -EFAULT;
1588 }
1589 /* The first condition is more likely to be true than the
1590 * second, checked it first.
1591 */
1592 if ((parent->live & REG_LIVE_READ) == flag ||
1593 parent->live & REG_LIVE_READ64)
1594 /* The parentage chain never changes and
1595 * this parent was already marked as LIVE_READ.
1596 * There is no need to keep walking the chain again and
1597 * keep re-marking all parents as LIVE_READ.
1598 * This case happens when the same register is read
1599 * multiple times without writes into it in-between.
1600 * Also, if parent has the stronger REG_LIVE_READ64 set,
1601 * then no need to set the weak REG_LIVE_READ32.
1602 */
1603 break;
1604 /* ... then we depend on parent's value */
1605 parent->live |= flag;
1606 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1607 if (flag == REG_LIVE_READ64)
1608 parent->live &= ~REG_LIVE_READ32;
1609 state = parent;
1610 parent = state->parent;
1611 writes = true;
1612 cnt++;
1613 }
1614
1615 if (env->longest_mark_read_walk < cnt)
1616 env->longest_mark_read_walk = cnt;
1617 return 0;
1618 }
1619
1620 /* This function is supposed to be used by the following 32-bit optimization
1621 * code only. It returns TRUE if the source or destination register operates
1622 * on 64-bit, otherwise return FALSE.
1623 */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)1624 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1625 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1626 {
1627 u8 code, class, op;
1628
1629 code = insn->code;
1630 class = BPF_CLASS(code);
1631 op = BPF_OP(code);
1632 if (class == BPF_JMP) {
1633 /* BPF_EXIT for "main" will reach here. Return TRUE
1634 * conservatively.
1635 */
1636 if (op == BPF_EXIT)
1637 return true;
1638 if (op == BPF_CALL) {
1639 /* BPF to BPF call will reach here because of marking
1640 * caller saved clobber with DST_OP_NO_MARK for which we
1641 * don't care the register def because they are anyway
1642 * marked as NOT_INIT already.
1643 */
1644 if (insn->src_reg == BPF_PSEUDO_CALL)
1645 return false;
1646 /* Helper call will reach here because of arg type
1647 * check, conservatively return TRUE.
1648 */
1649 if (t == SRC_OP)
1650 return true;
1651
1652 return false;
1653 }
1654 }
1655
1656 if (class == BPF_ALU64 || class == BPF_JMP ||
1657 /* BPF_END always use BPF_ALU class. */
1658 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1659 return true;
1660
1661 if (class == BPF_ALU || class == BPF_JMP32)
1662 return false;
1663
1664 if (class == BPF_LDX) {
1665 if (t != SRC_OP)
1666 return BPF_SIZE(code) == BPF_DW;
1667 /* LDX source must be ptr. */
1668 return true;
1669 }
1670
1671 if (class == BPF_STX) {
1672 if (reg->type != SCALAR_VALUE)
1673 return true;
1674 return BPF_SIZE(code) == BPF_DW;
1675 }
1676
1677 if (class == BPF_LD) {
1678 u8 mode = BPF_MODE(code);
1679
1680 /* LD_IMM64 */
1681 if (mode == BPF_IMM)
1682 return true;
1683
1684 /* Both LD_IND and LD_ABS return 32-bit data. */
1685 if (t != SRC_OP)
1686 return false;
1687
1688 /* Implicit ctx ptr. */
1689 if (regno == BPF_REG_6)
1690 return true;
1691
1692 /* Explicit source could be any width. */
1693 return true;
1694 }
1695
1696 if (class == BPF_ST)
1697 /* The only source register for BPF_ST is a ptr. */
1698 return true;
1699
1700 /* Conservatively return true at default. */
1701 return true;
1702 }
1703
1704 /* Return TRUE if INSN doesn't have explicit value define. */
insn_no_def(struct bpf_insn * insn)1705 static bool insn_no_def(struct bpf_insn *insn)
1706 {
1707 u8 class = BPF_CLASS(insn->code);
1708
1709 return (class == BPF_JMP || class == BPF_JMP32 ||
1710 class == BPF_STX || class == BPF_ST);
1711 }
1712
1713 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)1714 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1715 {
1716 if (insn_no_def(insn))
1717 return false;
1718
1719 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1720 }
1721
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1722 static void mark_insn_zext(struct bpf_verifier_env *env,
1723 struct bpf_reg_state *reg)
1724 {
1725 s32 def_idx = reg->subreg_def;
1726
1727 if (def_idx == DEF_NOT_SUBREG)
1728 return;
1729
1730 env->insn_aux_data[def_idx - 1].zext_dst = true;
1731 /* The dst will be zero extended, so won't be sub-register anymore. */
1732 reg->subreg_def = DEF_NOT_SUBREG;
1733 }
1734
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)1735 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1736 enum reg_arg_type t)
1737 {
1738 struct bpf_verifier_state *vstate = env->cur_state;
1739 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1740 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1741 struct bpf_reg_state *reg, *regs = state->regs;
1742 bool rw64;
1743
1744 if (regno >= MAX_BPF_REG) {
1745 verbose(env, "R%d is invalid\n", regno);
1746 return -EINVAL;
1747 }
1748
1749 reg = ®s[regno];
1750 rw64 = is_reg64(env, insn, regno, reg, t);
1751 if (t == SRC_OP) {
1752 /* check whether register used as source operand can be read */
1753 if (reg->type == NOT_INIT) {
1754 verbose(env, "R%d !read_ok\n", regno);
1755 return -EACCES;
1756 }
1757 /* We don't need to worry about FP liveness because it's read-only */
1758 if (regno == BPF_REG_FP)
1759 return 0;
1760
1761 if (rw64)
1762 mark_insn_zext(env, reg);
1763
1764 return mark_reg_read(env, reg, reg->parent,
1765 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1766 } else {
1767 /* check whether register used as dest operand can be written to */
1768 if (regno == BPF_REG_FP) {
1769 verbose(env, "frame pointer is read only\n");
1770 return -EACCES;
1771 }
1772 reg->live |= REG_LIVE_WRITTEN;
1773 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1774 if (t == DST_OP)
1775 mark_reg_unknown(env, regs, regno);
1776 }
1777 return 0;
1778 }
1779
1780 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur)1781 static int push_jmp_history(struct bpf_verifier_env *env,
1782 struct bpf_verifier_state *cur)
1783 {
1784 u32 cnt = cur->jmp_history_cnt;
1785 struct bpf_idx_pair *p;
1786
1787 cnt++;
1788 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1789 if (!p)
1790 return -ENOMEM;
1791 p[cnt - 1].idx = env->insn_idx;
1792 p[cnt - 1].prev_idx = env->prev_insn_idx;
1793 cur->jmp_history = p;
1794 cur->jmp_history_cnt = cnt;
1795 return 0;
1796 }
1797
1798 /* Backtrack one insn at a time. If idx is not at the top of recorded
1799 * history then previous instruction came from straight line execution.
1800 */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)1801 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1802 u32 *history)
1803 {
1804 u32 cnt = *history;
1805
1806 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1807 i = st->jmp_history[cnt - 1].prev_idx;
1808 (*history)--;
1809 } else {
1810 i--;
1811 }
1812 return i;
1813 }
1814
1815 /* For given verifier state backtrack_insn() is called from the last insn to
1816 * the first insn. Its purpose is to compute a bitmask of registers and
1817 * stack slots that needs precision in the parent verifier state.
1818 */
backtrack_insn(struct bpf_verifier_env * env,int idx,u32 * reg_mask,u64 * stack_mask)1819 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1820 u32 *reg_mask, u64 *stack_mask)
1821 {
1822 const struct bpf_insn_cbs cbs = {
1823 .cb_print = verbose,
1824 .private_data = env,
1825 };
1826 struct bpf_insn *insn = env->prog->insnsi + idx;
1827 u8 class = BPF_CLASS(insn->code);
1828 u8 opcode = BPF_OP(insn->code);
1829 u8 mode = BPF_MODE(insn->code);
1830 u32 dreg = 1u << insn->dst_reg;
1831 u32 sreg = 1u << insn->src_reg;
1832 u32 spi;
1833
1834 if (insn->code == 0)
1835 return 0;
1836 if (env->log.level & BPF_LOG_LEVEL) {
1837 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1838 verbose(env, "%d: ", idx);
1839 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1840 }
1841
1842 if (class == BPF_ALU || class == BPF_ALU64) {
1843 if (!(*reg_mask & dreg))
1844 return 0;
1845 if (opcode == BPF_MOV) {
1846 if (BPF_SRC(insn->code) == BPF_X) {
1847 /* dreg = sreg
1848 * dreg needs precision after this insn
1849 * sreg needs precision before this insn
1850 */
1851 *reg_mask &= ~dreg;
1852 *reg_mask |= sreg;
1853 } else {
1854 /* dreg = K
1855 * dreg needs precision after this insn.
1856 * Corresponding register is already marked
1857 * as precise=true in this verifier state.
1858 * No further markings in parent are necessary
1859 */
1860 *reg_mask &= ~dreg;
1861 }
1862 } else {
1863 if (BPF_SRC(insn->code) == BPF_X) {
1864 /* dreg += sreg
1865 * both dreg and sreg need precision
1866 * before this insn
1867 */
1868 *reg_mask |= sreg;
1869 } /* else dreg += K
1870 * dreg still needs precision before this insn
1871 */
1872 }
1873 } else if (class == BPF_LDX) {
1874 if (!(*reg_mask & dreg))
1875 return 0;
1876 *reg_mask &= ~dreg;
1877
1878 /* scalars can only be spilled into stack w/o losing precision.
1879 * Load from any other memory can be zero extended.
1880 * The desire to keep that precision is already indicated
1881 * by 'precise' mark in corresponding register of this state.
1882 * No further tracking necessary.
1883 */
1884 if (insn->src_reg != BPF_REG_FP)
1885 return 0;
1886
1887 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1888 * that [fp - off] slot contains scalar that needs to be
1889 * tracked with precision
1890 */
1891 spi = (-insn->off - 1) / BPF_REG_SIZE;
1892 if (spi >= 64) {
1893 verbose(env, "BUG spi %d\n", spi);
1894 WARN_ONCE(1, "verifier backtracking bug");
1895 return -EFAULT;
1896 }
1897 *stack_mask |= 1ull << spi;
1898 } else if (class == BPF_STX || class == BPF_ST) {
1899 if (*reg_mask & dreg)
1900 /* stx & st shouldn't be using _scalar_ dst_reg
1901 * to access memory. It means backtracking
1902 * encountered a case of pointer subtraction.
1903 */
1904 return -ENOTSUPP;
1905 /* scalars can only be spilled into stack */
1906 if (insn->dst_reg != BPF_REG_FP)
1907 return 0;
1908 spi = (-insn->off - 1) / BPF_REG_SIZE;
1909 if (spi >= 64) {
1910 verbose(env, "BUG spi %d\n", spi);
1911 WARN_ONCE(1, "verifier backtracking bug");
1912 return -EFAULT;
1913 }
1914 if (!(*stack_mask & (1ull << spi)))
1915 return 0;
1916 *stack_mask &= ~(1ull << spi);
1917 if (class == BPF_STX)
1918 *reg_mask |= sreg;
1919 } else if (class == BPF_JMP || class == BPF_JMP32) {
1920 if (opcode == BPF_CALL) {
1921 if (insn->src_reg == BPF_PSEUDO_CALL)
1922 return -ENOTSUPP;
1923 /* regular helper call sets R0 */
1924 *reg_mask &= ~1;
1925 if (*reg_mask & 0x3f) {
1926 /* if backtracing was looking for registers R1-R5
1927 * they should have been found already.
1928 */
1929 verbose(env, "BUG regs %x\n", *reg_mask);
1930 WARN_ONCE(1, "verifier backtracking bug");
1931 return -EFAULT;
1932 }
1933 } else if (opcode == BPF_EXIT) {
1934 return -ENOTSUPP;
1935 } else if (BPF_SRC(insn->code) == BPF_X) {
1936 if (!(*reg_mask & (dreg | sreg)))
1937 return 0;
1938 /* dreg <cond> sreg
1939 * Both dreg and sreg need precision before
1940 * this insn. If only sreg was marked precise
1941 * before it would be equally necessary to
1942 * propagate it to dreg.
1943 */
1944 *reg_mask |= (sreg | dreg);
1945 /* else dreg <cond> K
1946 * Only dreg still needs precision before
1947 * this insn, so for the K-based conditional
1948 * there is nothing new to be marked.
1949 */
1950 }
1951 } else if (class == BPF_LD) {
1952 if (!(*reg_mask & dreg))
1953 return 0;
1954 *reg_mask &= ~dreg;
1955 /* It's ld_imm64 or ld_abs or ld_ind.
1956 * For ld_imm64 no further tracking of precision
1957 * into parent is necessary
1958 */
1959 if (mode == BPF_IND || mode == BPF_ABS)
1960 /* to be analyzed */
1961 return -ENOTSUPP;
1962 }
1963 return 0;
1964 }
1965
1966 /* the scalar precision tracking algorithm:
1967 * . at the start all registers have precise=false.
1968 * . scalar ranges are tracked as normal through alu and jmp insns.
1969 * . once precise value of the scalar register is used in:
1970 * . ptr + scalar alu
1971 * . if (scalar cond K|scalar)
1972 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1973 * backtrack through the verifier states and mark all registers and
1974 * stack slots with spilled constants that these scalar regisers
1975 * should be precise.
1976 * . during state pruning two registers (or spilled stack slots)
1977 * are equivalent if both are not precise.
1978 *
1979 * Note the verifier cannot simply walk register parentage chain,
1980 * since many different registers and stack slots could have been
1981 * used to compute single precise scalar.
1982 *
1983 * The approach of starting with precise=true for all registers and then
1984 * backtrack to mark a register as not precise when the verifier detects
1985 * that program doesn't care about specific value (e.g., when helper
1986 * takes register as ARG_ANYTHING parameter) is not safe.
1987 *
1988 * It's ok to walk single parentage chain of the verifier states.
1989 * It's possible that this backtracking will go all the way till 1st insn.
1990 * All other branches will be explored for needing precision later.
1991 *
1992 * The backtracking needs to deal with cases like:
1993 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1994 * r9 -= r8
1995 * r5 = r9
1996 * if r5 > 0x79f goto pc+7
1997 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1998 * r5 += 1
1999 * ...
2000 * call bpf_perf_event_output#25
2001 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2002 *
2003 * and this case:
2004 * r6 = 1
2005 * call foo // uses callee's r6 inside to compute r0
2006 * r0 += r6
2007 * if r0 == 0 goto
2008 *
2009 * to track above reg_mask/stack_mask needs to be independent for each frame.
2010 *
2011 * Also if parent's curframe > frame where backtracking started,
2012 * the verifier need to mark registers in both frames, otherwise callees
2013 * may incorrectly prune callers. This is similar to
2014 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2015 *
2016 * For now backtracking falls back into conservative marking.
2017 */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)2018 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2019 struct bpf_verifier_state *st)
2020 {
2021 struct bpf_func_state *func;
2022 struct bpf_reg_state *reg;
2023 int i, j;
2024
2025 /* big hammer: mark all scalars precise in this path.
2026 * pop_stack may still get !precise scalars.
2027 */
2028 for (; st; st = st->parent)
2029 for (i = 0; i <= st->curframe; i++) {
2030 func = st->frame[i];
2031 for (j = 0; j < BPF_REG_FP; j++) {
2032 reg = &func->regs[j];
2033 if (reg->type != SCALAR_VALUE)
2034 continue;
2035 reg->precise = true;
2036 }
2037 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2038 if (!is_spilled_reg(&func->stack[j]))
2039 continue;
2040 reg = &func->stack[j].spilled_ptr;
2041 if (reg->type != SCALAR_VALUE)
2042 continue;
2043 reg->precise = true;
2044 }
2045 }
2046 }
2047
__mark_chain_precision(struct bpf_verifier_env * env,int frame,int regno,int spi)2048 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno,
2049 int spi)
2050 {
2051 struct bpf_verifier_state *st = env->cur_state;
2052 int first_idx = st->first_insn_idx;
2053 int last_idx = env->insn_idx;
2054 struct bpf_func_state *func;
2055 struct bpf_reg_state *reg;
2056 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2057 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2058 bool skip_first = true;
2059 bool new_marks = false;
2060 int i, err;
2061
2062 if (!env->bpf_capable)
2063 return 0;
2064
2065 func = st->frame[frame];
2066 if (regno >= 0) {
2067 reg = &func->regs[regno];
2068 if (reg->type != SCALAR_VALUE) {
2069 WARN_ONCE(1, "backtracing misuse");
2070 return -EFAULT;
2071 }
2072 if (!reg->precise)
2073 new_marks = true;
2074 else
2075 reg_mask = 0;
2076 reg->precise = true;
2077 }
2078
2079 while (spi >= 0) {
2080 if (!is_spilled_reg(&func->stack[spi])) {
2081 stack_mask = 0;
2082 break;
2083 }
2084 reg = &func->stack[spi].spilled_ptr;
2085 if (reg->type != SCALAR_VALUE) {
2086 stack_mask = 0;
2087 break;
2088 }
2089 if (!reg->precise)
2090 new_marks = true;
2091 else
2092 stack_mask = 0;
2093 reg->precise = true;
2094 break;
2095 }
2096
2097 if (!new_marks)
2098 return 0;
2099 if (!reg_mask && !stack_mask)
2100 return 0;
2101 for (;;) {
2102 DECLARE_BITMAP(mask, 64);
2103 u32 history = st->jmp_history_cnt;
2104
2105 if (env->log.level & BPF_LOG_LEVEL)
2106 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2107 for (i = last_idx;;) {
2108 if (skip_first) {
2109 err = 0;
2110 skip_first = false;
2111 } else {
2112 err = backtrack_insn(env, i, ®_mask, &stack_mask);
2113 }
2114 if (err == -ENOTSUPP) {
2115 mark_all_scalars_precise(env, st);
2116 return 0;
2117 } else if (err) {
2118 return err;
2119 }
2120 if (!reg_mask && !stack_mask)
2121 /* Found assignment(s) into tracked register in this state.
2122 * Since this state is already marked, just return.
2123 * Nothing to be tracked further in the parent state.
2124 */
2125 return 0;
2126 if (i == first_idx)
2127 break;
2128 i = get_prev_insn_idx(st, i, &history);
2129 if (i >= env->prog->len) {
2130 /* This can happen if backtracking reached insn 0
2131 * and there are still reg_mask or stack_mask
2132 * to backtrack.
2133 * It means the backtracking missed the spot where
2134 * particular register was initialized with a constant.
2135 */
2136 verbose(env, "BUG backtracking idx %d\n", i);
2137 WARN_ONCE(1, "verifier backtracking bug");
2138 return -EFAULT;
2139 }
2140 }
2141 st = st->parent;
2142 if (!st)
2143 break;
2144
2145 new_marks = false;
2146 func = st->frame[frame];
2147 bitmap_from_u64(mask, reg_mask);
2148 for_each_set_bit(i, mask, 32) {
2149 reg = &func->regs[i];
2150 if (reg->type != SCALAR_VALUE) {
2151 reg_mask &= ~(1u << i);
2152 continue;
2153 }
2154 if (!reg->precise)
2155 new_marks = true;
2156 reg->precise = true;
2157 }
2158
2159 bitmap_from_u64(mask, stack_mask);
2160 for_each_set_bit(i, mask, 64) {
2161 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2162 /* the sequence of instructions:
2163 * 2: (bf) r3 = r10
2164 * 3: (7b) *(u64 *)(r3 -8) = r0
2165 * 4: (79) r4 = *(u64 *)(r10 -8)
2166 * doesn't contain jmps. It's backtracked
2167 * as a single block.
2168 * During backtracking insn 3 is not recognized as
2169 * stack access, so at the end of backtracking
2170 * stack slot fp-8 is still marked in stack_mask.
2171 * However the parent state may not have accessed
2172 * fp-8 and it's "unallocated" stack space.
2173 * In such case fallback to conservative.
2174 */
2175 mark_all_scalars_precise(env, st);
2176 return 0;
2177 }
2178
2179 if (!is_spilled_reg(&func->stack[i])) {
2180 stack_mask &= ~(1ull << i);
2181 continue;
2182 }
2183 reg = &func->stack[i].spilled_ptr;
2184 if (reg->type != SCALAR_VALUE) {
2185 stack_mask &= ~(1ull << i);
2186 continue;
2187 }
2188 if (!reg->precise)
2189 new_marks = true;
2190 reg->precise = true;
2191 }
2192 if (env->log.level & BPF_LOG_LEVEL) {
2193 print_verifier_state(env, func);
2194 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2195 new_marks ? "didn't have" : "already had",
2196 reg_mask, stack_mask);
2197 }
2198
2199 if (!reg_mask && !stack_mask)
2200 break;
2201 if (!new_marks)
2202 break;
2203
2204 last_idx = st->last_insn_idx;
2205 first_idx = st->first_insn_idx;
2206 }
2207 return 0;
2208 }
2209
mark_chain_precision(struct bpf_verifier_env * env,int regno)2210 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2211 {
2212 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1);
2213 }
2214
mark_chain_precision_frame(struct bpf_verifier_env * env,int frame,int regno)2215 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno)
2216 {
2217 return __mark_chain_precision(env, frame, regno, -1);
2218 }
2219
mark_chain_precision_stack_frame(struct bpf_verifier_env * env,int frame,int spi)2220 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi)
2221 {
2222 return __mark_chain_precision(env, frame, -1, spi);
2223 }
2224
is_spillable_regtype(enum bpf_reg_type type)2225 static bool is_spillable_regtype(enum bpf_reg_type type)
2226 {
2227 switch (base_type(type)) {
2228 case PTR_TO_MAP_VALUE:
2229 case PTR_TO_STACK:
2230 case PTR_TO_CTX:
2231 case PTR_TO_PACKET:
2232 case PTR_TO_PACKET_META:
2233 case PTR_TO_PACKET_END:
2234 case PTR_TO_FLOW_KEYS:
2235 case CONST_PTR_TO_MAP:
2236 case PTR_TO_SOCKET:
2237 case PTR_TO_SOCK_COMMON:
2238 case PTR_TO_TCP_SOCK:
2239 case PTR_TO_XDP_SOCK:
2240 case PTR_TO_BTF_ID:
2241 case PTR_TO_BUF:
2242 case PTR_TO_PERCPU_BTF_ID:
2243 case PTR_TO_MEM:
2244 return true;
2245 default:
2246 return false;
2247 }
2248 }
2249
2250 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)2251 static bool register_is_null(struct bpf_reg_state *reg)
2252 {
2253 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2254 }
2255
register_is_const(struct bpf_reg_state * reg)2256 static bool register_is_const(struct bpf_reg_state *reg)
2257 {
2258 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2259 }
2260
__is_scalar_unbounded(struct bpf_reg_state * reg)2261 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2262 {
2263 return tnum_is_unknown(reg->var_off) &&
2264 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2265 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2266 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2267 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2268 }
2269
register_is_bounded(struct bpf_reg_state * reg)2270 static bool register_is_bounded(struct bpf_reg_state *reg)
2271 {
2272 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2273 }
2274
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)2275 static bool __is_pointer_value(bool allow_ptr_leaks,
2276 const struct bpf_reg_state *reg)
2277 {
2278 if (allow_ptr_leaks)
2279 return false;
2280
2281 return reg->type != SCALAR_VALUE;
2282 }
2283
2284 /* Copy src state preserving dst->parent and dst->live fields */
copy_register_state(struct bpf_reg_state * dst,const struct bpf_reg_state * src)2285 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
2286 {
2287 struct bpf_reg_state *parent = dst->parent;
2288 enum bpf_reg_liveness live = dst->live;
2289
2290 *dst = *src;
2291 dst->parent = parent;
2292 dst->live = live;
2293 }
2294
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)2295 static void save_register_state(struct bpf_func_state *state,
2296 int spi, struct bpf_reg_state *reg,
2297 int size)
2298 {
2299 int i;
2300
2301 copy_register_state(&state->stack[spi].spilled_ptr, reg);
2302 if (size == BPF_REG_SIZE)
2303 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2304
2305 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2306 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
2307
2308 /* size < 8 bytes spill */
2309 for (; i; i--)
2310 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
2311 }
2312
2313 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2314 * stack boundary and alignment are checked in check_mem_access()
2315 */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)2316 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2317 /* stack frame we're writing to */
2318 struct bpf_func_state *state,
2319 int off, int size, int value_regno,
2320 int insn_idx)
2321 {
2322 struct bpf_func_state *cur; /* state of the current function */
2323 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2324 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2325 struct bpf_reg_state *reg = NULL;
2326
2327 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2328 state->acquired_refs, true);
2329 if (err)
2330 return err;
2331 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2332 * so it's aligned access and [off, off + size) are within stack limits
2333 */
2334 if (!env->allow_ptr_leaks &&
2335 state->stack[spi].slot_type[0] == STACK_SPILL &&
2336 size != BPF_REG_SIZE) {
2337 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2338 return -EACCES;
2339 }
2340
2341 cur = env->cur_state->frame[env->cur_state->curframe];
2342 if (value_regno >= 0)
2343 reg = &cur->regs[value_regno];
2344 if (!env->bypass_spec_v4) {
2345 bool sanitize = reg && is_spillable_regtype(reg->type);
2346
2347 for (i = 0; i < size; i++) {
2348 u8 type = state->stack[spi].slot_type[i];
2349
2350 if (type != STACK_MISC && type != STACK_ZERO) {
2351 sanitize = true;
2352 break;
2353 }
2354 }
2355
2356 if (sanitize)
2357 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2358 }
2359
2360 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2361 !register_is_null(reg) && env->bpf_capable) {
2362 if (dst_reg != BPF_REG_FP) {
2363 /* The backtracking logic can only recognize explicit
2364 * stack slot address like [fp - 8]. Other spill of
2365 * scalar via different register has to be conervative.
2366 * Backtrack from here and mark all registers as precise
2367 * that contributed into 'reg' being a constant.
2368 */
2369 err = mark_chain_precision(env, value_regno);
2370 if (err)
2371 return err;
2372 }
2373 save_register_state(state, spi, reg, size);
2374 } else if (reg && is_spillable_regtype(reg->type)) {
2375 /* register containing pointer is being spilled into stack */
2376 if (size != BPF_REG_SIZE) {
2377 verbose_linfo(env, insn_idx, "; ");
2378 verbose(env, "invalid size of register spill\n");
2379 return -EACCES;
2380 }
2381 if (state != cur && reg->type == PTR_TO_STACK) {
2382 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2383 return -EINVAL;
2384 }
2385 save_register_state(state, spi, reg, size);
2386 } else {
2387 u8 type = STACK_MISC;
2388
2389 /* regular write of data into stack destroys any spilled ptr */
2390 state->stack[spi].spilled_ptr.type = NOT_INIT;
2391 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2392 if (is_spilled_reg(&state->stack[spi]))
2393 for (i = 0; i < BPF_REG_SIZE; i++)
2394 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
2395
2396 /* only mark the slot as written if all 8 bytes were written
2397 * otherwise read propagation may incorrectly stop too soon
2398 * when stack slots are partially written.
2399 * This heuristic means that read propagation will be
2400 * conservative, since it will add reg_live_read marks
2401 * to stack slots all the way to first state when programs
2402 * writes+reads less than 8 bytes
2403 */
2404 if (size == BPF_REG_SIZE)
2405 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2406
2407 /* when we zero initialize stack slots mark them as such */
2408 if (reg && register_is_null(reg)) {
2409 /* backtracking doesn't work for STACK_ZERO yet. */
2410 err = mark_chain_precision(env, value_regno);
2411 if (err)
2412 return err;
2413 type = STACK_ZERO;
2414 }
2415
2416 /* Mark slots affected by this stack write. */
2417 for (i = 0; i < size; i++)
2418 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2419 type;
2420 }
2421 return 0;
2422 }
2423
2424 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2425 * known to contain a variable offset.
2426 * This function checks whether the write is permitted and conservatively
2427 * tracks the effects of the write, considering that each stack slot in the
2428 * dynamic range is potentially written to.
2429 *
2430 * 'off' includes 'regno->off'.
2431 * 'value_regno' can be -1, meaning that an unknown value is being written to
2432 * the stack.
2433 *
2434 * Spilled pointers in range are not marked as written because we don't know
2435 * what's going to be actually written. This means that read propagation for
2436 * future reads cannot be terminated by this write.
2437 *
2438 * For privileged programs, uninitialized stack slots are considered
2439 * initialized by this write (even though we don't know exactly what offsets
2440 * are going to be written to). The idea is that we don't want the verifier to
2441 * reject future reads that access slots written to through variable offsets.
2442 */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)2443 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2444 /* func where register points to */
2445 struct bpf_func_state *state,
2446 int ptr_regno, int off, int size,
2447 int value_regno, int insn_idx)
2448 {
2449 struct bpf_func_state *cur; /* state of the current function */
2450 int min_off, max_off;
2451 int i, err;
2452 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2453 bool writing_zero = false;
2454 /* set if the fact that we're writing a zero is used to let any
2455 * stack slots remain STACK_ZERO
2456 */
2457 bool zero_used = false;
2458
2459 cur = env->cur_state->frame[env->cur_state->curframe];
2460 ptr_reg = &cur->regs[ptr_regno];
2461 min_off = ptr_reg->smin_value + off;
2462 max_off = ptr_reg->smax_value + off + size;
2463 if (value_regno >= 0)
2464 value_reg = &cur->regs[value_regno];
2465 if (value_reg && register_is_null(value_reg))
2466 writing_zero = true;
2467
2468 err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2469 state->acquired_refs, true);
2470 if (err)
2471 return err;
2472
2473
2474 /* Variable offset writes destroy any spilled pointers in range. */
2475 for (i = min_off; i < max_off; i++) {
2476 u8 new_type, *stype;
2477 int slot, spi;
2478
2479 slot = -i - 1;
2480 spi = slot / BPF_REG_SIZE;
2481 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2482
2483 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
2484 /* Reject the write if range we may write to has not
2485 * been initialized beforehand. If we didn't reject
2486 * here, the ptr status would be erased below (even
2487 * though not all slots are actually overwritten),
2488 * possibly opening the door to leaks.
2489 *
2490 * We do however catch STACK_INVALID case below, and
2491 * only allow reading possibly uninitialized memory
2492 * later for CAP_PERFMON, as the write may not happen to
2493 * that slot.
2494 */
2495 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2496 insn_idx, i);
2497 return -EINVAL;
2498 }
2499
2500 /* Erase all spilled pointers. */
2501 state->stack[spi].spilled_ptr.type = NOT_INIT;
2502
2503 /* Update the slot type. */
2504 new_type = STACK_MISC;
2505 if (writing_zero && *stype == STACK_ZERO) {
2506 new_type = STACK_ZERO;
2507 zero_used = true;
2508 }
2509 /* If the slot is STACK_INVALID, we check whether it's OK to
2510 * pretend that it will be initialized by this write. The slot
2511 * might not actually be written to, and so if we mark it as
2512 * initialized future reads might leak uninitialized memory.
2513 * For privileged programs, we will accept such reads to slots
2514 * that may or may not be written because, if we're reject
2515 * them, the error would be too confusing.
2516 */
2517 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2518 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2519 insn_idx, i);
2520 return -EINVAL;
2521 }
2522 *stype = new_type;
2523 }
2524 if (zero_used) {
2525 /* backtracking doesn't work for STACK_ZERO yet. */
2526 err = mark_chain_precision(env, value_regno);
2527 if (err)
2528 return err;
2529 }
2530 return 0;
2531 }
2532
2533 /* When register 'dst_regno' is assigned some values from stack[min_off,
2534 * max_off), we set the register's type according to the types of the
2535 * respective stack slots. If all the stack values are known to be zeros, then
2536 * so is the destination reg. Otherwise, the register is considered to be
2537 * SCALAR. This function does not deal with register filling; the caller must
2538 * ensure that all spilled registers in the stack range have been marked as
2539 * read.
2540 */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)2541 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2542 /* func where src register points to */
2543 struct bpf_func_state *ptr_state,
2544 int min_off, int max_off, int dst_regno)
2545 {
2546 struct bpf_verifier_state *vstate = env->cur_state;
2547 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2548 int i, slot, spi;
2549 u8 *stype;
2550 int zeros = 0;
2551
2552 for (i = min_off; i < max_off; i++) {
2553 slot = -i - 1;
2554 spi = slot / BPF_REG_SIZE;
2555 stype = ptr_state->stack[spi].slot_type;
2556 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2557 break;
2558 zeros++;
2559 }
2560 if (zeros == max_off - min_off) {
2561 /* any access_size read into register is zero extended,
2562 * so the whole register == const_zero
2563 */
2564 __mark_reg_const_zero(&state->regs[dst_regno]);
2565 /* backtracking doesn't support STACK_ZERO yet,
2566 * so mark it precise here, so that later
2567 * backtracking can stop here.
2568 * Backtracking may not need this if this register
2569 * doesn't participate in pointer adjustment.
2570 * Forward propagation of precise flag is not
2571 * necessary either. This mark is only to stop
2572 * backtracking. Any register that contributed
2573 * to const 0 was marked precise before spill.
2574 */
2575 state->regs[dst_regno].precise = true;
2576 } else {
2577 /* have read misc data from the stack */
2578 mark_reg_unknown(env, state->regs, dst_regno);
2579 }
2580 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2581 }
2582
2583 /* Read the stack at 'off' and put the results into the register indicated by
2584 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2585 * spilled reg.
2586 *
2587 * 'dst_regno' can be -1, meaning that the read value is not going to a
2588 * register.
2589 *
2590 * The access is assumed to be within the current stack bounds.
2591 */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)2592 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2593 /* func where src register points to */
2594 struct bpf_func_state *reg_state,
2595 int off, int size, int dst_regno)
2596 {
2597 struct bpf_verifier_state *vstate = env->cur_state;
2598 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2599 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2600 struct bpf_reg_state *reg;
2601 u8 *stype, type;
2602
2603 stype = reg_state->stack[spi].slot_type;
2604 reg = ®_state->stack[spi].spilled_ptr;
2605
2606 if (is_spilled_reg(®_state->stack[spi])) {
2607 u8 spill_size = 1;
2608
2609 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
2610 spill_size++;
2611
2612 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
2613 if (reg->type != SCALAR_VALUE) {
2614 verbose_linfo(env, env->insn_idx, "; ");
2615 verbose(env, "invalid size of register fill\n");
2616 return -EACCES;
2617 }
2618
2619 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2620 if (dst_regno < 0)
2621 return 0;
2622
2623 if (!(off % BPF_REG_SIZE) && size == spill_size) {
2624 /* The earlier check_reg_arg() has decided the
2625 * subreg_def for this insn. Save it first.
2626 */
2627 s32 subreg_def = state->regs[dst_regno].subreg_def;
2628
2629 copy_register_state(&state->regs[dst_regno], reg);
2630 state->regs[dst_regno].subreg_def = subreg_def;
2631 } else {
2632 for (i = 0; i < size; i++) {
2633 type = stype[(slot - i) % BPF_REG_SIZE];
2634 if (type == STACK_SPILL)
2635 continue;
2636 if (type == STACK_MISC)
2637 continue;
2638 verbose(env, "invalid read from stack off %d+%d size %d\n",
2639 off, i, size);
2640 return -EACCES;
2641 }
2642 mark_reg_unknown(env, state->regs, dst_regno);
2643 }
2644 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2645 return 0;
2646 }
2647
2648 if (dst_regno >= 0) {
2649 /* restore register state from stack */
2650 copy_register_state(&state->regs[dst_regno], reg);
2651 /* mark reg as written since spilled pointer state likely
2652 * has its liveness marks cleared by is_state_visited()
2653 * which resets stack/reg liveness for state transitions
2654 */
2655 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2656 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2657 /* If dst_regno==-1, the caller is asking us whether
2658 * it is acceptable to use this value as a SCALAR_VALUE
2659 * (e.g. for XADD).
2660 * We must not allow unprivileged callers to do that
2661 * with spilled pointers.
2662 */
2663 verbose(env, "leaking pointer from stack off %d\n",
2664 off);
2665 return -EACCES;
2666 }
2667 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2668 } else {
2669 for (i = 0; i < size; i++) {
2670 type = stype[(slot - i) % BPF_REG_SIZE];
2671 if (type == STACK_MISC)
2672 continue;
2673 if (type == STACK_ZERO)
2674 continue;
2675 verbose(env, "invalid read from stack off %d+%d size %d\n",
2676 off, i, size);
2677 return -EACCES;
2678 }
2679 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2680 if (dst_regno >= 0)
2681 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2682 }
2683 return 0;
2684 }
2685
2686 enum stack_access_src {
2687 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
2688 ACCESS_HELPER = 2, /* the access is performed by a helper */
2689 };
2690
2691 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2692 int regno, int off, int access_size,
2693 bool zero_size_allowed,
2694 enum stack_access_src type,
2695 struct bpf_call_arg_meta *meta);
2696
reg_state(struct bpf_verifier_env * env,int regno)2697 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2698 {
2699 return cur_regs(env) + regno;
2700 }
2701
2702 /* Read the stack at 'ptr_regno + off' and put the result into the register
2703 * 'dst_regno'.
2704 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2705 * but not its variable offset.
2706 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2707 *
2708 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2709 * filling registers (i.e. reads of spilled register cannot be detected when
2710 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2711 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2712 * offset; for a fixed offset check_stack_read_fixed_off should be used
2713 * instead.
2714 */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)2715 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2716 int ptr_regno, int off, int size, int dst_regno)
2717 {
2718 /* The state of the source register. */
2719 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2720 struct bpf_func_state *ptr_state = func(env, reg);
2721 int err;
2722 int min_off, max_off;
2723
2724 /* Note that we pass a NULL meta, so raw access will not be permitted.
2725 */
2726 err = check_stack_range_initialized(env, ptr_regno, off, size,
2727 false, ACCESS_DIRECT, NULL);
2728 if (err)
2729 return err;
2730
2731 min_off = reg->smin_value + off;
2732 max_off = reg->smax_value + off;
2733 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2734 return 0;
2735 }
2736
2737 /* check_stack_read dispatches to check_stack_read_fixed_off or
2738 * check_stack_read_var_off.
2739 *
2740 * The caller must ensure that the offset falls within the allocated stack
2741 * bounds.
2742 *
2743 * 'dst_regno' is a register which will receive the value from the stack. It
2744 * can be -1, meaning that the read value is not going to a register.
2745 */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)2746 static int check_stack_read(struct bpf_verifier_env *env,
2747 int ptr_regno, int off, int size,
2748 int dst_regno)
2749 {
2750 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2751 struct bpf_func_state *state = func(env, reg);
2752 int err;
2753 /* Some accesses are only permitted with a static offset. */
2754 bool var_off = !tnum_is_const(reg->var_off);
2755
2756 /* The offset is required to be static when reads don't go to a
2757 * register, in order to not leak pointers (see
2758 * check_stack_read_fixed_off).
2759 */
2760 if (dst_regno < 0 && var_off) {
2761 char tn_buf[48];
2762
2763 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2764 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
2765 tn_buf, off, size);
2766 return -EACCES;
2767 }
2768 /* Variable offset is prohibited for unprivileged mode for simplicity
2769 * since it requires corresponding support in Spectre masking for stack
2770 * ALU. See also retrieve_ptr_limit(). The check in
2771 * check_stack_access_for_ptr_arithmetic() called by
2772 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
2773 * with variable offsets, therefore no check is required here. Further,
2774 * just checking it here would be insufficient as speculative stack
2775 * writes could still lead to unsafe speculative behaviour.
2776 */
2777 if (!var_off) {
2778 off += reg->var_off.value;
2779 err = check_stack_read_fixed_off(env, state, off, size,
2780 dst_regno);
2781 } else {
2782 /* Variable offset stack reads need more conservative handling
2783 * than fixed offset ones. Note that dst_regno >= 0 on this
2784 * branch.
2785 */
2786 err = check_stack_read_var_off(env, ptr_regno, off, size,
2787 dst_regno);
2788 }
2789 return err;
2790 }
2791
2792
2793 /* check_stack_write dispatches to check_stack_write_fixed_off or
2794 * check_stack_write_var_off.
2795 *
2796 * 'ptr_regno' is the register used as a pointer into the stack.
2797 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
2798 * 'value_regno' is the register whose value we're writing to the stack. It can
2799 * be -1, meaning that we're not writing from a register.
2800 *
2801 * The caller must ensure that the offset falls within the maximum stack size.
2802 */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)2803 static int check_stack_write(struct bpf_verifier_env *env,
2804 int ptr_regno, int off, int size,
2805 int value_regno, int insn_idx)
2806 {
2807 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2808 struct bpf_func_state *state = func(env, reg);
2809 int err;
2810
2811 if (tnum_is_const(reg->var_off)) {
2812 off += reg->var_off.value;
2813 err = check_stack_write_fixed_off(env, state, off, size,
2814 value_regno, insn_idx);
2815 } else {
2816 /* Variable offset stack reads need more conservative handling
2817 * than fixed offset ones.
2818 */
2819 err = check_stack_write_var_off(env, state,
2820 ptr_regno, off, size,
2821 value_regno, insn_idx);
2822 }
2823 return err;
2824 }
2825
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)2826 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2827 int off, int size, enum bpf_access_type type)
2828 {
2829 struct bpf_reg_state *regs = cur_regs(env);
2830 struct bpf_map *map = regs[regno].map_ptr;
2831 u32 cap = bpf_map_flags_to_cap(map);
2832
2833 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2834 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2835 map->value_size, off, size);
2836 return -EACCES;
2837 }
2838
2839 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2840 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2841 map->value_size, off, size);
2842 return -EACCES;
2843 }
2844
2845 return 0;
2846 }
2847
2848 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)2849 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2850 int off, int size, u32 mem_size,
2851 bool zero_size_allowed)
2852 {
2853 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2854 struct bpf_reg_state *reg;
2855
2856 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2857 return 0;
2858
2859 reg = &cur_regs(env)[regno];
2860 switch (reg->type) {
2861 case PTR_TO_MAP_VALUE:
2862 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2863 mem_size, off, size);
2864 break;
2865 case PTR_TO_PACKET:
2866 case PTR_TO_PACKET_META:
2867 case PTR_TO_PACKET_END:
2868 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2869 off, size, regno, reg->id, off, mem_size);
2870 break;
2871 case PTR_TO_MEM:
2872 default:
2873 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2874 mem_size, off, size);
2875 }
2876
2877 return -EACCES;
2878 }
2879
2880 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)2881 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2882 int off, int size, u32 mem_size,
2883 bool zero_size_allowed)
2884 {
2885 struct bpf_verifier_state *vstate = env->cur_state;
2886 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2887 struct bpf_reg_state *reg = &state->regs[regno];
2888 int err;
2889
2890 /* We may have adjusted the register pointing to memory region, so we
2891 * need to try adding each of min_value and max_value to off
2892 * to make sure our theoretical access will be safe.
2893 */
2894 if (env->log.level & BPF_LOG_LEVEL)
2895 print_verifier_state(env, state);
2896
2897 /* The minimum value is only important with signed
2898 * comparisons where we can't assume the floor of a
2899 * value is 0. If we are using signed variables for our
2900 * index'es we need to make sure that whatever we use
2901 * will have a set floor within our range.
2902 */
2903 if (reg->smin_value < 0 &&
2904 (reg->smin_value == S64_MIN ||
2905 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2906 reg->smin_value + off < 0)) {
2907 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2908 regno);
2909 return -EACCES;
2910 }
2911 err = __check_mem_access(env, regno, reg->smin_value + off, size,
2912 mem_size, zero_size_allowed);
2913 if (err) {
2914 verbose(env, "R%d min value is outside of the allowed memory range\n",
2915 regno);
2916 return err;
2917 }
2918
2919 /* If we haven't set a max value then we need to bail since we can't be
2920 * sure we won't do bad things.
2921 * If reg->umax_value + off could overflow, treat that as unbounded too.
2922 */
2923 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2924 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2925 regno);
2926 return -EACCES;
2927 }
2928 err = __check_mem_access(env, regno, reg->umax_value + off, size,
2929 mem_size, zero_size_allowed);
2930 if (err) {
2931 verbose(env, "R%d max value is outside of the allowed memory range\n",
2932 regno);
2933 return err;
2934 }
2935
2936 return 0;
2937 }
2938
2939 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)2940 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2941 int off, int size, bool zero_size_allowed)
2942 {
2943 struct bpf_verifier_state *vstate = env->cur_state;
2944 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2945 struct bpf_reg_state *reg = &state->regs[regno];
2946 struct bpf_map *map = reg->map_ptr;
2947 int err;
2948
2949 err = check_mem_region_access(env, regno, off, size, map->value_size,
2950 zero_size_allowed);
2951 if (err)
2952 return err;
2953
2954 if (map_value_has_spin_lock(map)) {
2955 u32 lock = map->spin_lock_off;
2956
2957 /* if any part of struct bpf_spin_lock can be touched by
2958 * load/store reject this program.
2959 * To check that [x1, x2) overlaps with [y1, y2)
2960 * it is sufficient to check x1 < y2 && y1 < x2.
2961 */
2962 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2963 lock < reg->umax_value + off + size) {
2964 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2965 return -EACCES;
2966 }
2967 }
2968 return err;
2969 }
2970
2971 #define MAX_PACKET_OFF 0xffff
2972
resolve_prog_type(struct bpf_prog * prog)2973 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2974 {
2975 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
2976 }
2977
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)2978 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2979 const struct bpf_call_arg_meta *meta,
2980 enum bpf_access_type t)
2981 {
2982 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2983
2984 switch (prog_type) {
2985 /* Program types only with direct read access go here! */
2986 case BPF_PROG_TYPE_LWT_IN:
2987 case BPF_PROG_TYPE_LWT_OUT:
2988 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2989 case BPF_PROG_TYPE_SK_REUSEPORT:
2990 case BPF_PROG_TYPE_FLOW_DISSECTOR:
2991 case BPF_PROG_TYPE_CGROUP_SKB:
2992 if (t == BPF_WRITE)
2993 return false;
2994 fallthrough;
2995
2996 /* Program types with direct read + write access go here! */
2997 case BPF_PROG_TYPE_SCHED_CLS:
2998 case BPF_PROG_TYPE_SCHED_ACT:
2999 case BPF_PROG_TYPE_XDP:
3000 case BPF_PROG_TYPE_LWT_XMIT:
3001 case BPF_PROG_TYPE_SK_SKB:
3002 case BPF_PROG_TYPE_SK_MSG:
3003 if (meta)
3004 return meta->pkt_access;
3005
3006 env->seen_direct_write = true;
3007 return true;
3008
3009 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3010 if (t == BPF_WRITE)
3011 env->seen_direct_write = true;
3012
3013 return true;
3014
3015 default:
3016 return false;
3017 }
3018 }
3019
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)3020 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3021 int size, bool zero_size_allowed)
3022 {
3023 struct bpf_reg_state *regs = cur_regs(env);
3024 struct bpf_reg_state *reg = ®s[regno];
3025 int err;
3026
3027 /* We may have added a variable offset to the packet pointer; but any
3028 * reg->range we have comes after that. We are only checking the fixed
3029 * offset.
3030 */
3031
3032 /* We don't allow negative numbers, because we aren't tracking enough
3033 * detail to prove they're safe.
3034 */
3035 if (reg->smin_value < 0) {
3036 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3037 regno);
3038 return -EACCES;
3039 }
3040
3041 err = reg->range < 0 ? -EINVAL :
3042 __check_mem_access(env, regno, off, size, reg->range,
3043 zero_size_allowed);
3044 if (err) {
3045 verbose(env, "R%d offset is outside of the packet\n", regno);
3046 return err;
3047 }
3048
3049 /* __check_mem_access has made sure "off + size - 1" is within u16.
3050 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3051 * otherwise find_good_pkt_pointers would have refused to set range info
3052 * that __check_mem_access would have rejected this pkt access.
3053 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3054 */
3055 env->prog->aux->max_pkt_offset =
3056 max_t(u32, env->prog->aux->max_pkt_offset,
3057 off + reg->umax_value + size - 1);
3058
3059 return err;
3060 }
3061
3062 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,u32 * btf_id)3063 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3064 enum bpf_access_type t, enum bpf_reg_type *reg_type,
3065 u32 *btf_id)
3066 {
3067 struct bpf_insn_access_aux info = {
3068 .reg_type = *reg_type,
3069 .log = &env->log,
3070 };
3071
3072 if (env->ops->is_valid_access &&
3073 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3074 /* A non zero info.ctx_field_size indicates that this field is a
3075 * candidate for later verifier transformation to load the whole
3076 * field and then apply a mask when accessed with a narrower
3077 * access than actual ctx access size. A zero info.ctx_field_size
3078 * will only allow for whole field access and rejects any other
3079 * type of narrower access.
3080 */
3081 *reg_type = info.reg_type;
3082
3083 if (base_type(*reg_type) == PTR_TO_BTF_ID)
3084 *btf_id = info.btf_id;
3085 else
3086 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3087 /* remember the offset of last byte accessed in ctx */
3088 if (env->prog->aux->max_ctx_offset < off + size)
3089 env->prog->aux->max_ctx_offset = off + size;
3090 return 0;
3091 }
3092
3093 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3094 return -EACCES;
3095 }
3096
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)3097 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3098 int size)
3099 {
3100 if (size < 0 || off < 0 ||
3101 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3102 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3103 off, size);
3104 return -EACCES;
3105 }
3106 return 0;
3107 }
3108
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)3109 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3110 u32 regno, int off, int size,
3111 enum bpf_access_type t)
3112 {
3113 struct bpf_reg_state *regs = cur_regs(env);
3114 struct bpf_reg_state *reg = ®s[regno];
3115 struct bpf_insn_access_aux info = {};
3116 bool valid;
3117
3118 if (reg->smin_value < 0) {
3119 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3120 regno);
3121 return -EACCES;
3122 }
3123
3124 switch (reg->type) {
3125 case PTR_TO_SOCK_COMMON:
3126 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3127 break;
3128 case PTR_TO_SOCKET:
3129 valid = bpf_sock_is_valid_access(off, size, t, &info);
3130 break;
3131 case PTR_TO_TCP_SOCK:
3132 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3133 break;
3134 case PTR_TO_XDP_SOCK:
3135 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3136 break;
3137 default:
3138 valid = false;
3139 }
3140
3141
3142 if (valid) {
3143 env->insn_aux_data[insn_idx].ctx_field_size =
3144 info.ctx_field_size;
3145 return 0;
3146 }
3147
3148 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3149 regno, reg_type_str(env, reg->type), off, size);
3150
3151 return -EACCES;
3152 }
3153
is_pointer_value(struct bpf_verifier_env * env,int regno)3154 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3155 {
3156 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3157 }
3158
is_ctx_reg(struct bpf_verifier_env * env,int regno)3159 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3160 {
3161 const struct bpf_reg_state *reg = reg_state(env, regno);
3162
3163 return reg->type == PTR_TO_CTX;
3164 }
3165
is_sk_reg(struct bpf_verifier_env * env,int regno)3166 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3167 {
3168 const struct bpf_reg_state *reg = reg_state(env, regno);
3169
3170 return type_is_sk_pointer(reg->type);
3171 }
3172
is_pkt_reg(struct bpf_verifier_env * env,int regno)3173 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3174 {
3175 const struct bpf_reg_state *reg = reg_state(env, regno);
3176
3177 return type_is_pkt_pointer(reg->type);
3178 }
3179
is_flow_key_reg(struct bpf_verifier_env * env,int regno)3180 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3181 {
3182 const struct bpf_reg_state *reg = reg_state(env, regno);
3183
3184 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3185 return reg->type == PTR_TO_FLOW_KEYS;
3186 }
3187
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)3188 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3189 const struct bpf_reg_state *reg,
3190 int off, int size, bool strict)
3191 {
3192 struct tnum reg_off;
3193 int ip_align;
3194
3195 /* Byte size accesses are always allowed. */
3196 if (!strict || size == 1)
3197 return 0;
3198
3199 /* For platforms that do not have a Kconfig enabling
3200 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3201 * NET_IP_ALIGN is universally set to '2'. And on platforms
3202 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3203 * to this code only in strict mode where we want to emulate
3204 * the NET_IP_ALIGN==2 checking. Therefore use an
3205 * unconditional IP align value of '2'.
3206 */
3207 ip_align = 2;
3208
3209 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3210 if (!tnum_is_aligned(reg_off, size)) {
3211 char tn_buf[48];
3212
3213 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3214 verbose(env,
3215 "misaligned packet access off %d+%s+%d+%d size %d\n",
3216 ip_align, tn_buf, reg->off, off, size);
3217 return -EACCES;
3218 }
3219
3220 return 0;
3221 }
3222
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)3223 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3224 const struct bpf_reg_state *reg,
3225 const char *pointer_desc,
3226 int off, int size, bool strict)
3227 {
3228 struct tnum reg_off;
3229
3230 /* Byte size accesses are always allowed. */
3231 if (!strict || size == 1)
3232 return 0;
3233
3234 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3235 if (!tnum_is_aligned(reg_off, size)) {
3236 char tn_buf[48];
3237
3238 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3239 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3240 pointer_desc, tn_buf, reg->off, off, size);
3241 return -EACCES;
3242 }
3243
3244 return 0;
3245 }
3246
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)3247 static int check_ptr_alignment(struct bpf_verifier_env *env,
3248 const struct bpf_reg_state *reg, int off,
3249 int size, bool strict_alignment_once)
3250 {
3251 bool strict = env->strict_alignment || strict_alignment_once;
3252 const char *pointer_desc = "";
3253
3254 switch (reg->type) {
3255 case PTR_TO_PACKET:
3256 case PTR_TO_PACKET_META:
3257 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3258 * right in front, treat it the very same way.
3259 */
3260 return check_pkt_ptr_alignment(env, reg, off, size, strict);
3261 case PTR_TO_FLOW_KEYS:
3262 pointer_desc = "flow keys ";
3263 break;
3264 case PTR_TO_MAP_VALUE:
3265 pointer_desc = "value ";
3266 break;
3267 case PTR_TO_CTX:
3268 pointer_desc = "context ";
3269 break;
3270 case PTR_TO_STACK:
3271 pointer_desc = "stack ";
3272 /* The stack spill tracking logic in check_stack_write_fixed_off()
3273 * and check_stack_read_fixed_off() relies on stack accesses being
3274 * aligned.
3275 */
3276 strict = true;
3277 break;
3278 case PTR_TO_SOCKET:
3279 pointer_desc = "sock ";
3280 break;
3281 case PTR_TO_SOCK_COMMON:
3282 pointer_desc = "sock_common ";
3283 break;
3284 case PTR_TO_TCP_SOCK:
3285 pointer_desc = "tcp_sock ";
3286 break;
3287 case PTR_TO_XDP_SOCK:
3288 pointer_desc = "xdp_sock ";
3289 break;
3290 default:
3291 break;
3292 }
3293 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3294 strict);
3295 }
3296
update_stack_depth(struct bpf_verifier_env * env,const struct bpf_func_state * func,int off)3297 static int update_stack_depth(struct bpf_verifier_env *env,
3298 const struct bpf_func_state *func,
3299 int off)
3300 {
3301 u16 stack = env->subprog_info[func->subprogno].stack_depth;
3302
3303 if (stack >= -off)
3304 return 0;
3305
3306 /* update known max for given subprogram */
3307 env->subprog_info[func->subprogno].stack_depth = -off;
3308 return 0;
3309 }
3310
3311 /* starting from main bpf function walk all instructions of the function
3312 * and recursively walk all callees that given function can call.
3313 * Ignore jump and exit insns.
3314 * Since recursion is prevented by check_cfg() this algorithm
3315 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3316 */
check_max_stack_depth(struct bpf_verifier_env * env)3317 static int check_max_stack_depth(struct bpf_verifier_env *env)
3318 {
3319 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3320 struct bpf_subprog_info *subprog = env->subprog_info;
3321 struct bpf_insn *insn = env->prog->insnsi;
3322 bool tail_call_reachable = false;
3323 int ret_insn[MAX_CALL_FRAMES];
3324 int ret_prog[MAX_CALL_FRAMES];
3325 int j;
3326
3327 process_func:
3328 /* protect against potential stack overflow that might happen when
3329 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3330 * depth for such case down to 256 so that the worst case scenario
3331 * would result in 8k stack size (32 which is tailcall limit * 256 =
3332 * 8k).
3333 *
3334 * To get the idea what might happen, see an example:
3335 * func1 -> sub rsp, 128
3336 * subfunc1 -> sub rsp, 256
3337 * tailcall1 -> add rsp, 256
3338 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3339 * subfunc2 -> sub rsp, 64
3340 * subfunc22 -> sub rsp, 128
3341 * tailcall2 -> add rsp, 128
3342 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3343 *
3344 * tailcall will unwind the current stack frame but it will not get rid
3345 * of caller's stack as shown on the example above.
3346 */
3347 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3348 verbose(env,
3349 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3350 depth);
3351 return -EACCES;
3352 }
3353 /* round up to 32-bytes, since this is granularity
3354 * of interpreter stack size
3355 */
3356 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3357 if (depth > MAX_BPF_STACK) {
3358 verbose(env, "combined stack size of %d calls is %d. Too large\n",
3359 frame + 1, depth);
3360 return -EACCES;
3361 }
3362 continue_func:
3363 subprog_end = subprog[idx + 1].start;
3364 for (; i < subprog_end; i++) {
3365 if (insn[i].code != (BPF_JMP | BPF_CALL))
3366 continue;
3367 if (insn[i].src_reg != BPF_PSEUDO_CALL)
3368 continue;
3369 /* remember insn and function to return to */
3370 ret_insn[frame] = i + 1;
3371 ret_prog[frame] = idx;
3372
3373 /* find the callee */
3374 i = i + insn[i].imm + 1;
3375 idx = find_subprog(env, i);
3376 if (idx < 0) {
3377 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3378 i);
3379 return -EFAULT;
3380 }
3381
3382 if (subprog[idx].has_tail_call)
3383 tail_call_reachable = true;
3384
3385 frame++;
3386 if (frame >= MAX_CALL_FRAMES) {
3387 verbose(env, "the call stack of %d frames is too deep !\n",
3388 frame);
3389 return -E2BIG;
3390 }
3391 goto process_func;
3392 }
3393 /* if tail call got detected across bpf2bpf calls then mark each of the
3394 * currently present subprog frames as tail call reachable subprogs;
3395 * this info will be utilized by JIT so that we will be preserving the
3396 * tail call counter throughout bpf2bpf calls combined with tailcalls
3397 */
3398 if (tail_call_reachable)
3399 for (j = 0; j < frame; j++)
3400 subprog[ret_prog[j]].tail_call_reachable = true;
3401 if (subprog[0].tail_call_reachable)
3402 env->prog->aux->tail_call_reachable = true;
3403
3404 /* end of for() loop means the last insn of the 'subprog'
3405 * was reached. Doesn't matter whether it was JA or EXIT
3406 */
3407 if (frame == 0)
3408 return 0;
3409 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3410 frame--;
3411 i = ret_insn[frame];
3412 idx = ret_prog[frame];
3413 goto continue_func;
3414 }
3415
3416 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)3417 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3418 const struct bpf_insn *insn, int idx)
3419 {
3420 int start = idx + insn->imm + 1, subprog;
3421
3422 subprog = find_subprog(env, start);
3423 if (subprog < 0) {
3424 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3425 start);
3426 return -EFAULT;
3427 }
3428 return env->subprog_info[subprog].stack_depth;
3429 }
3430 #endif
3431
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)3432 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3433 const struct bpf_reg_state *reg, int regno,
3434 bool fixed_off_ok)
3435 {
3436 /* Access to this pointer-typed register or passing it to a helper
3437 * is only allowed in its original, unmodified form.
3438 */
3439
3440 if (!fixed_off_ok && reg->off) {
3441 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3442 reg_type_str(env, reg->type), regno, reg->off);
3443 return -EACCES;
3444 }
3445
3446 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3447 char tn_buf[48];
3448
3449 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3450 verbose(env, "variable %s access var_off=%s disallowed\n",
3451 reg_type_str(env, reg->type), tn_buf);
3452 return -EACCES;
3453 }
3454
3455 return 0;
3456 }
3457
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)3458 int check_ptr_off_reg(struct bpf_verifier_env *env,
3459 const struct bpf_reg_state *reg, int regno)
3460 {
3461 return __check_ptr_off_reg(env, reg, regno, false);
3462 }
3463
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)3464 static int __check_buffer_access(struct bpf_verifier_env *env,
3465 const char *buf_info,
3466 const struct bpf_reg_state *reg,
3467 int regno, int off, int size)
3468 {
3469 if (off < 0) {
3470 verbose(env,
3471 "R%d invalid %s buffer access: off=%d, size=%d\n",
3472 regno, buf_info, off, size);
3473 return -EACCES;
3474 }
3475 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3476 char tn_buf[48];
3477
3478 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3479 verbose(env,
3480 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3481 regno, off, tn_buf);
3482 return -EACCES;
3483 }
3484
3485 return 0;
3486 }
3487
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)3488 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3489 const struct bpf_reg_state *reg,
3490 int regno, int off, int size)
3491 {
3492 int err;
3493
3494 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3495 if (err)
3496 return err;
3497
3498 if (off + size > env->prog->aux->max_tp_access)
3499 env->prog->aux->max_tp_access = off + size;
3500
3501 return 0;
3502 }
3503
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,const char * buf_info,u32 * max_access)3504 static int check_buffer_access(struct bpf_verifier_env *env,
3505 const struct bpf_reg_state *reg,
3506 int regno, int off, int size,
3507 bool zero_size_allowed,
3508 const char *buf_info,
3509 u32 *max_access)
3510 {
3511 int err;
3512
3513 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3514 if (err)
3515 return err;
3516
3517 if (off + size > *max_access)
3518 *max_access = off + size;
3519
3520 return 0;
3521 }
3522
3523 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)3524 static void zext_32_to_64(struct bpf_reg_state *reg)
3525 {
3526 reg->var_off = tnum_subreg(reg->var_off);
3527 __reg_assign_32_into_64(reg);
3528 }
3529
3530 /* truncate register to smaller size (in bytes)
3531 * must be called with size < BPF_REG_SIZE
3532 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)3533 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3534 {
3535 u64 mask;
3536
3537 /* clear high bits in bit representation */
3538 reg->var_off = tnum_cast(reg->var_off, size);
3539
3540 /* fix arithmetic bounds */
3541 mask = ((u64)1 << (size * 8)) - 1;
3542 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3543 reg->umin_value &= mask;
3544 reg->umax_value &= mask;
3545 } else {
3546 reg->umin_value = 0;
3547 reg->umax_value = mask;
3548 }
3549 reg->smin_value = reg->umin_value;
3550 reg->smax_value = reg->umax_value;
3551
3552 /* If size is smaller than 32bit register the 32bit register
3553 * values are also truncated so we push 64-bit bounds into
3554 * 32-bit bounds. Above were truncated < 32-bits already.
3555 */
3556 if (size >= 4)
3557 return;
3558 __reg_combine_64_into_32(reg);
3559 }
3560
bpf_map_is_rdonly(const struct bpf_map * map)3561 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3562 {
3563 /* A map is considered read-only if the following condition are true:
3564 *
3565 * 1) BPF program side cannot change any of the map content. The
3566 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
3567 * and was set at map creation time.
3568 * 2) The map value(s) have been initialized from user space by a
3569 * loader and then "frozen", such that no new map update/delete
3570 * operations from syscall side are possible for the rest of
3571 * the map's lifetime from that point onwards.
3572 * 3) Any parallel/pending map update/delete operations from syscall
3573 * side have been completed. Only after that point, it's safe to
3574 * assume that map value(s) are immutable.
3575 */
3576 return (map->map_flags & BPF_F_RDONLY_PROG) &&
3577 READ_ONCE(map->frozen) &&
3578 !bpf_map_write_active(map);
3579 }
3580
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val)3581 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3582 {
3583 void *ptr;
3584 u64 addr;
3585 int err;
3586
3587 err = map->ops->map_direct_value_addr(map, &addr, off);
3588 if (err)
3589 return err;
3590 ptr = (void *)(long)addr + off;
3591
3592 switch (size) {
3593 case sizeof(u8):
3594 *val = (u64)*(u8 *)ptr;
3595 break;
3596 case sizeof(u16):
3597 *val = (u64)*(u16 *)ptr;
3598 break;
3599 case sizeof(u32):
3600 *val = (u64)*(u32 *)ptr;
3601 break;
3602 case sizeof(u64):
3603 *val = *(u64 *)ptr;
3604 break;
3605 default:
3606 return -EINVAL;
3607 }
3608 return 0;
3609 }
3610
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)3611 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3612 struct bpf_reg_state *regs,
3613 int regno, int off, int size,
3614 enum bpf_access_type atype,
3615 int value_regno)
3616 {
3617 struct bpf_reg_state *reg = regs + regno;
3618 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3619 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3620 u32 btf_id;
3621 int ret;
3622
3623 if (off < 0) {
3624 verbose(env,
3625 "R%d is ptr_%s invalid negative access: off=%d\n",
3626 regno, tname, off);
3627 return -EACCES;
3628 }
3629 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3630 char tn_buf[48];
3631
3632 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3633 verbose(env,
3634 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3635 regno, tname, off, tn_buf);
3636 return -EACCES;
3637 }
3638
3639 if (env->ops->btf_struct_access) {
3640 ret = env->ops->btf_struct_access(&env->log, t, off, size,
3641 atype, &btf_id);
3642 } else {
3643 if (atype != BPF_READ) {
3644 verbose(env, "only read is supported\n");
3645 return -EACCES;
3646 }
3647
3648 ret = btf_struct_access(&env->log, t, off, size, atype,
3649 &btf_id);
3650 }
3651
3652 if (ret < 0)
3653 return ret;
3654
3655 if (atype == BPF_READ && value_regno >= 0)
3656 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3657
3658 return 0;
3659 }
3660
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)3661 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3662 struct bpf_reg_state *regs,
3663 int regno, int off, int size,
3664 enum bpf_access_type atype,
3665 int value_regno)
3666 {
3667 struct bpf_reg_state *reg = regs + regno;
3668 struct bpf_map *map = reg->map_ptr;
3669 const struct btf_type *t;
3670 const char *tname;
3671 u32 btf_id;
3672 int ret;
3673
3674 if (!btf_vmlinux) {
3675 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3676 return -ENOTSUPP;
3677 }
3678
3679 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3680 verbose(env, "map_ptr access not supported for map type %d\n",
3681 map->map_type);
3682 return -ENOTSUPP;
3683 }
3684
3685 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3686 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3687
3688 if (!env->allow_ptr_to_map_access) {
3689 verbose(env,
3690 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3691 tname);
3692 return -EPERM;
3693 }
3694
3695 if (off < 0) {
3696 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3697 regno, tname, off);
3698 return -EACCES;
3699 }
3700
3701 if (atype != BPF_READ) {
3702 verbose(env, "only read from %s is supported\n", tname);
3703 return -EACCES;
3704 }
3705
3706 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3707 if (ret < 0)
3708 return ret;
3709
3710 if (value_regno >= 0)
3711 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3712
3713 return 0;
3714 }
3715
3716 /* Check that the stack access at the given offset is within bounds. The
3717 * maximum valid offset is -1.
3718 *
3719 * The minimum valid offset is -MAX_BPF_STACK for writes, and
3720 * -state->allocated_stack for reads.
3721 */
check_stack_slot_within_bounds(int off,struct bpf_func_state * state,enum bpf_access_type t)3722 static int check_stack_slot_within_bounds(int off,
3723 struct bpf_func_state *state,
3724 enum bpf_access_type t)
3725 {
3726 int min_valid_off;
3727
3728 if (t == BPF_WRITE)
3729 min_valid_off = -MAX_BPF_STACK;
3730 else
3731 min_valid_off = -state->allocated_stack;
3732
3733 if (off < min_valid_off || off > -1)
3734 return -EACCES;
3735 return 0;
3736 }
3737
3738 /* Check that the stack access at 'regno + off' falls within the maximum stack
3739 * bounds.
3740 *
3741 * 'off' includes `regno->offset`, but not its dynamic part (if any).
3742 */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum stack_access_src src,enum bpf_access_type type)3743 static int check_stack_access_within_bounds(
3744 struct bpf_verifier_env *env,
3745 int regno, int off, int access_size,
3746 enum stack_access_src src, enum bpf_access_type type)
3747 {
3748 struct bpf_reg_state *regs = cur_regs(env);
3749 struct bpf_reg_state *reg = regs + regno;
3750 struct bpf_func_state *state = func(env, reg);
3751 int min_off, max_off;
3752 int err;
3753 char *err_extra;
3754
3755 if (src == ACCESS_HELPER)
3756 /* We don't know if helpers are reading or writing (or both). */
3757 err_extra = " indirect access to";
3758 else if (type == BPF_READ)
3759 err_extra = " read from";
3760 else
3761 err_extra = " write to";
3762
3763 if (tnum_is_const(reg->var_off)) {
3764 min_off = reg->var_off.value + off;
3765 if (access_size > 0)
3766 max_off = min_off + access_size - 1;
3767 else
3768 max_off = min_off;
3769 } else {
3770 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3771 reg->smin_value <= -BPF_MAX_VAR_OFF) {
3772 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
3773 err_extra, regno);
3774 return -EACCES;
3775 }
3776 min_off = reg->smin_value + off;
3777 if (access_size > 0)
3778 max_off = reg->smax_value + off + access_size - 1;
3779 else
3780 max_off = min_off;
3781 }
3782
3783 err = check_stack_slot_within_bounds(min_off, state, type);
3784 if (!err)
3785 err = check_stack_slot_within_bounds(max_off, state, type);
3786
3787 if (err) {
3788 if (tnum_is_const(reg->var_off)) {
3789 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
3790 err_extra, regno, off, access_size);
3791 } else {
3792 char tn_buf[48];
3793
3794 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3795 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
3796 err_extra, regno, tn_buf, access_size);
3797 }
3798 }
3799 return err;
3800 }
3801
3802 /* check whether memory at (regno + off) is accessible for t = (read | write)
3803 * if t==write, value_regno is a register which value is stored into memory
3804 * if t==read, value_regno is a register which will receive the value from memory
3805 * if t==write && value_regno==-1, some unknown value is stored into memory
3806 * if t==read && value_regno==-1, don't care what we read from memory
3807 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once)3808 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3809 int off, int bpf_size, enum bpf_access_type t,
3810 int value_regno, bool strict_alignment_once)
3811 {
3812 struct bpf_reg_state *regs = cur_regs(env);
3813 struct bpf_reg_state *reg = regs + regno;
3814 struct bpf_func_state *state;
3815 int size, err = 0;
3816
3817 size = bpf_size_to_bytes(bpf_size);
3818 if (size < 0)
3819 return size;
3820
3821 /* alignment checks will add in reg->off themselves */
3822 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3823 if (err)
3824 return err;
3825
3826 /* for access checks, reg->off is just part of off */
3827 off += reg->off;
3828
3829 if (reg->type == PTR_TO_MAP_VALUE) {
3830 if (t == BPF_WRITE && value_regno >= 0 &&
3831 is_pointer_value(env, value_regno)) {
3832 verbose(env, "R%d leaks addr into map\n", value_regno);
3833 return -EACCES;
3834 }
3835 err = check_map_access_type(env, regno, off, size, t);
3836 if (err)
3837 return err;
3838 err = check_map_access(env, regno, off, size, false);
3839 if (!err && t == BPF_READ && value_regno >= 0) {
3840 struct bpf_map *map = reg->map_ptr;
3841
3842 /* if map is read-only, track its contents as scalars */
3843 if (tnum_is_const(reg->var_off) &&
3844 bpf_map_is_rdonly(map) &&
3845 map->ops->map_direct_value_addr) {
3846 int map_off = off + reg->var_off.value;
3847 u64 val = 0;
3848
3849 err = bpf_map_direct_read(map, map_off, size,
3850 &val);
3851 if (err)
3852 return err;
3853
3854 regs[value_regno].type = SCALAR_VALUE;
3855 __mark_reg_known(®s[value_regno], val);
3856 } else {
3857 mark_reg_unknown(env, regs, value_regno);
3858 }
3859 }
3860 } else if (base_type(reg->type) == PTR_TO_MEM) {
3861 bool rdonly_mem = type_is_rdonly_mem(reg->type);
3862
3863 if (type_may_be_null(reg->type)) {
3864 verbose(env, "R%d invalid mem access '%s'\n", regno,
3865 reg_type_str(env, reg->type));
3866 return -EACCES;
3867 }
3868
3869 if (t == BPF_WRITE && rdonly_mem) {
3870 verbose(env, "R%d cannot write into %s\n",
3871 regno, reg_type_str(env, reg->type));
3872 return -EACCES;
3873 }
3874
3875 if (t == BPF_WRITE && value_regno >= 0 &&
3876 is_pointer_value(env, value_regno)) {
3877 verbose(env, "R%d leaks addr into mem\n", value_regno);
3878 return -EACCES;
3879 }
3880
3881 err = check_mem_region_access(env, regno, off, size,
3882 reg->mem_size, false);
3883 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
3884 mark_reg_unknown(env, regs, value_regno);
3885 } else if (reg->type == PTR_TO_CTX) {
3886 enum bpf_reg_type reg_type = SCALAR_VALUE;
3887 u32 btf_id = 0;
3888
3889 if (t == BPF_WRITE && value_regno >= 0 &&
3890 is_pointer_value(env, value_regno)) {
3891 verbose(env, "R%d leaks addr into ctx\n", value_regno);
3892 return -EACCES;
3893 }
3894
3895 err = check_ptr_off_reg(env, reg, regno);
3896 if (err < 0)
3897 return err;
3898
3899 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id);
3900 if (err)
3901 verbose_linfo(env, insn_idx, "; ");
3902 if (!err && t == BPF_READ && value_regno >= 0) {
3903 /* ctx access returns either a scalar, or a
3904 * PTR_TO_PACKET[_META,_END]. In the latter
3905 * case, we know the offset is zero.
3906 */
3907 if (reg_type == SCALAR_VALUE) {
3908 mark_reg_unknown(env, regs, value_regno);
3909 } else {
3910 mark_reg_known_zero(env, regs,
3911 value_regno);
3912 if (type_may_be_null(reg_type))
3913 regs[value_regno].id = ++env->id_gen;
3914 /* A load of ctx field could have different
3915 * actual load size with the one encoded in the
3916 * insn. When the dst is PTR, it is for sure not
3917 * a sub-register.
3918 */
3919 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3920 if (base_type(reg_type) == PTR_TO_BTF_ID)
3921 regs[value_regno].btf_id = btf_id;
3922 }
3923 regs[value_regno].type = reg_type;
3924 }
3925
3926 } else if (reg->type == PTR_TO_STACK) {
3927 /* Basic bounds checks. */
3928 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
3929 if (err)
3930 return err;
3931
3932 state = func(env, reg);
3933 err = update_stack_depth(env, state, off);
3934 if (err)
3935 return err;
3936
3937 if (t == BPF_READ)
3938 err = check_stack_read(env, regno, off, size,
3939 value_regno);
3940 else
3941 err = check_stack_write(env, regno, off, size,
3942 value_regno, insn_idx);
3943 } else if (reg_is_pkt_pointer(reg)) {
3944 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3945 verbose(env, "cannot write into packet\n");
3946 return -EACCES;
3947 }
3948 if (t == BPF_WRITE && value_regno >= 0 &&
3949 is_pointer_value(env, value_regno)) {
3950 verbose(env, "R%d leaks addr into packet\n",
3951 value_regno);
3952 return -EACCES;
3953 }
3954 err = check_packet_access(env, regno, off, size, false);
3955 if (!err && t == BPF_READ && value_regno >= 0)
3956 mark_reg_unknown(env, regs, value_regno);
3957 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3958 if (t == BPF_WRITE && value_regno >= 0 &&
3959 is_pointer_value(env, value_regno)) {
3960 verbose(env, "R%d leaks addr into flow keys\n",
3961 value_regno);
3962 return -EACCES;
3963 }
3964
3965 err = check_flow_keys_access(env, off, size);
3966 if (!err && t == BPF_READ && value_regno >= 0)
3967 mark_reg_unknown(env, regs, value_regno);
3968 } else if (type_is_sk_pointer(reg->type)) {
3969 if (t == BPF_WRITE) {
3970 verbose(env, "R%d cannot write into %s\n",
3971 regno, reg_type_str(env, reg->type));
3972 return -EACCES;
3973 }
3974 err = check_sock_access(env, insn_idx, regno, off, size, t);
3975 if (!err && value_regno >= 0)
3976 mark_reg_unknown(env, regs, value_regno);
3977 } else if (reg->type == PTR_TO_TP_BUFFER) {
3978 err = check_tp_buffer_access(env, reg, regno, off, size);
3979 if (!err && t == BPF_READ && value_regno >= 0)
3980 mark_reg_unknown(env, regs, value_regno);
3981 } else if (reg->type == PTR_TO_BTF_ID) {
3982 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3983 value_regno);
3984 } else if (reg->type == CONST_PTR_TO_MAP) {
3985 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3986 value_regno);
3987 } else if (base_type(reg->type) == PTR_TO_BUF) {
3988 bool rdonly_mem = type_is_rdonly_mem(reg->type);
3989 const char *buf_info;
3990 u32 *max_access;
3991
3992 if (rdonly_mem) {
3993 if (t == BPF_WRITE) {
3994 verbose(env, "R%d cannot write into %s\n",
3995 regno, reg_type_str(env, reg->type));
3996 return -EACCES;
3997 }
3998 buf_info = "rdonly";
3999 max_access = &env->prog->aux->max_rdonly_access;
4000 } else {
4001 buf_info = "rdwr";
4002 max_access = &env->prog->aux->max_rdwr_access;
4003 }
4004
4005 err = check_buffer_access(env, reg, regno, off, size, false,
4006 buf_info, max_access);
4007 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
4008 mark_reg_unknown(env, regs, value_regno);
4009 } else {
4010 verbose(env, "R%d invalid mem access '%s'\n", regno,
4011 reg_type_str(env, reg->type));
4012 return -EACCES;
4013 }
4014
4015 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4016 regs[value_regno].type == SCALAR_VALUE) {
4017 /* b/h/w load zero-extends, mark upper bits as known 0 */
4018 coerce_reg_to_size(®s[value_regno], size);
4019 }
4020 return err;
4021 }
4022
check_xadd(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)4023 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4024 {
4025 int err;
4026
4027 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
4028 insn->imm != 0) {
4029 verbose(env, "BPF_XADD uses reserved fields\n");
4030 return -EINVAL;
4031 }
4032
4033 /* check src1 operand */
4034 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4035 if (err)
4036 return err;
4037
4038 /* check src2 operand */
4039 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4040 if (err)
4041 return err;
4042
4043 if (is_pointer_value(env, insn->src_reg)) {
4044 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4045 return -EACCES;
4046 }
4047
4048 if (is_ctx_reg(env, insn->dst_reg) ||
4049 is_pkt_reg(env, insn->dst_reg) ||
4050 is_flow_key_reg(env, insn->dst_reg) ||
4051 is_sk_reg(env, insn->dst_reg)) {
4052 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
4053 insn->dst_reg,
4054 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
4055 return -EACCES;
4056 }
4057
4058 /* check whether atomic_add can read the memory */
4059 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4060 BPF_SIZE(insn->code), BPF_READ, -1, true);
4061 if (err)
4062 return err;
4063
4064 /* check whether atomic_add can write into the same memory */
4065 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4066 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4067 }
4068
4069 /* When register 'regno' is used to read the stack (either directly or through
4070 * a helper function) make sure that it's within stack boundary and, depending
4071 * on the access type, that all elements of the stack are initialized.
4072 *
4073 * 'off' includes 'regno->off', but not its dynamic part (if any).
4074 *
4075 * All registers that have been spilled on the stack in the slots within the
4076 * read offsets are marked as read.
4077 */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum stack_access_src type,struct bpf_call_arg_meta * meta)4078 static int check_stack_range_initialized(
4079 struct bpf_verifier_env *env, int regno, int off,
4080 int access_size, bool zero_size_allowed,
4081 enum stack_access_src type, struct bpf_call_arg_meta *meta)
4082 {
4083 struct bpf_reg_state *reg = reg_state(env, regno);
4084 struct bpf_func_state *state = func(env, reg);
4085 int err, min_off, max_off, i, j, slot, spi;
4086 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4087 enum bpf_access_type bounds_check_type;
4088 /* Some accesses can write anything into the stack, others are
4089 * read-only.
4090 */
4091 bool clobber = false;
4092
4093 if (access_size == 0 && !zero_size_allowed) {
4094 verbose(env, "invalid zero-sized read\n");
4095 return -EACCES;
4096 }
4097
4098 if (type == ACCESS_HELPER) {
4099 /* The bounds checks for writes are more permissive than for
4100 * reads. However, if raw_mode is not set, we'll do extra
4101 * checks below.
4102 */
4103 bounds_check_type = BPF_WRITE;
4104 clobber = true;
4105 } else {
4106 bounds_check_type = BPF_READ;
4107 }
4108 err = check_stack_access_within_bounds(env, regno, off, access_size,
4109 type, bounds_check_type);
4110 if (err)
4111 return err;
4112
4113
4114 if (tnum_is_const(reg->var_off)) {
4115 min_off = max_off = reg->var_off.value + off;
4116 } else {
4117 /* Variable offset is prohibited for unprivileged mode for
4118 * simplicity since it requires corresponding support in
4119 * Spectre masking for stack ALU.
4120 * See also retrieve_ptr_limit().
4121 */
4122 if (!env->bypass_spec_v1) {
4123 char tn_buf[48];
4124
4125 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4126 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4127 regno, err_extra, tn_buf);
4128 return -EACCES;
4129 }
4130 /* Only initialized buffer on stack is allowed to be accessed
4131 * with variable offset. With uninitialized buffer it's hard to
4132 * guarantee that whole memory is marked as initialized on
4133 * helper return since specific bounds are unknown what may
4134 * cause uninitialized stack leaking.
4135 */
4136 if (meta && meta->raw_mode)
4137 meta = NULL;
4138
4139 min_off = reg->smin_value + off;
4140 max_off = reg->smax_value + off;
4141 }
4142
4143 if (meta && meta->raw_mode) {
4144 meta->access_size = access_size;
4145 meta->regno = regno;
4146 return 0;
4147 }
4148
4149 for (i = min_off; i < max_off + access_size; i++) {
4150 u8 *stype;
4151
4152 slot = -i - 1;
4153 spi = slot / BPF_REG_SIZE;
4154 if (state->allocated_stack <= slot)
4155 goto err;
4156 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4157 if (*stype == STACK_MISC)
4158 goto mark;
4159 if (*stype == STACK_ZERO) {
4160 if (clobber) {
4161 /* helper can write anything into the stack */
4162 *stype = STACK_MISC;
4163 }
4164 goto mark;
4165 }
4166
4167 if (is_spilled_reg(&state->stack[spi]) &&
4168 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4169 goto mark;
4170
4171 if (is_spilled_reg(&state->stack[spi]) &&
4172 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4173 env->allow_ptr_leaks)) {
4174 if (clobber) {
4175 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4176 for (j = 0; j < BPF_REG_SIZE; j++)
4177 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
4178 }
4179 goto mark;
4180 }
4181
4182 err:
4183 if (tnum_is_const(reg->var_off)) {
4184 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4185 err_extra, regno, min_off, i - min_off, access_size);
4186 } else {
4187 char tn_buf[48];
4188
4189 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4190 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4191 err_extra, regno, tn_buf, i - min_off, access_size);
4192 }
4193 return -EACCES;
4194 mark:
4195 /* reading any byte out of 8-byte 'spill_slot' will cause
4196 * the whole slot to be marked as 'read'
4197 */
4198 mark_reg_read(env, &state->stack[spi].spilled_ptr,
4199 state->stack[spi].spilled_ptr.parent,
4200 REG_LIVE_READ64);
4201 }
4202 return update_stack_depth(env, state, min_off);
4203 }
4204
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)4205 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4206 int access_size, bool zero_size_allowed,
4207 struct bpf_call_arg_meta *meta)
4208 {
4209 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4210 const char *buf_info;
4211 u32 *max_access;
4212
4213 switch (base_type(reg->type)) {
4214 case PTR_TO_PACKET:
4215 case PTR_TO_PACKET_META:
4216 return check_packet_access(env, regno, reg->off, access_size,
4217 zero_size_allowed);
4218 case PTR_TO_MAP_VALUE:
4219 if (check_map_access_type(env, regno, reg->off, access_size,
4220 meta && meta->raw_mode ? BPF_WRITE :
4221 BPF_READ))
4222 return -EACCES;
4223 return check_map_access(env, regno, reg->off, access_size,
4224 zero_size_allowed);
4225 case PTR_TO_MEM:
4226 return check_mem_region_access(env, regno, reg->off,
4227 access_size, reg->mem_size,
4228 zero_size_allowed);
4229 case PTR_TO_BUF:
4230 if (type_is_rdonly_mem(reg->type)) {
4231 if (meta && meta->raw_mode)
4232 return -EACCES;
4233
4234 buf_info = "rdonly";
4235 max_access = &env->prog->aux->max_rdonly_access;
4236 } else {
4237 buf_info = "rdwr";
4238 max_access = &env->prog->aux->max_rdwr_access;
4239 }
4240 return check_buffer_access(env, reg, regno, reg->off,
4241 access_size, zero_size_allowed,
4242 buf_info, max_access);
4243 case PTR_TO_STACK:
4244 return check_stack_range_initialized(
4245 env,
4246 regno, reg->off, access_size,
4247 zero_size_allowed, ACCESS_HELPER, meta);
4248 default: /* scalar_value or invalid ptr */
4249 /* Allow zero-byte read from NULL, regardless of pointer type */
4250 if (zero_size_allowed && access_size == 0 &&
4251 register_is_null(reg))
4252 return 0;
4253
4254 verbose(env, "R%d type=%s ", regno,
4255 reg_type_str(env, reg->type));
4256 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
4257 return -EACCES;
4258 }
4259 }
4260
4261 /* Implementation details:
4262 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4263 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4264 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4265 * value_or_null->value transition, since the verifier only cares about
4266 * the range of access to valid map value pointer and doesn't care about actual
4267 * address of the map element.
4268 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4269 * reg->id > 0 after value_or_null->value transition. By doing so
4270 * two bpf_map_lookups will be considered two different pointers that
4271 * point to different bpf_spin_locks.
4272 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4273 * dead-locks.
4274 * Since only one bpf_spin_lock is allowed the checks are simpler than
4275 * reg_is_refcounted() logic. The verifier needs to remember only
4276 * one spin_lock instead of array of acquired_refs.
4277 * cur_state->active_spin_lock remembers which map value element got locked
4278 * and clears it after bpf_spin_unlock.
4279 */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)4280 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4281 bool is_lock)
4282 {
4283 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4284 struct bpf_verifier_state *cur = env->cur_state;
4285 bool is_const = tnum_is_const(reg->var_off);
4286 struct bpf_map *map = reg->map_ptr;
4287 u64 val = reg->var_off.value;
4288
4289 if (!is_const) {
4290 verbose(env,
4291 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4292 regno);
4293 return -EINVAL;
4294 }
4295 if (!map->btf) {
4296 verbose(env,
4297 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4298 map->name);
4299 return -EINVAL;
4300 }
4301 if (!map_value_has_spin_lock(map)) {
4302 if (map->spin_lock_off == -E2BIG)
4303 verbose(env,
4304 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4305 map->name);
4306 else if (map->spin_lock_off == -ENOENT)
4307 verbose(env,
4308 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4309 map->name);
4310 else
4311 verbose(env,
4312 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4313 map->name);
4314 return -EINVAL;
4315 }
4316 if (map->spin_lock_off != val + reg->off) {
4317 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4318 val + reg->off);
4319 return -EINVAL;
4320 }
4321 if (is_lock) {
4322 if (cur->active_spin_lock) {
4323 verbose(env,
4324 "Locking two bpf_spin_locks are not allowed\n");
4325 return -EINVAL;
4326 }
4327 cur->active_spin_lock = reg->id;
4328 } else {
4329 if (!cur->active_spin_lock) {
4330 verbose(env, "bpf_spin_unlock without taking a lock\n");
4331 return -EINVAL;
4332 }
4333 if (cur->active_spin_lock != reg->id) {
4334 verbose(env, "bpf_spin_unlock of different lock\n");
4335 return -EINVAL;
4336 }
4337 cur->active_spin_lock = 0;
4338 }
4339 return 0;
4340 }
4341
arg_type_is_mem_ptr(enum bpf_arg_type type)4342 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4343 {
4344 return base_type(type) == ARG_PTR_TO_MEM ||
4345 base_type(type) == ARG_PTR_TO_UNINIT_MEM;
4346 }
4347
arg_type_is_mem_size(enum bpf_arg_type type)4348 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4349 {
4350 return type == ARG_CONST_SIZE ||
4351 type == ARG_CONST_SIZE_OR_ZERO;
4352 }
4353
arg_type_is_alloc_size(enum bpf_arg_type type)4354 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4355 {
4356 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4357 }
4358
arg_type_is_int_ptr(enum bpf_arg_type type)4359 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4360 {
4361 return type == ARG_PTR_TO_INT ||
4362 type == ARG_PTR_TO_LONG;
4363 }
4364
int_ptr_type_to_size(enum bpf_arg_type type)4365 static int int_ptr_type_to_size(enum bpf_arg_type type)
4366 {
4367 if (type == ARG_PTR_TO_INT)
4368 return sizeof(u32);
4369 else if (type == ARG_PTR_TO_LONG)
4370 return sizeof(u64);
4371
4372 return -EINVAL;
4373 }
4374
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)4375 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4376 const struct bpf_call_arg_meta *meta,
4377 enum bpf_arg_type *arg_type)
4378 {
4379 if (!meta->map_ptr) {
4380 /* kernel subsystem misconfigured verifier */
4381 verbose(env, "invalid map_ptr to access map->type\n");
4382 return -EACCES;
4383 }
4384
4385 switch (meta->map_ptr->map_type) {
4386 case BPF_MAP_TYPE_SOCKMAP:
4387 case BPF_MAP_TYPE_SOCKHASH:
4388 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4389 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4390 } else {
4391 verbose(env, "invalid arg_type for sockmap/sockhash\n");
4392 return -EINVAL;
4393 }
4394 break;
4395
4396 default:
4397 break;
4398 }
4399 return 0;
4400 }
4401
4402 struct bpf_reg_types {
4403 const enum bpf_reg_type types[10];
4404 u32 *btf_id;
4405 };
4406
4407 static const struct bpf_reg_types map_key_value_types = {
4408 .types = {
4409 PTR_TO_STACK,
4410 PTR_TO_PACKET,
4411 PTR_TO_PACKET_META,
4412 PTR_TO_MAP_VALUE,
4413 },
4414 };
4415
4416 static const struct bpf_reg_types sock_types = {
4417 .types = {
4418 PTR_TO_SOCK_COMMON,
4419 PTR_TO_SOCKET,
4420 PTR_TO_TCP_SOCK,
4421 PTR_TO_XDP_SOCK,
4422 },
4423 };
4424
4425 #ifdef CONFIG_NET
4426 static const struct bpf_reg_types btf_id_sock_common_types = {
4427 .types = {
4428 PTR_TO_SOCK_COMMON,
4429 PTR_TO_SOCKET,
4430 PTR_TO_TCP_SOCK,
4431 PTR_TO_XDP_SOCK,
4432 PTR_TO_BTF_ID,
4433 },
4434 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4435 };
4436 #endif
4437
4438 static const struct bpf_reg_types mem_types = {
4439 .types = {
4440 PTR_TO_STACK,
4441 PTR_TO_PACKET,
4442 PTR_TO_PACKET_META,
4443 PTR_TO_MAP_VALUE,
4444 PTR_TO_MEM,
4445 PTR_TO_MEM | MEM_ALLOC,
4446 PTR_TO_BUF,
4447 },
4448 };
4449
4450 static const struct bpf_reg_types int_ptr_types = {
4451 .types = {
4452 PTR_TO_STACK,
4453 PTR_TO_PACKET,
4454 PTR_TO_PACKET_META,
4455 PTR_TO_MAP_VALUE,
4456 },
4457 };
4458
4459 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4460 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4461 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4462 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } };
4463 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4464 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4465 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4466 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4467
4468 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4469 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4470 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4471 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4472 [ARG_CONST_SIZE] = &scalar_types,
4473 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4474 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4475 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4476 [ARG_PTR_TO_CTX] = &context_types,
4477 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
4478 #ifdef CONFIG_NET
4479 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
4480 #endif
4481 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4482 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4483 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4484 [ARG_PTR_TO_MEM] = &mem_types,
4485 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4486 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4487 [ARG_PTR_TO_INT] = &int_ptr_types,
4488 [ARG_PTR_TO_LONG] = &int_ptr_types,
4489 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
4490 };
4491
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id)4492 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4493 enum bpf_arg_type arg_type,
4494 const u32 *arg_btf_id)
4495 {
4496 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4497 enum bpf_reg_type expected, type = reg->type;
4498 const struct bpf_reg_types *compatible;
4499 int i, j;
4500
4501 compatible = compatible_reg_types[base_type(arg_type)];
4502 if (!compatible) {
4503 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4504 return -EFAULT;
4505 }
4506
4507 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
4508 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
4509 *
4510 * Same for MAYBE_NULL:
4511 *
4512 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
4513 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
4514 *
4515 * Therefore we fold these flags depending on the arg_type before comparison.
4516 */
4517 if (arg_type & MEM_RDONLY)
4518 type &= ~MEM_RDONLY;
4519 if (arg_type & PTR_MAYBE_NULL)
4520 type &= ~PTR_MAYBE_NULL;
4521
4522 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4523 expected = compatible->types[i];
4524 if (expected == NOT_INIT)
4525 break;
4526
4527 if (type == expected)
4528 goto found;
4529 }
4530
4531 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
4532 for (j = 0; j + 1 < i; j++)
4533 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
4534 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
4535 return -EACCES;
4536
4537 found:
4538 if (reg->type == PTR_TO_BTF_ID) {
4539 if (!arg_btf_id) {
4540 if (!compatible->btf_id) {
4541 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4542 return -EFAULT;
4543 }
4544 arg_btf_id = compatible->btf_id;
4545 }
4546
4547 if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id,
4548 *arg_btf_id)) {
4549 verbose(env, "R%d is of type %s but %s is expected\n",
4550 regno, kernel_type_name(reg->btf_id),
4551 kernel_type_name(*arg_btf_id));
4552 return -EACCES;
4553 }
4554 }
4555
4556 return 0;
4557 }
4558
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn)4559 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4560 struct bpf_call_arg_meta *meta,
4561 const struct bpf_func_proto *fn)
4562 {
4563 u32 regno = BPF_REG_1 + arg;
4564 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
4565 enum bpf_arg_type arg_type = fn->arg_type[arg];
4566 enum bpf_reg_type type = reg->type;
4567 int err = 0;
4568
4569 if (arg_type == ARG_DONTCARE)
4570 return 0;
4571
4572 err = check_reg_arg(env, regno, SRC_OP);
4573 if (err)
4574 return err;
4575
4576 if (arg_type == ARG_ANYTHING) {
4577 if (is_pointer_value(env, regno)) {
4578 verbose(env, "R%d leaks addr into helper function\n",
4579 regno);
4580 return -EACCES;
4581 }
4582 return 0;
4583 }
4584
4585 if (type_is_pkt_pointer(type) &&
4586 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4587 verbose(env, "helper access to the packet is not allowed\n");
4588 return -EACCES;
4589 }
4590
4591 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
4592 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4593 err = resolve_map_arg_type(env, meta, &arg_type);
4594 if (err)
4595 return err;
4596 }
4597
4598 if (register_is_null(reg) && type_may_be_null(arg_type))
4599 /* A NULL register has a SCALAR_VALUE type, so skip
4600 * type checking.
4601 */
4602 goto skip_type_check;
4603
4604 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4605 if (err)
4606 return err;
4607
4608 switch ((u32)type) {
4609 case SCALAR_VALUE:
4610 /* Pointer types where reg offset is explicitly allowed: */
4611 case PTR_TO_PACKET:
4612 case PTR_TO_PACKET_META:
4613 case PTR_TO_MAP_VALUE:
4614 case PTR_TO_MEM:
4615 case PTR_TO_MEM | MEM_RDONLY:
4616 case PTR_TO_MEM | MEM_ALLOC:
4617 case PTR_TO_BUF:
4618 case PTR_TO_BUF | MEM_RDONLY:
4619 case PTR_TO_STACK:
4620 /* Some of the argument types nevertheless require a
4621 * zero register offset.
4622 */
4623 if (arg_type == ARG_PTR_TO_ALLOC_MEM)
4624 goto force_off_check;
4625 break;
4626 /* All the rest must be rejected: */
4627 default:
4628 force_off_check:
4629 err = __check_ptr_off_reg(env, reg, regno,
4630 type == PTR_TO_BTF_ID);
4631 if (err < 0)
4632 return err;
4633 break;
4634 }
4635
4636 skip_type_check:
4637 if (reg->ref_obj_id) {
4638 if (meta->ref_obj_id) {
4639 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4640 regno, reg->ref_obj_id,
4641 meta->ref_obj_id);
4642 return -EFAULT;
4643 }
4644 meta->ref_obj_id = reg->ref_obj_id;
4645 }
4646
4647 if (arg_type == ARG_CONST_MAP_PTR) {
4648 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4649 meta->map_ptr = reg->map_ptr;
4650 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4651 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4652 * check that [key, key + map->key_size) are within
4653 * stack limits and initialized
4654 */
4655 if (!meta->map_ptr) {
4656 /* in function declaration map_ptr must come before
4657 * map_key, so that it's verified and known before
4658 * we have to check map_key here. Otherwise it means
4659 * that kernel subsystem misconfigured verifier
4660 */
4661 verbose(env, "invalid map_ptr to access map->key\n");
4662 return -EACCES;
4663 }
4664 err = check_helper_mem_access(env, regno,
4665 meta->map_ptr->key_size, false,
4666 NULL);
4667 } else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
4668 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4669 if (type_may_be_null(arg_type) && register_is_null(reg))
4670 return 0;
4671
4672 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4673 * check [value, value + map->value_size) validity
4674 */
4675 if (!meta->map_ptr) {
4676 /* kernel subsystem misconfigured verifier */
4677 verbose(env, "invalid map_ptr to access map->value\n");
4678 return -EACCES;
4679 }
4680 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4681 err = check_helper_mem_access(env, regno,
4682 meta->map_ptr->value_size, false,
4683 meta);
4684 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4685 if (!reg->btf_id) {
4686 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4687 return -EACCES;
4688 }
4689 meta->ret_btf_id = reg->btf_id;
4690 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4691 if (meta->func_id == BPF_FUNC_spin_lock) {
4692 if (process_spin_lock(env, regno, true))
4693 return -EACCES;
4694 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4695 if (process_spin_lock(env, regno, false))
4696 return -EACCES;
4697 } else {
4698 verbose(env, "verifier internal error\n");
4699 return -EFAULT;
4700 }
4701 } else if (arg_type_is_mem_ptr(arg_type)) {
4702 /* The access to this pointer is only checked when we hit the
4703 * next is_mem_size argument below.
4704 */
4705 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4706 } else if (arg_type_is_mem_size(arg_type)) {
4707 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4708
4709 /* This is used to refine r0 return value bounds for helpers
4710 * that enforce this value as an upper bound on return values.
4711 * See do_refine_retval_range() for helpers that can refine
4712 * the return value. C type of helper is u32 so we pull register
4713 * bound from umax_value however, if negative verifier errors
4714 * out. Only upper bounds can be learned because retval is an
4715 * int type and negative retvals are allowed.
4716 */
4717 meta->msize_max_value = reg->umax_value;
4718
4719 /* The register is SCALAR_VALUE; the access check
4720 * happens using its boundaries.
4721 */
4722 if (!tnum_is_const(reg->var_off))
4723 /* For unprivileged variable accesses, disable raw
4724 * mode so that the program is required to
4725 * initialize all the memory that the helper could
4726 * just partially fill up.
4727 */
4728 meta = NULL;
4729
4730 if (reg->smin_value < 0) {
4731 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4732 regno);
4733 return -EACCES;
4734 }
4735
4736 if (reg->umin_value == 0) {
4737 err = check_helper_mem_access(env, regno - 1, 0,
4738 zero_size_allowed,
4739 meta);
4740 if (err)
4741 return err;
4742 }
4743
4744 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4745 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4746 regno);
4747 return -EACCES;
4748 }
4749 err = check_helper_mem_access(env, regno - 1,
4750 reg->umax_value,
4751 zero_size_allowed, meta);
4752 if (!err)
4753 err = mark_chain_precision(env, regno);
4754 } else if (arg_type_is_alloc_size(arg_type)) {
4755 if (!tnum_is_const(reg->var_off)) {
4756 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4757 regno);
4758 return -EACCES;
4759 }
4760 meta->mem_size = reg->var_off.value;
4761 } else if (arg_type_is_int_ptr(arg_type)) {
4762 int size = int_ptr_type_to_size(arg_type);
4763
4764 err = check_helper_mem_access(env, regno, size, false, meta);
4765 if (err)
4766 return err;
4767 err = check_ptr_alignment(env, reg, 0, size, true);
4768 }
4769
4770 return err;
4771 }
4772
may_update_sockmap(struct bpf_verifier_env * env,int func_id)4773 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4774 {
4775 enum bpf_attach_type eatype = env->prog->expected_attach_type;
4776 enum bpf_prog_type type = resolve_prog_type(env->prog);
4777
4778 if (func_id != BPF_FUNC_map_update_elem)
4779 return false;
4780
4781 /* It's not possible to get access to a locked struct sock in these
4782 * contexts, so updating is safe.
4783 */
4784 switch (type) {
4785 case BPF_PROG_TYPE_TRACING:
4786 if (eatype == BPF_TRACE_ITER)
4787 return true;
4788 break;
4789 case BPF_PROG_TYPE_SOCKET_FILTER:
4790 case BPF_PROG_TYPE_SCHED_CLS:
4791 case BPF_PROG_TYPE_SCHED_ACT:
4792 case BPF_PROG_TYPE_XDP:
4793 case BPF_PROG_TYPE_SK_REUSEPORT:
4794 case BPF_PROG_TYPE_FLOW_DISSECTOR:
4795 case BPF_PROG_TYPE_SK_LOOKUP:
4796 return true;
4797 default:
4798 break;
4799 }
4800
4801 verbose(env, "cannot update sockmap in this context\n");
4802 return false;
4803 }
4804
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)4805 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4806 {
4807 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4808 }
4809
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)4810 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4811 struct bpf_map *map, int func_id)
4812 {
4813 if (!map)
4814 return 0;
4815
4816 /* We need a two way check, first is from map perspective ... */
4817 switch (map->map_type) {
4818 case BPF_MAP_TYPE_PROG_ARRAY:
4819 if (func_id != BPF_FUNC_tail_call)
4820 goto error;
4821 break;
4822 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4823 if (func_id != BPF_FUNC_perf_event_read &&
4824 func_id != BPF_FUNC_perf_event_output &&
4825 func_id != BPF_FUNC_skb_output &&
4826 func_id != BPF_FUNC_perf_event_read_value &&
4827 func_id != BPF_FUNC_xdp_output)
4828 goto error;
4829 break;
4830 case BPF_MAP_TYPE_RINGBUF:
4831 if (func_id != BPF_FUNC_ringbuf_output &&
4832 func_id != BPF_FUNC_ringbuf_reserve &&
4833 func_id != BPF_FUNC_ringbuf_query)
4834 goto error;
4835 break;
4836 case BPF_MAP_TYPE_STACK_TRACE:
4837 if (func_id != BPF_FUNC_get_stackid)
4838 goto error;
4839 break;
4840 case BPF_MAP_TYPE_CGROUP_ARRAY:
4841 if (func_id != BPF_FUNC_skb_under_cgroup &&
4842 func_id != BPF_FUNC_current_task_under_cgroup)
4843 goto error;
4844 break;
4845 case BPF_MAP_TYPE_CGROUP_STORAGE:
4846 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4847 if (func_id != BPF_FUNC_get_local_storage)
4848 goto error;
4849 break;
4850 case BPF_MAP_TYPE_DEVMAP:
4851 case BPF_MAP_TYPE_DEVMAP_HASH:
4852 if (func_id != BPF_FUNC_redirect_map &&
4853 func_id != BPF_FUNC_map_lookup_elem)
4854 goto error;
4855 break;
4856 /* Restrict bpf side of cpumap and xskmap, open when use-cases
4857 * appear.
4858 */
4859 case BPF_MAP_TYPE_CPUMAP:
4860 if (func_id != BPF_FUNC_redirect_map)
4861 goto error;
4862 break;
4863 case BPF_MAP_TYPE_XSKMAP:
4864 if (func_id != BPF_FUNC_redirect_map &&
4865 func_id != BPF_FUNC_map_lookup_elem)
4866 goto error;
4867 break;
4868 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4869 case BPF_MAP_TYPE_HASH_OF_MAPS:
4870 if (func_id != BPF_FUNC_map_lookup_elem)
4871 goto error;
4872 break;
4873 case BPF_MAP_TYPE_SOCKMAP:
4874 if (func_id != BPF_FUNC_sk_redirect_map &&
4875 func_id != BPF_FUNC_sock_map_update &&
4876 func_id != BPF_FUNC_map_delete_elem &&
4877 func_id != BPF_FUNC_msg_redirect_map &&
4878 func_id != BPF_FUNC_sk_select_reuseport &&
4879 func_id != BPF_FUNC_map_lookup_elem &&
4880 !may_update_sockmap(env, func_id))
4881 goto error;
4882 break;
4883 case BPF_MAP_TYPE_SOCKHASH:
4884 if (func_id != BPF_FUNC_sk_redirect_hash &&
4885 func_id != BPF_FUNC_sock_hash_update &&
4886 func_id != BPF_FUNC_map_delete_elem &&
4887 func_id != BPF_FUNC_msg_redirect_hash &&
4888 func_id != BPF_FUNC_sk_select_reuseport &&
4889 func_id != BPF_FUNC_map_lookup_elem &&
4890 !may_update_sockmap(env, func_id))
4891 goto error;
4892 break;
4893 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4894 if (func_id != BPF_FUNC_sk_select_reuseport)
4895 goto error;
4896 break;
4897 case BPF_MAP_TYPE_QUEUE:
4898 case BPF_MAP_TYPE_STACK:
4899 if (func_id != BPF_FUNC_map_peek_elem &&
4900 func_id != BPF_FUNC_map_pop_elem &&
4901 func_id != BPF_FUNC_map_push_elem)
4902 goto error;
4903 break;
4904 case BPF_MAP_TYPE_SK_STORAGE:
4905 if (func_id != BPF_FUNC_sk_storage_get &&
4906 func_id != BPF_FUNC_sk_storage_delete)
4907 goto error;
4908 break;
4909 case BPF_MAP_TYPE_INODE_STORAGE:
4910 if (func_id != BPF_FUNC_inode_storage_get &&
4911 func_id != BPF_FUNC_inode_storage_delete)
4912 goto error;
4913 break;
4914 default:
4915 break;
4916 }
4917
4918 /* ... and second from the function itself. */
4919 switch (func_id) {
4920 case BPF_FUNC_tail_call:
4921 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4922 goto error;
4923 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4924 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
4925 return -EINVAL;
4926 }
4927 break;
4928 case BPF_FUNC_perf_event_read:
4929 case BPF_FUNC_perf_event_output:
4930 case BPF_FUNC_perf_event_read_value:
4931 case BPF_FUNC_skb_output:
4932 case BPF_FUNC_xdp_output:
4933 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4934 goto error;
4935 break;
4936 case BPF_FUNC_ringbuf_output:
4937 case BPF_FUNC_ringbuf_reserve:
4938 case BPF_FUNC_ringbuf_query:
4939 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
4940 goto error;
4941 break;
4942 case BPF_FUNC_get_stackid:
4943 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4944 goto error;
4945 break;
4946 case BPF_FUNC_current_task_under_cgroup:
4947 case BPF_FUNC_skb_under_cgroup:
4948 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4949 goto error;
4950 break;
4951 case BPF_FUNC_redirect_map:
4952 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4953 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4954 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4955 map->map_type != BPF_MAP_TYPE_XSKMAP)
4956 goto error;
4957 break;
4958 case BPF_FUNC_sk_redirect_map:
4959 case BPF_FUNC_msg_redirect_map:
4960 case BPF_FUNC_sock_map_update:
4961 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4962 goto error;
4963 break;
4964 case BPF_FUNC_sk_redirect_hash:
4965 case BPF_FUNC_msg_redirect_hash:
4966 case BPF_FUNC_sock_hash_update:
4967 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4968 goto error;
4969 break;
4970 case BPF_FUNC_get_local_storage:
4971 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4972 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4973 goto error;
4974 break;
4975 case BPF_FUNC_sk_select_reuseport:
4976 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4977 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4978 map->map_type != BPF_MAP_TYPE_SOCKHASH)
4979 goto error;
4980 break;
4981 case BPF_FUNC_map_peek_elem:
4982 case BPF_FUNC_map_pop_elem:
4983 case BPF_FUNC_map_push_elem:
4984 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4985 map->map_type != BPF_MAP_TYPE_STACK)
4986 goto error;
4987 break;
4988 case BPF_FUNC_sk_storage_get:
4989 case BPF_FUNC_sk_storage_delete:
4990 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4991 goto error;
4992 break;
4993 case BPF_FUNC_inode_storage_get:
4994 case BPF_FUNC_inode_storage_delete:
4995 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4996 goto error;
4997 break;
4998 default:
4999 break;
5000 }
5001
5002 return 0;
5003 error:
5004 verbose(env, "cannot pass map_type %d into func %s#%d\n",
5005 map->map_type, func_id_name(func_id), func_id);
5006 return -EINVAL;
5007 }
5008
check_raw_mode_ok(const struct bpf_func_proto * fn)5009 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5010 {
5011 int count = 0;
5012
5013 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5014 count++;
5015 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5016 count++;
5017 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5018 count++;
5019 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5020 count++;
5021 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5022 count++;
5023
5024 /* We only support one arg being in raw mode at the moment,
5025 * which is sufficient for the helper functions we have
5026 * right now.
5027 */
5028 return count <= 1;
5029 }
5030
check_args_pair_invalid(enum bpf_arg_type arg_curr,enum bpf_arg_type arg_next)5031 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5032 enum bpf_arg_type arg_next)
5033 {
5034 return (arg_type_is_mem_ptr(arg_curr) &&
5035 !arg_type_is_mem_size(arg_next)) ||
5036 (!arg_type_is_mem_ptr(arg_curr) &&
5037 arg_type_is_mem_size(arg_next));
5038 }
5039
check_arg_pair_ok(const struct bpf_func_proto * fn)5040 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5041 {
5042 /* bpf_xxx(..., buf, len) call will access 'len'
5043 * bytes from memory 'buf'. Both arg types need
5044 * to be paired, so make sure there's no buggy
5045 * helper function specification.
5046 */
5047 if (arg_type_is_mem_size(fn->arg1_type) ||
5048 arg_type_is_mem_ptr(fn->arg5_type) ||
5049 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5050 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5051 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5052 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5053 return false;
5054
5055 return true;
5056 }
5057
check_refcount_ok(const struct bpf_func_proto * fn,int func_id)5058 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5059 {
5060 int count = 0;
5061
5062 if (arg_type_may_be_refcounted(fn->arg1_type))
5063 count++;
5064 if (arg_type_may_be_refcounted(fn->arg2_type))
5065 count++;
5066 if (arg_type_may_be_refcounted(fn->arg3_type))
5067 count++;
5068 if (arg_type_may_be_refcounted(fn->arg4_type))
5069 count++;
5070 if (arg_type_may_be_refcounted(fn->arg5_type))
5071 count++;
5072
5073 /* A reference acquiring function cannot acquire
5074 * another refcounted ptr.
5075 */
5076 if (may_be_acquire_function(func_id) && count)
5077 return false;
5078
5079 /* We only support one arg being unreferenced at the moment,
5080 * which is sufficient for the helper functions we have right now.
5081 */
5082 return count <= 1;
5083 }
5084
check_btf_id_ok(const struct bpf_func_proto * fn)5085 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5086 {
5087 int i;
5088
5089 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5090 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5091 return false;
5092
5093 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5094 return false;
5095 }
5096
5097 return true;
5098 }
5099
check_func_proto(const struct bpf_func_proto * fn,int func_id)5100 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5101 {
5102 return check_raw_mode_ok(fn) &&
5103 check_arg_pair_ok(fn) &&
5104 check_btf_id_ok(fn) &&
5105 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5106 }
5107
5108 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5109 * are now invalid, so turn them into unknown SCALAR_VALUE.
5110 */
clear_all_pkt_pointers(struct bpf_verifier_env * env)5111 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5112 {
5113 struct bpf_func_state *state;
5114 struct bpf_reg_state *reg;
5115
5116 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
5117 if (reg_is_pkt_pointer_any(reg))
5118 __mark_reg_unknown(env, reg);
5119 }));
5120 }
5121
5122 enum {
5123 AT_PKT_END = -1,
5124 BEYOND_PKT_END = -2,
5125 };
5126
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)5127 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5128 {
5129 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5130 struct bpf_reg_state *reg = &state->regs[regn];
5131
5132 if (reg->type != PTR_TO_PACKET)
5133 /* PTR_TO_PACKET_META is not supported yet */
5134 return;
5135
5136 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5137 * How far beyond pkt_end it goes is unknown.
5138 * if (!range_open) it's the case of pkt >= pkt_end
5139 * if (range_open) it's the case of pkt > pkt_end
5140 * hence this pointer is at least 1 byte bigger than pkt_end
5141 */
5142 if (range_open)
5143 reg->range = BEYOND_PKT_END;
5144 else
5145 reg->range = AT_PKT_END;
5146 }
5147
5148 /* The pointer with the specified id has released its reference to kernel
5149 * resources. Identify all copies of the same pointer and clear the reference.
5150 */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)5151 static int release_reference(struct bpf_verifier_env *env,
5152 int ref_obj_id)
5153 {
5154 struct bpf_func_state *state;
5155 struct bpf_reg_state *reg;
5156 int err;
5157
5158 err = release_reference_state(cur_func(env), ref_obj_id);
5159 if (err)
5160 return err;
5161
5162 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
5163 if (reg->ref_obj_id == ref_obj_id) {
5164 if (!env->allow_ptr_leaks)
5165 __mark_reg_not_init(env, reg);
5166 else
5167 __mark_reg_unknown(env, reg);
5168 }
5169 }));
5170
5171 return 0;
5172 }
5173
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)5174 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5175 struct bpf_reg_state *regs)
5176 {
5177 int i;
5178
5179 /* after the call registers r0 - r5 were scratched */
5180 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5181 mark_reg_not_init(env, regs, caller_saved[i]);
5182 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5183 }
5184 }
5185
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)5186 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5187 int *insn_idx)
5188 {
5189 struct bpf_verifier_state *state = env->cur_state;
5190 struct bpf_func_info_aux *func_info_aux;
5191 struct bpf_func_state *caller, *callee;
5192 int i, err, subprog, target_insn;
5193 bool is_global = false;
5194
5195 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5196 verbose(env, "the call stack of %d frames is too deep\n",
5197 state->curframe + 2);
5198 return -E2BIG;
5199 }
5200
5201 target_insn = *insn_idx + insn->imm;
5202 subprog = find_subprog(env, target_insn + 1);
5203 if (subprog < 0) {
5204 verbose(env, "verifier bug. No program starts at insn %d\n",
5205 target_insn + 1);
5206 return -EFAULT;
5207 }
5208
5209 caller = state->frame[state->curframe];
5210 if (state->frame[state->curframe + 1]) {
5211 verbose(env, "verifier bug. Frame %d already allocated\n",
5212 state->curframe + 1);
5213 return -EFAULT;
5214 }
5215
5216 func_info_aux = env->prog->aux->func_info_aux;
5217 if (func_info_aux)
5218 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5219 err = btf_check_func_arg_match(env, subprog, caller->regs);
5220 if (err == -EFAULT)
5221 return err;
5222 if (is_global) {
5223 if (err) {
5224 verbose(env, "Caller passes invalid args into func#%d\n",
5225 subprog);
5226 return err;
5227 } else {
5228 if (env->log.level & BPF_LOG_LEVEL)
5229 verbose(env,
5230 "Func#%d is global and valid. Skipping.\n",
5231 subprog);
5232 clear_caller_saved_regs(env, caller->regs);
5233
5234 /* All global functions return a 64-bit SCALAR_VALUE */
5235 mark_reg_unknown(env, caller->regs, BPF_REG_0);
5236 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5237
5238 /* continue with next insn after call */
5239 return 0;
5240 }
5241 }
5242
5243 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5244 if (!callee)
5245 return -ENOMEM;
5246 state->frame[state->curframe + 1] = callee;
5247
5248 /* callee cannot access r0, r6 - r9 for reading and has to write
5249 * into its own stack before reading from it.
5250 * callee can read/write into caller's stack
5251 */
5252 init_func_state(env, callee,
5253 /* remember the callsite, it will be used by bpf_exit */
5254 *insn_idx /* callsite */,
5255 state->curframe + 1 /* frameno within this callchain */,
5256 subprog /* subprog number within this prog */);
5257
5258 /* Transfer references to the callee */
5259 err = transfer_reference_state(callee, caller);
5260 if (err)
5261 return err;
5262
5263 /* copy r1 - r5 args that callee can access. The copy includes parent
5264 * pointers, which connects us up to the liveness chain
5265 */
5266 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5267 callee->regs[i] = caller->regs[i];
5268
5269 clear_caller_saved_regs(env, caller->regs);
5270
5271 /* only increment it after check_reg_arg() finished */
5272 state->curframe++;
5273
5274 /* and go analyze first insn of the callee */
5275 *insn_idx = target_insn;
5276
5277 if (env->log.level & BPF_LOG_LEVEL) {
5278 verbose(env, "caller:\n");
5279 print_verifier_state(env, caller);
5280 verbose(env, "callee:\n");
5281 print_verifier_state(env, callee);
5282 }
5283 return 0;
5284 }
5285
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)5286 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5287 {
5288 struct bpf_verifier_state *state = env->cur_state;
5289 struct bpf_func_state *caller, *callee;
5290 struct bpf_reg_state *r0;
5291 int err;
5292
5293 callee = state->frame[state->curframe];
5294 r0 = &callee->regs[BPF_REG_0];
5295 if (r0->type == PTR_TO_STACK) {
5296 /* technically it's ok to return caller's stack pointer
5297 * (or caller's caller's pointer) back to the caller,
5298 * since these pointers are valid. Only current stack
5299 * pointer will be invalid as soon as function exits,
5300 * but let's be conservative
5301 */
5302 verbose(env, "cannot return stack pointer to the caller\n");
5303 return -EINVAL;
5304 }
5305
5306 state->curframe--;
5307 caller = state->frame[state->curframe];
5308 /* return to the caller whatever r0 had in the callee */
5309 caller->regs[BPF_REG_0] = *r0;
5310
5311 /* Transfer references to the caller */
5312 err = transfer_reference_state(caller, callee);
5313 if (err)
5314 return err;
5315
5316 *insn_idx = callee->callsite + 1;
5317 if (env->log.level & BPF_LOG_LEVEL) {
5318 verbose(env, "returning from callee:\n");
5319 print_verifier_state(env, callee);
5320 verbose(env, "to caller at %d:\n", *insn_idx);
5321 print_verifier_state(env, caller);
5322 }
5323 /* clear everything in the callee */
5324 free_func_state(callee);
5325 state->frame[state->curframe + 1] = NULL;
5326 return 0;
5327 }
5328
do_refine_retval_range(struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)5329 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5330 int func_id,
5331 struct bpf_call_arg_meta *meta)
5332 {
5333 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
5334
5335 if (ret_type != RET_INTEGER ||
5336 (func_id != BPF_FUNC_get_stack &&
5337 func_id != BPF_FUNC_probe_read_str &&
5338 func_id != BPF_FUNC_probe_read_kernel_str &&
5339 func_id != BPF_FUNC_probe_read_user_str))
5340 return;
5341
5342 ret_reg->smax_value = meta->msize_max_value;
5343 ret_reg->s32_max_value = meta->msize_max_value;
5344 ret_reg->smin_value = -MAX_ERRNO;
5345 ret_reg->s32_min_value = -MAX_ERRNO;
5346 reg_bounds_sync(ret_reg);
5347 }
5348
5349 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)5350 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5351 int func_id, int insn_idx)
5352 {
5353 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5354 struct bpf_map *map = meta->map_ptr;
5355
5356 if (func_id != BPF_FUNC_tail_call &&
5357 func_id != BPF_FUNC_map_lookup_elem &&
5358 func_id != BPF_FUNC_map_update_elem &&
5359 func_id != BPF_FUNC_map_delete_elem &&
5360 func_id != BPF_FUNC_map_push_elem &&
5361 func_id != BPF_FUNC_map_pop_elem &&
5362 func_id != BPF_FUNC_map_peek_elem)
5363 return 0;
5364
5365 if (map == NULL) {
5366 verbose(env, "kernel subsystem misconfigured verifier\n");
5367 return -EINVAL;
5368 }
5369
5370 /* In case of read-only, some additional restrictions
5371 * need to be applied in order to prevent altering the
5372 * state of the map from program side.
5373 */
5374 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5375 (func_id == BPF_FUNC_map_delete_elem ||
5376 func_id == BPF_FUNC_map_update_elem ||
5377 func_id == BPF_FUNC_map_push_elem ||
5378 func_id == BPF_FUNC_map_pop_elem)) {
5379 verbose(env, "write into map forbidden\n");
5380 return -EACCES;
5381 }
5382
5383 if (!BPF_MAP_PTR(aux->map_ptr_state))
5384 bpf_map_ptr_store(aux, meta->map_ptr,
5385 !meta->map_ptr->bypass_spec_v1);
5386 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5387 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5388 !meta->map_ptr->bypass_spec_v1);
5389 return 0;
5390 }
5391
5392 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)5393 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5394 int func_id, int insn_idx)
5395 {
5396 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5397 struct bpf_reg_state *regs = cur_regs(env), *reg;
5398 struct bpf_map *map = meta->map_ptr;
5399 u64 val, max;
5400 int err;
5401
5402 if (func_id != BPF_FUNC_tail_call)
5403 return 0;
5404 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5405 verbose(env, "kernel subsystem misconfigured verifier\n");
5406 return -EINVAL;
5407 }
5408
5409 reg = ®s[BPF_REG_3];
5410 val = reg->var_off.value;
5411 max = map->max_entries;
5412
5413 if (!(register_is_const(reg) && val < max)) {
5414 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5415 return 0;
5416 }
5417
5418 err = mark_chain_precision(env, BPF_REG_3);
5419 if (err)
5420 return err;
5421 if (bpf_map_key_unseen(aux))
5422 bpf_map_key_store(aux, val);
5423 else if (!bpf_map_key_poisoned(aux) &&
5424 bpf_map_key_immediate(aux) != val)
5425 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5426 return 0;
5427 }
5428
check_reference_leak(struct bpf_verifier_env * env)5429 static int check_reference_leak(struct bpf_verifier_env *env)
5430 {
5431 struct bpf_func_state *state = cur_func(env);
5432 int i;
5433
5434 for (i = 0; i < state->acquired_refs; i++) {
5435 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5436 state->refs[i].id, state->refs[i].insn_idx);
5437 }
5438 return state->acquired_refs ? -EINVAL : 0;
5439 }
5440
check_helper_call(struct bpf_verifier_env * env,int func_id,int insn_idx)5441 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5442 {
5443 const struct bpf_func_proto *fn = NULL;
5444 enum bpf_return_type ret_type;
5445 enum bpf_type_flag ret_flag;
5446 struct bpf_reg_state *regs;
5447 struct bpf_call_arg_meta meta;
5448 bool changes_data;
5449 int i, err;
5450
5451 /* find function prototype */
5452 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5453 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5454 func_id);
5455 return -EINVAL;
5456 }
5457
5458 if (env->ops->get_func_proto)
5459 fn = env->ops->get_func_proto(func_id, env->prog);
5460 if (!fn) {
5461 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5462 func_id);
5463 return -EINVAL;
5464 }
5465
5466 /* eBPF programs must be GPL compatible to use GPL-ed functions */
5467 if (!env->prog->gpl_compatible && fn->gpl_only) {
5468 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5469 return -EINVAL;
5470 }
5471
5472 if (fn->allowed && !fn->allowed(env->prog)) {
5473 verbose(env, "helper call is not allowed in probe\n");
5474 return -EINVAL;
5475 }
5476
5477 /* With LD_ABS/IND some JITs save/restore skb from r1. */
5478 changes_data = bpf_helper_changes_pkt_data(fn->func);
5479 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5480 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5481 func_id_name(func_id), func_id);
5482 return -EINVAL;
5483 }
5484
5485 memset(&meta, 0, sizeof(meta));
5486 meta.pkt_access = fn->pkt_access;
5487
5488 err = check_func_proto(fn, func_id);
5489 if (err) {
5490 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5491 func_id_name(func_id), func_id);
5492 return err;
5493 }
5494
5495 meta.func_id = func_id;
5496 /* check args */
5497 for (i = 0; i < 5; i++) {
5498 err = check_func_arg(env, i, &meta, fn);
5499 if (err)
5500 return err;
5501 }
5502
5503 err = record_func_map(env, &meta, func_id, insn_idx);
5504 if (err)
5505 return err;
5506
5507 err = record_func_key(env, &meta, func_id, insn_idx);
5508 if (err)
5509 return err;
5510
5511 /* Mark slots with STACK_MISC in case of raw mode, stack offset
5512 * is inferred from register state.
5513 */
5514 for (i = 0; i < meta.access_size; i++) {
5515 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5516 BPF_WRITE, -1, false);
5517 if (err)
5518 return err;
5519 }
5520
5521 if (func_id == BPF_FUNC_tail_call) {
5522 err = check_reference_leak(env);
5523 if (err) {
5524 verbose(env, "tail_call would lead to reference leak\n");
5525 return err;
5526 }
5527 } else if (is_release_function(func_id)) {
5528 err = release_reference(env, meta.ref_obj_id);
5529 if (err) {
5530 verbose(env, "func %s#%d reference has not been acquired before\n",
5531 func_id_name(func_id), func_id);
5532 return err;
5533 }
5534 }
5535
5536 regs = cur_regs(env);
5537
5538 /* check that flags argument in get_local_storage(map, flags) is 0,
5539 * this is required because get_local_storage() can't return an error.
5540 */
5541 if (func_id == BPF_FUNC_get_local_storage &&
5542 !register_is_null(®s[BPF_REG_2])) {
5543 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5544 return -EINVAL;
5545 }
5546
5547 /* reset caller saved regs */
5548 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5549 mark_reg_not_init(env, regs, caller_saved[i]);
5550 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5551 }
5552
5553 /* helper call returns 64-bit value. */
5554 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5555
5556 /* update return register (already marked as written above) */
5557 ret_type = fn->ret_type;
5558 ret_flag = type_flag(fn->ret_type);
5559 if (ret_type == RET_INTEGER) {
5560 /* sets type to SCALAR_VALUE */
5561 mark_reg_unknown(env, regs, BPF_REG_0);
5562 } else if (ret_type == RET_VOID) {
5563 regs[BPF_REG_0].type = NOT_INIT;
5564 } else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) {
5565 /* There is no offset yet applied, variable or fixed */
5566 mark_reg_known_zero(env, regs, BPF_REG_0);
5567 /* remember map_ptr, so that check_map_access()
5568 * can check 'value_size' boundary of memory access
5569 * to map element returned from bpf_map_lookup_elem()
5570 */
5571 if (meta.map_ptr == NULL) {
5572 verbose(env,
5573 "kernel subsystem misconfigured verifier\n");
5574 return -EINVAL;
5575 }
5576 regs[BPF_REG_0].map_ptr = meta.map_ptr;
5577 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
5578 if (!type_may_be_null(ret_type) &&
5579 map_value_has_spin_lock(meta.map_ptr)) {
5580 regs[BPF_REG_0].id = ++env->id_gen;
5581 }
5582 } else if (base_type(ret_type) == RET_PTR_TO_SOCKET) {
5583 mark_reg_known_zero(env, regs, BPF_REG_0);
5584 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
5585 } else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) {
5586 mark_reg_known_zero(env, regs, BPF_REG_0);
5587 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
5588 } else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) {
5589 mark_reg_known_zero(env, regs, BPF_REG_0);
5590 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
5591 } else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) {
5592 mark_reg_known_zero(env, regs, BPF_REG_0);
5593 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
5594 regs[BPF_REG_0].mem_size = meta.mem_size;
5595 } else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) {
5596 const struct btf_type *t;
5597
5598 mark_reg_known_zero(env, regs, BPF_REG_0);
5599 t = btf_type_skip_modifiers(btf_vmlinux, meta.ret_btf_id, NULL);
5600 if (!btf_type_is_struct(t)) {
5601 u32 tsize;
5602 const struct btf_type *ret;
5603 const char *tname;
5604
5605 /* resolve the type size of ksym. */
5606 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
5607 if (IS_ERR(ret)) {
5608 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
5609 verbose(env, "unable to resolve the size of type '%s': %ld\n",
5610 tname, PTR_ERR(ret));
5611 return -EINVAL;
5612 }
5613 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
5614 regs[BPF_REG_0].mem_size = tsize;
5615 } else {
5616 /* MEM_RDONLY may be carried from ret_flag, but it
5617 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
5618 * it will confuse the check of PTR_TO_BTF_ID in
5619 * check_mem_access().
5620 */
5621 ret_flag &= ~MEM_RDONLY;
5622
5623 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
5624 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5625 }
5626 } else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) {
5627 int ret_btf_id;
5628
5629 mark_reg_known_zero(env, regs, BPF_REG_0);
5630 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
5631 ret_btf_id = *fn->ret_btf_id;
5632 if (ret_btf_id == 0) {
5633 verbose(env, "invalid return type %u of func %s#%d\n",
5634 base_type(ret_type), func_id_name(func_id),
5635 func_id);
5636 return -EINVAL;
5637 }
5638 regs[BPF_REG_0].btf_id = ret_btf_id;
5639 } else {
5640 verbose(env, "unknown return type %u of func %s#%d\n",
5641 base_type(ret_type), func_id_name(func_id), func_id);
5642 return -EINVAL;
5643 }
5644
5645 if (type_may_be_null(regs[BPF_REG_0].type))
5646 regs[BPF_REG_0].id = ++env->id_gen;
5647
5648 if (is_ptr_cast_function(func_id)) {
5649 /* For release_reference() */
5650 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5651 } else if (is_acquire_function(func_id, meta.map_ptr)) {
5652 int id = acquire_reference_state(env, insn_idx);
5653
5654 if (id < 0)
5655 return id;
5656 /* For mark_ptr_or_null_reg() */
5657 regs[BPF_REG_0].id = id;
5658 /* For release_reference() */
5659 regs[BPF_REG_0].ref_obj_id = id;
5660 }
5661
5662 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5663
5664 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5665 if (err)
5666 return err;
5667
5668 if ((func_id == BPF_FUNC_get_stack ||
5669 func_id == BPF_FUNC_get_task_stack) &&
5670 !env->prog->has_callchain_buf) {
5671 const char *err_str;
5672
5673 #ifdef CONFIG_PERF_EVENTS
5674 err = get_callchain_buffers(sysctl_perf_event_max_stack);
5675 err_str = "cannot get callchain buffer for func %s#%d\n";
5676 #else
5677 err = -ENOTSUPP;
5678 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5679 #endif
5680 if (err) {
5681 verbose(env, err_str, func_id_name(func_id), func_id);
5682 return err;
5683 }
5684
5685 env->prog->has_callchain_buf = true;
5686 }
5687
5688 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5689 env->prog->call_get_stack = true;
5690
5691 if (changes_data)
5692 clear_all_pkt_pointers(env);
5693 return 0;
5694 }
5695
signed_add_overflows(s64 a,s64 b)5696 static bool signed_add_overflows(s64 a, s64 b)
5697 {
5698 /* Do the add in u64, where overflow is well-defined */
5699 s64 res = (s64)((u64)a + (u64)b);
5700
5701 if (b < 0)
5702 return res > a;
5703 return res < a;
5704 }
5705
signed_add32_overflows(s32 a,s32 b)5706 static bool signed_add32_overflows(s32 a, s32 b)
5707 {
5708 /* Do the add in u32, where overflow is well-defined */
5709 s32 res = (s32)((u32)a + (u32)b);
5710
5711 if (b < 0)
5712 return res > a;
5713 return res < a;
5714 }
5715
signed_sub_overflows(s64 a,s64 b)5716 static bool signed_sub_overflows(s64 a, s64 b)
5717 {
5718 /* Do the sub in u64, where overflow is well-defined */
5719 s64 res = (s64)((u64)a - (u64)b);
5720
5721 if (b < 0)
5722 return res < a;
5723 return res > a;
5724 }
5725
signed_sub32_overflows(s32 a,s32 b)5726 static bool signed_sub32_overflows(s32 a, s32 b)
5727 {
5728 /* Do the sub in u32, where overflow is well-defined */
5729 s32 res = (s32)((u32)a - (u32)b);
5730
5731 if (b < 0)
5732 return res < a;
5733 return res > a;
5734 }
5735
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)5736 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5737 const struct bpf_reg_state *reg,
5738 enum bpf_reg_type type)
5739 {
5740 bool known = tnum_is_const(reg->var_off);
5741 s64 val = reg->var_off.value;
5742 s64 smin = reg->smin_value;
5743
5744 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5745 verbose(env, "math between %s pointer and %lld is not allowed\n",
5746 reg_type_str(env, type), val);
5747 return false;
5748 }
5749
5750 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5751 verbose(env, "%s pointer offset %d is not allowed\n",
5752 reg_type_str(env, type), reg->off);
5753 return false;
5754 }
5755
5756 if (smin == S64_MIN) {
5757 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5758 reg_type_str(env, type));
5759 return false;
5760 }
5761
5762 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5763 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5764 smin, reg_type_str(env, type));
5765 return false;
5766 }
5767
5768 return true;
5769 }
5770
cur_aux(struct bpf_verifier_env * env)5771 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5772 {
5773 return &env->insn_aux_data[env->insn_idx];
5774 }
5775
5776 enum {
5777 REASON_BOUNDS = -1,
5778 REASON_TYPE = -2,
5779 REASON_PATHS = -3,
5780 REASON_LIMIT = -4,
5781 REASON_STACK = -5,
5782 };
5783
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)5784 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5785 u32 *alu_limit, bool mask_to_left)
5786 {
5787 u32 max = 0, ptr_limit = 0;
5788
5789 switch (ptr_reg->type) {
5790 case PTR_TO_STACK:
5791 /* Offset 0 is out-of-bounds, but acceptable start for the
5792 * left direction, see BPF_REG_FP. Also, unknown scalar
5793 * offset where we would need to deal with min/max bounds is
5794 * currently prohibited for unprivileged.
5795 */
5796 max = MAX_BPF_STACK + mask_to_left;
5797 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
5798 break;
5799 case PTR_TO_MAP_VALUE:
5800 max = ptr_reg->map_ptr->value_size;
5801 ptr_limit = (mask_to_left ?
5802 ptr_reg->smin_value :
5803 ptr_reg->umax_value) + ptr_reg->off;
5804 break;
5805 default:
5806 return REASON_TYPE;
5807 }
5808
5809 if (ptr_limit >= max)
5810 return REASON_LIMIT;
5811 *alu_limit = ptr_limit;
5812 return 0;
5813 }
5814
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)5815 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5816 const struct bpf_insn *insn)
5817 {
5818 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5819 }
5820
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)5821 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5822 u32 alu_state, u32 alu_limit)
5823 {
5824 /* If we arrived here from different branches with different
5825 * state or limits to sanitize, then this won't work.
5826 */
5827 if (aux->alu_state &&
5828 (aux->alu_state != alu_state ||
5829 aux->alu_limit != alu_limit))
5830 return REASON_PATHS;
5831
5832 /* Corresponding fixup done in fixup_bpf_calls(). */
5833 aux->alu_state = alu_state;
5834 aux->alu_limit = alu_limit;
5835 return 0;
5836 }
5837
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)5838 static int sanitize_val_alu(struct bpf_verifier_env *env,
5839 struct bpf_insn *insn)
5840 {
5841 struct bpf_insn_aux_data *aux = cur_aux(env);
5842
5843 if (can_skip_alu_sanitation(env, insn))
5844 return 0;
5845
5846 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5847 }
5848
sanitize_needed(u8 opcode)5849 static bool sanitize_needed(u8 opcode)
5850 {
5851 return opcode == BPF_ADD || opcode == BPF_SUB;
5852 }
5853
5854 struct bpf_sanitize_info {
5855 struct bpf_insn_aux_data aux;
5856 bool mask_to_left;
5857 };
5858
5859 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)5860 sanitize_speculative_path(struct bpf_verifier_env *env,
5861 const struct bpf_insn *insn,
5862 u32 next_idx, u32 curr_idx)
5863 {
5864 struct bpf_verifier_state *branch;
5865 struct bpf_reg_state *regs;
5866
5867 branch = push_stack(env, next_idx, curr_idx, true);
5868 if (branch && insn) {
5869 regs = branch->frame[branch->curframe]->regs;
5870 if (BPF_SRC(insn->code) == BPF_K) {
5871 mark_reg_unknown(env, regs, insn->dst_reg);
5872 } else if (BPF_SRC(insn->code) == BPF_X) {
5873 mark_reg_unknown(env, regs, insn->dst_reg);
5874 mark_reg_unknown(env, regs, insn->src_reg);
5875 }
5876 }
5877 return branch;
5878 }
5879
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)5880 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5881 struct bpf_insn *insn,
5882 const struct bpf_reg_state *ptr_reg,
5883 const struct bpf_reg_state *off_reg,
5884 struct bpf_reg_state *dst_reg,
5885 struct bpf_sanitize_info *info,
5886 const bool commit_window)
5887 {
5888 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
5889 struct bpf_verifier_state *vstate = env->cur_state;
5890 bool off_is_imm = tnum_is_const(off_reg->var_off);
5891 bool off_is_neg = off_reg->smin_value < 0;
5892 bool ptr_is_dst_reg = ptr_reg == dst_reg;
5893 u8 opcode = BPF_OP(insn->code);
5894 u32 alu_state, alu_limit;
5895 struct bpf_reg_state tmp;
5896 bool ret;
5897 int err;
5898
5899 if (can_skip_alu_sanitation(env, insn))
5900 return 0;
5901
5902 /* We already marked aux for masking from non-speculative
5903 * paths, thus we got here in the first place. We only care
5904 * to explore bad access from here.
5905 */
5906 if (vstate->speculative)
5907 goto do_sim;
5908
5909 if (!commit_window) {
5910 if (!tnum_is_const(off_reg->var_off) &&
5911 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
5912 return REASON_BOUNDS;
5913
5914 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
5915 (opcode == BPF_SUB && !off_is_neg);
5916 }
5917
5918 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
5919 if (err < 0)
5920 return err;
5921
5922 if (commit_window) {
5923 /* In commit phase we narrow the masking window based on
5924 * the observed pointer move after the simulated operation.
5925 */
5926 alu_state = info->aux.alu_state;
5927 alu_limit = abs(info->aux.alu_limit - alu_limit);
5928 } else {
5929 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5930 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
5931 alu_state |= ptr_is_dst_reg ?
5932 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5933
5934 /* Limit pruning on unknown scalars to enable deep search for
5935 * potential masking differences from other program paths.
5936 */
5937 if (!off_is_imm)
5938 env->explore_alu_limits = true;
5939 }
5940
5941 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
5942 if (err < 0)
5943 return err;
5944 do_sim:
5945 /* If we're in commit phase, we're done here given we already
5946 * pushed the truncated dst_reg into the speculative verification
5947 * stack.
5948 *
5949 * Also, when register is a known constant, we rewrite register-based
5950 * operation to immediate-based, and thus do not need masking (and as
5951 * a consequence, do not need to simulate the zero-truncation either).
5952 */
5953 if (commit_window || off_is_imm)
5954 return 0;
5955
5956 /* Simulate and find potential out-of-bounds access under
5957 * speculative execution from truncation as a result of
5958 * masking when off was not within expected range. If off
5959 * sits in dst, then we temporarily need to move ptr there
5960 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5961 * for cases where we use K-based arithmetic in one direction
5962 * and truncated reg-based in the other in order to explore
5963 * bad access.
5964 */
5965 if (!ptr_is_dst_reg) {
5966 tmp = *dst_reg;
5967 copy_register_state(dst_reg, ptr_reg);
5968 }
5969 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
5970 env->insn_idx);
5971 if (!ptr_is_dst_reg && ret)
5972 *dst_reg = tmp;
5973 return !ret ? REASON_STACK : 0;
5974 }
5975
sanitize_mark_insn_seen(struct bpf_verifier_env * env)5976 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
5977 {
5978 struct bpf_verifier_state *vstate = env->cur_state;
5979
5980 /* If we simulate paths under speculation, we don't update the
5981 * insn as 'seen' such that when we verify unreachable paths in
5982 * the non-speculative domain, sanitize_dead_code() can still
5983 * rewrite/sanitize them.
5984 */
5985 if (!vstate->speculative)
5986 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
5987 }
5988
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)5989 static int sanitize_err(struct bpf_verifier_env *env,
5990 const struct bpf_insn *insn, int reason,
5991 const struct bpf_reg_state *off_reg,
5992 const struct bpf_reg_state *dst_reg)
5993 {
5994 static const char *err = "pointer arithmetic with it prohibited for !root";
5995 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
5996 u32 dst = insn->dst_reg, src = insn->src_reg;
5997
5998 switch (reason) {
5999 case REASON_BOUNDS:
6000 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
6001 off_reg == dst_reg ? dst : src, err);
6002 break;
6003 case REASON_TYPE:
6004 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
6005 off_reg == dst_reg ? src : dst, err);
6006 break;
6007 case REASON_PATHS:
6008 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
6009 dst, op, err);
6010 break;
6011 case REASON_LIMIT:
6012 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
6013 dst, op, err);
6014 break;
6015 case REASON_STACK:
6016 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
6017 dst, err);
6018 break;
6019 default:
6020 verbose(env, "verifier internal error: unknown reason (%d)\n",
6021 reason);
6022 break;
6023 }
6024
6025 return -EACCES;
6026 }
6027
6028 /* check that stack access falls within stack limits and that 'reg' doesn't
6029 * have a variable offset.
6030 *
6031 * Variable offset is prohibited for unprivileged mode for simplicity since it
6032 * requires corresponding support in Spectre masking for stack ALU. See also
6033 * retrieve_ptr_limit().
6034 *
6035 *
6036 * 'off' includes 'reg->off'.
6037 */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)6038 static int check_stack_access_for_ptr_arithmetic(
6039 struct bpf_verifier_env *env,
6040 int regno,
6041 const struct bpf_reg_state *reg,
6042 int off)
6043 {
6044 if (!tnum_is_const(reg->var_off)) {
6045 char tn_buf[48];
6046
6047 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6048 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6049 regno, tn_buf, off);
6050 return -EACCES;
6051 }
6052
6053 if (off >= 0 || off < -MAX_BPF_STACK) {
6054 verbose(env, "R%d stack pointer arithmetic goes out of range, "
6055 "prohibited for !root; off=%d\n", regno, off);
6056 return -EACCES;
6057 }
6058
6059 return 0;
6060 }
6061
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)6062 static int sanitize_check_bounds(struct bpf_verifier_env *env,
6063 const struct bpf_insn *insn,
6064 const struct bpf_reg_state *dst_reg)
6065 {
6066 u32 dst = insn->dst_reg;
6067
6068 /* For unprivileged we require that resulting offset must be in bounds
6069 * in order to be able to sanitize access later on.
6070 */
6071 if (env->bypass_spec_v1)
6072 return 0;
6073
6074 switch (dst_reg->type) {
6075 case PTR_TO_STACK:
6076 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6077 dst_reg->off + dst_reg->var_off.value))
6078 return -EACCES;
6079 break;
6080 case PTR_TO_MAP_VALUE:
6081 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6082 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6083 "prohibited for !root\n", dst);
6084 return -EACCES;
6085 }
6086 break;
6087 default:
6088 break;
6089 }
6090
6091 return 0;
6092 }
6093
6094 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6095 * Caller should also handle BPF_MOV case separately.
6096 * If we return -EACCES, caller may want to try again treating pointer as a
6097 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
6098 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)6099 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6100 struct bpf_insn *insn,
6101 const struct bpf_reg_state *ptr_reg,
6102 const struct bpf_reg_state *off_reg)
6103 {
6104 struct bpf_verifier_state *vstate = env->cur_state;
6105 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6106 struct bpf_reg_state *regs = state->regs, *dst_reg;
6107 bool known = tnum_is_const(off_reg->var_off);
6108 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6109 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6110 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6111 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6112 struct bpf_sanitize_info info = {};
6113 u8 opcode = BPF_OP(insn->code);
6114 u32 dst = insn->dst_reg;
6115 int ret;
6116
6117 dst_reg = ®s[dst];
6118
6119 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6120 smin_val > smax_val || umin_val > umax_val) {
6121 /* Taint dst register if offset had invalid bounds derived from
6122 * e.g. dead branches.
6123 */
6124 __mark_reg_unknown(env, dst_reg);
6125 return 0;
6126 }
6127
6128 if (BPF_CLASS(insn->code) != BPF_ALU64) {
6129 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6130 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6131 __mark_reg_unknown(env, dst_reg);
6132 return 0;
6133 }
6134
6135 verbose(env,
6136 "R%d 32-bit pointer arithmetic prohibited\n",
6137 dst);
6138 return -EACCES;
6139 }
6140
6141 if (ptr_reg->type & PTR_MAYBE_NULL) {
6142 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6143 dst, reg_type_str(env, ptr_reg->type));
6144 return -EACCES;
6145 }
6146
6147 switch (base_type(ptr_reg->type)) {
6148 case PTR_TO_FLOW_KEYS:
6149 if (known)
6150 break;
6151 fallthrough;
6152 case CONST_PTR_TO_MAP:
6153 /* smin_val represents the known value */
6154 if (known && smin_val == 0 && opcode == BPF_ADD)
6155 break;
6156 fallthrough;
6157 case PTR_TO_PACKET_END:
6158 case PTR_TO_SOCKET:
6159 case PTR_TO_SOCK_COMMON:
6160 case PTR_TO_TCP_SOCK:
6161 case PTR_TO_XDP_SOCK:
6162 reject:
6163 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6164 dst, reg_type_str(env, ptr_reg->type));
6165 return -EACCES;
6166 default:
6167 if (type_may_be_null(ptr_reg->type))
6168 goto reject;
6169 break;
6170 }
6171
6172 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6173 * The id may be overwritten later if we create a new variable offset.
6174 */
6175 dst_reg->type = ptr_reg->type;
6176 dst_reg->id = ptr_reg->id;
6177
6178 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6179 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6180 return -EINVAL;
6181
6182 /* pointer types do not carry 32-bit bounds at the moment. */
6183 __mark_reg32_unbounded(dst_reg);
6184
6185 if (sanitize_needed(opcode)) {
6186 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6187 &info, false);
6188 if (ret < 0)
6189 return sanitize_err(env, insn, ret, off_reg, dst_reg);
6190 }
6191
6192 switch (opcode) {
6193 case BPF_ADD:
6194 /* We can take a fixed offset as long as it doesn't overflow
6195 * the s32 'off' field
6196 */
6197 if (known && (ptr_reg->off + smin_val ==
6198 (s64)(s32)(ptr_reg->off + smin_val))) {
6199 /* pointer += K. Accumulate it into fixed offset */
6200 dst_reg->smin_value = smin_ptr;
6201 dst_reg->smax_value = smax_ptr;
6202 dst_reg->umin_value = umin_ptr;
6203 dst_reg->umax_value = umax_ptr;
6204 dst_reg->var_off = ptr_reg->var_off;
6205 dst_reg->off = ptr_reg->off + smin_val;
6206 dst_reg->raw = ptr_reg->raw;
6207 break;
6208 }
6209 /* A new variable offset is created. Note that off_reg->off
6210 * == 0, since it's a scalar.
6211 * dst_reg gets the pointer type and since some positive
6212 * integer value was added to the pointer, give it a new 'id'
6213 * if it's a PTR_TO_PACKET.
6214 * this creates a new 'base' pointer, off_reg (variable) gets
6215 * added into the variable offset, and we copy the fixed offset
6216 * from ptr_reg.
6217 */
6218 if (signed_add_overflows(smin_ptr, smin_val) ||
6219 signed_add_overflows(smax_ptr, smax_val)) {
6220 dst_reg->smin_value = S64_MIN;
6221 dst_reg->smax_value = S64_MAX;
6222 } else {
6223 dst_reg->smin_value = smin_ptr + smin_val;
6224 dst_reg->smax_value = smax_ptr + smax_val;
6225 }
6226 if (umin_ptr + umin_val < umin_ptr ||
6227 umax_ptr + umax_val < umax_ptr) {
6228 dst_reg->umin_value = 0;
6229 dst_reg->umax_value = U64_MAX;
6230 } else {
6231 dst_reg->umin_value = umin_ptr + umin_val;
6232 dst_reg->umax_value = umax_ptr + umax_val;
6233 }
6234 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6235 dst_reg->off = ptr_reg->off;
6236 dst_reg->raw = ptr_reg->raw;
6237 if (reg_is_pkt_pointer(ptr_reg)) {
6238 dst_reg->id = ++env->id_gen;
6239 /* something was added to pkt_ptr, set range to zero */
6240 dst_reg->raw = 0;
6241 }
6242 break;
6243 case BPF_SUB:
6244 if (dst_reg == off_reg) {
6245 /* scalar -= pointer. Creates an unknown scalar */
6246 verbose(env, "R%d tried to subtract pointer from scalar\n",
6247 dst);
6248 return -EACCES;
6249 }
6250 /* We don't allow subtraction from FP, because (according to
6251 * test_verifier.c test "invalid fp arithmetic", JITs might not
6252 * be able to deal with it.
6253 */
6254 if (ptr_reg->type == PTR_TO_STACK) {
6255 verbose(env, "R%d subtraction from stack pointer prohibited\n",
6256 dst);
6257 return -EACCES;
6258 }
6259 if (known && (ptr_reg->off - smin_val ==
6260 (s64)(s32)(ptr_reg->off - smin_val))) {
6261 /* pointer -= K. Subtract it from fixed offset */
6262 dst_reg->smin_value = smin_ptr;
6263 dst_reg->smax_value = smax_ptr;
6264 dst_reg->umin_value = umin_ptr;
6265 dst_reg->umax_value = umax_ptr;
6266 dst_reg->var_off = ptr_reg->var_off;
6267 dst_reg->id = ptr_reg->id;
6268 dst_reg->off = ptr_reg->off - smin_val;
6269 dst_reg->raw = ptr_reg->raw;
6270 break;
6271 }
6272 /* A new variable offset is created. If the subtrahend is known
6273 * nonnegative, then any reg->range we had before is still good.
6274 */
6275 if (signed_sub_overflows(smin_ptr, smax_val) ||
6276 signed_sub_overflows(smax_ptr, smin_val)) {
6277 /* Overflow possible, we know nothing */
6278 dst_reg->smin_value = S64_MIN;
6279 dst_reg->smax_value = S64_MAX;
6280 } else {
6281 dst_reg->smin_value = smin_ptr - smax_val;
6282 dst_reg->smax_value = smax_ptr - smin_val;
6283 }
6284 if (umin_ptr < umax_val) {
6285 /* Overflow possible, we know nothing */
6286 dst_reg->umin_value = 0;
6287 dst_reg->umax_value = U64_MAX;
6288 } else {
6289 /* Cannot overflow (as long as bounds are consistent) */
6290 dst_reg->umin_value = umin_ptr - umax_val;
6291 dst_reg->umax_value = umax_ptr - umin_val;
6292 }
6293 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6294 dst_reg->off = ptr_reg->off;
6295 dst_reg->raw = ptr_reg->raw;
6296 if (reg_is_pkt_pointer(ptr_reg)) {
6297 dst_reg->id = ++env->id_gen;
6298 /* something was added to pkt_ptr, set range to zero */
6299 if (smin_val < 0)
6300 dst_reg->raw = 0;
6301 }
6302 break;
6303 case BPF_AND:
6304 case BPF_OR:
6305 case BPF_XOR:
6306 /* bitwise ops on pointers are troublesome, prohibit. */
6307 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6308 dst, bpf_alu_string[opcode >> 4]);
6309 return -EACCES;
6310 default:
6311 /* other operators (e.g. MUL,LSH) produce non-pointer results */
6312 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6313 dst, bpf_alu_string[opcode >> 4]);
6314 return -EACCES;
6315 }
6316
6317 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6318 return -EINVAL;
6319 reg_bounds_sync(dst_reg);
6320 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6321 return -EACCES;
6322 if (sanitize_needed(opcode)) {
6323 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6324 &info, true);
6325 if (ret < 0)
6326 return sanitize_err(env, insn, ret, off_reg, dst_reg);
6327 }
6328
6329 return 0;
6330 }
6331
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6332 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6333 struct bpf_reg_state *src_reg)
6334 {
6335 s32 smin_val = src_reg->s32_min_value;
6336 s32 smax_val = src_reg->s32_max_value;
6337 u32 umin_val = src_reg->u32_min_value;
6338 u32 umax_val = src_reg->u32_max_value;
6339
6340 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6341 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6342 dst_reg->s32_min_value = S32_MIN;
6343 dst_reg->s32_max_value = S32_MAX;
6344 } else {
6345 dst_reg->s32_min_value += smin_val;
6346 dst_reg->s32_max_value += smax_val;
6347 }
6348 if (dst_reg->u32_min_value + umin_val < umin_val ||
6349 dst_reg->u32_max_value + umax_val < umax_val) {
6350 dst_reg->u32_min_value = 0;
6351 dst_reg->u32_max_value = U32_MAX;
6352 } else {
6353 dst_reg->u32_min_value += umin_val;
6354 dst_reg->u32_max_value += umax_val;
6355 }
6356 }
6357
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6358 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6359 struct bpf_reg_state *src_reg)
6360 {
6361 s64 smin_val = src_reg->smin_value;
6362 s64 smax_val = src_reg->smax_value;
6363 u64 umin_val = src_reg->umin_value;
6364 u64 umax_val = src_reg->umax_value;
6365
6366 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6367 signed_add_overflows(dst_reg->smax_value, smax_val)) {
6368 dst_reg->smin_value = S64_MIN;
6369 dst_reg->smax_value = S64_MAX;
6370 } else {
6371 dst_reg->smin_value += smin_val;
6372 dst_reg->smax_value += smax_val;
6373 }
6374 if (dst_reg->umin_value + umin_val < umin_val ||
6375 dst_reg->umax_value + umax_val < umax_val) {
6376 dst_reg->umin_value = 0;
6377 dst_reg->umax_value = U64_MAX;
6378 } else {
6379 dst_reg->umin_value += umin_val;
6380 dst_reg->umax_value += umax_val;
6381 }
6382 }
6383
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6384 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6385 struct bpf_reg_state *src_reg)
6386 {
6387 s32 smin_val = src_reg->s32_min_value;
6388 s32 smax_val = src_reg->s32_max_value;
6389 u32 umin_val = src_reg->u32_min_value;
6390 u32 umax_val = src_reg->u32_max_value;
6391
6392 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6393 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6394 /* Overflow possible, we know nothing */
6395 dst_reg->s32_min_value = S32_MIN;
6396 dst_reg->s32_max_value = S32_MAX;
6397 } else {
6398 dst_reg->s32_min_value -= smax_val;
6399 dst_reg->s32_max_value -= smin_val;
6400 }
6401 if (dst_reg->u32_min_value < umax_val) {
6402 /* Overflow possible, we know nothing */
6403 dst_reg->u32_min_value = 0;
6404 dst_reg->u32_max_value = U32_MAX;
6405 } else {
6406 /* Cannot overflow (as long as bounds are consistent) */
6407 dst_reg->u32_min_value -= umax_val;
6408 dst_reg->u32_max_value -= umin_val;
6409 }
6410 }
6411
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6412 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6413 struct bpf_reg_state *src_reg)
6414 {
6415 s64 smin_val = src_reg->smin_value;
6416 s64 smax_val = src_reg->smax_value;
6417 u64 umin_val = src_reg->umin_value;
6418 u64 umax_val = src_reg->umax_value;
6419
6420 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
6421 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
6422 /* Overflow possible, we know nothing */
6423 dst_reg->smin_value = S64_MIN;
6424 dst_reg->smax_value = S64_MAX;
6425 } else {
6426 dst_reg->smin_value -= smax_val;
6427 dst_reg->smax_value -= smin_val;
6428 }
6429 if (dst_reg->umin_value < umax_val) {
6430 /* Overflow possible, we know nothing */
6431 dst_reg->umin_value = 0;
6432 dst_reg->umax_value = U64_MAX;
6433 } else {
6434 /* Cannot overflow (as long as bounds are consistent) */
6435 dst_reg->umin_value -= umax_val;
6436 dst_reg->umax_value -= umin_val;
6437 }
6438 }
6439
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6440 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
6441 struct bpf_reg_state *src_reg)
6442 {
6443 s32 smin_val = src_reg->s32_min_value;
6444 u32 umin_val = src_reg->u32_min_value;
6445 u32 umax_val = src_reg->u32_max_value;
6446
6447 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
6448 /* Ain't nobody got time to multiply that sign */
6449 __mark_reg32_unbounded(dst_reg);
6450 return;
6451 }
6452 /* Both values are positive, so we can work with unsigned and
6453 * copy the result to signed (unless it exceeds S32_MAX).
6454 */
6455 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
6456 /* Potential overflow, we know nothing */
6457 __mark_reg32_unbounded(dst_reg);
6458 return;
6459 }
6460 dst_reg->u32_min_value *= umin_val;
6461 dst_reg->u32_max_value *= umax_val;
6462 if (dst_reg->u32_max_value > S32_MAX) {
6463 /* Overflow possible, we know nothing */
6464 dst_reg->s32_min_value = S32_MIN;
6465 dst_reg->s32_max_value = S32_MAX;
6466 } else {
6467 dst_reg->s32_min_value = dst_reg->u32_min_value;
6468 dst_reg->s32_max_value = dst_reg->u32_max_value;
6469 }
6470 }
6471
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6472 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
6473 struct bpf_reg_state *src_reg)
6474 {
6475 s64 smin_val = src_reg->smin_value;
6476 u64 umin_val = src_reg->umin_value;
6477 u64 umax_val = src_reg->umax_value;
6478
6479 if (smin_val < 0 || dst_reg->smin_value < 0) {
6480 /* Ain't nobody got time to multiply that sign */
6481 __mark_reg64_unbounded(dst_reg);
6482 return;
6483 }
6484 /* Both values are positive, so we can work with unsigned and
6485 * copy the result to signed (unless it exceeds S64_MAX).
6486 */
6487 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
6488 /* Potential overflow, we know nothing */
6489 __mark_reg64_unbounded(dst_reg);
6490 return;
6491 }
6492 dst_reg->umin_value *= umin_val;
6493 dst_reg->umax_value *= umax_val;
6494 if (dst_reg->umax_value > S64_MAX) {
6495 /* Overflow possible, we know nothing */
6496 dst_reg->smin_value = S64_MIN;
6497 dst_reg->smax_value = S64_MAX;
6498 } else {
6499 dst_reg->smin_value = dst_reg->umin_value;
6500 dst_reg->smax_value = dst_reg->umax_value;
6501 }
6502 }
6503
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6504 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
6505 struct bpf_reg_state *src_reg)
6506 {
6507 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6508 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6509 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6510 s32 smin_val = src_reg->s32_min_value;
6511 u32 umax_val = src_reg->u32_max_value;
6512
6513 if (src_known && dst_known) {
6514 __mark_reg32_known(dst_reg, var32_off.value);
6515 return;
6516 }
6517
6518 /* We get our minimum from the var_off, since that's inherently
6519 * bitwise. Our maximum is the minimum of the operands' maxima.
6520 */
6521 dst_reg->u32_min_value = var32_off.value;
6522 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
6523 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6524 /* Lose signed bounds when ANDing negative numbers,
6525 * ain't nobody got time for that.
6526 */
6527 dst_reg->s32_min_value = S32_MIN;
6528 dst_reg->s32_max_value = S32_MAX;
6529 } else {
6530 /* ANDing two positives gives a positive, so safe to
6531 * cast result into s64.
6532 */
6533 dst_reg->s32_min_value = dst_reg->u32_min_value;
6534 dst_reg->s32_max_value = dst_reg->u32_max_value;
6535 }
6536 }
6537
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6538 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
6539 struct bpf_reg_state *src_reg)
6540 {
6541 bool src_known = tnum_is_const(src_reg->var_off);
6542 bool dst_known = tnum_is_const(dst_reg->var_off);
6543 s64 smin_val = src_reg->smin_value;
6544 u64 umax_val = src_reg->umax_value;
6545
6546 if (src_known && dst_known) {
6547 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6548 return;
6549 }
6550
6551 /* We get our minimum from the var_off, since that's inherently
6552 * bitwise. Our maximum is the minimum of the operands' maxima.
6553 */
6554 dst_reg->umin_value = dst_reg->var_off.value;
6555 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
6556 if (dst_reg->smin_value < 0 || smin_val < 0) {
6557 /* Lose signed bounds when ANDing negative numbers,
6558 * ain't nobody got time for that.
6559 */
6560 dst_reg->smin_value = S64_MIN;
6561 dst_reg->smax_value = S64_MAX;
6562 } else {
6563 /* ANDing two positives gives a positive, so safe to
6564 * cast result into s64.
6565 */
6566 dst_reg->smin_value = dst_reg->umin_value;
6567 dst_reg->smax_value = dst_reg->umax_value;
6568 }
6569 /* We may learn something more from the var_off */
6570 __update_reg_bounds(dst_reg);
6571 }
6572
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6573 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6574 struct bpf_reg_state *src_reg)
6575 {
6576 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6577 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6578 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6579 s32 smin_val = src_reg->s32_min_value;
6580 u32 umin_val = src_reg->u32_min_value;
6581
6582 if (src_known && dst_known) {
6583 __mark_reg32_known(dst_reg, var32_off.value);
6584 return;
6585 }
6586
6587 /* We get our maximum from the var_off, and our minimum is the
6588 * maximum of the operands' minima
6589 */
6590 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6591 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6592 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6593 /* Lose signed bounds when ORing negative numbers,
6594 * ain't nobody got time for that.
6595 */
6596 dst_reg->s32_min_value = S32_MIN;
6597 dst_reg->s32_max_value = S32_MAX;
6598 } else {
6599 /* ORing two positives gives a positive, so safe to
6600 * cast result into s64.
6601 */
6602 dst_reg->s32_min_value = dst_reg->u32_min_value;
6603 dst_reg->s32_max_value = dst_reg->u32_max_value;
6604 }
6605 }
6606
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6607 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6608 struct bpf_reg_state *src_reg)
6609 {
6610 bool src_known = tnum_is_const(src_reg->var_off);
6611 bool dst_known = tnum_is_const(dst_reg->var_off);
6612 s64 smin_val = src_reg->smin_value;
6613 u64 umin_val = src_reg->umin_value;
6614
6615 if (src_known && dst_known) {
6616 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6617 return;
6618 }
6619
6620 /* We get our maximum from the var_off, and our minimum is the
6621 * maximum of the operands' minima
6622 */
6623 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6624 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6625 if (dst_reg->smin_value < 0 || smin_val < 0) {
6626 /* Lose signed bounds when ORing negative numbers,
6627 * ain't nobody got time for that.
6628 */
6629 dst_reg->smin_value = S64_MIN;
6630 dst_reg->smax_value = S64_MAX;
6631 } else {
6632 /* ORing two positives gives a positive, so safe to
6633 * cast result into s64.
6634 */
6635 dst_reg->smin_value = dst_reg->umin_value;
6636 dst_reg->smax_value = dst_reg->umax_value;
6637 }
6638 /* We may learn something more from the var_off */
6639 __update_reg_bounds(dst_reg);
6640 }
6641
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6642 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6643 struct bpf_reg_state *src_reg)
6644 {
6645 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6646 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6647 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6648 s32 smin_val = src_reg->s32_min_value;
6649
6650 if (src_known && dst_known) {
6651 __mark_reg32_known(dst_reg, var32_off.value);
6652 return;
6653 }
6654
6655 /* We get both minimum and maximum from the var32_off. */
6656 dst_reg->u32_min_value = var32_off.value;
6657 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6658
6659 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6660 /* XORing two positive sign numbers gives a positive,
6661 * so safe to cast u32 result into s32.
6662 */
6663 dst_reg->s32_min_value = dst_reg->u32_min_value;
6664 dst_reg->s32_max_value = dst_reg->u32_max_value;
6665 } else {
6666 dst_reg->s32_min_value = S32_MIN;
6667 dst_reg->s32_max_value = S32_MAX;
6668 }
6669 }
6670
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6671 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6672 struct bpf_reg_state *src_reg)
6673 {
6674 bool src_known = tnum_is_const(src_reg->var_off);
6675 bool dst_known = tnum_is_const(dst_reg->var_off);
6676 s64 smin_val = src_reg->smin_value;
6677
6678 if (src_known && dst_known) {
6679 /* dst_reg->var_off.value has been updated earlier */
6680 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6681 return;
6682 }
6683
6684 /* We get both minimum and maximum from the var_off. */
6685 dst_reg->umin_value = dst_reg->var_off.value;
6686 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6687
6688 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6689 /* XORing two positive sign numbers gives a positive,
6690 * so safe to cast u64 result into s64.
6691 */
6692 dst_reg->smin_value = dst_reg->umin_value;
6693 dst_reg->smax_value = dst_reg->umax_value;
6694 } else {
6695 dst_reg->smin_value = S64_MIN;
6696 dst_reg->smax_value = S64_MAX;
6697 }
6698
6699 __update_reg_bounds(dst_reg);
6700 }
6701
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)6702 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6703 u64 umin_val, u64 umax_val)
6704 {
6705 /* We lose all sign bit information (except what we can pick
6706 * up from var_off)
6707 */
6708 dst_reg->s32_min_value = S32_MIN;
6709 dst_reg->s32_max_value = S32_MAX;
6710 /* If we might shift our top bit out, then we know nothing */
6711 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6712 dst_reg->u32_min_value = 0;
6713 dst_reg->u32_max_value = U32_MAX;
6714 } else {
6715 dst_reg->u32_min_value <<= umin_val;
6716 dst_reg->u32_max_value <<= umax_val;
6717 }
6718 }
6719
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6720 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6721 struct bpf_reg_state *src_reg)
6722 {
6723 u32 umax_val = src_reg->u32_max_value;
6724 u32 umin_val = src_reg->u32_min_value;
6725 /* u32 alu operation will zext upper bits */
6726 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6727
6728 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6729 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6730 /* Not required but being careful mark reg64 bounds as unknown so
6731 * that we are forced to pick them up from tnum and zext later and
6732 * if some path skips this step we are still safe.
6733 */
6734 __mark_reg64_unbounded(dst_reg);
6735 __update_reg32_bounds(dst_reg);
6736 }
6737
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)6738 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6739 u64 umin_val, u64 umax_val)
6740 {
6741 /* Special case <<32 because it is a common compiler pattern to sign
6742 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6743 * positive we know this shift will also be positive so we can track
6744 * bounds correctly. Otherwise we lose all sign bit information except
6745 * what we can pick up from var_off. Perhaps we can generalize this
6746 * later to shifts of any length.
6747 */
6748 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6749 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6750 else
6751 dst_reg->smax_value = S64_MAX;
6752
6753 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6754 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6755 else
6756 dst_reg->smin_value = S64_MIN;
6757
6758 /* If we might shift our top bit out, then we know nothing */
6759 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6760 dst_reg->umin_value = 0;
6761 dst_reg->umax_value = U64_MAX;
6762 } else {
6763 dst_reg->umin_value <<= umin_val;
6764 dst_reg->umax_value <<= umax_val;
6765 }
6766 }
6767
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6768 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6769 struct bpf_reg_state *src_reg)
6770 {
6771 u64 umax_val = src_reg->umax_value;
6772 u64 umin_val = src_reg->umin_value;
6773
6774 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
6775 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6776 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6777
6778 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6779 /* We may learn something more from the var_off */
6780 __update_reg_bounds(dst_reg);
6781 }
6782
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6783 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6784 struct bpf_reg_state *src_reg)
6785 {
6786 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6787 u32 umax_val = src_reg->u32_max_value;
6788 u32 umin_val = src_reg->u32_min_value;
6789
6790 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6791 * be negative, then either:
6792 * 1) src_reg might be zero, so the sign bit of the result is
6793 * unknown, so we lose our signed bounds
6794 * 2) it's known negative, thus the unsigned bounds capture the
6795 * signed bounds
6796 * 3) the signed bounds cross zero, so they tell us nothing
6797 * about the result
6798 * If the value in dst_reg is known nonnegative, then again the
6799 * unsigned bounts capture the signed bounds.
6800 * Thus, in all cases it suffices to blow away our signed bounds
6801 * and rely on inferring new ones from the unsigned bounds and
6802 * var_off of the result.
6803 */
6804 dst_reg->s32_min_value = S32_MIN;
6805 dst_reg->s32_max_value = S32_MAX;
6806
6807 dst_reg->var_off = tnum_rshift(subreg, umin_val);
6808 dst_reg->u32_min_value >>= umax_val;
6809 dst_reg->u32_max_value >>= umin_val;
6810
6811 __mark_reg64_unbounded(dst_reg);
6812 __update_reg32_bounds(dst_reg);
6813 }
6814
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6815 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6816 struct bpf_reg_state *src_reg)
6817 {
6818 u64 umax_val = src_reg->umax_value;
6819 u64 umin_val = src_reg->umin_value;
6820
6821 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6822 * be negative, then either:
6823 * 1) src_reg might be zero, so the sign bit of the result is
6824 * unknown, so we lose our signed bounds
6825 * 2) it's known negative, thus the unsigned bounds capture the
6826 * signed bounds
6827 * 3) the signed bounds cross zero, so they tell us nothing
6828 * about the result
6829 * If the value in dst_reg is known nonnegative, then again the
6830 * unsigned bounts capture the signed bounds.
6831 * Thus, in all cases it suffices to blow away our signed bounds
6832 * and rely on inferring new ones from the unsigned bounds and
6833 * var_off of the result.
6834 */
6835 dst_reg->smin_value = S64_MIN;
6836 dst_reg->smax_value = S64_MAX;
6837 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6838 dst_reg->umin_value >>= umax_val;
6839 dst_reg->umax_value >>= umin_val;
6840
6841 /* Its not easy to operate on alu32 bounds here because it depends
6842 * on bits being shifted in. Take easy way out and mark unbounded
6843 * so we can recalculate later from tnum.
6844 */
6845 __mark_reg32_unbounded(dst_reg);
6846 __update_reg_bounds(dst_reg);
6847 }
6848
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6849 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6850 struct bpf_reg_state *src_reg)
6851 {
6852 u64 umin_val = src_reg->u32_min_value;
6853
6854 /* Upon reaching here, src_known is true and
6855 * umax_val is equal to umin_val.
6856 */
6857 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6858 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6859
6860 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6861
6862 /* blow away the dst_reg umin_value/umax_value and rely on
6863 * dst_reg var_off to refine the result.
6864 */
6865 dst_reg->u32_min_value = 0;
6866 dst_reg->u32_max_value = U32_MAX;
6867
6868 __mark_reg64_unbounded(dst_reg);
6869 __update_reg32_bounds(dst_reg);
6870 }
6871
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)6872 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6873 struct bpf_reg_state *src_reg)
6874 {
6875 u64 umin_val = src_reg->umin_value;
6876
6877 /* Upon reaching here, src_known is true and umax_val is equal
6878 * to umin_val.
6879 */
6880 dst_reg->smin_value >>= umin_val;
6881 dst_reg->smax_value >>= umin_val;
6882
6883 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6884
6885 /* blow away the dst_reg umin_value/umax_value and rely on
6886 * dst_reg var_off to refine the result.
6887 */
6888 dst_reg->umin_value = 0;
6889 dst_reg->umax_value = U64_MAX;
6890
6891 /* Its not easy to operate on alu32 bounds here because it depends
6892 * on bits being shifted in from upper 32-bits. Take easy way out
6893 * and mark unbounded so we can recalculate later from tnum.
6894 */
6895 __mark_reg32_unbounded(dst_reg);
6896 __update_reg_bounds(dst_reg);
6897 }
6898
6899 /* WARNING: This function does calculations on 64-bit values, but the actual
6900 * execution may occur on 32-bit values. Therefore, things like bitshifts
6901 * need extra checks in the 32-bit case.
6902 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)6903 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6904 struct bpf_insn *insn,
6905 struct bpf_reg_state *dst_reg,
6906 struct bpf_reg_state src_reg)
6907 {
6908 struct bpf_reg_state *regs = cur_regs(env);
6909 u8 opcode = BPF_OP(insn->code);
6910 bool src_known;
6911 s64 smin_val, smax_val;
6912 u64 umin_val, umax_val;
6913 s32 s32_min_val, s32_max_val;
6914 u32 u32_min_val, u32_max_val;
6915 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
6916 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
6917 int ret;
6918
6919 smin_val = src_reg.smin_value;
6920 smax_val = src_reg.smax_value;
6921 umin_val = src_reg.umin_value;
6922 umax_val = src_reg.umax_value;
6923
6924 s32_min_val = src_reg.s32_min_value;
6925 s32_max_val = src_reg.s32_max_value;
6926 u32_min_val = src_reg.u32_min_value;
6927 u32_max_val = src_reg.u32_max_value;
6928
6929 if (alu32) {
6930 src_known = tnum_subreg_is_const(src_reg.var_off);
6931 if ((src_known &&
6932 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6933 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6934 /* Taint dst register if offset had invalid bounds
6935 * derived from e.g. dead branches.
6936 */
6937 __mark_reg_unknown(env, dst_reg);
6938 return 0;
6939 }
6940 } else {
6941 src_known = tnum_is_const(src_reg.var_off);
6942 if ((src_known &&
6943 (smin_val != smax_val || umin_val != umax_val)) ||
6944 smin_val > smax_val || umin_val > umax_val) {
6945 /* Taint dst register if offset had invalid bounds
6946 * derived from e.g. dead branches.
6947 */
6948 __mark_reg_unknown(env, dst_reg);
6949 return 0;
6950 }
6951 }
6952
6953 if (!src_known &&
6954 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
6955 __mark_reg_unknown(env, dst_reg);
6956 return 0;
6957 }
6958
6959 if (sanitize_needed(opcode)) {
6960 ret = sanitize_val_alu(env, insn);
6961 if (ret < 0)
6962 return sanitize_err(env, insn, ret, NULL, NULL);
6963 }
6964
6965 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6966 * There are two classes of instructions: The first class we track both
6967 * alu32 and alu64 sign/unsigned bounds independently this provides the
6968 * greatest amount of precision when alu operations are mixed with jmp32
6969 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6970 * and BPF_OR. This is possible because these ops have fairly easy to
6971 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6972 * See alu32 verifier tests for examples. The second class of
6973 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6974 * with regards to tracking sign/unsigned bounds because the bits may
6975 * cross subreg boundaries in the alu64 case. When this happens we mark
6976 * the reg unbounded in the subreg bound space and use the resulting
6977 * tnum to calculate an approximation of the sign/unsigned bounds.
6978 */
6979 switch (opcode) {
6980 case BPF_ADD:
6981 scalar32_min_max_add(dst_reg, &src_reg);
6982 scalar_min_max_add(dst_reg, &src_reg);
6983 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6984 break;
6985 case BPF_SUB:
6986 scalar32_min_max_sub(dst_reg, &src_reg);
6987 scalar_min_max_sub(dst_reg, &src_reg);
6988 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6989 break;
6990 case BPF_MUL:
6991 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6992 scalar32_min_max_mul(dst_reg, &src_reg);
6993 scalar_min_max_mul(dst_reg, &src_reg);
6994 break;
6995 case BPF_AND:
6996 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6997 scalar32_min_max_and(dst_reg, &src_reg);
6998 scalar_min_max_and(dst_reg, &src_reg);
6999 break;
7000 case BPF_OR:
7001 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7002 scalar32_min_max_or(dst_reg, &src_reg);
7003 scalar_min_max_or(dst_reg, &src_reg);
7004 break;
7005 case BPF_XOR:
7006 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7007 scalar32_min_max_xor(dst_reg, &src_reg);
7008 scalar_min_max_xor(dst_reg, &src_reg);
7009 break;
7010 case BPF_LSH:
7011 if (umax_val >= insn_bitness) {
7012 /* Shifts greater than 31 or 63 are undefined.
7013 * This includes shifts by a negative number.
7014 */
7015 mark_reg_unknown(env, regs, insn->dst_reg);
7016 break;
7017 }
7018 if (alu32)
7019 scalar32_min_max_lsh(dst_reg, &src_reg);
7020 else
7021 scalar_min_max_lsh(dst_reg, &src_reg);
7022 break;
7023 case BPF_RSH:
7024 if (umax_val >= insn_bitness) {
7025 /* Shifts greater than 31 or 63 are undefined.
7026 * This includes shifts by a negative number.
7027 */
7028 mark_reg_unknown(env, regs, insn->dst_reg);
7029 break;
7030 }
7031 if (alu32)
7032 scalar32_min_max_rsh(dst_reg, &src_reg);
7033 else
7034 scalar_min_max_rsh(dst_reg, &src_reg);
7035 break;
7036 case BPF_ARSH:
7037 if (umax_val >= insn_bitness) {
7038 /* Shifts greater than 31 or 63 are undefined.
7039 * This includes shifts by a negative number.
7040 */
7041 mark_reg_unknown(env, regs, insn->dst_reg);
7042 break;
7043 }
7044 if (alu32)
7045 scalar32_min_max_arsh(dst_reg, &src_reg);
7046 else
7047 scalar_min_max_arsh(dst_reg, &src_reg);
7048 break;
7049 default:
7050 mark_reg_unknown(env, regs, insn->dst_reg);
7051 break;
7052 }
7053
7054 /* ALU32 ops are zero extended into 64bit register */
7055 if (alu32)
7056 zext_32_to_64(dst_reg);
7057 reg_bounds_sync(dst_reg);
7058 return 0;
7059 }
7060
7061 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7062 * and var_off.
7063 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)7064 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7065 struct bpf_insn *insn)
7066 {
7067 struct bpf_verifier_state *vstate = env->cur_state;
7068 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7069 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7070 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7071 u8 opcode = BPF_OP(insn->code);
7072 int err;
7073
7074 dst_reg = ®s[insn->dst_reg];
7075 src_reg = NULL;
7076 if (dst_reg->type != SCALAR_VALUE)
7077 ptr_reg = dst_reg;
7078 else
7079 /* Make sure ID is cleared otherwise dst_reg min/max could be
7080 * incorrectly propagated into other registers by find_equal_scalars()
7081 */
7082 dst_reg->id = 0;
7083 if (BPF_SRC(insn->code) == BPF_X) {
7084 src_reg = ®s[insn->src_reg];
7085 if (src_reg->type != SCALAR_VALUE) {
7086 if (dst_reg->type != SCALAR_VALUE) {
7087 /* Combining two pointers by any ALU op yields
7088 * an arbitrary scalar. Disallow all math except
7089 * pointer subtraction
7090 */
7091 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7092 mark_reg_unknown(env, regs, insn->dst_reg);
7093 return 0;
7094 }
7095 verbose(env, "R%d pointer %s pointer prohibited\n",
7096 insn->dst_reg,
7097 bpf_alu_string[opcode >> 4]);
7098 return -EACCES;
7099 } else {
7100 /* scalar += pointer
7101 * This is legal, but we have to reverse our
7102 * src/dest handling in computing the range
7103 */
7104 err = mark_chain_precision(env, insn->dst_reg);
7105 if (err)
7106 return err;
7107 return adjust_ptr_min_max_vals(env, insn,
7108 src_reg, dst_reg);
7109 }
7110 } else if (ptr_reg) {
7111 /* pointer += scalar */
7112 err = mark_chain_precision(env, insn->src_reg);
7113 if (err)
7114 return err;
7115 return adjust_ptr_min_max_vals(env, insn,
7116 dst_reg, src_reg);
7117 } else if (dst_reg->precise) {
7118 /* if dst_reg is precise, src_reg should be precise as well */
7119 err = mark_chain_precision(env, insn->src_reg);
7120 if (err)
7121 return err;
7122 }
7123 } else {
7124 /* Pretend the src is a reg with a known value, since we only
7125 * need to be able to read from this state.
7126 */
7127 off_reg.type = SCALAR_VALUE;
7128 __mark_reg_known(&off_reg, insn->imm);
7129 src_reg = &off_reg;
7130 if (ptr_reg) /* pointer += K */
7131 return adjust_ptr_min_max_vals(env, insn,
7132 ptr_reg, src_reg);
7133 }
7134
7135 /* Got here implies adding two SCALAR_VALUEs */
7136 if (WARN_ON_ONCE(ptr_reg)) {
7137 print_verifier_state(env, state);
7138 verbose(env, "verifier internal error: unexpected ptr_reg\n");
7139 return -EINVAL;
7140 }
7141 if (WARN_ON(!src_reg)) {
7142 print_verifier_state(env, state);
7143 verbose(env, "verifier internal error: no src_reg\n");
7144 return -EINVAL;
7145 }
7146 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7147 }
7148
7149 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)7150 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7151 {
7152 struct bpf_reg_state *regs = cur_regs(env);
7153 u8 opcode = BPF_OP(insn->code);
7154 int err;
7155
7156 if (opcode == BPF_END || opcode == BPF_NEG) {
7157 if (opcode == BPF_NEG) {
7158 if (BPF_SRC(insn->code) != 0 ||
7159 insn->src_reg != BPF_REG_0 ||
7160 insn->off != 0 || insn->imm != 0) {
7161 verbose(env, "BPF_NEG uses reserved fields\n");
7162 return -EINVAL;
7163 }
7164 } else {
7165 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7166 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7167 BPF_CLASS(insn->code) == BPF_ALU64) {
7168 verbose(env, "BPF_END uses reserved fields\n");
7169 return -EINVAL;
7170 }
7171 }
7172
7173 /* check src operand */
7174 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7175 if (err)
7176 return err;
7177
7178 if (is_pointer_value(env, insn->dst_reg)) {
7179 verbose(env, "R%d pointer arithmetic prohibited\n",
7180 insn->dst_reg);
7181 return -EACCES;
7182 }
7183
7184 /* check dest operand */
7185 err = check_reg_arg(env, insn->dst_reg, DST_OP);
7186 if (err)
7187 return err;
7188
7189 } else if (opcode == BPF_MOV) {
7190
7191 if (BPF_SRC(insn->code) == BPF_X) {
7192 if (insn->imm != 0 || insn->off != 0) {
7193 verbose(env, "BPF_MOV uses reserved fields\n");
7194 return -EINVAL;
7195 }
7196
7197 /* check src operand */
7198 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7199 if (err)
7200 return err;
7201 } else {
7202 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7203 verbose(env, "BPF_MOV uses reserved fields\n");
7204 return -EINVAL;
7205 }
7206 }
7207
7208 /* check dest operand, mark as required later */
7209 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7210 if (err)
7211 return err;
7212
7213 if (BPF_SRC(insn->code) == BPF_X) {
7214 struct bpf_reg_state *src_reg = regs + insn->src_reg;
7215 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7216
7217 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7218 /* case: R1 = R2
7219 * copy register state to dest reg
7220 */
7221 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7222 /* Assign src and dst registers the same ID
7223 * that will be used by find_equal_scalars()
7224 * to propagate min/max range.
7225 */
7226 src_reg->id = ++env->id_gen;
7227 copy_register_state(dst_reg, src_reg);
7228 dst_reg->live |= REG_LIVE_WRITTEN;
7229 dst_reg->subreg_def = DEF_NOT_SUBREG;
7230 } else {
7231 /* R1 = (u32) R2 */
7232 if (is_pointer_value(env, insn->src_reg)) {
7233 verbose(env,
7234 "R%d partial copy of pointer\n",
7235 insn->src_reg);
7236 return -EACCES;
7237 } else if (src_reg->type == SCALAR_VALUE) {
7238 copy_register_state(dst_reg, src_reg);
7239 /* Make sure ID is cleared otherwise
7240 * dst_reg min/max could be incorrectly
7241 * propagated into src_reg by find_equal_scalars()
7242 */
7243 dst_reg->id = 0;
7244 dst_reg->live |= REG_LIVE_WRITTEN;
7245 dst_reg->subreg_def = env->insn_idx + 1;
7246 } else {
7247 mark_reg_unknown(env, regs,
7248 insn->dst_reg);
7249 }
7250 zext_32_to_64(dst_reg);
7251 reg_bounds_sync(dst_reg);
7252 }
7253 } else {
7254 /* case: R = imm
7255 * remember the value we stored into this reg
7256 */
7257 /* clear any state __mark_reg_known doesn't set */
7258 mark_reg_unknown(env, regs, insn->dst_reg);
7259 regs[insn->dst_reg].type = SCALAR_VALUE;
7260 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7261 __mark_reg_known(regs + insn->dst_reg,
7262 insn->imm);
7263 } else {
7264 __mark_reg_known(regs + insn->dst_reg,
7265 (u32)insn->imm);
7266 }
7267 }
7268
7269 } else if (opcode > BPF_END) {
7270 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7271 return -EINVAL;
7272
7273 } else { /* all other ALU ops: and, sub, xor, add, ... */
7274
7275 if (BPF_SRC(insn->code) == BPF_X) {
7276 if (insn->imm != 0 || insn->off != 0) {
7277 verbose(env, "BPF_ALU uses reserved fields\n");
7278 return -EINVAL;
7279 }
7280 /* check src1 operand */
7281 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7282 if (err)
7283 return err;
7284 } else {
7285 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7286 verbose(env, "BPF_ALU uses reserved fields\n");
7287 return -EINVAL;
7288 }
7289 }
7290
7291 /* check src2 operand */
7292 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7293 if (err)
7294 return err;
7295
7296 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7297 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7298 verbose(env, "div by zero\n");
7299 return -EINVAL;
7300 }
7301
7302 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7303 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7304 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7305
7306 if (insn->imm < 0 || insn->imm >= size) {
7307 verbose(env, "invalid shift %d\n", insn->imm);
7308 return -EINVAL;
7309 }
7310 }
7311
7312 /* check dest operand */
7313 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7314 if (err)
7315 return err;
7316
7317 return adjust_reg_min_max_vals(env, insn);
7318 }
7319
7320 return 0;
7321 }
7322
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)7323 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7324 struct bpf_reg_state *dst_reg,
7325 enum bpf_reg_type type,
7326 bool range_right_open)
7327 {
7328 struct bpf_func_state *state;
7329 struct bpf_reg_state *reg;
7330 int new_range;
7331
7332 if (dst_reg->off < 0 ||
7333 (dst_reg->off == 0 && range_right_open))
7334 /* This doesn't give us any range */
7335 return;
7336
7337 if (dst_reg->umax_value > MAX_PACKET_OFF ||
7338 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7339 /* Risk of overflow. For instance, ptr + (1<<63) may be less
7340 * than pkt_end, but that's because it's also less than pkt.
7341 */
7342 return;
7343
7344 new_range = dst_reg->off;
7345 if (range_right_open)
7346 new_range++;
7347
7348 /* Examples for register markings:
7349 *
7350 * pkt_data in dst register:
7351 *
7352 * r2 = r3;
7353 * r2 += 8;
7354 * if (r2 > pkt_end) goto <handle exception>
7355 * <access okay>
7356 *
7357 * r2 = r3;
7358 * r2 += 8;
7359 * if (r2 < pkt_end) goto <access okay>
7360 * <handle exception>
7361 *
7362 * Where:
7363 * r2 == dst_reg, pkt_end == src_reg
7364 * r2=pkt(id=n,off=8,r=0)
7365 * r3=pkt(id=n,off=0,r=0)
7366 *
7367 * pkt_data in src register:
7368 *
7369 * r2 = r3;
7370 * r2 += 8;
7371 * if (pkt_end >= r2) goto <access okay>
7372 * <handle exception>
7373 *
7374 * r2 = r3;
7375 * r2 += 8;
7376 * if (pkt_end <= r2) goto <handle exception>
7377 * <access okay>
7378 *
7379 * Where:
7380 * pkt_end == dst_reg, r2 == src_reg
7381 * r2=pkt(id=n,off=8,r=0)
7382 * r3=pkt(id=n,off=0,r=0)
7383 *
7384 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7385 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7386 * and [r3, r3 + 8-1) respectively is safe to access depending on
7387 * the check.
7388 */
7389
7390 /* If our ids match, then we must have the same max_value. And we
7391 * don't care about the other reg's fixed offset, since if it's too big
7392 * the range won't allow anything.
7393 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7394 */
7395 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
7396 if (reg->type == type && reg->id == dst_reg->id)
7397 /* keep the maximum range already checked */
7398 reg->range = max(reg->range, new_range);
7399 }));
7400 }
7401
is_branch32_taken(struct bpf_reg_state * reg,u32 val,u8 opcode)7402 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
7403 {
7404 struct tnum subreg = tnum_subreg(reg->var_off);
7405 s32 sval = (s32)val;
7406
7407 switch (opcode) {
7408 case BPF_JEQ:
7409 if (tnum_is_const(subreg))
7410 return !!tnum_equals_const(subreg, val);
7411 break;
7412 case BPF_JNE:
7413 if (tnum_is_const(subreg))
7414 return !tnum_equals_const(subreg, val);
7415 break;
7416 case BPF_JSET:
7417 if ((~subreg.mask & subreg.value) & val)
7418 return 1;
7419 if (!((subreg.mask | subreg.value) & val))
7420 return 0;
7421 break;
7422 case BPF_JGT:
7423 if (reg->u32_min_value > val)
7424 return 1;
7425 else if (reg->u32_max_value <= val)
7426 return 0;
7427 break;
7428 case BPF_JSGT:
7429 if (reg->s32_min_value > sval)
7430 return 1;
7431 else if (reg->s32_max_value <= sval)
7432 return 0;
7433 break;
7434 case BPF_JLT:
7435 if (reg->u32_max_value < val)
7436 return 1;
7437 else if (reg->u32_min_value >= val)
7438 return 0;
7439 break;
7440 case BPF_JSLT:
7441 if (reg->s32_max_value < sval)
7442 return 1;
7443 else if (reg->s32_min_value >= sval)
7444 return 0;
7445 break;
7446 case BPF_JGE:
7447 if (reg->u32_min_value >= val)
7448 return 1;
7449 else if (reg->u32_max_value < val)
7450 return 0;
7451 break;
7452 case BPF_JSGE:
7453 if (reg->s32_min_value >= sval)
7454 return 1;
7455 else if (reg->s32_max_value < sval)
7456 return 0;
7457 break;
7458 case BPF_JLE:
7459 if (reg->u32_max_value <= val)
7460 return 1;
7461 else if (reg->u32_min_value > val)
7462 return 0;
7463 break;
7464 case BPF_JSLE:
7465 if (reg->s32_max_value <= sval)
7466 return 1;
7467 else if (reg->s32_min_value > sval)
7468 return 0;
7469 break;
7470 }
7471
7472 return -1;
7473 }
7474
7475
is_branch64_taken(struct bpf_reg_state * reg,u64 val,u8 opcode)7476 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
7477 {
7478 s64 sval = (s64)val;
7479
7480 switch (opcode) {
7481 case BPF_JEQ:
7482 if (tnum_is_const(reg->var_off))
7483 return !!tnum_equals_const(reg->var_off, val);
7484 break;
7485 case BPF_JNE:
7486 if (tnum_is_const(reg->var_off))
7487 return !tnum_equals_const(reg->var_off, val);
7488 break;
7489 case BPF_JSET:
7490 if ((~reg->var_off.mask & reg->var_off.value) & val)
7491 return 1;
7492 if (!((reg->var_off.mask | reg->var_off.value) & val))
7493 return 0;
7494 break;
7495 case BPF_JGT:
7496 if (reg->umin_value > val)
7497 return 1;
7498 else if (reg->umax_value <= val)
7499 return 0;
7500 break;
7501 case BPF_JSGT:
7502 if (reg->smin_value > sval)
7503 return 1;
7504 else if (reg->smax_value <= sval)
7505 return 0;
7506 break;
7507 case BPF_JLT:
7508 if (reg->umax_value < val)
7509 return 1;
7510 else if (reg->umin_value >= val)
7511 return 0;
7512 break;
7513 case BPF_JSLT:
7514 if (reg->smax_value < sval)
7515 return 1;
7516 else if (reg->smin_value >= sval)
7517 return 0;
7518 break;
7519 case BPF_JGE:
7520 if (reg->umin_value >= val)
7521 return 1;
7522 else if (reg->umax_value < val)
7523 return 0;
7524 break;
7525 case BPF_JSGE:
7526 if (reg->smin_value >= sval)
7527 return 1;
7528 else if (reg->smax_value < sval)
7529 return 0;
7530 break;
7531 case BPF_JLE:
7532 if (reg->umax_value <= val)
7533 return 1;
7534 else if (reg->umin_value > val)
7535 return 0;
7536 break;
7537 case BPF_JSLE:
7538 if (reg->smax_value <= sval)
7539 return 1;
7540 else if (reg->smin_value > sval)
7541 return 0;
7542 break;
7543 }
7544
7545 return -1;
7546 }
7547
7548 /* compute branch direction of the expression "if (reg opcode val) goto target;"
7549 * and return:
7550 * 1 - branch will be taken and "goto target" will be executed
7551 * 0 - branch will not be taken and fall-through to next insn
7552 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7553 * range [0,10]
7554 */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)7555 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7556 bool is_jmp32)
7557 {
7558 if (__is_pointer_value(false, reg)) {
7559 if (!reg_type_not_null(reg->type))
7560 return -1;
7561
7562 /* If pointer is valid tests against zero will fail so we can
7563 * use this to direct branch taken.
7564 */
7565 if (val != 0)
7566 return -1;
7567
7568 switch (opcode) {
7569 case BPF_JEQ:
7570 return 0;
7571 case BPF_JNE:
7572 return 1;
7573 default:
7574 return -1;
7575 }
7576 }
7577
7578 if (is_jmp32)
7579 return is_branch32_taken(reg, val, opcode);
7580 return is_branch64_taken(reg, val, opcode);
7581 }
7582
flip_opcode(u32 opcode)7583 static int flip_opcode(u32 opcode)
7584 {
7585 /* How can we transform "a <op> b" into "b <op> a"? */
7586 static const u8 opcode_flip[16] = {
7587 /* these stay the same */
7588 [BPF_JEQ >> 4] = BPF_JEQ,
7589 [BPF_JNE >> 4] = BPF_JNE,
7590 [BPF_JSET >> 4] = BPF_JSET,
7591 /* these swap "lesser" and "greater" (L and G in the opcodes) */
7592 [BPF_JGE >> 4] = BPF_JLE,
7593 [BPF_JGT >> 4] = BPF_JLT,
7594 [BPF_JLE >> 4] = BPF_JGE,
7595 [BPF_JLT >> 4] = BPF_JGT,
7596 [BPF_JSGE >> 4] = BPF_JSLE,
7597 [BPF_JSGT >> 4] = BPF_JSLT,
7598 [BPF_JSLE >> 4] = BPF_JSGE,
7599 [BPF_JSLT >> 4] = BPF_JSGT
7600 };
7601 return opcode_flip[opcode >> 4];
7602 }
7603
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)7604 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7605 struct bpf_reg_state *src_reg,
7606 u8 opcode)
7607 {
7608 struct bpf_reg_state *pkt;
7609
7610 if (src_reg->type == PTR_TO_PACKET_END) {
7611 pkt = dst_reg;
7612 } else if (dst_reg->type == PTR_TO_PACKET_END) {
7613 pkt = src_reg;
7614 opcode = flip_opcode(opcode);
7615 } else {
7616 return -1;
7617 }
7618
7619 if (pkt->range >= 0)
7620 return -1;
7621
7622 switch (opcode) {
7623 case BPF_JLE:
7624 /* pkt <= pkt_end */
7625 fallthrough;
7626 case BPF_JGT:
7627 /* pkt > pkt_end */
7628 if (pkt->range == BEYOND_PKT_END)
7629 /* pkt has at last one extra byte beyond pkt_end */
7630 return opcode == BPF_JGT;
7631 break;
7632 case BPF_JLT:
7633 /* pkt < pkt_end */
7634 fallthrough;
7635 case BPF_JGE:
7636 /* pkt >= pkt_end */
7637 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7638 return opcode == BPF_JGE;
7639 break;
7640 }
7641 return -1;
7642 }
7643
7644 /* Adjusts the register min/max values in the case that the dst_reg is the
7645 * variable register that we are working on, and src_reg is a constant or we're
7646 * simply doing a BPF_K check.
7647 * In JEQ/JNE cases we also adjust the var_off values.
7648 */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)7649 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7650 struct bpf_reg_state *false_reg,
7651 u64 val, u32 val32,
7652 u8 opcode, bool is_jmp32)
7653 {
7654 struct tnum false_32off = tnum_subreg(false_reg->var_off);
7655 struct tnum false_64off = false_reg->var_off;
7656 struct tnum true_32off = tnum_subreg(true_reg->var_off);
7657 struct tnum true_64off = true_reg->var_off;
7658 s64 sval = (s64)val;
7659 s32 sval32 = (s32)val32;
7660
7661 /* If the dst_reg is a pointer, we can't learn anything about its
7662 * variable offset from the compare (unless src_reg were a pointer into
7663 * the same object, but we don't bother with that.
7664 * Since false_reg and true_reg have the same type by construction, we
7665 * only need to check one of them for pointerness.
7666 */
7667 if (__is_pointer_value(false, false_reg))
7668 return;
7669
7670 switch (opcode) {
7671 /* JEQ/JNE comparison doesn't change the register equivalence.
7672 *
7673 * r1 = r2;
7674 * if (r1 == 42) goto label;
7675 * ...
7676 * label: // here both r1 and r2 are known to be 42.
7677 *
7678 * Hence when marking register as known preserve it's ID.
7679 */
7680 case BPF_JEQ:
7681 if (is_jmp32) {
7682 __mark_reg32_known(true_reg, val32);
7683 true_32off = tnum_subreg(true_reg->var_off);
7684 } else {
7685 ___mark_reg_known(true_reg, val);
7686 true_64off = true_reg->var_off;
7687 }
7688 break;
7689 case BPF_JNE:
7690 if (is_jmp32) {
7691 __mark_reg32_known(false_reg, val32);
7692 false_32off = tnum_subreg(false_reg->var_off);
7693 } else {
7694 ___mark_reg_known(false_reg, val);
7695 false_64off = false_reg->var_off;
7696 }
7697 break;
7698 case BPF_JSET:
7699 if (is_jmp32) {
7700 false_32off = tnum_and(false_32off, tnum_const(~val32));
7701 if (is_power_of_2(val32))
7702 true_32off = tnum_or(true_32off,
7703 tnum_const(val32));
7704 } else {
7705 false_64off = tnum_and(false_64off, tnum_const(~val));
7706 if (is_power_of_2(val))
7707 true_64off = tnum_or(true_64off,
7708 tnum_const(val));
7709 }
7710 break;
7711 case BPF_JGE:
7712 case BPF_JGT:
7713 {
7714 if (is_jmp32) {
7715 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
7716 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7717
7718 false_reg->u32_max_value = min(false_reg->u32_max_value,
7719 false_umax);
7720 true_reg->u32_min_value = max(true_reg->u32_min_value,
7721 true_umin);
7722 } else {
7723 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
7724 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7725
7726 false_reg->umax_value = min(false_reg->umax_value, false_umax);
7727 true_reg->umin_value = max(true_reg->umin_value, true_umin);
7728 }
7729 break;
7730 }
7731 case BPF_JSGE:
7732 case BPF_JSGT:
7733 {
7734 if (is_jmp32) {
7735 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
7736 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7737
7738 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7739 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7740 } else {
7741 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
7742 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7743
7744 false_reg->smax_value = min(false_reg->smax_value, false_smax);
7745 true_reg->smin_value = max(true_reg->smin_value, true_smin);
7746 }
7747 break;
7748 }
7749 case BPF_JLE:
7750 case BPF_JLT:
7751 {
7752 if (is_jmp32) {
7753 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
7754 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7755
7756 false_reg->u32_min_value = max(false_reg->u32_min_value,
7757 false_umin);
7758 true_reg->u32_max_value = min(true_reg->u32_max_value,
7759 true_umax);
7760 } else {
7761 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
7762 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7763
7764 false_reg->umin_value = max(false_reg->umin_value, false_umin);
7765 true_reg->umax_value = min(true_reg->umax_value, true_umax);
7766 }
7767 break;
7768 }
7769 case BPF_JSLE:
7770 case BPF_JSLT:
7771 {
7772 if (is_jmp32) {
7773 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
7774 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7775
7776 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7777 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7778 } else {
7779 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
7780 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7781
7782 false_reg->smin_value = max(false_reg->smin_value, false_smin);
7783 true_reg->smax_value = min(true_reg->smax_value, true_smax);
7784 }
7785 break;
7786 }
7787 default:
7788 return;
7789 }
7790
7791 if (is_jmp32) {
7792 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7793 tnum_subreg(false_32off));
7794 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7795 tnum_subreg(true_32off));
7796 __reg_combine_32_into_64(false_reg);
7797 __reg_combine_32_into_64(true_reg);
7798 } else {
7799 false_reg->var_off = false_64off;
7800 true_reg->var_off = true_64off;
7801 __reg_combine_64_into_32(false_reg);
7802 __reg_combine_64_into_32(true_reg);
7803 }
7804 }
7805
7806 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7807 * the variable reg.
7808 */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)7809 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7810 struct bpf_reg_state *false_reg,
7811 u64 val, u32 val32,
7812 u8 opcode, bool is_jmp32)
7813 {
7814 opcode = flip_opcode(opcode);
7815 /* This uses zero as "not present in table"; luckily the zero opcode,
7816 * BPF_JA, can't get here.
7817 */
7818 if (opcode)
7819 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7820 }
7821
7822 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)7823 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7824 struct bpf_reg_state *dst_reg)
7825 {
7826 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7827 dst_reg->umin_value);
7828 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7829 dst_reg->umax_value);
7830 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7831 dst_reg->smin_value);
7832 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7833 dst_reg->smax_value);
7834 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7835 dst_reg->var_off);
7836 reg_bounds_sync(src_reg);
7837 reg_bounds_sync(dst_reg);
7838 }
7839
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)7840 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7841 struct bpf_reg_state *true_dst,
7842 struct bpf_reg_state *false_src,
7843 struct bpf_reg_state *false_dst,
7844 u8 opcode)
7845 {
7846 switch (opcode) {
7847 case BPF_JEQ:
7848 __reg_combine_min_max(true_src, true_dst);
7849 break;
7850 case BPF_JNE:
7851 __reg_combine_min_max(false_src, false_dst);
7852 break;
7853 }
7854 }
7855
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)7856 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7857 struct bpf_reg_state *reg, u32 id,
7858 bool is_null)
7859 {
7860 if (type_may_be_null(reg->type) && reg->id == id &&
7861 !WARN_ON_ONCE(!reg->id)) {
7862 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7863 !tnum_equals_const(reg->var_off, 0) ||
7864 reg->off)) {
7865 /* Old offset (both fixed and variable parts) should
7866 * have been known-zero, because we don't allow pointer
7867 * arithmetic on pointers that might be NULL. If we
7868 * see this happening, don't convert the register.
7869 */
7870 return;
7871 }
7872 if (is_null) {
7873 reg->type = SCALAR_VALUE;
7874 } else if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
7875 const struct bpf_map *map = reg->map_ptr;
7876
7877 if (map->inner_map_meta) {
7878 reg->type = CONST_PTR_TO_MAP;
7879 reg->map_ptr = map->inner_map_meta;
7880 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
7881 reg->type = PTR_TO_XDP_SOCK;
7882 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7883 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7884 reg->type = PTR_TO_SOCKET;
7885 } else {
7886 reg->type = PTR_TO_MAP_VALUE;
7887 }
7888 } else {
7889 reg->type &= ~PTR_MAYBE_NULL;
7890 }
7891
7892 if (is_null) {
7893 /* We don't need id and ref_obj_id from this point
7894 * onwards anymore, thus we should better reset it,
7895 * so that state pruning has chances to take effect.
7896 */
7897 reg->id = 0;
7898 reg->ref_obj_id = 0;
7899 } else if (!reg_may_point_to_spin_lock(reg)) {
7900 /* For not-NULL ptr, reg->ref_obj_id will be reset
7901 * in release_reference().
7902 *
7903 * reg->id is still used by spin_lock ptr. Other
7904 * than spin_lock ptr type, reg->id can be reset.
7905 */
7906 reg->id = 0;
7907 }
7908 }
7909 }
7910
7911 /* The logic is similar to find_good_pkt_pointers(), both could eventually
7912 * be folded together at some point.
7913 */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)7914 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7915 bool is_null)
7916 {
7917 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7918 struct bpf_reg_state *regs = state->regs, *reg;
7919 u32 ref_obj_id = regs[regno].ref_obj_id;
7920 u32 id = regs[regno].id;
7921
7922 if (ref_obj_id && ref_obj_id == id && is_null)
7923 /* regs[regno] is in the " == NULL" branch.
7924 * No one could have freed the reference state before
7925 * doing the NULL check.
7926 */
7927 WARN_ON_ONCE(release_reference_state(state, id));
7928
7929 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
7930 mark_ptr_or_null_reg(state, reg, id, is_null);
7931 }));
7932 }
7933
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)7934 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7935 struct bpf_reg_state *dst_reg,
7936 struct bpf_reg_state *src_reg,
7937 struct bpf_verifier_state *this_branch,
7938 struct bpf_verifier_state *other_branch)
7939 {
7940 if (BPF_SRC(insn->code) != BPF_X)
7941 return false;
7942
7943 /* Pointers are always 64-bit. */
7944 if (BPF_CLASS(insn->code) == BPF_JMP32)
7945 return false;
7946
7947 switch (BPF_OP(insn->code)) {
7948 case BPF_JGT:
7949 if ((dst_reg->type == PTR_TO_PACKET &&
7950 src_reg->type == PTR_TO_PACKET_END) ||
7951 (dst_reg->type == PTR_TO_PACKET_META &&
7952 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7953 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7954 find_good_pkt_pointers(this_branch, dst_reg,
7955 dst_reg->type, false);
7956 mark_pkt_end(other_branch, insn->dst_reg, true);
7957 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7958 src_reg->type == PTR_TO_PACKET) ||
7959 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7960 src_reg->type == PTR_TO_PACKET_META)) {
7961 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
7962 find_good_pkt_pointers(other_branch, src_reg,
7963 src_reg->type, true);
7964 mark_pkt_end(this_branch, insn->src_reg, false);
7965 } else {
7966 return false;
7967 }
7968 break;
7969 case BPF_JLT:
7970 if ((dst_reg->type == PTR_TO_PACKET &&
7971 src_reg->type == PTR_TO_PACKET_END) ||
7972 (dst_reg->type == PTR_TO_PACKET_META &&
7973 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7974 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7975 find_good_pkt_pointers(other_branch, dst_reg,
7976 dst_reg->type, true);
7977 mark_pkt_end(this_branch, insn->dst_reg, false);
7978 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7979 src_reg->type == PTR_TO_PACKET) ||
7980 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7981 src_reg->type == PTR_TO_PACKET_META)) {
7982 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
7983 find_good_pkt_pointers(this_branch, src_reg,
7984 src_reg->type, false);
7985 mark_pkt_end(other_branch, insn->src_reg, true);
7986 } else {
7987 return false;
7988 }
7989 break;
7990 case BPF_JGE:
7991 if ((dst_reg->type == PTR_TO_PACKET &&
7992 src_reg->type == PTR_TO_PACKET_END) ||
7993 (dst_reg->type == PTR_TO_PACKET_META &&
7994 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7995 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7996 find_good_pkt_pointers(this_branch, dst_reg,
7997 dst_reg->type, true);
7998 mark_pkt_end(other_branch, insn->dst_reg, false);
7999 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8000 src_reg->type == PTR_TO_PACKET) ||
8001 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8002 src_reg->type == PTR_TO_PACKET_META)) {
8003 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8004 find_good_pkt_pointers(other_branch, src_reg,
8005 src_reg->type, false);
8006 mark_pkt_end(this_branch, insn->src_reg, true);
8007 } else {
8008 return false;
8009 }
8010 break;
8011 case BPF_JLE:
8012 if ((dst_reg->type == PTR_TO_PACKET &&
8013 src_reg->type == PTR_TO_PACKET_END) ||
8014 (dst_reg->type == PTR_TO_PACKET_META &&
8015 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8016 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8017 find_good_pkt_pointers(other_branch, dst_reg,
8018 dst_reg->type, false);
8019 mark_pkt_end(this_branch, insn->dst_reg, true);
8020 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8021 src_reg->type == PTR_TO_PACKET) ||
8022 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8023 src_reg->type == PTR_TO_PACKET_META)) {
8024 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8025 find_good_pkt_pointers(this_branch, src_reg,
8026 src_reg->type, true);
8027 mark_pkt_end(other_branch, insn->src_reg, false);
8028 } else {
8029 return false;
8030 }
8031 break;
8032 default:
8033 return false;
8034 }
8035
8036 return true;
8037 }
8038
find_equal_scalars(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg)8039 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8040 struct bpf_reg_state *known_reg)
8041 {
8042 struct bpf_func_state *state;
8043 struct bpf_reg_state *reg;
8044
8045 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
8046 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8047 copy_register_state(reg, known_reg);
8048 }));
8049 }
8050
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)8051 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8052 struct bpf_insn *insn, int *insn_idx)
8053 {
8054 struct bpf_verifier_state *this_branch = env->cur_state;
8055 struct bpf_verifier_state *other_branch;
8056 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8057 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8058 u8 opcode = BPF_OP(insn->code);
8059 bool is_jmp32;
8060 int pred = -1;
8061 int err;
8062
8063 /* Only conditional jumps are expected to reach here. */
8064 if (opcode == BPF_JA || opcode > BPF_JSLE) {
8065 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8066 return -EINVAL;
8067 }
8068
8069 if (BPF_SRC(insn->code) == BPF_X) {
8070 if (insn->imm != 0) {
8071 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8072 return -EINVAL;
8073 }
8074
8075 /* check src1 operand */
8076 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8077 if (err)
8078 return err;
8079
8080 if (is_pointer_value(env, insn->src_reg)) {
8081 verbose(env, "R%d pointer comparison prohibited\n",
8082 insn->src_reg);
8083 return -EACCES;
8084 }
8085 src_reg = ®s[insn->src_reg];
8086 } else {
8087 if (insn->src_reg != BPF_REG_0) {
8088 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8089 return -EINVAL;
8090 }
8091 }
8092
8093 /* check src2 operand */
8094 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8095 if (err)
8096 return err;
8097
8098 dst_reg = ®s[insn->dst_reg];
8099 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8100
8101 if (BPF_SRC(insn->code) == BPF_K) {
8102 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8103 } else if (src_reg->type == SCALAR_VALUE &&
8104 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8105 pred = is_branch_taken(dst_reg,
8106 tnum_subreg(src_reg->var_off).value,
8107 opcode,
8108 is_jmp32);
8109 } else if (src_reg->type == SCALAR_VALUE &&
8110 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8111 pred = is_branch_taken(dst_reg,
8112 src_reg->var_off.value,
8113 opcode,
8114 is_jmp32);
8115 } else if (reg_is_pkt_pointer_any(dst_reg) &&
8116 reg_is_pkt_pointer_any(src_reg) &&
8117 !is_jmp32) {
8118 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8119 }
8120
8121 if (pred >= 0) {
8122 /* If we get here with a dst_reg pointer type it is because
8123 * above is_branch_taken() special cased the 0 comparison.
8124 */
8125 if (!__is_pointer_value(false, dst_reg))
8126 err = mark_chain_precision(env, insn->dst_reg);
8127 if (BPF_SRC(insn->code) == BPF_X && !err &&
8128 !__is_pointer_value(false, src_reg))
8129 err = mark_chain_precision(env, insn->src_reg);
8130 if (err)
8131 return err;
8132 }
8133
8134 if (pred == 1) {
8135 /* Only follow the goto, ignore fall-through. If needed, push
8136 * the fall-through branch for simulation under speculative
8137 * execution.
8138 */
8139 if (!env->bypass_spec_v1 &&
8140 !sanitize_speculative_path(env, insn, *insn_idx + 1,
8141 *insn_idx))
8142 return -EFAULT;
8143 *insn_idx += insn->off;
8144 return 0;
8145 } else if (pred == 0) {
8146 /* Only follow the fall-through branch, since that's where the
8147 * program will go. If needed, push the goto branch for
8148 * simulation under speculative execution.
8149 */
8150 if (!env->bypass_spec_v1 &&
8151 !sanitize_speculative_path(env, insn,
8152 *insn_idx + insn->off + 1,
8153 *insn_idx))
8154 return -EFAULT;
8155 return 0;
8156 }
8157
8158 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8159 false);
8160 if (!other_branch)
8161 return -EFAULT;
8162 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8163
8164 /* detect if we are comparing against a constant value so we can adjust
8165 * our min/max values for our dst register.
8166 * this is only legit if both are scalars (or pointers to the same
8167 * object, I suppose, but we don't support that right now), because
8168 * otherwise the different base pointers mean the offsets aren't
8169 * comparable.
8170 */
8171 if (BPF_SRC(insn->code) == BPF_X) {
8172 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
8173
8174 if (dst_reg->type == SCALAR_VALUE &&
8175 src_reg->type == SCALAR_VALUE) {
8176 if (tnum_is_const(src_reg->var_off) ||
8177 (is_jmp32 &&
8178 tnum_is_const(tnum_subreg(src_reg->var_off))))
8179 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8180 dst_reg,
8181 src_reg->var_off.value,
8182 tnum_subreg(src_reg->var_off).value,
8183 opcode, is_jmp32);
8184 else if (tnum_is_const(dst_reg->var_off) ||
8185 (is_jmp32 &&
8186 tnum_is_const(tnum_subreg(dst_reg->var_off))))
8187 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8188 src_reg,
8189 dst_reg->var_off.value,
8190 tnum_subreg(dst_reg->var_off).value,
8191 opcode, is_jmp32);
8192 else if (!is_jmp32 &&
8193 (opcode == BPF_JEQ || opcode == BPF_JNE))
8194 /* Comparing for equality, we can combine knowledge */
8195 reg_combine_min_max(&other_branch_regs[insn->src_reg],
8196 &other_branch_regs[insn->dst_reg],
8197 src_reg, dst_reg, opcode);
8198 if (src_reg->id &&
8199 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8200 find_equal_scalars(this_branch, src_reg);
8201 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8202 }
8203
8204 }
8205 } else if (dst_reg->type == SCALAR_VALUE) {
8206 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8207 dst_reg, insn->imm, (u32)insn->imm,
8208 opcode, is_jmp32);
8209 }
8210
8211 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8212 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8213 find_equal_scalars(this_branch, dst_reg);
8214 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8215 }
8216
8217 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8218 * NOTE: these optimizations below are related with pointer comparison
8219 * which will never be JMP32.
8220 */
8221 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8222 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8223 type_may_be_null(dst_reg->type)) {
8224 /* Mark all identical registers in each branch as either
8225 * safe or unknown depending R == 0 or R != 0 conditional.
8226 */
8227 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8228 opcode == BPF_JNE);
8229 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8230 opcode == BPF_JEQ);
8231 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
8232 this_branch, other_branch) &&
8233 is_pointer_value(env, insn->dst_reg)) {
8234 verbose(env, "R%d pointer comparison prohibited\n",
8235 insn->dst_reg);
8236 return -EACCES;
8237 }
8238 if (env->log.level & BPF_LOG_LEVEL)
8239 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8240 return 0;
8241 }
8242
8243 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)8244 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8245 {
8246 struct bpf_insn_aux_data *aux = cur_aux(env);
8247 struct bpf_reg_state *regs = cur_regs(env);
8248 struct bpf_reg_state *dst_reg;
8249 struct bpf_map *map;
8250 int err;
8251
8252 if (BPF_SIZE(insn->code) != BPF_DW) {
8253 verbose(env, "invalid BPF_LD_IMM insn\n");
8254 return -EINVAL;
8255 }
8256 if (insn->off != 0) {
8257 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8258 return -EINVAL;
8259 }
8260
8261 err = check_reg_arg(env, insn->dst_reg, DST_OP);
8262 if (err)
8263 return err;
8264
8265 dst_reg = ®s[insn->dst_reg];
8266 if (insn->src_reg == 0) {
8267 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8268
8269 dst_reg->type = SCALAR_VALUE;
8270 __mark_reg_known(®s[insn->dst_reg], imm);
8271 return 0;
8272 }
8273
8274 /* All special src_reg cases are listed below. From this point onwards
8275 * we either succeed and assign a corresponding dst_reg->type after
8276 * zeroing the offset, or fail and reject the program.
8277 */
8278 mark_reg_known_zero(env, regs, insn->dst_reg);
8279
8280 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8281 dst_reg->type = aux->btf_var.reg_type;
8282 switch (base_type(dst_reg->type)) {
8283 case PTR_TO_MEM:
8284 dst_reg->mem_size = aux->btf_var.mem_size;
8285 break;
8286 case PTR_TO_BTF_ID:
8287 case PTR_TO_PERCPU_BTF_ID:
8288 dst_reg->btf_id = aux->btf_var.btf_id;
8289 break;
8290 default:
8291 verbose(env, "bpf verifier is misconfigured\n");
8292 return -EFAULT;
8293 }
8294 return 0;
8295 }
8296
8297 map = env->used_maps[aux->map_index];
8298 dst_reg->map_ptr = map;
8299
8300 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
8301 dst_reg->type = PTR_TO_MAP_VALUE;
8302 dst_reg->off = aux->map_off;
8303 if (map_value_has_spin_lock(map))
8304 dst_reg->id = ++env->id_gen;
8305 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8306 dst_reg->type = CONST_PTR_TO_MAP;
8307 } else {
8308 verbose(env, "bpf verifier is misconfigured\n");
8309 return -EINVAL;
8310 }
8311
8312 return 0;
8313 }
8314
may_access_skb(enum bpf_prog_type type)8315 static bool may_access_skb(enum bpf_prog_type type)
8316 {
8317 switch (type) {
8318 case BPF_PROG_TYPE_SOCKET_FILTER:
8319 case BPF_PROG_TYPE_SCHED_CLS:
8320 case BPF_PROG_TYPE_SCHED_ACT:
8321 return true;
8322 default:
8323 return false;
8324 }
8325 }
8326
8327 /* verify safety of LD_ABS|LD_IND instructions:
8328 * - they can only appear in the programs where ctx == skb
8329 * - since they are wrappers of function calls, they scratch R1-R5 registers,
8330 * preserve R6-R9, and store return value into R0
8331 *
8332 * Implicit input:
8333 * ctx == skb == R6 == CTX
8334 *
8335 * Explicit input:
8336 * SRC == any register
8337 * IMM == 32-bit immediate
8338 *
8339 * Output:
8340 * R0 - 8/16/32-bit skb data converted to cpu endianness
8341 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)8342 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8343 {
8344 struct bpf_reg_state *regs = cur_regs(env);
8345 static const int ctx_reg = BPF_REG_6;
8346 u8 mode = BPF_MODE(insn->code);
8347 int i, err;
8348
8349 if (!may_access_skb(resolve_prog_type(env->prog))) {
8350 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8351 return -EINVAL;
8352 }
8353
8354 if (!env->ops->gen_ld_abs) {
8355 verbose(env, "bpf verifier is misconfigured\n");
8356 return -EINVAL;
8357 }
8358
8359 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8360 BPF_SIZE(insn->code) == BPF_DW ||
8361 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8362 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8363 return -EINVAL;
8364 }
8365
8366 /* check whether implicit source operand (register R6) is readable */
8367 err = check_reg_arg(env, ctx_reg, SRC_OP);
8368 if (err)
8369 return err;
8370
8371 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8372 * gen_ld_abs() may terminate the program at runtime, leading to
8373 * reference leak.
8374 */
8375 err = check_reference_leak(env);
8376 if (err) {
8377 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
8378 return err;
8379 }
8380
8381 if (env->cur_state->active_spin_lock) {
8382 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
8383 return -EINVAL;
8384 }
8385
8386 if (regs[ctx_reg].type != PTR_TO_CTX) {
8387 verbose(env,
8388 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
8389 return -EINVAL;
8390 }
8391
8392 if (mode == BPF_IND) {
8393 /* check explicit source operand */
8394 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8395 if (err)
8396 return err;
8397 }
8398
8399 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
8400 if (err < 0)
8401 return err;
8402
8403 /* reset caller saved regs to unreadable */
8404 for (i = 0; i < CALLER_SAVED_REGS; i++) {
8405 mark_reg_not_init(env, regs, caller_saved[i]);
8406 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8407 }
8408
8409 /* mark destination R0 register as readable, since it contains
8410 * the value fetched from the packet.
8411 * Already marked as written above.
8412 */
8413 mark_reg_unknown(env, regs, BPF_REG_0);
8414 /* ld_abs load up to 32-bit skb data. */
8415 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
8416 return 0;
8417 }
8418
check_return_code(struct bpf_verifier_env * env)8419 static int check_return_code(struct bpf_verifier_env *env)
8420 {
8421 struct tnum enforce_attach_type_range = tnum_unknown;
8422 const struct bpf_prog *prog = env->prog;
8423 struct bpf_reg_state *reg;
8424 struct tnum range = tnum_range(0, 1);
8425 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8426 int err;
8427 const bool is_subprog = env->cur_state->frame[0]->subprogno;
8428
8429 /* LSM and struct_ops func-ptr's return type could be "void" */
8430 if (!is_subprog &&
8431 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
8432 prog_type == BPF_PROG_TYPE_LSM) &&
8433 !prog->aux->attach_func_proto->type)
8434 return 0;
8435
8436 /* eBPF calling convetion is such that R0 is used
8437 * to return the value from eBPF program.
8438 * Make sure that it's readable at this time
8439 * of bpf_exit, which means that program wrote
8440 * something into it earlier
8441 */
8442 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8443 if (err)
8444 return err;
8445
8446 if (is_pointer_value(env, BPF_REG_0)) {
8447 verbose(env, "R0 leaks addr as return value\n");
8448 return -EACCES;
8449 }
8450
8451 reg = cur_regs(env) + BPF_REG_0;
8452 if (is_subprog) {
8453 if (reg->type != SCALAR_VALUE) {
8454 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
8455 reg_type_str(env, reg->type));
8456 return -EINVAL;
8457 }
8458 return 0;
8459 }
8460
8461 switch (prog_type) {
8462 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8463 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
8464 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
8465 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
8466 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
8467 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
8468 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
8469 range = tnum_range(1, 1);
8470 break;
8471 case BPF_PROG_TYPE_CGROUP_SKB:
8472 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
8473 range = tnum_range(0, 3);
8474 enforce_attach_type_range = tnum_range(2, 3);
8475 }
8476 break;
8477 case BPF_PROG_TYPE_CGROUP_SOCK:
8478 case BPF_PROG_TYPE_SOCK_OPS:
8479 case BPF_PROG_TYPE_CGROUP_DEVICE:
8480 case BPF_PROG_TYPE_CGROUP_SYSCTL:
8481 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8482 break;
8483 case BPF_PROG_TYPE_RAW_TRACEPOINT:
8484 if (!env->prog->aux->attach_btf_id)
8485 return 0;
8486 range = tnum_const(0);
8487 break;
8488 case BPF_PROG_TYPE_TRACING:
8489 switch (env->prog->expected_attach_type) {
8490 case BPF_TRACE_FENTRY:
8491 case BPF_TRACE_FEXIT:
8492 range = tnum_const(0);
8493 break;
8494 case BPF_TRACE_RAW_TP:
8495 case BPF_MODIFY_RETURN:
8496 return 0;
8497 case BPF_TRACE_ITER:
8498 break;
8499 default:
8500 return -ENOTSUPP;
8501 }
8502 break;
8503 case BPF_PROG_TYPE_SK_LOOKUP:
8504 range = tnum_range(SK_DROP, SK_PASS);
8505 break;
8506 case BPF_PROG_TYPE_EXT:
8507 /* freplace program can return anything as its return value
8508 * depends on the to-be-replaced kernel func or bpf program.
8509 */
8510 default:
8511 return 0;
8512 }
8513
8514 if (reg->type != SCALAR_VALUE) {
8515 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
8516 reg_type_str(env, reg->type));
8517 return -EINVAL;
8518 }
8519
8520 if (!tnum_in(range, reg->var_off)) {
8521 char tn_buf[48];
8522
8523 verbose(env, "At program exit the register R0 ");
8524 if (!tnum_is_unknown(reg->var_off)) {
8525 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8526 verbose(env, "has value %s", tn_buf);
8527 } else {
8528 verbose(env, "has unknown scalar value");
8529 }
8530 tnum_strn(tn_buf, sizeof(tn_buf), range);
8531 verbose(env, " should have been in %s\n", tn_buf);
8532 return -EINVAL;
8533 }
8534
8535 if (!tnum_is_unknown(enforce_attach_type_range) &&
8536 tnum_in(enforce_attach_type_range, reg->var_off))
8537 env->prog->enforce_expected_attach_type = 1;
8538 return 0;
8539 }
8540
8541 /* non-recursive DFS pseudo code
8542 * 1 procedure DFS-iterative(G,v):
8543 * 2 label v as discovered
8544 * 3 let S be a stack
8545 * 4 S.push(v)
8546 * 5 while S is not empty
8547 * 6 t <- S.pop()
8548 * 7 if t is what we're looking for:
8549 * 8 return t
8550 * 9 for all edges e in G.adjacentEdges(t) do
8551 * 10 if edge e is already labelled
8552 * 11 continue with the next edge
8553 * 12 w <- G.adjacentVertex(t,e)
8554 * 13 if vertex w is not discovered and not explored
8555 * 14 label e as tree-edge
8556 * 15 label w as discovered
8557 * 16 S.push(w)
8558 * 17 continue at 5
8559 * 18 else if vertex w is discovered
8560 * 19 label e as back-edge
8561 * 20 else
8562 * 21 // vertex w is explored
8563 * 22 label e as forward- or cross-edge
8564 * 23 label t as explored
8565 * 24 S.pop()
8566 *
8567 * convention:
8568 * 0x10 - discovered
8569 * 0x11 - discovered and fall-through edge labelled
8570 * 0x12 - discovered and fall-through and branch edges labelled
8571 * 0x20 - explored
8572 */
8573
8574 enum {
8575 DISCOVERED = 0x10,
8576 EXPLORED = 0x20,
8577 FALLTHROUGH = 1,
8578 BRANCH = 2,
8579 };
8580
state_htab_size(struct bpf_verifier_env * env)8581 static u32 state_htab_size(struct bpf_verifier_env *env)
8582 {
8583 return env->prog->len;
8584 }
8585
explored_state(struct bpf_verifier_env * env,int idx)8586 static struct bpf_verifier_state_list **explored_state(
8587 struct bpf_verifier_env *env,
8588 int idx)
8589 {
8590 struct bpf_verifier_state *cur = env->cur_state;
8591 struct bpf_func_state *state = cur->frame[cur->curframe];
8592
8593 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8594 }
8595
init_explored_state(struct bpf_verifier_env * env,int idx)8596 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8597 {
8598 env->insn_aux_data[idx].prune_point = true;
8599 }
8600
8601 /* t, w, e - match pseudo-code above:
8602 * t - index of current instruction
8603 * w - next instruction
8604 * e - edge
8605 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env,bool loop_ok)8606 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8607 bool loop_ok)
8608 {
8609 int *insn_stack = env->cfg.insn_stack;
8610 int *insn_state = env->cfg.insn_state;
8611
8612 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8613 return 0;
8614
8615 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8616 return 0;
8617
8618 if (w < 0 || w >= env->prog->len) {
8619 verbose_linfo(env, t, "%d: ", t);
8620 verbose(env, "jump out of range from insn %d to %d\n", t, w);
8621 return -EINVAL;
8622 }
8623
8624 if (e == BRANCH)
8625 /* mark branch target for state pruning */
8626 init_explored_state(env, w);
8627
8628 if (insn_state[w] == 0) {
8629 /* tree-edge */
8630 insn_state[t] = DISCOVERED | e;
8631 insn_state[w] = DISCOVERED;
8632 if (env->cfg.cur_stack >= env->prog->len)
8633 return -E2BIG;
8634 insn_stack[env->cfg.cur_stack++] = w;
8635 return 1;
8636 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8637 if (loop_ok && env->bpf_capable)
8638 return 0;
8639 verbose_linfo(env, t, "%d: ", t);
8640 verbose_linfo(env, w, "%d: ", w);
8641 verbose(env, "back-edge from insn %d to %d\n", t, w);
8642 return -EINVAL;
8643 } else if (insn_state[w] == EXPLORED) {
8644 /* forward- or cross-edge */
8645 insn_state[t] = DISCOVERED | e;
8646 } else {
8647 verbose(env, "insn state internal bug\n");
8648 return -EFAULT;
8649 }
8650 return 0;
8651 }
8652
8653 /* non-recursive depth-first-search to detect loops in BPF program
8654 * loop == back-edge in directed graph
8655 */
check_cfg(struct bpf_verifier_env * env)8656 static int check_cfg(struct bpf_verifier_env *env)
8657 {
8658 struct bpf_insn *insns = env->prog->insnsi;
8659 int insn_cnt = env->prog->len;
8660 int *insn_stack, *insn_state;
8661 int ret = 0;
8662 int i, t;
8663
8664 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8665 if (!insn_state)
8666 return -ENOMEM;
8667
8668 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8669 if (!insn_stack) {
8670 kvfree(insn_state);
8671 return -ENOMEM;
8672 }
8673
8674 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8675 insn_stack[0] = 0; /* 0 is the first instruction */
8676 env->cfg.cur_stack = 1;
8677
8678 peek_stack:
8679 if (env->cfg.cur_stack == 0)
8680 goto check_state;
8681 t = insn_stack[env->cfg.cur_stack - 1];
8682
8683 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
8684 BPF_CLASS(insns[t].code) == BPF_JMP32) {
8685 u8 opcode = BPF_OP(insns[t].code);
8686
8687 if (opcode == BPF_EXIT) {
8688 goto mark_explored;
8689 } else if (opcode == BPF_CALL) {
8690 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8691 if (ret == 1)
8692 goto peek_stack;
8693 else if (ret < 0)
8694 goto err_free;
8695 if (t + 1 < insn_cnt)
8696 init_explored_state(env, t + 1);
8697 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8698 init_explored_state(env, t);
8699 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8700 env, false);
8701 if (ret == 1)
8702 goto peek_stack;
8703 else if (ret < 0)
8704 goto err_free;
8705 }
8706 } else if (opcode == BPF_JA) {
8707 if (BPF_SRC(insns[t].code) != BPF_K) {
8708 ret = -EINVAL;
8709 goto err_free;
8710 }
8711 /* unconditional jump with single edge */
8712 ret = push_insn(t, t + insns[t].off + 1,
8713 FALLTHROUGH, env, true);
8714 if (ret == 1)
8715 goto peek_stack;
8716 else if (ret < 0)
8717 goto err_free;
8718 /* unconditional jmp is not a good pruning point,
8719 * but it's marked, since backtracking needs
8720 * to record jmp history in is_state_visited().
8721 */
8722 init_explored_state(env, t + insns[t].off + 1);
8723 /* tell verifier to check for equivalent states
8724 * after every call and jump
8725 */
8726 if (t + 1 < insn_cnt)
8727 init_explored_state(env, t + 1);
8728 } else {
8729 /* conditional jump with two edges */
8730 init_explored_state(env, t);
8731 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8732 if (ret == 1)
8733 goto peek_stack;
8734 else if (ret < 0)
8735 goto err_free;
8736
8737 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8738 if (ret == 1)
8739 goto peek_stack;
8740 else if (ret < 0)
8741 goto err_free;
8742 }
8743 } else {
8744 /* all other non-branch instructions with single
8745 * fall-through edge
8746 */
8747 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8748 if (ret == 1)
8749 goto peek_stack;
8750 else if (ret < 0)
8751 goto err_free;
8752 }
8753
8754 mark_explored:
8755 insn_state[t] = EXPLORED;
8756 if (env->cfg.cur_stack-- <= 0) {
8757 verbose(env, "pop stack internal bug\n");
8758 ret = -EFAULT;
8759 goto err_free;
8760 }
8761 goto peek_stack;
8762
8763 check_state:
8764 for (i = 0; i < insn_cnt; i++) {
8765 if (insn_state[i] != EXPLORED) {
8766 verbose(env, "unreachable insn %d\n", i);
8767 ret = -EINVAL;
8768 goto err_free;
8769 }
8770 }
8771 ret = 0; /* cfg looks good */
8772
8773 err_free:
8774 kvfree(insn_state);
8775 kvfree(insn_stack);
8776 env->cfg.insn_state = env->cfg.insn_stack = NULL;
8777 return ret;
8778 }
8779
check_abnormal_return(struct bpf_verifier_env * env)8780 static int check_abnormal_return(struct bpf_verifier_env *env)
8781 {
8782 int i;
8783
8784 for (i = 1; i < env->subprog_cnt; i++) {
8785 if (env->subprog_info[i].has_ld_abs) {
8786 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8787 return -EINVAL;
8788 }
8789 if (env->subprog_info[i].has_tail_call) {
8790 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8791 return -EINVAL;
8792 }
8793 }
8794 return 0;
8795 }
8796
8797 /* The minimum supported BTF func info size */
8798 #define MIN_BPF_FUNCINFO_SIZE 8
8799 #define MAX_FUNCINFO_REC_SIZE 252
8800
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)8801 static int check_btf_func(struct bpf_verifier_env *env,
8802 const union bpf_attr *attr,
8803 union bpf_attr __user *uattr)
8804 {
8805 const struct btf_type *type, *func_proto, *ret_type;
8806 u32 i, nfuncs, urec_size, min_size;
8807 u32 krec_size = sizeof(struct bpf_func_info);
8808 struct bpf_func_info *krecord;
8809 struct bpf_func_info_aux *info_aux = NULL;
8810 struct bpf_prog *prog;
8811 const struct btf *btf;
8812 void __user *urecord;
8813 u32 prev_offset = 0;
8814 bool scalar_return;
8815 int ret = -ENOMEM;
8816
8817 nfuncs = attr->func_info_cnt;
8818 if (!nfuncs) {
8819 if (check_abnormal_return(env))
8820 return -EINVAL;
8821 return 0;
8822 }
8823
8824 if (nfuncs != env->subprog_cnt) {
8825 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8826 return -EINVAL;
8827 }
8828
8829 urec_size = attr->func_info_rec_size;
8830 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8831 urec_size > MAX_FUNCINFO_REC_SIZE ||
8832 urec_size % sizeof(u32)) {
8833 verbose(env, "invalid func info rec size %u\n", urec_size);
8834 return -EINVAL;
8835 }
8836
8837 prog = env->prog;
8838 btf = prog->aux->btf;
8839
8840 urecord = u64_to_user_ptr(attr->func_info);
8841 min_size = min_t(u32, krec_size, urec_size);
8842
8843 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8844 if (!krecord)
8845 return -ENOMEM;
8846 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8847 if (!info_aux)
8848 goto err_free;
8849
8850 for (i = 0; i < nfuncs; i++) {
8851 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8852 if (ret) {
8853 if (ret == -E2BIG) {
8854 verbose(env, "nonzero tailing record in func info");
8855 /* set the size kernel expects so loader can zero
8856 * out the rest of the record.
8857 */
8858 if (put_user(min_size, &uattr->func_info_rec_size))
8859 ret = -EFAULT;
8860 }
8861 goto err_free;
8862 }
8863
8864 if (copy_from_user(&krecord[i], urecord, min_size)) {
8865 ret = -EFAULT;
8866 goto err_free;
8867 }
8868
8869 /* check insn_off */
8870 ret = -EINVAL;
8871 if (i == 0) {
8872 if (krecord[i].insn_off) {
8873 verbose(env,
8874 "nonzero insn_off %u for the first func info record",
8875 krecord[i].insn_off);
8876 goto err_free;
8877 }
8878 } else if (krecord[i].insn_off <= prev_offset) {
8879 verbose(env,
8880 "same or smaller insn offset (%u) than previous func info record (%u)",
8881 krecord[i].insn_off, prev_offset);
8882 goto err_free;
8883 }
8884
8885 if (env->subprog_info[i].start != krecord[i].insn_off) {
8886 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8887 goto err_free;
8888 }
8889
8890 /* check type_id */
8891 type = btf_type_by_id(btf, krecord[i].type_id);
8892 if (!type || !btf_type_is_func(type)) {
8893 verbose(env, "invalid type id %d in func info",
8894 krecord[i].type_id);
8895 goto err_free;
8896 }
8897 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8898
8899 func_proto = btf_type_by_id(btf, type->type);
8900 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8901 /* btf_func_check() already verified it during BTF load */
8902 goto err_free;
8903 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8904 scalar_return =
8905 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8906 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8907 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8908 goto err_free;
8909 }
8910 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8911 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8912 goto err_free;
8913 }
8914
8915 prev_offset = krecord[i].insn_off;
8916 urecord += urec_size;
8917 }
8918
8919 prog->aux->func_info = krecord;
8920 prog->aux->func_info_cnt = nfuncs;
8921 prog->aux->func_info_aux = info_aux;
8922 return 0;
8923
8924 err_free:
8925 kvfree(krecord);
8926 kfree(info_aux);
8927 return ret;
8928 }
8929
adjust_btf_func(struct bpf_verifier_env * env)8930 static void adjust_btf_func(struct bpf_verifier_env *env)
8931 {
8932 struct bpf_prog_aux *aux = env->prog->aux;
8933 int i;
8934
8935 if (!aux->func_info)
8936 return;
8937
8938 for (i = 0; i < env->subprog_cnt; i++)
8939 aux->func_info[i].insn_off = env->subprog_info[i].start;
8940 }
8941
8942 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
8943 sizeof(((struct bpf_line_info *)(0))->line_col))
8944 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
8945
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)8946 static int check_btf_line(struct bpf_verifier_env *env,
8947 const union bpf_attr *attr,
8948 union bpf_attr __user *uattr)
8949 {
8950 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8951 struct bpf_subprog_info *sub;
8952 struct bpf_line_info *linfo;
8953 struct bpf_prog *prog;
8954 const struct btf *btf;
8955 void __user *ulinfo;
8956 int err;
8957
8958 nr_linfo = attr->line_info_cnt;
8959 if (!nr_linfo)
8960 return 0;
8961 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
8962 return -EINVAL;
8963
8964 rec_size = attr->line_info_rec_size;
8965 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8966 rec_size > MAX_LINEINFO_REC_SIZE ||
8967 rec_size & (sizeof(u32) - 1))
8968 return -EINVAL;
8969
8970 /* Need to zero it in case the userspace may
8971 * pass in a smaller bpf_line_info object.
8972 */
8973 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8974 GFP_KERNEL | __GFP_NOWARN);
8975 if (!linfo)
8976 return -ENOMEM;
8977
8978 prog = env->prog;
8979 btf = prog->aux->btf;
8980
8981 s = 0;
8982 sub = env->subprog_info;
8983 ulinfo = u64_to_user_ptr(attr->line_info);
8984 expected_size = sizeof(struct bpf_line_info);
8985 ncopy = min_t(u32, expected_size, rec_size);
8986 for (i = 0; i < nr_linfo; i++) {
8987 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8988 if (err) {
8989 if (err == -E2BIG) {
8990 verbose(env, "nonzero tailing record in line_info");
8991 if (put_user(expected_size,
8992 &uattr->line_info_rec_size))
8993 err = -EFAULT;
8994 }
8995 goto err_free;
8996 }
8997
8998 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8999 err = -EFAULT;
9000 goto err_free;
9001 }
9002
9003 /*
9004 * Check insn_off to ensure
9005 * 1) strictly increasing AND
9006 * 2) bounded by prog->len
9007 *
9008 * The linfo[0].insn_off == 0 check logically falls into
9009 * the later "missing bpf_line_info for func..." case
9010 * because the first linfo[0].insn_off must be the
9011 * first sub also and the first sub must have
9012 * subprog_info[0].start == 0.
9013 */
9014 if ((i && linfo[i].insn_off <= prev_offset) ||
9015 linfo[i].insn_off >= prog->len) {
9016 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9017 i, linfo[i].insn_off, prev_offset,
9018 prog->len);
9019 err = -EINVAL;
9020 goto err_free;
9021 }
9022
9023 if (!prog->insnsi[linfo[i].insn_off].code) {
9024 verbose(env,
9025 "Invalid insn code at line_info[%u].insn_off\n",
9026 i);
9027 err = -EINVAL;
9028 goto err_free;
9029 }
9030
9031 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9032 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9033 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9034 err = -EINVAL;
9035 goto err_free;
9036 }
9037
9038 if (s != env->subprog_cnt) {
9039 if (linfo[i].insn_off == sub[s].start) {
9040 sub[s].linfo_idx = i;
9041 s++;
9042 } else if (sub[s].start < linfo[i].insn_off) {
9043 verbose(env, "missing bpf_line_info for func#%u\n", s);
9044 err = -EINVAL;
9045 goto err_free;
9046 }
9047 }
9048
9049 prev_offset = linfo[i].insn_off;
9050 ulinfo += rec_size;
9051 }
9052
9053 if (s != env->subprog_cnt) {
9054 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9055 env->subprog_cnt - s, s);
9056 err = -EINVAL;
9057 goto err_free;
9058 }
9059
9060 prog->aux->linfo = linfo;
9061 prog->aux->nr_linfo = nr_linfo;
9062
9063 return 0;
9064
9065 err_free:
9066 kvfree(linfo);
9067 return err;
9068 }
9069
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)9070 static int check_btf_info(struct bpf_verifier_env *env,
9071 const union bpf_attr *attr,
9072 union bpf_attr __user *uattr)
9073 {
9074 struct btf *btf;
9075 int err;
9076
9077 if (!attr->func_info_cnt && !attr->line_info_cnt) {
9078 if (check_abnormal_return(env))
9079 return -EINVAL;
9080 return 0;
9081 }
9082
9083 btf = btf_get_by_fd(attr->prog_btf_fd);
9084 if (IS_ERR(btf))
9085 return PTR_ERR(btf);
9086 env->prog->aux->btf = btf;
9087
9088 err = check_btf_func(env, attr, uattr);
9089 if (err)
9090 return err;
9091
9092 err = check_btf_line(env, attr, uattr);
9093 if (err)
9094 return err;
9095
9096 return 0;
9097 }
9098
9099 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)9100 static bool range_within(struct bpf_reg_state *old,
9101 struct bpf_reg_state *cur)
9102 {
9103 return old->umin_value <= cur->umin_value &&
9104 old->umax_value >= cur->umax_value &&
9105 old->smin_value <= cur->smin_value &&
9106 old->smax_value >= cur->smax_value &&
9107 old->u32_min_value <= cur->u32_min_value &&
9108 old->u32_max_value >= cur->u32_max_value &&
9109 old->s32_min_value <= cur->s32_min_value &&
9110 old->s32_max_value >= cur->s32_max_value;
9111 }
9112
9113 /* If in the old state two registers had the same id, then they need to have
9114 * the same id in the new state as well. But that id could be different from
9115 * the old state, so we need to track the mapping from old to new ids.
9116 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9117 * regs with old id 5 must also have new id 9 for the new state to be safe. But
9118 * regs with a different old id could still have new id 9, we don't care about
9119 * that.
9120 * So we look through our idmap to see if this old id has been seen before. If
9121 * so, we require the new id to match; otherwise, we add the id pair to the map.
9122 */
check_ids(u32 old_id,u32 cur_id,struct bpf_id_pair * idmap)9123 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
9124 {
9125 unsigned int i;
9126
9127 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
9128 if (!idmap[i].old) {
9129 /* Reached an empty slot; haven't seen this id before */
9130 idmap[i].old = old_id;
9131 idmap[i].cur = cur_id;
9132 return true;
9133 }
9134 if (idmap[i].old == old_id)
9135 return idmap[i].cur == cur_id;
9136 }
9137 /* We ran out of idmap slots, which should be impossible */
9138 WARN_ON_ONCE(1);
9139 return false;
9140 }
9141
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)9142 static void clean_func_state(struct bpf_verifier_env *env,
9143 struct bpf_func_state *st)
9144 {
9145 enum bpf_reg_liveness live;
9146 int i, j;
9147
9148 for (i = 0; i < BPF_REG_FP; i++) {
9149 live = st->regs[i].live;
9150 /* liveness must not touch this register anymore */
9151 st->regs[i].live |= REG_LIVE_DONE;
9152 if (!(live & REG_LIVE_READ))
9153 /* since the register is unused, clear its state
9154 * to make further comparison simpler
9155 */
9156 __mark_reg_not_init(env, &st->regs[i]);
9157 }
9158
9159 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9160 live = st->stack[i].spilled_ptr.live;
9161 /* liveness must not touch this stack slot anymore */
9162 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9163 if (!(live & REG_LIVE_READ)) {
9164 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9165 for (j = 0; j < BPF_REG_SIZE; j++)
9166 st->stack[i].slot_type[j] = STACK_INVALID;
9167 }
9168 }
9169 }
9170
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)9171 static void clean_verifier_state(struct bpf_verifier_env *env,
9172 struct bpf_verifier_state *st)
9173 {
9174 int i;
9175
9176 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9177 /* all regs in this state in all frames were already marked */
9178 return;
9179
9180 for (i = 0; i <= st->curframe; i++)
9181 clean_func_state(env, st->frame[i]);
9182 }
9183
9184 /* the parentage chains form a tree.
9185 * the verifier states are added to state lists at given insn and
9186 * pushed into state stack for future exploration.
9187 * when the verifier reaches bpf_exit insn some of the verifer states
9188 * stored in the state lists have their final liveness state already,
9189 * but a lot of states will get revised from liveness point of view when
9190 * the verifier explores other branches.
9191 * Example:
9192 * 1: r0 = 1
9193 * 2: if r1 == 100 goto pc+1
9194 * 3: r0 = 2
9195 * 4: exit
9196 * when the verifier reaches exit insn the register r0 in the state list of
9197 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9198 * of insn 2 and goes exploring further. At the insn 4 it will walk the
9199 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9200 *
9201 * Since the verifier pushes the branch states as it sees them while exploring
9202 * the program the condition of walking the branch instruction for the second
9203 * time means that all states below this branch were already explored and
9204 * their final liveness markes are already propagated.
9205 * Hence when the verifier completes the search of state list in is_state_visited()
9206 * we can call this clean_live_states() function to mark all liveness states
9207 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9208 * will not be used.
9209 * This function also clears the registers and stack for states that !READ
9210 * to simplify state merging.
9211 *
9212 * Important note here that walking the same branch instruction in the callee
9213 * doesn't meant that the states are DONE. The verifier has to compare
9214 * the callsites
9215 */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)9216 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9217 struct bpf_verifier_state *cur)
9218 {
9219 struct bpf_verifier_state_list *sl;
9220 int i;
9221
9222 sl = *explored_state(env, insn);
9223 while (sl) {
9224 if (sl->state.branches)
9225 goto next;
9226 if (sl->state.insn_idx != insn ||
9227 sl->state.curframe != cur->curframe)
9228 goto next;
9229 for (i = 0; i <= cur->curframe; i++)
9230 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9231 goto next;
9232 clean_verifier_state(env, &sl->state);
9233 next:
9234 sl = sl->next;
9235 }
9236 }
9237
9238 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_id_pair * idmap)9239 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
9240 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
9241 {
9242 bool equal;
9243
9244 if (!(rold->live & REG_LIVE_READ))
9245 /* explored state didn't use this */
9246 return true;
9247
9248 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9249
9250 if (rold->type == PTR_TO_STACK)
9251 /* two stack pointers are equal only if they're pointing to
9252 * the same stack frame, since fp-8 in foo != fp-8 in bar
9253 */
9254 return equal && rold->frameno == rcur->frameno;
9255
9256 if (equal)
9257 return true;
9258
9259 if (rold->type == NOT_INIT)
9260 /* explored state can't have used this */
9261 return true;
9262 if (rcur->type == NOT_INIT)
9263 return false;
9264 switch (base_type(rold->type)) {
9265 case SCALAR_VALUE:
9266 if (env->explore_alu_limits)
9267 return false;
9268 if (rcur->type == SCALAR_VALUE) {
9269 if (!rold->precise && !rcur->precise)
9270 return true;
9271 /* new val must satisfy old val knowledge */
9272 return range_within(rold, rcur) &&
9273 tnum_in(rold->var_off, rcur->var_off);
9274 } else {
9275 /* We're trying to use a pointer in place of a scalar.
9276 * Even if the scalar was unbounded, this could lead to
9277 * pointer leaks because scalars are allowed to leak
9278 * while pointers are not. We could make this safe in
9279 * special cases if root is calling us, but it's
9280 * probably not worth the hassle.
9281 */
9282 return false;
9283 }
9284 case PTR_TO_MAP_VALUE:
9285 /* a PTR_TO_MAP_VALUE could be safe to use as a
9286 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9287 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9288 * checked, doing so could have affected others with the same
9289 * id, and we can't check for that because we lost the id when
9290 * we converted to a PTR_TO_MAP_VALUE.
9291 */
9292 if (type_may_be_null(rold->type)) {
9293 if (!type_may_be_null(rcur->type))
9294 return false;
9295 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9296 return false;
9297 /* Check our ids match any regs they're supposed to */
9298 return check_ids(rold->id, rcur->id, idmap);
9299 }
9300
9301 /* If the new min/max/var_off satisfy the old ones and
9302 * everything else matches, we are OK.
9303 * 'id' is not compared, since it's only used for maps with
9304 * bpf_spin_lock inside map element and in such cases if
9305 * the rest of the prog is valid for one map element then
9306 * it's valid for all map elements regardless of the key
9307 * used in bpf_map_lookup()
9308 */
9309 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9310 range_within(rold, rcur) &&
9311 tnum_in(rold->var_off, rcur->var_off);
9312 case PTR_TO_PACKET_META:
9313 case PTR_TO_PACKET:
9314 if (rcur->type != rold->type)
9315 return false;
9316 /* We must have at least as much range as the old ptr
9317 * did, so that any accesses which were safe before are
9318 * still safe. This is true even if old range < old off,
9319 * since someone could have accessed through (ptr - k), or
9320 * even done ptr -= k in a register, to get a safe access.
9321 */
9322 if (rold->range > rcur->range)
9323 return false;
9324 /* If the offsets don't match, we can't trust our alignment;
9325 * nor can we be sure that we won't fall out of range.
9326 */
9327 if (rold->off != rcur->off)
9328 return false;
9329 /* id relations must be preserved */
9330 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9331 return false;
9332 /* new val must satisfy old val knowledge */
9333 return range_within(rold, rcur) &&
9334 tnum_in(rold->var_off, rcur->var_off);
9335 case PTR_TO_CTX:
9336 case CONST_PTR_TO_MAP:
9337 case PTR_TO_PACKET_END:
9338 case PTR_TO_FLOW_KEYS:
9339 case PTR_TO_SOCKET:
9340 case PTR_TO_SOCK_COMMON:
9341 case PTR_TO_TCP_SOCK:
9342 case PTR_TO_XDP_SOCK:
9343 /* Only valid matches are exact, which memcmp() above
9344 * would have accepted
9345 */
9346 default:
9347 /* Don't know what's going on, just say it's not safe */
9348 return false;
9349 }
9350
9351 /* Shouldn't get here; if we do, say it's not safe */
9352 WARN_ON_ONCE(1);
9353 return false;
9354 }
9355
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_id_pair * idmap)9356 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
9357 struct bpf_func_state *cur, struct bpf_id_pair *idmap)
9358 {
9359 int i, spi;
9360
9361 /* walk slots of the explored stack and ignore any additional
9362 * slots in the current stack, since explored(safe) state
9363 * didn't use them
9364 */
9365 for (i = 0; i < old->allocated_stack; i++) {
9366 spi = i / BPF_REG_SIZE;
9367
9368 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
9369 i += BPF_REG_SIZE - 1;
9370 /* explored state didn't use this */
9371 continue;
9372 }
9373
9374 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
9375 continue;
9376
9377 /* explored stack has more populated slots than current stack
9378 * and these slots were used
9379 */
9380 if (i >= cur->allocated_stack)
9381 return false;
9382
9383 /* if old state was safe with misc data in the stack
9384 * it will be safe with zero-initialized stack.
9385 * The opposite is not true
9386 */
9387 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
9388 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
9389 continue;
9390 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
9391 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
9392 /* Ex: old explored (safe) state has STACK_SPILL in
9393 * this stack slot, but current has STACK_MISC ->
9394 * this verifier states are not equivalent,
9395 * return false to continue verification of this path
9396 */
9397 return false;
9398 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
9399 continue;
9400 if (!is_spilled_reg(&old->stack[spi]))
9401 continue;
9402 if (!regsafe(env, &old->stack[spi].spilled_ptr,
9403 &cur->stack[spi].spilled_ptr, idmap))
9404 /* when explored and current stack slot are both storing
9405 * spilled registers, check that stored pointers types
9406 * are the same as well.
9407 * Ex: explored safe path could have stored
9408 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9409 * but current path has stored:
9410 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9411 * such verifier states are not equivalent.
9412 * return false to continue verification of this path
9413 */
9414 return false;
9415 }
9416 return true;
9417 }
9418
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur)9419 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
9420 {
9421 if (old->acquired_refs != cur->acquired_refs)
9422 return false;
9423 return !memcmp(old->refs, cur->refs,
9424 sizeof(*old->refs) * old->acquired_refs);
9425 }
9426
9427 /* compare two verifier states
9428 *
9429 * all states stored in state_list are known to be valid, since
9430 * verifier reached 'bpf_exit' instruction through them
9431 *
9432 * this function is called when verifier exploring different branches of
9433 * execution popped from the state stack. If it sees an old state that has
9434 * more strict register state and more strict stack state then this execution
9435 * branch doesn't need to be explored further, since verifier already
9436 * concluded that more strict state leads to valid finish.
9437 *
9438 * Therefore two states are equivalent if register state is more conservative
9439 * and explored stack state is more conservative than the current one.
9440 * Example:
9441 * explored current
9442 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
9443 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
9444 *
9445 * In other words if current stack state (one being explored) has more
9446 * valid slots than old one that already passed validation, it means
9447 * the verifier can stop exploring and conclude that current state is valid too
9448 *
9449 * Similarly with registers. If explored state has register type as invalid
9450 * whereas register type in current state is meaningful, it means that
9451 * the current state will reach 'bpf_exit' instruction safely
9452 */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur)9453 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
9454 struct bpf_func_state *cur)
9455 {
9456 int i;
9457
9458 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
9459 for (i = 0; i < MAX_BPF_REG; i++)
9460 if (!regsafe(env, &old->regs[i], &cur->regs[i],
9461 env->idmap_scratch))
9462 return false;
9463
9464 if (!stacksafe(env, old, cur, env->idmap_scratch))
9465 return false;
9466
9467 if (!refsafe(old, cur))
9468 return false;
9469
9470 return true;
9471 }
9472
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)9473 static bool states_equal(struct bpf_verifier_env *env,
9474 struct bpf_verifier_state *old,
9475 struct bpf_verifier_state *cur)
9476 {
9477 int i;
9478
9479 if (old->curframe != cur->curframe)
9480 return false;
9481
9482 /* Verification state from speculative execution simulation
9483 * must never prune a non-speculative execution one.
9484 */
9485 if (old->speculative && !cur->speculative)
9486 return false;
9487
9488 if (old->active_spin_lock != cur->active_spin_lock)
9489 return false;
9490
9491 /* for states to be equal callsites have to be the same
9492 * and all frame states need to be equivalent
9493 */
9494 for (i = 0; i <= old->curframe; i++) {
9495 if (old->frame[i]->callsite != cur->frame[i]->callsite)
9496 return false;
9497 if (!func_states_equal(env, old->frame[i], cur->frame[i]))
9498 return false;
9499 }
9500 return true;
9501 }
9502
9503 /* Return 0 if no propagation happened. Return negative error code if error
9504 * happened. Otherwise, return the propagated bit.
9505 */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)9506 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9507 struct bpf_reg_state *reg,
9508 struct bpf_reg_state *parent_reg)
9509 {
9510 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9511 u8 flag = reg->live & REG_LIVE_READ;
9512 int err;
9513
9514 /* When comes here, read flags of PARENT_REG or REG could be any of
9515 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9516 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9517 */
9518 if (parent_flag == REG_LIVE_READ64 ||
9519 /* Or if there is no read flag from REG. */
9520 !flag ||
9521 /* Or if the read flag from REG is the same as PARENT_REG. */
9522 parent_flag == flag)
9523 return 0;
9524
9525 err = mark_reg_read(env, reg, parent_reg, flag);
9526 if (err)
9527 return err;
9528
9529 return flag;
9530 }
9531
9532 /* A write screens off any subsequent reads; but write marks come from the
9533 * straight-line code between a state and its parent. When we arrive at an
9534 * equivalent state (jump target or such) we didn't arrive by the straight-line
9535 * code, so read marks in the state must propagate to the parent regardless
9536 * of the state's write marks. That's what 'parent == state->parent' comparison
9537 * in mark_reg_read() is for.
9538 */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)9539 static int propagate_liveness(struct bpf_verifier_env *env,
9540 const struct bpf_verifier_state *vstate,
9541 struct bpf_verifier_state *vparent)
9542 {
9543 struct bpf_reg_state *state_reg, *parent_reg;
9544 struct bpf_func_state *state, *parent;
9545 int i, frame, err = 0;
9546
9547 if (vparent->curframe != vstate->curframe) {
9548 WARN(1, "propagate_live: parent frame %d current frame %d\n",
9549 vparent->curframe, vstate->curframe);
9550 return -EFAULT;
9551 }
9552 /* Propagate read liveness of registers... */
9553 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9554 for (frame = 0; frame <= vstate->curframe; frame++) {
9555 parent = vparent->frame[frame];
9556 state = vstate->frame[frame];
9557 parent_reg = parent->regs;
9558 state_reg = state->regs;
9559 /* We don't need to worry about FP liveness, it's read-only */
9560 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9561 err = propagate_liveness_reg(env, &state_reg[i],
9562 &parent_reg[i]);
9563 if (err < 0)
9564 return err;
9565 if (err == REG_LIVE_READ64)
9566 mark_insn_zext(env, &parent_reg[i]);
9567 }
9568
9569 /* Propagate stack slots. */
9570 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9571 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9572 parent_reg = &parent->stack[i].spilled_ptr;
9573 state_reg = &state->stack[i].spilled_ptr;
9574 err = propagate_liveness_reg(env, state_reg,
9575 parent_reg);
9576 if (err < 0)
9577 return err;
9578 }
9579 }
9580 return 0;
9581 }
9582
9583 /* find precise scalars in the previous equivalent state and
9584 * propagate them into the current state
9585 */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)9586 static int propagate_precision(struct bpf_verifier_env *env,
9587 const struct bpf_verifier_state *old)
9588 {
9589 struct bpf_reg_state *state_reg;
9590 struct bpf_func_state *state;
9591 int i, err = 0, fr;
9592
9593 for (fr = old->curframe; fr >= 0; fr--) {
9594 state = old->frame[fr];
9595 state_reg = state->regs;
9596 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9597 if (state_reg->type != SCALAR_VALUE ||
9598 !state_reg->precise ||
9599 !(state_reg->live & REG_LIVE_READ))
9600 continue;
9601 if (env->log.level & BPF_LOG_LEVEL2)
9602 verbose(env, "frame %d: propagating r%d\n", fr, i);
9603 err = mark_chain_precision_frame(env, fr, i);
9604 if (err < 0)
9605 return err;
9606 }
9607
9608 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9609 if (!is_spilled_reg(&state->stack[i]))
9610 continue;
9611 state_reg = &state->stack[i].spilled_ptr;
9612 if (state_reg->type != SCALAR_VALUE ||
9613 !state_reg->precise ||
9614 !(state_reg->live & REG_LIVE_READ))
9615 continue;
9616 if (env->log.level & BPF_LOG_LEVEL2)
9617 verbose(env, "frame %d: propagating fp%d\n",
9618 fr, (-i - 1) * BPF_REG_SIZE);
9619 err = mark_chain_precision_stack_frame(env, fr, i);
9620 if (err < 0)
9621 return err;
9622 }
9623 }
9624 return 0;
9625 }
9626
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)9627 static bool states_maybe_looping(struct bpf_verifier_state *old,
9628 struct bpf_verifier_state *cur)
9629 {
9630 struct bpf_func_state *fold, *fcur;
9631 int i, fr = cur->curframe;
9632
9633 if (old->curframe != fr)
9634 return false;
9635
9636 fold = old->frame[fr];
9637 fcur = cur->frame[fr];
9638 for (i = 0; i < MAX_BPF_REG; i++)
9639 if (memcmp(&fold->regs[i], &fcur->regs[i],
9640 offsetof(struct bpf_reg_state, parent)))
9641 return false;
9642 return true;
9643 }
9644
9645
is_state_visited(struct bpf_verifier_env * env,int insn_idx)9646 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9647 {
9648 struct bpf_verifier_state_list *new_sl;
9649 struct bpf_verifier_state_list *sl, **pprev;
9650 struct bpf_verifier_state *cur = env->cur_state, *new;
9651 int i, j, err, states_cnt = 0;
9652 bool add_new_state = env->test_state_freq ? true : false;
9653
9654 cur->last_insn_idx = env->prev_insn_idx;
9655 if (!env->insn_aux_data[insn_idx].prune_point)
9656 /* this 'insn_idx' instruction wasn't marked, so we will not
9657 * be doing state search here
9658 */
9659 return 0;
9660
9661 /* bpf progs typically have pruning point every 4 instructions
9662 * http://vger.kernel.org/bpfconf2019.html#session-1
9663 * Do not add new state for future pruning if the verifier hasn't seen
9664 * at least 2 jumps and at least 8 instructions.
9665 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9666 * In tests that amounts to up to 50% reduction into total verifier
9667 * memory consumption and 20% verifier time speedup.
9668 */
9669 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9670 env->insn_processed - env->prev_insn_processed >= 8)
9671 add_new_state = true;
9672
9673 pprev = explored_state(env, insn_idx);
9674 sl = *pprev;
9675
9676 clean_live_states(env, insn_idx, cur);
9677
9678 while (sl) {
9679 states_cnt++;
9680 if (sl->state.insn_idx != insn_idx)
9681 goto next;
9682 if (sl->state.branches) {
9683 if (states_maybe_looping(&sl->state, cur) &&
9684 states_equal(env, &sl->state, cur)) {
9685 verbose_linfo(env, insn_idx, "; ");
9686 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9687 return -EINVAL;
9688 }
9689 /* if the verifier is processing a loop, avoid adding new state
9690 * too often, since different loop iterations have distinct
9691 * states and may not help future pruning.
9692 * This threshold shouldn't be too low to make sure that
9693 * a loop with large bound will be rejected quickly.
9694 * The most abusive loop will be:
9695 * r1 += 1
9696 * if r1 < 1000000 goto pc-2
9697 * 1M insn_procssed limit / 100 == 10k peak states.
9698 * This threshold shouldn't be too high either, since states
9699 * at the end of the loop are likely to be useful in pruning.
9700 */
9701 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9702 env->insn_processed - env->prev_insn_processed < 100)
9703 add_new_state = false;
9704 goto miss;
9705 }
9706 if (states_equal(env, &sl->state, cur)) {
9707 sl->hit_cnt++;
9708 /* reached equivalent register/stack state,
9709 * prune the search.
9710 * Registers read by the continuation are read by us.
9711 * If we have any write marks in env->cur_state, they
9712 * will prevent corresponding reads in the continuation
9713 * from reaching our parent (an explored_state). Our
9714 * own state will get the read marks recorded, but
9715 * they'll be immediately forgotten as we're pruning
9716 * this state and will pop a new one.
9717 */
9718 err = propagate_liveness(env, &sl->state, cur);
9719
9720 /* if previous state reached the exit with precision and
9721 * current state is equivalent to it (except precsion marks)
9722 * the precision needs to be propagated back in
9723 * the current state.
9724 */
9725 err = err ? : push_jmp_history(env, cur);
9726 err = err ? : propagate_precision(env, &sl->state);
9727 if (err)
9728 return err;
9729 return 1;
9730 }
9731 miss:
9732 /* when new state is not going to be added do not increase miss count.
9733 * Otherwise several loop iterations will remove the state
9734 * recorded earlier. The goal of these heuristics is to have
9735 * states from some iterations of the loop (some in the beginning
9736 * and some at the end) to help pruning.
9737 */
9738 if (add_new_state)
9739 sl->miss_cnt++;
9740 /* heuristic to determine whether this state is beneficial
9741 * to keep checking from state equivalence point of view.
9742 * Higher numbers increase max_states_per_insn and verification time,
9743 * but do not meaningfully decrease insn_processed.
9744 */
9745 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9746 /* the state is unlikely to be useful. Remove it to
9747 * speed up verification
9748 */
9749 *pprev = sl->next;
9750 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9751 u32 br = sl->state.branches;
9752
9753 WARN_ONCE(br,
9754 "BUG live_done but branches_to_explore %d\n",
9755 br);
9756 free_verifier_state(&sl->state, false);
9757 kfree(sl);
9758 env->peak_states--;
9759 } else {
9760 /* cannot free this state, since parentage chain may
9761 * walk it later. Add it for free_list instead to
9762 * be freed at the end of verification
9763 */
9764 sl->next = env->free_list;
9765 env->free_list = sl;
9766 }
9767 sl = *pprev;
9768 continue;
9769 }
9770 next:
9771 pprev = &sl->next;
9772 sl = *pprev;
9773 }
9774
9775 if (env->max_states_per_insn < states_cnt)
9776 env->max_states_per_insn = states_cnt;
9777
9778 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9779 return push_jmp_history(env, cur);
9780
9781 if (!add_new_state)
9782 return push_jmp_history(env, cur);
9783
9784 /* There were no equivalent states, remember the current one.
9785 * Technically the current state is not proven to be safe yet,
9786 * but it will either reach outer most bpf_exit (which means it's safe)
9787 * or it will be rejected. When there are no loops the verifier won't be
9788 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9789 * again on the way to bpf_exit.
9790 * When looping the sl->state.branches will be > 0 and this state
9791 * will not be considered for equivalence until branches == 0.
9792 */
9793 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9794 if (!new_sl)
9795 return -ENOMEM;
9796 env->total_states++;
9797 env->peak_states++;
9798 env->prev_jmps_processed = env->jmps_processed;
9799 env->prev_insn_processed = env->insn_processed;
9800
9801 /* add new state to the head of linked list */
9802 new = &new_sl->state;
9803 err = copy_verifier_state(new, cur);
9804 if (err) {
9805 free_verifier_state(new, false);
9806 kfree(new_sl);
9807 return err;
9808 }
9809 new->insn_idx = insn_idx;
9810 WARN_ONCE(new->branches != 1,
9811 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9812
9813 cur->parent = new;
9814 cur->first_insn_idx = insn_idx;
9815 clear_jmp_history(cur);
9816 new_sl->next = *explored_state(env, insn_idx);
9817 *explored_state(env, insn_idx) = new_sl;
9818 /* connect new state to parentage chain. Current frame needs all
9819 * registers connected. Only r6 - r9 of the callers are alive (pushed
9820 * to the stack implicitly by JITs) so in callers' frames connect just
9821 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9822 * the state of the call instruction (with WRITTEN set), and r0 comes
9823 * from callee with its full parentage chain, anyway.
9824 */
9825 /* clear write marks in current state: the writes we did are not writes
9826 * our child did, so they don't screen off its reads from us.
9827 * (There are no read marks in current state, because reads always mark
9828 * their parent and current state never has children yet. Only
9829 * explored_states can get read marks.)
9830 */
9831 for (j = 0; j <= cur->curframe; j++) {
9832 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9833 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9834 for (i = 0; i < BPF_REG_FP; i++)
9835 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9836 }
9837
9838 /* all stack frames are accessible from callee, clear them all */
9839 for (j = 0; j <= cur->curframe; j++) {
9840 struct bpf_func_state *frame = cur->frame[j];
9841 struct bpf_func_state *newframe = new->frame[j];
9842
9843 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9844 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9845 frame->stack[i].spilled_ptr.parent =
9846 &newframe->stack[i].spilled_ptr;
9847 }
9848 }
9849 return 0;
9850 }
9851
9852 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)9853 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9854 {
9855 switch (base_type(type)) {
9856 case PTR_TO_CTX:
9857 case PTR_TO_SOCKET:
9858 case PTR_TO_SOCK_COMMON:
9859 case PTR_TO_TCP_SOCK:
9860 case PTR_TO_XDP_SOCK:
9861 case PTR_TO_BTF_ID:
9862 return false;
9863 default:
9864 return true;
9865 }
9866 }
9867
9868 /* If an instruction was previously used with particular pointer types, then we
9869 * need to be careful to avoid cases such as the below, where it may be ok
9870 * for one branch accessing the pointer, but not ok for the other branch:
9871 *
9872 * R1 = sock_ptr
9873 * goto X;
9874 * ...
9875 * R1 = some_other_valid_ptr;
9876 * goto X;
9877 * ...
9878 * R2 = *(u32 *)(R1 + 0);
9879 */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)9880 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9881 {
9882 return src != prev && (!reg_type_mismatch_ok(src) ||
9883 !reg_type_mismatch_ok(prev));
9884 }
9885
do_check(struct bpf_verifier_env * env)9886 static int do_check(struct bpf_verifier_env *env)
9887 {
9888 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9889 struct bpf_verifier_state *state = env->cur_state;
9890 struct bpf_insn *insns = env->prog->insnsi;
9891 struct bpf_reg_state *regs;
9892 int insn_cnt = env->prog->len;
9893 bool do_print_state = false;
9894 int prev_insn_idx = -1;
9895
9896 for (;;) {
9897 struct bpf_insn *insn;
9898 u8 class;
9899 int err;
9900
9901 env->prev_insn_idx = prev_insn_idx;
9902 if (env->insn_idx >= insn_cnt) {
9903 verbose(env, "invalid insn idx %d insn_cnt %d\n",
9904 env->insn_idx, insn_cnt);
9905 return -EFAULT;
9906 }
9907
9908 insn = &insns[env->insn_idx];
9909 class = BPF_CLASS(insn->code);
9910
9911 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
9912 verbose(env,
9913 "BPF program is too large. Processed %d insn\n",
9914 env->insn_processed);
9915 return -E2BIG;
9916 }
9917
9918 err = is_state_visited(env, env->insn_idx);
9919 if (err < 0)
9920 return err;
9921 if (err == 1) {
9922 /* found equivalent state, can prune the search */
9923 if (env->log.level & BPF_LOG_LEVEL) {
9924 if (do_print_state)
9925 verbose(env, "\nfrom %d to %d%s: safe\n",
9926 env->prev_insn_idx, env->insn_idx,
9927 env->cur_state->speculative ?
9928 " (speculative execution)" : "");
9929 else
9930 verbose(env, "%d: safe\n", env->insn_idx);
9931 }
9932 goto process_bpf_exit;
9933 }
9934
9935 if (signal_pending(current))
9936 return -EAGAIN;
9937
9938 if (need_resched())
9939 cond_resched();
9940
9941 if (env->log.level & BPF_LOG_LEVEL2 ||
9942 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9943 if (env->log.level & BPF_LOG_LEVEL2)
9944 verbose(env, "%d:", env->insn_idx);
9945 else
9946 verbose(env, "\nfrom %d to %d%s:",
9947 env->prev_insn_idx, env->insn_idx,
9948 env->cur_state->speculative ?
9949 " (speculative execution)" : "");
9950 print_verifier_state(env, state->frame[state->curframe]);
9951 do_print_state = false;
9952 }
9953
9954 if (env->log.level & BPF_LOG_LEVEL) {
9955 const struct bpf_insn_cbs cbs = {
9956 .cb_print = verbose,
9957 .private_data = env,
9958 };
9959
9960 verbose_linfo(env, env->insn_idx, "; ");
9961 verbose(env, "%d: ", env->insn_idx);
9962 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
9963 }
9964
9965 if (bpf_prog_is_dev_bound(env->prog->aux)) {
9966 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9967 env->prev_insn_idx);
9968 if (err)
9969 return err;
9970 }
9971
9972 regs = cur_regs(env);
9973 sanitize_mark_insn_seen(env);
9974 prev_insn_idx = env->insn_idx;
9975
9976 if (class == BPF_ALU || class == BPF_ALU64) {
9977 err = check_alu_op(env, insn);
9978 if (err)
9979 return err;
9980
9981 } else if (class == BPF_LDX) {
9982 enum bpf_reg_type *prev_src_type, src_reg_type;
9983
9984 /* check for reserved fields is already done */
9985
9986 /* check src operand */
9987 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9988 if (err)
9989 return err;
9990
9991 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9992 if (err)
9993 return err;
9994
9995 src_reg_type = regs[insn->src_reg].type;
9996
9997 /* check that memory (src_reg + off) is readable,
9998 * the state of dst_reg will be updated by this func
9999 */
10000 err = check_mem_access(env, env->insn_idx, insn->src_reg,
10001 insn->off, BPF_SIZE(insn->code),
10002 BPF_READ, insn->dst_reg, false);
10003 if (err)
10004 return err;
10005
10006 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10007
10008 if (*prev_src_type == NOT_INIT) {
10009 /* saw a valid insn
10010 * dst_reg = *(u32 *)(src_reg + off)
10011 * save type to validate intersecting paths
10012 */
10013 *prev_src_type = src_reg_type;
10014
10015 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10016 /* ABuser program is trying to use the same insn
10017 * dst_reg = *(u32*) (src_reg + off)
10018 * with different pointer types:
10019 * src_reg == ctx in one branch and
10020 * src_reg == stack|map in some other branch.
10021 * Reject it.
10022 */
10023 verbose(env, "same insn cannot be used with different pointers\n");
10024 return -EINVAL;
10025 }
10026
10027 } else if (class == BPF_STX) {
10028 enum bpf_reg_type *prev_dst_type, dst_reg_type;
10029
10030 if (BPF_MODE(insn->code) == BPF_XADD) {
10031 err = check_xadd(env, env->insn_idx, insn);
10032 if (err)
10033 return err;
10034 env->insn_idx++;
10035 continue;
10036 }
10037
10038 /* check src1 operand */
10039 err = check_reg_arg(env, insn->src_reg, SRC_OP);
10040 if (err)
10041 return err;
10042 /* check src2 operand */
10043 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10044 if (err)
10045 return err;
10046
10047 dst_reg_type = regs[insn->dst_reg].type;
10048
10049 /* check that memory (dst_reg + off) is writeable */
10050 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10051 insn->off, BPF_SIZE(insn->code),
10052 BPF_WRITE, insn->src_reg, false);
10053 if (err)
10054 return err;
10055
10056 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10057
10058 if (*prev_dst_type == NOT_INIT) {
10059 *prev_dst_type = dst_reg_type;
10060 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10061 verbose(env, "same insn cannot be used with different pointers\n");
10062 return -EINVAL;
10063 }
10064
10065 } else if (class == BPF_ST) {
10066 if (BPF_MODE(insn->code) != BPF_MEM ||
10067 insn->src_reg != BPF_REG_0) {
10068 verbose(env, "BPF_ST uses reserved fields\n");
10069 return -EINVAL;
10070 }
10071 /* check src operand */
10072 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10073 if (err)
10074 return err;
10075
10076 if (is_ctx_reg(env, insn->dst_reg)) {
10077 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10078 insn->dst_reg,
10079 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
10080 return -EACCES;
10081 }
10082
10083 /* check that memory (dst_reg + off) is writeable */
10084 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10085 insn->off, BPF_SIZE(insn->code),
10086 BPF_WRITE, -1, false);
10087 if (err)
10088 return err;
10089
10090 } else if (class == BPF_JMP || class == BPF_JMP32) {
10091 u8 opcode = BPF_OP(insn->code);
10092
10093 env->jmps_processed++;
10094 if (opcode == BPF_CALL) {
10095 if (BPF_SRC(insn->code) != BPF_K ||
10096 insn->off != 0 ||
10097 (insn->src_reg != BPF_REG_0 &&
10098 insn->src_reg != BPF_PSEUDO_CALL) ||
10099 insn->dst_reg != BPF_REG_0 ||
10100 class == BPF_JMP32) {
10101 verbose(env, "BPF_CALL uses reserved fields\n");
10102 return -EINVAL;
10103 }
10104
10105 if (env->cur_state->active_spin_lock &&
10106 (insn->src_reg == BPF_PSEUDO_CALL ||
10107 insn->imm != BPF_FUNC_spin_unlock)) {
10108 verbose(env, "function calls are not allowed while holding a lock\n");
10109 return -EINVAL;
10110 }
10111 if (insn->src_reg == BPF_PSEUDO_CALL)
10112 err = check_func_call(env, insn, &env->insn_idx);
10113 else
10114 err = check_helper_call(env, insn->imm, env->insn_idx);
10115 if (err)
10116 return err;
10117
10118 } else if (opcode == BPF_JA) {
10119 if (BPF_SRC(insn->code) != BPF_K ||
10120 insn->imm != 0 ||
10121 insn->src_reg != BPF_REG_0 ||
10122 insn->dst_reg != BPF_REG_0 ||
10123 class == BPF_JMP32) {
10124 verbose(env, "BPF_JA uses reserved fields\n");
10125 return -EINVAL;
10126 }
10127
10128 env->insn_idx += insn->off + 1;
10129 continue;
10130
10131 } else if (opcode == BPF_EXIT) {
10132 if (BPF_SRC(insn->code) != BPF_K ||
10133 insn->imm != 0 ||
10134 insn->src_reg != BPF_REG_0 ||
10135 insn->dst_reg != BPF_REG_0 ||
10136 class == BPF_JMP32) {
10137 verbose(env, "BPF_EXIT uses reserved fields\n");
10138 return -EINVAL;
10139 }
10140
10141 if (env->cur_state->active_spin_lock) {
10142 verbose(env, "bpf_spin_unlock is missing\n");
10143 return -EINVAL;
10144 }
10145
10146 if (state->curframe) {
10147 /* exit from nested function */
10148 err = prepare_func_exit(env, &env->insn_idx);
10149 if (err)
10150 return err;
10151 do_print_state = true;
10152 continue;
10153 }
10154
10155 err = check_reference_leak(env);
10156 if (err)
10157 return err;
10158
10159 err = check_return_code(env);
10160 if (err)
10161 return err;
10162 process_bpf_exit:
10163 update_branch_counts(env, env->cur_state);
10164 err = pop_stack(env, &prev_insn_idx,
10165 &env->insn_idx, pop_log);
10166 if (err < 0) {
10167 if (err != -ENOENT)
10168 return err;
10169 break;
10170 } else {
10171 do_print_state = true;
10172 continue;
10173 }
10174 } else {
10175 err = check_cond_jmp_op(env, insn, &env->insn_idx);
10176 if (err)
10177 return err;
10178 }
10179 } else if (class == BPF_LD) {
10180 u8 mode = BPF_MODE(insn->code);
10181
10182 if (mode == BPF_ABS || mode == BPF_IND) {
10183 err = check_ld_abs(env, insn);
10184 if (err)
10185 return err;
10186
10187 } else if (mode == BPF_IMM) {
10188 err = check_ld_imm(env, insn);
10189 if (err)
10190 return err;
10191
10192 env->insn_idx++;
10193 sanitize_mark_insn_seen(env);
10194 } else {
10195 verbose(env, "invalid BPF_LD mode\n");
10196 return -EINVAL;
10197 }
10198 } else {
10199 verbose(env, "unknown insn class %d\n", class);
10200 return -EINVAL;
10201 }
10202
10203 env->insn_idx++;
10204 }
10205
10206 return 0;
10207 }
10208
10209 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)10210 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10211 struct bpf_insn *insn,
10212 struct bpf_insn_aux_data *aux)
10213 {
10214 const struct btf_var_secinfo *vsi;
10215 const struct btf_type *datasec;
10216 const struct btf_type *t;
10217 const char *sym_name;
10218 bool percpu = false;
10219 u32 type, id = insn->imm;
10220 s32 datasec_id;
10221 u64 addr;
10222 int i;
10223
10224 if (!btf_vmlinux) {
10225 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10226 return -EINVAL;
10227 }
10228
10229 if (insn[1].imm != 0) {
10230 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n");
10231 return -EINVAL;
10232 }
10233
10234 t = btf_type_by_id(btf_vmlinux, id);
10235 if (!t) {
10236 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10237 return -ENOENT;
10238 }
10239
10240 if (!btf_type_is_var(t)) {
10241 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n",
10242 id);
10243 return -EINVAL;
10244 }
10245
10246 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off);
10247 addr = kallsyms_lookup_name(sym_name);
10248 if (!addr) {
10249 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10250 sym_name);
10251 return -ENOENT;
10252 }
10253
10254 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu",
10255 BTF_KIND_DATASEC);
10256 if (datasec_id > 0) {
10257 datasec = btf_type_by_id(btf_vmlinux, datasec_id);
10258 for_each_vsi(i, datasec, vsi) {
10259 if (vsi->type == id) {
10260 percpu = true;
10261 break;
10262 }
10263 }
10264 }
10265
10266 insn[0].imm = (u32)addr;
10267 insn[1].imm = addr >> 32;
10268
10269 type = t->type;
10270 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL);
10271 if (percpu) {
10272 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10273 aux->btf_var.btf_id = type;
10274 } else if (!btf_type_is_struct(t)) {
10275 const struct btf_type *ret;
10276 const char *tname;
10277 u32 tsize;
10278
10279 /* resolve the type size of ksym. */
10280 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
10281 if (IS_ERR(ret)) {
10282 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
10283 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10284 tname, PTR_ERR(ret));
10285 return -EINVAL;
10286 }
10287 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
10288 aux->btf_var.mem_size = tsize;
10289 } else {
10290 aux->btf_var.reg_type = PTR_TO_BTF_ID;
10291 aux->btf_var.btf_id = type;
10292 }
10293 return 0;
10294 }
10295
check_map_prealloc(struct bpf_map * map)10296 static int check_map_prealloc(struct bpf_map *map)
10297 {
10298 return (map->map_type != BPF_MAP_TYPE_HASH &&
10299 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10300 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
10301 !(map->map_flags & BPF_F_NO_PREALLOC);
10302 }
10303
is_tracing_prog_type(enum bpf_prog_type type)10304 static bool is_tracing_prog_type(enum bpf_prog_type type)
10305 {
10306 switch (type) {
10307 case BPF_PROG_TYPE_KPROBE:
10308 case BPF_PROG_TYPE_TRACEPOINT:
10309 case BPF_PROG_TYPE_PERF_EVENT:
10310 case BPF_PROG_TYPE_RAW_TRACEPOINT:
10311 return true;
10312 default:
10313 return false;
10314 }
10315 }
10316
is_preallocated_map(struct bpf_map * map)10317 static bool is_preallocated_map(struct bpf_map *map)
10318 {
10319 if (!check_map_prealloc(map))
10320 return false;
10321 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
10322 return false;
10323 return true;
10324 }
10325
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)10326 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
10327 struct bpf_map *map,
10328 struct bpf_prog *prog)
10329
10330 {
10331 enum bpf_prog_type prog_type = resolve_prog_type(prog);
10332 /*
10333 * Validate that trace type programs use preallocated hash maps.
10334 *
10335 * For programs attached to PERF events this is mandatory as the
10336 * perf NMI can hit any arbitrary code sequence.
10337 *
10338 * All other trace types using preallocated hash maps are unsafe as
10339 * well because tracepoint or kprobes can be inside locked regions
10340 * of the memory allocator or at a place where a recursion into the
10341 * memory allocator would see inconsistent state.
10342 *
10343 * On RT enabled kernels run-time allocation of all trace type
10344 * programs is strictly prohibited due to lock type constraints. On
10345 * !RT kernels it is allowed for backwards compatibility reasons for
10346 * now, but warnings are emitted so developers are made aware of
10347 * the unsafety and can fix their programs before this is enforced.
10348 */
10349 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
10350 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
10351 verbose(env, "perf_event programs can only use preallocated hash map\n");
10352 return -EINVAL;
10353 }
10354 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
10355 verbose(env, "trace type programs can only use preallocated hash map\n");
10356 return -EINVAL;
10357 }
10358 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
10359 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
10360 }
10361
10362 if ((is_tracing_prog_type(prog_type) ||
10363 prog_type == BPF_PROG_TYPE_SOCKET_FILTER) &&
10364 map_value_has_spin_lock(map)) {
10365 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
10366 return -EINVAL;
10367 }
10368
10369 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
10370 !bpf_offload_prog_map_match(prog, map)) {
10371 verbose(env, "offload device mismatch between prog and map\n");
10372 return -EINVAL;
10373 }
10374
10375 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
10376 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
10377 return -EINVAL;
10378 }
10379
10380 if (prog->aux->sleepable)
10381 switch (map->map_type) {
10382 case BPF_MAP_TYPE_HASH:
10383 case BPF_MAP_TYPE_LRU_HASH:
10384 case BPF_MAP_TYPE_ARRAY:
10385 if (!is_preallocated_map(map)) {
10386 verbose(env,
10387 "Sleepable programs can only use preallocated hash maps\n");
10388 return -EINVAL;
10389 }
10390 break;
10391 default:
10392 verbose(env,
10393 "Sleepable programs can only use array and hash maps\n");
10394 return -EINVAL;
10395 }
10396
10397 return 0;
10398 }
10399
bpf_map_is_cgroup_storage(struct bpf_map * map)10400 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
10401 {
10402 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
10403 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
10404 }
10405
10406 /* find and rewrite pseudo imm in ld_imm64 instructions:
10407 *
10408 * 1. if it accesses map FD, replace it with actual map pointer.
10409 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
10410 *
10411 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
10412 */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)10413 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
10414 {
10415 struct bpf_insn *insn = env->prog->insnsi;
10416 int insn_cnt = env->prog->len;
10417 int i, j, err;
10418
10419 err = bpf_prog_calc_tag(env->prog);
10420 if (err)
10421 return err;
10422
10423 for (i = 0; i < insn_cnt; i++, insn++) {
10424 if (BPF_CLASS(insn->code) == BPF_LDX &&
10425 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
10426 verbose(env, "BPF_LDX uses reserved fields\n");
10427 return -EINVAL;
10428 }
10429
10430 if (BPF_CLASS(insn->code) == BPF_STX &&
10431 ((BPF_MODE(insn->code) != BPF_MEM &&
10432 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
10433 verbose(env, "BPF_STX uses reserved fields\n");
10434 return -EINVAL;
10435 }
10436
10437 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
10438 struct bpf_insn_aux_data *aux;
10439 struct bpf_map *map;
10440 struct fd f;
10441 u64 addr;
10442
10443 if (i == insn_cnt - 1 || insn[1].code != 0 ||
10444 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
10445 insn[1].off != 0) {
10446 verbose(env, "invalid bpf_ld_imm64 insn\n");
10447 return -EINVAL;
10448 }
10449
10450 if (insn[0].src_reg == 0)
10451 /* valid generic load 64-bit imm */
10452 goto next_insn;
10453
10454 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
10455 aux = &env->insn_aux_data[i];
10456 err = check_pseudo_btf_id(env, insn, aux);
10457 if (err)
10458 return err;
10459 goto next_insn;
10460 }
10461
10462 /* In final convert_pseudo_ld_imm64() step, this is
10463 * converted into regular 64-bit imm load insn.
10464 */
10465 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
10466 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
10467 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
10468 insn[1].imm != 0)) {
10469 verbose(env,
10470 "unrecognized bpf_ld_imm64 insn\n");
10471 return -EINVAL;
10472 }
10473
10474 f = fdget(insn[0].imm);
10475 map = __bpf_map_get(f);
10476 if (IS_ERR(map)) {
10477 verbose(env, "fd %d is not pointing to valid bpf_map\n",
10478 insn[0].imm);
10479 return PTR_ERR(map);
10480 }
10481
10482 err = check_map_prog_compatibility(env, map, env->prog);
10483 if (err) {
10484 fdput(f);
10485 return err;
10486 }
10487
10488 aux = &env->insn_aux_data[i];
10489 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10490 addr = (unsigned long)map;
10491 } else {
10492 u32 off = insn[1].imm;
10493
10494 if (off >= BPF_MAX_VAR_OFF) {
10495 verbose(env, "direct value offset of %u is not allowed\n", off);
10496 fdput(f);
10497 return -EINVAL;
10498 }
10499
10500 if (!map->ops->map_direct_value_addr) {
10501 verbose(env, "no direct value access support for this map type\n");
10502 fdput(f);
10503 return -EINVAL;
10504 }
10505
10506 err = map->ops->map_direct_value_addr(map, &addr, off);
10507 if (err) {
10508 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10509 map->value_size, off);
10510 fdput(f);
10511 return err;
10512 }
10513
10514 aux->map_off = off;
10515 addr += off;
10516 }
10517
10518 insn[0].imm = (u32)addr;
10519 insn[1].imm = addr >> 32;
10520
10521 /* check whether we recorded this map already */
10522 for (j = 0; j < env->used_map_cnt; j++) {
10523 if (env->used_maps[j] == map) {
10524 aux->map_index = j;
10525 fdput(f);
10526 goto next_insn;
10527 }
10528 }
10529
10530 if (env->used_map_cnt >= MAX_USED_MAPS) {
10531 fdput(f);
10532 return -E2BIG;
10533 }
10534
10535 /* hold the map. If the program is rejected by verifier,
10536 * the map will be released by release_maps() or it
10537 * will be used by the valid program until it's unloaded
10538 * and all maps are released in free_used_maps()
10539 */
10540 bpf_map_inc(map);
10541
10542 aux->map_index = env->used_map_cnt;
10543 env->used_maps[env->used_map_cnt++] = map;
10544
10545 if (bpf_map_is_cgroup_storage(map) &&
10546 bpf_cgroup_storage_assign(env->prog->aux, map)) {
10547 verbose(env, "only one cgroup storage of each type is allowed\n");
10548 fdput(f);
10549 return -EBUSY;
10550 }
10551
10552 fdput(f);
10553 next_insn:
10554 insn++;
10555 i++;
10556 continue;
10557 }
10558
10559 /* Basic sanity check before we invest more work here. */
10560 if (!bpf_opcode_in_insntable(insn->code)) {
10561 verbose(env, "unknown opcode %02x\n", insn->code);
10562 return -EINVAL;
10563 }
10564 }
10565
10566 /* now all pseudo BPF_LD_IMM64 instructions load valid
10567 * 'struct bpf_map *' into a register instead of user map_fd.
10568 * These pointers will be used later by verifier to validate map access.
10569 */
10570 return 0;
10571 }
10572
10573 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)10574 static void release_maps(struct bpf_verifier_env *env)
10575 {
10576 __bpf_free_used_maps(env->prog->aux, env->used_maps,
10577 env->used_map_cnt);
10578 }
10579
10580 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)10581 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10582 {
10583 struct bpf_insn *insn = env->prog->insnsi;
10584 int insn_cnt = env->prog->len;
10585 int i;
10586
10587 for (i = 0; i < insn_cnt; i++, insn++)
10588 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10589 insn->src_reg = 0;
10590 }
10591
10592 /* single env->prog->insni[off] instruction was replaced with the range
10593 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
10594 * [0, off) and [off, end) to new locations, so the patched range stays zero
10595 */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)10596 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
10597 struct bpf_insn_aux_data *new_data,
10598 struct bpf_prog *new_prog, u32 off, u32 cnt)
10599 {
10600 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
10601 struct bpf_insn *insn = new_prog->insnsi;
10602 u32 old_seen = old_data[off].seen;
10603 u32 prog_len;
10604 int i;
10605
10606 /* aux info at OFF always needs adjustment, no matter fast path
10607 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10608 * original insn at old prog.
10609 */
10610 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10611
10612 if (cnt == 1)
10613 return;
10614 prog_len = new_prog->len;
10615
10616 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10617 memcpy(new_data + off + cnt - 1, old_data + off,
10618 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10619 for (i = off; i < off + cnt - 1; i++) {
10620 /* Expand insni[off]'s seen count to the patched range. */
10621 new_data[i].seen = old_seen;
10622 new_data[i].zext_dst = insn_has_def32(env, insn + i);
10623 }
10624 env->insn_aux_data = new_data;
10625 vfree(old_data);
10626 }
10627
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)10628 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10629 {
10630 int i;
10631
10632 if (len == 1)
10633 return;
10634 /* NOTE: fake 'exit' subprog should be updated as well. */
10635 for (i = 0; i <= env->subprog_cnt; i++) {
10636 if (env->subprog_info[i].start <= off)
10637 continue;
10638 env->subprog_info[i].start += len - 1;
10639 }
10640 }
10641
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)10642 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
10643 {
10644 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10645 int i, sz = prog->aux->size_poke_tab;
10646 struct bpf_jit_poke_descriptor *desc;
10647
10648 for (i = 0; i < sz; i++) {
10649 desc = &tab[i];
10650 if (desc->insn_idx <= off)
10651 continue;
10652 desc->insn_idx += len - 1;
10653 }
10654 }
10655
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)10656 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10657 const struct bpf_insn *patch, u32 len)
10658 {
10659 struct bpf_prog *new_prog;
10660 struct bpf_insn_aux_data *new_data = NULL;
10661
10662 if (len > 1) {
10663 new_data = vzalloc(array_size(env->prog->len + len - 1,
10664 sizeof(struct bpf_insn_aux_data)));
10665 if (!new_data)
10666 return NULL;
10667 }
10668
10669 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10670 if (IS_ERR(new_prog)) {
10671 if (PTR_ERR(new_prog) == -ERANGE)
10672 verbose(env,
10673 "insn %d cannot be patched due to 16-bit range\n",
10674 env->insn_aux_data[off].orig_idx);
10675 vfree(new_data);
10676 return NULL;
10677 }
10678 adjust_insn_aux_data(env, new_data, new_prog, off, len);
10679 adjust_subprog_starts(env, off, len);
10680 adjust_poke_descs(new_prog, off, len);
10681 return new_prog;
10682 }
10683
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)10684 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10685 u32 off, u32 cnt)
10686 {
10687 int i, j;
10688
10689 /* find first prog starting at or after off (first to remove) */
10690 for (i = 0; i < env->subprog_cnt; i++)
10691 if (env->subprog_info[i].start >= off)
10692 break;
10693 /* find first prog starting at or after off + cnt (first to stay) */
10694 for (j = i; j < env->subprog_cnt; j++)
10695 if (env->subprog_info[j].start >= off + cnt)
10696 break;
10697 /* if j doesn't start exactly at off + cnt, we are just removing
10698 * the front of previous prog
10699 */
10700 if (env->subprog_info[j].start != off + cnt)
10701 j--;
10702
10703 if (j > i) {
10704 struct bpf_prog_aux *aux = env->prog->aux;
10705 int move;
10706
10707 /* move fake 'exit' subprog as well */
10708 move = env->subprog_cnt + 1 - j;
10709
10710 memmove(env->subprog_info + i,
10711 env->subprog_info + j,
10712 sizeof(*env->subprog_info) * move);
10713 env->subprog_cnt -= j - i;
10714
10715 /* remove func_info */
10716 if (aux->func_info) {
10717 move = aux->func_info_cnt - j;
10718
10719 memmove(aux->func_info + i,
10720 aux->func_info + j,
10721 sizeof(*aux->func_info) * move);
10722 aux->func_info_cnt -= j - i;
10723 /* func_info->insn_off is set after all code rewrites,
10724 * in adjust_btf_func() - no need to adjust
10725 */
10726 }
10727 } else {
10728 /* convert i from "first prog to remove" to "first to adjust" */
10729 if (env->subprog_info[i].start == off)
10730 i++;
10731 }
10732
10733 /* update fake 'exit' subprog as well */
10734 for (; i <= env->subprog_cnt; i++)
10735 env->subprog_info[i].start -= cnt;
10736
10737 return 0;
10738 }
10739
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)10740 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10741 u32 cnt)
10742 {
10743 struct bpf_prog *prog = env->prog;
10744 u32 i, l_off, l_cnt, nr_linfo;
10745 struct bpf_line_info *linfo;
10746
10747 nr_linfo = prog->aux->nr_linfo;
10748 if (!nr_linfo)
10749 return 0;
10750
10751 linfo = prog->aux->linfo;
10752
10753 /* find first line info to remove, count lines to be removed */
10754 for (i = 0; i < nr_linfo; i++)
10755 if (linfo[i].insn_off >= off)
10756 break;
10757
10758 l_off = i;
10759 l_cnt = 0;
10760 for (; i < nr_linfo; i++)
10761 if (linfo[i].insn_off < off + cnt)
10762 l_cnt++;
10763 else
10764 break;
10765
10766 /* First live insn doesn't match first live linfo, it needs to "inherit"
10767 * last removed linfo. prog is already modified, so prog->len == off
10768 * means no live instructions after (tail of the program was removed).
10769 */
10770 if (prog->len != off && l_cnt &&
10771 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10772 l_cnt--;
10773 linfo[--i].insn_off = off + cnt;
10774 }
10775
10776 /* remove the line info which refer to the removed instructions */
10777 if (l_cnt) {
10778 memmove(linfo + l_off, linfo + i,
10779 sizeof(*linfo) * (nr_linfo - i));
10780
10781 prog->aux->nr_linfo -= l_cnt;
10782 nr_linfo = prog->aux->nr_linfo;
10783 }
10784
10785 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
10786 for (i = l_off; i < nr_linfo; i++)
10787 linfo[i].insn_off -= cnt;
10788
10789 /* fix up all subprogs (incl. 'exit') which start >= off */
10790 for (i = 0; i <= env->subprog_cnt; i++)
10791 if (env->subprog_info[i].linfo_idx > l_off) {
10792 /* program may have started in the removed region but
10793 * may not be fully removed
10794 */
10795 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10796 env->subprog_info[i].linfo_idx -= l_cnt;
10797 else
10798 env->subprog_info[i].linfo_idx = l_off;
10799 }
10800
10801 return 0;
10802 }
10803
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)10804 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10805 {
10806 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10807 unsigned int orig_prog_len = env->prog->len;
10808 int err;
10809
10810 if (bpf_prog_is_dev_bound(env->prog->aux))
10811 bpf_prog_offload_remove_insns(env, off, cnt);
10812
10813 err = bpf_remove_insns(env->prog, off, cnt);
10814 if (err)
10815 return err;
10816
10817 err = adjust_subprog_starts_after_remove(env, off, cnt);
10818 if (err)
10819 return err;
10820
10821 err = bpf_adj_linfo_after_remove(env, off, cnt);
10822 if (err)
10823 return err;
10824
10825 memmove(aux_data + off, aux_data + off + cnt,
10826 sizeof(*aux_data) * (orig_prog_len - off - cnt));
10827
10828 return 0;
10829 }
10830
10831 /* The verifier does more data flow analysis than llvm and will not
10832 * explore branches that are dead at run time. Malicious programs can
10833 * have dead code too. Therefore replace all dead at-run-time code
10834 * with 'ja -1'.
10835 *
10836 * Just nops are not optimal, e.g. if they would sit at the end of the
10837 * program and through another bug we would manage to jump there, then
10838 * we'd execute beyond program memory otherwise. Returning exception
10839 * code also wouldn't work since we can have subprogs where the dead
10840 * code could be located.
10841 */
sanitize_dead_code(struct bpf_verifier_env * env)10842 static void sanitize_dead_code(struct bpf_verifier_env *env)
10843 {
10844 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10845 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
10846 struct bpf_insn *insn = env->prog->insnsi;
10847 const int insn_cnt = env->prog->len;
10848 int i;
10849
10850 for (i = 0; i < insn_cnt; i++) {
10851 if (aux_data[i].seen)
10852 continue;
10853 memcpy(insn + i, &trap, sizeof(trap));
10854 aux_data[i].zext_dst = false;
10855 }
10856 }
10857
insn_is_cond_jump(u8 code)10858 static bool insn_is_cond_jump(u8 code)
10859 {
10860 u8 op;
10861
10862 if (BPF_CLASS(code) == BPF_JMP32)
10863 return true;
10864
10865 if (BPF_CLASS(code) != BPF_JMP)
10866 return false;
10867
10868 op = BPF_OP(code);
10869 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10870 }
10871
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)10872 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10873 {
10874 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10875 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10876 struct bpf_insn *insn = env->prog->insnsi;
10877 const int insn_cnt = env->prog->len;
10878 int i;
10879
10880 for (i = 0; i < insn_cnt; i++, insn++) {
10881 if (!insn_is_cond_jump(insn->code))
10882 continue;
10883
10884 if (!aux_data[i + 1].seen)
10885 ja.off = insn->off;
10886 else if (!aux_data[i + 1 + insn->off].seen)
10887 ja.off = 0;
10888 else
10889 continue;
10890
10891 if (bpf_prog_is_dev_bound(env->prog->aux))
10892 bpf_prog_offload_replace_insn(env, i, &ja);
10893
10894 memcpy(insn, &ja, sizeof(ja));
10895 }
10896 }
10897
opt_remove_dead_code(struct bpf_verifier_env * env)10898 static int opt_remove_dead_code(struct bpf_verifier_env *env)
10899 {
10900 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10901 int insn_cnt = env->prog->len;
10902 int i, err;
10903
10904 for (i = 0; i < insn_cnt; i++) {
10905 int j;
10906
10907 j = 0;
10908 while (i + j < insn_cnt && !aux_data[i + j].seen)
10909 j++;
10910 if (!j)
10911 continue;
10912
10913 err = verifier_remove_insns(env, i, j);
10914 if (err)
10915 return err;
10916 insn_cnt = env->prog->len;
10917 }
10918
10919 return 0;
10920 }
10921
opt_remove_nops(struct bpf_verifier_env * env)10922 static int opt_remove_nops(struct bpf_verifier_env *env)
10923 {
10924 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10925 struct bpf_insn *insn = env->prog->insnsi;
10926 int insn_cnt = env->prog->len;
10927 int i, err;
10928
10929 for (i = 0; i < insn_cnt; i++) {
10930 if (memcmp(&insn[i], &ja, sizeof(ja)))
10931 continue;
10932
10933 err = verifier_remove_insns(env, i, 1);
10934 if (err)
10935 return err;
10936 insn_cnt--;
10937 i--;
10938 }
10939
10940 return 0;
10941 }
10942
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)10943 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10944 const union bpf_attr *attr)
10945 {
10946 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
10947 struct bpf_insn_aux_data *aux = env->insn_aux_data;
10948 int i, patch_len, delta = 0, len = env->prog->len;
10949 struct bpf_insn *insns = env->prog->insnsi;
10950 struct bpf_prog *new_prog;
10951 bool rnd_hi32;
10952
10953 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
10954 zext_patch[1] = BPF_ZEXT_REG(0);
10955 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10956 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10957 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
10958 for (i = 0; i < len; i++) {
10959 int adj_idx = i + delta;
10960 struct bpf_insn insn;
10961
10962 insn = insns[adj_idx];
10963 if (!aux[adj_idx].zext_dst) {
10964 u8 code, class;
10965 u32 imm_rnd;
10966
10967 if (!rnd_hi32)
10968 continue;
10969
10970 code = insn.code;
10971 class = BPF_CLASS(code);
10972 if (insn_no_def(&insn))
10973 continue;
10974
10975 /* NOTE: arg "reg" (the fourth one) is only used for
10976 * BPF_STX which has been ruled out in above
10977 * check, it is safe to pass NULL here.
10978 */
10979 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10980 if (class == BPF_LD &&
10981 BPF_MODE(code) == BPF_IMM)
10982 i++;
10983 continue;
10984 }
10985
10986 /* ctx load could be transformed into wider load. */
10987 if (class == BPF_LDX &&
10988 aux[adj_idx].ptr_type == PTR_TO_CTX)
10989 continue;
10990
10991 imm_rnd = get_random_int();
10992 rnd_hi32_patch[0] = insn;
10993 rnd_hi32_patch[1].imm = imm_rnd;
10994 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10995 patch = rnd_hi32_patch;
10996 patch_len = 4;
10997 goto apply_patch_buffer;
10998 }
10999
11000 if (!bpf_jit_needs_zext())
11001 continue;
11002
11003 zext_patch[0] = insn;
11004 zext_patch[1].dst_reg = insn.dst_reg;
11005 zext_patch[1].src_reg = insn.dst_reg;
11006 patch = zext_patch;
11007 patch_len = 2;
11008 apply_patch_buffer:
11009 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11010 if (!new_prog)
11011 return -ENOMEM;
11012 env->prog = new_prog;
11013 insns = new_prog->insnsi;
11014 aux = env->insn_aux_data;
11015 delta += patch_len - 1;
11016 }
11017
11018 return 0;
11019 }
11020
11021 /* convert load instructions that access fields of a context type into a
11022 * sequence of instructions that access fields of the underlying structure:
11023 * struct __sk_buff -> struct sk_buff
11024 * struct bpf_sock_ops -> struct sock
11025 */
convert_ctx_accesses(struct bpf_verifier_env * env)11026 static int convert_ctx_accesses(struct bpf_verifier_env *env)
11027 {
11028 const struct bpf_verifier_ops *ops = env->ops;
11029 int i, cnt, size, ctx_field_size, delta = 0;
11030 const int insn_cnt = env->prog->len;
11031 struct bpf_insn insn_buf[16], *insn;
11032 u32 target_size, size_default, off;
11033 struct bpf_prog *new_prog;
11034 enum bpf_access_type type;
11035 bool is_narrower_load;
11036
11037 if (ops->gen_prologue || env->seen_direct_write) {
11038 if (!ops->gen_prologue) {
11039 verbose(env, "bpf verifier is misconfigured\n");
11040 return -EINVAL;
11041 }
11042 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11043 env->prog);
11044 if (cnt >= ARRAY_SIZE(insn_buf)) {
11045 verbose(env, "bpf verifier is misconfigured\n");
11046 return -EINVAL;
11047 } else if (cnt) {
11048 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11049 if (!new_prog)
11050 return -ENOMEM;
11051
11052 env->prog = new_prog;
11053 delta += cnt - 1;
11054 }
11055 }
11056
11057 if (bpf_prog_is_dev_bound(env->prog->aux))
11058 return 0;
11059
11060 insn = env->prog->insnsi + delta;
11061
11062 for (i = 0; i < insn_cnt; i++, insn++) {
11063 bpf_convert_ctx_access_t convert_ctx_access;
11064 bool ctx_access;
11065
11066 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11067 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11068 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11069 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
11070 type = BPF_READ;
11071 ctx_access = true;
11072 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11073 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11074 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11075 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
11076 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
11077 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
11078 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
11079 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
11080 type = BPF_WRITE;
11081 ctx_access = BPF_CLASS(insn->code) == BPF_STX;
11082 } else {
11083 continue;
11084 }
11085
11086 if (type == BPF_WRITE &&
11087 env->insn_aux_data[i + delta].sanitize_stack_spill) {
11088 struct bpf_insn patch[] = {
11089 *insn,
11090 BPF_ST_NOSPEC(),
11091 };
11092
11093 cnt = ARRAY_SIZE(patch);
11094 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11095 if (!new_prog)
11096 return -ENOMEM;
11097
11098 delta += cnt - 1;
11099 env->prog = new_prog;
11100 insn = new_prog->insnsi + i + delta;
11101 continue;
11102 }
11103
11104 if (!ctx_access)
11105 continue;
11106
11107 switch (env->insn_aux_data[i + delta].ptr_type) {
11108 case PTR_TO_CTX:
11109 if (!ops->convert_ctx_access)
11110 continue;
11111 convert_ctx_access = ops->convert_ctx_access;
11112 break;
11113 case PTR_TO_SOCKET:
11114 case PTR_TO_SOCK_COMMON:
11115 convert_ctx_access = bpf_sock_convert_ctx_access;
11116 break;
11117 case PTR_TO_TCP_SOCK:
11118 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11119 break;
11120 case PTR_TO_XDP_SOCK:
11121 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11122 break;
11123 case PTR_TO_BTF_ID:
11124 if (type == BPF_READ) {
11125 insn->code = BPF_LDX | BPF_PROBE_MEM |
11126 BPF_SIZE((insn)->code);
11127 env->prog->aux->num_exentries++;
11128 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11129 verbose(env, "Writes through BTF pointers are not allowed\n");
11130 return -EINVAL;
11131 }
11132 continue;
11133 default:
11134 continue;
11135 }
11136
11137 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11138 size = BPF_LDST_BYTES(insn);
11139
11140 /* If the read access is a narrower load of the field,
11141 * convert to a 4/8-byte load, to minimum program type specific
11142 * convert_ctx_access changes. If conversion is successful,
11143 * we will apply proper mask to the result.
11144 */
11145 is_narrower_load = size < ctx_field_size;
11146 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11147 off = insn->off;
11148 if (is_narrower_load) {
11149 u8 size_code;
11150
11151 if (type == BPF_WRITE) {
11152 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11153 return -EINVAL;
11154 }
11155
11156 size_code = BPF_H;
11157 if (ctx_field_size == 4)
11158 size_code = BPF_W;
11159 else if (ctx_field_size == 8)
11160 size_code = BPF_DW;
11161
11162 insn->off = off & ~(size_default - 1);
11163 insn->code = BPF_LDX | BPF_MEM | size_code;
11164 }
11165
11166 target_size = 0;
11167 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11168 &target_size);
11169 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11170 (ctx_field_size && !target_size)) {
11171 verbose(env, "bpf verifier is misconfigured\n");
11172 return -EINVAL;
11173 }
11174
11175 if (is_narrower_load && size < target_size) {
11176 u8 shift = bpf_ctx_narrow_access_offset(
11177 off, size, size_default) * 8;
11178 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
11179 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
11180 return -EINVAL;
11181 }
11182 if (ctx_field_size <= 4) {
11183 if (shift)
11184 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11185 insn->dst_reg,
11186 shift);
11187 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11188 (1 << size * 8) - 1);
11189 } else {
11190 if (shift)
11191 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11192 insn->dst_reg,
11193 shift);
11194 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11195 (1ULL << size * 8) - 1);
11196 }
11197 }
11198
11199 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11200 if (!new_prog)
11201 return -ENOMEM;
11202
11203 delta += cnt - 1;
11204
11205 /* keep walking new program and skip insns we just inserted */
11206 env->prog = new_prog;
11207 insn = new_prog->insnsi + i + delta;
11208 }
11209
11210 return 0;
11211 }
11212
jit_subprogs(struct bpf_verifier_env * env)11213 static int jit_subprogs(struct bpf_verifier_env *env)
11214 {
11215 struct bpf_prog *prog = env->prog, **func, *tmp;
11216 int i, j, subprog_start, subprog_end = 0, len, subprog;
11217 struct bpf_map *map_ptr;
11218 struct bpf_insn *insn;
11219 void *old_bpf_func;
11220 int err, num_exentries;
11221
11222 if (env->subprog_cnt <= 1)
11223 return 0;
11224
11225 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11226 if (insn->code != (BPF_JMP | BPF_CALL) ||
11227 insn->src_reg != BPF_PSEUDO_CALL)
11228 continue;
11229 /* Upon error here we cannot fall back to interpreter but
11230 * need a hard reject of the program. Thus -EFAULT is
11231 * propagated in any case.
11232 */
11233 subprog = find_subprog(env, i + insn->imm + 1);
11234 if (subprog < 0) {
11235 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
11236 i + insn->imm + 1);
11237 return -EFAULT;
11238 }
11239 /* temporarily remember subprog id inside insn instead of
11240 * aux_data, since next loop will split up all insns into funcs
11241 */
11242 insn->off = subprog;
11243 /* remember original imm in case JIT fails and fallback
11244 * to interpreter will be needed
11245 */
11246 env->insn_aux_data[i].call_imm = insn->imm;
11247 /* point imm to __bpf_call_base+1 from JITs point of view */
11248 insn->imm = 1;
11249 }
11250
11251 err = bpf_prog_alloc_jited_linfo(prog);
11252 if (err)
11253 goto out_undo_insn;
11254
11255 err = -ENOMEM;
11256 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
11257 if (!func)
11258 goto out_undo_insn;
11259
11260 for (i = 0; i < env->subprog_cnt; i++) {
11261 subprog_start = subprog_end;
11262 subprog_end = env->subprog_info[i + 1].start;
11263
11264 len = subprog_end - subprog_start;
11265 /* BPF_PROG_RUN doesn't call subprogs directly,
11266 * hence main prog stats include the runtime of subprogs.
11267 * subprogs don't have IDs and not reachable via prog_get_next_id
11268 * func[i]->aux->stats will never be accessed and stays NULL
11269 */
11270 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
11271 if (!func[i])
11272 goto out_free;
11273 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
11274 len * sizeof(struct bpf_insn));
11275 func[i]->type = prog->type;
11276 func[i]->len = len;
11277 if (bpf_prog_calc_tag(func[i]))
11278 goto out_free;
11279 func[i]->is_func = 1;
11280 func[i]->aux->func_idx = i;
11281 /* Below members will be freed only at prog->aux */
11282 func[i]->aux->btf = prog->aux->btf;
11283 func[i]->aux->func_info = prog->aux->func_info;
11284 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
11285 func[i]->aux->poke_tab = prog->aux->poke_tab;
11286 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
11287
11288 for (j = 0; j < prog->aux->size_poke_tab; j++) {
11289 struct bpf_jit_poke_descriptor *poke;
11290
11291 poke = &prog->aux->poke_tab[j];
11292 if (poke->insn_idx < subprog_end &&
11293 poke->insn_idx >= subprog_start)
11294 poke->aux = func[i]->aux;
11295 }
11296
11297 func[i]->aux->name[0] = 'F';
11298 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
11299 func[i]->jit_requested = 1;
11300 func[i]->aux->linfo = prog->aux->linfo;
11301 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
11302 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
11303 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
11304 num_exentries = 0;
11305 insn = func[i]->insnsi;
11306 for (j = 0; j < func[i]->len; j++, insn++) {
11307 if (BPF_CLASS(insn->code) == BPF_LDX &&
11308 BPF_MODE(insn->code) == BPF_PROBE_MEM)
11309 num_exentries++;
11310 }
11311 func[i]->aux->num_exentries = num_exentries;
11312 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
11313 func[i] = bpf_int_jit_compile(func[i]);
11314 if (!func[i]->jited) {
11315 err = -ENOTSUPP;
11316 goto out_free;
11317 }
11318 cond_resched();
11319 }
11320
11321 /* at this point all bpf functions were successfully JITed
11322 * now populate all bpf_calls with correct addresses and
11323 * run last pass of JIT
11324 */
11325 for (i = 0; i < env->subprog_cnt; i++) {
11326 insn = func[i]->insnsi;
11327 for (j = 0; j < func[i]->len; j++, insn++) {
11328 if (insn->code != (BPF_JMP | BPF_CALL) ||
11329 insn->src_reg != BPF_PSEUDO_CALL)
11330 continue;
11331 subprog = insn->off;
11332 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
11333 __bpf_call_base;
11334 }
11335
11336 /* we use the aux data to keep a list of the start addresses
11337 * of the JITed images for each function in the program
11338 *
11339 * for some architectures, such as powerpc64, the imm field
11340 * might not be large enough to hold the offset of the start
11341 * address of the callee's JITed image from __bpf_call_base
11342 *
11343 * in such cases, we can lookup the start address of a callee
11344 * by using its subprog id, available from the off field of
11345 * the call instruction, as an index for this list
11346 */
11347 func[i]->aux->func = func;
11348 func[i]->aux->func_cnt = env->subprog_cnt;
11349 }
11350 for (i = 0; i < env->subprog_cnt; i++) {
11351 old_bpf_func = func[i]->bpf_func;
11352 tmp = bpf_int_jit_compile(func[i]);
11353 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
11354 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
11355 err = -ENOTSUPP;
11356 goto out_free;
11357 }
11358 cond_resched();
11359 }
11360
11361 /* finally lock prog and jit images for all functions and
11362 * populate kallsysm
11363 */
11364 for (i = 0; i < env->subprog_cnt; i++) {
11365 bpf_prog_lock_ro(func[i]);
11366 bpf_prog_kallsyms_add(func[i]);
11367 }
11368
11369 /* Last step: make now unused interpreter insns from main
11370 * prog consistent for later dump requests, so they can
11371 * later look the same as if they were interpreted only.
11372 */
11373 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11374 if (insn->code != (BPF_JMP | BPF_CALL) ||
11375 insn->src_reg != BPF_PSEUDO_CALL)
11376 continue;
11377 insn->off = env->insn_aux_data[i].call_imm;
11378 subprog = find_subprog(env, i + insn->off + 1);
11379 insn->imm = subprog;
11380 }
11381
11382 prog->jited = 1;
11383 prog->bpf_func = func[0]->bpf_func;
11384 prog->aux->func = func;
11385 prog->aux->func_cnt = env->subprog_cnt;
11386 bpf_prog_free_unused_jited_linfo(prog);
11387 return 0;
11388 out_free:
11389 /* We failed JIT'ing, so at this point we need to unregister poke
11390 * descriptors from subprogs, so that kernel is not attempting to
11391 * patch it anymore as we're freeing the subprog JIT memory.
11392 */
11393 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11394 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11395 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
11396 }
11397 /* At this point we're guaranteed that poke descriptors are not
11398 * live anymore. We can just unlink its descriptor table as it's
11399 * released with the main prog.
11400 */
11401 for (i = 0; i < env->subprog_cnt; i++) {
11402 if (!func[i])
11403 continue;
11404 func[i]->aux->poke_tab = NULL;
11405 bpf_jit_free(func[i]);
11406 }
11407 kfree(func);
11408 out_undo_insn:
11409 /* cleanup main prog to be interpreted */
11410 prog->jit_requested = 0;
11411 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11412 if (insn->code != (BPF_JMP | BPF_CALL) ||
11413 insn->src_reg != BPF_PSEUDO_CALL)
11414 continue;
11415 insn->off = 0;
11416 insn->imm = env->insn_aux_data[i].call_imm;
11417 }
11418 bpf_prog_free_jited_linfo(prog);
11419 return err;
11420 }
11421
fixup_call_args(struct bpf_verifier_env * env)11422 static int fixup_call_args(struct bpf_verifier_env *env)
11423 {
11424 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11425 struct bpf_prog *prog = env->prog;
11426 struct bpf_insn *insn = prog->insnsi;
11427 int i, depth;
11428 #endif
11429 int err = 0;
11430
11431 if (env->prog->jit_requested &&
11432 !bpf_prog_is_dev_bound(env->prog->aux)) {
11433 err = jit_subprogs(env);
11434 if (err == 0)
11435 return 0;
11436 if (err == -EFAULT)
11437 return err;
11438 }
11439 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11440 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
11441 /* When JIT fails the progs with bpf2bpf calls and tail_calls
11442 * have to be rejected, since interpreter doesn't support them yet.
11443 */
11444 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
11445 return -EINVAL;
11446 }
11447 for (i = 0; i < prog->len; i++, insn++) {
11448 if (insn->code != (BPF_JMP | BPF_CALL) ||
11449 insn->src_reg != BPF_PSEUDO_CALL)
11450 continue;
11451 depth = get_callee_stack_depth(env, insn, i);
11452 if (depth < 0)
11453 return depth;
11454 bpf_patch_call_args(insn, depth);
11455 }
11456 err = 0;
11457 #endif
11458 return err;
11459 }
11460
11461 /* fixup insn->imm field of bpf_call instructions
11462 * and inline eligible helpers as explicit sequence of BPF instructions
11463 *
11464 * this function is called after eBPF program passed verification
11465 */
fixup_bpf_calls(struct bpf_verifier_env * env)11466 static int fixup_bpf_calls(struct bpf_verifier_env *env)
11467 {
11468 struct bpf_prog *prog = env->prog;
11469 bool expect_blinding = bpf_jit_blinding_enabled(prog);
11470 struct bpf_insn *insn = prog->insnsi;
11471 const struct bpf_func_proto *fn;
11472 const int insn_cnt = prog->len;
11473 const struct bpf_map_ops *ops;
11474 struct bpf_insn_aux_data *aux;
11475 struct bpf_insn insn_buf[16];
11476 struct bpf_prog *new_prog;
11477 struct bpf_map *map_ptr;
11478 int i, ret, cnt, delta = 0;
11479
11480 for (i = 0; i < insn_cnt; i++, insn++) {
11481 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11482 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11483 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11484 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11485 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11486 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11487 struct bpf_insn *patchlet;
11488 struct bpf_insn chk_and_div[] = {
11489 /* [R,W]x div 0 -> 0 */
11490 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11491 BPF_JNE | BPF_K, insn->src_reg,
11492 0, 2, 0),
11493 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11494 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11495 *insn,
11496 };
11497 struct bpf_insn chk_and_mod[] = {
11498 /* [R,W]x mod 0 -> [R,W]x */
11499 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11500 BPF_JEQ | BPF_K, insn->src_reg,
11501 0, 1 + (is64 ? 0 : 1), 0),
11502 *insn,
11503 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11504 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
11505 };
11506
11507 patchlet = isdiv ? chk_and_div : chk_and_mod;
11508 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
11509 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
11510
11511 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11512 if (!new_prog)
11513 return -ENOMEM;
11514
11515 delta += cnt - 1;
11516 env->prog = prog = new_prog;
11517 insn = new_prog->insnsi + i + delta;
11518 continue;
11519 }
11520
11521 if (BPF_CLASS(insn->code) == BPF_LD &&
11522 (BPF_MODE(insn->code) == BPF_ABS ||
11523 BPF_MODE(insn->code) == BPF_IND)) {
11524 cnt = env->ops->gen_ld_abs(insn, insn_buf);
11525 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11526 verbose(env, "bpf verifier is misconfigured\n");
11527 return -EINVAL;
11528 }
11529
11530 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11531 if (!new_prog)
11532 return -ENOMEM;
11533
11534 delta += cnt - 1;
11535 env->prog = prog = new_prog;
11536 insn = new_prog->insnsi + i + delta;
11537 continue;
11538 }
11539
11540 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11541 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11542 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11543 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11544 struct bpf_insn insn_buf[16];
11545 struct bpf_insn *patch = &insn_buf[0];
11546 bool issrc, isneg, isimm;
11547 u32 off_reg;
11548
11549 aux = &env->insn_aux_data[i + delta];
11550 if (!aux->alu_state ||
11551 aux->alu_state == BPF_ALU_NON_POINTER)
11552 continue;
11553
11554 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11555 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11556 BPF_ALU_SANITIZE_SRC;
11557 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
11558
11559 off_reg = issrc ? insn->src_reg : insn->dst_reg;
11560 if (isimm) {
11561 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11562 } else {
11563 if (isneg)
11564 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11565 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11566 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11567 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11568 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11569 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11570 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
11571 }
11572 if (!issrc)
11573 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
11574 insn->src_reg = BPF_REG_AX;
11575 if (isneg)
11576 insn->code = insn->code == code_add ?
11577 code_sub : code_add;
11578 *patch++ = *insn;
11579 if (issrc && isneg && !isimm)
11580 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11581 cnt = patch - insn_buf;
11582
11583 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11584 if (!new_prog)
11585 return -ENOMEM;
11586
11587 delta += cnt - 1;
11588 env->prog = prog = new_prog;
11589 insn = new_prog->insnsi + i + delta;
11590 continue;
11591 }
11592
11593 if (insn->code != (BPF_JMP | BPF_CALL))
11594 continue;
11595 if (insn->src_reg == BPF_PSEUDO_CALL)
11596 continue;
11597
11598 if (insn->imm == BPF_FUNC_get_route_realm)
11599 prog->dst_needed = 1;
11600 if (insn->imm == BPF_FUNC_get_prandom_u32)
11601 bpf_user_rnd_init_once();
11602 if (insn->imm == BPF_FUNC_override_return)
11603 prog->kprobe_override = 1;
11604 if (insn->imm == BPF_FUNC_tail_call) {
11605 /* If we tail call into other programs, we
11606 * cannot make any assumptions since they can
11607 * be replaced dynamically during runtime in
11608 * the program array.
11609 */
11610 prog->cb_access = 1;
11611 if (!allow_tail_call_in_subprogs(env))
11612 prog->aux->stack_depth = MAX_BPF_STACK;
11613 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11614
11615 /* mark bpf_tail_call as different opcode to avoid
11616 * conditional branch in the interpeter for every normal
11617 * call and to prevent accidental JITing by JIT compiler
11618 * that doesn't support bpf_tail_call yet
11619 */
11620 insn->imm = 0;
11621 insn->code = BPF_JMP | BPF_TAIL_CALL;
11622
11623 aux = &env->insn_aux_data[i + delta];
11624 if (env->bpf_capable && !expect_blinding &&
11625 prog->jit_requested &&
11626 !bpf_map_key_poisoned(aux) &&
11627 !bpf_map_ptr_poisoned(aux) &&
11628 !bpf_map_ptr_unpriv(aux)) {
11629 struct bpf_jit_poke_descriptor desc = {
11630 .reason = BPF_POKE_REASON_TAIL_CALL,
11631 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11632 .tail_call.key = bpf_map_key_immediate(aux),
11633 .insn_idx = i + delta,
11634 };
11635
11636 ret = bpf_jit_add_poke_descriptor(prog, &desc);
11637 if (ret < 0) {
11638 verbose(env, "adding tail call poke descriptor failed\n");
11639 return ret;
11640 }
11641
11642 insn->imm = ret + 1;
11643 continue;
11644 }
11645
11646 if (!bpf_map_ptr_unpriv(aux))
11647 continue;
11648
11649 /* instead of changing every JIT dealing with tail_call
11650 * emit two extra insns:
11651 * if (index >= max_entries) goto out;
11652 * index &= array->index_mask;
11653 * to avoid out-of-bounds cpu speculation
11654 */
11655 if (bpf_map_ptr_poisoned(aux)) {
11656 verbose(env, "tail_call abusing map_ptr\n");
11657 return -EINVAL;
11658 }
11659
11660 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11661 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11662 map_ptr->max_entries, 2);
11663 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11664 container_of(map_ptr,
11665 struct bpf_array,
11666 map)->index_mask);
11667 insn_buf[2] = *insn;
11668 cnt = 3;
11669 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11670 if (!new_prog)
11671 return -ENOMEM;
11672
11673 delta += cnt - 1;
11674 env->prog = prog = new_prog;
11675 insn = new_prog->insnsi + i + delta;
11676 continue;
11677 }
11678
11679 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11680 * and other inlining handlers are currently limited to 64 bit
11681 * only.
11682 */
11683 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11684 (insn->imm == BPF_FUNC_map_lookup_elem ||
11685 insn->imm == BPF_FUNC_map_update_elem ||
11686 insn->imm == BPF_FUNC_map_delete_elem ||
11687 insn->imm == BPF_FUNC_map_push_elem ||
11688 insn->imm == BPF_FUNC_map_pop_elem ||
11689 insn->imm == BPF_FUNC_map_peek_elem)) {
11690 aux = &env->insn_aux_data[i + delta];
11691 if (bpf_map_ptr_poisoned(aux))
11692 goto patch_call_imm;
11693
11694 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11695 ops = map_ptr->ops;
11696 if (insn->imm == BPF_FUNC_map_lookup_elem &&
11697 ops->map_gen_lookup) {
11698 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11699 if (cnt == -EOPNOTSUPP)
11700 goto patch_map_ops_generic;
11701 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11702 verbose(env, "bpf verifier is misconfigured\n");
11703 return -EINVAL;
11704 }
11705
11706 new_prog = bpf_patch_insn_data(env, i + delta,
11707 insn_buf, cnt);
11708 if (!new_prog)
11709 return -ENOMEM;
11710
11711 delta += cnt - 1;
11712 env->prog = prog = new_prog;
11713 insn = new_prog->insnsi + i + delta;
11714 continue;
11715 }
11716
11717 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11718 (void *(*)(struct bpf_map *map, void *key))NULL));
11719 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11720 (int (*)(struct bpf_map *map, void *key))NULL));
11721 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11722 (int (*)(struct bpf_map *map, void *key, void *value,
11723 u64 flags))NULL));
11724 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11725 (int (*)(struct bpf_map *map, void *value,
11726 u64 flags))NULL));
11727 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11728 (int (*)(struct bpf_map *map, void *value))NULL));
11729 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11730 (int (*)(struct bpf_map *map, void *value))NULL));
11731 patch_map_ops_generic:
11732 switch (insn->imm) {
11733 case BPF_FUNC_map_lookup_elem:
11734 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11735 __bpf_call_base;
11736 continue;
11737 case BPF_FUNC_map_update_elem:
11738 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11739 __bpf_call_base;
11740 continue;
11741 case BPF_FUNC_map_delete_elem:
11742 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11743 __bpf_call_base;
11744 continue;
11745 case BPF_FUNC_map_push_elem:
11746 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11747 __bpf_call_base;
11748 continue;
11749 case BPF_FUNC_map_pop_elem:
11750 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11751 __bpf_call_base;
11752 continue;
11753 case BPF_FUNC_map_peek_elem:
11754 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11755 __bpf_call_base;
11756 continue;
11757 }
11758
11759 goto patch_call_imm;
11760 }
11761
11762 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11763 insn->imm == BPF_FUNC_jiffies64) {
11764 struct bpf_insn ld_jiffies_addr[2] = {
11765 BPF_LD_IMM64(BPF_REG_0,
11766 (unsigned long)&jiffies),
11767 };
11768
11769 insn_buf[0] = ld_jiffies_addr[0];
11770 insn_buf[1] = ld_jiffies_addr[1];
11771 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11772 BPF_REG_0, 0);
11773 cnt = 3;
11774
11775 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11776 cnt);
11777 if (!new_prog)
11778 return -ENOMEM;
11779
11780 delta += cnt - 1;
11781 env->prog = prog = new_prog;
11782 insn = new_prog->insnsi + i + delta;
11783 continue;
11784 }
11785
11786 patch_call_imm:
11787 fn = env->ops->get_func_proto(insn->imm, env->prog);
11788 /* all functions that have prototype and verifier allowed
11789 * programs to call them, must be real in-kernel functions
11790 */
11791 if (!fn->func) {
11792 verbose(env,
11793 "kernel subsystem misconfigured func %s#%d\n",
11794 func_id_name(insn->imm), insn->imm);
11795 return -EFAULT;
11796 }
11797 insn->imm = fn->func - __bpf_call_base;
11798 }
11799
11800 /* Since poke tab is now finalized, publish aux to tracker. */
11801 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11802 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11803 if (!map_ptr->ops->map_poke_track ||
11804 !map_ptr->ops->map_poke_untrack ||
11805 !map_ptr->ops->map_poke_run) {
11806 verbose(env, "bpf verifier is misconfigured\n");
11807 return -EINVAL;
11808 }
11809
11810 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11811 if (ret < 0) {
11812 verbose(env, "tracking tail call prog failed\n");
11813 return ret;
11814 }
11815 }
11816
11817 return 0;
11818 }
11819
free_states(struct bpf_verifier_env * env)11820 static void free_states(struct bpf_verifier_env *env)
11821 {
11822 struct bpf_verifier_state_list *sl, *sln;
11823 int i;
11824
11825 sl = env->free_list;
11826 while (sl) {
11827 sln = sl->next;
11828 free_verifier_state(&sl->state, false);
11829 kfree(sl);
11830 sl = sln;
11831 }
11832 env->free_list = NULL;
11833
11834 if (!env->explored_states)
11835 return;
11836
11837 for (i = 0; i < state_htab_size(env); i++) {
11838 sl = env->explored_states[i];
11839
11840 while (sl) {
11841 sln = sl->next;
11842 free_verifier_state(&sl->state, false);
11843 kfree(sl);
11844 sl = sln;
11845 }
11846 env->explored_states[i] = NULL;
11847 }
11848 }
11849
do_check_common(struct bpf_verifier_env * env,int subprog)11850 static int do_check_common(struct bpf_verifier_env *env, int subprog)
11851 {
11852 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11853 struct bpf_verifier_state *state;
11854 struct bpf_reg_state *regs;
11855 int ret, i;
11856
11857 env->prev_linfo = NULL;
11858 env->pass_cnt++;
11859
11860 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11861 if (!state)
11862 return -ENOMEM;
11863 state->curframe = 0;
11864 state->speculative = false;
11865 state->branches = 1;
11866 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11867 if (!state->frame[0]) {
11868 kfree(state);
11869 return -ENOMEM;
11870 }
11871 env->cur_state = state;
11872 init_func_state(env, state->frame[0],
11873 BPF_MAIN_FUNC /* callsite */,
11874 0 /* frameno */,
11875 subprog);
11876
11877 regs = state->frame[state->curframe]->regs;
11878 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
11879 ret = btf_prepare_func_args(env, subprog, regs);
11880 if (ret)
11881 goto out;
11882 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11883 if (regs[i].type == PTR_TO_CTX)
11884 mark_reg_known_zero(env, regs, i);
11885 else if (regs[i].type == SCALAR_VALUE)
11886 mark_reg_unknown(env, regs, i);
11887 }
11888 } else {
11889 /* 1st arg to a function */
11890 regs[BPF_REG_1].type = PTR_TO_CTX;
11891 mark_reg_known_zero(env, regs, BPF_REG_1);
11892 ret = btf_check_func_arg_match(env, subprog, regs);
11893 if (ret == -EFAULT)
11894 /* unlikely verifier bug. abort.
11895 * ret == 0 and ret < 0 are sadly acceptable for
11896 * main() function due to backward compatibility.
11897 * Like socket filter program may be written as:
11898 * int bpf_prog(struct pt_regs *ctx)
11899 * and never dereference that ctx in the program.
11900 * 'struct pt_regs' is a type mismatch for socket
11901 * filter that should be using 'struct __sk_buff'.
11902 */
11903 goto out;
11904 }
11905
11906 ret = do_check(env);
11907 out:
11908 /* check for NULL is necessary, since cur_state can be freed inside
11909 * do_check() under memory pressure.
11910 */
11911 if (env->cur_state) {
11912 free_verifier_state(env->cur_state, true);
11913 env->cur_state = NULL;
11914 }
11915 while (!pop_stack(env, NULL, NULL, false));
11916 if (!ret && pop_log)
11917 bpf_vlog_reset(&env->log, 0);
11918 free_states(env);
11919 return ret;
11920 }
11921
11922 /* Verify all global functions in a BPF program one by one based on their BTF.
11923 * All global functions must pass verification. Otherwise the whole program is rejected.
11924 * Consider:
11925 * int bar(int);
11926 * int foo(int f)
11927 * {
11928 * return bar(f);
11929 * }
11930 * int bar(int b)
11931 * {
11932 * ...
11933 * }
11934 * foo() will be verified first for R1=any_scalar_value. During verification it
11935 * will be assumed that bar() already verified successfully and call to bar()
11936 * from foo() will be checked for type match only. Later bar() will be verified
11937 * independently to check that it's safe for R1=any_scalar_value.
11938 */
do_check_subprogs(struct bpf_verifier_env * env)11939 static int do_check_subprogs(struct bpf_verifier_env *env)
11940 {
11941 struct bpf_prog_aux *aux = env->prog->aux;
11942 int i, ret;
11943
11944 if (!aux->func_info)
11945 return 0;
11946
11947 for (i = 1; i < env->subprog_cnt; i++) {
11948 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11949 continue;
11950 env->insn_idx = env->subprog_info[i].start;
11951 WARN_ON_ONCE(env->insn_idx == 0);
11952 ret = do_check_common(env, i);
11953 if (ret) {
11954 return ret;
11955 } else if (env->log.level & BPF_LOG_LEVEL) {
11956 verbose(env,
11957 "Func#%d is safe for any args that match its prototype\n",
11958 i);
11959 }
11960 }
11961 return 0;
11962 }
11963
do_check_main(struct bpf_verifier_env * env)11964 static int do_check_main(struct bpf_verifier_env *env)
11965 {
11966 int ret;
11967
11968 env->insn_idx = 0;
11969 ret = do_check_common(env, 0);
11970 if (!ret)
11971 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11972 return ret;
11973 }
11974
11975
print_verification_stats(struct bpf_verifier_env * env)11976 static void print_verification_stats(struct bpf_verifier_env *env)
11977 {
11978 int i;
11979
11980 if (env->log.level & BPF_LOG_STATS) {
11981 verbose(env, "verification time %lld usec\n",
11982 div_u64(env->verification_time, 1000));
11983 verbose(env, "stack depth ");
11984 for (i = 0; i < env->subprog_cnt; i++) {
11985 u32 depth = env->subprog_info[i].stack_depth;
11986
11987 verbose(env, "%d", depth);
11988 if (i + 1 < env->subprog_cnt)
11989 verbose(env, "+");
11990 }
11991 verbose(env, "\n");
11992 }
11993 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11994 "total_states %d peak_states %d mark_read %d\n",
11995 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11996 env->max_states_per_insn, env->total_states,
11997 env->peak_states, env->longest_mark_read_walk);
11998 }
11999
check_struct_ops_btf_id(struct bpf_verifier_env * env)12000 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12001 {
12002 const struct btf_type *t, *func_proto;
12003 const struct bpf_struct_ops *st_ops;
12004 const struct btf_member *member;
12005 struct bpf_prog *prog = env->prog;
12006 u32 btf_id, member_idx;
12007 const char *mname;
12008
12009 if (!prog->gpl_compatible) {
12010 verbose(env, "struct ops programs must have a GPL compatible license\n");
12011 return -EINVAL;
12012 }
12013
12014 btf_id = prog->aux->attach_btf_id;
12015 st_ops = bpf_struct_ops_find(btf_id);
12016 if (!st_ops) {
12017 verbose(env, "attach_btf_id %u is not a supported struct\n",
12018 btf_id);
12019 return -ENOTSUPP;
12020 }
12021
12022 t = st_ops->type;
12023 member_idx = prog->expected_attach_type;
12024 if (member_idx >= btf_type_vlen(t)) {
12025 verbose(env, "attach to invalid member idx %u of struct %s\n",
12026 member_idx, st_ops->name);
12027 return -EINVAL;
12028 }
12029
12030 member = &btf_type_member(t)[member_idx];
12031 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12032 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12033 NULL);
12034 if (!func_proto) {
12035 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12036 mname, member_idx, st_ops->name);
12037 return -EINVAL;
12038 }
12039
12040 if (st_ops->check_member) {
12041 int err = st_ops->check_member(t, member);
12042
12043 if (err) {
12044 verbose(env, "attach to unsupported member %s of struct %s\n",
12045 mname, st_ops->name);
12046 return err;
12047 }
12048 }
12049
12050 prog->aux->attach_func_proto = func_proto;
12051 prog->aux->attach_func_name = mname;
12052 env->ops = st_ops->verifier_ops;
12053
12054 return 0;
12055 }
12056 #define SECURITY_PREFIX "security_"
12057
check_attach_modify_return(unsigned long addr,const char * func_name)12058 static int check_attach_modify_return(unsigned long addr, const char *func_name)
12059 {
12060 if (within_error_injection_list(addr) ||
12061 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12062 return 0;
12063
12064 return -EINVAL;
12065 }
12066
12067 /* non exhaustive list of sleepable bpf_lsm_*() functions */
12068 BTF_SET_START(btf_sleepable_lsm_hooks)
12069 #ifdef CONFIG_BPF_LSM
BTF_ID(func,bpf_lsm_bprm_committed_creds)12070 BTF_ID(func, bpf_lsm_bprm_committed_creds)
12071 #else
12072 BTF_ID_UNUSED
12073 #endif
12074 BTF_SET_END(btf_sleepable_lsm_hooks)
12075
12076 static int check_sleepable_lsm_hook(u32 btf_id)
12077 {
12078 return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id);
12079 }
12080
12081 /* list of non-sleepable functions that are otherwise on
12082 * ALLOW_ERROR_INJECTION list
12083 */
12084 BTF_SET_START(btf_non_sleepable_error_inject)
12085 /* Three functions below can be called from sleepable and non-sleepable context.
12086 * Assume non-sleepable from bpf safety point of view.
12087 */
BTF_ID(func,__add_to_page_cache_locked)12088 BTF_ID(func, __add_to_page_cache_locked)
12089 BTF_ID(func, should_fail_alloc_page)
12090 BTF_ID(func, should_failslab)
12091 BTF_SET_END(btf_non_sleepable_error_inject)
12092
12093 static int check_non_sleepable_error_inject(u32 btf_id)
12094 {
12095 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12096 }
12097
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)12098 int bpf_check_attach_target(struct bpf_verifier_log *log,
12099 const struct bpf_prog *prog,
12100 const struct bpf_prog *tgt_prog,
12101 u32 btf_id,
12102 struct bpf_attach_target_info *tgt_info)
12103 {
12104 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12105 const char prefix[] = "btf_trace_";
12106 int ret = 0, subprog = -1, i;
12107 const struct btf_type *t;
12108 bool conservative = true;
12109 const char *tname;
12110 struct btf *btf;
12111 long addr = 0;
12112
12113 if (!btf_id) {
12114 bpf_log(log, "Tracing programs must provide btf_id\n");
12115 return -EINVAL;
12116 }
12117 btf = tgt_prog ? tgt_prog->aux->btf : btf_vmlinux;
12118 if (!btf) {
12119 bpf_log(log,
12120 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
12121 return -EINVAL;
12122 }
12123 t = btf_type_by_id(btf, btf_id);
12124 if (!t) {
12125 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
12126 return -EINVAL;
12127 }
12128 tname = btf_name_by_offset(btf, t->name_off);
12129 if (!tname) {
12130 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
12131 return -EINVAL;
12132 }
12133 if (tgt_prog) {
12134 struct bpf_prog_aux *aux = tgt_prog->aux;
12135
12136 for (i = 0; i < aux->func_info_cnt; i++)
12137 if (aux->func_info[i].type_id == btf_id) {
12138 subprog = i;
12139 break;
12140 }
12141 if (subprog == -1) {
12142 bpf_log(log, "Subprog %s doesn't exist\n", tname);
12143 return -EINVAL;
12144 }
12145 conservative = aux->func_info_aux[subprog].unreliable;
12146 if (prog_extension) {
12147 if (conservative) {
12148 bpf_log(log,
12149 "Cannot replace static functions\n");
12150 return -EINVAL;
12151 }
12152 if (!prog->jit_requested) {
12153 bpf_log(log,
12154 "Extension programs should be JITed\n");
12155 return -EINVAL;
12156 }
12157 }
12158 if (!tgt_prog->jited) {
12159 bpf_log(log, "Can attach to only JITed progs\n");
12160 return -EINVAL;
12161 }
12162 if (tgt_prog->type == prog->type) {
12163 /* Cannot fentry/fexit another fentry/fexit program.
12164 * Cannot attach program extension to another extension.
12165 * It's ok to attach fentry/fexit to extension program.
12166 */
12167 bpf_log(log, "Cannot recursively attach\n");
12168 return -EINVAL;
12169 }
12170 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
12171 prog_extension &&
12172 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
12173 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
12174 /* Program extensions can extend all program types
12175 * except fentry/fexit. The reason is the following.
12176 * The fentry/fexit programs are used for performance
12177 * analysis, stats and can be attached to any program
12178 * type except themselves. When extension program is
12179 * replacing XDP function it is necessary to allow
12180 * performance analysis of all functions. Both original
12181 * XDP program and its program extension. Hence
12182 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
12183 * allowed. If extending of fentry/fexit was allowed it
12184 * would be possible to create long call chain
12185 * fentry->extension->fentry->extension beyond
12186 * reasonable stack size. Hence extending fentry is not
12187 * allowed.
12188 */
12189 bpf_log(log, "Cannot extend fentry/fexit\n");
12190 return -EINVAL;
12191 }
12192 } else {
12193 if (prog_extension) {
12194 bpf_log(log, "Cannot replace kernel functions\n");
12195 return -EINVAL;
12196 }
12197 }
12198
12199 switch (prog->expected_attach_type) {
12200 case BPF_TRACE_RAW_TP:
12201 if (tgt_prog) {
12202 bpf_log(log,
12203 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
12204 return -EINVAL;
12205 }
12206 if (!btf_type_is_typedef(t)) {
12207 bpf_log(log, "attach_btf_id %u is not a typedef\n",
12208 btf_id);
12209 return -EINVAL;
12210 }
12211 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
12212 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
12213 btf_id, tname);
12214 return -EINVAL;
12215 }
12216 tname += sizeof(prefix) - 1;
12217 t = btf_type_by_id(btf, t->type);
12218 if (!btf_type_is_ptr(t))
12219 /* should never happen in valid vmlinux build */
12220 return -EINVAL;
12221 t = btf_type_by_id(btf, t->type);
12222 if (!btf_type_is_func_proto(t))
12223 /* should never happen in valid vmlinux build */
12224 return -EINVAL;
12225
12226 break;
12227 case BPF_TRACE_ITER:
12228 if (!btf_type_is_func(t)) {
12229 bpf_log(log, "attach_btf_id %u is not a function\n",
12230 btf_id);
12231 return -EINVAL;
12232 }
12233 t = btf_type_by_id(btf, t->type);
12234 if (!btf_type_is_func_proto(t))
12235 return -EINVAL;
12236 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12237 if (ret)
12238 return ret;
12239 break;
12240 default:
12241 if (!prog_extension)
12242 return -EINVAL;
12243 fallthrough;
12244 case BPF_MODIFY_RETURN:
12245 case BPF_LSM_MAC:
12246 case BPF_TRACE_FENTRY:
12247 case BPF_TRACE_FEXIT:
12248 if (!btf_type_is_func(t)) {
12249 bpf_log(log, "attach_btf_id %u is not a function\n",
12250 btf_id);
12251 return -EINVAL;
12252 }
12253 if (prog_extension &&
12254 btf_check_type_match(log, prog, btf, t))
12255 return -EINVAL;
12256 t = btf_type_by_id(btf, t->type);
12257 if (!btf_type_is_func_proto(t))
12258 return -EINVAL;
12259
12260 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
12261 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
12262 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
12263 return -EINVAL;
12264
12265 if (tgt_prog && conservative)
12266 t = NULL;
12267
12268 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12269 if (ret < 0)
12270 return ret;
12271
12272 if (tgt_prog) {
12273 if (subprog == 0)
12274 addr = (long) tgt_prog->bpf_func;
12275 else
12276 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
12277 } else {
12278 addr = kallsyms_lookup_name(tname);
12279 if (!addr) {
12280 bpf_log(log,
12281 "The address of function %s cannot be found\n",
12282 tname);
12283 return -ENOENT;
12284 }
12285 }
12286
12287 if (prog->aux->sleepable) {
12288 ret = -EINVAL;
12289 switch (prog->type) {
12290 case BPF_PROG_TYPE_TRACING:
12291 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
12292 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
12293 */
12294 if (!check_non_sleepable_error_inject(btf_id) &&
12295 within_error_injection_list(addr))
12296 ret = 0;
12297 break;
12298 case BPF_PROG_TYPE_LSM:
12299 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
12300 * Only some of them are sleepable.
12301 */
12302 if (check_sleepable_lsm_hook(btf_id))
12303 ret = 0;
12304 break;
12305 default:
12306 break;
12307 }
12308 if (ret) {
12309 bpf_log(log, "%s is not sleepable\n", tname);
12310 return ret;
12311 }
12312 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
12313 if (tgt_prog) {
12314 bpf_log(log, "can't modify return codes of BPF programs\n");
12315 return -EINVAL;
12316 }
12317 ret = check_attach_modify_return(addr, tname);
12318 if (ret) {
12319 bpf_log(log, "%s() is not modifiable\n", tname);
12320 return ret;
12321 }
12322 }
12323
12324 break;
12325 }
12326 tgt_info->tgt_addr = addr;
12327 tgt_info->tgt_name = tname;
12328 tgt_info->tgt_type = t;
12329 return 0;
12330 }
12331
check_attach_btf_id(struct bpf_verifier_env * env)12332 static int check_attach_btf_id(struct bpf_verifier_env *env)
12333 {
12334 struct bpf_prog *prog = env->prog;
12335 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
12336 struct bpf_attach_target_info tgt_info = {};
12337 u32 btf_id = prog->aux->attach_btf_id;
12338 struct bpf_trampoline *tr;
12339 int ret;
12340 u64 key;
12341
12342 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
12343 prog->type != BPF_PROG_TYPE_LSM) {
12344 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
12345 return -EINVAL;
12346 }
12347
12348 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
12349 return check_struct_ops_btf_id(env);
12350
12351 if (prog->type != BPF_PROG_TYPE_TRACING &&
12352 prog->type != BPF_PROG_TYPE_LSM &&
12353 prog->type != BPF_PROG_TYPE_EXT)
12354 return 0;
12355
12356 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
12357 if (ret)
12358 return ret;
12359
12360 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
12361 /* to make freplace equivalent to their targets, they need to
12362 * inherit env->ops and expected_attach_type for the rest of the
12363 * verification
12364 */
12365 env->ops = bpf_verifier_ops[tgt_prog->type];
12366 prog->expected_attach_type = tgt_prog->expected_attach_type;
12367 }
12368
12369 /* store info about the attachment target that will be used later */
12370 prog->aux->attach_func_proto = tgt_info.tgt_type;
12371 prog->aux->attach_func_name = tgt_info.tgt_name;
12372
12373 if (tgt_prog) {
12374 prog->aux->saved_dst_prog_type = tgt_prog->type;
12375 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
12376 }
12377
12378 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
12379 prog->aux->attach_btf_trace = true;
12380 return 0;
12381 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
12382 if (!bpf_iter_prog_supported(prog))
12383 return -EINVAL;
12384 return 0;
12385 }
12386
12387 if (prog->type == BPF_PROG_TYPE_LSM) {
12388 ret = bpf_lsm_verify_prog(&env->log, prog);
12389 if (ret < 0)
12390 return ret;
12391 }
12392
12393 key = bpf_trampoline_compute_key(tgt_prog, btf_id);
12394 tr = bpf_trampoline_get(key, &tgt_info);
12395 if (!tr)
12396 return -ENOMEM;
12397
12398 prog->aux->dst_trampoline = tr;
12399 return 0;
12400 }
12401
bpf_get_btf_vmlinux(void)12402 struct btf *bpf_get_btf_vmlinux(void)
12403 {
12404 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
12405 mutex_lock(&bpf_verifier_lock);
12406 if (!btf_vmlinux)
12407 btf_vmlinux = btf_parse_vmlinux();
12408 mutex_unlock(&bpf_verifier_lock);
12409 }
12410 return btf_vmlinux;
12411 }
12412
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,union bpf_attr __user * uattr)12413 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
12414 union bpf_attr __user *uattr)
12415 {
12416 u64 start_time = ktime_get_ns();
12417 struct bpf_verifier_env *env;
12418 struct bpf_verifier_log *log;
12419 int i, len, ret = -EINVAL;
12420 bool is_priv;
12421
12422 /* no program is valid */
12423 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
12424 return -EINVAL;
12425
12426 /* 'struct bpf_verifier_env' can be global, but since it's not small,
12427 * allocate/free it every time bpf_check() is called
12428 */
12429 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
12430 if (!env)
12431 return -ENOMEM;
12432 log = &env->log;
12433
12434 len = (*prog)->len;
12435 env->insn_aux_data =
12436 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
12437 ret = -ENOMEM;
12438 if (!env->insn_aux_data)
12439 goto err_free_env;
12440 for (i = 0; i < len; i++)
12441 env->insn_aux_data[i].orig_idx = i;
12442 env->prog = *prog;
12443 env->ops = bpf_verifier_ops[env->prog->type];
12444 is_priv = bpf_capable();
12445
12446 bpf_get_btf_vmlinux();
12447
12448 /* grab the mutex to protect few globals used by verifier */
12449 if (!is_priv)
12450 mutex_lock(&bpf_verifier_lock);
12451
12452 if (attr->log_level || attr->log_buf || attr->log_size) {
12453 /* user requested verbose verifier output
12454 * and supplied buffer to store the verification trace
12455 */
12456 log->level = attr->log_level;
12457 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
12458 log->len_total = attr->log_size;
12459
12460 /* log attributes have to be sane */
12461 if (!bpf_verifier_log_attr_valid(log)) {
12462 ret = -EINVAL;
12463 goto err_unlock;
12464 }
12465 }
12466
12467 if (IS_ERR(btf_vmlinux)) {
12468 /* Either gcc or pahole or kernel are broken. */
12469 verbose(env, "in-kernel BTF is malformed\n");
12470 ret = PTR_ERR(btf_vmlinux);
12471 goto skip_full_check;
12472 }
12473
12474 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12475 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12476 env->strict_alignment = true;
12477 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12478 env->strict_alignment = false;
12479
12480 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12481 env->allow_uninit_stack = bpf_allow_uninit_stack();
12482 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12483 env->bypass_spec_v1 = bpf_bypass_spec_v1();
12484 env->bypass_spec_v4 = bpf_bypass_spec_v4();
12485 env->bpf_capable = bpf_capable();
12486
12487 if (is_priv)
12488 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12489
12490 env->explored_states = kvcalloc(state_htab_size(env),
12491 sizeof(struct bpf_verifier_state_list *),
12492 GFP_USER);
12493 ret = -ENOMEM;
12494 if (!env->explored_states)
12495 goto skip_full_check;
12496
12497 ret = check_subprogs(env);
12498 if (ret < 0)
12499 goto skip_full_check;
12500
12501 ret = check_btf_info(env, attr, uattr);
12502 if (ret < 0)
12503 goto skip_full_check;
12504
12505 ret = check_attach_btf_id(env);
12506 if (ret)
12507 goto skip_full_check;
12508
12509 ret = resolve_pseudo_ldimm64(env);
12510 if (ret < 0)
12511 goto skip_full_check;
12512
12513 if (bpf_prog_is_dev_bound(env->prog->aux)) {
12514 ret = bpf_prog_offload_verifier_prep(env->prog);
12515 if (ret)
12516 goto skip_full_check;
12517 }
12518
12519 ret = check_cfg(env);
12520 if (ret < 0)
12521 goto skip_full_check;
12522
12523 ret = do_check_subprogs(env);
12524 ret = ret ?: do_check_main(env);
12525
12526 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12527 ret = bpf_prog_offload_finalize(env);
12528
12529 skip_full_check:
12530 kvfree(env->explored_states);
12531
12532 if (ret == 0)
12533 ret = check_max_stack_depth(env);
12534
12535 /* instruction rewrites happen after this point */
12536 if (is_priv) {
12537 if (ret == 0)
12538 opt_hard_wire_dead_code_branches(env);
12539 if (ret == 0)
12540 ret = opt_remove_dead_code(env);
12541 if (ret == 0)
12542 ret = opt_remove_nops(env);
12543 } else {
12544 if (ret == 0)
12545 sanitize_dead_code(env);
12546 }
12547
12548 if (ret == 0)
12549 /* program is valid, convert *(u32*)(ctx + off) accesses */
12550 ret = convert_ctx_accesses(env);
12551
12552 if (ret == 0)
12553 ret = fixup_bpf_calls(env);
12554
12555 /* do 32-bit optimization after insn patching has done so those patched
12556 * insns could be handled correctly.
12557 */
12558 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12559 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12560 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12561 : false;
12562 }
12563
12564 if (ret == 0)
12565 ret = fixup_call_args(env);
12566
12567 env->verification_time = ktime_get_ns() - start_time;
12568 print_verification_stats(env);
12569
12570 if (log->level && bpf_verifier_log_full(log))
12571 ret = -ENOSPC;
12572 if (log->level && !log->ubuf) {
12573 ret = -EFAULT;
12574 goto err_release_maps;
12575 }
12576
12577 if (ret == 0 && env->used_map_cnt) {
12578 /* if program passed verifier, update used_maps in bpf_prog_info */
12579 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12580 sizeof(env->used_maps[0]),
12581 GFP_KERNEL);
12582
12583 if (!env->prog->aux->used_maps) {
12584 ret = -ENOMEM;
12585 goto err_release_maps;
12586 }
12587
12588 memcpy(env->prog->aux->used_maps, env->used_maps,
12589 sizeof(env->used_maps[0]) * env->used_map_cnt);
12590 env->prog->aux->used_map_cnt = env->used_map_cnt;
12591
12592 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
12593 * bpf_ld_imm64 instructions
12594 */
12595 convert_pseudo_ld_imm64(env);
12596 }
12597
12598 if (ret == 0)
12599 adjust_btf_func(env);
12600
12601 err_release_maps:
12602 if (!env->prog->aux->used_maps)
12603 /* if we didn't copy map pointers into bpf_prog_info, release
12604 * them now. Otherwise free_used_maps() will release them.
12605 */
12606 release_maps(env);
12607
12608 /* extension progs temporarily inherit the attach_type of their targets
12609 for verification purposes, so set it back to zero before returning
12610 */
12611 if (env->prog->type == BPF_PROG_TYPE_EXT)
12612 env->prog->expected_attach_type = 0;
12613
12614 *prog = env->prog;
12615 err_unlock:
12616 if (!is_priv)
12617 mutex_unlock(&bpf_verifier_lock);
12618 vfree(env->insn_aux_data);
12619 err_free_env:
12620 kfree(env);
12621 return ret;
12622 }
12623