1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/btf.h>
11 #include <linux/filter.h>
12 #include <linux/uaccess.h>
13 #include <linux/ctype.h>
14 #include <linux/kprobes.h>
15 #include <linux/spinlock.h>
16 #include <linux/syscalls.h>
17 #include <linux/error-injection.h>
18 #include <linux/btf_ids.h>
19
20 #include <uapi/linux/bpf.h>
21 #include <uapi/linux/btf.h>
22
23 #include <asm/tlb.h>
24
25 #include "trace_probe.h"
26 #include "trace.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "bpf_trace.h"
30
31 #define bpf_event_rcu_dereference(p) \
32 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
33
34 #ifdef CONFIG_MODULES
35 struct bpf_trace_module {
36 struct module *module;
37 struct list_head list;
38 };
39
40 static LIST_HEAD(bpf_trace_modules);
41 static DEFINE_MUTEX(bpf_module_mutex);
42
bpf_get_raw_tracepoint_module(const char * name)43 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
44 {
45 struct bpf_raw_event_map *btp, *ret = NULL;
46 struct bpf_trace_module *btm;
47 unsigned int i;
48
49 mutex_lock(&bpf_module_mutex);
50 list_for_each_entry(btm, &bpf_trace_modules, list) {
51 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
52 btp = &btm->module->bpf_raw_events[i];
53 if (!strcmp(btp->tp->name, name)) {
54 if (try_module_get(btm->module))
55 ret = btp;
56 goto out;
57 }
58 }
59 }
60 out:
61 mutex_unlock(&bpf_module_mutex);
62 return ret;
63 }
64 #else
bpf_get_raw_tracepoint_module(const char * name)65 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
66 {
67 return NULL;
68 }
69 #endif /* CONFIG_MODULES */
70
71 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
72 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
73
74 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
75 u64 flags, const struct btf **btf,
76 s32 *btf_id);
77
78 /**
79 * trace_call_bpf - invoke BPF program
80 * @call: tracepoint event
81 * @ctx: opaque context pointer
82 *
83 * kprobe handlers execute BPF programs via this helper.
84 * Can be used from static tracepoints in the future.
85 *
86 * Return: BPF programs always return an integer which is interpreted by
87 * kprobe handler as:
88 * 0 - return from kprobe (event is filtered out)
89 * 1 - store kprobe event into ring buffer
90 * Other values are reserved and currently alias to 1
91 */
trace_call_bpf(struct trace_event_call * call,void * ctx)92 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
93 {
94 unsigned int ret;
95
96 cant_sleep();
97
98 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
99 /*
100 * since some bpf program is already running on this cpu,
101 * don't call into another bpf program (same or different)
102 * and don't send kprobe event into ring-buffer,
103 * so return zero here
104 */
105 ret = 0;
106 goto out;
107 }
108
109 /*
110 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
111 * to all call sites, we did a bpf_prog_array_valid() there to check
112 * whether call->prog_array is empty or not, which is
113 * a heurisitc to speed up execution.
114 *
115 * If bpf_prog_array_valid() fetched prog_array was
116 * non-NULL, we go into trace_call_bpf() and do the actual
117 * proper rcu_dereference() under RCU lock.
118 * If it turns out that prog_array is NULL then, we bail out.
119 * For the opposite, if the bpf_prog_array_valid() fetched pointer
120 * was NULL, you'll skip the prog_array with the risk of missing
121 * out of events when it was updated in between this and the
122 * rcu_dereference() which is accepted risk.
123 */
124 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
125
126 out:
127 __this_cpu_dec(bpf_prog_active);
128
129 return ret;
130 }
131
132 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
BPF_CALL_2(bpf_override_return,struct pt_regs *,regs,unsigned long,rc)133 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
134 {
135 regs_set_return_value(regs, rc);
136 override_function_with_return(regs);
137 return 0;
138 }
139
140 static const struct bpf_func_proto bpf_override_return_proto = {
141 .func = bpf_override_return,
142 .gpl_only = true,
143 .ret_type = RET_INTEGER,
144 .arg1_type = ARG_PTR_TO_CTX,
145 .arg2_type = ARG_ANYTHING,
146 };
147 #endif
148
149 static __always_inline int
bpf_probe_read_user_common(void * dst,u32 size,const void __user * unsafe_ptr)150 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
151 {
152 int ret;
153
154 ret = copy_from_user_nofault(dst, unsafe_ptr, size);
155 if (unlikely(ret < 0))
156 memset(dst, 0, size);
157 return ret;
158 }
159
BPF_CALL_3(bpf_probe_read_user,void *,dst,u32,size,const void __user *,unsafe_ptr)160 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
161 const void __user *, unsafe_ptr)
162 {
163 return bpf_probe_read_user_common(dst, size, unsafe_ptr);
164 }
165
166 const struct bpf_func_proto bpf_probe_read_user_proto = {
167 .func = bpf_probe_read_user,
168 .gpl_only = true,
169 .ret_type = RET_INTEGER,
170 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
171 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
172 .arg3_type = ARG_ANYTHING,
173 };
174
175 static __always_inline int
bpf_probe_read_user_str_common(void * dst,u32 size,const void __user * unsafe_ptr)176 bpf_probe_read_user_str_common(void *dst, u32 size,
177 const void __user *unsafe_ptr)
178 {
179 int ret;
180
181 /*
182 * NB: We rely on strncpy_from_user() not copying junk past the NUL
183 * terminator into `dst`.
184 *
185 * strncpy_from_user() does long-sized strides in the fast path. If the
186 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
187 * then there could be junk after the NUL in `dst`. If user takes `dst`
188 * and keys a hash map with it, then semantically identical strings can
189 * occupy multiple entries in the map.
190 */
191 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
192 if (unlikely(ret < 0))
193 memset(dst, 0, size);
194 return ret;
195 }
196
BPF_CALL_3(bpf_probe_read_user_str,void *,dst,u32,size,const void __user *,unsafe_ptr)197 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
198 const void __user *, unsafe_ptr)
199 {
200 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
201 }
202
203 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
204 .func = bpf_probe_read_user_str,
205 .gpl_only = true,
206 .ret_type = RET_INTEGER,
207 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
208 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
209 .arg3_type = ARG_ANYTHING,
210 };
211
212 static __always_inline int
bpf_probe_read_kernel_common(void * dst,u32 size,const void * unsafe_ptr)213 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
214 {
215 int ret;
216
217 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
218 if (unlikely(ret < 0))
219 memset(dst, 0, size);
220 return ret;
221 }
222
BPF_CALL_3(bpf_probe_read_kernel,void *,dst,u32,size,const void *,unsafe_ptr)223 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
224 const void *, unsafe_ptr)
225 {
226 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
227 }
228
229 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
230 .func = bpf_probe_read_kernel,
231 .gpl_only = true,
232 .ret_type = RET_INTEGER,
233 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
234 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
235 .arg3_type = ARG_ANYTHING,
236 };
237
238 static __always_inline int
bpf_probe_read_kernel_str_common(void * dst,u32 size,const void * unsafe_ptr)239 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
240 {
241 int ret;
242
243 /*
244 * The strncpy_from_kernel_nofault() call will likely not fill the
245 * entire buffer, but that's okay in this circumstance as we're probing
246 * arbitrary memory anyway similar to bpf_probe_read_*() and might
247 * as well probe the stack. Thus, memory is explicitly cleared
248 * only in error case, so that improper users ignoring return
249 * code altogether don't copy garbage; otherwise length of string
250 * is returned that can be used for bpf_perf_event_output() et al.
251 */
252 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
253 if (unlikely(ret < 0))
254 memset(dst, 0, size);
255 return ret;
256 }
257
BPF_CALL_3(bpf_probe_read_kernel_str,void *,dst,u32,size,const void *,unsafe_ptr)258 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
259 const void *, unsafe_ptr)
260 {
261 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
262 }
263
264 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
265 .func = bpf_probe_read_kernel_str,
266 .gpl_only = true,
267 .ret_type = RET_INTEGER,
268 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
269 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
270 .arg3_type = ARG_ANYTHING,
271 };
272
273 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
BPF_CALL_3(bpf_probe_read_compat,void *,dst,u32,size,const void *,unsafe_ptr)274 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
275 const void *, unsafe_ptr)
276 {
277 if ((unsigned long)unsafe_ptr < TASK_SIZE) {
278 return bpf_probe_read_user_common(dst, size,
279 (__force void __user *)unsafe_ptr);
280 }
281 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
282 }
283
284 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
285 .func = bpf_probe_read_compat,
286 .gpl_only = true,
287 .ret_type = RET_INTEGER,
288 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
289 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
290 .arg3_type = ARG_ANYTHING,
291 };
292
BPF_CALL_3(bpf_probe_read_compat_str,void *,dst,u32,size,const void *,unsafe_ptr)293 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
294 const void *, unsafe_ptr)
295 {
296 if ((unsigned long)unsafe_ptr < TASK_SIZE) {
297 return bpf_probe_read_user_str_common(dst, size,
298 (__force void __user *)unsafe_ptr);
299 }
300 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
301 }
302
303 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
304 .func = bpf_probe_read_compat_str,
305 .gpl_only = true,
306 .ret_type = RET_INTEGER,
307 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
308 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
309 .arg3_type = ARG_ANYTHING,
310 };
311 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
312
BPF_CALL_3(bpf_probe_write_user,void __user *,unsafe_ptr,const void *,src,u32,size)313 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
314 u32, size)
315 {
316 /*
317 * Ensure we're in user context which is safe for the helper to
318 * run. This helper has no business in a kthread.
319 *
320 * access_ok() should prevent writing to non-user memory, but in
321 * some situations (nommu, temporary switch, etc) access_ok() does
322 * not provide enough validation, hence the check on KERNEL_DS.
323 *
324 * nmi_uaccess_okay() ensures the probe is not run in an interim
325 * state, when the task or mm are switched. This is specifically
326 * required to prevent the use of temporary mm.
327 */
328
329 if (unlikely(in_interrupt() ||
330 current->flags & (PF_KTHREAD | PF_EXITING)))
331 return -EPERM;
332 if (unlikely(uaccess_kernel()))
333 return -EPERM;
334 if (unlikely(!nmi_uaccess_okay()))
335 return -EPERM;
336
337 return copy_to_user_nofault(unsafe_ptr, src, size);
338 }
339
340 static const struct bpf_func_proto bpf_probe_write_user_proto = {
341 .func = bpf_probe_write_user,
342 .gpl_only = true,
343 .ret_type = RET_INTEGER,
344 .arg1_type = ARG_ANYTHING,
345 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
346 .arg3_type = ARG_CONST_SIZE,
347 };
348
bpf_get_probe_write_proto(void)349 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
350 {
351 if (!capable(CAP_SYS_ADMIN))
352 return NULL;
353
354 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
355 current->comm, task_pid_nr(current));
356
357 return &bpf_probe_write_user_proto;
358 }
359
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)360 static void bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
361 size_t bufsz)
362 {
363 void __user *user_ptr = (__force void __user *)unsafe_ptr;
364
365 buf[0] = 0;
366
367 switch (fmt_ptype) {
368 case 's':
369 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
370 if ((unsigned long)unsafe_ptr < TASK_SIZE) {
371 strncpy_from_user_nofault(buf, user_ptr, bufsz);
372 break;
373 }
374 fallthrough;
375 #endif
376 case 'k':
377 strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
378 break;
379 case 'u':
380 strncpy_from_user_nofault(buf, user_ptr, bufsz);
381 break;
382 }
383 }
384
385 static DEFINE_RAW_SPINLOCK(trace_printk_lock);
386
387 #define BPF_TRACE_PRINTK_SIZE 1024
388
bpf_do_trace_printk(const char * fmt,...)389 static __printf(1, 0) int bpf_do_trace_printk(const char *fmt, ...)
390 {
391 static char buf[BPF_TRACE_PRINTK_SIZE];
392 unsigned long flags;
393 va_list ap;
394 int ret;
395
396 raw_spin_lock_irqsave(&trace_printk_lock, flags);
397 va_start(ap, fmt);
398 ret = vsnprintf(buf, sizeof(buf), fmt, ap);
399 va_end(ap);
400 /* vsnprintf() will not append null for zero-length strings */
401 if (ret == 0)
402 buf[0] = '\0';
403 trace_bpf_trace_printk(buf);
404 raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
405
406 return ret;
407 }
408
409 /*
410 * Only limited trace_printk() conversion specifiers allowed:
411 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pB %pks %pus %s
412 */
BPF_CALL_5(bpf_trace_printk,char *,fmt,u32,fmt_size,u64,arg1,u64,arg2,u64,arg3)413 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
414 u64, arg2, u64, arg3)
415 {
416 int i, mod[3] = {}, fmt_cnt = 0;
417 char buf[64], fmt_ptype;
418 void *unsafe_ptr = NULL;
419 bool str_seen = false;
420
421 /*
422 * bpf_check()->check_func_arg()->check_stack_boundary()
423 * guarantees that fmt points to bpf program stack,
424 * fmt_size bytes of it were initialized and fmt_size > 0
425 */
426 if (fmt[--fmt_size] != 0)
427 return -EINVAL;
428
429 /* check format string for allowed specifiers */
430 for (i = 0; i < fmt_size; i++) {
431 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
432 return -EINVAL;
433
434 if (fmt[i] != '%')
435 continue;
436
437 if (fmt_cnt >= 3)
438 return -EINVAL;
439
440 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
441 i++;
442 if (fmt[i] == 'l') {
443 mod[fmt_cnt]++;
444 i++;
445 } else if (fmt[i] == 'p') {
446 mod[fmt_cnt]++;
447 if ((fmt[i + 1] == 'k' ||
448 fmt[i + 1] == 'u') &&
449 fmt[i + 2] == 's') {
450 fmt_ptype = fmt[i + 1];
451 i += 2;
452 goto fmt_str;
453 }
454
455 if (fmt[i + 1] == 'B') {
456 i++;
457 goto fmt_next;
458 }
459
460 /* disallow any further format extensions */
461 if (fmt[i + 1] != 0 &&
462 !isspace(fmt[i + 1]) &&
463 !ispunct(fmt[i + 1]))
464 return -EINVAL;
465
466 goto fmt_next;
467 } else if (fmt[i] == 's') {
468 mod[fmt_cnt]++;
469 fmt_ptype = fmt[i];
470 fmt_str:
471 if (str_seen)
472 /* allow only one '%s' per fmt string */
473 return -EINVAL;
474 str_seen = true;
475
476 if (fmt[i + 1] != 0 &&
477 !isspace(fmt[i + 1]) &&
478 !ispunct(fmt[i + 1]))
479 return -EINVAL;
480
481 switch (fmt_cnt) {
482 case 0:
483 unsafe_ptr = (void *)(long)arg1;
484 arg1 = (long)buf;
485 break;
486 case 1:
487 unsafe_ptr = (void *)(long)arg2;
488 arg2 = (long)buf;
489 break;
490 case 2:
491 unsafe_ptr = (void *)(long)arg3;
492 arg3 = (long)buf;
493 break;
494 }
495
496 bpf_trace_copy_string(buf, unsafe_ptr, fmt_ptype,
497 sizeof(buf));
498 goto fmt_next;
499 }
500
501 if (fmt[i] == 'l') {
502 mod[fmt_cnt]++;
503 i++;
504 }
505
506 if (fmt[i] != 'i' && fmt[i] != 'd' &&
507 fmt[i] != 'u' && fmt[i] != 'x')
508 return -EINVAL;
509 fmt_next:
510 fmt_cnt++;
511 }
512
513 /* Horrid workaround for getting va_list handling working with different
514 * argument type combinations generically for 32 and 64 bit archs.
515 */
516 #define __BPF_TP_EMIT() __BPF_ARG3_TP()
517 #define __BPF_TP(...) \
518 bpf_do_trace_printk(fmt, ##__VA_ARGS__)
519
520 #define __BPF_ARG1_TP(...) \
521 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \
522 ? __BPF_TP(arg1, ##__VA_ARGS__) \
523 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \
524 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \
525 : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
526
527 #define __BPF_ARG2_TP(...) \
528 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \
529 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \
530 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \
531 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \
532 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
533
534 #define __BPF_ARG3_TP(...) \
535 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \
536 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \
537 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \
538 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \
539 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
540
541 return __BPF_TP_EMIT();
542 }
543
544 static const struct bpf_func_proto bpf_trace_printk_proto = {
545 .func = bpf_trace_printk,
546 .gpl_only = true,
547 .ret_type = RET_INTEGER,
548 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
549 .arg2_type = ARG_CONST_SIZE,
550 };
551
bpf_get_trace_printk_proto(void)552 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
553 {
554 /*
555 * This program might be calling bpf_trace_printk,
556 * so enable the associated bpf_trace/bpf_trace_printk event.
557 * Repeat this each time as it is possible a user has
558 * disabled bpf_trace_printk events. By loading a program
559 * calling bpf_trace_printk() however the user has expressed
560 * the intent to see such events.
561 */
562 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
563 pr_warn_ratelimited("could not enable bpf_trace_printk events");
564
565 return &bpf_trace_printk_proto;
566 }
567
568 #define MAX_SEQ_PRINTF_VARARGS 12
569 #define MAX_SEQ_PRINTF_MAX_MEMCPY 6
570 #define MAX_SEQ_PRINTF_STR_LEN 128
571
572 struct bpf_seq_printf_buf {
573 char buf[MAX_SEQ_PRINTF_MAX_MEMCPY][MAX_SEQ_PRINTF_STR_LEN];
574 };
575 static DEFINE_PER_CPU(struct bpf_seq_printf_buf, bpf_seq_printf_buf);
576 static DEFINE_PER_CPU(int, bpf_seq_printf_buf_used);
577
BPF_CALL_5(bpf_seq_printf,struct seq_file *,m,char *,fmt,u32,fmt_size,const void *,data,u32,data_len)578 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
579 const void *, data, u32, data_len)
580 {
581 int err = -EINVAL, fmt_cnt = 0, memcpy_cnt = 0;
582 int i, buf_used, copy_size, num_args;
583 u64 params[MAX_SEQ_PRINTF_VARARGS];
584 struct bpf_seq_printf_buf *bufs;
585 const u64 *args = data;
586
587 buf_used = this_cpu_inc_return(bpf_seq_printf_buf_used);
588 if (WARN_ON_ONCE(buf_used > 1)) {
589 err = -EBUSY;
590 goto out;
591 }
592
593 bufs = this_cpu_ptr(&bpf_seq_printf_buf);
594
595 /*
596 * bpf_check()->check_func_arg()->check_stack_boundary()
597 * guarantees that fmt points to bpf program stack,
598 * fmt_size bytes of it were initialized and fmt_size > 0
599 */
600 if (fmt[--fmt_size] != 0)
601 goto out;
602
603 if (data_len & 7)
604 goto out;
605
606 for (i = 0; i < fmt_size; i++) {
607 if (fmt[i] == '%') {
608 if (fmt[i + 1] == '%')
609 i++;
610 else if (!data || !data_len)
611 goto out;
612 }
613 }
614
615 num_args = data_len / 8;
616
617 /* check format string for allowed specifiers */
618 for (i = 0; i < fmt_size; i++) {
619 /* only printable ascii for now. */
620 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
621 err = -EINVAL;
622 goto out;
623 }
624
625 if (fmt[i] != '%')
626 continue;
627
628 if (fmt[i + 1] == '%') {
629 i++;
630 continue;
631 }
632
633 if (fmt_cnt >= MAX_SEQ_PRINTF_VARARGS) {
634 err = -E2BIG;
635 goto out;
636 }
637
638 if (fmt_cnt >= num_args) {
639 err = -EINVAL;
640 goto out;
641 }
642
643 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
644 i++;
645
646 /* skip optional "[0 +-][num]" width formating field */
647 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
648 fmt[i] == ' ')
649 i++;
650 if (fmt[i] >= '1' && fmt[i] <= '9') {
651 i++;
652 while (fmt[i] >= '0' && fmt[i] <= '9')
653 i++;
654 }
655
656 if (fmt[i] == 's') {
657 void *unsafe_ptr;
658
659 /* try our best to copy */
660 if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
661 err = -E2BIG;
662 goto out;
663 }
664
665 unsafe_ptr = (void *)(long)args[fmt_cnt];
666 err = strncpy_from_kernel_nofault(bufs->buf[memcpy_cnt],
667 unsafe_ptr, MAX_SEQ_PRINTF_STR_LEN);
668 if (err < 0)
669 bufs->buf[memcpy_cnt][0] = '\0';
670 params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
671
672 fmt_cnt++;
673 memcpy_cnt++;
674 continue;
675 }
676
677 if (fmt[i] == 'p') {
678 if (fmt[i + 1] == 0 ||
679 fmt[i + 1] == 'K' ||
680 fmt[i + 1] == 'x' ||
681 fmt[i + 1] == 'B') {
682 /* just kernel pointers */
683 params[fmt_cnt] = args[fmt_cnt];
684 fmt_cnt++;
685 continue;
686 }
687
688 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
689 if (fmt[i + 1] != 'i' && fmt[i + 1] != 'I') {
690 err = -EINVAL;
691 goto out;
692 }
693 if (fmt[i + 2] != '4' && fmt[i + 2] != '6') {
694 err = -EINVAL;
695 goto out;
696 }
697
698 if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
699 err = -E2BIG;
700 goto out;
701 }
702
703
704 copy_size = (fmt[i + 2] == '4') ? 4 : 16;
705
706 err = copy_from_kernel_nofault(bufs->buf[memcpy_cnt],
707 (void *) (long) args[fmt_cnt],
708 copy_size);
709 if (err < 0)
710 memset(bufs->buf[memcpy_cnt], 0, copy_size);
711 params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
712
713 i += 2;
714 fmt_cnt++;
715 memcpy_cnt++;
716 continue;
717 }
718
719 if (fmt[i] == 'l') {
720 i++;
721 if (fmt[i] == 'l')
722 i++;
723 }
724
725 if (fmt[i] != 'i' && fmt[i] != 'd' &&
726 fmt[i] != 'u' && fmt[i] != 'x' &&
727 fmt[i] != 'X') {
728 err = -EINVAL;
729 goto out;
730 }
731
732 params[fmt_cnt] = args[fmt_cnt];
733 fmt_cnt++;
734 }
735
736 /* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give
737 * all of them to seq_printf().
738 */
739 seq_printf(m, fmt, params[0], params[1], params[2], params[3],
740 params[4], params[5], params[6], params[7], params[8],
741 params[9], params[10], params[11]);
742
743 err = seq_has_overflowed(m) ? -EOVERFLOW : 0;
744 out:
745 this_cpu_dec(bpf_seq_printf_buf_used);
746 return err;
747 }
748
749 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
750
751 static const struct bpf_func_proto bpf_seq_printf_proto = {
752 .func = bpf_seq_printf,
753 .gpl_only = true,
754 .ret_type = RET_INTEGER,
755 .arg1_type = ARG_PTR_TO_BTF_ID,
756 .arg1_btf_id = &btf_seq_file_ids[0],
757 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
758 .arg3_type = ARG_CONST_SIZE,
759 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
760 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
761 };
762
BPF_CALL_3(bpf_seq_write,struct seq_file *,m,const void *,data,u32,len)763 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
764 {
765 return seq_write(m, data, len) ? -EOVERFLOW : 0;
766 }
767
768 static const struct bpf_func_proto bpf_seq_write_proto = {
769 .func = bpf_seq_write,
770 .gpl_only = true,
771 .ret_type = RET_INTEGER,
772 .arg1_type = ARG_PTR_TO_BTF_ID,
773 .arg1_btf_id = &btf_seq_file_ids[0],
774 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
775 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
776 };
777
BPF_CALL_4(bpf_seq_printf_btf,struct seq_file *,m,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)778 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
779 u32, btf_ptr_size, u64, flags)
780 {
781 const struct btf *btf;
782 s32 btf_id;
783 int ret;
784
785 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
786 if (ret)
787 return ret;
788
789 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
790 }
791
792 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
793 .func = bpf_seq_printf_btf,
794 .gpl_only = true,
795 .ret_type = RET_INTEGER,
796 .arg1_type = ARG_PTR_TO_BTF_ID,
797 .arg1_btf_id = &btf_seq_file_ids[0],
798 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
799 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
800 .arg4_type = ARG_ANYTHING,
801 };
802
803 static __always_inline int
get_map_perf_counter(struct bpf_map * map,u64 flags,u64 * value,u64 * enabled,u64 * running)804 get_map_perf_counter(struct bpf_map *map, u64 flags,
805 u64 *value, u64 *enabled, u64 *running)
806 {
807 struct bpf_array *array = container_of(map, struct bpf_array, map);
808 unsigned int cpu = smp_processor_id();
809 u64 index = flags & BPF_F_INDEX_MASK;
810 struct bpf_event_entry *ee;
811
812 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
813 return -EINVAL;
814 if (index == BPF_F_CURRENT_CPU)
815 index = cpu;
816 if (unlikely(index >= array->map.max_entries))
817 return -E2BIG;
818
819 ee = READ_ONCE(array->ptrs[index]);
820 if (!ee)
821 return -ENOENT;
822
823 return perf_event_read_local(ee->event, value, enabled, running);
824 }
825
BPF_CALL_2(bpf_perf_event_read,struct bpf_map *,map,u64,flags)826 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
827 {
828 u64 value = 0;
829 int err;
830
831 err = get_map_perf_counter(map, flags, &value, NULL, NULL);
832 /*
833 * this api is ugly since we miss [-22..-2] range of valid
834 * counter values, but that's uapi
835 */
836 if (err)
837 return err;
838 return value;
839 }
840
841 static const struct bpf_func_proto bpf_perf_event_read_proto = {
842 .func = bpf_perf_event_read,
843 .gpl_only = true,
844 .ret_type = RET_INTEGER,
845 .arg1_type = ARG_CONST_MAP_PTR,
846 .arg2_type = ARG_ANYTHING,
847 };
848
BPF_CALL_4(bpf_perf_event_read_value,struct bpf_map *,map,u64,flags,struct bpf_perf_event_value *,buf,u32,size)849 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
850 struct bpf_perf_event_value *, buf, u32, size)
851 {
852 int err = -EINVAL;
853
854 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
855 goto clear;
856 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
857 &buf->running);
858 if (unlikely(err))
859 goto clear;
860 return 0;
861 clear:
862 memset(buf, 0, size);
863 return err;
864 }
865
866 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
867 .func = bpf_perf_event_read_value,
868 .gpl_only = true,
869 .ret_type = RET_INTEGER,
870 .arg1_type = ARG_CONST_MAP_PTR,
871 .arg2_type = ARG_ANYTHING,
872 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
873 .arg4_type = ARG_CONST_SIZE,
874 };
875
876 static __always_inline u64
__bpf_perf_event_output(struct pt_regs * regs,struct bpf_map * map,u64 flags,struct perf_sample_data * sd)877 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
878 u64 flags, struct perf_sample_data *sd)
879 {
880 struct bpf_array *array = container_of(map, struct bpf_array, map);
881 unsigned int cpu = smp_processor_id();
882 u64 index = flags & BPF_F_INDEX_MASK;
883 struct bpf_event_entry *ee;
884 struct perf_event *event;
885
886 if (index == BPF_F_CURRENT_CPU)
887 index = cpu;
888 if (unlikely(index >= array->map.max_entries))
889 return -E2BIG;
890
891 ee = READ_ONCE(array->ptrs[index]);
892 if (!ee)
893 return -ENOENT;
894
895 event = ee->event;
896 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
897 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
898 return -EINVAL;
899
900 if (unlikely(event->oncpu != cpu))
901 return -EOPNOTSUPP;
902
903 return perf_event_output(event, sd, regs);
904 }
905
906 /*
907 * Support executing tracepoints in normal, irq, and nmi context that each call
908 * bpf_perf_event_output
909 */
910 struct bpf_trace_sample_data {
911 struct perf_sample_data sds[3];
912 };
913
914 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
915 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
BPF_CALL_5(bpf_perf_event_output,struct pt_regs *,regs,struct bpf_map *,map,u64,flags,void *,data,u64,size)916 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
917 u64, flags, void *, data, u64, size)
918 {
919 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
920 int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
921 struct perf_raw_record raw = {
922 .frag = {
923 .size = size,
924 .data = data,
925 },
926 };
927 struct perf_sample_data *sd;
928 int err;
929
930 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
931 err = -EBUSY;
932 goto out;
933 }
934
935 sd = &sds->sds[nest_level - 1];
936
937 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
938 err = -EINVAL;
939 goto out;
940 }
941
942 perf_sample_data_init(sd, 0, 0);
943 sd->raw = &raw;
944
945 err = __bpf_perf_event_output(regs, map, flags, sd);
946
947 out:
948 this_cpu_dec(bpf_trace_nest_level);
949 return err;
950 }
951
952 static const struct bpf_func_proto bpf_perf_event_output_proto = {
953 .func = bpf_perf_event_output,
954 .gpl_only = true,
955 .ret_type = RET_INTEGER,
956 .arg1_type = ARG_PTR_TO_CTX,
957 .arg2_type = ARG_CONST_MAP_PTR,
958 .arg3_type = ARG_ANYTHING,
959 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
960 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
961 };
962
963 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
964 struct bpf_nested_pt_regs {
965 struct pt_regs regs[3];
966 };
967 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
968 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
969
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)970 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
971 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
972 {
973 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
974 struct perf_raw_frag frag = {
975 .copy = ctx_copy,
976 .size = ctx_size,
977 .data = ctx,
978 };
979 struct perf_raw_record raw = {
980 .frag = {
981 {
982 .next = ctx_size ? &frag : NULL,
983 },
984 .size = meta_size,
985 .data = meta,
986 },
987 };
988 struct perf_sample_data *sd;
989 struct pt_regs *regs;
990 u64 ret;
991
992 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
993 ret = -EBUSY;
994 goto out;
995 }
996 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
997 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
998
999 perf_fetch_caller_regs(regs);
1000 perf_sample_data_init(sd, 0, 0);
1001 sd->raw = &raw;
1002
1003 ret = __bpf_perf_event_output(regs, map, flags, sd);
1004 out:
1005 this_cpu_dec(bpf_event_output_nest_level);
1006 return ret;
1007 }
1008
BPF_CALL_0(bpf_get_current_task)1009 BPF_CALL_0(bpf_get_current_task)
1010 {
1011 return (long) current;
1012 }
1013
1014 const struct bpf_func_proto bpf_get_current_task_proto = {
1015 .func = bpf_get_current_task,
1016 .gpl_only = true,
1017 .ret_type = RET_INTEGER,
1018 };
1019
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)1020 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
1021 {
1022 struct bpf_array *array = container_of(map, struct bpf_array, map);
1023 struct cgroup *cgrp;
1024
1025 if (unlikely(idx >= array->map.max_entries))
1026 return -E2BIG;
1027
1028 cgrp = READ_ONCE(array->ptrs[idx]);
1029 if (unlikely(!cgrp))
1030 return -EAGAIN;
1031
1032 return task_under_cgroup_hierarchy(current, cgrp);
1033 }
1034
1035 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
1036 .func = bpf_current_task_under_cgroup,
1037 .gpl_only = false,
1038 .ret_type = RET_INTEGER,
1039 .arg1_type = ARG_CONST_MAP_PTR,
1040 .arg2_type = ARG_ANYTHING,
1041 };
1042
1043 struct send_signal_irq_work {
1044 struct irq_work irq_work;
1045 struct task_struct *task;
1046 u32 sig;
1047 enum pid_type type;
1048 };
1049
1050 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
1051
do_bpf_send_signal(struct irq_work * entry)1052 static void do_bpf_send_signal(struct irq_work *entry)
1053 {
1054 struct send_signal_irq_work *work;
1055
1056 work = container_of(entry, struct send_signal_irq_work, irq_work);
1057 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
1058 put_task_struct(work->task);
1059 }
1060
bpf_send_signal_common(u32 sig,enum pid_type type)1061 static int bpf_send_signal_common(u32 sig, enum pid_type type)
1062 {
1063 struct send_signal_irq_work *work = NULL;
1064
1065 /* Similar to bpf_probe_write_user, task needs to be
1066 * in a sound condition and kernel memory access be
1067 * permitted in order to send signal to the current
1068 * task.
1069 */
1070 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
1071 return -EPERM;
1072 if (unlikely(uaccess_kernel()))
1073 return -EPERM;
1074 if (unlikely(!nmi_uaccess_okay()))
1075 return -EPERM;
1076 /* Task should not be pid=1 to avoid kernel panic. */
1077 if (unlikely(is_global_init(current)))
1078 return -EPERM;
1079
1080 if (irqs_disabled()) {
1081 /* Do an early check on signal validity. Otherwise,
1082 * the error is lost in deferred irq_work.
1083 */
1084 if (unlikely(!valid_signal(sig)))
1085 return -EINVAL;
1086
1087 work = this_cpu_ptr(&send_signal_work);
1088 if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY)
1089 return -EBUSY;
1090
1091 /* Add the current task, which is the target of sending signal,
1092 * to the irq_work. The current task may change when queued
1093 * irq works get executed.
1094 */
1095 work->task = get_task_struct(current);
1096 work->sig = sig;
1097 work->type = type;
1098 irq_work_queue(&work->irq_work);
1099 return 0;
1100 }
1101
1102 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
1103 }
1104
BPF_CALL_1(bpf_send_signal,u32,sig)1105 BPF_CALL_1(bpf_send_signal, u32, sig)
1106 {
1107 return bpf_send_signal_common(sig, PIDTYPE_TGID);
1108 }
1109
1110 static const struct bpf_func_proto bpf_send_signal_proto = {
1111 .func = bpf_send_signal,
1112 .gpl_only = false,
1113 .ret_type = RET_INTEGER,
1114 .arg1_type = ARG_ANYTHING,
1115 };
1116
BPF_CALL_1(bpf_send_signal_thread,u32,sig)1117 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
1118 {
1119 return bpf_send_signal_common(sig, PIDTYPE_PID);
1120 }
1121
1122 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
1123 .func = bpf_send_signal_thread,
1124 .gpl_only = false,
1125 .ret_type = RET_INTEGER,
1126 .arg1_type = ARG_ANYTHING,
1127 };
1128
BPF_CALL_3(bpf_d_path,struct path *,path,char *,buf,u32,sz)1129 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
1130 {
1131 struct path copy;
1132 long len;
1133 char *p;
1134
1135 if (!sz)
1136 return 0;
1137
1138 /*
1139 * The path pointer is verified as trusted and safe to use,
1140 * but let's double check it's valid anyway to workaround
1141 * potentially broken verifier.
1142 */
1143 len = copy_from_kernel_nofault(©, path, sizeof(*path));
1144 if (len < 0)
1145 return len;
1146
1147 p = d_path(©, buf, sz);
1148 if (IS_ERR(p)) {
1149 len = PTR_ERR(p);
1150 } else {
1151 len = buf + sz - p;
1152 memmove(buf, p, len);
1153 }
1154
1155 return len;
1156 }
1157
1158 BTF_SET_START(btf_allowlist_d_path)
1159 #ifdef CONFIG_SECURITY
BTF_ID(func,security_file_permission)1160 BTF_ID(func, security_file_permission)
1161 BTF_ID(func, security_inode_getattr)
1162 BTF_ID(func, security_file_open)
1163 #endif
1164 #ifdef CONFIG_SECURITY_PATH
1165 BTF_ID(func, security_path_truncate)
1166 #endif
1167 BTF_ID(func, vfs_truncate)
1168 BTF_ID(func, vfs_fallocate)
1169 BTF_ID(func, dentry_open)
1170 BTF_ID(func, vfs_getattr)
1171 BTF_ID(func, filp_close)
1172 BTF_SET_END(btf_allowlist_d_path)
1173
1174 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
1175 {
1176 return btf_id_set_contains(&btf_allowlist_d_path, prog->aux->attach_btf_id);
1177 }
1178
1179 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
1180
1181 static const struct bpf_func_proto bpf_d_path_proto = {
1182 .func = bpf_d_path,
1183 .gpl_only = false,
1184 .ret_type = RET_INTEGER,
1185 .arg1_type = ARG_PTR_TO_BTF_ID,
1186 .arg1_btf_id = &bpf_d_path_btf_ids[0],
1187 .arg2_type = ARG_PTR_TO_MEM,
1188 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1189 .allowed = bpf_d_path_allowed,
1190 };
1191
1192 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \
1193 BTF_F_PTR_RAW | BTF_F_ZERO)
1194
bpf_btf_printf_prepare(struct btf_ptr * ptr,u32 btf_ptr_size,u64 flags,const struct btf ** btf,s32 * btf_id)1195 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
1196 u64 flags, const struct btf **btf,
1197 s32 *btf_id)
1198 {
1199 const struct btf_type *t;
1200
1201 if (unlikely(flags & ~(BTF_F_ALL)))
1202 return -EINVAL;
1203
1204 if (btf_ptr_size != sizeof(struct btf_ptr))
1205 return -EINVAL;
1206
1207 *btf = bpf_get_btf_vmlinux();
1208
1209 if (IS_ERR_OR_NULL(*btf))
1210 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
1211
1212 if (ptr->type_id > 0)
1213 *btf_id = ptr->type_id;
1214 else
1215 return -EINVAL;
1216
1217 if (*btf_id > 0)
1218 t = btf_type_by_id(*btf, *btf_id);
1219 if (*btf_id <= 0 || !t)
1220 return -ENOENT;
1221
1222 return 0;
1223 }
1224
BPF_CALL_5(bpf_snprintf_btf,char *,str,u32,str_size,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)1225 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1226 u32, btf_ptr_size, u64, flags)
1227 {
1228 const struct btf *btf;
1229 s32 btf_id;
1230 int ret;
1231
1232 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1233 if (ret)
1234 return ret;
1235
1236 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1237 flags);
1238 }
1239
1240 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1241 .func = bpf_snprintf_btf,
1242 .gpl_only = false,
1243 .ret_type = RET_INTEGER,
1244 .arg1_type = ARG_PTR_TO_MEM,
1245 .arg2_type = ARG_CONST_SIZE,
1246 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1247 .arg4_type = ARG_CONST_SIZE,
1248 .arg5_type = ARG_ANYTHING,
1249 };
1250
1251 const struct bpf_func_proto *
bpf_tracing_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1252 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1253 {
1254 switch (func_id) {
1255 case BPF_FUNC_map_lookup_elem:
1256 return &bpf_map_lookup_elem_proto;
1257 case BPF_FUNC_map_update_elem:
1258 return &bpf_map_update_elem_proto;
1259 case BPF_FUNC_map_delete_elem:
1260 return &bpf_map_delete_elem_proto;
1261 case BPF_FUNC_map_push_elem:
1262 return &bpf_map_push_elem_proto;
1263 case BPF_FUNC_map_pop_elem:
1264 return &bpf_map_pop_elem_proto;
1265 case BPF_FUNC_map_peek_elem:
1266 return &bpf_map_peek_elem_proto;
1267 case BPF_FUNC_ktime_get_ns:
1268 return &bpf_ktime_get_ns_proto;
1269 case BPF_FUNC_ktime_get_boot_ns:
1270 return &bpf_ktime_get_boot_ns_proto;
1271 case BPF_FUNC_tail_call:
1272 return &bpf_tail_call_proto;
1273 case BPF_FUNC_get_current_pid_tgid:
1274 return &bpf_get_current_pid_tgid_proto;
1275 case BPF_FUNC_get_current_task:
1276 return &bpf_get_current_task_proto;
1277 case BPF_FUNC_get_current_uid_gid:
1278 return &bpf_get_current_uid_gid_proto;
1279 case BPF_FUNC_get_current_comm:
1280 return &bpf_get_current_comm_proto;
1281 case BPF_FUNC_trace_printk:
1282 return bpf_get_trace_printk_proto();
1283 case BPF_FUNC_get_smp_processor_id:
1284 return &bpf_get_smp_processor_id_proto;
1285 case BPF_FUNC_get_numa_node_id:
1286 return &bpf_get_numa_node_id_proto;
1287 case BPF_FUNC_perf_event_read:
1288 return &bpf_perf_event_read_proto;
1289 case BPF_FUNC_current_task_under_cgroup:
1290 return &bpf_current_task_under_cgroup_proto;
1291 case BPF_FUNC_get_prandom_u32:
1292 return &bpf_get_prandom_u32_proto;
1293 case BPF_FUNC_probe_write_user:
1294 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1295 NULL : bpf_get_probe_write_proto();
1296 case BPF_FUNC_probe_read_user:
1297 return &bpf_probe_read_user_proto;
1298 case BPF_FUNC_probe_read_kernel:
1299 return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
1300 NULL : &bpf_probe_read_kernel_proto;
1301 case BPF_FUNC_probe_read_user_str:
1302 return &bpf_probe_read_user_str_proto;
1303 case BPF_FUNC_probe_read_kernel_str:
1304 return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
1305 NULL : &bpf_probe_read_kernel_str_proto;
1306 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1307 case BPF_FUNC_probe_read:
1308 return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
1309 NULL : &bpf_probe_read_compat_proto;
1310 case BPF_FUNC_probe_read_str:
1311 return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
1312 NULL : &bpf_probe_read_compat_str_proto;
1313 #endif
1314 #ifdef CONFIG_CGROUPS
1315 case BPF_FUNC_get_current_cgroup_id:
1316 return &bpf_get_current_cgroup_id_proto;
1317 #endif
1318 case BPF_FUNC_send_signal:
1319 return &bpf_send_signal_proto;
1320 case BPF_FUNC_send_signal_thread:
1321 return &bpf_send_signal_thread_proto;
1322 case BPF_FUNC_perf_event_read_value:
1323 return &bpf_perf_event_read_value_proto;
1324 case BPF_FUNC_get_ns_current_pid_tgid:
1325 return &bpf_get_ns_current_pid_tgid_proto;
1326 case BPF_FUNC_ringbuf_output:
1327 return &bpf_ringbuf_output_proto;
1328 case BPF_FUNC_ringbuf_reserve:
1329 return &bpf_ringbuf_reserve_proto;
1330 case BPF_FUNC_ringbuf_submit:
1331 return &bpf_ringbuf_submit_proto;
1332 case BPF_FUNC_ringbuf_discard:
1333 return &bpf_ringbuf_discard_proto;
1334 case BPF_FUNC_ringbuf_query:
1335 return &bpf_ringbuf_query_proto;
1336 case BPF_FUNC_jiffies64:
1337 return &bpf_jiffies64_proto;
1338 case BPF_FUNC_get_task_stack:
1339 return &bpf_get_task_stack_proto;
1340 case BPF_FUNC_copy_from_user:
1341 return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
1342 case BPF_FUNC_snprintf_btf:
1343 return &bpf_snprintf_btf_proto;
1344 case BPF_FUNC_per_cpu_ptr:
1345 return &bpf_per_cpu_ptr_proto;
1346 case BPF_FUNC_this_cpu_ptr:
1347 return &bpf_this_cpu_ptr_proto;
1348 default:
1349 return NULL;
1350 }
1351 }
1352
1353 static const struct bpf_func_proto *
kprobe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1354 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1355 {
1356 switch (func_id) {
1357 case BPF_FUNC_perf_event_output:
1358 return &bpf_perf_event_output_proto;
1359 case BPF_FUNC_get_stackid:
1360 return &bpf_get_stackid_proto;
1361 case BPF_FUNC_get_stack:
1362 return &bpf_get_stack_proto;
1363 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1364 case BPF_FUNC_override_return:
1365 return &bpf_override_return_proto;
1366 #endif
1367 default:
1368 return bpf_tracing_func_proto(func_id, prog);
1369 }
1370 }
1371
1372 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
kprobe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1373 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1374 const struct bpf_prog *prog,
1375 struct bpf_insn_access_aux *info)
1376 {
1377 if (off < 0 || off >= sizeof(struct pt_regs))
1378 return false;
1379 if (type != BPF_READ)
1380 return false;
1381 if (off % size != 0)
1382 return false;
1383 /*
1384 * Assertion for 32 bit to make sure last 8 byte access
1385 * (BPF_DW) to the last 4 byte member is disallowed.
1386 */
1387 if (off + size > sizeof(struct pt_regs))
1388 return false;
1389
1390 return true;
1391 }
1392
1393 const struct bpf_verifier_ops kprobe_verifier_ops = {
1394 .get_func_proto = kprobe_prog_func_proto,
1395 .is_valid_access = kprobe_prog_is_valid_access,
1396 };
1397
1398 const struct bpf_prog_ops kprobe_prog_ops = {
1399 };
1400
BPF_CALL_5(bpf_perf_event_output_tp,void *,tp_buff,struct bpf_map *,map,u64,flags,void *,data,u64,size)1401 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1402 u64, flags, void *, data, u64, size)
1403 {
1404 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1405
1406 /*
1407 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1408 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1409 * from there and call the same bpf_perf_event_output() helper inline.
1410 */
1411 return ____bpf_perf_event_output(regs, map, flags, data, size);
1412 }
1413
1414 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1415 .func = bpf_perf_event_output_tp,
1416 .gpl_only = true,
1417 .ret_type = RET_INTEGER,
1418 .arg1_type = ARG_PTR_TO_CTX,
1419 .arg2_type = ARG_CONST_MAP_PTR,
1420 .arg3_type = ARG_ANYTHING,
1421 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1422 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1423 };
1424
BPF_CALL_3(bpf_get_stackid_tp,void *,tp_buff,struct bpf_map *,map,u64,flags)1425 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1426 u64, flags)
1427 {
1428 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1429
1430 /*
1431 * Same comment as in bpf_perf_event_output_tp(), only that this time
1432 * the other helper's function body cannot be inlined due to being
1433 * external, thus we need to call raw helper function.
1434 */
1435 return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1436 flags, 0, 0);
1437 }
1438
1439 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1440 .func = bpf_get_stackid_tp,
1441 .gpl_only = true,
1442 .ret_type = RET_INTEGER,
1443 .arg1_type = ARG_PTR_TO_CTX,
1444 .arg2_type = ARG_CONST_MAP_PTR,
1445 .arg3_type = ARG_ANYTHING,
1446 };
1447
BPF_CALL_4(bpf_get_stack_tp,void *,tp_buff,void *,buf,u32,size,u64,flags)1448 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1449 u64, flags)
1450 {
1451 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1452
1453 return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1454 (unsigned long) size, flags, 0);
1455 }
1456
1457 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1458 .func = bpf_get_stack_tp,
1459 .gpl_only = true,
1460 .ret_type = RET_INTEGER,
1461 .arg1_type = ARG_PTR_TO_CTX,
1462 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1463 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1464 .arg4_type = ARG_ANYTHING,
1465 };
1466
1467 static const struct bpf_func_proto *
tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1468 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1469 {
1470 switch (func_id) {
1471 case BPF_FUNC_perf_event_output:
1472 return &bpf_perf_event_output_proto_tp;
1473 case BPF_FUNC_get_stackid:
1474 return &bpf_get_stackid_proto_tp;
1475 case BPF_FUNC_get_stack:
1476 return &bpf_get_stack_proto_tp;
1477 default:
1478 return bpf_tracing_func_proto(func_id, prog);
1479 }
1480 }
1481
tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1482 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1483 const struct bpf_prog *prog,
1484 struct bpf_insn_access_aux *info)
1485 {
1486 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1487 return false;
1488 if (type != BPF_READ)
1489 return false;
1490 if (off % size != 0)
1491 return false;
1492
1493 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1494 return true;
1495 }
1496
1497 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1498 .get_func_proto = tp_prog_func_proto,
1499 .is_valid_access = tp_prog_is_valid_access,
1500 };
1501
1502 const struct bpf_prog_ops tracepoint_prog_ops = {
1503 };
1504
BPF_CALL_3(bpf_perf_prog_read_value,struct bpf_perf_event_data_kern *,ctx,struct bpf_perf_event_value *,buf,u32,size)1505 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1506 struct bpf_perf_event_value *, buf, u32, size)
1507 {
1508 int err = -EINVAL;
1509
1510 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1511 goto clear;
1512 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1513 &buf->running);
1514 if (unlikely(err))
1515 goto clear;
1516 return 0;
1517 clear:
1518 memset(buf, 0, size);
1519 return err;
1520 }
1521
1522 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1523 .func = bpf_perf_prog_read_value,
1524 .gpl_only = true,
1525 .ret_type = RET_INTEGER,
1526 .arg1_type = ARG_PTR_TO_CTX,
1527 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1528 .arg3_type = ARG_CONST_SIZE,
1529 };
1530
BPF_CALL_4(bpf_read_branch_records,struct bpf_perf_event_data_kern *,ctx,void *,buf,u32,size,u64,flags)1531 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1532 void *, buf, u32, size, u64, flags)
1533 {
1534 static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1535 struct perf_branch_stack *br_stack = ctx->data->br_stack;
1536 u32 to_copy;
1537
1538 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1539 return -EINVAL;
1540
1541 if (unlikely(!br_stack))
1542 return -ENOENT;
1543
1544 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1545 return br_stack->nr * br_entry_size;
1546
1547 if (!buf || (size % br_entry_size != 0))
1548 return -EINVAL;
1549
1550 to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1551 memcpy(buf, br_stack->entries, to_copy);
1552
1553 return to_copy;
1554 }
1555
1556 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1557 .func = bpf_read_branch_records,
1558 .gpl_only = true,
1559 .ret_type = RET_INTEGER,
1560 .arg1_type = ARG_PTR_TO_CTX,
1561 .arg2_type = ARG_PTR_TO_MEM_OR_NULL,
1562 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1563 .arg4_type = ARG_ANYTHING,
1564 };
1565
1566 static const struct bpf_func_proto *
pe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1567 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1568 {
1569 switch (func_id) {
1570 case BPF_FUNC_perf_event_output:
1571 return &bpf_perf_event_output_proto_tp;
1572 case BPF_FUNC_get_stackid:
1573 return &bpf_get_stackid_proto_pe;
1574 case BPF_FUNC_get_stack:
1575 return &bpf_get_stack_proto_pe;
1576 case BPF_FUNC_perf_prog_read_value:
1577 return &bpf_perf_prog_read_value_proto;
1578 case BPF_FUNC_read_branch_records:
1579 return &bpf_read_branch_records_proto;
1580 default:
1581 return bpf_tracing_func_proto(func_id, prog);
1582 }
1583 }
1584
1585 /*
1586 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1587 * to avoid potential recursive reuse issue when/if tracepoints are added
1588 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1589 *
1590 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1591 * in normal, irq, and nmi context.
1592 */
1593 struct bpf_raw_tp_regs {
1594 struct pt_regs regs[3];
1595 };
1596 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1597 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
get_bpf_raw_tp_regs(void)1598 static struct pt_regs *get_bpf_raw_tp_regs(void)
1599 {
1600 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1601 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1602
1603 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1604 this_cpu_dec(bpf_raw_tp_nest_level);
1605 return ERR_PTR(-EBUSY);
1606 }
1607
1608 return &tp_regs->regs[nest_level - 1];
1609 }
1610
put_bpf_raw_tp_regs(void)1611 static void put_bpf_raw_tp_regs(void)
1612 {
1613 this_cpu_dec(bpf_raw_tp_nest_level);
1614 }
1615
BPF_CALL_5(bpf_perf_event_output_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags,void *,data,u64,size)1616 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1617 struct bpf_map *, map, u64, flags, void *, data, u64, size)
1618 {
1619 struct pt_regs *regs = get_bpf_raw_tp_regs();
1620 int ret;
1621
1622 if (IS_ERR(regs))
1623 return PTR_ERR(regs);
1624
1625 perf_fetch_caller_regs(regs);
1626 ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1627
1628 put_bpf_raw_tp_regs();
1629 return ret;
1630 }
1631
1632 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1633 .func = bpf_perf_event_output_raw_tp,
1634 .gpl_only = true,
1635 .ret_type = RET_INTEGER,
1636 .arg1_type = ARG_PTR_TO_CTX,
1637 .arg2_type = ARG_CONST_MAP_PTR,
1638 .arg3_type = ARG_ANYTHING,
1639 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1640 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1641 };
1642
1643 extern const struct bpf_func_proto bpf_skb_output_proto;
1644 extern const struct bpf_func_proto bpf_xdp_output_proto;
1645
BPF_CALL_3(bpf_get_stackid_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags)1646 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1647 struct bpf_map *, map, u64, flags)
1648 {
1649 struct pt_regs *regs = get_bpf_raw_tp_regs();
1650 int ret;
1651
1652 if (IS_ERR(regs))
1653 return PTR_ERR(regs);
1654
1655 perf_fetch_caller_regs(regs);
1656 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1657 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1658 flags, 0, 0);
1659 put_bpf_raw_tp_regs();
1660 return ret;
1661 }
1662
1663 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1664 .func = bpf_get_stackid_raw_tp,
1665 .gpl_only = true,
1666 .ret_type = RET_INTEGER,
1667 .arg1_type = ARG_PTR_TO_CTX,
1668 .arg2_type = ARG_CONST_MAP_PTR,
1669 .arg3_type = ARG_ANYTHING,
1670 };
1671
BPF_CALL_4(bpf_get_stack_raw_tp,struct bpf_raw_tracepoint_args *,args,void *,buf,u32,size,u64,flags)1672 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1673 void *, buf, u32, size, u64, flags)
1674 {
1675 struct pt_regs *regs = get_bpf_raw_tp_regs();
1676 int ret;
1677
1678 if (IS_ERR(regs))
1679 return PTR_ERR(regs);
1680
1681 perf_fetch_caller_regs(regs);
1682 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1683 (unsigned long) size, flags, 0);
1684 put_bpf_raw_tp_regs();
1685 return ret;
1686 }
1687
1688 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1689 .func = bpf_get_stack_raw_tp,
1690 .gpl_only = true,
1691 .ret_type = RET_INTEGER,
1692 .arg1_type = ARG_PTR_TO_CTX,
1693 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1694 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1695 .arg4_type = ARG_ANYTHING,
1696 };
1697
1698 static const struct bpf_func_proto *
raw_tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1699 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1700 {
1701 switch (func_id) {
1702 case BPF_FUNC_perf_event_output:
1703 return &bpf_perf_event_output_proto_raw_tp;
1704 case BPF_FUNC_get_stackid:
1705 return &bpf_get_stackid_proto_raw_tp;
1706 case BPF_FUNC_get_stack:
1707 return &bpf_get_stack_proto_raw_tp;
1708 default:
1709 return bpf_tracing_func_proto(func_id, prog);
1710 }
1711 }
1712
1713 const struct bpf_func_proto *
tracing_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1714 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1715 {
1716 switch (func_id) {
1717 #ifdef CONFIG_NET
1718 case BPF_FUNC_skb_output:
1719 return &bpf_skb_output_proto;
1720 case BPF_FUNC_xdp_output:
1721 return &bpf_xdp_output_proto;
1722 case BPF_FUNC_skc_to_tcp6_sock:
1723 return &bpf_skc_to_tcp6_sock_proto;
1724 case BPF_FUNC_skc_to_tcp_sock:
1725 return &bpf_skc_to_tcp_sock_proto;
1726 case BPF_FUNC_skc_to_tcp_timewait_sock:
1727 return &bpf_skc_to_tcp_timewait_sock_proto;
1728 case BPF_FUNC_skc_to_tcp_request_sock:
1729 return &bpf_skc_to_tcp_request_sock_proto;
1730 case BPF_FUNC_skc_to_udp6_sock:
1731 return &bpf_skc_to_udp6_sock_proto;
1732 #endif
1733 case BPF_FUNC_seq_printf:
1734 return prog->expected_attach_type == BPF_TRACE_ITER ?
1735 &bpf_seq_printf_proto :
1736 NULL;
1737 case BPF_FUNC_seq_write:
1738 return prog->expected_attach_type == BPF_TRACE_ITER ?
1739 &bpf_seq_write_proto :
1740 NULL;
1741 case BPF_FUNC_seq_printf_btf:
1742 return prog->expected_attach_type == BPF_TRACE_ITER ?
1743 &bpf_seq_printf_btf_proto :
1744 NULL;
1745 case BPF_FUNC_d_path:
1746 return &bpf_d_path_proto;
1747 default:
1748 return raw_tp_prog_func_proto(func_id, prog);
1749 }
1750 }
1751
raw_tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1752 static bool raw_tp_prog_is_valid_access(int off, int size,
1753 enum bpf_access_type type,
1754 const struct bpf_prog *prog,
1755 struct bpf_insn_access_aux *info)
1756 {
1757 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1758 return false;
1759 if (type != BPF_READ)
1760 return false;
1761 if (off % size != 0)
1762 return false;
1763 return true;
1764 }
1765
tracing_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1766 static bool tracing_prog_is_valid_access(int off, int size,
1767 enum bpf_access_type type,
1768 const struct bpf_prog *prog,
1769 struct bpf_insn_access_aux *info)
1770 {
1771 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1772 return false;
1773 if (type != BPF_READ)
1774 return false;
1775 if (off % size != 0)
1776 return false;
1777 return btf_ctx_access(off, size, type, prog, info);
1778 }
1779
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)1780 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1781 const union bpf_attr *kattr,
1782 union bpf_attr __user *uattr)
1783 {
1784 return -ENOTSUPP;
1785 }
1786
1787 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1788 .get_func_proto = raw_tp_prog_func_proto,
1789 .is_valid_access = raw_tp_prog_is_valid_access,
1790 };
1791
1792 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1793 #ifdef CONFIG_NET
1794 .test_run = bpf_prog_test_run_raw_tp,
1795 #endif
1796 };
1797
1798 const struct bpf_verifier_ops tracing_verifier_ops = {
1799 .get_func_proto = tracing_prog_func_proto,
1800 .is_valid_access = tracing_prog_is_valid_access,
1801 };
1802
1803 const struct bpf_prog_ops tracing_prog_ops = {
1804 .test_run = bpf_prog_test_run_tracing,
1805 };
1806
raw_tp_writable_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1807 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1808 enum bpf_access_type type,
1809 const struct bpf_prog *prog,
1810 struct bpf_insn_access_aux *info)
1811 {
1812 if (off == 0) {
1813 if (size != sizeof(u64) || type != BPF_READ)
1814 return false;
1815 info->reg_type = PTR_TO_TP_BUFFER;
1816 }
1817 return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1818 }
1819
1820 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1821 .get_func_proto = raw_tp_prog_func_proto,
1822 .is_valid_access = raw_tp_writable_prog_is_valid_access,
1823 };
1824
1825 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1826 };
1827
pe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1828 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1829 const struct bpf_prog *prog,
1830 struct bpf_insn_access_aux *info)
1831 {
1832 const int size_u64 = sizeof(u64);
1833
1834 if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1835 return false;
1836 if (type != BPF_READ)
1837 return false;
1838 if (off % size != 0) {
1839 if (sizeof(unsigned long) != 4)
1840 return false;
1841 if (size != 8)
1842 return false;
1843 if (off % size != 4)
1844 return false;
1845 }
1846
1847 switch (off) {
1848 case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1849 bpf_ctx_record_field_size(info, size_u64);
1850 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1851 return false;
1852 break;
1853 case bpf_ctx_range(struct bpf_perf_event_data, addr):
1854 bpf_ctx_record_field_size(info, size_u64);
1855 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1856 return false;
1857 break;
1858 default:
1859 if (size != sizeof(long))
1860 return false;
1861 }
1862
1863 return true;
1864 }
1865
pe_prog_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)1866 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1867 const struct bpf_insn *si,
1868 struct bpf_insn *insn_buf,
1869 struct bpf_prog *prog, u32 *target_size)
1870 {
1871 struct bpf_insn *insn = insn_buf;
1872
1873 switch (si->off) {
1874 case offsetof(struct bpf_perf_event_data, sample_period):
1875 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1876 data), si->dst_reg, si->src_reg,
1877 offsetof(struct bpf_perf_event_data_kern, data));
1878 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1879 bpf_target_off(struct perf_sample_data, period, 8,
1880 target_size));
1881 break;
1882 case offsetof(struct bpf_perf_event_data, addr):
1883 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1884 data), si->dst_reg, si->src_reg,
1885 offsetof(struct bpf_perf_event_data_kern, data));
1886 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1887 bpf_target_off(struct perf_sample_data, addr, 8,
1888 target_size));
1889 break;
1890 default:
1891 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1892 regs), si->dst_reg, si->src_reg,
1893 offsetof(struct bpf_perf_event_data_kern, regs));
1894 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1895 si->off);
1896 break;
1897 }
1898
1899 return insn - insn_buf;
1900 }
1901
1902 const struct bpf_verifier_ops perf_event_verifier_ops = {
1903 .get_func_proto = pe_prog_func_proto,
1904 .is_valid_access = pe_prog_is_valid_access,
1905 .convert_ctx_access = pe_prog_convert_ctx_access,
1906 };
1907
1908 const struct bpf_prog_ops perf_event_prog_ops = {
1909 };
1910
1911 static DEFINE_MUTEX(bpf_event_mutex);
1912
1913 #define BPF_TRACE_MAX_PROGS 64
1914
perf_event_attach_bpf_prog(struct perf_event * event,struct bpf_prog * prog)1915 int perf_event_attach_bpf_prog(struct perf_event *event,
1916 struct bpf_prog *prog)
1917 {
1918 struct bpf_prog_array *old_array;
1919 struct bpf_prog_array *new_array;
1920 int ret = -EEXIST;
1921
1922 /*
1923 * Kprobe override only works if they are on the function entry,
1924 * and only if they are on the opt-in list.
1925 */
1926 if (prog->kprobe_override &&
1927 (!trace_kprobe_on_func_entry(event->tp_event) ||
1928 !trace_kprobe_error_injectable(event->tp_event)))
1929 return -EINVAL;
1930
1931 mutex_lock(&bpf_event_mutex);
1932
1933 if (event->prog)
1934 goto unlock;
1935
1936 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1937 if (old_array &&
1938 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1939 ret = -E2BIG;
1940 goto unlock;
1941 }
1942
1943 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1944 if (ret < 0)
1945 goto unlock;
1946
1947 /* set the new array to event->tp_event and set event->prog */
1948 event->prog = prog;
1949 rcu_assign_pointer(event->tp_event->prog_array, new_array);
1950 bpf_prog_array_free(old_array);
1951
1952 unlock:
1953 mutex_unlock(&bpf_event_mutex);
1954 return ret;
1955 }
1956
perf_event_detach_bpf_prog(struct perf_event * event)1957 void perf_event_detach_bpf_prog(struct perf_event *event)
1958 {
1959 struct bpf_prog_array *old_array;
1960 struct bpf_prog_array *new_array;
1961 int ret;
1962
1963 mutex_lock(&bpf_event_mutex);
1964
1965 if (!event->prog)
1966 goto unlock;
1967
1968 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1969 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1970 if (ret == -ENOENT)
1971 goto unlock;
1972 if (ret < 0) {
1973 bpf_prog_array_delete_safe(old_array, event->prog);
1974 } else {
1975 rcu_assign_pointer(event->tp_event->prog_array, new_array);
1976 bpf_prog_array_free(old_array);
1977 }
1978
1979 bpf_prog_put(event->prog);
1980 event->prog = NULL;
1981
1982 unlock:
1983 mutex_unlock(&bpf_event_mutex);
1984 }
1985
perf_event_query_prog_array(struct perf_event * event,void __user * info)1986 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1987 {
1988 struct perf_event_query_bpf __user *uquery = info;
1989 struct perf_event_query_bpf query = {};
1990 struct bpf_prog_array *progs;
1991 u32 *ids, prog_cnt, ids_len;
1992 int ret;
1993
1994 if (!perfmon_capable())
1995 return -EPERM;
1996 if (event->attr.type != PERF_TYPE_TRACEPOINT)
1997 return -EINVAL;
1998 if (copy_from_user(&query, uquery, sizeof(query)))
1999 return -EFAULT;
2000
2001 ids_len = query.ids_len;
2002 if (ids_len > BPF_TRACE_MAX_PROGS)
2003 return -E2BIG;
2004 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2005 if (!ids)
2006 return -ENOMEM;
2007 /*
2008 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2009 * is required when user only wants to check for uquery->prog_cnt.
2010 * There is no need to check for it since the case is handled
2011 * gracefully in bpf_prog_array_copy_info.
2012 */
2013
2014 mutex_lock(&bpf_event_mutex);
2015 progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2016 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2017 mutex_unlock(&bpf_event_mutex);
2018
2019 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2020 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2021 ret = -EFAULT;
2022
2023 kfree(ids);
2024 return ret;
2025 }
2026
2027 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2028 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2029
bpf_get_raw_tracepoint(const char * name)2030 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2031 {
2032 struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2033
2034 for (; btp < __stop__bpf_raw_tp; btp++) {
2035 if (!strcmp(btp->tp->name, name))
2036 return btp;
2037 }
2038
2039 return bpf_get_raw_tracepoint_module(name);
2040 }
2041
bpf_put_raw_tracepoint(struct bpf_raw_event_map * btp)2042 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2043 {
2044 struct module *mod;
2045
2046 preempt_disable();
2047 mod = __module_address((unsigned long)btp);
2048 module_put(mod);
2049 preempt_enable();
2050 }
2051
2052 static __always_inline
__bpf_trace_run(struct bpf_prog * prog,u64 * args)2053 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
2054 {
2055 cant_sleep();
2056 rcu_read_lock();
2057 (void) BPF_PROG_RUN(prog, args);
2058 rcu_read_unlock();
2059 }
2060
2061 #define UNPACK(...) __VA_ARGS__
2062 #define REPEAT_1(FN, DL, X, ...) FN(X)
2063 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2064 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2065 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2066 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2067 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2068 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2069 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2070 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2071 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2072 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2073 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2074 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__)
2075
2076 #define SARG(X) u64 arg##X
2077 #define COPY(X) args[X] = arg##X
2078
2079 #define __DL_COM (,)
2080 #define __DL_SEM (;)
2081
2082 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2083
2084 #define BPF_TRACE_DEFN_x(x) \
2085 void bpf_trace_run##x(struct bpf_prog *prog, \
2086 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \
2087 { \
2088 u64 args[x]; \
2089 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \
2090 __bpf_trace_run(prog, args); \
2091 } \
2092 EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2093 BPF_TRACE_DEFN_x(1);
2094 BPF_TRACE_DEFN_x(2);
2095 BPF_TRACE_DEFN_x(3);
2096 BPF_TRACE_DEFN_x(4);
2097 BPF_TRACE_DEFN_x(5);
2098 BPF_TRACE_DEFN_x(6);
2099 BPF_TRACE_DEFN_x(7);
2100 BPF_TRACE_DEFN_x(8);
2101 BPF_TRACE_DEFN_x(9);
2102 BPF_TRACE_DEFN_x(10);
2103 BPF_TRACE_DEFN_x(11);
2104 BPF_TRACE_DEFN_x(12);
2105
__bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)2106 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2107 {
2108 struct tracepoint *tp = btp->tp;
2109
2110 /*
2111 * check that program doesn't access arguments beyond what's
2112 * available in this tracepoint
2113 */
2114 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2115 return -EINVAL;
2116
2117 if (prog->aux->max_tp_access > btp->writable_size)
2118 return -EINVAL;
2119
2120 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
2121 prog);
2122 }
2123
bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)2124 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2125 {
2126 return __bpf_probe_register(btp, prog);
2127 }
2128
bpf_probe_unregister(struct bpf_raw_event_map * btp,struct bpf_prog * prog)2129 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
2130 {
2131 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
2132 }
2133
bpf_get_perf_event_info(const struct perf_event * event,u32 * prog_id,u32 * fd_type,const char ** buf,u64 * probe_offset,u64 * probe_addr)2134 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2135 u32 *fd_type, const char **buf,
2136 u64 *probe_offset, u64 *probe_addr)
2137 {
2138 bool is_tracepoint, is_syscall_tp;
2139 struct bpf_prog *prog;
2140 int flags, err = 0;
2141
2142 prog = event->prog;
2143 if (!prog)
2144 return -ENOENT;
2145
2146 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2147 if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2148 return -EOPNOTSUPP;
2149
2150 *prog_id = prog->aux->id;
2151 flags = event->tp_event->flags;
2152 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2153 is_syscall_tp = is_syscall_trace_event(event->tp_event);
2154
2155 if (is_tracepoint || is_syscall_tp) {
2156 *buf = is_tracepoint ? event->tp_event->tp->name
2157 : event->tp_event->name;
2158 *fd_type = BPF_FD_TYPE_TRACEPOINT;
2159 *probe_offset = 0x0;
2160 *probe_addr = 0x0;
2161 } else {
2162 /* kprobe/uprobe */
2163 err = -EOPNOTSUPP;
2164 #ifdef CONFIG_KPROBE_EVENTS
2165 if (flags & TRACE_EVENT_FL_KPROBE)
2166 err = bpf_get_kprobe_info(event, fd_type, buf,
2167 probe_offset, probe_addr,
2168 event->attr.type == PERF_TYPE_TRACEPOINT);
2169 #endif
2170 #ifdef CONFIG_UPROBE_EVENTS
2171 if (flags & TRACE_EVENT_FL_UPROBE)
2172 err = bpf_get_uprobe_info(event, fd_type, buf,
2173 probe_offset,
2174 event->attr.type == PERF_TYPE_TRACEPOINT);
2175 #endif
2176 }
2177
2178 return err;
2179 }
2180
send_signal_irq_work_init(void)2181 static int __init send_signal_irq_work_init(void)
2182 {
2183 int cpu;
2184 struct send_signal_irq_work *work;
2185
2186 for_each_possible_cpu(cpu) {
2187 work = per_cpu_ptr(&send_signal_work, cpu);
2188 init_irq_work(&work->irq_work, do_bpf_send_signal);
2189 }
2190 return 0;
2191 }
2192
2193 subsys_initcall(send_signal_irq_work_init);
2194
2195 #ifdef CONFIG_MODULES
bpf_event_notify(struct notifier_block * nb,unsigned long op,void * module)2196 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2197 void *module)
2198 {
2199 struct bpf_trace_module *btm, *tmp;
2200 struct module *mod = module;
2201 int ret = 0;
2202
2203 if (mod->num_bpf_raw_events == 0 ||
2204 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2205 goto out;
2206
2207 mutex_lock(&bpf_module_mutex);
2208
2209 switch (op) {
2210 case MODULE_STATE_COMING:
2211 btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2212 if (btm) {
2213 btm->module = module;
2214 list_add(&btm->list, &bpf_trace_modules);
2215 } else {
2216 ret = -ENOMEM;
2217 }
2218 break;
2219 case MODULE_STATE_GOING:
2220 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2221 if (btm->module == module) {
2222 list_del(&btm->list);
2223 kfree(btm);
2224 break;
2225 }
2226 }
2227 break;
2228 }
2229
2230 mutex_unlock(&bpf_module_mutex);
2231
2232 out:
2233 return notifier_from_errno(ret);
2234 }
2235
2236 static struct notifier_block bpf_module_nb = {
2237 .notifier_call = bpf_event_notify,
2238 };
2239
bpf_event_init(void)2240 static int __init bpf_event_init(void)
2241 {
2242 register_module_notifier(&bpf_module_nb);
2243 return 0;
2244 }
2245
2246 fs_initcall(bpf_event_init);
2247 #endif /* CONFIG_MODULES */
2248