1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Common capabilities, needed by capability.o.
3 */
4
5 #include <linux/capability.h>
6 #include <linux/audit.h>
7 #include <linux/init.h>
8 #include <linux/kernel.h>
9 #include <linux/lsm_hooks.h>
10 #include <linux/file.h>
11 #include <linux/mm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/skbuff.h>
16 #include <linux/netlink.h>
17 #include <linux/ptrace.h>
18 #include <linux/xattr.h>
19 #include <linux/hugetlb.h>
20 #include <linux/mount.h>
21 #include <linux/sched.h>
22 #include <linux/prctl.h>
23 #include <linux/securebits.h>
24 #include <linux/user_namespace.h>
25 #include <linux/binfmts.h>
26 #include <linux/personality.h>
27
28 /*
29 * If a non-root user executes a setuid-root binary in
30 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
31 * However if fE is also set, then the intent is for only
32 * the file capabilities to be applied, and the setuid-root
33 * bit is left on either to change the uid (plausible) or
34 * to get full privilege on a kernel without file capabilities
35 * support. So in that case we do not raise capabilities.
36 *
37 * Warn if that happens, once per boot.
38 */
warn_setuid_and_fcaps_mixed(const char * fname)39 static void warn_setuid_and_fcaps_mixed(const char *fname)
40 {
41 static int warned;
42 if (!warned) {
43 printk(KERN_INFO "warning: `%s' has both setuid-root and"
44 " effective capabilities. Therefore not raising all"
45 " capabilities.\n", fname);
46 warned = 1;
47 }
48 }
49
50 /**
51 * cap_capable - Determine whether a task has a particular effective capability
52 * @cred: The credentials to use
53 * @ns: The user namespace in which we need the capability
54 * @cap: The capability to check for
55 * @opts: Bitmask of options defined in include/linux/security.h
56 *
57 * Determine whether the nominated task has the specified capability amongst
58 * its effective set, returning 0 if it does, -ve if it does not.
59 *
60 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
61 * and has_capability() functions. That is, it has the reverse semantics:
62 * cap_has_capability() returns 0 when a task has a capability, but the
63 * kernel's capable() and has_capability() returns 1 for this case.
64 */
cap_capable(const struct cred * cred,struct user_namespace * targ_ns,int cap,unsigned int opts)65 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
66 int cap, unsigned int opts)
67 {
68 struct user_namespace *ns = targ_ns;
69
70 /* See if cred has the capability in the target user namespace
71 * by examining the target user namespace and all of the target
72 * user namespace's parents.
73 */
74 for (;;) {
75 /* Do we have the necessary capabilities? */
76 if (ns == cred->user_ns)
77 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
78
79 /*
80 * If we're already at a lower level than we're looking for,
81 * we're done searching.
82 */
83 if (ns->level <= cred->user_ns->level)
84 return -EPERM;
85
86 /*
87 * The owner of the user namespace in the parent of the
88 * user namespace has all caps.
89 */
90 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
91 return 0;
92
93 /*
94 * If you have a capability in a parent user ns, then you have
95 * it over all children user namespaces as well.
96 */
97 ns = ns->parent;
98 }
99
100 /* We never get here */
101 }
102
103 /**
104 * cap_settime - Determine whether the current process may set the system clock
105 * @ts: The time to set
106 * @tz: The timezone to set
107 *
108 * Determine whether the current process may set the system clock and timezone
109 * information, returning 0 if permission granted, -ve if denied.
110 */
cap_settime(const struct timespec64 * ts,const struct timezone * tz)111 int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
112 {
113 if (!capable(CAP_SYS_TIME))
114 return -EPERM;
115 return 0;
116 }
117
118 /**
119 * cap_ptrace_access_check - Determine whether the current process may access
120 * another
121 * @child: The process to be accessed
122 * @mode: The mode of attachment.
123 *
124 * If we are in the same or an ancestor user_ns and have all the target
125 * task's capabilities, then ptrace access is allowed.
126 * If we have the ptrace capability to the target user_ns, then ptrace
127 * access is allowed.
128 * Else denied.
129 *
130 * Determine whether a process may access another, returning 0 if permission
131 * granted, -ve if denied.
132 */
cap_ptrace_access_check(struct task_struct * child,unsigned int mode)133 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
134 {
135 int ret = 0;
136 const struct cred *cred, *child_cred;
137 const kernel_cap_t *caller_caps;
138
139 rcu_read_lock();
140 cred = current_cred();
141 child_cred = __task_cred(child);
142 if (mode & PTRACE_MODE_FSCREDS)
143 caller_caps = &cred->cap_effective;
144 else
145 caller_caps = &cred->cap_permitted;
146 if (cred->user_ns == child_cred->user_ns &&
147 cap_issubset(child_cred->cap_permitted, *caller_caps))
148 goto out;
149 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
150 goto out;
151 ret = -EPERM;
152 out:
153 rcu_read_unlock();
154 return ret;
155 }
156
157 /**
158 * cap_ptrace_traceme - Determine whether another process may trace the current
159 * @parent: The task proposed to be the tracer
160 *
161 * If parent is in the same or an ancestor user_ns and has all current's
162 * capabilities, then ptrace access is allowed.
163 * If parent has the ptrace capability to current's user_ns, then ptrace
164 * access is allowed.
165 * Else denied.
166 *
167 * Determine whether the nominated task is permitted to trace the current
168 * process, returning 0 if permission is granted, -ve if denied.
169 */
cap_ptrace_traceme(struct task_struct * parent)170 int cap_ptrace_traceme(struct task_struct *parent)
171 {
172 int ret = 0;
173 const struct cred *cred, *child_cred;
174
175 rcu_read_lock();
176 cred = __task_cred(parent);
177 child_cred = current_cred();
178 if (cred->user_ns == child_cred->user_ns &&
179 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
180 goto out;
181 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
182 goto out;
183 ret = -EPERM;
184 out:
185 rcu_read_unlock();
186 return ret;
187 }
188
189 /**
190 * cap_capget - Retrieve a task's capability sets
191 * @target: The task from which to retrieve the capability sets
192 * @effective: The place to record the effective set
193 * @inheritable: The place to record the inheritable set
194 * @permitted: The place to record the permitted set
195 *
196 * This function retrieves the capabilities of the nominated task and returns
197 * them to the caller.
198 */
cap_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)199 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
200 kernel_cap_t *inheritable, kernel_cap_t *permitted)
201 {
202 const struct cred *cred;
203
204 /* Derived from kernel/capability.c:sys_capget. */
205 rcu_read_lock();
206 cred = __task_cred(target);
207 *effective = cred->cap_effective;
208 *inheritable = cred->cap_inheritable;
209 *permitted = cred->cap_permitted;
210 rcu_read_unlock();
211 return 0;
212 }
213
214 /*
215 * Determine whether the inheritable capabilities are limited to the old
216 * permitted set. Returns 1 if they are limited, 0 if they are not.
217 */
cap_inh_is_capped(void)218 static inline int cap_inh_is_capped(void)
219 {
220 /* they are so limited unless the current task has the CAP_SETPCAP
221 * capability
222 */
223 if (cap_capable(current_cred(), current_cred()->user_ns,
224 CAP_SETPCAP, CAP_OPT_NONE) == 0)
225 return 0;
226 return 1;
227 }
228
229 /**
230 * cap_capset - Validate and apply proposed changes to current's capabilities
231 * @new: The proposed new credentials; alterations should be made here
232 * @old: The current task's current credentials
233 * @effective: A pointer to the proposed new effective capabilities set
234 * @inheritable: A pointer to the proposed new inheritable capabilities set
235 * @permitted: A pointer to the proposed new permitted capabilities set
236 *
237 * This function validates and applies a proposed mass change to the current
238 * process's capability sets. The changes are made to the proposed new
239 * credentials, and assuming no error, will be committed by the caller of LSM.
240 */
cap_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)241 int cap_capset(struct cred *new,
242 const struct cred *old,
243 const kernel_cap_t *effective,
244 const kernel_cap_t *inheritable,
245 const kernel_cap_t *permitted)
246 {
247 if (cap_inh_is_capped() &&
248 !cap_issubset(*inheritable,
249 cap_combine(old->cap_inheritable,
250 old->cap_permitted)))
251 /* incapable of using this inheritable set */
252 return -EPERM;
253
254 if (!cap_issubset(*inheritable,
255 cap_combine(old->cap_inheritable,
256 old->cap_bset)))
257 /* no new pI capabilities outside bounding set */
258 return -EPERM;
259
260 /* verify restrictions on target's new Permitted set */
261 if (!cap_issubset(*permitted, old->cap_permitted))
262 return -EPERM;
263
264 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
265 if (!cap_issubset(*effective, *permitted))
266 return -EPERM;
267
268 new->cap_effective = *effective;
269 new->cap_inheritable = *inheritable;
270 new->cap_permitted = *permitted;
271
272 /*
273 * Mask off ambient bits that are no longer both permitted and
274 * inheritable.
275 */
276 new->cap_ambient = cap_intersect(new->cap_ambient,
277 cap_intersect(*permitted,
278 *inheritable));
279 if (WARN_ON(!cap_ambient_invariant_ok(new)))
280 return -EINVAL;
281 return 0;
282 }
283
284 /**
285 * cap_inode_need_killpriv - Determine if inode change affects privileges
286 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
287 *
288 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
289 * affects the security markings on that inode, and if it is, should
290 * inode_killpriv() be invoked or the change rejected.
291 *
292 * Returns 1 if security.capability has a value, meaning inode_killpriv()
293 * is required, 0 otherwise, meaning inode_killpriv() is not required.
294 */
cap_inode_need_killpriv(struct dentry * dentry)295 int cap_inode_need_killpriv(struct dentry *dentry)
296 {
297 struct inode *inode = d_backing_inode(dentry);
298 int error;
299
300 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
301 return error > 0;
302 }
303
304 /**
305 * cap_inode_killpriv - Erase the security markings on an inode
306 * @dentry: The inode/dentry to alter
307 *
308 * Erase the privilege-enhancing security markings on an inode.
309 *
310 * Returns 0 if successful, -ve on error.
311 */
cap_inode_killpriv(struct dentry * dentry)312 int cap_inode_killpriv(struct dentry *dentry)
313 {
314 int error;
315
316 error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
317 if (error == -EOPNOTSUPP)
318 error = 0;
319 return error;
320 }
321
rootid_owns_currentns(kuid_t kroot)322 static bool rootid_owns_currentns(kuid_t kroot)
323 {
324 struct user_namespace *ns;
325
326 if (!uid_valid(kroot))
327 return false;
328
329 for (ns = current_user_ns(); ; ns = ns->parent) {
330 if (from_kuid(ns, kroot) == 0)
331 return true;
332 if (ns == &init_user_ns)
333 break;
334 }
335
336 return false;
337 }
338
sansflags(__u32 m)339 static __u32 sansflags(__u32 m)
340 {
341 return m & ~VFS_CAP_FLAGS_EFFECTIVE;
342 }
343
is_v2header(size_t size,const struct vfs_cap_data * cap)344 static bool is_v2header(size_t size, const struct vfs_cap_data *cap)
345 {
346 if (size != XATTR_CAPS_SZ_2)
347 return false;
348 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
349 }
350
is_v3header(size_t size,const struct vfs_cap_data * cap)351 static bool is_v3header(size_t size, const struct vfs_cap_data *cap)
352 {
353 if (size != XATTR_CAPS_SZ_3)
354 return false;
355 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
356 }
357
358 /*
359 * getsecurity: We are called for security.* before any attempt to read the
360 * xattr from the inode itself.
361 *
362 * This gives us a chance to read the on-disk value and convert it. If we
363 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
364 *
365 * Note we are not called by vfs_getxattr_alloc(), but that is only called
366 * by the integrity subsystem, which really wants the unconverted values -
367 * so that's good.
368 */
cap_inode_getsecurity(struct inode * inode,const char * name,void ** buffer,bool alloc)369 int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
370 bool alloc)
371 {
372 int size, ret;
373 kuid_t kroot;
374 u32 nsmagic, magic;
375 uid_t root, mappedroot;
376 char *tmpbuf = NULL;
377 struct vfs_cap_data *cap;
378 struct vfs_ns_cap_data *nscap = NULL;
379 struct dentry *dentry;
380 struct user_namespace *fs_ns;
381
382 if (strcmp(name, "capability") != 0)
383 return -EOPNOTSUPP;
384
385 dentry = d_find_any_alias(inode);
386 if (!dentry)
387 return -EINVAL;
388
389 size = sizeof(struct vfs_ns_cap_data);
390 ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
391 &tmpbuf, size, GFP_NOFS);
392 dput(dentry);
393
394 if (ret < 0 || !tmpbuf) {
395 size = ret;
396 goto out_free;
397 }
398
399 fs_ns = inode->i_sb->s_user_ns;
400 cap = (struct vfs_cap_data *) tmpbuf;
401 if (is_v2header((size_t) ret, cap)) {
402 root = 0;
403 } else if (is_v3header((size_t) ret, cap)) {
404 nscap = (struct vfs_ns_cap_data *) tmpbuf;
405 root = le32_to_cpu(nscap->rootid);
406 } else {
407 size = -EINVAL;
408 goto out_free;
409 }
410
411 kroot = make_kuid(fs_ns, root);
412
413 /* If the root kuid maps to a valid uid in current ns, then return
414 * this as a nscap. */
415 mappedroot = from_kuid(current_user_ns(), kroot);
416 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
417 size = sizeof(struct vfs_ns_cap_data);
418 if (alloc) {
419 if (!nscap) {
420 /* v2 -> v3 conversion */
421 nscap = kzalloc(size, GFP_ATOMIC);
422 if (!nscap) {
423 size = -ENOMEM;
424 goto out_free;
425 }
426 nsmagic = VFS_CAP_REVISION_3;
427 magic = le32_to_cpu(cap->magic_etc);
428 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
429 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
430 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
431 nscap->magic_etc = cpu_to_le32(nsmagic);
432 } else {
433 /* use allocated v3 buffer */
434 tmpbuf = NULL;
435 }
436 nscap->rootid = cpu_to_le32(mappedroot);
437 *buffer = nscap;
438 }
439 goto out_free;
440 }
441
442 if (!rootid_owns_currentns(kroot)) {
443 size = -EOVERFLOW;
444 goto out_free;
445 }
446
447 /* This comes from a parent namespace. Return as a v2 capability */
448 size = sizeof(struct vfs_cap_data);
449 if (alloc) {
450 if (nscap) {
451 /* v3 -> v2 conversion */
452 cap = kzalloc(size, GFP_ATOMIC);
453 if (!cap) {
454 size = -ENOMEM;
455 goto out_free;
456 }
457 magic = VFS_CAP_REVISION_2;
458 nsmagic = le32_to_cpu(nscap->magic_etc);
459 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
460 magic |= VFS_CAP_FLAGS_EFFECTIVE;
461 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
462 cap->magic_etc = cpu_to_le32(magic);
463 } else {
464 /* use unconverted v2 */
465 tmpbuf = NULL;
466 }
467 *buffer = cap;
468 }
469 out_free:
470 kfree(tmpbuf);
471 return size;
472 }
473
rootid_from_xattr(const void * value,size_t size,struct user_namespace * task_ns)474 static kuid_t rootid_from_xattr(const void *value, size_t size,
475 struct user_namespace *task_ns)
476 {
477 const struct vfs_ns_cap_data *nscap = value;
478 uid_t rootid = 0;
479
480 if (size == XATTR_CAPS_SZ_3)
481 rootid = le32_to_cpu(nscap->rootid);
482
483 return make_kuid(task_ns, rootid);
484 }
485
validheader(size_t size,const struct vfs_cap_data * cap)486 static bool validheader(size_t size, const struct vfs_cap_data *cap)
487 {
488 return is_v2header(size, cap) || is_v3header(size, cap);
489 }
490
491 /*
492 * User requested a write of security.capability. If needed, update the
493 * xattr to change from v2 to v3, or to fixup the v3 rootid.
494 *
495 * If all is ok, we return the new size, on error return < 0.
496 */
cap_convert_nscap(struct dentry * dentry,void ** ivalue,size_t size)497 int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size)
498 {
499 struct vfs_ns_cap_data *nscap;
500 uid_t nsrootid;
501 const struct vfs_cap_data *cap = *ivalue;
502 __u32 magic, nsmagic;
503 struct inode *inode = d_backing_inode(dentry);
504 struct user_namespace *task_ns = current_user_ns(),
505 *fs_ns = inode->i_sb->s_user_ns;
506 kuid_t rootid;
507 size_t newsize;
508
509 if (!*ivalue)
510 return -EINVAL;
511 if (!validheader(size, cap))
512 return -EINVAL;
513 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
514 return -EPERM;
515 if (size == XATTR_CAPS_SZ_2)
516 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
517 /* user is privileged, just write the v2 */
518 return size;
519
520 rootid = rootid_from_xattr(*ivalue, size, task_ns);
521 if (!uid_valid(rootid))
522 return -EINVAL;
523
524 nsrootid = from_kuid(fs_ns, rootid);
525 if (nsrootid == -1)
526 return -EINVAL;
527
528 newsize = sizeof(struct vfs_ns_cap_data);
529 nscap = kmalloc(newsize, GFP_ATOMIC);
530 if (!nscap)
531 return -ENOMEM;
532 nscap->rootid = cpu_to_le32(nsrootid);
533 nsmagic = VFS_CAP_REVISION_3;
534 magic = le32_to_cpu(cap->magic_etc);
535 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
536 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
537 nscap->magic_etc = cpu_to_le32(nsmagic);
538 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
539
540 kvfree(*ivalue);
541 *ivalue = nscap;
542 return newsize;
543 }
544
545 /*
546 * Calculate the new process capability sets from the capability sets attached
547 * to a file.
548 */
bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data * caps,struct linux_binprm * bprm,bool * effective,bool * has_fcap)549 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
550 struct linux_binprm *bprm,
551 bool *effective,
552 bool *has_fcap)
553 {
554 struct cred *new = bprm->cred;
555 unsigned i;
556 int ret = 0;
557
558 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
559 *effective = true;
560
561 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
562 *has_fcap = true;
563
564 CAP_FOR_EACH_U32(i) {
565 __u32 permitted = caps->permitted.cap[i];
566 __u32 inheritable = caps->inheritable.cap[i];
567
568 /*
569 * pP' = (X & fP) | (pI & fI)
570 * The addition of pA' is handled later.
571 */
572 new->cap_permitted.cap[i] =
573 (new->cap_bset.cap[i] & permitted) |
574 (new->cap_inheritable.cap[i] & inheritable);
575
576 if (permitted & ~new->cap_permitted.cap[i])
577 /* insufficient to execute correctly */
578 ret = -EPERM;
579 }
580
581 /*
582 * For legacy apps, with no internal support for recognizing they
583 * do not have enough capabilities, we return an error if they are
584 * missing some "forced" (aka file-permitted) capabilities.
585 */
586 return *effective ? ret : 0;
587 }
588
589 /*
590 * Extract the on-exec-apply capability sets for an executable file.
591 */
get_vfs_caps_from_disk(const struct dentry * dentry,struct cpu_vfs_cap_data * cpu_caps)592 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
593 {
594 struct inode *inode = d_backing_inode(dentry);
595 __u32 magic_etc;
596 unsigned tocopy, i;
597 int size;
598 struct vfs_ns_cap_data data, *nscaps = &data;
599 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
600 kuid_t rootkuid;
601 struct user_namespace *fs_ns;
602
603 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
604
605 if (!inode)
606 return -ENODATA;
607
608 fs_ns = inode->i_sb->s_user_ns;
609 size = __vfs_getxattr((struct dentry *)dentry, inode,
610 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
611 if (size == -ENODATA || size == -EOPNOTSUPP)
612 /* no data, that's ok */
613 return -ENODATA;
614
615 if (size < 0)
616 return size;
617
618 if (size < sizeof(magic_etc))
619 return -EINVAL;
620
621 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
622
623 rootkuid = make_kuid(fs_ns, 0);
624 switch (magic_etc & VFS_CAP_REVISION_MASK) {
625 case VFS_CAP_REVISION_1:
626 if (size != XATTR_CAPS_SZ_1)
627 return -EINVAL;
628 tocopy = VFS_CAP_U32_1;
629 break;
630 case VFS_CAP_REVISION_2:
631 if (size != XATTR_CAPS_SZ_2)
632 return -EINVAL;
633 tocopy = VFS_CAP_U32_2;
634 break;
635 case VFS_CAP_REVISION_3:
636 if (size != XATTR_CAPS_SZ_3)
637 return -EINVAL;
638 tocopy = VFS_CAP_U32_3;
639 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
640 break;
641
642 default:
643 return -EINVAL;
644 }
645 /* Limit the caps to the mounter of the filesystem
646 * or the more limited uid specified in the xattr.
647 */
648 if (!rootid_owns_currentns(rootkuid))
649 return -ENODATA;
650
651 CAP_FOR_EACH_U32(i) {
652 if (i >= tocopy)
653 break;
654 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
655 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
656 }
657
658 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
659 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
660
661 cpu_caps->rootid = rootkuid;
662
663 return 0;
664 }
665
666 /*
667 * Attempt to get the on-exec apply capability sets for an executable file from
668 * its xattrs and, if present, apply them to the proposed credentials being
669 * constructed by execve().
670 */
get_file_caps(struct linux_binprm * bprm,struct file * file,bool * effective,bool * has_fcap)671 static int get_file_caps(struct linux_binprm *bprm, struct file *file,
672 bool *effective, bool *has_fcap)
673 {
674 int rc = 0;
675 struct cpu_vfs_cap_data vcaps;
676
677 cap_clear(bprm->cred->cap_permitted);
678
679 if (!file_caps_enabled)
680 return 0;
681
682 if (!mnt_may_suid(file->f_path.mnt))
683 return 0;
684
685 /*
686 * This check is redundant with mnt_may_suid() but is kept to make
687 * explicit that capability bits are limited to s_user_ns and its
688 * descendants.
689 */
690 if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns))
691 return 0;
692
693 rc = get_vfs_caps_from_disk(file->f_path.dentry, &vcaps);
694 if (rc < 0) {
695 if (rc == -EINVAL)
696 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
697 bprm->filename);
698 else if (rc == -ENODATA)
699 rc = 0;
700 goto out;
701 }
702
703 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
704
705 out:
706 if (rc)
707 cap_clear(bprm->cred->cap_permitted);
708
709 return rc;
710 }
711
root_privileged(void)712 static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
713
__is_real(kuid_t uid,struct cred * cred)714 static inline bool __is_real(kuid_t uid, struct cred *cred)
715 { return uid_eq(cred->uid, uid); }
716
__is_eff(kuid_t uid,struct cred * cred)717 static inline bool __is_eff(kuid_t uid, struct cred *cred)
718 { return uid_eq(cred->euid, uid); }
719
__is_suid(kuid_t uid,struct cred * cred)720 static inline bool __is_suid(kuid_t uid, struct cred *cred)
721 { return !__is_real(uid, cred) && __is_eff(uid, cred); }
722
723 /*
724 * handle_privileged_root - Handle case of privileged root
725 * @bprm: The execution parameters, including the proposed creds
726 * @has_fcap: Are any file capabilities set?
727 * @effective: Do we have effective root privilege?
728 * @root_uid: This namespace' root UID WRT initial USER namespace
729 *
730 * Handle the case where root is privileged and hasn't been neutered by
731 * SECURE_NOROOT. If file capabilities are set, they won't be combined with
732 * set UID root and nothing is changed. If we are root, cap_permitted is
733 * updated. If we have become set UID root, the effective bit is set.
734 */
handle_privileged_root(struct linux_binprm * bprm,bool has_fcap,bool * effective,kuid_t root_uid)735 static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
736 bool *effective, kuid_t root_uid)
737 {
738 const struct cred *old = current_cred();
739 struct cred *new = bprm->cred;
740
741 if (!root_privileged())
742 return;
743 /*
744 * If the legacy file capability is set, then don't set privs
745 * for a setuid root binary run by a non-root user. Do set it
746 * for a root user just to cause least surprise to an admin.
747 */
748 if (has_fcap && __is_suid(root_uid, new)) {
749 warn_setuid_and_fcaps_mixed(bprm->filename);
750 return;
751 }
752 /*
753 * To support inheritance of root-permissions and suid-root
754 * executables under compatibility mode, we override the
755 * capability sets for the file.
756 */
757 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
758 /* pP' = (cap_bset & ~0) | (pI & ~0) */
759 new->cap_permitted = cap_combine(old->cap_bset,
760 old->cap_inheritable);
761 }
762 /*
763 * If only the real uid is 0, we do not set the effective bit.
764 */
765 if (__is_eff(root_uid, new))
766 *effective = true;
767 }
768
769 #define __cap_gained(field, target, source) \
770 !cap_issubset(target->cap_##field, source->cap_##field)
771 #define __cap_grew(target, source, cred) \
772 !cap_issubset(cred->cap_##target, cred->cap_##source)
773 #define __cap_full(field, cred) \
774 cap_issubset(CAP_FULL_SET, cred->cap_##field)
775
__is_setuid(struct cred * new,const struct cred * old)776 static inline bool __is_setuid(struct cred *new, const struct cred *old)
777 { return !uid_eq(new->euid, old->uid); }
778
__is_setgid(struct cred * new,const struct cred * old)779 static inline bool __is_setgid(struct cred *new, const struct cred *old)
780 { return !gid_eq(new->egid, old->gid); }
781
782 /*
783 * 1) Audit candidate if current->cap_effective is set
784 *
785 * We do not bother to audit if 3 things are true:
786 * 1) cap_effective has all caps
787 * 2) we became root *OR* are were already root
788 * 3) root is supposed to have all caps (SECURE_NOROOT)
789 * Since this is just a normal root execing a process.
790 *
791 * Number 1 above might fail if you don't have a full bset, but I think
792 * that is interesting information to audit.
793 *
794 * A number of other conditions require logging:
795 * 2) something prevented setuid root getting all caps
796 * 3) non-setuid root gets fcaps
797 * 4) non-setuid root gets ambient
798 */
nonroot_raised_pE(struct cred * new,const struct cred * old,kuid_t root,bool has_fcap)799 static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
800 kuid_t root, bool has_fcap)
801 {
802 bool ret = false;
803
804 if ((__cap_grew(effective, ambient, new) &&
805 !(__cap_full(effective, new) &&
806 (__is_eff(root, new) || __is_real(root, new)) &&
807 root_privileged())) ||
808 (root_privileged() &&
809 __is_suid(root, new) &&
810 !__cap_full(effective, new)) ||
811 (!__is_setuid(new, old) &&
812 ((has_fcap &&
813 __cap_gained(permitted, new, old)) ||
814 __cap_gained(ambient, new, old))))
815
816 ret = true;
817
818 return ret;
819 }
820
821 /**
822 * cap_bprm_creds_from_file - Set up the proposed credentials for execve().
823 * @bprm: The execution parameters, including the proposed creds
824 * @file: The file to pull the credentials from
825 *
826 * Set up the proposed credentials for a new execution context being
827 * constructed by execve(). The proposed creds in @bprm->cred is altered,
828 * which won't take effect immediately. Returns 0 if successful, -ve on error.
829 */
cap_bprm_creds_from_file(struct linux_binprm * bprm,struct file * file)830 int cap_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
831 {
832 /* Process setpcap binaries and capabilities for uid 0 */
833 const struct cred *old = current_cred();
834 struct cred *new = bprm->cred;
835 bool effective = false, has_fcap = false, is_setid;
836 int ret;
837 kuid_t root_uid;
838
839 if (WARN_ON(!cap_ambient_invariant_ok(old)))
840 return -EPERM;
841
842 ret = get_file_caps(bprm, file, &effective, &has_fcap);
843 if (ret < 0)
844 return ret;
845
846 root_uid = make_kuid(new->user_ns, 0);
847
848 handle_privileged_root(bprm, has_fcap, &effective, root_uid);
849
850 /* if we have fs caps, clear dangerous personality flags */
851 if (__cap_gained(permitted, new, old))
852 bprm->per_clear |= PER_CLEAR_ON_SETID;
853
854 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
855 * credentials unless they have the appropriate permit.
856 *
857 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
858 */
859 is_setid = __is_setuid(new, old) || __is_setgid(new, old);
860
861 if ((is_setid || __cap_gained(permitted, new, old)) &&
862 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
863 !ptracer_capable(current, new->user_ns))) {
864 /* downgrade; they get no more than they had, and maybe less */
865 if (!ns_capable(new->user_ns, CAP_SETUID) ||
866 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
867 new->euid = new->uid;
868 new->egid = new->gid;
869 }
870 new->cap_permitted = cap_intersect(new->cap_permitted,
871 old->cap_permitted);
872 }
873
874 new->suid = new->fsuid = new->euid;
875 new->sgid = new->fsgid = new->egid;
876
877 /* File caps or setid cancels ambient. */
878 if (has_fcap || is_setid)
879 cap_clear(new->cap_ambient);
880
881 /*
882 * Now that we've computed pA', update pP' to give:
883 * pP' = (X & fP) | (pI & fI) | pA'
884 */
885 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
886
887 /*
888 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
889 * this is the same as pE' = (fE ? pP' : 0) | pA'.
890 */
891 if (effective)
892 new->cap_effective = new->cap_permitted;
893 else
894 new->cap_effective = new->cap_ambient;
895
896 if (WARN_ON(!cap_ambient_invariant_ok(new)))
897 return -EPERM;
898
899 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
900 ret = audit_log_bprm_fcaps(bprm, new, old);
901 if (ret < 0)
902 return ret;
903 }
904
905 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
906
907 if (WARN_ON(!cap_ambient_invariant_ok(new)))
908 return -EPERM;
909
910 /* Check for privilege-elevated exec. */
911 if (is_setid ||
912 (!__is_real(root_uid, new) &&
913 (effective ||
914 __cap_grew(permitted, ambient, new))))
915 bprm->secureexec = 1;
916
917 return 0;
918 }
919
920 /**
921 * cap_inode_setxattr - Determine whether an xattr may be altered
922 * @dentry: The inode/dentry being altered
923 * @name: The name of the xattr to be changed
924 * @value: The value that the xattr will be changed to
925 * @size: The size of value
926 * @flags: The replacement flag
927 *
928 * Determine whether an xattr may be altered or set on an inode, returning 0 if
929 * permission is granted, -ve if denied.
930 *
931 * This is used to make sure security xattrs don't get updated or set by those
932 * who aren't privileged to do so.
933 */
cap_inode_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)934 int cap_inode_setxattr(struct dentry *dentry, const char *name,
935 const void *value, size_t size, int flags)
936 {
937 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
938
939 /* Ignore non-security xattrs */
940 if (strncmp(name, XATTR_SECURITY_PREFIX,
941 XATTR_SECURITY_PREFIX_LEN) != 0)
942 return 0;
943
944 /*
945 * For XATTR_NAME_CAPS the check will be done in
946 * cap_convert_nscap(), called by setxattr()
947 */
948 if (strcmp(name, XATTR_NAME_CAPS) == 0)
949 return 0;
950
951 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
952 return -EPERM;
953 return 0;
954 }
955
956 /**
957 * cap_inode_removexattr - Determine whether an xattr may be removed
958 * @dentry: The inode/dentry being altered
959 * @name: The name of the xattr to be changed
960 *
961 * Determine whether an xattr may be removed from an inode, returning 0 if
962 * permission is granted, -ve if denied.
963 *
964 * This is used to make sure security xattrs don't get removed by those who
965 * aren't privileged to remove them.
966 */
cap_inode_removexattr(struct dentry * dentry,const char * name)967 int cap_inode_removexattr(struct dentry *dentry, const char *name)
968 {
969 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
970
971 /* Ignore non-security xattrs */
972 if (strncmp(name, XATTR_SECURITY_PREFIX,
973 XATTR_SECURITY_PREFIX_LEN) != 0)
974 return 0;
975
976 if (strcmp(name, XATTR_NAME_CAPS) == 0) {
977 /* security.capability gets namespaced */
978 struct inode *inode = d_backing_inode(dentry);
979 if (!inode)
980 return -EINVAL;
981 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
982 return -EPERM;
983 return 0;
984 }
985
986 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
987 return -EPERM;
988 return 0;
989 }
990
991 /*
992 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
993 * a process after a call to setuid, setreuid, or setresuid.
994 *
995 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
996 * {r,e,s}uid != 0, the permitted and effective capabilities are
997 * cleared.
998 *
999 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
1000 * capabilities of the process are cleared.
1001 *
1002 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
1003 * capabilities are set to the permitted capabilities.
1004 *
1005 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
1006 * never happen.
1007 *
1008 * -astor
1009 *
1010 * cevans - New behaviour, Oct '99
1011 * A process may, via prctl(), elect to keep its capabilities when it
1012 * calls setuid() and switches away from uid==0. Both permitted and
1013 * effective sets will be retained.
1014 * Without this change, it was impossible for a daemon to drop only some
1015 * of its privilege. The call to setuid(!=0) would drop all privileges!
1016 * Keeping uid 0 is not an option because uid 0 owns too many vital
1017 * files..
1018 * Thanks to Olaf Kirch and Peter Benie for spotting this.
1019 */
cap_emulate_setxuid(struct cred * new,const struct cred * old)1020 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1021 {
1022 kuid_t root_uid = make_kuid(old->user_ns, 0);
1023
1024 if ((uid_eq(old->uid, root_uid) ||
1025 uid_eq(old->euid, root_uid) ||
1026 uid_eq(old->suid, root_uid)) &&
1027 (!uid_eq(new->uid, root_uid) &&
1028 !uid_eq(new->euid, root_uid) &&
1029 !uid_eq(new->suid, root_uid))) {
1030 if (!issecure(SECURE_KEEP_CAPS)) {
1031 cap_clear(new->cap_permitted);
1032 cap_clear(new->cap_effective);
1033 }
1034
1035 /*
1036 * Pre-ambient programs expect setresuid to nonroot followed
1037 * by exec to drop capabilities. We should make sure that
1038 * this remains the case.
1039 */
1040 cap_clear(new->cap_ambient);
1041 }
1042 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1043 cap_clear(new->cap_effective);
1044 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1045 new->cap_effective = new->cap_permitted;
1046 }
1047
1048 /**
1049 * cap_task_fix_setuid - Fix up the results of setuid() call
1050 * @new: The proposed credentials
1051 * @old: The current task's current credentials
1052 * @flags: Indications of what has changed
1053 *
1054 * Fix up the results of setuid() call before the credential changes are
1055 * actually applied, returning 0 to grant the changes, -ve to deny them.
1056 */
cap_task_fix_setuid(struct cred * new,const struct cred * old,int flags)1057 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1058 {
1059 switch (flags) {
1060 case LSM_SETID_RE:
1061 case LSM_SETID_ID:
1062 case LSM_SETID_RES:
1063 /* juggle the capabilities to follow [RES]UID changes unless
1064 * otherwise suppressed */
1065 if (!issecure(SECURE_NO_SETUID_FIXUP))
1066 cap_emulate_setxuid(new, old);
1067 break;
1068
1069 case LSM_SETID_FS:
1070 /* juggle the capabilties to follow FSUID changes, unless
1071 * otherwise suppressed
1072 *
1073 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1074 * if not, we might be a bit too harsh here.
1075 */
1076 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1077 kuid_t root_uid = make_kuid(old->user_ns, 0);
1078 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1079 new->cap_effective =
1080 cap_drop_fs_set(new->cap_effective);
1081
1082 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1083 new->cap_effective =
1084 cap_raise_fs_set(new->cap_effective,
1085 new->cap_permitted);
1086 }
1087 break;
1088
1089 default:
1090 return -EINVAL;
1091 }
1092
1093 return 0;
1094 }
1095
1096 /*
1097 * Rationale: code calling task_setscheduler, task_setioprio, and
1098 * task_setnice, assumes that
1099 * . if capable(cap_sys_nice), then those actions should be allowed
1100 * . if not capable(cap_sys_nice), but acting on your own processes,
1101 * then those actions should be allowed
1102 * This is insufficient now since you can call code without suid, but
1103 * yet with increased caps.
1104 * So we check for increased caps on the target process.
1105 */
cap_safe_nice(struct task_struct * p)1106 static int cap_safe_nice(struct task_struct *p)
1107 {
1108 int is_subset, ret = 0;
1109
1110 rcu_read_lock();
1111 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1112 current_cred()->cap_permitted);
1113 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1114 ret = -EPERM;
1115 rcu_read_unlock();
1116
1117 return ret;
1118 }
1119
1120 /**
1121 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1122 * @p: The task to affect
1123 *
1124 * Detemine if the requested scheduler policy change is permitted for the
1125 * specified task, returning 0 if permission is granted, -ve if denied.
1126 */
cap_task_setscheduler(struct task_struct * p)1127 int cap_task_setscheduler(struct task_struct *p)
1128 {
1129 return cap_safe_nice(p);
1130 }
1131
1132 /**
1133 * cap_task_ioprio - Detemine if I/O priority change is permitted
1134 * @p: The task to affect
1135 * @ioprio: The I/O priority to set
1136 *
1137 * Detemine if the requested I/O priority change is permitted for the specified
1138 * task, returning 0 if permission is granted, -ve if denied.
1139 */
cap_task_setioprio(struct task_struct * p,int ioprio)1140 int cap_task_setioprio(struct task_struct *p, int ioprio)
1141 {
1142 return cap_safe_nice(p);
1143 }
1144
1145 /**
1146 * cap_task_ioprio - Detemine if task priority change is permitted
1147 * @p: The task to affect
1148 * @nice: The nice value to set
1149 *
1150 * Detemine if the requested task priority change is permitted for the
1151 * specified task, returning 0 if permission is granted, -ve if denied.
1152 */
cap_task_setnice(struct task_struct * p,int nice)1153 int cap_task_setnice(struct task_struct *p, int nice)
1154 {
1155 return cap_safe_nice(p);
1156 }
1157
1158 /*
1159 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
1160 * the current task's bounding set. Returns 0 on success, -ve on error.
1161 */
cap_prctl_drop(unsigned long cap)1162 static int cap_prctl_drop(unsigned long cap)
1163 {
1164 struct cred *new;
1165
1166 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1167 return -EPERM;
1168 if (!cap_valid(cap))
1169 return -EINVAL;
1170
1171 new = prepare_creds();
1172 if (!new)
1173 return -ENOMEM;
1174 cap_lower(new->cap_bset, cap);
1175 return commit_creds(new);
1176 }
1177
1178 /**
1179 * cap_task_prctl - Implement process control functions for this security module
1180 * @option: The process control function requested
1181 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1182 *
1183 * Allow process control functions (sys_prctl()) to alter capabilities; may
1184 * also deny access to other functions not otherwise implemented here.
1185 *
1186 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1187 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
1188 * modules will consider performing the function.
1189 */
cap_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)1190 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1191 unsigned long arg4, unsigned long arg5)
1192 {
1193 const struct cred *old = current_cred();
1194 struct cred *new;
1195
1196 switch (option) {
1197 case PR_CAPBSET_READ:
1198 if (!cap_valid(arg2))
1199 return -EINVAL;
1200 return !!cap_raised(old->cap_bset, arg2);
1201
1202 case PR_CAPBSET_DROP:
1203 return cap_prctl_drop(arg2);
1204
1205 /*
1206 * The next four prctl's remain to assist with transitioning a
1207 * system from legacy UID=0 based privilege (when filesystem
1208 * capabilities are not in use) to a system using filesystem
1209 * capabilities only - as the POSIX.1e draft intended.
1210 *
1211 * Note:
1212 *
1213 * PR_SET_SECUREBITS =
1214 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1215 * | issecure_mask(SECURE_NOROOT)
1216 * | issecure_mask(SECURE_NOROOT_LOCKED)
1217 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
1218 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1219 *
1220 * will ensure that the current process and all of its
1221 * children will be locked into a pure
1222 * capability-based-privilege environment.
1223 */
1224 case PR_SET_SECUREBITS:
1225 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1226 & (old->securebits ^ arg2)) /*[1]*/
1227 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
1228 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
1229 || (cap_capable(current_cred(),
1230 current_cred()->user_ns,
1231 CAP_SETPCAP,
1232 CAP_OPT_NONE) != 0) /*[4]*/
1233 /*
1234 * [1] no changing of bits that are locked
1235 * [2] no unlocking of locks
1236 * [3] no setting of unsupported bits
1237 * [4] doing anything requires privilege (go read about
1238 * the "sendmail capabilities bug")
1239 */
1240 )
1241 /* cannot change a locked bit */
1242 return -EPERM;
1243
1244 new = prepare_creds();
1245 if (!new)
1246 return -ENOMEM;
1247 new->securebits = arg2;
1248 return commit_creds(new);
1249
1250 case PR_GET_SECUREBITS:
1251 return old->securebits;
1252
1253 case PR_GET_KEEPCAPS:
1254 return !!issecure(SECURE_KEEP_CAPS);
1255
1256 case PR_SET_KEEPCAPS:
1257 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1258 return -EINVAL;
1259 if (issecure(SECURE_KEEP_CAPS_LOCKED))
1260 return -EPERM;
1261
1262 new = prepare_creds();
1263 if (!new)
1264 return -ENOMEM;
1265 if (arg2)
1266 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1267 else
1268 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1269 return commit_creds(new);
1270
1271 case PR_CAP_AMBIENT:
1272 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1273 if (arg3 | arg4 | arg5)
1274 return -EINVAL;
1275
1276 new = prepare_creds();
1277 if (!new)
1278 return -ENOMEM;
1279 cap_clear(new->cap_ambient);
1280 return commit_creds(new);
1281 }
1282
1283 if (((!cap_valid(arg3)) | arg4 | arg5))
1284 return -EINVAL;
1285
1286 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1287 return !!cap_raised(current_cred()->cap_ambient, arg3);
1288 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1289 arg2 != PR_CAP_AMBIENT_LOWER) {
1290 return -EINVAL;
1291 } else {
1292 if (arg2 == PR_CAP_AMBIENT_RAISE &&
1293 (!cap_raised(current_cred()->cap_permitted, arg3) ||
1294 !cap_raised(current_cred()->cap_inheritable,
1295 arg3) ||
1296 issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1297 return -EPERM;
1298
1299 new = prepare_creds();
1300 if (!new)
1301 return -ENOMEM;
1302 if (arg2 == PR_CAP_AMBIENT_RAISE)
1303 cap_raise(new->cap_ambient, arg3);
1304 else
1305 cap_lower(new->cap_ambient, arg3);
1306 return commit_creds(new);
1307 }
1308
1309 default:
1310 /* No functionality available - continue with default */
1311 return -ENOSYS;
1312 }
1313 }
1314
1315 /**
1316 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1317 * @mm: The VM space in which the new mapping is to be made
1318 * @pages: The size of the mapping
1319 *
1320 * Determine whether the allocation of a new virtual mapping by the current
1321 * task is permitted, returning 1 if permission is granted, 0 if not.
1322 */
cap_vm_enough_memory(struct mm_struct * mm,long pages)1323 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1324 {
1325 int cap_sys_admin = 0;
1326
1327 if (cap_capable(current_cred(), &init_user_ns,
1328 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
1329 cap_sys_admin = 1;
1330
1331 return cap_sys_admin;
1332 }
1333
1334 /*
1335 * cap_mmap_addr - check if able to map given addr
1336 * @addr: address attempting to be mapped
1337 *
1338 * If the process is attempting to map memory below dac_mmap_min_addr they need
1339 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1340 * capability security module. Returns 0 if this mapping should be allowed
1341 * -EPERM if not.
1342 */
cap_mmap_addr(unsigned long addr)1343 int cap_mmap_addr(unsigned long addr)
1344 {
1345 int ret = 0;
1346
1347 if (addr < dac_mmap_min_addr) {
1348 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1349 CAP_OPT_NONE);
1350 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1351 if (ret == 0)
1352 current->flags |= PF_SUPERPRIV;
1353 }
1354 return ret;
1355 }
1356
cap_mmap_file(struct file * file,unsigned long reqprot,unsigned long prot,unsigned long flags)1357 int cap_mmap_file(struct file *file, unsigned long reqprot,
1358 unsigned long prot, unsigned long flags)
1359 {
1360 return 0;
1361 }
1362
1363 #ifdef CONFIG_SECURITY
1364
1365 static struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
1366 LSM_HOOK_INIT(capable, cap_capable),
1367 LSM_HOOK_INIT(settime, cap_settime),
1368 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1369 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1370 LSM_HOOK_INIT(capget, cap_capget),
1371 LSM_HOOK_INIT(capset, cap_capset),
1372 LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file),
1373 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1374 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1375 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1376 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1377 LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1378 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1379 LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1380 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1381 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1382 LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1383 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1384 };
1385
capability_init(void)1386 static int __init capability_init(void)
1387 {
1388 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1389 "capability");
1390 return 0;
1391 }
1392
1393 DEFINE_LSM(capability) = {
1394 .name = "capability",
1395 .order = LSM_ORDER_FIRST,
1396 .init = capability_init,
1397 };
1398
1399 #endif /* CONFIG_SECURITY */
1400