• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Common capabilities, needed by capability.o.
3  */
4 
5 #include <linux/capability.h>
6 #include <linux/audit.h>
7 #include <linux/init.h>
8 #include <linux/kernel.h>
9 #include <linux/lsm_hooks.h>
10 #include <linux/file.h>
11 #include <linux/mm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/skbuff.h>
16 #include <linux/netlink.h>
17 #include <linux/ptrace.h>
18 #include <linux/xattr.h>
19 #include <linux/hugetlb.h>
20 #include <linux/mount.h>
21 #include <linux/sched.h>
22 #include <linux/prctl.h>
23 #include <linux/securebits.h>
24 #include <linux/user_namespace.h>
25 #include <linux/binfmts.h>
26 #include <linux/personality.h>
27 
28 /*
29  * If a non-root user executes a setuid-root binary in
30  * !secure(SECURE_NOROOT) mode, then we raise capabilities.
31  * However if fE is also set, then the intent is for only
32  * the file capabilities to be applied, and the setuid-root
33  * bit is left on either to change the uid (plausible) or
34  * to get full privilege on a kernel without file capabilities
35  * support.  So in that case we do not raise capabilities.
36  *
37  * Warn if that happens, once per boot.
38  */
warn_setuid_and_fcaps_mixed(const char * fname)39 static void warn_setuid_and_fcaps_mixed(const char *fname)
40 {
41 	static int warned;
42 	if (!warned) {
43 		printk(KERN_INFO "warning: `%s' has both setuid-root and"
44 			" effective capabilities. Therefore not raising all"
45 			" capabilities.\n", fname);
46 		warned = 1;
47 	}
48 }
49 
50 /**
51  * cap_capable - Determine whether a task has a particular effective capability
52  * @cred: The credentials to use
53  * @ns:  The user namespace in which we need the capability
54  * @cap: The capability to check for
55  * @opts: Bitmask of options defined in include/linux/security.h
56  *
57  * Determine whether the nominated task has the specified capability amongst
58  * its effective set, returning 0 if it does, -ve if it does not.
59  *
60  * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
61  * and has_capability() functions.  That is, it has the reverse semantics:
62  * cap_has_capability() returns 0 when a task has a capability, but the
63  * kernel's capable() and has_capability() returns 1 for this case.
64  */
cap_capable(const struct cred * cred,struct user_namespace * targ_ns,int cap,unsigned int opts)65 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
66 		int cap, unsigned int opts)
67 {
68 	struct user_namespace *ns = targ_ns;
69 
70 	/* See if cred has the capability in the target user namespace
71 	 * by examining the target user namespace and all of the target
72 	 * user namespace's parents.
73 	 */
74 	for (;;) {
75 		/* Do we have the necessary capabilities? */
76 		if (ns == cred->user_ns)
77 			return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
78 
79 		/*
80 		 * If we're already at a lower level than we're looking for,
81 		 * we're done searching.
82 		 */
83 		if (ns->level <= cred->user_ns->level)
84 			return -EPERM;
85 
86 		/*
87 		 * The owner of the user namespace in the parent of the
88 		 * user namespace has all caps.
89 		 */
90 		if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
91 			return 0;
92 
93 		/*
94 		 * If you have a capability in a parent user ns, then you have
95 		 * it over all children user namespaces as well.
96 		 */
97 		ns = ns->parent;
98 	}
99 
100 	/* We never get here */
101 }
102 
103 /**
104  * cap_settime - Determine whether the current process may set the system clock
105  * @ts: The time to set
106  * @tz: The timezone to set
107  *
108  * Determine whether the current process may set the system clock and timezone
109  * information, returning 0 if permission granted, -ve if denied.
110  */
cap_settime(const struct timespec64 * ts,const struct timezone * tz)111 int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
112 {
113 	if (!capable(CAP_SYS_TIME))
114 		return -EPERM;
115 	return 0;
116 }
117 
118 /**
119  * cap_ptrace_access_check - Determine whether the current process may access
120  *			   another
121  * @child: The process to be accessed
122  * @mode: The mode of attachment.
123  *
124  * If we are in the same or an ancestor user_ns and have all the target
125  * task's capabilities, then ptrace access is allowed.
126  * If we have the ptrace capability to the target user_ns, then ptrace
127  * access is allowed.
128  * Else denied.
129  *
130  * Determine whether a process may access another, returning 0 if permission
131  * granted, -ve if denied.
132  */
cap_ptrace_access_check(struct task_struct * child,unsigned int mode)133 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
134 {
135 	int ret = 0;
136 	const struct cred *cred, *child_cred;
137 	const kernel_cap_t *caller_caps;
138 
139 	rcu_read_lock();
140 	cred = current_cred();
141 	child_cred = __task_cred(child);
142 	if (mode & PTRACE_MODE_FSCREDS)
143 		caller_caps = &cred->cap_effective;
144 	else
145 		caller_caps = &cred->cap_permitted;
146 	if (cred->user_ns == child_cred->user_ns &&
147 	    cap_issubset(child_cred->cap_permitted, *caller_caps))
148 		goto out;
149 	if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
150 		goto out;
151 	ret = -EPERM;
152 out:
153 	rcu_read_unlock();
154 	return ret;
155 }
156 
157 /**
158  * cap_ptrace_traceme - Determine whether another process may trace the current
159  * @parent: The task proposed to be the tracer
160  *
161  * If parent is in the same or an ancestor user_ns and has all current's
162  * capabilities, then ptrace access is allowed.
163  * If parent has the ptrace capability to current's user_ns, then ptrace
164  * access is allowed.
165  * Else denied.
166  *
167  * Determine whether the nominated task is permitted to trace the current
168  * process, returning 0 if permission is granted, -ve if denied.
169  */
cap_ptrace_traceme(struct task_struct * parent)170 int cap_ptrace_traceme(struct task_struct *parent)
171 {
172 	int ret = 0;
173 	const struct cred *cred, *child_cred;
174 
175 	rcu_read_lock();
176 	cred = __task_cred(parent);
177 	child_cred = current_cred();
178 	if (cred->user_ns == child_cred->user_ns &&
179 	    cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
180 		goto out;
181 	if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
182 		goto out;
183 	ret = -EPERM;
184 out:
185 	rcu_read_unlock();
186 	return ret;
187 }
188 
189 /**
190  * cap_capget - Retrieve a task's capability sets
191  * @target: The task from which to retrieve the capability sets
192  * @effective: The place to record the effective set
193  * @inheritable: The place to record the inheritable set
194  * @permitted: The place to record the permitted set
195  *
196  * This function retrieves the capabilities of the nominated task and returns
197  * them to the caller.
198  */
cap_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)199 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
200 	       kernel_cap_t *inheritable, kernel_cap_t *permitted)
201 {
202 	const struct cred *cred;
203 
204 	/* Derived from kernel/capability.c:sys_capget. */
205 	rcu_read_lock();
206 	cred = __task_cred(target);
207 	*effective   = cred->cap_effective;
208 	*inheritable = cred->cap_inheritable;
209 	*permitted   = cred->cap_permitted;
210 	rcu_read_unlock();
211 	return 0;
212 }
213 
214 /*
215  * Determine whether the inheritable capabilities are limited to the old
216  * permitted set.  Returns 1 if they are limited, 0 if they are not.
217  */
cap_inh_is_capped(void)218 static inline int cap_inh_is_capped(void)
219 {
220 	/* they are so limited unless the current task has the CAP_SETPCAP
221 	 * capability
222 	 */
223 	if (cap_capable(current_cred(), current_cred()->user_ns,
224 			CAP_SETPCAP, CAP_OPT_NONE) == 0)
225 		return 0;
226 	return 1;
227 }
228 
229 /**
230  * cap_capset - Validate and apply proposed changes to current's capabilities
231  * @new: The proposed new credentials; alterations should be made here
232  * @old: The current task's current credentials
233  * @effective: A pointer to the proposed new effective capabilities set
234  * @inheritable: A pointer to the proposed new inheritable capabilities set
235  * @permitted: A pointer to the proposed new permitted capabilities set
236  *
237  * This function validates and applies a proposed mass change to the current
238  * process's capability sets.  The changes are made to the proposed new
239  * credentials, and assuming no error, will be committed by the caller of LSM.
240  */
cap_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)241 int cap_capset(struct cred *new,
242 	       const struct cred *old,
243 	       const kernel_cap_t *effective,
244 	       const kernel_cap_t *inheritable,
245 	       const kernel_cap_t *permitted)
246 {
247 	if (cap_inh_is_capped() &&
248 	    !cap_issubset(*inheritable,
249 			  cap_combine(old->cap_inheritable,
250 				      old->cap_permitted)))
251 		/* incapable of using this inheritable set */
252 		return -EPERM;
253 
254 	if (!cap_issubset(*inheritable,
255 			  cap_combine(old->cap_inheritable,
256 				      old->cap_bset)))
257 		/* no new pI capabilities outside bounding set */
258 		return -EPERM;
259 
260 	/* verify restrictions on target's new Permitted set */
261 	if (!cap_issubset(*permitted, old->cap_permitted))
262 		return -EPERM;
263 
264 	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
265 	if (!cap_issubset(*effective, *permitted))
266 		return -EPERM;
267 
268 	new->cap_effective   = *effective;
269 	new->cap_inheritable = *inheritable;
270 	new->cap_permitted   = *permitted;
271 
272 	/*
273 	 * Mask off ambient bits that are no longer both permitted and
274 	 * inheritable.
275 	 */
276 	new->cap_ambient = cap_intersect(new->cap_ambient,
277 					 cap_intersect(*permitted,
278 						       *inheritable));
279 	if (WARN_ON(!cap_ambient_invariant_ok(new)))
280 		return -EINVAL;
281 	return 0;
282 }
283 
284 /**
285  * cap_inode_need_killpriv - Determine if inode change affects privileges
286  * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
287  *
288  * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
289  * affects the security markings on that inode, and if it is, should
290  * inode_killpriv() be invoked or the change rejected.
291  *
292  * Returns 1 if security.capability has a value, meaning inode_killpriv()
293  * is required, 0 otherwise, meaning inode_killpriv() is not required.
294  */
cap_inode_need_killpriv(struct dentry * dentry)295 int cap_inode_need_killpriv(struct dentry *dentry)
296 {
297 	struct inode *inode = d_backing_inode(dentry);
298 	int error;
299 
300 	error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
301 	return error > 0;
302 }
303 
304 /**
305  * cap_inode_killpriv - Erase the security markings on an inode
306  * @dentry: The inode/dentry to alter
307  *
308  * Erase the privilege-enhancing security markings on an inode.
309  *
310  * Returns 0 if successful, -ve on error.
311  */
cap_inode_killpriv(struct dentry * dentry)312 int cap_inode_killpriv(struct dentry *dentry)
313 {
314 	int error;
315 
316 	error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
317 	if (error == -EOPNOTSUPP)
318 		error = 0;
319 	return error;
320 }
321 
rootid_owns_currentns(kuid_t kroot)322 static bool rootid_owns_currentns(kuid_t kroot)
323 {
324 	struct user_namespace *ns;
325 
326 	if (!uid_valid(kroot))
327 		return false;
328 
329 	for (ns = current_user_ns(); ; ns = ns->parent) {
330 		if (from_kuid(ns, kroot) == 0)
331 			return true;
332 		if (ns == &init_user_ns)
333 			break;
334 	}
335 
336 	return false;
337 }
338 
sansflags(__u32 m)339 static __u32 sansflags(__u32 m)
340 {
341 	return m & ~VFS_CAP_FLAGS_EFFECTIVE;
342 }
343 
is_v2header(size_t size,const struct vfs_cap_data * cap)344 static bool is_v2header(size_t size, const struct vfs_cap_data *cap)
345 {
346 	if (size != XATTR_CAPS_SZ_2)
347 		return false;
348 	return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
349 }
350 
is_v3header(size_t size,const struct vfs_cap_data * cap)351 static bool is_v3header(size_t size, const struct vfs_cap_data *cap)
352 {
353 	if (size != XATTR_CAPS_SZ_3)
354 		return false;
355 	return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
356 }
357 
358 /*
359  * getsecurity: We are called for security.* before any attempt to read the
360  * xattr from the inode itself.
361  *
362  * This gives us a chance to read the on-disk value and convert it.  If we
363  * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
364  *
365  * Note we are not called by vfs_getxattr_alloc(), but that is only called
366  * by the integrity subsystem, which really wants the unconverted values -
367  * so that's good.
368  */
cap_inode_getsecurity(struct inode * inode,const char * name,void ** buffer,bool alloc)369 int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
370 			  bool alloc)
371 {
372 	int size, ret;
373 	kuid_t kroot;
374 	u32 nsmagic, magic;
375 	uid_t root, mappedroot;
376 	char *tmpbuf = NULL;
377 	struct vfs_cap_data *cap;
378 	struct vfs_ns_cap_data *nscap = NULL;
379 	struct dentry *dentry;
380 	struct user_namespace *fs_ns;
381 
382 	if (strcmp(name, "capability") != 0)
383 		return -EOPNOTSUPP;
384 
385 	dentry = d_find_any_alias(inode);
386 	if (!dentry)
387 		return -EINVAL;
388 
389 	size = sizeof(struct vfs_ns_cap_data);
390 	ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
391 				 &tmpbuf, size, GFP_NOFS);
392 	dput(dentry);
393 
394 	if (ret < 0 || !tmpbuf) {
395 		size = ret;
396 		goto out_free;
397 	}
398 
399 	fs_ns = inode->i_sb->s_user_ns;
400 	cap = (struct vfs_cap_data *) tmpbuf;
401 	if (is_v2header((size_t) ret, cap)) {
402 		root = 0;
403 	} else if (is_v3header((size_t) ret, cap)) {
404 		nscap = (struct vfs_ns_cap_data *) tmpbuf;
405 		root = le32_to_cpu(nscap->rootid);
406 	} else {
407 		size = -EINVAL;
408 		goto out_free;
409 	}
410 
411 	kroot = make_kuid(fs_ns, root);
412 
413 	/* If the root kuid maps to a valid uid in current ns, then return
414 	 * this as a nscap. */
415 	mappedroot = from_kuid(current_user_ns(), kroot);
416 	if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
417 		size = sizeof(struct vfs_ns_cap_data);
418 		if (alloc) {
419 			if (!nscap) {
420 				/* v2 -> v3 conversion */
421 				nscap = kzalloc(size, GFP_ATOMIC);
422 				if (!nscap) {
423 					size = -ENOMEM;
424 					goto out_free;
425 				}
426 				nsmagic = VFS_CAP_REVISION_3;
427 				magic = le32_to_cpu(cap->magic_etc);
428 				if (magic & VFS_CAP_FLAGS_EFFECTIVE)
429 					nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
430 				memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
431 				nscap->magic_etc = cpu_to_le32(nsmagic);
432 			} else {
433 				/* use allocated v3 buffer */
434 				tmpbuf = NULL;
435 			}
436 			nscap->rootid = cpu_to_le32(mappedroot);
437 			*buffer = nscap;
438 		}
439 		goto out_free;
440 	}
441 
442 	if (!rootid_owns_currentns(kroot)) {
443 		size = -EOVERFLOW;
444 		goto out_free;
445 	}
446 
447 	/* This comes from a parent namespace.  Return as a v2 capability */
448 	size = sizeof(struct vfs_cap_data);
449 	if (alloc) {
450 		if (nscap) {
451 			/* v3 -> v2 conversion */
452 			cap = kzalloc(size, GFP_ATOMIC);
453 			if (!cap) {
454 				size = -ENOMEM;
455 				goto out_free;
456 			}
457 			magic = VFS_CAP_REVISION_2;
458 			nsmagic = le32_to_cpu(nscap->magic_etc);
459 			if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
460 				magic |= VFS_CAP_FLAGS_EFFECTIVE;
461 			memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
462 			cap->magic_etc = cpu_to_le32(magic);
463 		} else {
464 			/* use unconverted v2 */
465 			tmpbuf = NULL;
466 		}
467 		*buffer = cap;
468 	}
469 out_free:
470 	kfree(tmpbuf);
471 	return size;
472 }
473 
rootid_from_xattr(const void * value,size_t size,struct user_namespace * task_ns)474 static kuid_t rootid_from_xattr(const void *value, size_t size,
475 				struct user_namespace *task_ns)
476 {
477 	const struct vfs_ns_cap_data *nscap = value;
478 	uid_t rootid = 0;
479 
480 	if (size == XATTR_CAPS_SZ_3)
481 		rootid = le32_to_cpu(nscap->rootid);
482 
483 	return make_kuid(task_ns, rootid);
484 }
485 
validheader(size_t size,const struct vfs_cap_data * cap)486 static bool validheader(size_t size, const struct vfs_cap_data *cap)
487 {
488 	return is_v2header(size, cap) || is_v3header(size, cap);
489 }
490 
491 /*
492  * User requested a write of security.capability.  If needed, update the
493  * xattr to change from v2 to v3, or to fixup the v3 rootid.
494  *
495  * If all is ok, we return the new size, on error return < 0.
496  */
cap_convert_nscap(struct dentry * dentry,void ** ivalue,size_t size)497 int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size)
498 {
499 	struct vfs_ns_cap_data *nscap;
500 	uid_t nsrootid;
501 	const struct vfs_cap_data *cap = *ivalue;
502 	__u32 magic, nsmagic;
503 	struct inode *inode = d_backing_inode(dentry);
504 	struct user_namespace *task_ns = current_user_ns(),
505 		*fs_ns = inode->i_sb->s_user_ns;
506 	kuid_t rootid;
507 	size_t newsize;
508 
509 	if (!*ivalue)
510 		return -EINVAL;
511 	if (!validheader(size, cap))
512 		return -EINVAL;
513 	if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
514 		return -EPERM;
515 	if (size == XATTR_CAPS_SZ_2)
516 		if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
517 			/* user is privileged, just write the v2 */
518 			return size;
519 
520 	rootid = rootid_from_xattr(*ivalue, size, task_ns);
521 	if (!uid_valid(rootid))
522 		return -EINVAL;
523 
524 	nsrootid = from_kuid(fs_ns, rootid);
525 	if (nsrootid == -1)
526 		return -EINVAL;
527 
528 	newsize = sizeof(struct vfs_ns_cap_data);
529 	nscap = kmalloc(newsize, GFP_ATOMIC);
530 	if (!nscap)
531 		return -ENOMEM;
532 	nscap->rootid = cpu_to_le32(nsrootid);
533 	nsmagic = VFS_CAP_REVISION_3;
534 	magic = le32_to_cpu(cap->magic_etc);
535 	if (magic & VFS_CAP_FLAGS_EFFECTIVE)
536 		nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
537 	nscap->magic_etc = cpu_to_le32(nsmagic);
538 	memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
539 
540 	kvfree(*ivalue);
541 	*ivalue = nscap;
542 	return newsize;
543 }
544 
545 /*
546  * Calculate the new process capability sets from the capability sets attached
547  * to a file.
548  */
bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data * caps,struct linux_binprm * bprm,bool * effective,bool * has_fcap)549 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
550 					  struct linux_binprm *bprm,
551 					  bool *effective,
552 					  bool *has_fcap)
553 {
554 	struct cred *new = bprm->cred;
555 	unsigned i;
556 	int ret = 0;
557 
558 	if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
559 		*effective = true;
560 
561 	if (caps->magic_etc & VFS_CAP_REVISION_MASK)
562 		*has_fcap = true;
563 
564 	CAP_FOR_EACH_U32(i) {
565 		__u32 permitted = caps->permitted.cap[i];
566 		__u32 inheritable = caps->inheritable.cap[i];
567 
568 		/*
569 		 * pP' = (X & fP) | (pI & fI)
570 		 * The addition of pA' is handled later.
571 		 */
572 		new->cap_permitted.cap[i] =
573 			(new->cap_bset.cap[i] & permitted) |
574 			(new->cap_inheritable.cap[i] & inheritable);
575 
576 		if (permitted & ~new->cap_permitted.cap[i])
577 			/* insufficient to execute correctly */
578 			ret = -EPERM;
579 	}
580 
581 	/*
582 	 * For legacy apps, with no internal support for recognizing they
583 	 * do not have enough capabilities, we return an error if they are
584 	 * missing some "forced" (aka file-permitted) capabilities.
585 	 */
586 	return *effective ? ret : 0;
587 }
588 
589 /*
590  * Extract the on-exec-apply capability sets for an executable file.
591  */
get_vfs_caps_from_disk(const struct dentry * dentry,struct cpu_vfs_cap_data * cpu_caps)592 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
593 {
594 	struct inode *inode = d_backing_inode(dentry);
595 	__u32 magic_etc;
596 	unsigned tocopy, i;
597 	int size;
598 	struct vfs_ns_cap_data data, *nscaps = &data;
599 	struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
600 	kuid_t rootkuid;
601 	struct user_namespace *fs_ns;
602 
603 	memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
604 
605 	if (!inode)
606 		return -ENODATA;
607 
608 	fs_ns = inode->i_sb->s_user_ns;
609 	size = __vfs_getxattr((struct dentry *)dentry, inode,
610 			      XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
611 	if (size == -ENODATA || size == -EOPNOTSUPP)
612 		/* no data, that's ok */
613 		return -ENODATA;
614 
615 	if (size < 0)
616 		return size;
617 
618 	if (size < sizeof(magic_etc))
619 		return -EINVAL;
620 
621 	cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
622 
623 	rootkuid = make_kuid(fs_ns, 0);
624 	switch (magic_etc & VFS_CAP_REVISION_MASK) {
625 	case VFS_CAP_REVISION_1:
626 		if (size != XATTR_CAPS_SZ_1)
627 			return -EINVAL;
628 		tocopy = VFS_CAP_U32_1;
629 		break;
630 	case VFS_CAP_REVISION_2:
631 		if (size != XATTR_CAPS_SZ_2)
632 			return -EINVAL;
633 		tocopy = VFS_CAP_U32_2;
634 		break;
635 	case VFS_CAP_REVISION_3:
636 		if (size != XATTR_CAPS_SZ_3)
637 			return -EINVAL;
638 		tocopy = VFS_CAP_U32_3;
639 		rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
640 		break;
641 
642 	default:
643 		return -EINVAL;
644 	}
645 	/* Limit the caps to the mounter of the filesystem
646 	 * or the more limited uid specified in the xattr.
647 	 */
648 	if (!rootid_owns_currentns(rootkuid))
649 		return -ENODATA;
650 
651 	CAP_FOR_EACH_U32(i) {
652 		if (i >= tocopy)
653 			break;
654 		cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
655 		cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
656 	}
657 
658 	cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
659 	cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
660 
661 	cpu_caps->rootid = rootkuid;
662 
663 	return 0;
664 }
665 
666 /*
667  * Attempt to get the on-exec apply capability sets for an executable file from
668  * its xattrs and, if present, apply them to the proposed credentials being
669  * constructed by execve().
670  */
get_file_caps(struct linux_binprm * bprm,struct file * file,bool * effective,bool * has_fcap)671 static int get_file_caps(struct linux_binprm *bprm, struct file *file,
672 			 bool *effective, bool *has_fcap)
673 {
674 	int rc = 0;
675 	struct cpu_vfs_cap_data vcaps;
676 
677 	cap_clear(bprm->cred->cap_permitted);
678 
679 	if (!file_caps_enabled)
680 		return 0;
681 
682 	if (!mnt_may_suid(file->f_path.mnt))
683 		return 0;
684 
685 	/*
686 	 * This check is redundant with mnt_may_suid() but is kept to make
687 	 * explicit that capability bits are limited to s_user_ns and its
688 	 * descendants.
689 	 */
690 	if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns))
691 		return 0;
692 
693 	rc = get_vfs_caps_from_disk(file->f_path.dentry, &vcaps);
694 	if (rc < 0) {
695 		if (rc == -EINVAL)
696 			printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
697 					bprm->filename);
698 		else if (rc == -ENODATA)
699 			rc = 0;
700 		goto out;
701 	}
702 
703 	rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
704 
705 out:
706 	if (rc)
707 		cap_clear(bprm->cred->cap_permitted);
708 
709 	return rc;
710 }
711 
root_privileged(void)712 static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
713 
__is_real(kuid_t uid,struct cred * cred)714 static inline bool __is_real(kuid_t uid, struct cred *cred)
715 { return uid_eq(cred->uid, uid); }
716 
__is_eff(kuid_t uid,struct cred * cred)717 static inline bool __is_eff(kuid_t uid, struct cred *cred)
718 { return uid_eq(cred->euid, uid); }
719 
__is_suid(kuid_t uid,struct cred * cred)720 static inline bool __is_suid(kuid_t uid, struct cred *cred)
721 { return !__is_real(uid, cred) && __is_eff(uid, cred); }
722 
723 /*
724  * handle_privileged_root - Handle case of privileged root
725  * @bprm: The execution parameters, including the proposed creds
726  * @has_fcap: Are any file capabilities set?
727  * @effective: Do we have effective root privilege?
728  * @root_uid: This namespace' root UID WRT initial USER namespace
729  *
730  * Handle the case where root is privileged and hasn't been neutered by
731  * SECURE_NOROOT.  If file capabilities are set, they won't be combined with
732  * set UID root and nothing is changed.  If we are root, cap_permitted is
733  * updated.  If we have become set UID root, the effective bit is set.
734  */
handle_privileged_root(struct linux_binprm * bprm,bool has_fcap,bool * effective,kuid_t root_uid)735 static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
736 				   bool *effective, kuid_t root_uid)
737 {
738 	const struct cred *old = current_cred();
739 	struct cred *new = bprm->cred;
740 
741 	if (!root_privileged())
742 		return;
743 	/*
744 	 * If the legacy file capability is set, then don't set privs
745 	 * for a setuid root binary run by a non-root user.  Do set it
746 	 * for a root user just to cause least surprise to an admin.
747 	 */
748 	if (has_fcap && __is_suid(root_uid, new)) {
749 		warn_setuid_and_fcaps_mixed(bprm->filename);
750 		return;
751 	}
752 	/*
753 	 * To support inheritance of root-permissions and suid-root
754 	 * executables under compatibility mode, we override the
755 	 * capability sets for the file.
756 	 */
757 	if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
758 		/* pP' = (cap_bset & ~0) | (pI & ~0) */
759 		new->cap_permitted = cap_combine(old->cap_bset,
760 						 old->cap_inheritable);
761 	}
762 	/*
763 	 * If only the real uid is 0, we do not set the effective bit.
764 	 */
765 	if (__is_eff(root_uid, new))
766 		*effective = true;
767 }
768 
769 #define __cap_gained(field, target, source) \
770 	!cap_issubset(target->cap_##field, source->cap_##field)
771 #define __cap_grew(target, source, cred) \
772 	!cap_issubset(cred->cap_##target, cred->cap_##source)
773 #define __cap_full(field, cred) \
774 	cap_issubset(CAP_FULL_SET, cred->cap_##field)
775 
__is_setuid(struct cred * new,const struct cred * old)776 static inline bool __is_setuid(struct cred *new, const struct cred *old)
777 { return !uid_eq(new->euid, old->uid); }
778 
__is_setgid(struct cred * new,const struct cred * old)779 static inline bool __is_setgid(struct cred *new, const struct cred *old)
780 { return !gid_eq(new->egid, old->gid); }
781 
782 /*
783  * 1) Audit candidate if current->cap_effective is set
784  *
785  * We do not bother to audit if 3 things are true:
786  *   1) cap_effective has all caps
787  *   2) we became root *OR* are were already root
788  *   3) root is supposed to have all caps (SECURE_NOROOT)
789  * Since this is just a normal root execing a process.
790  *
791  * Number 1 above might fail if you don't have a full bset, but I think
792  * that is interesting information to audit.
793  *
794  * A number of other conditions require logging:
795  * 2) something prevented setuid root getting all caps
796  * 3) non-setuid root gets fcaps
797  * 4) non-setuid root gets ambient
798  */
nonroot_raised_pE(struct cred * new,const struct cred * old,kuid_t root,bool has_fcap)799 static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
800 				     kuid_t root, bool has_fcap)
801 {
802 	bool ret = false;
803 
804 	if ((__cap_grew(effective, ambient, new) &&
805 	     !(__cap_full(effective, new) &&
806 	       (__is_eff(root, new) || __is_real(root, new)) &&
807 	       root_privileged())) ||
808 	    (root_privileged() &&
809 	     __is_suid(root, new) &&
810 	     !__cap_full(effective, new)) ||
811 	    (!__is_setuid(new, old) &&
812 	     ((has_fcap &&
813 	       __cap_gained(permitted, new, old)) ||
814 	      __cap_gained(ambient, new, old))))
815 
816 		ret = true;
817 
818 	return ret;
819 }
820 
821 /**
822  * cap_bprm_creds_from_file - Set up the proposed credentials for execve().
823  * @bprm: The execution parameters, including the proposed creds
824  * @file: The file to pull the credentials from
825  *
826  * Set up the proposed credentials for a new execution context being
827  * constructed by execve().  The proposed creds in @bprm->cred is altered,
828  * which won't take effect immediately.  Returns 0 if successful, -ve on error.
829  */
cap_bprm_creds_from_file(struct linux_binprm * bprm,struct file * file)830 int cap_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
831 {
832 	/* Process setpcap binaries and capabilities for uid 0 */
833 	const struct cred *old = current_cred();
834 	struct cred *new = bprm->cred;
835 	bool effective = false, has_fcap = false, is_setid;
836 	int ret;
837 	kuid_t root_uid;
838 
839 	if (WARN_ON(!cap_ambient_invariant_ok(old)))
840 		return -EPERM;
841 
842 	ret = get_file_caps(bprm, file, &effective, &has_fcap);
843 	if (ret < 0)
844 		return ret;
845 
846 	root_uid = make_kuid(new->user_ns, 0);
847 
848 	handle_privileged_root(bprm, has_fcap, &effective, root_uid);
849 
850 	/* if we have fs caps, clear dangerous personality flags */
851 	if (__cap_gained(permitted, new, old))
852 		bprm->per_clear |= PER_CLEAR_ON_SETID;
853 
854 	/* Don't let someone trace a set[ug]id/setpcap binary with the revised
855 	 * credentials unless they have the appropriate permit.
856 	 *
857 	 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
858 	 */
859 	is_setid = __is_setuid(new, old) || __is_setgid(new, old);
860 
861 	if ((is_setid || __cap_gained(permitted, new, old)) &&
862 	    ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
863 	     !ptracer_capable(current, new->user_ns))) {
864 		/* downgrade; they get no more than they had, and maybe less */
865 		if (!ns_capable(new->user_ns, CAP_SETUID) ||
866 		    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
867 			new->euid = new->uid;
868 			new->egid = new->gid;
869 		}
870 		new->cap_permitted = cap_intersect(new->cap_permitted,
871 						   old->cap_permitted);
872 	}
873 
874 	new->suid = new->fsuid = new->euid;
875 	new->sgid = new->fsgid = new->egid;
876 
877 	/* File caps or setid cancels ambient. */
878 	if (has_fcap || is_setid)
879 		cap_clear(new->cap_ambient);
880 
881 	/*
882 	 * Now that we've computed pA', update pP' to give:
883 	 *   pP' = (X & fP) | (pI & fI) | pA'
884 	 */
885 	new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
886 
887 	/*
888 	 * Set pE' = (fE ? pP' : pA').  Because pA' is zero if fE is set,
889 	 * this is the same as pE' = (fE ? pP' : 0) | pA'.
890 	 */
891 	if (effective)
892 		new->cap_effective = new->cap_permitted;
893 	else
894 		new->cap_effective = new->cap_ambient;
895 
896 	if (WARN_ON(!cap_ambient_invariant_ok(new)))
897 		return -EPERM;
898 
899 	if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
900 		ret = audit_log_bprm_fcaps(bprm, new, old);
901 		if (ret < 0)
902 			return ret;
903 	}
904 
905 	new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
906 
907 	if (WARN_ON(!cap_ambient_invariant_ok(new)))
908 		return -EPERM;
909 
910 	/* Check for privilege-elevated exec. */
911 	if (is_setid ||
912 	    (!__is_real(root_uid, new) &&
913 	     (effective ||
914 	      __cap_grew(permitted, ambient, new))))
915 		bprm->secureexec = 1;
916 
917 	return 0;
918 }
919 
920 /**
921  * cap_inode_setxattr - Determine whether an xattr may be altered
922  * @dentry: The inode/dentry being altered
923  * @name: The name of the xattr to be changed
924  * @value: The value that the xattr will be changed to
925  * @size: The size of value
926  * @flags: The replacement flag
927  *
928  * Determine whether an xattr may be altered or set on an inode, returning 0 if
929  * permission is granted, -ve if denied.
930  *
931  * This is used to make sure security xattrs don't get updated or set by those
932  * who aren't privileged to do so.
933  */
cap_inode_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)934 int cap_inode_setxattr(struct dentry *dentry, const char *name,
935 		       const void *value, size_t size, int flags)
936 {
937 	struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
938 
939 	/* Ignore non-security xattrs */
940 	if (strncmp(name, XATTR_SECURITY_PREFIX,
941 			XATTR_SECURITY_PREFIX_LEN) != 0)
942 		return 0;
943 
944 	/*
945 	 * For XATTR_NAME_CAPS the check will be done in
946 	 * cap_convert_nscap(), called by setxattr()
947 	 */
948 	if (strcmp(name, XATTR_NAME_CAPS) == 0)
949 		return 0;
950 
951 	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
952 		return -EPERM;
953 	return 0;
954 }
955 
956 /**
957  * cap_inode_removexattr - Determine whether an xattr may be removed
958  * @dentry: The inode/dentry being altered
959  * @name: The name of the xattr to be changed
960  *
961  * Determine whether an xattr may be removed from an inode, returning 0 if
962  * permission is granted, -ve if denied.
963  *
964  * This is used to make sure security xattrs don't get removed by those who
965  * aren't privileged to remove them.
966  */
cap_inode_removexattr(struct dentry * dentry,const char * name)967 int cap_inode_removexattr(struct dentry *dentry, const char *name)
968 {
969 	struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
970 
971 	/* Ignore non-security xattrs */
972 	if (strncmp(name, XATTR_SECURITY_PREFIX,
973 			XATTR_SECURITY_PREFIX_LEN) != 0)
974 		return 0;
975 
976 	if (strcmp(name, XATTR_NAME_CAPS) == 0) {
977 		/* security.capability gets namespaced */
978 		struct inode *inode = d_backing_inode(dentry);
979 		if (!inode)
980 			return -EINVAL;
981 		if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
982 			return -EPERM;
983 		return 0;
984 	}
985 
986 	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
987 		return -EPERM;
988 	return 0;
989 }
990 
991 /*
992  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
993  * a process after a call to setuid, setreuid, or setresuid.
994  *
995  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
996  *  {r,e,s}uid != 0, the permitted and effective capabilities are
997  *  cleared.
998  *
999  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
1000  *  capabilities of the process are cleared.
1001  *
1002  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
1003  *  capabilities are set to the permitted capabilities.
1004  *
1005  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
1006  *  never happen.
1007  *
1008  *  -astor
1009  *
1010  * cevans - New behaviour, Oct '99
1011  * A process may, via prctl(), elect to keep its capabilities when it
1012  * calls setuid() and switches away from uid==0. Both permitted and
1013  * effective sets will be retained.
1014  * Without this change, it was impossible for a daemon to drop only some
1015  * of its privilege. The call to setuid(!=0) would drop all privileges!
1016  * Keeping uid 0 is not an option because uid 0 owns too many vital
1017  * files..
1018  * Thanks to Olaf Kirch and Peter Benie for spotting this.
1019  */
cap_emulate_setxuid(struct cred * new,const struct cred * old)1020 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1021 {
1022 	kuid_t root_uid = make_kuid(old->user_ns, 0);
1023 
1024 	if ((uid_eq(old->uid, root_uid) ||
1025 	     uid_eq(old->euid, root_uid) ||
1026 	     uid_eq(old->suid, root_uid)) &&
1027 	    (!uid_eq(new->uid, root_uid) &&
1028 	     !uid_eq(new->euid, root_uid) &&
1029 	     !uid_eq(new->suid, root_uid))) {
1030 		if (!issecure(SECURE_KEEP_CAPS)) {
1031 			cap_clear(new->cap_permitted);
1032 			cap_clear(new->cap_effective);
1033 		}
1034 
1035 		/*
1036 		 * Pre-ambient programs expect setresuid to nonroot followed
1037 		 * by exec to drop capabilities.  We should make sure that
1038 		 * this remains the case.
1039 		 */
1040 		cap_clear(new->cap_ambient);
1041 	}
1042 	if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1043 		cap_clear(new->cap_effective);
1044 	if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1045 		new->cap_effective = new->cap_permitted;
1046 }
1047 
1048 /**
1049  * cap_task_fix_setuid - Fix up the results of setuid() call
1050  * @new: The proposed credentials
1051  * @old: The current task's current credentials
1052  * @flags: Indications of what has changed
1053  *
1054  * Fix up the results of setuid() call before the credential changes are
1055  * actually applied, returning 0 to grant the changes, -ve to deny them.
1056  */
cap_task_fix_setuid(struct cred * new,const struct cred * old,int flags)1057 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1058 {
1059 	switch (flags) {
1060 	case LSM_SETID_RE:
1061 	case LSM_SETID_ID:
1062 	case LSM_SETID_RES:
1063 		/* juggle the capabilities to follow [RES]UID changes unless
1064 		 * otherwise suppressed */
1065 		if (!issecure(SECURE_NO_SETUID_FIXUP))
1066 			cap_emulate_setxuid(new, old);
1067 		break;
1068 
1069 	case LSM_SETID_FS:
1070 		/* juggle the capabilties to follow FSUID changes, unless
1071 		 * otherwise suppressed
1072 		 *
1073 		 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1074 		 *          if not, we might be a bit too harsh here.
1075 		 */
1076 		if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1077 			kuid_t root_uid = make_kuid(old->user_ns, 0);
1078 			if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1079 				new->cap_effective =
1080 					cap_drop_fs_set(new->cap_effective);
1081 
1082 			if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1083 				new->cap_effective =
1084 					cap_raise_fs_set(new->cap_effective,
1085 							 new->cap_permitted);
1086 		}
1087 		break;
1088 
1089 	default:
1090 		return -EINVAL;
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 /*
1097  * Rationale: code calling task_setscheduler, task_setioprio, and
1098  * task_setnice, assumes that
1099  *   . if capable(cap_sys_nice), then those actions should be allowed
1100  *   . if not capable(cap_sys_nice), but acting on your own processes,
1101  *   	then those actions should be allowed
1102  * This is insufficient now since you can call code without suid, but
1103  * yet with increased caps.
1104  * So we check for increased caps on the target process.
1105  */
cap_safe_nice(struct task_struct * p)1106 static int cap_safe_nice(struct task_struct *p)
1107 {
1108 	int is_subset, ret = 0;
1109 
1110 	rcu_read_lock();
1111 	is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1112 				 current_cred()->cap_permitted);
1113 	if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1114 		ret = -EPERM;
1115 	rcu_read_unlock();
1116 
1117 	return ret;
1118 }
1119 
1120 /**
1121  * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1122  * @p: The task to affect
1123  *
1124  * Detemine if the requested scheduler policy change is permitted for the
1125  * specified task, returning 0 if permission is granted, -ve if denied.
1126  */
cap_task_setscheduler(struct task_struct * p)1127 int cap_task_setscheduler(struct task_struct *p)
1128 {
1129 	return cap_safe_nice(p);
1130 }
1131 
1132 /**
1133  * cap_task_ioprio - Detemine if I/O priority change is permitted
1134  * @p: The task to affect
1135  * @ioprio: The I/O priority to set
1136  *
1137  * Detemine if the requested I/O priority change is permitted for the specified
1138  * task, returning 0 if permission is granted, -ve if denied.
1139  */
cap_task_setioprio(struct task_struct * p,int ioprio)1140 int cap_task_setioprio(struct task_struct *p, int ioprio)
1141 {
1142 	return cap_safe_nice(p);
1143 }
1144 
1145 /**
1146  * cap_task_ioprio - Detemine if task priority change is permitted
1147  * @p: The task to affect
1148  * @nice: The nice value to set
1149  *
1150  * Detemine if the requested task priority change is permitted for the
1151  * specified task, returning 0 if permission is granted, -ve if denied.
1152  */
cap_task_setnice(struct task_struct * p,int nice)1153 int cap_task_setnice(struct task_struct *p, int nice)
1154 {
1155 	return cap_safe_nice(p);
1156 }
1157 
1158 /*
1159  * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
1160  * the current task's bounding set.  Returns 0 on success, -ve on error.
1161  */
cap_prctl_drop(unsigned long cap)1162 static int cap_prctl_drop(unsigned long cap)
1163 {
1164 	struct cred *new;
1165 
1166 	if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1167 		return -EPERM;
1168 	if (!cap_valid(cap))
1169 		return -EINVAL;
1170 
1171 	new = prepare_creds();
1172 	if (!new)
1173 		return -ENOMEM;
1174 	cap_lower(new->cap_bset, cap);
1175 	return commit_creds(new);
1176 }
1177 
1178 /**
1179  * cap_task_prctl - Implement process control functions for this security module
1180  * @option: The process control function requested
1181  * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1182  *
1183  * Allow process control functions (sys_prctl()) to alter capabilities; may
1184  * also deny access to other functions not otherwise implemented here.
1185  *
1186  * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1187  * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
1188  * modules will consider performing the function.
1189  */
cap_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)1190 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1191 		   unsigned long arg4, unsigned long arg5)
1192 {
1193 	const struct cred *old = current_cred();
1194 	struct cred *new;
1195 
1196 	switch (option) {
1197 	case PR_CAPBSET_READ:
1198 		if (!cap_valid(arg2))
1199 			return -EINVAL;
1200 		return !!cap_raised(old->cap_bset, arg2);
1201 
1202 	case PR_CAPBSET_DROP:
1203 		return cap_prctl_drop(arg2);
1204 
1205 	/*
1206 	 * The next four prctl's remain to assist with transitioning a
1207 	 * system from legacy UID=0 based privilege (when filesystem
1208 	 * capabilities are not in use) to a system using filesystem
1209 	 * capabilities only - as the POSIX.1e draft intended.
1210 	 *
1211 	 * Note:
1212 	 *
1213 	 *  PR_SET_SECUREBITS =
1214 	 *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1215 	 *    | issecure_mask(SECURE_NOROOT)
1216 	 *    | issecure_mask(SECURE_NOROOT_LOCKED)
1217 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
1218 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1219 	 *
1220 	 * will ensure that the current process and all of its
1221 	 * children will be locked into a pure
1222 	 * capability-based-privilege environment.
1223 	 */
1224 	case PR_SET_SECUREBITS:
1225 		if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1226 		     & (old->securebits ^ arg2))			/*[1]*/
1227 		    || ((old->securebits & SECURE_ALL_LOCKS & ~arg2))	/*[2]*/
1228 		    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))	/*[3]*/
1229 		    || (cap_capable(current_cred(),
1230 				    current_cred()->user_ns,
1231 				    CAP_SETPCAP,
1232 				    CAP_OPT_NONE) != 0)			/*[4]*/
1233 			/*
1234 			 * [1] no changing of bits that are locked
1235 			 * [2] no unlocking of locks
1236 			 * [3] no setting of unsupported bits
1237 			 * [4] doing anything requires privilege (go read about
1238 			 *     the "sendmail capabilities bug")
1239 			 */
1240 		    )
1241 			/* cannot change a locked bit */
1242 			return -EPERM;
1243 
1244 		new = prepare_creds();
1245 		if (!new)
1246 			return -ENOMEM;
1247 		new->securebits = arg2;
1248 		return commit_creds(new);
1249 
1250 	case PR_GET_SECUREBITS:
1251 		return old->securebits;
1252 
1253 	case PR_GET_KEEPCAPS:
1254 		return !!issecure(SECURE_KEEP_CAPS);
1255 
1256 	case PR_SET_KEEPCAPS:
1257 		if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1258 			return -EINVAL;
1259 		if (issecure(SECURE_KEEP_CAPS_LOCKED))
1260 			return -EPERM;
1261 
1262 		new = prepare_creds();
1263 		if (!new)
1264 			return -ENOMEM;
1265 		if (arg2)
1266 			new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1267 		else
1268 			new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1269 		return commit_creds(new);
1270 
1271 	case PR_CAP_AMBIENT:
1272 		if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1273 			if (arg3 | arg4 | arg5)
1274 				return -EINVAL;
1275 
1276 			new = prepare_creds();
1277 			if (!new)
1278 				return -ENOMEM;
1279 			cap_clear(new->cap_ambient);
1280 			return commit_creds(new);
1281 		}
1282 
1283 		if (((!cap_valid(arg3)) | arg4 | arg5))
1284 			return -EINVAL;
1285 
1286 		if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1287 			return !!cap_raised(current_cred()->cap_ambient, arg3);
1288 		} else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1289 			   arg2 != PR_CAP_AMBIENT_LOWER) {
1290 			return -EINVAL;
1291 		} else {
1292 			if (arg2 == PR_CAP_AMBIENT_RAISE &&
1293 			    (!cap_raised(current_cred()->cap_permitted, arg3) ||
1294 			     !cap_raised(current_cred()->cap_inheritable,
1295 					 arg3) ||
1296 			     issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1297 				return -EPERM;
1298 
1299 			new = prepare_creds();
1300 			if (!new)
1301 				return -ENOMEM;
1302 			if (arg2 == PR_CAP_AMBIENT_RAISE)
1303 				cap_raise(new->cap_ambient, arg3);
1304 			else
1305 				cap_lower(new->cap_ambient, arg3);
1306 			return commit_creds(new);
1307 		}
1308 
1309 	default:
1310 		/* No functionality available - continue with default */
1311 		return -ENOSYS;
1312 	}
1313 }
1314 
1315 /**
1316  * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1317  * @mm: The VM space in which the new mapping is to be made
1318  * @pages: The size of the mapping
1319  *
1320  * Determine whether the allocation of a new virtual mapping by the current
1321  * task is permitted, returning 1 if permission is granted, 0 if not.
1322  */
cap_vm_enough_memory(struct mm_struct * mm,long pages)1323 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1324 {
1325 	int cap_sys_admin = 0;
1326 
1327 	if (cap_capable(current_cred(), &init_user_ns,
1328 				CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
1329 		cap_sys_admin = 1;
1330 
1331 	return cap_sys_admin;
1332 }
1333 
1334 /*
1335  * cap_mmap_addr - check if able to map given addr
1336  * @addr: address attempting to be mapped
1337  *
1338  * If the process is attempting to map memory below dac_mmap_min_addr they need
1339  * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
1340  * capability security module.  Returns 0 if this mapping should be allowed
1341  * -EPERM if not.
1342  */
cap_mmap_addr(unsigned long addr)1343 int cap_mmap_addr(unsigned long addr)
1344 {
1345 	int ret = 0;
1346 
1347 	if (addr < dac_mmap_min_addr) {
1348 		ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1349 				  CAP_OPT_NONE);
1350 		/* set PF_SUPERPRIV if it turns out we allow the low mmap */
1351 		if (ret == 0)
1352 			current->flags |= PF_SUPERPRIV;
1353 	}
1354 	return ret;
1355 }
1356 
cap_mmap_file(struct file * file,unsigned long reqprot,unsigned long prot,unsigned long flags)1357 int cap_mmap_file(struct file *file, unsigned long reqprot,
1358 		  unsigned long prot, unsigned long flags)
1359 {
1360 	return 0;
1361 }
1362 
1363 #ifdef CONFIG_SECURITY
1364 
1365 static struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
1366 	LSM_HOOK_INIT(capable, cap_capable),
1367 	LSM_HOOK_INIT(settime, cap_settime),
1368 	LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1369 	LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1370 	LSM_HOOK_INIT(capget, cap_capget),
1371 	LSM_HOOK_INIT(capset, cap_capset),
1372 	LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file),
1373 	LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1374 	LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1375 	LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1376 	LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1377 	LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1378 	LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1379 	LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1380 	LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1381 	LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1382 	LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1383 	LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1384 };
1385 
capability_init(void)1386 static int __init capability_init(void)
1387 {
1388 	security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1389 				"capability");
1390 	return 0;
1391 }
1392 
1393 DEFINE_LSM(capability) = {
1394 	.name = "capability",
1395 	.order = LSM_ORDER_FIRST,
1396 	.init = capability_init,
1397 };
1398 
1399 #endif /* CONFIG_SECURITY */
1400