1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18
19 #include <trace/events/cgroup.h>
20
21 /*
22 * pidlists linger the following amount before being destroyed. The goal
23 * is avoiding frequent destruction in the middle of consecutive read calls
24 * Expiring in the middle is a performance problem not a correctness one.
25 * 1 sec should be enough.
26 */
27 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
28
29 /* Controllers blocked by the commandline in v1 */
30 static u16 cgroup_no_v1_mask;
31
32 /* disable named v1 mounts */
33 static bool cgroup_no_v1_named;
34
35 /*
36 * pidlist destructions need to be flushed on cgroup destruction. Use a
37 * separate workqueue as flush domain.
38 */
39 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
40
41 /* protects cgroup_subsys->release_agent_path */
42 static DEFINE_SPINLOCK(release_agent_path_lock);
43
cgroup1_ssid_disabled(int ssid)44 bool cgroup1_ssid_disabled(int ssid)
45 {
46 return cgroup_no_v1_mask & (1 << ssid);
47 }
48
49 /**
50 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
51 * @from: attach to all cgroups of a given task
52 * @tsk: the task to be attached
53 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)54 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
55 {
56 struct cgroup_root *root;
57 int retval = 0;
58
59 mutex_lock(&cgroup_mutex);
60 cpus_read_lock();
61 percpu_down_write(&cgroup_threadgroup_rwsem);
62 for_each_root(root) {
63 struct cgroup *from_cgrp;
64
65 if (root == &cgrp_dfl_root)
66 continue;
67
68 spin_lock_irq(&css_set_lock);
69 from_cgrp = task_cgroup_from_root(from, root);
70 spin_unlock_irq(&css_set_lock);
71
72 retval = cgroup_attach_task(from_cgrp, tsk, false);
73 if (retval)
74 break;
75 }
76 percpu_up_write(&cgroup_threadgroup_rwsem);
77 cpus_read_unlock();
78 mutex_unlock(&cgroup_mutex);
79
80 return retval;
81 }
82 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
83
84 /**
85 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
86 * @to: cgroup to which the tasks will be moved
87 * @from: cgroup in which the tasks currently reside
88 *
89 * Locking rules between cgroup_post_fork() and the migration path
90 * guarantee that, if a task is forking while being migrated, the new child
91 * is guaranteed to be either visible in the source cgroup after the
92 * parent's migration is complete or put into the target cgroup. No task
93 * can slip out of migration through forking.
94 */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)95 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
96 {
97 DEFINE_CGROUP_MGCTX(mgctx);
98 struct cgrp_cset_link *link;
99 struct css_task_iter it;
100 struct task_struct *task;
101 int ret;
102
103 if (cgroup_on_dfl(to))
104 return -EINVAL;
105
106 ret = cgroup_migrate_vet_dst(to);
107 if (ret)
108 return ret;
109
110 mutex_lock(&cgroup_mutex);
111
112 percpu_down_write(&cgroup_threadgroup_rwsem);
113
114 /* all tasks in @from are being moved, all csets are source */
115 spin_lock_irq(&css_set_lock);
116 list_for_each_entry(link, &from->cset_links, cset_link)
117 cgroup_migrate_add_src(link->cset, to, &mgctx);
118 spin_unlock_irq(&css_set_lock);
119
120 ret = cgroup_migrate_prepare_dst(&mgctx);
121 if (ret)
122 goto out_err;
123
124 /*
125 * Migrate tasks one-by-one until @from is empty. This fails iff
126 * ->can_attach() fails.
127 */
128 do {
129 css_task_iter_start(&from->self, 0, &it);
130
131 do {
132 task = css_task_iter_next(&it);
133 } while (task && (task->flags & PF_EXITING));
134
135 if (task)
136 get_task_struct(task);
137 css_task_iter_end(&it);
138
139 if (task) {
140 ret = cgroup_migrate(task, false, &mgctx);
141 if (!ret)
142 TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
143 put_task_struct(task);
144 }
145 } while (task && !ret);
146 out_err:
147 cgroup_migrate_finish(&mgctx);
148 percpu_up_write(&cgroup_threadgroup_rwsem);
149 mutex_unlock(&cgroup_mutex);
150 return ret;
151 }
152
153 /*
154 * Stuff for reading the 'tasks'/'procs' files.
155 *
156 * Reading this file can return large amounts of data if a cgroup has
157 * *lots* of attached tasks. So it may need several calls to read(),
158 * but we cannot guarantee that the information we produce is correct
159 * unless we produce it entirely atomically.
160 *
161 */
162
163 /* which pidlist file are we talking about? */
164 enum cgroup_filetype {
165 CGROUP_FILE_PROCS,
166 CGROUP_FILE_TASKS,
167 };
168
169 /*
170 * A pidlist is a list of pids that virtually represents the contents of one
171 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
172 * a pair (one each for procs, tasks) for each pid namespace that's relevant
173 * to the cgroup.
174 */
175 struct cgroup_pidlist {
176 /*
177 * used to find which pidlist is wanted. doesn't change as long as
178 * this particular list stays in the list.
179 */
180 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
181 /* array of xids */
182 pid_t *list;
183 /* how many elements the above list has */
184 int length;
185 /* each of these stored in a list by its cgroup */
186 struct list_head links;
187 /* pointer to the cgroup we belong to, for list removal purposes */
188 struct cgroup *owner;
189 /* for delayed destruction */
190 struct delayed_work destroy_dwork;
191 };
192
193 /*
194 * Used to destroy all pidlists lingering waiting for destroy timer. None
195 * should be left afterwards.
196 */
cgroup1_pidlist_destroy_all(struct cgroup * cgrp)197 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
198 {
199 struct cgroup_pidlist *l, *tmp_l;
200
201 mutex_lock(&cgrp->pidlist_mutex);
202 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
203 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
204 mutex_unlock(&cgrp->pidlist_mutex);
205
206 flush_workqueue(cgroup_pidlist_destroy_wq);
207 BUG_ON(!list_empty(&cgrp->pidlists));
208 }
209
cgroup_pidlist_destroy_work_fn(struct work_struct * work)210 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
211 {
212 struct delayed_work *dwork = to_delayed_work(work);
213 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
214 destroy_dwork);
215 struct cgroup_pidlist *tofree = NULL;
216
217 mutex_lock(&l->owner->pidlist_mutex);
218
219 /*
220 * Destroy iff we didn't get queued again. The state won't change
221 * as destroy_dwork can only be queued while locked.
222 */
223 if (!delayed_work_pending(dwork)) {
224 list_del(&l->links);
225 kvfree(l->list);
226 put_pid_ns(l->key.ns);
227 tofree = l;
228 }
229
230 mutex_unlock(&l->owner->pidlist_mutex);
231 kfree(tofree);
232 }
233
234 /*
235 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
236 * Returns the number of unique elements.
237 */
pidlist_uniq(pid_t * list,int length)238 static int pidlist_uniq(pid_t *list, int length)
239 {
240 int src, dest = 1;
241
242 /*
243 * we presume the 0th element is unique, so i starts at 1. trivial
244 * edge cases first; no work needs to be done for either
245 */
246 if (length == 0 || length == 1)
247 return length;
248 /* src and dest walk down the list; dest counts unique elements */
249 for (src = 1; src < length; src++) {
250 /* find next unique element */
251 while (list[src] == list[src-1]) {
252 src++;
253 if (src == length)
254 goto after;
255 }
256 /* dest always points to where the next unique element goes */
257 list[dest] = list[src];
258 dest++;
259 }
260 after:
261 return dest;
262 }
263
264 /*
265 * The two pid files - task and cgroup.procs - guaranteed that the result
266 * is sorted, which forced this whole pidlist fiasco. As pid order is
267 * different per namespace, each namespace needs differently sorted list,
268 * making it impossible to use, for example, single rbtree of member tasks
269 * sorted by task pointer. As pidlists can be fairly large, allocating one
270 * per open file is dangerous, so cgroup had to implement shared pool of
271 * pidlists keyed by cgroup and namespace.
272 */
cmppid(const void * a,const void * b)273 static int cmppid(const void *a, const void *b)
274 {
275 return *(pid_t *)a - *(pid_t *)b;
276 }
277
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)278 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
279 enum cgroup_filetype type)
280 {
281 struct cgroup_pidlist *l;
282 /* don't need task_nsproxy() if we're looking at ourself */
283 struct pid_namespace *ns = task_active_pid_ns(current);
284
285 lockdep_assert_held(&cgrp->pidlist_mutex);
286
287 list_for_each_entry(l, &cgrp->pidlists, links)
288 if (l->key.type == type && l->key.ns == ns)
289 return l;
290 return NULL;
291 }
292
293 /*
294 * find the appropriate pidlist for our purpose (given procs vs tasks)
295 * returns with the lock on that pidlist already held, and takes care
296 * of the use count, or returns NULL with no locks held if we're out of
297 * memory.
298 */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)299 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
300 enum cgroup_filetype type)
301 {
302 struct cgroup_pidlist *l;
303
304 lockdep_assert_held(&cgrp->pidlist_mutex);
305
306 l = cgroup_pidlist_find(cgrp, type);
307 if (l)
308 return l;
309
310 /* entry not found; create a new one */
311 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
312 if (!l)
313 return l;
314
315 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
316 l->key.type = type;
317 /* don't need task_nsproxy() if we're looking at ourself */
318 l->key.ns = get_pid_ns(task_active_pid_ns(current));
319 l->owner = cgrp;
320 list_add(&l->links, &cgrp->pidlists);
321 return l;
322 }
323
324 /*
325 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
326 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)327 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
328 struct cgroup_pidlist **lp)
329 {
330 pid_t *array;
331 int length;
332 int pid, n = 0; /* used for populating the array */
333 struct css_task_iter it;
334 struct task_struct *tsk;
335 struct cgroup_pidlist *l;
336
337 lockdep_assert_held(&cgrp->pidlist_mutex);
338
339 /*
340 * If cgroup gets more users after we read count, we won't have
341 * enough space - tough. This race is indistinguishable to the
342 * caller from the case that the additional cgroup users didn't
343 * show up until sometime later on.
344 */
345 length = cgroup_task_count(cgrp);
346 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
347 if (!array)
348 return -ENOMEM;
349 /* now, populate the array */
350 css_task_iter_start(&cgrp->self, 0, &it);
351 while ((tsk = css_task_iter_next(&it))) {
352 if (unlikely(n == length))
353 break;
354 /* get tgid or pid for procs or tasks file respectively */
355 if (type == CGROUP_FILE_PROCS)
356 pid = task_tgid_vnr(tsk);
357 else
358 pid = task_pid_vnr(tsk);
359 if (pid > 0) /* make sure to only use valid results */
360 array[n++] = pid;
361 }
362 css_task_iter_end(&it);
363 length = n;
364 /* now sort & (if procs) strip out duplicates */
365 sort(array, length, sizeof(pid_t), cmppid, NULL);
366 if (type == CGROUP_FILE_PROCS)
367 length = pidlist_uniq(array, length);
368
369 l = cgroup_pidlist_find_create(cgrp, type);
370 if (!l) {
371 kvfree(array);
372 return -ENOMEM;
373 }
374
375 /* store array, freeing old if necessary */
376 kvfree(l->list);
377 l->list = array;
378 l->length = length;
379 *lp = l;
380 return 0;
381 }
382
383 /*
384 * seq_file methods for the tasks/procs files. The seq_file position is the
385 * next pid to display; the seq_file iterator is a pointer to the pid
386 * in the cgroup->l->list array.
387 */
388
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)389 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
390 {
391 /*
392 * Initially we receive a position value that corresponds to
393 * one more than the last pid shown (or 0 on the first call or
394 * after a seek to the start). Use a binary-search to find the
395 * next pid to display, if any
396 */
397 struct kernfs_open_file *of = s->private;
398 struct cgroup_file_ctx *ctx = of->priv;
399 struct cgroup *cgrp = seq_css(s)->cgroup;
400 struct cgroup_pidlist *l;
401 enum cgroup_filetype type = seq_cft(s)->private;
402 int index = 0, pid = *pos;
403 int *iter, ret;
404
405 mutex_lock(&cgrp->pidlist_mutex);
406
407 /*
408 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
409 * start() after open. If the matching pidlist is around, we can use
410 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
411 * directly. It could already have been destroyed.
412 */
413 if (ctx->procs1.pidlist)
414 ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
415
416 /*
417 * Either this is the first start() after open or the matching
418 * pidlist has been destroyed inbetween. Create a new one.
419 */
420 if (!ctx->procs1.pidlist) {
421 ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
422 if (ret)
423 return ERR_PTR(ret);
424 }
425 l = ctx->procs1.pidlist;
426
427 if (pid) {
428 int end = l->length;
429
430 while (index < end) {
431 int mid = (index + end) / 2;
432 if (l->list[mid] == pid) {
433 index = mid;
434 break;
435 } else if (l->list[mid] <= pid)
436 index = mid + 1;
437 else
438 end = mid;
439 }
440 }
441 /* If we're off the end of the array, we're done */
442 if (index >= l->length)
443 return NULL;
444 /* Update the abstract position to be the actual pid that we found */
445 iter = l->list + index;
446 *pos = *iter;
447 return iter;
448 }
449
cgroup_pidlist_stop(struct seq_file * s,void * v)450 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
451 {
452 struct kernfs_open_file *of = s->private;
453 struct cgroup_file_ctx *ctx = of->priv;
454 struct cgroup_pidlist *l = ctx->procs1.pidlist;
455
456 if (l)
457 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
458 CGROUP_PIDLIST_DESTROY_DELAY);
459 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
460 }
461
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)462 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
463 {
464 struct kernfs_open_file *of = s->private;
465 struct cgroup_file_ctx *ctx = of->priv;
466 struct cgroup_pidlist *l = ctx->procs1.pidlist;
467 pid_t *p = v;
468 pid_t *end = l->list + l->length;
469 /*
470 * Advance to the next pid in the array. If this goes off the
471 * end, we're done
472 */
473 p++;
474 if (p >= end) {
475 (*pos)++;
476 return NULL;
477 } else {
478 *pos = *p;
479 return p;
480 }
481 }
482
cgroup_pidlist_show(struct seq_file * s,void * v)483 static int cgroup_pidlist_show(struct seq_file *s, void *v)
484 {
485 seq_printf(s, "%d\n", *(int *)v);
486
487 return 0;
488 }
489
__cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)490 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
491 char *buf, size_t nbytes, loff_t off,
492 bool threadgroup)
493 {
494 struct cgroup *cgrp;
495 struct task_struct *task;
496 const struct cred *cred, *tcred;
497 ssize_t ret;
498 bool locked;
499
500 cgrp = cgroup_kn_lock_live(of->kn, false);
501 if (!cgrp)
502 return -ENODEV;
503
504 task = cgroup_procs_write_start(buf, threadgroup, &locked);
505 ret = PTR_ERR_OR_ZERO(task);
506 if (ret)
507 goto out_unlock;
508
509 /*
510 * Even if we're attaching all tasks in the thread group, we only need
511 * to check permissions on one of them. Check permissions using the
512 * credentials from file open to protect against inherited fd attacks.
513 */
514 cred = of->file->f_cred;
515 tcred = get_task_cred(task);
516 #ifdef CONFIG_HYPERHOLD
517 if (!uid_eq(cred->euid, GLOBAL_MEMMGR_UID) &&
518 !uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
519 #else
520 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
521 #endif
522 !uid_eq(cred->euid, tcred->uid) &&
523 !uid_eq(cred->euid, tcred->suid))
524 ret = -EACCES;
525 put_cred(tcred);
526 if (ret)
527 goto out_finish;
528
529 ret = cgroup_attach_task(cgrp, task, threadgroup);
530
531 out_finish:
532 cgroup_procs_write_finish(task, locked);
533 out_unlock:
534 cgroup_kn_unlock(of->kn);
535
536 return ret ?: nbytes;
537 }
538
cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)539 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
540 char *buf, size_t nbytes, loff_t off)
541 {
542 return __cgroup1_procs_write(of, buf, nbytes, off, true);
543 }
544
cgroup1_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)545 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
546 char *buf, size_t nbytes, loff_t off)
547 {
548 return __cgroup1_procs_write(of, buf, nbytes, off, false);
549 }
550
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)551 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
552 char *buf, size_t nbytes, loff_t off)
553 {
554 struct cgroup *cgrp;
555 struct cgroup_file_ctx *ctx;
556
557 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
558
559 /*
560 * Release agent gets called with all capabilities,
561 * require capabilities to set release agent.
562 */
563 ctx = of->priv;
564 if ((ctx->ns->user_ns != &init_user_ns) ||
565 !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
566 return -EPERM;
567
568 cgrp = cgroup_kn_lock_live(of->kn, false);
569 if (!cgrp)
570 return -ENODEV;
571 spin_lock(&release_agent_path_lock);
572 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
573 sizeof(cgrp->root->release_agent_path));
574 spin_unlock(&release_agent_path_lock);
575 cgroup_kn_unlock(of->kn);
576 return nbytes;
577 }
578
cgroup_release_agent_show(struct seq_file * seq,void * v)579 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
580 {
581 struct cgroup *cgrp = seq_css(seq)->cgroup;
582
583 spin_lock(&release_agent_path_lock);
584 seq_puts(seq, cgrp->root->release_agent_path);
585 spin_unlock(&release_agent_path_lock);
586 seq_putc(seq, '\n');
587 return 0;
588 }
589
cgroup_sane_behavior_show(struct seq_file * seq,void * v)590 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
591 {
592 seq_puts(seq, "0\n");
593 return 0;
594 }
595
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)596 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
597 struct cftype *cft)
598 {
599 return notify_on_release(css->cgroup);
600 }
601
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)602 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
603 struct cftype *cft, u64 val)
604 {
605 if (val)
606 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
607 else
608 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
609 return 0;
610 }
611
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)612 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
613 struct cftype *cft)
614 {
615 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
616 }
617
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)618 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
619 struct cftype *cft, u64 val)
620 {
621 if (val)
622 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
623 else
624 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
625 return 0;
626 }
627
628 /* cgroup core interface files for the legacy hierarchies */
629 struct cftype cgroup1_base_files[] = {
630 {
631 .name = "cgroup.procs",
632 .seq_start = cgroup_pidlist_start,
633 .seq_next = cgroup_pidlist_next,
634 .seq_stop = cgroup_pidlist_stop,
635 .seq_show = cgroup_pidlist_show,
636 .private = CGROUP_FILE_PROCS,
637 .write = cgroup1_procs_write,
638 },
639 {
640 .name = "cgroup.clone_children",
641 .read_u64 = cgroup_clone_children_read,
642 .write_u64 = cgroup_clone_children_write,
643 },
644 {
645 .name = "cgroup.sane_behavior",
646 .flags = CFTYPE_ONLY_ON_ROOT,
647 .seq_show = cgroup_sane_behavior_show,
648 },
649 {
650 .name = "tasks",
651 .seq_start = cgroup_pidlist_start,
652 .seq_next = cgroup_pidlist_next,
653 .seq_stop = cgroup_pidlist_stop,
654 .seq_show = cgroup_pidlist_show,
655 .private = CGROUP_FILE_TASKS,
656 .write = cgroup1_tasks_write,
657 },
658 {
659 .name = "notify_on_release",
660 .read_u64 = cgroup_read_notify_on_release,
661 .write_u64 = cgroup_write_notify_on_release,
662 },
663 {
664 .name = "release_agent",
665 .flags = CFTYPE_ONLY_ON_ROOT,
666 .seq_show = cgroup_release_agent_show,
667 .write = cgroup_release_agent_write,
668 .max_write_len = PATH_MAX - 1,
669 },
670 { } /* terminate */
671 };
672
673 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)674 int proc_cgroupstats_show(struct seq_file *m, void *v)
675 {
676 struct cgroup_subsys *ss;
677 int i;
678 bool dead;
679
680 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
681 /*
682 * ideally we don't want subsystems moving around while we do this.
683 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
684 * subsys/hierarchy state.
685 */
686 mutex_lock(&cgroup_mutex);
687
688 for_each_subsys(ss, i)
689 for_each_subsys(ss, i) {
690 dead = percpu_ref_is_dying(&ss->root->cgrp.self.refcnt);
691 seq_printf(m, "%s\t%d\t%d\t%d\n",
692 ss->legacy_name, dead ? 0 : ss->root->hierarchy_id,
693 dead ? 0 : atomic_read(&ss->root->nr_cgrps),
694 cgroup_ssid_enabled(i));
695 }
696
697 mutex_unlock(&cgroup_mutex);
698 return 0;
699 }
700
701 /**
702 * cgroupstats_build - build and fill cgroupstats
703 * @stats: cgroupstats to fill information into
704 * @dentry: A dentry entry belonging to the cgroup for which stats have
705 * been requested.
706 *
707 * Build and fill cgroupstats so that taskstats can export it to user
708 * space.
709 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)710 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
711 {
712 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
713 struct cgroup *cgrp;
714 struct css_task_iter it;
715 struct task_struct *tsk;
716
717 /* it should be kernfs_node belonging to cgroupfs and is a directory */
718 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
719 kernfs_type(kn) != KERNFS_DIR)
720 return -EINVAL;
721
722 mutex_lock(&cgroup_mutex);
723
724 /*
725 * We aren't being called from kernfs and there's no guarantee on
726 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
727 * @kn->priv is RCU safe. Let's do the RCU dancing.
728 */
729 rcu_read_lock();
730 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
731 if (!cgrp || cgroup_is_dead(cgrp)) {
732 rcu_read_unlock();
733 mutex_unlock(&cgroup_mutex);
734 return -ENOENT;
735 }
736 rcu_read_unlock();
737
738 css_task_iter_start(&cgrp->self, 0, &it);
739 while ((tsk = css_task_iter_next(&it))) {
740 switch (tsk->state) {
741 case TASK_RUNNING:
742 stats->nr_running++;
743 break;
744 case TASK_INTERRUPTIBLE:
745 stats->nr_sleeping++;
746 break;
747 case TASK_UNINTERRUPTIBLE:
748 stats->nr_uninterruptible++;
749 break;
750 case TASK_STOPPED:
751 stats->nr_stopped++;
752 break;
753 default:
754 if (delayacct_is_task_waiting_on_io(tsk))
755 stats->nr_io_wait++;
756 break;
757 }
758 }
759 css_task_iter_end(&it);
760
761 mutex_unlock(&cgroup_mutex);
762 return 0;
763 }
764
cgroup1_check_for_release(struct cgroup * cgrp)765 void cgroup1_check_for_release(struct cgroup *cgrp)
766 {
767 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
768 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
769 schedule_work(&cgrp->release_agent_work);
770 }
771
772 /*
773 * Notify userspace when a cgroup is released, by running the
774 * configured release agent with the name of the cgroup (path
775 * relative to the root of cgroup file system) as the argument.
776 *
777 * Most likely, this user command will try to rmdir this cgroup.
778 *
779 * This races with the possibility that some other task will be
780 * attached to this cgroup before it is removed, or that some other
781 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
782 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
783 * unused, and this cgroup will be reprieved from its death sentence,
784 * to continue to serve a useful existence. Next time it's released,
785 * we will get notified again, if it still has 'notify_on_release' set.
786 *
787 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
788 * means only wait until the task is successfully execve()'d. The
789 * separate release agent task is forked by call_usermodehelper(),
790 * then control in this thread returns here, without waiting for the
791 * release agent task. We don't bother to wait because the caller of
792 * this routine has no use for the exit status of the release agent
793 * task, so no sense holding our caller up for that.
794 */
cgroup1_release_agent(struct work_struct * work)795 void cgroup1_release_agent(struct work_struct *work)
796 {
797 struct cgroup *cgrp =
798 container_of(work, struct cgroup, release_agent_work);
799 char *pathbuf, *agentbuf;
800 char *argv[3], *envp[3];
801 int ret;
802
803 /* snoop agent path and exit early if empty */
804 if (!cgrp->root->release_agent_path[0])
805 return;
806
807 /* prepare argument buffers */
808 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
809 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
810 if (!pathbuf || !agentbuf)
811 goto out_free;
812
813 spin_lock(&release_agent_path_lock);
814 strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
815 spin_unlock(&release_agent_path_lock);
816 if (!agentbuf[0])
817 goto out_free;
818
819 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
820 if (ret < 0 || ret >= PATH_MAX)
821 goto out_free;
822
823 argv[0] = agentbuf;
824 argv[1] = pathbuf;
825 argv[2] = NULL;
826
827 /* minimal command environment */
828 envp[0] = "HOME=/";
829 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
830 envp[2] = NULL;
831
832 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
833 out_free:
834 kfree(agentbuf);
835 kfree(pathbuf);
836 }
837
838 /*
839 * cgroup_rename - Only allow simple rename of directories in place.
840 */
cgroup1_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)841 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
842 const char *new_name_str)
843 {
844 struct cgroup *cgrp = kn->priv;
845 int ret;
846
847 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
848 if (strchr(new_name_str, '\n'))
849 return -EINVAL;
850
851 if (kernfs_type(kn) != KERNFS_DIR)
852 return -ENOTDIR;
853 if (kn->parent != new_parent)
854 return -EIO;
855
856 /*
857 * We're gonna grab cgroup_mutex which nests outside kernfs
858 * active_ref. kernfs_rename() doesn't require active_ref
859 * protection. Break them before grabbing cgroup_mutex.
860 */
861 kernfs_break_active_protection(new_parent);
862 kernfs_break_active_protection(kn);
863
864 mutex_lock(&cgroup_mutex);
865
866 ret = kernfs_rename(kn, new_parent, new_name_str);
867 if (!ret)
868 TRACE_CGROUP_PATH(rename, cgrp);
869
870 mutex_unlock(&cgroup_mutex);
871
872 kernfs_unbreak_active_protection(kn);
873 kernfs_unbreak_active_protection(new_parent);
874 return ret;
875 }
876
cgroup1_show_options(struct seq_file * seq,struct kernfs_root * kf_root)877 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
878 {
879 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
880 struct cgroup_subsys *ss;
881 int ssid;
882
883 for_each_subsys(ss, ssid)
884 if (root->subsys_mask & (1 << ssid))
885 seq_show_option(seq, ss->legacy_name, NULL);
886 if (root->flags & CGRP_ROOT_NOPREFIX)
887 seq_puts(seq, ",noprefix");
888 if (root->flags & CGRP_ROOT_XATTR)
889 seq_puts(seq, ",xattr");
890 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
891 seq_puts(seq, ",cpuset_v2_mode");
892
893 spin_lock(&release_agent_path_lock);
894 if (strlen(root->release_agent_path))
895 seq_show_option(seq, "release_agent",
896 root->release_agent_path);
897 spin_unlock(&release_agent_path_lock);
898
899 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
900 seq_puts(seq, ",clone_children");
901 if (strlen(root->name))
902 seq_show_option(seq, "name", root->name);
903 return 0;
904 }
905
906 enum cgroup1_param {
907 Opt_all,
908 Opt_clone_children,
909 Opt_cpuset_v2_mode,
910 Opt_name,
911 Opt_none,
912 Opt_noprefix,
913 Opt_release_agent,
914 Opt_xattr,
915 };
916
917 const struct fs_parameter_spec cgroup1_fs_parameters[] = {
918 fsparam_flag ("all", Opt_all),
919 fsparam_flag ("clone_children", Opt_clone_children),
920 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode),
921 fsparam_string("name", Opt_name),
922 fsparam_flag ("none", Opt_none),
923 fsparam_flag ("noprefix", Opt_noprefix),
924 fsparam_string("release_agent", Opt_release_agent),
925 fsparam_flag ("xattr", Opt_xattr),
926 {}
927 };
928
cgroup1_parse_param(struct fs_context * fc,struct fs_parameter * param)929 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
930 {
931 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
932 struct cgroup_subsys *ss;
933 struct fs_parse_result result;
934 int opt, i;
935
936 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
937 if (opt == -ENOPARAM) {
938 int ret;
939
940 ret = vfs_parse_fs_param_source(fc, param);
941 if (ret != -ENOPARAM)
942 return ret;
943 for_each_subsys(ss, i) {
944 if (strcmp(param->key, ss->legacy_name))
945 continue;
946 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
947 return invalfc(fc, "Disabled controller '%s'",
948 param->key);
949 ctx->subsys_mask |= (1 << i);
950 return 0;
951 }
952 return invalfc(fc, "Unknown subsys name '%s'", param->key);
953 }
954 if (opt < 0)
955 return opt;
956
957 switch (opt) {
958 case Opt_none:
959 /* Explicitly have no subsystems */
960 ctx->none = true;
961 break;
962 case Opt_all:
963 ctx->all_ss = true;
964 break;
965 case Opt_noprefix:
966 ctx->flags |= CGRP_ROOT_NOPREFIX;
967 break;
968 case Opt_clone_children:
969 ctx->cpuset_clone_children = true;
970 break;
971 case Opt_cpuset_v2_mode:
972 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
973 break;
974 case Opt_xattr:
975 ctx->flags |= CGRP_ROOT_XATTR;
976 break;
977 case Opt_release_agent:
978 /* Specifying two release agents is forbidden */
979 if (ctx->release_agent)
980 return invalfc(fc, "release_agent respecified");
981 /*
982 * Release agent gets called with all capabilities,
983 * require capabilities to set release agent.
984 */
985 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
986 return invalfc(fc, "Setting release_agent not allowed");
987 ctx->release_agent = param->string;
988 param->string = NULL;
989 break;
990 case Opt_name:
991 /* blocked by boot param? */
992 if (cgroup_no_v1_named)
993 return -ENOENT;
994 /* Can't specify an empty name */
995 if (!param->size)
996 return invalfc(fc, "Empty name");
997 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
998 return invalfc(fc, "Name too long");
999 /* Must match [\w.-]+ */
1000 for (i = 0; i < param->size; i++) {
1001 char c = param->string[i];
1002 if (isalnum(c))
1003 continue;
1004 if ((c == '.') || (c == '-') || (c == '_'))
1005 continue;
1006 return invalfc(fc, "Invalid name");
1007 }
1008 /* Specifying two names is forbidden */
1009 if (ctx->name)
1010 return invalfc(fc, "name respecified");
1011 ctx->name = param->string;
1012 param->string = NULL;
1013 break;
1014 }
1015 return 0;
1016 }
1017
check_cgroupfs_options(struct fs_context * fc)1018 static int check_cgroupfs_options(struct fs_context *fc)
1019 {
1020 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1021 u16 mask = U16_MAX;
1022 u16 enabled = 0;
1023 struct cgroup_subsys *ss;
1024 int i;
1025
1026 #ifdef CONFIG_CPUSETS
1027 mask = ~((u16)1 << cpuset_cgrp_id);
1028 #endif
1029 for_each_subsys(ss, i)
1030 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1031 enabled |= 1 << i;
1032
1033 ctx->subsys_mask &= enabled;
1034
1035 /*
1036 * In absense of 'none', 'name=' or subsystem name options,
1037 * let's default to 'all'.
1038 */
1039 if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1040 ctx->all_ss = true;
1041
1042 if (ctx->all_ss) {
1043 /* Mutually exclusive option 'all' + subsystem name */
1044 if (ctx->subsys_mask)
1045 return invalfc(fc, "subsys name conflicts with all");
1046 /* 'all' => select all the subsystems */
1047 ctx->subsys_mask = enabled;
1048 }
1049
1050 /*
1051 * We either have to specify by name or by subsystems. (So all
1052 * empty hierarchies must have a name).
1053 */
1054 if (!ctx->subsys_mask && !ctx->name)
1055 return invalfc(fc, "Need name or subsystem set");
1056
1057 /*
1058 * Option noprefix was introduced just for backward compatibility
1059 * with the old cpuset, so we allow noprefix only if mounting just
1060 * the cpuset subsystem.
1061 */
1062 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1063 return invalfc(fc, "noprefix used incorrectly");
1064
1065 /* Can't specify "none" and some subsystems */
1066 if (ctx->subsys_mask && ctx->none)
1067 return invalfc(fc, "none used incorrectly");
1068
1069 return 0;
1070 }
1071
cgroup1_reconfigure(struct fs_context * fc)1072 int cgroup1_reconfigure(struct fs_context *fc)
1073 {
1074 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1075 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1076 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1077 int ret = 0;
1078 u16 added_mask, removed_mask;
1079
1080 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1081
1082 /* See what subsystems are wanted */
1083 ret = check_cgroupfs_options(fc);
1084 if (ret)
1085 goto out_unlock;
1086
1087 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1088 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1089 task_tgid_nr(current), current->comm);
1090
1091 added_mask = ctx->subsys_mask & ~root->subsys_mask;
1092 removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1093
1094 /* Don't allow flags or name to change at remount */
1095 if ((ctx->flags ^ root->flags) ||
1096 (ctx->name && strcmp(ctx->name, root->name))) {
1097 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1098 ctx->flags, ctx->name ?: "", root->flags, root->name);
1099 ret = -EINVAL;
1100 goto out_unlock;
1101 }
1102
1103 /* remounting is not allowed for populated hierarchies */
1104 if (!list_empty(&root->cgrp.self.children)) {
1105 ret = -EBUSY;
1106 goto out_unlock;
1107 }
1108
1109 ret = rebind_subsystems(root, added_mask);
1110 if (ret)
1111 goto out_unlock;
1112
1113 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1114
1115 if (ctx->release_agent) {
1116 spin_lock(&release_agent_path_lock);
1117 strcpy(root->release_agent_path, ctx->release_agent);
1118 spin_unlock(&release_agent_path_lock);
1119 }
1120
1121 trace_cgroup_remount(root);
1122
1123 out_unlock:
1124 mutex_unlock(&cgroup_mutex);
1125 return ret;
1126 }
1127
1128 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1129 .rename = cgroup1_rename,
1130 .show_options = cgroup1_show_options,
1131 .mkdir = cgroup_mkdir,
1132 .rmdir = cgroup_rmdir,
1133 .show_path = cgroup_show_path,
1134 };
1135
1136 /*
1137 * The guts of cgroup1 mount - find or create cgroup_root to use.
1138 * Called with cgroup_mutex held; returns 0 on success, -E... on
1139 * error and positive - in case when the candidate is busy dying.
1140 * On success it stashes a reference to cgroup_root into given
1141 * cgroup_fs_context; that reference is *NOT* counting towards the
1142 * cgroup_root refcount.
1143 */
cgroup1_root_to_use(struct fs_context * fc)1144 static int cgroup1_root_to_use(struct fs_context *fc)
1145 {
1146 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1147 struct cgroup_root *root;
1148 struct cgroup_subsys *ss;
1149 int i, ret;
1150
1151 /* First find the desired set of subsystems */
1152 ret = check_cgroupfs_options(fc);
1153 if (ret)
1154 return ret;
1155
1156 /*
1157 * Destruction of cgroup root is asynchronous, so subsystems may
1158 * still be dying after the previous unmount. Let's drain the
1159 * dying subsystems. We just need to ensure that the ones
1160 * unmounted previously finish dying and don't care about new ones
1161 * starting. Testing ref liveliness is good enough.
1162 */
1163 for_each_subsys(ss, i) {
1164 if (!(ctx->subsys_mask & (1 << i)) ||
1165 ss->root == &cgrp_dfl_root)
1166 continue;
1167
1168 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1169 return 1; /* restart */
1170 cgroup_put(&ss->root->cgrp);
1171 }
1172
1173 for_each_root(root) {
1174 bool name_match = false;
1175
1176 if (root == &cgrp_dfl_root)
1177 continue;
1178
1179 /*
1180 * If we asked for a name then it must match. Also, if
1181 * name matches but sybsys_mask doesn't, we should fail.
1182 * Remember whether name matched.
1183 */
1184 if (ctx->name) {
1185 if (strcmp(ctx->name, root->name))
1186 continue;
1187 name_match = true;
1188 }
1189
1190 /*
1191 * If we asked for subsystems (or explicitly for no
1192 * subsystems) then they must match.
1193 */
1194 if ((ctx->subsys_mask || ctx->none) &&
1195 (ctx->subsys_mask != root->subsys_mask)) {
1196 if (!name_match)
1197 continue;
1198 return -EBUSY;
1199 }
1200
1201 if (root->flags ^ ctx->flags)
1202 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1203
1204 ctx->root = root;
1205 return 0;
1206 }
1207
1208 /*
1209 * No such thing, create a new one. name= matching without subsys
1210 * specification is allowed for already existing hierarchies but we
1211 * can't create new one without subsys specification.
1212 */
1213 if (!ctx->subsys_mask && !ctx->none)
1214 return invalfc(fc, "No subsys list or none specified");
1215
1216 /* Hierarchies may only be created in the initial cgroup namespace. */
1217 if (ctx->ns != &init_cgroup_ns)
1218 return -EPERM;
1219
1220 root = kzalloc(sizeof(*root), GFP_KERNEL);
1221 if (!root)
1222 return -ENOMEM;
1223
1224 ctx->root = root;
1225 init_cgroup_root(ctx);
1226
1227 ret = cgroup_setup_root(root, ctx->subsys_mask);
1228 if (ret)
1229 cgroup_free_root(root);
1230 return ret;
1231 }
1232
cgroup1_get_tree(struct fs_context * fc)1233 int cgroup1_get_tree(struct fs_context *fc)
1234 {
1235 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1236 int ret;
1237
1238 /* Check if the caller has permission to mount. */
1239 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1240 return -EPERM;
1241
1242 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1243
1244 ret = cgroup1_root_to_use(fc);
1245 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1246 ret = 1; /* restart */
1247
1248 mutex_unlock(&cgroup_mutex);
1249
1250 if (!ret)
1251 ret = cgroup_do_get_tree(fc);
1252
1253 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1254 fc_drop_locked(fc);
1255 ret = 1;
1256 }
1257
1258 if (unlikely(ret > 0)) {
1259 msleep(10);
1260 return restart_syscall();
1261 }
1262 return ret;
1263 }
1264
cgroup1_wq_init(void)1265 static int __init cgroup1_wq_init(void)
1266 {
1267 /*
1268 * Used to destroy pidlists and separate to serve as flush domain.
1269 * Cap @max_active to 1 too.
1270 */
1271 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1272 0, 1);
1273 BUG_ON(!cgroup_pidlist_destroy_wq);
1274 return 0;
1275 }
1276 core_initcall(cgroup1_wq_init);
1277
cgroup_no_v1(char * str)1278 static int __init cgroup_no_v1(char *str)
1279 {
1280 struct cgroup_subsys *ss;
1281 char *token;
1282 int i;
1283
1284 while ((token = strsep(&str, ",")) != NULL) {
1285 if (!*token)
1286 continue;
1287
1288 if (!strcmp(token, "all")) {
1289 cgroup_no_v1_mask = U16_MAX;
1290 continue;
1291 }
1292
1293 if (!strcmp(token, "named")) {
1294 cgroup_no_v1_named = true;
1295 continue;
1296 }
1297
1298 for_each_subsys(ss, i) {
1299 if (strcmp(token, ss->name) &&
1300 strcmp(token, ss->legacy_name))
1301 continue;
1302
1303 cgroup_no_v1_mask |= 1 << i;
1304 }
1305 }
1306 return 1;
1307 }
1308 __setup("cgroup_no_v1=", cgroup_no_v1);
1309