1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Texas Instruments N-Port Ethernet Switch Address Lookup Engine
4 *
5 * Copyright (C) 2012 Texas Instruments
6 *
7 */
8 #include <linux/bitmap.h>
9 #include <linux/if_vlan.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/err.h>
16 #include <linux/io.h>
17 #include <linux/stat.h>
18 #include <linux/sysfs.h>
19 #include <linux/etherdevice.h>
20
21 #include "cpsw_ale.h"
22
23 #define BITMASK(bits) (BIT(bits) - 1)
24
25 #define ALE_VERSION_MAJOR(rev, mask) (((rev) >> 8) & (mask))
26 #define ALE_VERSION_MINOR(rev) (rev & 0xff)
27 #define ALE_VERSION_1R3 0x0103
28 #define ALE_VERSION_1R4 0x0104
29
30 /* ALE Registers */
31 #define ALE_IDVER 0x00
32 #define ALE_STATUS 0x04
33 #define ALE_CONTROL 0x08
34 #define ALE_PRESCALE 0x10
35 #define ALE_AGING_TIMER 0x14
36 #define ALE_UNKNOWNVLAN 0x18
37 #define ALE_TABLE_CONTROL 0x20
38 #define ALE_TABLE 0x34
39 #define ALE_PORTCTL 0x40
40
41 /* ALE NetCP NU switch specific Registers */
42 #define ALE_UNKNOWNVLAN_MEMBER 0x90
43 #define ALE_UNKNOWNVLAN_UNREG_MCAST_FLOOD 0x94
44 #define ALE_UNKNOWNVLAN_REG_MCAST_FLOOD 0x98
45 #define ALE_UNKNOWNVLAN_FORCE_UNTAG_EGRESS 0x9C
46 #define ALE_VLAN_MASK_MUX(reg) (0xc0 + (0x4 * (reg)))
47
48 #define AM65_CPSW_ALE_THREAD_DEF_REG 0x134
49
50 /* ALE_AGING_TIMER */
51 #define ALE_AGING_TIMER_MASK GENMASK(23, 0)
52
53 /**
54 * struct ale_entry_fld - The ALE tbl entry field description
55 * @start_bit: field start bit
56 * @num_bits: field bit length
57 * @flags: field flags
58 */
59 struct ale_entry_fld {
60 u8 start_bit;
61 u8 num_bits;
62 u8 flags;
63 };
64
65 enum {
66 CPSW_ALE_F_STATUS_REG = BIT(0), /* Status register present */
67 CPSW_ALE_F_HW_AUTOAGING = BIT(1), /* HW auto aging */
68
69 CPSW_ALE_F_COUNT
70 };
71
72 /**
73 * struct ale_dev_id - The ALE version/SoC specific configuration
74 * @dev_id: ALE version/SoC id
75 * @features: features supported by ALE
76 * @tbl_entries: number of ALE entries
77 * @major_ver_mask: mask of ALE Major Version Value in ALE_IDVER reg.
78 * @nu_switch_ale: NU Switch ALE
79 * @vlan_entry_tbl: ALE vlan entry fields description tbl
80 */
81 struct cpsw_ale_dev_id {
82 const char *dev_id;
83 u32 features;
84 u32 tbl_entries;
85 u32 major_ver_mask;
86 bool nu_switch_ale;
87 const struct ale_entry_fld *vlan_entry_tbl;
88 };
89
90 #define ALE_TABLE_WRITE BIT(31)
91
92 #define ALE_TYPE_FREE 0
93 #define ALE_TYPE_ADDR 1
94 #define ALE_TYPE_VLAN 2
95 #define ALE_TYPE_VLAN_ADDR 3
96
97 #define ALE_UCAST_PERSISTANT 0
98 #define ALE_UCAST_UNTOUCHED 1
99 #define ALE_UCAST_OUI 2
100 #define ALE_UCAST_TOUCHED 3
101
102 #define ALE_TABLE_SIZE_MULTIPLIER 1024
103 #define ALE_STATUS_SIZE_MASK 0x1f
104
cpsw_ale_get_field(u32 * ale_entry,u32 start,u32 bits)105 static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
106 {
107 int idx;
108
109 idx = start / 32;
110 start -= idx * 32;
111 idx = 2 - idx; /* flip */
112 return (ale_entry[idx] >> start) & BITMASK(bits);
113 }
114
cpsw_ale_set_field(u32 * ale_entry,u32 start,u32 bits,u32 value)115 static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
116 u32 value)
117 {
118 int idx;
119
120 value &= BITMASK(bits);
121 idx = start / 32;
122 start -= idx * 32;
123 idx = 2 - idx; /* flip */
124 ale_entry[idx] &= ~(BITMASK(bits) << start);
125 ale_entry[idx] |= (value << start);
126 }
127
128 #define DEFINE_ALE_FIELD(name, start, bits) \
129 static inline int cpsw_ale_get_##name(u32 *ale_entry) \
130 { \
131 return cpsw_ale_get_field(ale_entry, start, bits); \
132 } \
133 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value) \
134 { \
135 cpsw_ale_set_field(ale_entry, start, bits, value); \
136 }
137
138 #define DEFINE_ALE_FIELD1(name, start) \
139 static inline int cpsw_ale_get_##name(u32 *ale_entry, u32 bits) \
140 { \
141 return cpsw_ale_get_field(ale_entry, start, bits); \
142 } \
143 static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value, \
144 u32 bits) \
145 { \
146 cpsw_ale_set_field(ale_entry, start, bits, value); \
147 }
148
149 enum {
150 ALE_ENT_VID_MEMBER_LIST = 0,
151 ALE_ENT_VID_UNREG_MCAST_MSK,
152 ALE_ENT_VID_REG_MCAST_MSK,
153 ALE_ENT_VID_FORCE_UNTAGGED_MSK,
154 ALE_ENT_VID_UNREG_MCAST_IDX,
155 ALE_ENT_VID_REG_MCAST_IDX,
156 ALE_ENT_VID_LAST,
157 };
158
159 #define ALE_FLD_ALLOWED BIT(0)
160 #define ALE_FLD_SIZE_PORT_MASK_BITS BIT(1)
161 #define ALE_FLD_SIZE_PORT_NUM_BITS BIT(2)
162
163 #define ALE_ENTRY_FLD(id, start, bits) \
164 [id] = { \
165 .start_bit = start, \
166 .num_bits = bits, \
167 .flags = ALE_FLD_ALLOWED, \
168 }
169
170 #define ALE_ENTRY_FLD_DYN_MSK_SIZE(id, start) \
171 [id] = { \
172 .start_bit = start, \
173 .num_bits = 0, \
174 .flags = ALE_FLD_ALLOWED | \
175 ALE_FLD_SIZE_PORT_MASK_BITS, \
176 }
177
178 /* dm814x, am3/am4/am5, k2hk */
179 static const struct ale_entry_fld vlan_entry_cpsw[ALE_ENT_VID_LAST] = {
180 ALE_ENTRY_FLD(ALE_ENT_VID_MEMBER_LIST, 0, 3),
181 ALE_ENTRY_FLD(ALE_ENT_VID_UNREG_MCAST_MSK, 8, 3),
182 ALE_ENTRY_FLD(ALE_ENT_VID_REG_MCAST_MSK, 16, 3),
183 ALE_ENTRY_FLD(ALE_ENT_VID_FORCE_UNTAGGED_MSK, 24, 3),
184 };
185
186 /* k2e/k2l, k3 am65/j721e cpsw2g */
187 static const struct ale_entry_fld vlan_entry_nu[ALE_ENT_VID_LAST] = {
188 ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_MEMBER_LIST, 0),
189 ALE_ENTRY_FLD(ALE_ENT_VID_UNREG_MCAST_IDX, 20, 3),
190 ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_FORCE_UNTAGGED_MSK, 24),
191 ALE_ENTRY_FLD(ALE_ENT_VID_REG_MCAST_IDX, 44, 3),
192 };
193
194 /* K3 j721e/j7200 cpsw9g/5g, am64x cpsw3g */
195 static const struct ale_entry_fld vlan_entry_k3_cpswxg[] = {
196 ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_MEMBER_LIST, 0),
197 ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_UNREG_MCAST_MSK, 12),
198 ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_FORCE_UNTAGGED_MSK, 24),
199 ALE_ENTRY_FLD_DYN_MSK_SIZE(ALE_ENT_VID_REG_MCAST_MSK, 36),
200 };
201
202 DEFINE_ALE_FIELD(entry_type, 60, 2)
203 DEFINE_ALE_FIELD(vlan_id, 48, 12)
204 DEFINE_ALE_FIELD(mcast_state, 62, 2)
205 DEFINE_ALE_FIELD1(port_mask, 66)
206 DEFINE_ALE_FIELD(super, 65, 1)
207 DEFINE_ALE_FIELD(ucast_type, 62, 2)
208 DEFINE_ALE_FIELD1(port_num, 66)
209 DEFINE_ALE_FIELD(blocked, 65, 1)
210 DEFINE_ALE_FIELD(secure, 64, 1)
211 DEFINE_ALE_FIELD(mcast, 40, 1)
212
213 #define NU_VLAN_UNREG_MCAST_IDX 1
214
cpsw_ale_entry_get_fld(struct cpsw_ale * ale,u32 * ale_entry,const struct ale_entry_fld * entry_tbl,int fld_id)215 static int cpsw_ale_entry_get_fld(struct cpsw_ale *ale,
216 u32 *ale_entry,
217 const struct ale_entry_fld *entry_tbl,
218 int fld_id)
219 {
220 const struct ale_entry_fld *entry_fld;
221 u32 bits;
222
223 if (!ale || !ale_entry)
224 return -EINVAL;
225
226 entry_fld = &entry_tbl[fld_id];
227 if (!(entry_fld->flags & ALE_FLD_ALLOWED)) {
228 dev_err(ale->params.dev, "get: wrong ale fld id %d\n", fld_id);
229 return -ENOENT;
230 }
231
232 bits = entry_fld->num_bits;
233 if (entry_fld->flags & ALE_FLD_SIZE_PORT_MASK_BITS)
234 bits = ale->port_mask_bits;
235
236 return cpsw_ale_get_field(ale_entry, entry_fld->start_bit, bits);
237 }
238
cpsw_ale_entry_set_fld(struct cpsw_ale * ale,u32 * ale_entry,const struct ale_entry_fld * entry_tbl,int fld_id,u32 value)239 static void cpsw_ale_entry_set_fld(struct cpsw_ale *ale,
240 u32 *ale_entry,
241 const struct ale_entry_fld *entry_tbl,
242 int fld_id,
243 u32 value)
244 {
245 const struct ale_entry_fld *entry_fld;
246 u32 bits;
247
248 if (!ale || !ale_entry)
249 return;
250
251 entry_fld = &entry_tbl[fld_id];
252 if (!(entry_fld->flags & ALE_FLD_ALLOWED)) {
253 dev_err(ale->params.dev, "set: wrong ale fld id %d\n", fld_id);
254 return;
255 }
256
257 bits = entry_fld->num_bits;
258 if (entry_fld->flags & ALE_FLD_SIZE_PORT_MASK_BITS)
259 bits = ale->port_mask_bits;
260
261 cpsw_ale_set_field(ale_entry, entry_fld->start_bit, bits, value);
262 }
263
cpsw_ale_vlan_get_fld(struct cpsw_ale * ale,u32 * ale_entry,int fld_id)264 static int cpsw_ale_vlan_get_fld(struct cpsw_ale *ale,
265 u32 *ale_entry,
266 int fld_id)
267 {
268 return cpsw_ale_entry_get_fld(ale, ale_entry,
269 ale->vlan_entry_tbl, fld_id);
270 }
271
cpsw_ale_vlan_set_fld(struct cpsw_ale * ale,u32 * ale_entry,int fld_id,u32 value)272 static void cpsw_ale_vlan_set_fld(struct cpsw_ale *ale,
273 u32 *ale_entry,
274 int fld_id,
275 u32 value)
276 {
277 cpsw_ale_entry_set_fld(ale, ale_entry,
278 ale->vlan_entry_tbl, fld_id, value);
279 }
280
281 /* The MAC address field in the ALE entry cannot be macroized as above */
cpsw_ale_get_addr(u32 * ale_entry,u8 * addr)282 static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
283 {
284 int i;
285
286 for (i = 0; i < 6; i++)
287 addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
288 }
289
cpsw_ale_set_addr(u32 * ale_entry,const u8 * addr)290 static inline void cpsw_ale_set_addr(u32 *ale_entry, const u8 *addr)
291 {
292 int i;
293
294 for (i = 0; i < 6; i++)
295 cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
296 }
297
cpsw_ale_read(struct cpsw_ale * ale,int idx,u32 * ale_entry)298 static int cpsw_ale_read(struct cpsw_ale *ale, int idx, u32 *ale_entry)
299 {
300 int i;
301
302 WARN_ON(idx > ale->params.ale_entries);
303
304 writel_relaxed(idx, ale->params.ale_regs + ALE_TABLE_CONTROL);
305
306 for (i = 0; i < ALE_ENTRY_WORDS; i++)
307 ale_entry[i] = readl_relaxed(ale->params.ale_regs +
308 ALE_TABLE + 4 * i);
309
310 return idx;
311 }
312
cpsw_ale_write(struct cpsw_ale * ale,int idx,u32 * ale_entry)313 static int cpsw_ale_write(struct cpsw_ale *ale, int idx, u32 *ale_entry)
314 {
315 int i;
316
317 WARN_ON(idx > ale->params.ale_entries);
318
319 for (i = 0; i < ALE_ENTRY_WORDS; i++)
320 writel_relaxed(ale_entry[i], ale->params.ale_regs +
321 ALE_TABLE + 4 * i);
322
323 writel_relaxed(idx | ALE_TABLE_WRITE, ale->params.ale_regs +
324 ALE_TABLE_CONTROL);
325
326 return idx;
327 }
328
cpsw_ale_match_addr(struct cpsw_ale * ale,const u8 * addr,u16 vid)329 static int cpsw_ale_match_addr(struct cpsw_ale *ale, const u8 *addr, u16 vid)
330 {
331 u32 ale_entry[ALE_ENTRY_WORDS];
332 int type, idx;
333
334 for (idx = 0; idx < ale->params.ale_entries; idx++) {
335 u8 entry_addr[6];
336
337 cpsw_ale_read(ale, idx, ale_entry);
338 type = cpsw_ale_get_entry_type(ale_entry);
339 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
340 continue;
341 if (cpsw_ale_get_vlan_id(ale_entry) != vid)
342 continue;
343 cpsw_ale_get_addr(ale_entry, entry_addr);
344 if (ether_addr_equal(entry_addr, addr))
345 return idx;
346 }
347 return -ENOENT;
348 }
349
cpsw_ale_match_vlan(struct cpsw_ale * ale,u16 vid)350 static int cpsw_ale_match_vlan(struct cpsw_ale *ale, u16 vid)
351 {
352 u32 ale_entry[ALE_ENTRY_WORDS];
353 int type, idx;
354
355 for (idx = 0; idx < ale->params.ale_entries; idx++) {
356 cpsw_ale_read(ale, idx, ale_entry);
357 type = cpsw_ale_get_entry_type(ale_entry);
358 if (type != ALE_TYPE_VLAN)
359 continue;
360 if (cpsw_ale_get_vlan_id(ale_entry) == vid)
361 return idx;
362 }
363 return -ENOENT;
364 }
365
cpsw_ale_match_free(struct cpsw_ale * ale)366 static int cpsw_ale_match_free(struct cpsw_ale *ale)
367 {
368 u32 ale_entry[ALE_ENTRY_WORDS];
369 int type, idx;
370
371 for (idx = 0; idx < ale->params.ale_entries; idx++) {
372 cpsw_ale_read(ale, idx, ale_entry);
373 type = cpsw_ale_get_entry_type(ale_entry);
374 if (type == ALE_TYPE_FREE)
375 return idx;
376 }
377 return -ENOENT;
378 }
379
cpsw_ale_find_ageable(struct cpsw_ale * ale)380 static int cpsw_ale_find_ageable(struct cpsw_ale *ale)
381 {
382 u32 ale_entry[ALE_ENTRY_WORDS];
383 int type, idx;
384
385 for (idx = 0; idx < ale->params.ale_entries; idx++) {
386 cpsw_ale_read(ale, idx, ale_entry);
387 type = cpsw_ale_get_entry_type(ale_entry);
388 if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
389 continue;
390 if (cpsw_ale_get_mcast(ale_entry))
391 continue;
392 type = cpsw_ale_get_ucast_type(ale_entry);
393 if (type != ALE_UCAST_PERSISTANT &&
394 type != ALE_UCAST_OUI)
395 return idx;
396 }
397 return -ENOENT;
398 }
399
cpsw_ale_flush_mcast(struct cpsw_ale * ale,u32 * ale_entry,int port_mask)400 static void cpsw_ale_flush_mcast(struct cpsw_ale *ale, u32 *ale_entry,
401 int port_mask)
402 {
403 int mask;
404
405 mask = cpsw_ale_get_port_mask(ale_entry,
406 ale->port_mask_bits);
407 if ((mask & port_mask) == 0)
408 return; /* ports dont intersect, not interested */
409 mask &= ~port_mask;
410
411 /* free if only remaining port is host port */
412 if (mask)
413 cpsw_ale_set_port_mask(ale_entry, mask,
414 ale->port_mask_bits);
415 else
416 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
417 }
418
cpsw_ale_flush_multicast(struct cpsw_ale * ale,int port_mask,int vid)419 int cpsw_ale_flush_multicast(struct cpsw_ale *ale, int port_mask, int vid)
420 {
421 u32 ale_entry[ALE_ENTRY_WORDS];
422 int ret, idx;
423
424 for (idx = 0; idx < ale->params.ale_entries; idx++) {
425 cpsw_ale_read(ale, idx, ale_entry);
426 ret = cpsw_ale_get_entry_type(ale_entry);
427 if (ret != ALE_TYPE_ADDR && ret != ALE_TYPE_VLAN_ADDR)
428 continue;
429
430 /* if vid passed is -1 then remove all multicast entry from
431 * the table irrespective of vlan id, if a valid vlan id is
432 * passed then remove only multicast added to that vlan id.
433 * if vlan id doesn't match then move on to next entry.
434 */
435 if (vid != -1 && cpsw_ale_get_vlan_id(ale_entry) != vid)
436 continue;
437
438 if (cpsw_ale_get_mcast(ale_entry)) {
439 u8 addr[6];
440
441 if (cpsw_ale_get_super(ale_entry))
442 continue;
443
444 cpsw_ale_get_addr(ale_entry, addr);
445 if (!is_broadcast_ether_addr(addr))
446 cpsw_ale_flush_mcast(ale, ale_entry, port_mask);
447 }
448
449 cpsw_ale_write(ale, idx, ale_entry);
450 }
451 return 0;
452 }
453
cpsw_ale_set_vlan_entry_type(u32 * ale_entry,int flags,u16 vid)454 static inline void cpsw_ale_set_vlan_entry_type(u32 *ale_entry,
455 int flags, u16 vid)
456 {
457 if (flags & ALE_VLAN) {
458 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_VLAN_ADDR);
459 cpsw_ale_set_vlan_id(ale_entry, vid);
460 } else {
461 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
462 }
463 }
464
cpsw_ale_add_ucast(struct cpsw_ale * ale,const u8 * addr,int port,int flags,u16 vid)465 int cpsw_ale_add_ucast(struct cpsw_ale *ale, const u8 *addr, int port,
466 int flags, u16 vid)
467 {
468 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
469 int idx;
470
471 cpsw_ale_set_vlan_entry_type(ale_entry, flags, vid);
472
473 cpsw_ale_set_addr(ale_entry, addr);
474 cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
475 cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
476 cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
477 cpsw_ale_set_port_num(ale_entry, port, ale->port_num_bits);
478
479 idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
480 if (idx < 0)
481 idx = cpsw_ale_match_free(ale);
482 if (idx < 0)
483 idx = cpsw_ale_find_ageable(ale);
484 if (idx < 0)
485 return -ENOMEM;
486
487 cpsw_ale_write(ale, idx, ale_entry);
488 return 0;
489 }
490
cpsw_ale_del_ucast(struct cpsw_ale * ale,const u8 * addr,int port,int flags,u16 vid)491 int cpsw_ale_del_ucast(struct cpsw_ale *ale, const u8 *addr, int port,
492 int flags, u16 vid)
493 {
494 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
495 int idx;
496
497 idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
498 if (idx < 0)
499 return -ENOENT;
500
501 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
502 cpsw_ale_write(ale, idx, ale_entry);
503 return 0;
504 }
505
cpsw_ale_add_mcast(struct cpsw_ale * ale,const u8 * addr,int port_mask,int flags,u16 vid,int mcast_state)506 int cpsw_ale_add_mcast(struct cpsw_ale *ale, const u8 *addr, int port_mask,
507 int flags, u16 vid, int mcast_state)
508 {
509 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
510 int idx, mask;
511
512 idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
513 if (idx >= 0)
514 cpsw_ale_read(ale, idx, ale_entry);
515
516 cpsw_ale_set_vlan_entry_type(ale_entry, flags, vid);
517
518 cpsw_ale_set_addr(ale_entry, addr);
519 cpsw_ale_set_super(ale_entry, (flags & ALE_SUPER) ? 1 : 0);
520 cpsw_ale_set_mcast_state(ale_entry, mcast_state);
521
522 mask = cpsw_ale_get_port_mask(ale_entry,
523 ale->port_mask_bits);
524 port_mask |= mask;
525 cpsw_ale_set_port_mask(ale_entry, port_mask,
526 ale->port_mask_bits);
527
528 if (idx < 0)
529 idx = cpsw_ale_match_free(ale);
530 if (idx < 0)
531 idx = cpsw_ale_find_ageable(ale);
532 if (idx < 0)
533 return -ENOMEM;
534
535 cpsw_ale_write(ale, idx, ale_entry);
536 return 0;
537 }
538
cpsw_ale_del_mcast(struct cpsw_ale * ale,const u8 * addr,int port_mask,int flags,u16 vid)539 int cpsw_ale_del_mcast(struct cpsw_ale *ale, const u8 *addr, int port_mask,
540 int flags, u16 vid)
541 {
542 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
543 int mcast_members = 0;
544 int idx;
545
546 idx = cpsw_ale_match_addr(ale, addr, (flags & ALE_VLAN) ? vid : 0);
547 if (idx < 0)
548 return -ENOENT;
549
550 cpsw_ale_read(ale, idx, ale_entry);
551
552 if (port_mask) {
553 mcast_members = cpsw_ale_get_port_mask(ale_entry,
554 ale->port_mask_bits);
555 mcast_members &= ~port_mask;
556 }
557
558 if (mcast_members)
559 cpsw_ale_set_port_mask(ale_entry, mcast_members,
560 ale->port_mask_bits);
561 else
562 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
563
564 cpsw_ale_write(ale, idx, ale_entry);
565 return 0;
566 }
567
568 /* ALE NetCP NU switch specific vlan functions */
cpsw_ale_set_vlan_mcast(struct cpsw_ale * ale,u32 * ale_entry,int reg_mcast,int unreg_mcast)569 static void cpsw_ale_set_vlan_mcast(struct cpsw_ale *ale, u32 *ale_entry,
570 int reg_mcast, int unreg_mcast)
571 {
572 int idx;
573
574 /* Set VLAN registered multicast flood mask */
575 idx = cpsw_ale_vlan_get_fld(ale, ale_entry,
576 ALE_ENT_VID_REG_MCAST_IDX);
577 writel(reg_mcast, ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
578
579 /* Set VLAN unregistered multicast flood mask */
580 idx = cpsw_ale_vlan_get_fld(ale, ale_entry,
581 ALE_ENT_VID_UNREG_MCAST_IDX);
582 writel(unreg_mcast, ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
583 }
584
cpsw_ale_set_vlan_untag(struct cpsw_ale * ale,u32 * ale_entry,u16 vid,int untag_mask)585 static void cpsw_ale_set_vlan_untag(struct cpsw_ale *ale, u32 *ale_entry,
586 u16 vid, int untag_mask)
587 {
588 cpsw_ale_vlan_set_fld(ale, ale_entry,
589 ALE_ENT_VID_FORCE_UNTAGGED_MSK,
590 untag_mask);
591 if (untag_mask & ALE_PORT_HOST)
592 bitmap_set(ale->p0_untag_vid_mask, vid, 1);
593 else
594 bitmap_clear(ale->p0_untag_vid_mask, vid, 1);
595 }
596
cpsw_ale_add_vlan(struct cpsw_ale * ale,u16 vid,int port_mask,int untag,int reg_mcast,int unreg_mcast)597 int cpsw_ale_add_vlan(struct cpsw_ale *ale, u16 vid, int port_mask, int untag,
598 int reg_mcast, int unreg_mcast)
599 {
600 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
601 int idx;
602
603 idx = cpsw_ale_match_vlan(ale, vid);
604 if (idx >= 0)
605 cpsw_ale_read(ale, idx, ale_entry);
606
607 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_VLAN);
608 cpsw_ale_set_vlan_id(ale_entry, vid);
609 cpsw_ale_set_vlan_untag(ale, ale_entry, vid, untag);
610
611 if (!ale->params.nu_switch_ale) {
612 cpsw_ale_vlan_set_fld(ale, ale_entry,
613 ALE_ENT_VID_REG_MCAST_MSK, reg_mcast);
614 cpsw_ale_vlan_set_fld(ale, ale_entry,
615 ALE_ENT_VID_UNREG_MCAST_MSK, unreg_mcast);
616 } else {
617 cpsw_ale_vlan_set_fld(ale, ale_entry,
618 ALE_ENT_VID_UNREG_MCAST_IDX,
619 NU_VLAN_UNREG_MCAST_IDX);
620 cpsw_ale_set_vlan_mcast(ale, ale_entry, reg_mcast, unreg_mcast);
621 }
622
623 cpsw_ale_vlan_set_fld(ale, ale_entry,
624 ALE_ENT_VID_MEMBER_LIST, port_mask);
625
626 if (idx < 0)
627 idx = cpsw_ale_match_free(ale);
628 if (idx < 0)
629 idx = cpsw_ale_find_ageable(ale);
630 if (idx < 0)
631 return -ENOMEM;
632
633 cpsw_ale_write(ale, idx, ale_entry);
634 return 0;
635 }
636
cpsw_ale_del_vlan_modify(struct cpsw_ale * ale,u32 * ale_entry,u16 vid,int port_mask)637 static void cpsw_ale_del_vlan_modify(struct cpsw_ale *ale, u32 *ale_entry,
638 u16 vid, int port_mask)
639 {
640 int reg_mcast, unreg_mcast;
641 int members, untag;
642
643 members = cpsw_ale_vlan_get_fld(ale, ale_entry,
644 ALE_ENT_VID_MEMBER_LIST);
645 members &= ~port_mask;
646 if (!members) {
647 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
648 return;
649 }
650
651 untag = cpsw_ale_vlan_get_fld(ale, ale_entry,
652 ALE_ENT_VID_FORCE_UNTAGGED_MSK);
653 reg_mcast = cpsw_ale_vlan_get_fld(ale, ale_entry,
654 ALE_ENT_VID_REG_MCAST_MSK);
655 unreg_mcast = cpsw_ale_vlan_get_fld(ale, ale_entry,
656 ALE_ENT_VID_UNREG_MCAST_MSK);
657 untag &= members;
658 reg_mcast &= members;
659 unreg_mcast &= members;
660
661 cpsw_ale_set_vlan_untag(ale, ale_entry, vid, untag);
662
663 if (!ale->params.nu_switch_ale) {
664 cpsw_ale_vlan_set_fld(ale, ale_entry,
665 ALE_ENT_VID_REG_MCAST_MSK, reg_mcast);
666 cpsw_ale_vlan_set_fld(ale, ale_entry,
667 ALE_ENT_VID_UNREG_MCAST_MSK, unreg_mcast);
668 } else {
669 cpsw_ale_set_vlan_mcast(ale, ale_entry, reg_mcast,
670 unreg_mcast);
671 }
672 cpsw_ale_vlan_set_fld(ale, ale_entry,
673 ALE_ENT_VID_MEMBER_LIST, members);
674 }
675
cpsw_ale_del_vlan(struct cpsw_ale * ale,u16 vid,int port_mask)676 int cpsw_ale_del_vlan(struct cpsw_ale *ale, u16 vid, int port_mask)
677 {
678 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
679 int idx;
680
681 idx = cpsw_ale_match_vlan(ale, vid);
682 if (idx < 0)
683 return -ENOENT;
684
685 cpsw_ale_read(ale, idx, ale_entry);
686
687 if (port_mask) {
688 cpsw_ale_del_vlan_modify(ale, ale_entry, vid, port_mask);
689 } else {
690 cpsw_ale_set_vlan_untag(ale, ale_entry, vid, 0);
691 cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_FREE);
692 }
693
694 cpsw_ale_write(ale, idx, ale_entry);
695
696 return 0;
697 }
698
cpsw_ale_vlan_add_modify(struct cpsw_ale * ale,u16 vid,int port_mask,int untag_mask,int reg_mask,int unreg_mask)699 int cpsw_ale_vlan_add_modify(struct cpsw_ale *ale, u16 vid, int port_mask,
700 int untag_mask, int reg_mask, int unreg_mask)
701 {
702 u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
703 int reg_mcast_members, unreg_mcast_members;
704 int vlan_members, untag_members;
705 int idx, ret = 0;
706
707 idx = cpsw_ale_match_vlan(ale, vid);
708 if (idx >= 0)
709 cpsw_ale_read(ale, idx, ale_entry);
710
711 vlan_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
712 ALE_ENT_VID_MEMBER_LIST);
713 reg_mcast_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
714 ALE_ENT_VID_REG_MCAST_MSK);
715 unreg_mcast_members =
716 cpsw_ale_vlan_get_fld(ale, ale_entry,
717 ALE_ENT_VID_UNREG_MCAST_MSK);
718 untag_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
719 ALE_ENT_VID_FORCE_UNTAGGED_MSK);
720
721 vlan_members |= port_mask;
722 untag_members = (untag_members & ~port_mask) | untag_mask;
723 reg_mcast_members = (reg_mcast_members & ~port_mask) | reg_mask;
724 unreg_mcast_members = (unreg_mcast_members & ~port_mask) | unreg_mask;
725
726 ret = cpsw_ale_add_vlan(ale, vid, vlan_members, untag_members,
727 reg_mcast_members, unreg_mcast_members);
728 if (ret) {
729 dev_err(ale->params.dev, "Unable to add vlan\n");
730 return ret;
731 }
732 dev_dbg(ale->params.dev, "port mask 0x%x untag 0x%x\n", vlan_members,
733 untag_mask);
734
735 return ret;
736 }
737
cpsw_ale_set_unreg_mcast(struct cpsw_ale * ale,int unreg_mcast_mask,bool add)738 void cpsw_ale_set_unreg_mcast(struct cpsw_ale *ale, int unreg_mcast_mask,
739 bool add)
740 {
741 u32 ale_entry[ALE_ENTRY_WORDS];
742 int unreg_members = 0;
743 int type, idx;
744
745 for (idx = 0; idx < ale->params.ale_entries; idx++) {
746 cpsw_ale_read(ale, idx, ale_entry);
747 type = cpsw_ale_get_entry_type(ale_entry);
748 if (type != ALE_TYPE_VLAN)
749 continue;
750
751 unreg_members =
752 cpsw_ale_vlan_get_fld(ale, ale_entry,
753 ALE_ENT_VID_UNREG_MCAST_MSK);
754 if (add)
755 unreg_members |= unreg_mcast_mask;
756 else
757 unreg_members &= ~unreg_mcast_mask;
758 cpsw_ale_vlan_set_fld(ale, ale_entry,
759 ALE_ENT_VID_UNREG_MCAST_MSK,
760 unreg_members);
761 cpsw_ale_write(ale, idx, ale_entry);
762 }
763 }
764
cpsw_ale_vlan_set_unreg_mcast(struct cpsw_ale * ale,u32 * ale_entry,int allmulti)765 static void cpsw_ale_vlan_set_unreg_mcast(struct cpsw_ale *ale, u32 *ale_entry,
766 int allmulti)
767 {
768 int unreg_mcast;
769
770 unreg_mcast = cpsw_ale_vlan_get_fld(ale, ale_entry,
771 ALE_ENT_VID_UNREG_MCAST_MSK);
772 if (allmulti)
773 unreg_mcast |= ALE_PORT_HOST;
774 else
775 unreg_mcast &= ~ALE_PORT_HOST;
776
777 cpsw_ale_vlan_set_fld(ale, ale_entry,
778 ALE_ENT_VID_UNREG_MCAST_MSK, unreg_mcast);
779 }
780
781 static void
cpsw_ale_vlan_set_unreg_mcast_idx(struct cpsw_ale * ale,u32 * ale_entry,int allmulti)782 cpsw_ale_vlan_set_unreg_mcast_idx(struct cpsw_ale *ale, u32 *ale_entry,
783 int allmulti)
784 {
785 int unreg_mcast;
786 int idx;
787
788 idx = cpsw_ale_vlan_get_fld(ale, ale_entry,
789 ALE_ENT_VID_UNREG_MCAST_IDX);
790
791 unreg_mcast = readl(ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
792
793 if (allmulti)
794 unreg_mcast |= ALE_PORT_HOST;
795 else
796 unreg_mcast &= ~ALE_PORT_HOST;
797
798 writel(unreg_mcast, ale->params.ale_regs + ALE_VLAN_MASK_MUX(idx));
799 }
800
cpsw_ale_set_allmulti(struct cpsw_ale * ale,int allmulti,int port)801 void cpsw_ale_set_allmulti(struct cpsw_ale *ale, int allmulti, int port)
802 {
803 u32 ale_entry[ALE_ENTRY_WORDS];
804 int type, idx;
805
806 for (idx = 0; idx < ale->params.ale_entries; idx++) {
807 int vlan_members;
808
809 cpsw_ale_read(ale, idx, ale_entry);
810 type = cpsw_ale_get_entry_type(ale_entry);
811 if (type != ALE_TYPE_VLAN)
812 continue;
813
814 vlan_members = cpsw_ale_vlan_get_fld(ale, ale_entry,
815 ALE_ENT_VID_MEMBER_LIST);
816
817 if (port != -1 && !(vlan_members & BIT(port)))
818 continue;
819
820 if (!ale->params.nu_switch_ale)
821 cpsw_ale_vlan_set_unreg_mcast(ale, ale_entry, allmulti);
822 else
823 cpsw_ale_vlan_set_unreg_mcast_idx(ale, ale_entry,
824 allmulti);
825
826 cpsw_ale_write(ale, idx, ale_entry);
827 }
828 }
829
830 struct ale_control_info {
831 const char *name;
832 int offset, port_offset;
833 int shift, port_shift;
834 int bits;
835 };
836
837 static struct ale_control_info ale_controls[ALE_NUM_CONTROLS] = {
838 [ALE_ENABLE] = {
839 .name = "enable",
840 .offset = ALE_CONTROL,
841 .port_offset = 0,
842 .shift = 31,
843 .port_shift = 0,
844 .bits = 1,
845 },
846 [ALE_CLEAR] = {
847 .name = "clear",
848 .offset = ALE_CONTROL,
849 .port_offset = 0,
850 .shift = 30,
851 .port_shift = 0,
852 .bits = 1,
853 },
854 [ALE_AGEOUT] = {
855 .name = "ageout",
856 .offset = ALE_CONTROL,
857 .port_offset = 0,
858 .shift = 29,
859 .port_shift = 0,
860 .bits = 1,
861 },
862 [ALE_P0_UNI_FLOOD] = {
863 .name = "port0_unicast_flood",
864 .offset = ALE_CONTROL,
865 .port_offset = 0,
866 .shift = 8,
867 .port_shift = 0,
868 .bits = 1,
869 },
870 [ALE_VLAN_NOLEARN] = {
871 .name = "vlan_nolearn",
872 .offset = ALE_CONTROL,
873 .port_offset = 0,
874 .shift = 7,
875 .port_shift = 0,
876 .bits = 1,
877 },
878 [ALE_NO_PORT_VLAN] = {
879 .name = "no_port_vlan",
880 .offset = ALE_CONTROL,
881 .port_offset = 0,
882 .shift = 6,
883 .port_shift = 0,
884 .bits = 1,
885 },
886 [ALE_OUI_DENY] = {
887 .name = "oui_deny",
888 .offset = ALE_CONTROL,
889 .port_offset = 0,
890 .shift = 5,
891 .port_shift = 0,
892 .bits = 1,
893 },
894 [ALE_BYPASS] = {
895 .name = "bypass",
896 .offset = ALE_CONTROL,
897 .port_offset = 0,
898 .shift = 4,
899 .port_shift = 0,
900 .bits = 1,
901 },
902 [ALE_RATE_LIMIT_TX] = {
903 .name = "rate_limit_tx",
904 .offset = ALE_CONTROL,
905 .port_offset = 0,
906 .shift = 3,
907 .port_shift = 0,
908 .bits = 1,
909 },
910 [ALE_VLAN_AWARE] = {
911 .name = "vlan_aware",
912 .offset = ALE_CONTROL,
913 .port_offset = 0,
914 .shift = 2,
915 .port_shift = 0,
916 .bits = 1,
917 },
918 [ALE_AUTH_ENABLE] = {
919 .name = "auth_enable",
920 .offset = ALE_CONTROL,
921 .port_offset = 0,
922 .shift = 1,
923 .port_shift = 0,
924 .bits = 1,
925 },
926 [ALE_RATE_LIMIT] = {
927 .name = "rate_limit",
928 .offset = ALE_CONTROL,
929 .port_offset = 0,
930 .shift = 0,
931 .port_shift = 0,
932 .bits = 1,
933 },
934 [ALE_PORT_STATE] = {
935 .name = "port_state",
936 .offset = ALE_PORTCTL,
937 .port_offset = 4,
938 .shift = 0,
939 .port_shift = 0,
940 .bits = 2,
941 },
942 [ALE_PORT_DROP_UNTAGGED] = {
943 .name = "drop_untagged",
944 .offset = ALE_PORTCTL,
945 .port_offset = 4,
946 .shift = 2,
947 .port_shift = 0,
948 .bits = 1,
949 },
950 [ALE_PORT_DROP_UNKNOWN_VLAN] = {
951 .name = "drop_unknown",
952 .offset = ALE_PORTCTL,
953 .port_offset = 4,
954 .shift = 3,
955 .port_shift = 0,
956 .bits = 1,
957 },
958 [ALE_PORT_NOLEARN] = {
959 .name = "nolearn",
960 .offset = ALE_PORTCTL,
961 .port_offset = 4,
962 .shift = 4,
963 .port_shift = 0,
964 .bits = 1,
965 },
966 [ALE_PORT_NO_SA_UPDATE] = {
967 .name = "no_source_update",
968 .offset = ALE_PORTCTL,
969 .port_offset = 4,
970 .shift = 5,
971 .port_shift = 0,
972 .bits = 1,
973 },
974 [ALE_PORT_MACONLY] = {
975 .name = "mac_only_port_mode",
976 .offset = ALE_PORTCTL,
977 .port_offset = 4,
978 .shift = 11,
979 .port_shift = 0,
980 .bits = 1,
981 },
982 [ALE_PORT_MACONLY_CAF] = {
983 .name = "mac_only_port_caf",
984 .offset = ALE_PORTCTL,
985 .port_offset = 4,
986 .shift = 13,
987 .port_shift = 0,
988 .bits = 1,
989 },
990 [ALE_PORT_MCAST_LIMIT] = {
991 .name = "mcast_limit",
992 .offset = ALE_PORTCTL,
993 .port_offset = 4,
994 .shift = 16,
995 .port_shift = 0,
996 .bits = 8,
997 },
998 [ALE_PORT_BCAST_LIMIT] = {
999 .name = "bcast_limit",
1000 .offset = ALE_PORTCTL,
1001 .port_offset = 4,
1002 .shift = 24,
1003 .port_shift = 0,
1004 .bits = 8,
1005 },
1006 [ALE_PORT_UNKNOWN_VLAN_MEMBER] = {
1007 .name = "unknown_vlan_member",
1008 .offset = ALE_UNKNOWNVLAN,
1009 .port_offset = 0,
1010 .shift = 0,
1011 .port_shift = 0,
1012 .bits = 6,
1013 },
1014 [ALE_PORT_UNKNOWN_MCAST_FLOOD] = {
1015 .name = "unknown_mcast_flood",
1016 .offset = ALE_UNKNOWNVLAN,
1017 .port_offset = 0,
1018 .shift = 8,
1019 .port_shift = 0,
1020 .bits = 6,
1021 },
1022 [ALE_PORT_UNKNOWN_REG_MCAST_FLOOD] = {
1023 .name = "unknown_reg_flood",
1024 .offset = ALE_UNKNOWNVLAN,
1025 .port_offset = 0,
1026 .shift = 16,
1027 .port_shift = 0,
1028 .bits = 6,
1029 },
1030 [ALE_PORT_UNTAGGED_EGRESS] = {
1031 .name = "untagged_egress",
1032 .offset = ALE_UNKNOWNVLAN,
1033 .port_offset = 0,
1034 .shift = 24,
1035 .port_shift = 0,
1036 .bits = 6,
1037 },
1038 [ALE_DEFAULT_THREAD_ID] = {
1039 .name = "default_thread_id",
1040 .offset = AM65_CPSW_ALE_THREAD_DEF_REG,
1041 .port_offset = 0,
1042 .shift = 0,
1043 .port_shift = 0,
1044 .bits = 6,
1045 },
1046 [ALE_DEFAULT_THREAD_ENABLE] = {
1047 .name = "default_thread_id_enable",
1048 .offset = AM65_CPSW_ALE_THREAD_DEF_REG,
1049 .port_offset = 0,
1050 .shift = 15,
1051 .port_shift = 0,
1052 .bits = 1,
1053 },
1054 };
1055
cpsw_ale_control_set(struct cpsw_ale * ale,int port,int control,int value)1056 int cpsw_ale_control_set(struct cpsw_ale *ale, int port, int control,
1057 int value)
1058 {
1059 const struct ale_control_info *info;
1060 int offset, shift;
1061 u32 tmp, mask;
1062
1063 if (control < 0 || control >= ARRAY_SIZE(ale_controls))
1064 return -EINVAL;
1065
1066 info = &ale_controls[control];
1067 if (info->port_offset == 0 && info->port_shift == 0)
1068 port = 0; /* global, port is a dont care */
1069
1070 if (port < 0 || port >= ale->params.ale_ports)
1071 return -EINVAL;
1072
1073 mask = BITMASK(info->bits);
1074 if (value & ~mask)
1075 return -EINVAL;
1076
1077 offset = info->offset + (port * info->port_offset);
1078 shift = info->shift + (port * info->port_shift);
1079
1080 tmp = readl_relaxed(ale->params.ale_regs + offset);
1081 tmp = (tmp & ~(mask << shift)) | (value << shift);
1082 writel_relaxed(tmp, ale->params.ale_regs + offset);
1083
1084 return 0;
1085 }
1086
cpsw_ale_control_get(struct cpsw_ale * ale,int port,int control)1087 int cpsw_ale_control_get(struct cpsw_ale *ale, int port, int control)
1088 {
1089 const struct ale_control_info *info;
1090 int offset, shift;
1091 u32 tmp;
1092
1093 if (control < 0 || control >= ARRAY_SIZE(ale_controls))
1094 return -EINVAL;
1095
1096 info = &ale_controls[control];
1097 if (info->port_offset == 0 && info->port_shift == 0)
1098 port = 0; /* global, port is a dont care */
1099
1100 if (port < 0 || port >= ale->params.ale_ports)
1101 return -EINVAL;
1102
1103 offset = info->offset + (port * info->port_offset);
1104 shift = info->shift + (port * info->port_shift);
1105
1106 tmp = readl_relaxed(ale->params.ale_regs + offset) >> shift;
1107 return tmp & BITMASK(info->bits);
1108 }
1109
cpsw_ale_timer(struct timer_list * t)1110 static void cpsw_ale_timer(struct timer_list *t)
1111 {
1112 struct cpsw_ale *ale = from_timer(ale, t, timer);
1113
1114 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
1115
1116 if (ale->ageout) {
1117 ale->timer.expires = jiffies + ale->ageout;
1118 add_timer(&ale->timer);
1119 }
1120 }
1121
cpsw_ale_hw_aging_timer_start(struct cpsw_ale * ale)1122 static void cpsw_ale_hw_aging_timer_start(struct cpsw_ale *ale)
1123 {
1124 u32 aging_timer;
1125
1126 aging_timer = ale->params.bus_freq / 1000000;
1127 aging_timer *= ale->params.ale_ageout;
1128
1129 if (aging_timer & ~ALE_AGING_TIMER_MASK) {
1130 aging_timer = ALE_AGING_TIMER_MASK;
1131 dev_warn(ale->params.dev,
1132 "ALE aging timer overflow, set to max\n");
1133 }
1134
1135 writel(aging_timer, ale->params.ale_regs + ALE_AGING_TIMER);
1136 }
1137
cpsw_ale_hw_aging_timer_stop(struct cpsw_ale * ale)1138 static void cpsw_ale_hw_aging_timer_stop(struct cpsw_ale *ale)
1139 {
1140 writel(0, ale->params.ale_regs + ALE_AGING_TIMER);
1141 }
1142
cpsw_ale_aging_start(struct cpsw_ale * ale)1143 static void cpsw_ale_aging_start(struct cpsw_ale *ale)
1144 {
1145 if (!ale->params.ale_ageout)
1146 return;
1147
1148 if (ale->features & CPSW_ALE_F_HW_AUTOAGING) {
1149 cpsw_ale_hw_aging_timer_start(ale);
1150 return;
1151 }
1152
1153 timer_setup(&ale->timer, cpsw_ale_timer, 0);
1154 ale->timer.expires = jiffies + ale->ageout;
1155 add_timer(&ale->timer);
1156 }
1157
cpsw_ale_aging_stop(struct cpsw_ale * ale)1158 static void cpsw_ale_aging_stop(struct cpsw_ale *ale)
1159 {
1160 if (!ale->params.ale_ageout)
1161 return;
1162
1163 if (ale->features & CPSW_ALE_F_HW_AUTOAGING) {
1164 cpsw_ale_hw_aging_timer_stop(ale);
1165 return;
1166 }
1167
1168 del_timer_sync(&ale->timer);
1169 }
1170
cpsw_ale_start(struct cpsw_ale * ale)1171 void cpsw_ale_start(struct cpsw_ale *ale)
1172 {
1173 cpsw_ale_control_set(ale, 0, ALE_ENABLE, 1);
1174 cpsw_ale_control_set(ale, 0, ALE_CLEAR, 1);
1175
1176 cpsw_ale_aging_start(ale);
1177 }
1178
cpsw_ale_stop(struct cpsw_ale * ale)1179 void cpsw_ale_stop(struct cpsw_ale *ale)
1180 {
1181 cpsw_ale_aging_stop(ale);
1182 cpsw_ale_control_set(ale, 0, ALE_CLEAR, 1);
1183 cpsw_ale_control_set(ale, 0, ALE_ENABLE, 0);
1184 }
1185
1186 static const struct cpsw_ale_dev_id cpsw_ale_id_match[] = {
1187 {
1188 /* am3/4/5, dra7. dm814x, 66ak2hk-gbe */
1189 .dev_id = "cpsw",
1190 .tbl_entries = 1024,
1191 .major_ver_mask = 0xff,
1192 .vlan_entry_tbl = vlan_entry_cpsw,
1193 },
1194 {
1195 /* 66ak2h_xgbe */
1196 .dev_id = "66ak2h-xgbe",
1197 .tbl_entries = 2048,
1198 .major_ver_mask = 0xff,
1199 .vlan_entry_tbl = vlan_entry_cpsw,
1200 },
1201 {
1202 .dev_id = "66ak2el",
1203 .features = CPSW_ALE_F_STATUS_REG,
1204 .major_ver_mask = 0x7,
1205 .nu_switch_ale = true,
1206 .vlan_entry_tbl = vlan_entry_nu,
1207 },
1208 {
1209 .dev_id = "66ak2g",
1210 .features = CPSW_ALE_F_STATUS_REG,
1211 .tbl_entries = 64,
1212 .major_ver_mask = 0x7,
1213 .nu_switch_ale = true,
1214 .vlan_entry_tbl = vlan_entry_nu,
1215 },
1216 {
1217 .dev_id = "am65x-cpsw2g",
1218 .features = CPSW_ALE_F_STATUS_REG | CPSW_ALE_F_HW_AUTOAGING,
1219 .tbl_entries = 64,
1220 .major_ver_mask = 0x7,
1221 .nu_switch_ale = true,
1222 .vlan_entry_tbl = vlan_entry_nu,
1223 },
1224 {
1225 .dev_id = "j721e-cpswxg",
1226 .features = CPSW_ALE_F_STATUS_REG | CPSW_ALE_F_HW_AUTOAGING,
1227 .major_ver_mask = 0x7,
1228 .vlan_entry_tbl = vlan_entry_k3_cpswxg,
1229 },
1230 { },
1231 };
1232
1233 static const struct
cpsw_ale_match_id(const struct cpsw_ale_dev_id * id,const char * dev_id)1234 cpsw_ale_dev_id *cpsw_ale_match_id(const struct cpsw_ale_dev_id *id,
1235 const char *dev_id)
1236 {
1237 if (!dev_id)
1238 return NULL;
1239
1240 while (id->dev_id) {
1241 if (strcmp(dev_id, id->dev_id) == 0)
1242 return id;
1243 id++;
1244 }
1245 return NULL;
1246 }
1247
cpsw_ale_create(struct cpsw_ale_params * params)1248 struct cpsw_ale *cpsw_ale_create(struct cpsw_ale_params *params)
1249 {
1250 const struct cpsw_ale_dev_id *ale_dev_id;
1251 struct cpsw_ale *ale;
1252 u32 rev, ale_entries;
1253
1254 ale_dev_id = cpsw_ale_match_id(cpsw_ale_id_match, params->dev_id);
1255 if (!ale_dev_id)
1256 return ERR_PTR(-EINVAL);
1257
1258 params->ale_entries = ale_dev_id->tbl_entries;
1259 params->major_ver_mask = ale_dev_id->major_ver_mask;
1260 params->nu_switch_ale = ale_dev_id->nu_switch_ale;
1261
1262 ale = devm_kzalloc(params->dev, sizeof(*ale), GFP_KERNEL);
1263 if (!ale)
1264 return ERR_PTR(-ENOMEM);
1265
1266 ale->p0_untag_vid_mask =
1267 devm_kmalloc_array(params->dev, BITS_TO_LONGS(VLAN_N_VID),
1268 sizeof(unsigned long),
1269 GFP_KERNEL);
1270 if (!ale->p0_untag_vid_mask)
1271 return ERR_PTR(-ENOMEM);
1272
1273 ale->params = *params;
1274 ale->ageout = ale->params.ale_ageout * HZ;
1275 ale->features = ale_dev_id->features;
1276 ale->vlan_entry_tbl = ale_dev_id->vlan_entry_tbl;
1277
1278 rev = readl_relaxed(ale->params.ale_regs + ALE_IDVER);
1279 ale->version =
1280 (ALE_VERSION_MAJOR(rev, ale->params.major_ver_mask) << 8) |
1281 ALE_VERSION_MINOR(rev);
1282 dev_info(ale->params.dev, "initialized cpsw ale version %d.%d\n",
1283 ALE_VERSION_MAJOR(rev, ale->params.major_ver_mask),
1284 ALE_VERSION_MINOR(rev));
1285
1286 if (ale->features & CPSW_ALE_F_STATUS_REG &&
1287 !ale->params.ale_entries) {
1288 ale_entries =
1289 readl_relaxed(ale->params.ale_regs + ALE_STATUS) &
1290 ALE_STATUS_SIZE_MASK;
1291 /* ALE available on newer NetCP switches has introduced
1292 * a register, ALE_STATUS, to indicate the size of ALE
1293 * table which shows the size as a multiple of 1024 entries.
1294 * For these, params.ale_entries will be set to zero. So
1295 * read the register and update the value of ale_entries.
1296 * return error if ale_entries is zero in ALE_STATUS.
1297 */
1298 if (!ale_entries)
1299 return ERR_PTR(-EINVAL);
1300
1301 ale_entries *= ALE_TABLE_SIZE_MULTIPLIER;
1302 ale->params.ale_entries = ale_entries;
1303 }
1304 dev_info(ale->params.dev,
1305 "ALE Table size %ld\n", ale->params.ale_entries);
1306
1307 /* set default bits for existing h/w */
1308 ale->port_mask_bits = ale->params.ale_ports;
1309 ale->port_num_bits = order_base_2(ale->params.ale_ports);
1310 ale->vlan_field_bits = ale->params.ale_ports;
1311
1312 /* Set defaults override for ALE on NetCP NU switch and for version
1313 * 1R3
1314 */
1315 if (ale->params.nu_switch_ale) {
1316 /* Separate registers for unknown vlan configuration.
1317 * Also there are N bits, where N is number of ale
1318 * ports and shift value should be 0
1319 */
1320 ale_controls[ALE_PORT_UNKNOWN_VLAN_MEMBER].bits =
1321 ale->params.ale_ports;
1322 ale_controls[ALE_PORT_UNKNOWN_VLAN_MEMBER].offset =
1323 ALE_UNKNOWNVLAN_MEMBER;
1324 ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].bits =
1325 ale->params.ale_ports;
1326 ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].shift = 0;
1327 ale_controls[ALE_PORT_UNKNOWN_MCAST_FLOOD].offset =
1328 ALE_UNKNOWNVLAN_UNREG_MCAST_FLOOD;
1329 ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].bits =
1330 ale->params.ale_ports;
1331 ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].shift = 0;
1332 ale_controls[ALE_PORT_UNKNOWN_REG_MCAST_FLOOD].offset =
1333 ALE_UNKNOWNVLAN_REG_MCAST_FLOOD;
1334 ale_controls[ALE_PORT_UNTAGGED_EGRESS].bits =
1335 ale->params.ale_ports;
1336 ale_controls[ALE_PORT_UNTAGGED_EGRESS].shift = 0;
1337 ale_controls[ALE_PORT_UNTAGGED_EGRESS].offset =
1338 ALE_UNKNOWNVLAN_FORCE_UNTAG_EGRESS;
1339 }
1340
1341 cpsw_ale_control_set(ale, 0, ALE_CLEAR, 1);
1342 return ale;
1343 }
1344
cpsw_ale_dump(struct cpsw_ale * ale,u32 * data)1345 void cpsw_ale_dump(struct cpsw_ale *ale, u32 *data)
1346 {
1347 int i;
1348
1349 for (i = 0; i < ale->params.ale_entries; i++) {
1350 cpsw_ale_read(ale, i, data);
1351 data += ALE_ENTRY_WORDS;
1352 }
1353 }
1354
cpsw_ale_get_num_entries(struct cpsw_ale * ale)1355 u32 cpsw_ale_get_num_entries(struct cpsw_ale *ale)
1356 {
1357 return ale ? ale->params.ale_entries : 0;
1358 }
1359