• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs various transformations related to eliminating memcpy
10 // calls, or transforming sets of stores into memset's.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/MathExtras.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "memcpyopt"
67 
68 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
69 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
70 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
71 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
72 
73 namespace {
74 
75 /// Represents a range of memset'd bytes with the ByteVal value.
76 /// This allows us to analyze stores like:
77 ///   store 0 -> P+1
78 ///   store 0 -> P+0
79 ///   store 0 -> P+3
80 ///   store 0 -> P+2
81 /// which sometimes happens with stores to arrays of structs etc.  When we see
82 /// the first store, we make a range [1, 2).  The second store extends the range
83 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
84 /// two ranges into [0, 3) which is memset'able.
85 struct MemsetRange {
86   // Start/End - A semi range that describes the span that this range covers.
87   // The range is closed at the start and open at the end: [Start, End).
88   int64_t Start, End;
89 
90   /// StartPtr - The getelementptr instruction that points to the start of the
91   /// range.
92   Value *StartPtr;
93 
94   /// Alignment - The known alignment of the first store.
95   unsigned Alignment;
96 
97   /// TheStores - The actual stores that make up this range.
98   SmallVector<Instruction*, 16> TheStores;
99 
100   bool isProfitableToUseMemset(const DataLayout &DL) const;
101 };
102 
103 } // end anonymous namespace
104 
isProfitableToUseMemset(const DataLayout & DL) const105 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
106   // If we found more than 4 stores to merge or 16 bytes, use memset.
107   if (TheStores.size() >= 4 || End-Start >= 16) return true;
108 
109   // If there is nothing to merge, don't do anything.
110   if (TheStores.size() < 2) return false;
111 
112   // If any of the stores are a memset, then it is always good to extend the
113   // memset.
114   for (Instruction *SI : TheStores)
115     if (!isa<StoreInst>(SI))
116       return true;
117 
118   // Assume that the code generator is capable of merging pairs of stores
119   // together if it wants to.
120   if (TheStores.size() == 2) return false;
121 
122   // If we have fewer than 8 stores, it can still be worthwhile to do this.
123   // For example, merging 4 i8 stores into an i32 store is useful almost always.
124   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
125   // memset will be split into 2 32-bit stores anyway) and doing so can
126   // pessimize the llvm optimizer.
127   //
128   // Since we don't have perfect knowledge here, make some assumptions: assume
129   // the maximum GPR width is the same size as the largest legal integer
130   // size. If so, check to see whether we will end up actually reducing the
131   // number of stores used.
132   unsigned Bytes = unsigned(End-Start);
133   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
134   if (MaxIntSize == 0)
135     MaxIntSize = 1;
136   unsigned NumPointerStores = Bytes / MaxIntSize;
137 
138   // Assume the remaining bytes if any are done a byte at a time.
139   unsigned NumByteStores = Bytes % MaxIntSize;
140 
141   // If we will reduce the # stores (according to this heuristic), do the
142   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
143   // etc.
144   return TheStores.size() > NumPointerStores+NumByteStores;
145 }
146 
147 namespace {
148 
149 class MemsetRanges {
150   using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
151 
152   /// A sorted list of the memset ranges.
153   SmallVector<MemsetRange, 8> Ranges;
154 
155   const DataLayout &DL;
156 
157 public:
MemsetRanges(const DataLayout & DL)158   MemsetRanges(const DataLayout &DL) : DL(DL) {}
159 
160   using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
161 
begin() const162   const_iterator begin() const { return Ranges.begin(); }
end() const163   const_iterator end() const { return Ranges.end(); }
empty() const164   bool empty() const { return Ranges.empty(); }
165 
addInst(int64_t OffsetFromFirst,Instruction * Inst)166   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
167     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
168       addStore(OffsetFromFirst, SI);
169     else
170       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
171   }
172 
addStore(int64_t OffsetFromFirst,StoreInst * SI)173   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
174     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
175 
176     addRange(OffsetFromFirst, StoreSize,
177              SI->getPointerOperand(), SI->getAlignment(), SI);
178   }
179 
addMemSet(int64_t OffsetFromFirst,MemSetInst * MSI)180   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
181     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
182     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
183   }
184 
185   void addRange(int64_t Start, int64_t Size, Value *Ptr,
186                 unsigned Alignment, Instruction *Inst);
187 };
188 
189 } // end anonymous namespace
190 
191 /// Add a new store to the MemsetRanges data structure.  This adds a
192 /// new range for the specified store at the specified offset, merging into
193 /// existing ranges as appropriate.
addRange(int64_t Start,int64_t Size,Value * Ptr,unsigned Alignment,Instruction * Inst)194 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
195                             unsigned Alignment, Instruction *Inst) {
196   int64_t End = Start+Size;
197 
198   range_iterator I = partition_point(
199       Ranges, [=](const MemsetRange &O) { return O.End < Start; });
200 
201   // We now know that I == E, in which case we didn't find anything to merge
202   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
203   // to insert a new range.  Handle this now.
204   if (I == Ranges.end() || End < I->Start) {
205     MemsetRange &R = *Ranges.insert(I, MemsetRange());
206     R.Start        = Start;
207     R.End          = End;
208     R.StartPtr     = Ptr;
209     R.Alignment    = Alignment;
210     R.TheStores.push_back(Inst);
211     return;
212   }
213 
214   // This store overlaps with I, add it.
215   I->TheStores.push_back(Inst);
216 
217   // At this point, we may have an interval that completely contains our store.
218   // If so, just add it to the interval and return.
219   if (I->Start <= Start && I->End >= End)
220     return;
221 
222   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
223   // but is not entirely contained within the range.
224 
225   // See if the range extends the start of the range.  In this case, it couldn't
226   // possibly cause it to join the prior range, because otherwise we would have
227   // stopped on *it*.
228   if (Start < I->Start) {
229     I->Start = Start;
230     I->StartPtr = Ptr;
231     I->Alignment = Alignment;
232   }
233 
234   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
235   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
236   // End.
237   if (End > I->End) {
238     I->End = End;
239     range_iterator NextI = I;
240     while (++NextI != Ranges.end() && End >= NextI->Start) {
241       // Merge the range in.
242       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
243       if (NextI->End > I->End)
244         I->End = NextI->End;
245       Ranges.erase(NextI);
246       NextI = I;
247     }
248   }
249 }
250 
251 //===----------------------------------------------------------------------===//
252 //                         MemCpyOptLegacyPass Pass
253 //===----------------------------------------------------------------------===//
254 
255 namespace {
256 
257 class MemCpyOptLegacyPass : public FunctionPass {
258   MemCpyOptPass Impl;
259 
260 public:
261   static char ID; // Pass identification, replacement for typeid
262 
MemCpyOptLegacyPass()263   MemCpyOptLegacyPass() : FunctionPass(ID) {
264     initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
265   }
266 
267   bool runOnFunction(Function &F) override;
268 
269 private:
270   // This transformation requires dominator postdominator info
getAnalysisUsage(AnalysisUsage & AU) const271   void getAnalysisUsage(AnalysisUsage &AU) const override {
272     AU.setPreservesCFG();
273     AU.addRequired<AssumptionCacheTracker>();
274     AU.addRequired<DominatorTreeWrapperPass>();
275     AU.addRequired<MemoryDependenceWrapperPass>();
276     AU.addRequired<AAResultsWrapperPass>();
277     AU.addRequired<TargetLibraryInfoWrapperPass>();
278     AU.addPreserved<GlobalsAAWrapperPass>();
279     AU.addPreserved<MemoryDependenceWrapperPass>();
280   }
281 };
282 
283 } // end anonymous namespace
284 
285 char MemCpyOptLegacyPass::ID = 0;
286 
287 /// The public interface to this file...
createMemCpyOptPass()288 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
289 
290 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
291                       false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)292 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
293 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
294 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
295 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
296 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
297 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
298 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
299                     false, false)
300 
301 /// When scanning forward over instructions, we look for some other patterns to
302 /// fold away. In particular, this looks for stores to neighboring locations of
303 /// memory. If it sees enough consecutive ones, it attempts to merge them
304 /// together into a memcpy/memset.
305 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
306                                                  Value *StartPtr,
307                                                  Value *ByteVal) {
308   const DataLayout &DL = StartInst->getModule()->getDataLayout();
309 
310   // Okay, so we now have a single store that can be splatable.  Scan to find
311   // all subsequent stores of the same value to offset from the same pointer.
312   // Join these together into ranges, so we can decide whether contiguous blocks
313   // are stored.
314   MemsetRanges Ranges(DL);
315 
316   BasicBlock::iterator BI(StartInst);
317   for (++BI; !BI->isTerminator(); ++BI) {
318     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
319       // If the instruction is readnone, ignore it, otherwise bail out.  We
320       // don't even allow readonly here because we don't want something like:
321       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
322       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
323         break;
324       continue;
325     }
326 
327     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
328       // If this is a store, see if we can merge it in.
329       if (!NextStore->isSimple()) break;
330 
331       // Check to see if this stored value is of the same byte-splattable value.
332       Value *StoredByte = isBytewiseValue(NextStore->getOperand(0), DL);
333       if (isa<UndefValue>(ByteVal) && StoredByte)
334         ByteVal = StoredByte;
335       if (ByteVal != StoredByte)
336         break;
337 
338       // Check to see if this store is to a constant offset from the start ptr.
339       Optional<int64_t> Offset =
340           isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
341       if (!Offset)
342         break;
343 
344       Ranges.addStore(*Offset, NextStore);
345     } else {
346       MemSetInst *MSI = cast<MemSetInst>(BI);
347 
348       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
349           !isa<ConstantInt>(MSI->getLength()))
350         break;
351 
352       // Check to see if this store is to a constant offset from the start ptr.
353       Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
354       if (!Offset)
355         break;
356 
357       Ranges.addMemSet(*Offset, MSI);
358     }
359   }
360 
361   // If we have no ranges, then we just had a single store with nothing that
362   // could be merged in.  This is a very common case of course.
363   if (Ranges.empty())
364     return nullptr;
365 
366   // If we had at least one store that could be merged in, add the starting
367   // store as well.  We try to avoid this unless there is at least something
368   // interesting as a small compile-time optimization.
369   Ranges.addInst(0, StartInst);
370 
371   // If we create any memsets, we put it right before the first instruction that
372   // isn't part of the memset block.  This ensure that the memset is dominated
373   // by any addressing instruction needed by the start of the block.
374   IRBuilder<> Builder(&*BI);
375 
376   // Now that we have full information about ranges, loop over the ranges and
377   // emit memset's for anything big enough to be worthwhile.
378   Instruction *AMemSet = nullptr;
379   for (const MemsetRange &Range : Ranges) {
380     if (Range.TheStores.size() == 1) continue;
381 
382     // If it is profitable to lower this range to memset, do so now.
383     if (!Range.isProfitableToUseMemset(DL))
384       continue;
385 
386     // Otherwise, we do want to transform this!  Create a new memset.
387     // Get the starting pointer of the block.
388     StartPtr = Range.StartPtr;
389 
390     // Determine alignment
391     const Align Alignment = DL.getValueOrABITypeAlignment(
392         MaybeAlign(Range.Alignment),
393         cast<PointerType>(StartPtr->getType())->getElementType());
394 
395     AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
396                                    Alignment);
397     LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
398                                                    : Range.TheStores) dbgs()
399                                               << *SI << '\n';
400                dbgs() << "With: " << *AMemSet << '\n');
401 
402     if (!Range.TheStores.empty())
403       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
404 
405     // Zap all the stores.
406     for (Instruction *SI : Range.TheStores) {
407       MD->removeInstruction(SI);
408       SI->eraseFromParent();
409     }
410     ++NumMemSetInfer;
411   }
412 
413   return AMemSet;
414 }
415 
findStoreAlignment(const DataLayout & DL,const StoreInst * SI)416 static Align findStoreAlignment(const DataLayout &DL, const StoreInst *SI) {
417   return DL.getValueOrABITypeAlignment(MaybeAlign(SI->getAlignment()),
418                                        SI->getOperand(0)->getType());
419 }
420 
findLoadAlignment(const DataLayout & DL,const LoadInst * LI)421 static Align findLoadAlignment(const DataLayout &DL, const LoadInst *LI) {
422   return DL.getValueOrABITypeAlignment(MaybeAlign(LI->getAlignment()),
423                                        LI->getType());
424 }
425 
findCommonAlignment(const DataLayout & DL,const StoreInst * SI,const LoadInst * LI)426 static Align findCommonAlignment(const DataLayout &DL, const StoreInst *SI,
427                                  const LoadInst *LI) {
428   Align StoreAlign = findStoreAlignment(DL, SI);
429   Align LoadAlign = findLoadAlignment(DL, LI);
430   return commonAlignment(StoreAlign, LoadAlign);
431 }
432 
433 // This method try to lift a store instruction before position P.
434 // It will lift the store and its argument + that anything that
435 // may alias with these.
436 // The method returns true if it was successful.
moveUp(AliasAnalysis & AA,StoreInst * SI,Instruction * P,const LoadInst * LI)437 static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P,
438                    const LoadInst *LI) {
439   // If the store alias this position, early bail out.
440   MemoryLocation StoreLoc = MemoryLocation::get(SI);
441   if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc)))
442     return false;
443 
444   // Keep track of the arguments of all instruction we plan to lift
445   // so we can make sure to lift them as well if appropriate.
446   DenseSet<Instruction*> Args;
447   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
448     if (Ptr->getParent() == SI->getParent())
449       Args.insert(Ptr);
450 
451   // Instruction to lift before P.
452   SmallVector<Instruction*, 8> ToLift;
453 
454   // Memory locations of lifted instructions.
455   SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
456 
457   // Lifted calls.
458   SmallVector<const CallBase *, 8> Calls;
459 
460   const MemoryLocation LoadLoc = MemoryLocation::get(LI);
461 
462   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
463     auto *C = &*I;
464 
465     bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None));
466 
467     bool NeedLift = false;
468     if (Args.erase(C))
469       NeedLift = true;
470     else if (MayAlias) {
471       NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) {
472         return isModOrRefSet(AA.getModRefInfo(C, ML));
473       });
474 
475       if (!NeedLift)
476         NeedLift = llvm::any_of(Calls, [C, &AA](const CallBase *Call) {
477           return isModOrRefSet(AA.getModRefInfo(C, Call));
478         });
479     }
480 
481     if (!NeedLift)
482       continue;
483 
484     if (MayAlias) {
485       // Since LI is implicitly moved downwards past the lifted instructions,
486       // none of them may modify its source.
487       if (isModSet(AA.getModRefInfo(C, LoadLoc)))
488         return false;
489       else if (const auto *Call = dyn_cast<CallBase>(C)) {
490         // If we can't lift this before P, it's game over.
491         if (isModOrRefSet(AA.getModRefInfo(P, Call)))
492           return false;
493 
494         Calls.push_back(Call);
495       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
496         // If we can't lift this before P, it's game over.
497         auto ML = MemoryLocation::get(C);
498         if (isModOrRefSet(AA.getModRefInfo(P, ML)))
499           return false;
500 
501         MemLocs.push_back(ML);
502       } else
503         // We don't know how to lift this instruction.
504         return false;
505     }
506 
507     ToLift.push_back(C);
508     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
509       if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
510         if (A->getParent() == SI->getParent()) {
511           // Cannot hoist user of P above P
512           if(A == P) return false;
513           Args.insert(A);
514         }
515       }
516   }
517 
518   // We made it, we need to lift
519   for (auto *I : llvm::reverse(ToLift)) {
520     LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
521     I->moveBefore(P);
522   }
523 
524   return true;
525 }
526 
processStore(StoreInst * SI,BasicBlock::iterator & BBI)527 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
528   if (!SI->isSimple()) return false;
529 
530   // Avoid merging nontemporal stores since the resulting
531   // memcpy/memset would not be able to preserve the nontemporal hint.
532   // In theory we could teach how to propagate the !nontemporal metadata to
533   // memset calls. However, that change would force the backend to
534   // conservatively expand !nontemporal memset calls back to sequences of
535   // store instructions (effectively undoing the merging).
536   if (SI->getMetadata(LLVMContext::MD_nontemporal))
537     return false;
538 
539   const DataLayout &DL = SI->getModule()->getDataLayout();
540 
541   // Load to store forwarding can be interpreted as memcpy.
542   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
543     if (LI->isSimple() && LI->hasOneUse() &&
544         LI->getParent() == SI->getParent()) {
545 
546       auto *T = LI->getType();
547       if (T->isAggregateType()) {
548         AliasAnalysis &AA = LookupAliasAnalysis();
549         MemoryLocation LoadLoc = MemoryLocation::get(LI);
550 
551         // We use alias analysis to check if an instruction may store to
552         // the memory we load from in between the load and the store. If
553         // such an instruction is found, we try to promote there instead
554         // of at the store position.
555         Instruction *P = SI;
556         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
557           if (isModSet(AA.getModRefInfo(&I, LoadLoc))) {
558             P = &I;
559             break;
560           }
561         }
562 
563         // We found an instruction that may write to the loaded memory.
564         // We can try to promote at this position instead of the store
565         // position if nothing alias the store memory after this and the store
566         // destination is not in the range.
567         if (P && P != SI) {
568           if (!moveUp(AA, SI, P, LI))
569             P = nullptr;
570         }
571 
572         // If a valid insertion position is found, then we can promote
573         // the load/store pair to a memcpy.
574         if (P) {
575           // If we load from memory that may alias the memory we store to,
576           // memmove must be used to preserve semantic. If not, memcpy can
577           // be used.
578           bool UseMemMove = false;
579           if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc))
580             UseMemMove = true;
581 
582           uint64_t Size = DL.getTypeStoreSize(T);
583 
584           IRBuilder<> Builder(P);
585           Instruction *M;
586           if (UseMemMove)
587             M = Builder.CreateMemMove(
588                 SI->getPointerOperand(), findStoreAlignment(DL, SI),
589                 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size);
590           else
591             M = Builder.CreateMemCpy(
592                 SI->getPointerOperand(), findStoreAlignment(DL, SI),
593                 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size);
594 
595           LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
596                             << *M << "\n");
597 
598           MD->removeInstruction(SI);
599           SI->eraseFromParent();
600           MD->removeInstruction(LI);
601           LI->eraseFromParent();
602           ++NumMemCpyInstr;
603 
604           // Make sure we do not invalidate the iterator.
605           BBI = M->getIterator();
606           return true;
607         }
608       }
609 
610       // Detect cases where we're performing call slot forwarding, but
611       // happen to be using a load-store pair to implement it, rather than
612       // a memcpy.
613       MemDepResult ldep = MD->getDependency(LI);
614       CallInst *C = nullptr;
615       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
616         C = dyn_cast<CallInst>(ldep.getInst());
617 
618       if (C) {
619         // Check that nothing touches the dest of the "copy" between
620         // the call and the store.
621         Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
622         bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
623         AliasAnalysis &AA = LookupAliasAnalysis();
624         MemoryLocation StoreLoc = MemoryLocation::get(SI);
625         for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
626              I != E; --I) {
627           if (isModOrRefSet(AA.getModRefInfo(&*I, StoreLoc))) {
628             C = nullptr;
629             break;
630           }
631           // The store to dest may never happen if an exception can be thrown
632           // between the load and the store.
633           if (I->mayThrow() && !CpyDestIsLocal) {
634             C = nullptr;
635             break;
636           }
637         }
638       }
639 
640       if (C) {
641         bool changed = performCallSlotOptzn(
642             LI, SI->getPointerOperand()->stripPointerCasts(),
643             LI->getPointerOperand()->stripPointerCasts(),
644             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
645             findCommonAlignment(DL, SI, LI).value(), C);
646         if (changed) {
647           MD->removeInstruction(SI);
648           SI->eraseFromParent();
649           MD->removeInstruction(LI);
650           LI->eraseFromParent();
651           ++NumMemCpyInstr;
652           return true;
653         }
654       }
655     }
656   }
657 
658   // There are two cases that are interesting for this code to handle: memcpy
659   // and memset.  Right now we only handle memset.
660 
661   // Ensure that the value being stored is something that can be memset'able a
662   // byte at a time like "0" or "-1" or any width, as well as things like
663   // 0xA0A0A0A0 and 0.0.
664   auto *V = SI->getOperand(0);
665   if (Value *ByteVal = isBytewiseValue(V, DL)) {
666     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
667                                               ByteVal)) {
668       BBI = I->getIterator(); // Don't invalidate iterator.
669       return true;
670     }
671 
672     // If we have an aggregate, we try to promote it to memset regardless
673     // of opportunity for merging as it can expose optimization opportunities
674     // in subsequent passes.
675     auto *T = V->getType();
676     if (T->isAggregateType()) {
677       uint64_t Size = DL.getTypeStoreSize(T);
678       const Align MA =
679           DL.getValueOrABITypeAlignment(MaybeAlign(SI->getAlignment()), T);
680       IRBuilder<> Builder(SI);
681       auto *M =
682           Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, MA);
683 
684       LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
685 
686       MD->removeInstruction(SI);
687       SI->eraseFromParent();
688       NumMemSetInfer++;
689 
690       // Make sure we do not invalidate the iterator.
691       BBI = M->getIterator();
692       return true;
693     }
694   }
695 
696   return false;
697 }
698 
processMemSet(MemSetInst * MSI,BasicBlock::iterator & BBI)699 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
700   // See if there is another memset or store neighboring this memset which
701   // allows us to widen out the memset to do a single larger store.
702   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
703     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
704                                               MSI->getValue())) {
705       BBI = I->getIterator(); // Don't invalidate iterator.
706       return true;
707     }
708   return false;
709 }
710 
711 /// Takes a memcpy and a call that it depends on,
712 /// and checks for the possibility of a call slot optimization by having
713 /// the call write its result directly into the destination of the memcpy.
performCallSlotOptzn(Instruction * cpy,Value * cpyDest,Value * cpySrc,uint64_t cpyLen,unsigned cpyAlign,CallInst * C)714 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
715                                          Value *cpySrc, uint64_t cpyLen,
716                                          unsigned cpyAlign, CallInst *C) {
717   // The general transformation to keep in mind is
718   //
719   //   call @func(..., src, ...)
720   //   memcpy(dest, src, ...)
721   //
722   // ->
723   //
724   //   memcpy(dest, src, ...)
725   //   call @func(..., dest, ...)
726   //
727   // Since moving the memcpy is technically awkward, we additionally check that
728   // src only holds uninitialized values at the moment of the call, meaning that
729   // the memcpy can be discarded rather than moved.
730 
731   // Lifetime marks shouldn't be operated on.
732   if (Function *F = C->getCalledFunction())
733     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
734       return false;
735 
736   // Deliberately get the source and destination with bitcasts stripped away,
737   // because we'll need to do type comparisons based on the underlying type.
738   CallSite CS(C);
739 
740   // Require that src be an alloca.  This simplifies the reasoning considerably.
741   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
742   if (!srcAlloca)
743     return false;
744 
745   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
746   if (!srcArraySize)
747     return false;
748 
749   const DataLayout &DL = cpy->getModule()->getDataLayout();
750   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
751                      srcArraySize->getZExtValue();
752 
753   if (cpyLen < srcSize)
754     return false;
755 
756   // Check that accessing the first srcSize bytes of dest will not cause a
757   // trap.  Otherwise the transform is invalid since it might cause a trap
758   // to occur earlier than it otherwise would.
759   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
760     // The destination is an alloca.  Check it is larger than srcSize.
761     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
762     if (!destArraySize)
763       return false;
764 
765     uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
766                         destArraySize->getZExtValue();
767 
768     if (destSize < srcSize)
769       return false;
770   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
771     // The store to dest may never happen if the call can throw.
772     if (C->mayThrow())
773       return false;
774 
775     if (A->getDereferenceableBytes() < srcSize) {
776       // If the destination is an sret parameter then only accesses that are
777       // outside of the returned struct type can trap.
778       if (!A->hasStructRetAttr())
779         return false;
780 
781       Type *StructTy = cast<PointerType>(A->getType())->getElementType();
782       if (!StructTy->isSized()) {
783         // The call may never return and hence the copy-instruction may never
784         // be executed, and therefore it's not safe to say "the destination
785         // has at least <cpyLen> bytes, as implied by the copy-instruction",
786         return false;
787       }
788 
789       uint64_t destSize = DL.getTypeAllocSize(StructTy);
790       if (destSize < srcSize)
791         return false;
792     }
793   } else {
794     return false;
795   }
796 
797   // Check that dest points to memory that is at least as aligned as src.
798   unsigned srcAlign = srcAlloca->getAlignment();
799   if (!srcAlign)
800     srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
801   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
802   // If dest is not aligned enough and we can't increase its alignment then
803   // bail out.
804   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
805     return false;
806 
807   // Check that src is not accessed except via the call and the memcpy.  This
808   // guarantees that it holds only undefined values when passed in (so the final
809   // memcpy can be dropped), that it is not read or written between the call and
810   // the memcpy, and that writing beyond the end of it is undefined.
811   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
812                                    srcAlloca->user_end());
813   while (!srcUseList.empty()) {
814     User *U = srcUseList.pop_back_val();
815 
816     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
817       for (User *UU : U->users())
818         srcUseList.push_back(UU);
819       continue;
820     }
821     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
822       if (!G->hasAllZeroIndices())
823         return false;
824 
825       for (User *UU : U->users())
826         srcUseList.push_back(UU);
827       continue;
828     }
829     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
830       if (IT->isLifetimeStartOrEnd())
831         continue;
832 
833     if (U != C && U != cpy)
834       return false;
835   }
836 
837   // Check that src isn't captured by the called function since the
838   // transformation can cause aliasing issues in that case.
839   for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
840     if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
841       return false;
842 
843   // Since we're changing the parameter to the callsite, we need to make sure
844   // that what would be the new parameter dominates the callsite.
845   DominatorTree &DT = LookupDomTree();
846   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
847     if (!DT.dominates(cpyDestInst, C))
848       return false;
849 
850   // In addition to knowing that the call does not access src in some
851   // unexpected manner, for example via a global, which we deduce from
852   // the use analysis, we also need to know that it does not sneakily
853   // access dest.  We rely on AA to figure this out for us.
854   AliasAnalysis &AA = LookupAliasAnalysis();
855   ModRefInfo MR = AA.getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
856   // If necessary, perform additional analysis.
857   if (isModOrRefSet(MR))
858     MR = AA.callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), &DT);
859   if (isModOrRefSet(MR))
860     return false;
861 
862   // We can't create address space casts here because we don't know if they're
863   // safe for the target.
864   if (cpySrc->getType()->getPointerAddressSpace() !=
865       cpyDest->getType()->getPointerAddressSpace())
866     return false;
867   for (unsigned i = 0; i < CS.arg_size(); ++i)
868     if (CS.getArgument(i)->stripPointerCasts() == cpySrc &&
869         cpySrc->getType()->getPointerAddressSpace() !=
870         CS.getArgument(i)->getType()->getPointerAddressSpace())
871       return false;
872 
873   // All the checks have passed, so do the transformation.
874   bool changedArgument = false;
875   for (unsigned i = 0; i < CS.arg_size(); ++i)
876     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
877       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
878         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
879                                       cpyDest->getName(), C);
880       changedArgument = true;
881       if (CS.getArgument(i)->getType() == Dest->getType())
882         CS.setArgument(i, Dest);
883       else
884         CS.setArgument(i, CastInst::CreatePointerCast(Dest,
885                           CS.getArgument(i)->getType(), Dest->getName(), C));
886     }
887 
888   if (!changedArgument)
889     return false;
890 
891   // If the destination wasn't sufficiently aligned then increase its alignment.
892   if (!isDestSufficientlyAligned) {
893     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
894     cast<AllocaInst>(cpyDest)->setAlignment(MaybeAlign(srcAlign));
895   }
896 
897   // Drop any cached information about the call, because we may have changed
898   // its dependence information by changing its parameter.
899   MD->removeInstruction(C);
900 
901   // Update AA metadata
902   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
903   // handled here, but combineMetadata doesn't support them yet
904   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
905                          LLVMContext::MD_noalias,
906                          LLVMContext::MD_invariant_group,
907                          LLVMContext::MD_access_group};
908   combineMetadata(C, cpy, KnownIDs, true);
909 
910   // Remove the memcpy.
911   MD->removeInstruction(cpy);
912   ++NumMemCpyInstr;
913 
914   return true;
915 }
916 
917 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
918 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
processMemCpyMemCpyDependence(MemCpyInst * M,MemCpyInst * MDep)919 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
920                                                   MemCpyInst *MDep) {
921   // We can only transforms memcpy's where the dest of one is the source of the
922   // other.
923   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
924     return false;
925 
926   // If dep instruction is reading from our current input, then it is a noop
927   // transfer and substituting the input won't change this instruction.  Just
928   // ignore the input and let someone else zap MDep.  This handles cases like:
929   //    memcpy(a <- a)
930   //    memcpy(b <- a)
931   if (M->getSource() == MDep->getSource())
932     return false;
933 
934   // Second, the length of the memcpy's must be the same, or the preceding one
935   // must be larger than the following one.
936   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
937   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
938   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
939     return false;
940 
941   AliasAnalysis &AA = LookupAliasAnalysis();
942 
943   // Verify that the copied-from memory doesn't change in between the two
944   // transfers.  For example, in:
945   //    memcpy(a <- b)
946   //    *b = 42;
947   //    memcpy(c <- a)
948   // It would be invalid to transform the second memcpy into memcpy(c <- b).
949   //
950   // TODO: If the code between M and MDep is transparent to the destination "c",
951   // then we could still perform the xform by moving M up to the first memcpy.
952   //
953   // NOTE: This is conservative, it will stop on any read from the source loc,
954   // not just the defining memcpy.
955   MemDepResult SourceDep =
956       MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
957                                    M->getIterator(), M->getParent());
958   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
959     return false;
960 
961   // If the dest of the second might alias the source of the first, then the
962   // source and dest might overlap.  We still want to eliminate the intermediate
963   // value, but we have to generate a memmove instead of memcpy.
964   bool UseMemMove = false;
965   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
966                     MemoryLocation::getForSource(MDep)))
967     UseMemMove = true;
968 
969   // If all checks passed, then we can transform M.
970   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
971                     << *MDep << '\n' << *M << '\n');
972 
973   // TODO: Is this worth it if we're creating a less aligned memcpy? For
974   // example we could be moving from movaps -> movq on x86.
975   IRBuilder<> Builder(M);
976   if (UseMemMove)
977     Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
978                           MDep->getRawSource(), MDep->getSourceAlign(),
979                           M->getLength(), M->isVolatile());
980   else
981     Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
982                          MDep->getRawSource(), MDep->getSourceAlign(),
983                          M->getLength(), M->isVolatile());
984 
985   // Remove the instruction we're replacing.
986   MD->removeInstruction(M);
987   M->eraseFromParent();
988   ++NumMemCpyInstr;
989   return true;
990 }
991 
992 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
993 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
994 /// weren't copied over by \p MemCpy.
995 ///
996 /// In other words, transform:
997 /// \code
998 ///   memset(dst, c, dst_size);
999 ///   memcpy(dst, src, src_size);
1000 /// \endcode
1001 /// into:
1002 /// \code
1003 ///   memcpy(dst, src, src_size);
1004 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1005 /// \endcode
processMemSetMemCpyDependence(MemCpyInst * MemCpy,MemSetInst * MemSet)1006 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1007                                                   MemSetInst *MemSet) {
1008   // We can only transform memset/memcpy with the same destination.
1009   if (MemSet->getDest() != MemCpy->getDest())
1010     return false;
1011 
1012   // Check that there are no other dependencies on the memset destination.
1013   MemDepResult DstDepInfo =
1014       MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
1015                                    MemCpy->getIterator(), MemCpy->getParent());
1016   if (DstDepInfo.getInst() != MemSet)
1017     return false;
1018 
1019   // Use the same i8* dest as the memcpy, killing the memset dest if different.
1020   Value *Dest = MemCpy->getRawDest();
1021   Value *DestSize = MemSet->getLength();
1022   Value *SrcSize = MemCpy->getLength();
1023 
1024   // By default, create an unaligned memset.
1025   unsigned Align = 1;
1026   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1027   // of the sum.
1028   const unsigned DestAlign =
1029       std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
1030   if (DestAlign > 1)
1031     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1032       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1033 
1034   IRBuilder<> Builder(MemCpy);
1035 
1036   // If the sizes have different types, zext the smaller one.
1037   if (DestSize->getType() != SrcSize->getType()) {
1038     if (DestSize->getType()->getIntegerBitWidth() >
1039         SrcSize->getType()->getIntegerBitWidth())
1040       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1041     else
1042       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1043   }
1044 
1045   Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1046   Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1047   Value *MemsetLen = Builder.CreateSelect(
1048       Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1049   Builder.CreateMemSet(
1050       Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest,
1051                         SrcSize),
1052       MemSet->getOperand(1), MemsetLen, MaybeAlign(Align));
1053 
1054   MD->removeInstruction(MemSet);
1055   MemSet->eraseFromParent();
1056   return true;
1057 }
1058 
1059 /// Determine whether the instruction has undefined content for the given Size,
1060 /// either because it was freshly alloca'd or started its lifetime.
hasUndefContents(Instruction * I,ConstantInt * Size)1061 static bool hasUndefContents(Instruction *I, ConstantInt *Size) {
1062   if (isa<AllocaInst>(I))
1063     return true;
1064 
1065   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1066     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1067       if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1068         if (LTSize->getZExtValue() >= Size->getZExtValue())
1069           return true;
1070 
1071   return false;
1072 }
1073 
1074 /// Transform memcpy to memset when its source was just memset.
1075 /// In other words, turn:
1076 /// \code
1077 ///   memset(dst1, c, dst1_size);
1078 ///   memcpy(dst2, dst1, dst2_size);
1079 /// \endcode
1080 /// into:
1081 /// \code
1082 ///   memset(dst1, c, dst1_size);
1083 ///   memset(dst2, c, dst2_size);
1084 /// \endcode
1085 /// When dst2_size <= dst1_size.
1086 ///
1087 /// The \p MemCpy must have a Constant length.
performMemCpyToMemSetOptzn(MemCpyInst * MemCpy,MemSetInst * MemSet)1088 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1089                                                MemSetInst *MemSet) {
1090   AliasAnalysis &AA = LookupAliasAnalysis();
1091 
1092   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1093   // memcpying from the same address. Otherwise it is hard to reason about.
1094   if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1095     return false;
1096 
1097   // A known memset size is required.
1098   ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
1099   if (!MemSetSize)
1100     return false;
1101 
1102   // Make sure the memcpy doesn't read any more than what the memset wrote.
1103   // Don't worry about sizes larger than i64.
1104   ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
1105   if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) {
1106     // If the memcpy is larger than the memset, but the memory was undef prior
1107     // to the memset, we can just ignore the tail. Technically we're only
1108     // interested in the bytes from MemSetSize..CopySize here, but as we can't
1109     // easily represent this location, we use the full 0..CopySize range.
1110     MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1111     MemDepResult DepInfo = MD->getPointerDependencyFrom(
1112         MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
1113     if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
1114       CopySize = MemSetSize;
1115     else
1116       return false;
1117   }
1118 
1119   IRBuilder<> Builder(MemCpy);
1120   Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), CopySize,
1121                        MaybeAlign(MemCpy->getDestAlignment()));
1122   return true;
1123 }
1124 
1125 /// Perform simplification of memcpy's.  If we have memcpy A
1126 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1127 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1128 /// circumstances). This allows later passes to remove the first memcpy
1129 /// altogether.
processMemCpy(MemCpyInst * M)1130 bool MemCpyOptPass::processMemCpy(MemCpyInst *M) {
1131   // We can only optimize non-volatile memcpy's.
1132   if (M->isVolatile()) return false;
1133 
1134   // If the source and destination of the memcpy are the same, then zap it.
1135   if (M->getSource() == M->getDest()) {
1136     MD->removeInstruction(M);
1137     M->eraseFromParent();
1138     return false;
1139   }
1140 
1141   // If copying from a constant, try to turn the memcpy into a memset.
1142   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1143     if (GV->isConstant() && GV->hasDefinitiveInitializer())
1144       if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1145                                            M->getModule()->getDataLayout())) {
1146         IRBuilder<> Builder(M);
1147         Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1148                              MaybeAlign(M->getDestAlignment()), false);
1149         MD->removeInstruction(M);
1150         M->eraseFromParent();
1151         ++NumCpyToSet;
1152         return true;
1153       }
1154 
1155   MemDepResult DepInfo = MD->getDependency(M);
1156 
1157   // Try to turn a partially redundant memset + memcpy into
1158   // memcpy + smaller memset.  We don't need the memcpy size for this.
1159   if (DepInfo.isClobber())
1160     if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
1161       if (processMemSetMemCpyDependence(M, MDep))
1162         return true;
1163 
1164   // The optimizations after this point require the memcpy size.
1165   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
1166   if (!CopySize) return false;
1167 
1168   // There are four possible optimizations we can do for memcpy:
1169   //   a) memcpy-memcpy xform which exposes redundance for DSE.
1170   //   b) call-memcpy xform for return slot optimization.
1171   //   c) memcpy from freshly alloca'd space or space that has just started its
1172   //      lifetime copies undefined data, and we can therefore eliminate the
1173   //      memcpy in favor of the data that was already at the destination.
1174   //   d) memcpy from a just-memset'd source can be turned into memset.
1175   if (DepInfo.isClobber()) {
1176     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
1177       // FIXME: Can we pass in either of dest/src alignment here instead
1178       // of conservatively taking the minimum?
1179       unsigned Align = MinAlign(M->getDestAlignment(), M->getSourceAlignment());
1180       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
1181                                CopySize->getZExtValue(), Align,
1182                                C)) {
1183         MD->removeInstruction(M);
1184         M->eraseFromParent();
1185         return true;
1186       }
1187     }
1188   }
1189 
1190   MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
1191   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1192       SrcLoc, true, M->getIterator(), M->getParent());
1193 
1194   if (SrcDepInfo.isClobber()) {
1195     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1196       return processMemCpyMemCpyDependence(M, MDep);
1197   } else if (SrcDepInfo.isDef()) {
1198     if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) {
1199       MD->removeInstruction(M);
1200       M->eraseFromParent();
1201       ++NumMemCpyInstr;
1202       return true;
1203     }
1204   }
1205 
1206   if (SrcDepInfo.isClobber())
1207     if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1208       if (performMemCpyToMemSetOptzn(M, MDep)) {
1209         MD->removeInstruction(M);
1210         M->eraseFromParent();
1211         ++NumCpyToSet;
1212         return true;
1213       }
1214 
1215   return false;
1216 }
1217 
1218 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1219 /// not to alias.
processMemMove(MemMoveInst * M)1220 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1221   AliasAnalysis &AA = LookupAliasAnalysis();
1222 
1223   if (!TLI->has(LibFunc_memmove))
1224     return false;
1225 
1226   // See if the pointers alias.
1227   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
1228                     MemoryLocation::getForSource(M)))
1229     return false;
1230 
1231   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1232                     << "\n");
1233 
1234   // If not, then we know we can transform this.
1235   Type *ArgTys[3] = { M->getRawDest()->getType(),
1236                       M->getRawSource()->getType(),
1237                       M->getLength()->getType() };
1238   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1239                                                  Intrinsic::memcpy, ArgTys));
1240 
1241   // MemDep may have over conservative information about this instruction, just
1242   // conservatively flush it from the cache.
1243   MD->removeInstruction(M);
1244 
1245   ++NumMoveToCpy;
1246   return true;
1247 }
1248 
1249 /// This is called on every byval argument in call sites.
processByValArgument(CallSite CS,unsigned ArgNo)1250 bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) {
1251   const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
1252   // Find out what feeds this byval argument.
1253   Value *ByValArg = CS.getArgument(ArgNo);
1254   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
1255   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
1256   MemDepResult DepInfo = MD->getPointerDependencyFrom(
1257       MemoryLocation(ByValArg, LocationSize::precise(ByValSize)), true,
1258       CS.getInstruction()->getIterator(), CS.getInstruction()->getParent());
1259   if (!DepInfo.isClobber())
1260     return false;
1261 
1262   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1263   // a memcpy, see if we can byval from the source of the memcpy instead of the
1264   // result.
1265   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1266   if (!MDep || MDep->isVolatile() ||
1267       ByValArg->stripPointerCasts() != MDep->getDest())
1268     return false;
1269 
1270   // The length of the memcpy must be larger or equal to the size of the byval.
1271   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1272   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
1273     return false;
1274 
1275   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1276   // then it is some target specific value that we can't know.
1277   unsigned ByValAlign = CS.getParamAlignment(ArgNo);
1278   if (ByValAlign == 0) return false;
1279 
1280   // If it is greater than the memcpy, then we check to see if we can force the
1281   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1282   AssumptionCache &AC = LookupAssumptionCache();
1283   DominatorTree &DT = LookupDomTree();
1284   if (MDep->getSourceAlignment() < ByValAlign &&
1285       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
1286                                  CS.getInstruction(), &AC, &DT) < ByValAlign)
1287     return false;
1288 
1289   // The address space of the memcpy source must match the byval argument
1290   if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1291       ByValArg->getType()->getPointerAddressSpace())
1292     return false;
1293 
1294   // Verify that the copied-from memory doesn't change in between the memcpy and
1295   // the byval call.
1296   //    memcpy(a <- b)
1297   //    *b = 42;
1298   //    foo(*a)
1299   // It would be invalid to transform the second memcpy into foo(*b).
1300   //
1301   // NOTE: This is conservative, it will stop on any read from the source loc,
1302   // not just the defining memcpy.
1303   MemDepResult SourceDep = MD->getPointerDependencyFrom(
1304       MemoryLocation::getForSource(MDep), false,
1305       CS.getInstruction()->getIterator(), MDep->getParent());
1306   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1307     return false;
1308 
1309   Value *TmpCast = MDep->getSource();
1310   if (MDep->getSource()->getType() != ByValArg->getType())
1311     TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1312                               "tmpcast", CS.getInstruction());
1313 
1314   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1315                     << "  " << *MDep << "\n"
1316                     << "  " << *CS.getInstruction() << "\n");
1317 
1318   // Otherwise we're good!  Update the byval argument.
1319   CS.setArgument(ArgNo, TmpCast);
1320   ++NumMemCpyInstr;
1321   return true;
1322 }
1323 
1324 /// Executes one iteration of MemCpyOptPass.
iterateOnFunction(Function & F)1325 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1326   bool MadeChange = false;
1327 
1328   DominatorTree &DT = LookupDomTree();
1329 
1330   // Walk all instruction in the function.
1331   for (BasicBlock &BB : F) {
1332     // Skip unreachable blocks. For example processStore assumes that an
1333     // instruction in a BB can't be dominated by a later instruction in the
1334     // same BB (which is a scenario that can happen for an unreachable BB that
1335     // has itself as a predecessor).
1336     if (!DT.isReachableFromEntry(&BB))
1337       continue;
1338 
1339     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1340         // Avoid invalidating the iterator.
1341       Instruction *I = &*BI++;
1342 
1343       bool RepeatInstruction = false;
1344 
1345       if (StoreInst *SI = dyn_cast<StoreInst>(I))
1346         MadeChange |= processStore(SI, BI);
1347       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1348         RepeatInstruction = processMemSet(M, BI);
1349       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1350         RepeatInstruction = processMemCpy(M);
1351       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1352         RepeatInstruction = processMemMove(M);
1353       else if (auto CS = CallSite(I)) {
1354         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
1355           if (CS.isByValArgument(i))
1356             MadeChange |= processByValArgument(CS, i);
1357       }
1358 
1359       // Reprocess the instruction if desired.
1360       if (RepeatInstruction) {
1361         if (BI != BB.begin())
1362           --BI;
1363         MadeChange = true;
1364       }
1365     }
1366   }
1367 
1368   return MadeChange;
1369 }
1370 
run(Function & F,FunctionAnalysisManager & AM)1371 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1372   auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1373   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1374 
1375   auto LookupAliasAnalysis = [&]() -> AliasAnalysis & {
1376     return AM.getResult<AAManager>(F);
1377   };
1378   auto LookupAssumptionCache = [&]() -> AssumptionCache & {
1379     return AM.getResult<AssumptionAnalysis>(F);
1380   };
1381   auto LookupDomTree = [&]() -> DominatorTree & {
1382     return AM.getResult<DominatorTreeAnalysis>(F);
1383   };
1384 
1385   bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis,
1386                             LookupAssumptionCache, LookupDomTree);
1387   if (!MadeChange)
1388     return PreservedAnalyses::all();
1389 
1390   PreservedAnalyses PA;
1391   PA.preserveSet<CFGAnalyses>();
1392   PA.preserve<GlobalsAA>();
1393   PA.preserve<MemoryDependenceAnalysis>();
1394   return PA;
1395 }
1396 
runImpl(Function & F,MemoryDependenceResults * MD_,TargetLibraryInfo * TLI_,std::function<AliasAnalysis & ()> LookupAliasAnalysis_,std::function<AssumptionCache & ()> LookupAssumptionCache_,std::function<DominatorTree & ()> LookupDomTree_)1397 bool MemCpyOptPass::runImpl(
1398     Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_,
1399     std::function<AliasAnalysis &()> LookupAliasAnalysis_,
1400     std::function<AssumptionCache &()> LookupAssumptionCache_,
1401     std::function<DominatorTree &()> LookupDomTree_) {
1402   bool MadeChange = false;
1403   MD = MD_;
1404   TLI = TLI_;
1405   LookupAliasAnalysis = std::move(LookupAliasAnalysis_);
1406   LookupAssumptionCache = std::move(LookupAssumptionCache_);
1407   LookupDomTree = std::move(LookupDomTree_);
1408 
1409   // If we don't have at least memset and memcpy, there is little point of doing
1410   // anything here.  These are required by a freestanding implementation, so if
1411   // even they are disabled, there is no point in trying hard.
1412   if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
1413     return false;
1414 
1415   while (true) {
1416     if (!iterateOnFunction(F))
1417       break;
1418     MadeChange = true;
1419   }
1420 
1421   MD = nullptr;
1422   return MadeChange;
1423 }
1424 
1425 /// This is the main transformation entry point for a function.
runOnFunction(Function & F)1426 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1427   if (skipFunction(F))
1428     return false;
1429 
1430   auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1431   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1432 
1433   auto LookupAliasAnalysis = [this]() -> AliasAnalysis & {
1434     return getAnalysis<AAResultsWrapperPass>().getAAResults();
1435   };
1436   auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & {
1437     return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1438   };
1439   auto LookupDomTree = [this]() -> DominatorTree & {
1440     return getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1441   };
1442 
1443   return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache,
1444                       LookupDomTree);
1445 }
1446