1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <errno.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <sys/stat.h>
9
10 #include <algorithm>
11 #include <fstream>
12 #include <iomanip>
13 #include <iterator>
14 #include <string>
15 #include <tuple>
16 #include <type_traits>
17 #include <unordered_map>
18 #include <utility>
19 #include <vector>
20
21 #ifdef ENABLE_VTUNE_JIT_INTERFACE
22 #include "src/third_party/vtune/v8-vtune.h"
23 #endif
24
25 #include "include/libplatform/libplatform.h"
26 #include "include/libplatform/v8-tracing.h"
27 #include "include/v8-function.h"
28 #include "include/v8-initialization.h"
29 #include "include/v8-inspector.h"
30 #include "include/v8-json.h"
31 #include "include/v8-locker.h"
32 #include "include/v8-profiler.h"
33 #include "include/v8-wasm.h"
34 #include "src/api/api-inl.h"
35 #include "src/base/cpu.h"
36 #include "src/base/logging.h"
37 #include "src/base/platform/platform.h"
38 #include "src/base/platform/time.h"
39 #include "src/base/platform/wrappers.h"
40 #include "src/base/sanitizer/msan.h"
41 #include "src/base/sys-info.h"
42 #include "src/base/utils/random-number-generator.h"
43 #include "src/d8/d8-console.h"
44 #include "src/d8/d8-platforms.h"
45 #include "src/d8/d8.h"
46 #include "src/debug/debug-interface.h"
47 #include "src/deoptimizer/deoptimizer.h"
48 #include "src/diagnostics/basic-block-profiler.h"
49 #include "src/execution/v8threads.h"
50 #include "src/execution/vm-state-inl.h"
51 #include "src/flags/flags.h"
52 #include "src/handles/maybe-handles.h"
53 #include "src/heap/parked-scope.h"
54 #include "src/init/v8.h"
55 #include "src/interpreter/interpreter.h"
56 #include "src/logging/counters.h"
57 #include "src/logging/log-utils.h"
58 #include "src/objects/managed-inl.h"
59 #include "src/objects/objects-inl.h"
60 #include "src/objects/objects.h"
61 #include "src/parsing/parse-info.h"
62 #include "src/parsing/parsing.h"
63 #include "src/parsing/scanner-character-streams.h"
64 #include "src/profiler/profile-generator.h"
65 #include "src/snapshot/snapshot.h"
66 #include "src/tasks/cancelable-task.h"
67 #include "src/trap-handler/trap-handler.h"
68 #include "src/utils/ostreams.h"
69 #include "src/utils/utils.h"
70 #include "src/web-snapshot/web-snapshot.h"
71
72 #ifdef V8_FUZZILLI
73 #include "src/d8/cov.h"
74 #endif // V8_FUZZILLI
75
76 #ifdef V8_USE_PERFETTO
77 #include "perfetto/tracing.h"
78 #endif // V8_USE_PERFETTO
79
80 #ifdef V8_INTL_SUPPORT
81 #include "unicode/locid.h"
82 #endif // V8_INTL_SUPPORT
83
84 #ifdef V8_OS_LINUX
85 #include <sys/mman.h> // For MultiMappedAllocator.
86 #endif
87
88 #if !defined(_WIN32) && !defined(_WIN64)
89 #include <unistd.h>
90 #else
91 #include <windows.h>
92 #endif // !defined(_WIN32) && !defined(_WIN64)
93
94 #ifndef DCHECK
95 #define DCHECK(condition) assert(condition)
96 #endif
97
98 #ifndef CHECK
99 #define CHECK(condition) assert(condition)
100 #endif
101
102 #define TRACE_BS(...) \
103 do { \
104 if (i::FLAG_trace_backing_store) PrintF(__VA_ARGS__); \
105 } while (false)
106
107 namespace v8 {
108
109 namespace {
110
111 const int kMB = 1024 * 1024;
112
113 #ifdef V8_FUZZILLI
114 // REPRL = read-eval-print-reset-loop
115 // These file descriptors are being opened when Fuzzilli uses fork & execve to
116 // run V8.
117 #define REPRL_CRFD 100 // Control read file decriptor
118 #define REPRL_CWFD 101 // Control write file decriptor
119 #define REPRL_DRFD 102 // Data read file decriptor
120 #define REPRL_DWFD 103 // Data write file decriptor
121 bool fuzzilli_reprl = true;
122 #else
123 bool fuzzilli_reprl = false;
124 #endif // V8_FUZZILLI
125
126 const int kMaxSerializerMemoryUsage =
127 1 * kMB; // Arbitrary maximum for testing.
128
129 // Base class for shell ArrayBuffer allocators. It forwards all opertions to
130 // the default v8 allocator.
131 class ArrayBufferAllocatorBase : public v8::ArrayBuffer::Allocator {
132 public:
Allocate(size_t length)133 void* Allocate(size_t length) override {
134 return allocator_->Allocate(length);
135 }
136
AllocateUninitialized(size_t length)137 void* AllocateUninitialized(size_t length) override {
138 return allocator_->AllocateUninitialized(length);
139 }
140
Free(void * data,size_t length)141 void Free(void* data, size_t length) override {
142 allocator_->Free(data, length);
143 }
144
145 private:
146 std::unique_ptr<Allocator> allocator_ =
147 std::unique_ptr<Allocator>(NewDefaultAllocator());
148 };
149
150 // ArrayBuffer allocator that can use virtual memory to improve performance.
151 class ShellArrayBufferAllocator : public ArrayBufferAllocatorBase {
152 public:
Allocate(size_t length)153 void* Allocate(size_t length) override {
154 if (length >= kVMThreshold) return AllocateVM(length);
155 return ArrayBufferAllocatorBase::Allocate(length);
156 }
157
AllocateUninitialized(size_t length)158 void* AllocateUninitialized(size_t length) override {
159 if (length >= kVMThreshold) return AllocateVM(length);
160 return ArrayBufferAllocatorBase::AllocateUninitialized(length);
161 }
162
Free(void * data,size_t length)163 void Free(void* data, size_t length) override {
164 if (length >= kVMThreshold) {
165 FreeVM(data, length);
166 } else {
167 ArrayBufferAllocatorBase::Free(data, length);
168 }
169 }
170
171 private:
172 static constexpr size_t kVMThreshold = 65536;
173
AllocateVM(size_t length)174 void* AllocateVM(size_t length) {
175 DCHECK_LE(kVMThreshold, length);
176 v8::PageAllocator* page_allocator = i::GetArrayBufferPageAllocator();
177 size_t page_size = page_allocator->AllocatePageSize();
178 size_t allocated = RoundUp(length, page_size);
179 return i::AllocatePages(page_allocator, nullptr, allocated, page_size,
180 PageAllocator::kReadWrite);
181 }
182
FreeVM(void * data,size_t length)183 void FreeVM(void* data, size_t length) {
184 v8::PageAllocator* page_allocator = i::GetArrayBufferPageAllocator();
185 size_t page_size = page_allocator->AllocatePageSize();
186 size_t allocated = RoundUp(length, page_size);
187 i::FreePages(page_allocator, data, allocated);
188 }
189 };
190
191 // ArrayBuffer allocator that never allocates over 10MB.
192 class MockArrayBufferAllocator : public ArrayBufferAllocatorBase {
193 protected:
Allocate(size_t length)194 void* Allocate(size_t length) override {
195 return ArrayBufferAllocatorBase::Allocate(Adjust(length));
196 }
197
AllocateUninitialized(size_t length)198 void* AllocateUninitialized(size_t length) override {
199 return ArrayBufferAllocatorBase::AllocateUninitialized(Adjust(length));
200 }
201
Free(void * data,size_t length)202 void Free(void* data, size_t length) override {
203 return ArrayBufferAllocatorBase::Free(data, Adjust(length));
204 }
205
206 private:
Adjust(size_t length)207 size_t Adjust(size_t length) {
208 const size_t kAllocationLimit = 10 * kMB;
209 return length > kAllocationLimit ? i::AllocatePageSize() : length;
210 }
211 };
212
213 // ArrayBuffer allocator that can be equipped with a limit to simulate system
214 // OOM.
215 class MockArrayBufferAllocatiorWithLimit : public MockArrayBufferAllocator {
216 public:
MockArrayBufferAllocatiorWithLimit(size_t allocation_limit)217 explicit MockArrayBufferAllocatiorWithLimit(size_t allocation_limit)
218 : space_left_(allocation_limit) {}
219
220 protected:
Allocate(size_t length)221 void* Allocate(size_t length) override {
222 if (length > space_left_) {
223 return nullptr;
224 }
225 space_left_ -= length;
226 return MockArrayBufferAllocator::Allocate(length);
227 }
228
AllocateUninitialized(size_t length)229 void* AllocateUninitialized(size_t length) override {
230 if (length > space_left_) {
231 return nullptr;
232 }
233 space_left_ -= length;
234 return MockArrayBufferAllocator::AllocateUninitialized(length);
235 }
236
Free(void * data,size_t length)237 void Free(void* data, size_t length) override {
238 space_left_ += length;
239 return MockArrayBufferAllocator::Free(data, length);
240 }
241
242 private:
243 std::atomic<size_t> space_left_;
244 };
245
246 #if MULTI_MAPPED_ALLOCATOR_AVAILABLE
247
248 // This is a mock allocator variant that provides a huge virtual allocation
249 // backed by a small real allocation that is repeatedly mapped. If you create an
250 // array on memory allocated by this allocator, you will observe that elements
251 // will alias each other as if their indices were modulo-divided by the real
252 // allocation length.
253 // The purpose is to allow stability-testing of huge (typed) arrays without
254 // actually consuming huge amounts of physical memory.
255 // This is currently only available on Linux because it relies on {mremap}.
256 class MultiMappedAllocator : public ArrayBufferAllocatorBase {
257 protected:
Allocate(size_t length)258 void* Allocate(size_t length) override {
259 if (length < kChunkSize) {
260 return ArrayBufferAllocatorBase::Allocate(length);
261 }
262 // We use mmap, which initializes pages to zero anyway.
263 return AllocateUninitialized(length);
264 }
265
AllocateUninitialized(size_t length)266 void* AllocateUninitialized(size_t length) override {
267 if (length < kChunkSize) {
268 return ArrayBufferAllocatorBase::AllocateUninitialized(length);
269 }
270 size_t rounded_length = RoundUp(length, kChunkSize);
271 int prot = PROT_READ | PROT_WRITE;
272 // We have to specify MAP_SHARED to make {mremap} below do what we want.
273 int flags = MAP_SHARED | MAP_ANONYMOUS;
274 void* real_alloc = mmap(nullptr, kChunkSize, prot, flags, -1, 0);
275 if (reinterpret_cast<intptr_t>(real_alloc) == -1) {
276 // If we ran into some limit (physical or virtual memory, or number
277 // of mappings, etc), return {nullptr}, which callers can handle.
278 if (errno == ENOMEM) {
279 return nullptr;
280 }
281 // Other errors may be bugs which we want to learn about.
282 FATAL("mmap (real) failed with error %d: %s", errno, strerror(errno));
283 }
284 void* virtual_alloc =
285 mmap(nullptr, rounded_length, prot, flags | MAP_NORESERVE, -1, 0);
286 if (reinterpret_cast<intptr_t>(virtual_alloc) == -1) {
287 if (errno == ENOMEM) {
288 // Undo earlier, successful mappings.
289 munmap(real_alloc, kChunkSize);
290 return nullptr;
291 }
292 FATAL("mmap (virtual) failed with error %d: %s", errno, strerror(errno));
293 }
294 i::Address virtual_base = reinterpret_cast<i::Address>(virtual_alloc);
295 i::Address virtual_end = virtual_base + rounded_length;
296 for (i::Address to_map = virtual_base; to_map < virtual_end;
297 to_map += kChunkSize) {
298 // Specifying 0 as the "old size" causes the existing map entry to not
299 // get deleted, which is important so that we can remap it again in the
300 // next iteration of this loop.
301 void* result =
302 mremap(real_alloc, 0, kChunkSize, MREMAP_MAYMOVE | MREMAP_FIXED,
303 reinterpret_cast<void*>(to_map));
304 if (reinterpret_cast<intptr_t>(result) == -1) {
305 if (errno == ENOMEM) {
306 // Undo earlier, successful mappings.
307 munmap(real_alloc, kChunkSize);
308 munmap(virtual_alloc, (to_map - virtual_base));
309 return nullptr;
310 }
311 FATAL("mremap failed with error %d: %s", errno, strerror(errno));
312 }
313 }
314 base::MutexGuard lock_guard(®ions_mutex_);
315 regions_[virtual_alloc] = real_alloc;
316 return virtual_alloc;
317 }
318
Free(void * data,size_t length)319 void Free(void* data, size_t length) override {
320 if (length < kChunkSize) {
321 return ArrayBufferAllocatorBase::Free(data, length);
322 }
323 base::MutexGuard lock_guard(®ions_mutex_);
324 void* real_alloc = regions_[data];
325 munmap(real_alloc, kChunkSize);
326 size_t rounded_length = RoundUp(length, kChunkSize);
327 munmap(data, rounded_length);
328 regions_.erase(data);
329 }
330
331 private:
332 // Aiming for a "Huge Page" (2M on Linux x64) to go easy on the TLB.
333 static constexpr size_t kChunkSize = 2 * 1024 * 1024;
334
335 std::unordered_map<void*, void*> regions_;
336 base::Mutex regions_mutex_;
337 };
338
339 #endif // MULTI_MAPPED_ALLOCATOR_AVAILABLE
340
341 v8::Platform* g_default_platform;
342 std::unique_ptr<v8::Platform> g_platform;
343
TryGetValue(v8::Isolate * isolate,Local<Context> context,Local<v8::Object> object,const char * property)344 static MaybeLocal<Value> TryGetValue(v8::Isolate* isolate,
345 Local<Context> context,
346 Local<v8::Object> object,
347 const char* property) {
348 MaybeLocal<String> v8_str = String::NewFromUtf8(isolate, property);
349 if (v8_str.IsEmpty()) return {};
350 return object->Get(context, v8_str.ToLocalChecked());
351 }
352
GetValue(v8::Isolate * isolate,Local<Context> context,Local<v8::Object> object,const char * property)353 static Local<Value> GetValue(v8::Isolate* isolate, Local<Context> context,
354 Local<v8::Object> object, const char* property) {
355 return TryGetValue(isolate, context, object, property).ToLocalChecked();
356 }
357
GetWorkerFromInternalField(Isolate * isolate,Local<Object> object)358 std::shared_ptr<Worker> GetWorkerFromInternalField(Isolate* isolate,
359 Local<Object> object) {
360 if (object->InternalFieldCount() != 1) {
361 isolate->ThrowError("this is not a Worker");
362 return nullptr;
363 }
364
365 i::Handle<i::Object> handle = Utils::OpenHandle(*object->GetInternalField(0));
366 if (handle->IsSmi()) {
367 isolate->ThrowError("Worker is defunct because main thread is terminating");
368 return nullptr;
369 }
370 auto managed = i::Handle<i::Managed<Worker>>::cast(handle);
371 return managed->get();
372 }
373
GetThreadOptions(const char * name)374 base::Thread::Options GetThreadOptions(const char* name) {
375 // On some systems (OSX 10.6) the stack size default is 0.5Mb or less
376 // which is not enough to parse the big literal expressions used in tests.
377 // The stack size should be at least StackGuard::kLimitSize + some
378 // OS-specific padding for thread startup code. 2Mbytes seems to be enough.
379 return base::Thread::Options(name, 2 * kMB);
380 }
381
382 } // namespace
383
384 namespace tracing {
385
386 namespace {
387
388 static constexpr char kIncludedCategoriesParam[] = "included_categories";
389
390 class TraceConfigParser {
391 public:
FillTraceConfig(v8::Isolate * isolate,platform::tracing::TraceConfig * trace_config,const char * json_str)392 static void FillTraceConfig(v8::Isolate* isolate,
393 platform::tracing::TraceConfig* trace_config,
394 const char* json_str) {
395 HandleScope outer_scope(isolate);
396 Local<Context> context = Context::New(isolate);
397 Context::Scope context_scope(context);
398 HandleScope inner_scope(isolate);
399
400 Local<String> source =
401 String::NewFromUtf8(isolate, json_str).ToLocalChecked();
402 Local<Value> result = JSON::Parse(context, source).ToLocalChecked();
403 Local<v8::Object> trace_config_object = result.As<v8::Object>();
404
405 UpdateIncludedCategoriesList(isolate, context, trace_config_object,
406 trace_config);
407 }
408
409 private:
UpdateIncludedCategoriesList(v8::Isolate * isolate,Local<Context> context,Local<v8::Object> object,platform::tracing::TraceConfig * trace_config)410 static int UpdateIncludedCategoriesList(
411 v8::Isolate* isolate, Local<Context> context, Local<v8::Object> object,
412 platform::tracing::TraceConfig* trace_config) {
413 Local<Value> value =
414 GetValue(isolate, context, object, kIncludedCategoriesParam);
415 if (value->IsArray()) {
416 Local<Array> v8_array = value.As<Array>();
417 for (int i = 0, length = v8_array->Length(); i < length; ++i) {
418 Local<Value> v = v8_array->Get(context, i)
419 .ToLocalChecked()
420 ->ToString(context)
421 .ToLocalChecked();
422 String::Utf8Value str(isolate, v->ToString(context).ToLocalChecked());
423 trace_config->AddIncludedCategory(*str);
424 }
425 return v8_array->Length();
426 }
427 return 0;
428 }
429 };
430
431 } // namespace
432
CreateTraceConfigFromJSON(v8::Isolate * isolate,const char * json_str)433 static platform::tracing::TraceConfig* CreateTraceConfigFromJSON(
434 v8::Isolate* isolate, const char* json_str) {
435 platform::tracing::TraceConfig* trace_config =
436 new platform::tracing::TraceConfig();
437 TraceConfigParser::FillTraceConfig(isolate, trace_config, json_str);
438 return trace_config;
439 }
440
441 } // namespace tracing
442
443 class ExternalOwningOneByteStringResource
444 : public String::ExternalOneByteStringResource {
445 public:
446 ExternalOwningOneByteStringResource() = default;
ExternalOwningOneByteStringResource(std::unique_ptr<base::OS::MemoryMappedFile> file)447 ExternalOwningOneByteStringResource(
448 std::unique_ptr<base::OS::MemoryMappedFile> file)
449 : file_(std::move(file)) {}
data() const450 const char* data() const override {
451 return static_cast<char*>(file_->memory());
452 }
length() const453 size_t length() const override { return file_->size(); }
454
455 private:
456 std::unique_ptr<base::OS::MemoryMappedFile> file_;
457 };
458
459 // static variables:
460 CounterMap* Shell::counter_map_;
461 base::SharedMutex Shell::counter_mutex_;
462 base::OS::MemoryMappedFile* Shell::counters_file_ = nullptr;
463 CounterCollection Shell::local_counters_;
464 CounterCollection* Shell::counters_ = &local_counters_;
465 base::LazyMutex Shell::context_mutex_;
466 const base::TimeTicks Shell::kInitialTicks = base::TimeTicks::Now();
467 Global<Function> Shell::stringify_function_;
468 base::LazyMutex Shell::workers_mutex_;
469 bool Shell::allow_new_workers_ = true;
470 std::unordered_set<std::shared_ptr<Worker>> Shell::running_workers_;
471 std::atomic<bool> Shell::script_executed_{false};
472 std::atomic<bool> Shell::valid_fuzz_script_{false};
473 base::LazyMutex Shell::isolate_status_lock_;
474 std::map<v8::Isolate*, bool> Shell::isolate_status_;
475 std::map<v8::Isolate*, int> Shell::isolate_running_streaming_tasks_;
476 base::LazyMutex Shell::cached_code_mutex_;
477 std::map<std::string, std::unique_ptr<ScriptCompiler::CachedData>>
478 Shell::cached_code_map_;
479 std::atomic<int> Shell::unhandled_promise_rejections_{0};
480
481 Global<Context> Shell::evaluation_context_;
482 ArrayBuffer::Allocator* Shell::array_buffer_allocator;
483 Isolate* Shell::shared_isolate = nullptr;
484 bool check_d8_flag_contradictions = true;
485 ShellOptions Shell::options;
486 base::OnceType Shell::quit_once_ = V8_ONCE_INIT;
487
LookupCodeCache(Isolate * isolate,Local<Value> source)488 ScriptCompiler::CachedData* Shell::LookupCodeCache(Isolate* isolate,
489 Local<Value> source) {
490 base::MutexGuard lock_guard(cached_code_mutex_.Pointer());
491 CHECK(source->IsString());
492 v8::String::Utf8Value key(isolate, source);
493 DCHECK(*key);
494 auto entry = cached_code_map_.find(*key);
495 if (entry != cached_code_map_.end() && entry->second) {
496 int length = entry->second->length;
497 uint8_t* cache = new uint8_t[length];
498 memcpy(cache, entry->second->data, length);
499 ScriptCompiler::CachedData* cached_data = new ScriptCompiler::CachedData(
500 cache, length, ScriptCompiler::CachedData::BufferOwned);
501 return cached_data;
502 }
503 return nullptr;
504 }
505
StoreInCodeCache(Isolate * isolate,Local<Value> source,const ScriptCompiler::CachedData * cache_data)506 void Shell::StoreInCodeCache(Isolate* isolate, Local<Value> source,
507 const ScriptCompiler::CachedData* cache_data) {
508 base::MutexGuard lock_guard(cached_code_mutex_.Pointer());
509 CHECK(source->IsString());
510 if (cache_data == nullptr) return;
511 v8::String::Utf8Value key(isolate, source);
512 DCHECK(*key);
513 int length = cache_data->length;
514 uint8_t* cache = new uint8_t[length];
515 memcpy(cache, cache_data->data, length);
516 cached_code_map_[*key] = std::unique_ptr<ScriptCompiler::CachedData>(
517 new ScriptCompiler::CachedData(cache, length,
518 ScriptCompiler::CachedData::BufferOwned));
519 }
520
521 // Dummy external source stream which returns the whole source in one go.
522 // TODO(leszeks): Also test chunking the data.
523 class DummySourceStream : public v8::ScriptCompiler::ExternalSourceStream {
524 public:
DummySourceStream(Local<String> source)525 explicit DummySourceStream(Local<String> source) : done_(false) {
526 source_buffer_ = Utils::OpenHandle(*source)->ToCString(
527 i::ALLOW_NULLS, i::FAST_STRING_TRAVERSAL, &source_length_);
528 }
529
GetMoreData(const uint8_t ** src)530 size_t GetMoreData(const uint8_t** src) override {
531 if (done_) {
532 return 0;
533 }
534 *src = reinterpret_cast<uint8_t*>(source_buffer_.release());
535 done_ = true;
536
537 return source_length_;
538 }
539
540 private:
541 int source_length_;
542 std::unique_ptr<char[]> source_buffer_;
543 bool done_;
544 };
545
546 class StreamingCompileTask final : public v8::Task {
547 public:
StreamingCompileTask(Isolate * isolate,v8::ScriptCompiler::StreamedSource * streamed_source,v8::ScriptType type)548 StreamingCompileTask(Isolate* isolate,
549 v8::ScriptCompiler::StreamedSource* streamed_source,
550 v8::ScriptType type)
551 : isolate_(isolate),
552 script_streaming_task_(v8::ScriptCompiler::StartStreaming(
553 isolate, streamed_source, type)) {
554 Shell::NotifyStartStreamingTask(isolate_);
555 }
556
Run()557 void Run() override {
558 script_streaming_task_->Run();
559 // Signal that the task has finished using the task runner to wake the
560 // message loop.
561 Shell::PostForegroundTask(isolate_, std::make_unique<FinishTask>(isolate_));
562 }
563
564 private:
565 class FinishTask final : public v8::Task {
566 public:
FinishTask(Isolate * isolate)567 explicit FinishTask(Isolate* isolate) : isolate_(isolate) {}
Run()568 void Run() final { Shell::NotifyFinishStreamingTask(isolate_); }
569 Isolate* isolate_;
570 };
571
572 Isolate* isolate_;
573 std::unique_ptr<v8::ScriptCompiler::ScriptStreamingTask>
574 script_streaming_task_;
575 };
576
577 namespace {
578 template <class T>
CompileStreamed(Local<Context> context,ScriptCompiler::StreamedSource * v8_source,Local<String> full_source_string,const ScriptOrigin & origin)579 MaybeLocal<T> CompileStreamed(Local<Context> context,
580 ScriptCompiler::StreamedSource* v8_source,
581 Local<String> full_source_string,
582 const ScriptOrigin& origin) {}
583
584 template <>
CompileStreamed(Local<Context> context,ScriptCompiler::StreamedSource * v8_source,Local<String> full_source_string,const ScriptOrigin & origin)585 MaybeLocal<Script> CompileStreamed(Local<Context> context,
586 ScriptCompiler::StreamedSource* v8_source,
587 Local<String> full_source_string,
588 const ScriptOrigin& origin) {
589 return ScriptCompiler::Compile(context, v8_source, full_source_string,
590 origin);
591 }
592
593 template <>
CompileStreamed(Local<Context> context,ScriptCompiler::StreamedSource * v8_source,Local<String> full_source_string,const ScriptOrigin & origin)594 MaybeLocal<Module> CompileStreamed(Local<Context> context,
595 ScriptCompiler::StreamedSource* v8_source,
596 Local<String> full_source_string,
597 const ScriptOrigin& origin) {
598 return ScriptCompiler::CompileModule(context, v8_source, full_source_string,
599 origin);
600 }
601
602 template <class T>
Compile(Local<Context> context,ScriptCompiler::Source * source,ScriptCompiler::CompileOptions options)603 MaybeLocal<T> Compile(Local<Context> context, ScriptCompiler::Source* source,
604 ScriptCompiler::CompileOptions options) {}
605 template <>
Compile(Local<Context> context,ScriptCompiler::Source * source,ScriptCompiler::CompileOptions options)606 MaybeLocal<Script> Compile(Local<Context> context,
607 ScriptCompiler::Source* source,
608 ScriptCompiler::CompileOptions options) {
609 return ScriptCompiler::Compile(context, source, options);
610 }
611
612 template <>
Compile(Local<Context> context,ScriptCompiler::Source * source,ScriptCompiler::CompileOptions options)613 MaybeLocal<Module> Compile(Local<Context> context,
614 ScriptCompiler::Source* source,
615 ScriptCompiler::CompileOptions options) {
616 return ScriptCompiler::CompileModule(context->GetIsolate(), source, options);
617 }
618
619 } // namespace
620
621 template <class T>
CompileString(Isolate * isolate,Local<Context> context,Local<String> source,const ScriptOrigin & origin)622 MaybeLocal<T> Shell::CompileString(Isolate* isolate, Local<Context> context,
623 Local<String> source,
624 const ScriptOrigin& origin) {
625 if (options.streaming_compile) {
626 v8::ScriptCompiler::StreamedSource streamed_source(
627 std::make_unique<DummySourceStream>(source),
628 v8::ScriptCompiler::StreamedSource::UTF8);
629 PostBlockingBackgroundTask(std::make_unique<StreamingCompileTask>(
630 isolate, &streamed_source,
631 std::is_same<T, Module>::value ? v8::ScriptType::kModule
632 : v8::ScriptType::kClassic));
633 // Pump the loop until the streaming task completes.
634 Shell::CompleteMessageLoop(isolate);
635 return CompileStreamed<T>(context, &streamed_source, source, origin);
636 }
637
638 ScriptCompiler::CachedData* cached_code = nullptr;
639 if (options.compile_options == ScriptCompiler::kConsumeCodeCache) {
640 cached_code = LookupCodeCache(isolate, source);
641 }
642 ScriptCompiler::Source script_source(source, origin, cached_code);
643 MaybeLocal<T> result =
644 Compile<T>(context, &script_source,
645 cached_code ? ScriptCompiler::kConsumeCodeCache
646 : ScriptCompiler::kNoCompileOptions);
647 if (cached_code) CHECK(!cached_code->rejected);
648 return result;
649 }
650
651 namespace {
652 // For testing.
653 const int kHostDefinedOptionsLength = 2;
654 const uint32_t kHostDefinedOptionsMagicConstant = 0xF1F2F3F0;
655
CreateScriptOrigin(Isolate * isolate,Local<String> resource_name,v8::ScriptType type)656 ScriptOrigin CreateScriptOrigin(Isolate* isolate, Local<String> resource_name,
657 v8::ScriptType type) {
658 Local<PrimitiveArray> options =
659 PrimitiveArray::New(isolate, kHostDefinedOptionsLength);
660 options->Set(isolate, 0,
661 v8::Uint32::New(isolate, kHostDefinedOptionsMagicConstant));
662 options->Set(isolate, 1, resource_name);
663 return ScriptOrigin(isolate, resource_name, 0, 0, false, -1, Local<Value>(),
664 false, false, type == v8::ScriptType::kModule, options);
665 }
666
IsValidHostDefinedOptions(Local<Context> context,Local<Data> options,Local<Value> resource_name)667 bool IsValidHostDefinedOptions(Local<Context> context, Local<Data> options,
668 Local<Value> resource_name) {
669 if (!options->IsFixedArray()) return false;
670 Local<FixedArray> array = options.As<FixedArray>();
671 if (array->Length() != kHostDefinedOptionsLength) return false;
672 uint32_t magic = 0;
673 if (!array->Get(context, 0).As<Value>()->Uint32Value(context).To(&magic)) {
674 return false;
675 }
676 if (magic != kHostDefinedOptionsMagicConstant) return false;
677 return array->Get(context, 1).As<String>()->StrictEquals(resource_name);
678 }
679 } // namespace
680
681 // Executes a string within the current v8 context.
ExecuteString(Isolate * isolate,Local<String> source,Local<String> name,PrintResult print_result,ReportExceptions report_exceptions,ProcessMessageQueue process_message_queue)682 bool Shell::ExecuteString(Isolate* isolate, Local<String> source,
683 Local<String> name, PrintResult print_result,
684 ReportExceptions report_exceptions,
685 ProcessMessageQueue process_message_queue) {
686 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
687 if (i::FLAG_parse_only) {
688 i::VMState<PARSER> state(i_isolate);
689 i::Handle<i::String> str = Utils::OpenHandle(*(source));
690
691 // Set up ParseInfo.
692 i::UnoptimizedCompileState compile_state;
693 i::ReusableUnoptimizedCompileState reusable_state(i_isolate);
694
695 i::UnoptimizedCompileFlags flags =
696 i::UnoptimizedCompileFlags::ForToplevelCompile(
697 i_isolate, true, i::construct_language_mode(i::FLAG_use_strict),
698 i::REPLMode::kNo, ScriptType::kClassic, i::FLAG_lazy);
699
700 if (options.compile_options == v8::ScriptCompiler::kEagerCompile) {
701 flags.set_is_eager(true);
702 }
703
704 i::ParseInfo parse_info(i_isolate, flags, &compile_state, &reusable_state);
705
706 i::Handle<i::Script> script = parse_info.CreateScript(
707 i_isolate, str, i::kNullMaybeHandle, ScriptOriginOptions());
708 if (!i::parsing::ParseProgram(&parse_info, script, i_isolate,
709 i::parsing::ReportStatisticsMode::kYes)) {
710 parse_info.pending_error_handler()->PrepareErrors(
711 i_isolate, parse_info.ast_value_factory());
712 parse_info.pending_error_handler()->ReportErrors(i_isolate, script);
713
714 fprintf(stderr, "Failed parsing\n");
715 return false;
716 }
717 return true;
718 }
719
720 HandleScope handle_scope(isolate);
721 TryCatch try_catch(isolate);
722 try_catch.SetVerbose(report_exceptions == kReportExceptions);
723
724 // Explicitly check for stack overflows. This method can be called
725 // recursively, and since we consume quite some stack space for the C++
726 // frames, the stack check in the called frame might be too late.
727 if (i::StackLimitCheck{i_isolate}.HasOverflowed()) {
728 i_isolate->StackOverflow();
729 i_isolate->OptionalRescheduleException(false);
730 return false;
731 }
732
733 MaybeLocal<Value> maybe_result;
734 bool success = true;
735 {
736 PerIsolateData* data = PerIsolateData::Get(isolate);
737 Local<Context> realm =
738 Local<Context>::New(isolate, data->realms_[data->realm_current_]);
739 Context::Scope context_scope(realm);
740 Local<Context> context(isolate->GetCurrentContext());
741 ScriptOrigin origin =
742 CreateScriptOrigin(isolate, name, ScriptType::kClassic);
743
744 for (int i = 1; i < options.repeat_compile; ++i) {
745 HandleScope handle_scope_for_compiling(isolate);
746 if (CompileString<Script>(isolate, context, source, origin).IsEmpty()) {
747 return false;
748 }
749 }
750 Local<Script> script;
751 if (!CompileString<Script>(isolate, context, source, origin)
752 .ToLocal(&script)) {
753 return false;
754 }
755
756 if (options.code_cache_options ==
757 ShellOptions::CodeCacheOptions::kProduceCache) {
758 // Serialize and store it in memory for the next execution.
759 ScriptCompiler::CachedData* cached_data =
760 ScriptCompiler::CreateCodeCache(script->GetUnboundScript());
761 StoreInCodeCache(isolate, source, cached_data);
762 delete cached_data;
763 }
764 if (options.compile_only) return true;
765 if (options.compile_options == ScriptCompiler::kConsumeCodeCache) {
766 i::Handle<i::Script> i_script(
767 i::Script::cast(Utils::OpenHandle(*script)->shared().script()),
768 i_isolate);
769 // TODO(cbruni, chromium:1244145): remove once context-allocated.
770 i_script->set_host_defined_options(i::FixedArray::cast(
771 *Utils::OpenHandle(*(origin.GetHostDefinedOptions()))));
772 }
773 maybe_result = script->Run(realm);
774 if (options.code_cache_options ==
775 ShellOptions::CodeCacheOptions::kProduceCacheAfterExecute) {
776 // Serialize and store it in memory for the next execution.
777 ScriptCompiler::CachedData* cached_data =
778 ScriptCompiler::CreateCodeCache(script->GetUnboundScript());
779 StoreInCodeCache(isolate, source, cached_data);
780 delete cached_data;
781 }
782 if (process_message_queue) {
783 if (!EmptyMessageQueues(isolate)) success = false;
784 if (!HandleUnhandledPromiseRejections(isolate)) success = false;
785 }
786 data->realm_current_ = data->realm_switch_;
787
788 if (options.web_snapshot_config) {
789 const char* web_snapshot_output_file_name = "web.snap";
790 if (options.web_snapshot_output) {
791 web_snapshot_output_file_name = options.web_snapshot_output;
792 }
793
794 MaybeLocal<PrimitiveArray> maybe_exports =
795 ReadLines(isolate, options.web_snapshot_config);
796 Local<PrimitiveArray> exports;
797 if (!maybe_exports.ToLocal(&exports)) {
798 isolate->ThrowError("Web snapshots: unable to read config");
799 CHECK(try_catch.HasCaught());
800 ReportException(isolate, &try_catch);
801 return false;
802 }
803
804 i::WebSnapshotSerializer serializer(isolate);
805 i::WebSnapshotData snapshot_data;
806 if (serializer.TakeSnapshot(context, exports, snapshot_data)) {
807 DCHECK_NOT_NULL(snapshot_data.buffer);
808 WriteChars(web_snapshot_output_file_name, snapshot_data.buffer,
809 snapshot_data.buffer_size);
810 } else {
811 CHECK(try_catch.HasCaught());
812 return false;
813 }
814 } else if (options.web_snapshot_output) {
815 isolate->ThrowError(
816 "Web snapshots: --web-snapshot-config is needed when "
817 "--web-snapshot-output is passed");
818 }
819 }
820 Local<Value> result;
821 if (!maybe_result.ToLocal(&result)) {
822 DCHECK(try_catch.HasCaught());
823 return false;
824 }
825 // It's possible that a FinalizationRegistry cleanup task threw an error.
826 if (try_catch.HasCaught()) success = false;
827 if (print_result) {
828 if (options.test_shell) {
829 if (!result->IsUndefined()) {
830 // If all went well and the result wasn't undefined then print
831 // the returned value.
832 v8::String::Utf8Value str(isolate, result);
833 fwrite(*str, sizeof(**str), str.length(), stdout);
834 printf("\n");
835 }
836 } else {
837 v8::String::Utf8Value str(isolate, Stringify(isolate, result));
838 fwrite(*str, sizeof(**str), str.length(), stdout);
839 printf("\n");
840 }
841 }
842 return success;
843 }
844
845 namespace {
846
ToSTLString(Isolate * isolate,Local<String> v8_str)847 std::string ToSTLString(Isolate* isolate, Local<String> v8_str) {
848 String::Utf8Value utf8(isolate, v8_str);
849 // Should not be able to fail since the input is a String.
850 CHECK(*utf8);
851 return *utf8;
852 }
853
IsAbsolutePath(const std::string & path)854 bool IsAbsolutePath(const std::string& path) {
855 #if defined(_WIN32) || defined(_WIN64)
856 // This is an incorrect approximation, but should
857 // work for all our test-running cases.
858 return path.find(':') != std::string::npos;
859 #else
860 return path[0] == '/';
861 #endif
862 }
863
GetWorkingDirectory()864 std::string GetWorkingDirectory() {
865 #if defined(_WIN32) || defined(_WIN64)
866 char system_buffer[MAX_PATH];
867 // Unicode paths are unsupported, which is fine as long as
868 // the test directory doesn't include any such paths.
869 DWORD len = GetCurrentDirectoryA(MAX_PATH, system_buffer);
870 CHECK_GT(len, 0);
871 return system_buffer;
872 #else
873 char curdir[PATH_MAX];
874 CHECK_NOT_NULL(getcwd(curdir, PATH_MAX));
875 return curdir;
876 #endif
877 }
878
879 // Returns the directory part of path, without the trailing '/'.
DirName(const std::string & path)880 std::string DirName(const std::string& path) {
881 DCHECK(IsAbsolutePath(path));
882 size_t last_slash = path.find_last_of('/');
883 DCHECK(last_slash != std::string::npos);
884 return path.substr(0, last_slash);
885 }
886
887 // Resolves path to an absolute path if necessary, and does some
888 // normalization (eliding references to the current directory
889 // and replacing backslashes with slashes).
NormalizePath(const std::string & path,const std::string & dir_name)890 std::string NormalizePath(const std::string& path,
891 const std::string& dir_name) {
892 std::string absolute_path;
893 if (IsAbsolutePath(path)) {
894 absolute_path = path;
895 } else {
896 absolute_path = dir_name + '/' + path;
897 }
898 std::replace(absolute_path.begin(), absolute_path.end(), '\\', '/');
899 std::vector<std::string> segments;
900 std::istringstream segment_stream(absolute_path);
901 std::string segment;
902 while (std::getline(segment_stream, segment, '/')) {
903 if (segment == "..") {
904 if (!segments.empty()) segments.pop_back();
905 } else if (segment != ".") {
906 segments.push_back(segment);
907 }
908 }
909 // Join path segments.
910 std::ostringstream os;
911 if (segments.size() > 1) {
912 std::copy(segments.begin(), segments.end() - 1,
913 std::ostream_iterator<std::string>(os, "/"));
914 os << *segments.rbegin();
915 } else {
916 os << "/";
917 if (!segments.empty()) os << segments[0];
918 }
919 return os.str();
920 }
921
922 // Per-context Module data, allowing sharing of module maps
923 // across top-level module loads.
924 class ModuleEmbedderData {
925 private:
926 class ModuleGlobalHash {
927 public:
ModuleGlobalHash(Isolate * isolate)928 explicit ModuleGlobalHash(Isolate* isolate) : isolate_(isolate) {}
operator ()(const Global<Module> & module) const929 size_t operator()(const Global<Module>& module) const {
930 return module.Get(isolate_)->GetIdentityHash();
931 }
932
933 private:
934 Isolate* isolate_;
935 };
936
937 public:
ModuleEmbedderData(Isolate * isolate)938 explicit ModuleEmbedderData(Isolate* isolate)
939 : module_to_specifier_map(10, ModuleGlobalHash(isolate)),
940 json_module_to_parsed_json_map(10, ModuleGlobalHash(isolate)) {}
941
ModuleTypeFromImportAssertions(Local<Context> context,Local<FixedArray> import_assertions,bool hasPositions)942 static ModuleType ModuleTypeFromImportAssertions(
943 Local<Context> context, Local<FixedArray> import_assertions,
944 bool hasPositions) {
945 Isolate* isolate = context->GetIsolate();
946 const int kV8AssertionEntrySize = hasPositions ? 3 : 2;
947 for (int i = 0; i < import_assertions->Length();
948 i += kV8AssertionEntrySize) {
949 Local<String> v8_assertion_key =
950 import_assertions->Get(context, i).As<v8::String>();
951 std::string assertion_key = ToSTLString(isolate, v8_assertion_key);
952
953 if (assertion_key == "type") {
954 Local<String> v8_assertion_value =
955 import_assertions->Get(context, i + 1).As<String>();
956 std::string assertion_value = ToSTLString(isolate, v8_assertion_value);
957 if (assertion_value == "json") {
958 return ModuleType::kJSON;
959 } else {
960 // JSON is currently the only supported non-JS type
961 return ModuleType::kInvalid;
962 }
963 }
964 }
965
966 // If no type is asserted, default to JS.
967 return ModuleType::kJavaScript;
968 }
969
970 // Map from (normalized module specifier, module type) pair to Module.
971 std::map<std::pair<std::string, ModuleType>, Global<Module>> module_map;
972 // Map from Module to its URL as defined in the ScriptOrigin
973 std::unordered_map<Global<Module>, std::string, ModuleGlobalHash>
974 module_to_specifier_map;
975 // Map from JSON Module to its parsed content, for use in module
976 // JSONModuleEvaluationSteps
977 std::unordered_map<Global<Module>, Global<Value>, ModuleGlobalHash>
978 json_module_to_parsed_json_map;
979 };
980
981 enum { kModuleEmbedderDataIndex, kInspectorClientIndex };
982
InitializeModuleEmbedderData(Local<Context> context)983 void InitializeModuleEmbedderData(Local<Context> context) {
984 context->SetAlignedPointerInEmbedderData(
985 kModuleEmbedderDataIndex, new ModuleEmbedderData(context->GetIsolate()));
986 }
987
GetModuleDataFromContext(Local<Context> context)988 ModuleEmbedderData* GetModuleDataFromContext(Local<Context> context) {
989 return static_cast<ModuleEmbedderData*>(
990 context->GetAlignedPointerFromEmbedderData(kModuleEmbedderDataIndex));
991 }
992
DisposeModuleEmbedderData(Local<Context> context)993 void DisposeModuleEmbedderData(Local<Context> context) {
994 delete GetModuleDataFromContext(context);
995 context->SetAlignedPointerInEmbedderData(kModuleEmbedderDataIndex, nullptr);
996 }
997
ResolveModuleCallback(Local<Context> context,Local<String> specifier,Local<FixedArray> import_assertions,Local<Module> referrer)998 MaybeLocal<Module> ResolveModuleCallback(Local<Context> context,
999 Local<String> specifier,
1000 Local<FixedArray> import_assertions,
1001 Local<Module> referrer) {
1002 Isolate* isolate = context->GetIsolate();
1003 ModuleEmbedderData* d = GetModuleDataFromContext(context);
1004 auto specifier_it =
1005 d->module_to_specifier_map.find(Global<Module>(isolate, referrer));
1006 CHECK(specifier_it != d->module_to_specifier_map.end());
1007 std::string absolute_path = NormalizePath(ToSTLString(isolate, specifier),
1008 DirName(specifier_it->second));
1009 ModuleType module_type = ModuleEmbedderData::ModuleTypeFromImportAssertions(
1010 context, import_assertions, true);
1011 auto module_it =
1012 d->module_map.find(std::make_pair(absolute_path, module_type));
1013 CHECK(module_it != d->module_map.end());
1014 return module_it->second.Get(isolate);
1015 }
1016
1017 } // anonymous namespace
1018
FetchModuleTree(Local<Module> referrer,Local<Context> context,const std::string & file_name,ModuleType module_type)1019 MaybeLocal<Module> Shell::FetchModuleTree(Local<Module> referrer,
1020 Local<Context> context,
1021 const std::string& file_name,
1022 ModuleType module_type) {
1023 DCHECK(IsAbsolutePath(file_name));
1024 Isolate* isolate = context->GetIsolate();
1025 MaybeLocal<String> source_text = ReadFile(isolate, file_name.c_str(), false);
1026 if (source_text.IsEmpty() && options.fuzzy_module_file_extensions) {
1027 std::string fallback_file_name = file_name + ".js";
1028 source_text = ReadFile(isolate, fallback_file_name.c_str(), false);
1029 if (source_text.IsEmpty()) {
1030 fallback_file_name = file_name + ".mjs";
1031 source_text = ReadFile(isolate, fallback_file_name.c_str());
1032 }
1033 }
1034
1035 ModuleEmbedderData* d = GetModuleDataFromContext(context);
1036 if (source_text.IsEmpty()) {
1037 std::string msg = "d8: Error reading module from " + file_name;
1038 if (!referrer.IsEmpty()) {
1039 auto specifier_it =
1040 d->module_to_specifier_map.find(Global<Module>(isolate, referrer));
1041 CHECK(specifier_it != d->module_to_specifier_map.end());
1042 msg += "\n imported by " + specifier_it->second;
1043 }
1044 isolate->ThrowError(
1045 v8::String::NewFromUtf8(isolate, msg.c_str()).ToLocalChecked());
1046 return MaybeLocal<Module>();
1047 }
1048
1049 Local<String> resource_name =
1050 String::NewFromUtf8(isolate, file_name.c_str()).ToLocalChecked();
1051 ScriptOrigin origin =
1052 CreateScriptOrigin(isolate, resource_name, ScriptType::kModule);
1053
1054 Local<Module> module;
1055 if (module_type == ModuleType::kJavaScript) {
1056 ScriptCompiler::Source source(source_text.ToLocalChecked(), origin);
1057 if (!CompileString<Module>(isolate, context, source_text.ToLocalChecked(),
1058 origin)
1059 .ToLocal(&module)) {
1060 return MaybeLocal<Module>();
1061 }
1062 } else if (module_type == ModuleType::kJSON) {
1063 Local<Value> parsed_json;
1064 if (!v8::JSON::Parse(context, source_text.ToLocalChecked())
1065 .ToLocal(&parsed_json)) {
1066 return MaybeLocal<Module>();
1067 }
1068
1069 std::vector<Local<String>> export_names{
1070 String::NewFromUtf8(isolate, "default").ToLocalChecked()};
1071
1072 module = v8::Module::CreateSyntheticModule(
1073 isolate,
1074 String::NewFromUtf8(isolate, file_name.c_str()).ToLocalChecked(),
1075 export_names, Shell::JSONModuleEvaluationSteps);
1076
1077 CHECK(d->json_module_to_parsed_json_map
1078 .insert(std::make_pair(Global<Module>(isolate, module),
1079 Global<Value>(isolate, parsed_json)))
1080 .second);
1081 } else {
1082 UNREACHABLE();
1083 }
1084
1085 CHECK(d->module_map
1086 .insert(std::make_pair(std::make_pair(file_name, module_type),
1087 Global<Module>(isolate, module)))
1088 .second);
1089 CHECK(d->module_to_specifier_map
1090 .insert(std::make_pair(Global<Module>(isolate, module), file_name))
1091 .second);
1092
1093 std::string dir_name = DirName(file_name);
1094
1095 Local<FixedArray> module_requests = module->GetModuleRequests();
1096 for (int i = 0, length = module_requests->Length(); i < length; ++i) {
1097 Local<ModuleRequest> module_request =
1098 module_requests->Get(context, i).As<ModuleRequest>();
1099 Local<String> name = module_request->GetSpecifier();
1100 std::string absolute_path =
1101 NormalizePath(ToSTLString(isolate, name), dir_name);
1102 Local<FixedArray> import_assertions = module_request->GetImportAssertions();
1103 ModuleType request_module_type =
1104 ModuleEmbedderData::ModuleTypeFromImportAssertions(
1105 context, import_assertions, true);
1106
1107 if (request_module_type == ModuleType::kInvalid) {
1108 isolate->ThrowError("Invalid module type was asserted");
1109 return MaybeLocal<Module>();
1110 }
1111
1112 if (d->module_map.count(
1113 std::make_pair(absolute_path, request_module_type))) {
1114 continue;
1115 }
1116
1117 if (FetchModuleTree(module, context, absolute_path, request_module_type)
1118 .IsEmpty()) {
1119 return MaybeLocal<Module>();
1120 }
1121 }
1122
1123 return module;
1124 }
1125
JSONModuleEvaluationSteps(Local<Context> context,Local<Module> module)1126 MaybeLocal<Value> Shell::JSONModuleEvaluationSteps(Local<Context> context,
1127 Local<Module> module) {
1128 Isolate* isolate = context->GetIsolate();
1129
1130 ModuleEmbedderData* d = GetModuleDataFromContext(context);
1131 auto json_value_it =
1132 d->json_module_to_parsed_json_map.find(Global<Module>(isolate, module));
1133 CHECK(json_value_it != d->json_module_to_parsed_json_map.end());
1134 Local<Value> json_value = json_value_it->second.Get(isolate);
1135
1136 TryCatch try_catch(isolate);
1137 Maybe<bool> result = module->SetSyntheticModuleExport(
1138 isolate,
1139 String::NewFromUtf8Literal(isolate, "default",
1140 NewStringType::kInternalized),
1141 json_value);
1142
1143 // Setting the default export should never fail.
1144 CHECK(!try_catch.HasCaught());
1145 CHECK(!result.IsNothing() && result.FromJust());
1146
1147 Local<Promise::Resolver> resolver =
1148 Promise::Resolver::New(context).ToLocalChecked();
1149 resolver->Resolve(context, Undefined(isolate)).ToChecked();
1150 return resolver->GetPromise();
1151 }
1152
1153 struct DynamicImportData {
DynamicImportDatav8::DynamicImportData1154 DynamicImportData(Isolate* isolate_, Local<String> referrer_,
1155 Local<String> specifier_,
1156 Local<FixedArray> import_assertions_,
1157 Local<Promise::Resolver> resolver_)
1158 : isolate(isolate_) {
1159 referrer.Reset(isolate, referrer_);
1160 specifier.Reset(isolate, specifier_);
1161 import_assertions.Reset(isolate, import_assertions_);
1162 resolver.Reset(isolate, resolver_);
1163 }
1164
1165 Isolate* isolate;
1166 Global<String> referrer;
1167 Global<String> specifier;
1168 Global<FixedArray> import_assertions;
1169 Global<Promise::Resolver> resolver;
1170 };
1171
1172 namespace {
1173 struct ModuleResolutionData {
ModuleResolutionDatav8::__anon33b0cb620711::ModuleResolutionData1174 ModuleResolutionData(Isolate* isolate_, Local<Value> module_namespace_,
1175 Local<Promise::Resolver> resolver_)
1176 : isolate(isolate_) {
1177 module_namespace.Reset(isolate, module_namespace_);
1178 resolver.Reset(isolate, resolver_);
1179 }
1180
1181 Isolate* isolate;
1182 Global<Value> module_namespace;
1183 Global<Promise::Resolver> resolver;
1184 };
1185
1186 } // namespace
1187
ModuleResolutionSuccessCallback(const FunctionCallbackInfo<Value> & info)1188 void Shell::ModuleResolutionSuccessCallback(
1189 const FunctionCallbackInfo<Value>& info) {
1190 std::unique_ptr<ModuleResolutionData> module_resolution_data(
1191 static_cast<ModuleResolutionData*>(
1192 info.Data().As<v8::External>()->Value()));
1193 Isolate* isolate(module_resolution_data->isolate);
1194 HandleScope handle_scope(isolate);
1195
1196 Local<Promise::Resolver> resolver(
1197 module_resolution_data->resolver.Get(isolate));
1198 Local<Value> module_namespace(
1199 module_resolution_data->module_namespace.Get(isolate));
1200
1201 PerIsolateData* data = PerIsolateData::Get(isolate);
1202 Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
1203 Context::Scope context_scope(realm);
1204
1205 resolver->Resolve(realm, module_namespace).ToChecked();
1206 }
1207
ModuleResolutionFailureCallback(const FunctionCallbackInfo<Value> & info)1208 void Shell::ModuleResolutionFailureCallback(
1209 const FunctionCallbackInfo<Value>& info) {
1210 std::unique_ptr<ModuleResolutionData> module_resolution_data(
1211 static_cast<ModuleResolutionData*>(
1212 info.Data().As<v8::External>()->Value()));
1213 Isolate* isolate(module_resolution_data->isolate);
1214 HandleScope handle_scope(isolate);
1215
1216 Local<Promise::Resolver> resolver(
1217 module_resolution_data->resolver.Get(isolate));
1218
1219 PerIsolateData* data = PerIsolateData::Get(isolate);
1220 Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
1221 Context::Scope context_scope(realm);
1222
1223 DCHECK_EQ(info.Length(), 1);
1224 resolver->Reject(realm, info[0]).ToChecked();
1225 }
1226
HostImportModuleDynamically(Local<Context> context,Local<Data> host_defined_options,Local<Value> resource_name,Local<String> specifier,Local<FixedArray> import_assertions)1227 MaybeLocal<Promise> Shell::HostImportModuleDynamically(
1228 Local<Context> context, Local<Data> host_defined_options,
1229 Local<Value> resource_name, Local<String> specifier,
1230 Local<FixedArray> import_assertions) {
1231 Isolate* isolate = context->GetIsolate();
1232
1233 MaybeLocal<Promise::Resolver> maybe_resolver =
1234 Promise::Resolver::New(context);
1235 Local<Promise::Resolver> resolver;
1236 if (!maybe_resolver.ToLocal(&resolver)) return MaybeLocal<Promise>();
1237
1238 if (!IsValidHostDefinedOptions(context, host_defined_options,
1239 resource_name)) {
1240 resolver
1241 ->Reject(context, v8::Exception::TypeError(String::NewFromUtf8Literal(
1242 isolate, "Invalid host defined options")))
1243 .ToChecked();
1244 } else {
1245 DynamicImportData* data =
1246 new DynamicImportData(isolate, resource_name.As<String>(), specifier,
1247 import_assertions, resolver);
1248 PerIsolateData::Get(isolate)->AddDynamicImportData(data);
1249 isolate->EnqueueMicrotask(Shell::DoHostImportModuleDynamically, data);
1250 }
1251 return resolver->GetPromise();
1252 }
1253
HostInitializeImportMetaObject(Local<Context> context,Local<Module> module,Local<Object> meta)1254 void Shell::HostInitializeImportMetaObject(Local<Context> context,
1255 Local<Module> module,
1256 Local<Object> meta) {
1257 Isolate* isolate = context->GetIsolate();
1258 HandleScope handle_scope(isolate);
1259
1260 ModuleEmbedderData* d = GetModuleDataFromContext(context);
1261 auto specifier_it =
1262 d->module_to_specifier_map.find(Global<Module>(isolate, module));
1263 CHECK(specifier_it != d->module_to_specifier_map.end());
1264
1265 Local<String> url_key =
1266 String::NewFromUtf8Literal(isolate, "url", NewStringType::kInternalized);
1267 Local<String> url = String::NewFromUtf8(isolate, specifier_it->second.c_str())
1268 .ToLocalChecked();
1269 meta->CreateDataProperty(context, url_key, url).ToChecked();
1270 }
1271
HostCreateShadowRealmContext(Local<Context> initiator_context)1272 MaybeLocal<Context> Shell::HostCreateShadowRealmContext(
1273 Local<Context> initiator_context) {
1274 return v8::Context::New(initiator_context->GetIsolate());
1275 }
1276
DoHostImportModuleDynamically(void * import_data)1277 void Shell::DoHostImportModuleDynamically(void* import_data) {
1278 DynamicImportData* import_data_ =
1279 static_cast<DynamicImportData*>(import_data);
1280
1281 Isolate* isolate(import_data_->isolate);
1282 HandleScope handle_scope(isolate);
1283
1284 Local<String> referrer(import_data_->referrer.Get(isolate));
1285 Local<String> specifier(import_data_->specifier.Get(isolate));
1286 Local<FixedArray> import_assertions(
1287 import_data_->import_assertions.Get(isolate));
1288 Local<Promise::Resolver> resolver(import_data_->resolver.Get(isolate));
1289
1290 PerIsolateData* data = PerIsolateData::Get(isolate);
1291 PerIsolateData::Get(isolate)->DeleteDynamicImportData(import_data_);
1292
1293 Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
1294 Context::Scope context_scope(realm);
1295
1296 ModuleType module_type = ModuleEmbedderData::ModuleTypeFromImportAssertions(
1297 realm, import_assertions, false);
1298
1299 TryCatch try_catch(isolate);
1300 try_catch.SetVerbose(true);
1301
1302 if (module_type == ModuleType::kInvalid) {
1303 isolate->ThrowError("Invalid module type was asserted");
1304 CHECK(try_catch.HasCaught());
1305 resolver->Reject(realm, try_catch.Exception()).ToChecked();
1306 return;
1307 }
1308
1309 std::string source_url = ToSTLString(isolate, referrer);
1310 std::string dir_name =
1311 DirName(NormalizePath(source_url, GetWorkingDirectory()));
1312 std::string file_name = ToSTLString(isolate, specifier);
1313 std::string absolute_path = NormalizePath(file_name, dir_name);
1314
1315 ModuleEmbedderData* d = GetModuleDataFromContext(realm);
1316 Local<Module> root_module;
1317 auto module_it =
1318 d->module_map.find(std::make_pair(absolute_path, module_type));
1319 if (module_it != d->module_map.end()) {
1320 root_module = module_it->second.Get(isolate);
1321 } else if (!FetchModuleTree(Local<Module>(), realm, absolute_path,
1322 module_type)
1323 .ToLocal(&root_module)) {
1324 CHECK(try_catch.HasCaught());
1325 resolver->Reject(realm, try_catch.Exception()).ToChecked();
1326 return;
1327 }
1328
1329 MaybeLocal<Value> maybe_result;
1330 if (root_module->InstantiateModule(realm, ResolveModuleCallback)
1331 .FromMaybe(false)) {
1332 maybe_result = root_module->Evaluate(realm);
1333 CHECK(!maybe_result.IsEmpty());
1334 EmptyMessageQueues(isolate);
1335 }
1336
1337 Local<Value> result;
1338 if (!maybe_result.ToLocal(&result)) {
1339 DCHECK(try_catch.HasCaught());
1340 resolver->Reject(realm, try_catch.Exception()).ToChecked();
1341 return;
1342 }
1343
1344 Local<Value> module_namespace = root_module->GetModuleNamespace();
1345 Local<Promise> result_promise(result.As<Promise>());
1346
1347 // Setup callbacks, and then chain them to the result promise.
1348 // ModuleResolutionData will be deleted by the callbacks.
1349 auto module_resolution_data =
1350 new ModuleResolutionData(isolate, module_namespace, resolver);
1351 Local<v8::External> edata = External::New(isolate, module_resolution_data);
1352 Local<Function> callback_success;
1353 CHECK(Function::New(realm, ModuleResolutionSuccessCallback, edata)
1354 .ToLocal(&callback_success));
1355 Local<Function> callback_failure;
1356 CHECK(Function::New(realm, ModuleResolutionFailureCallback, edata)
1357 .ToLocal(&callback_failure));
1358 result_promise->Then(realm, callback_success, callback_failure)
1359 .ToLocalChecked();
1360 }
1361
ExecuteModule(Isolate * isolate,const char * file_name)1362 bool Shell::ExecuteModule(Isolate* isolate, const char* file_name) {
1363 HandleScope handle_scope(isolate);
1364
1365 PerIsolateData* data = PerIsolateData::Get(isolate);
1366 Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
1367 Context::Scope context_scope(realm);
1368
1369 std::string absolute_path = NormalizePath(file_name, GetWorkingDirectory());
1370
1371 // Use a non-verbose TryCatch and report exceptions manually using
1372 // Shell::ReportException, because some errors (such as file errors) are
1373 // thrown without entering JS and thus do not trigger
1374 // isolate->ReportPendingMessages().
1375 TryCatch try_catch(isolate);
1376
1377 ModuleEmbedderData* d = GetModuleDataFromContext(realm);
1378 Local<Module> root_module;
1379 auto module_it = d->module_map.find(
1380 std::make_pair(absolute_path, ModuleType::kJavaScript));
1381 if (module_it != d->module_map.end()) {
1382 root_module = module_it->second.Get(isolate);
1383 } else if (!FetchModuleTree(Local<Module>(), realm, absolute_path,
1384 ModuleType::kJavaScript)
1385 .ToLocal(&root_module)) {
1386 CHECK(try_catch.HasCaught());
1387 ReportException(isolate, &try_catch);
1388 return false;
1389 }
1390
1391 MaybeLocal<Value> maybe_result;
1392 if (root_module->InstantiateModule(realm, ResolveModuleCallback)
1393 .FromMaybe(false)) {
1394 maybe_result = root_module->Evaluate(realm);
1395 CHECK(!maybe_result.IsEmpty());
1396 EmptyMessageQueues(isolate);
1397 }
1398 Local<Value> result;
1399 if (!maybe_result.ToLocal(&result)) {
1400 DCHECK(try_catch.HasCaught());
1401 ReportException(isolate, &try_catch);
1402 return false;
1403 }
1404
1405 // Loop until module execution finishes
1406 Local<Promise> result_promise(result.As<Promise>());
1407 while (result_promise->State() == Promise::kPending) {
1408 Shell::CompleteMessageLoop(isolate);
1409 }
1410
1411 if (result_promise->State() == Promise::kRejected) {
1412 // If the exception has been caught by the promise pipeline, we rethrow
1413 // here in order to ReportException.
1414 // TODO(cbruni): Clean this up after we create a new API for the case
1415 // where TLA is enabled.
1416 if (!try_catch.HasCaught()) {
1417 isolate->ThrowException(result_promise->Result());
1418 } else {
1419 DCHECK_EQ(try_catch.Exception(), result_promise->Result());
1420 }
1421 ReportException(isolate, &try_catch);
1422 return false;
1423 }
1424
1425 DCHECK(!try_catch.HasCaught());
1426 return true;
1427 }
1428
ExecuteWebSnapshot(Isolate * isolate,const char * file_name)1429 bool Shell::ExecuteWebSnapshot(Isolate* isolate, const char* file_name) {
1430 HandleScope handle_scope(isolate);
1431
1432 PerIsolateData* data = PerIsolateData::Get(isolate);
1433 Local<Context> realm = data->realms_[data->realm_current_].Get(isolate);
1434 Context::Scope context_scope(realm);
1435 TryCatch try_catch(isolate);
1436 bool success = false;
1437
1438 std::string absolute_path = NormalizePath(file_name, GetWorkingDirectory());
1439
1440 int length = 0;
1441 std::unique_ptr<uint8_t[]> snapshot_data(
1442 reinterpret_cast<uint8_t*>(ReadChars(absolute_path.c_str(), &length)));
1443 if (length == 0) {
1444 isolate->ThrowError("Could not read the web snapshot file");
1445 } else {
1446 for (int r = 0; r < DeserializationRunCount(); ++r) {
1447 bool skip_exports = r > 0;
1448 i::WebSnapshotDeserializer deserializer(isolate, snapshot_data.get(),
1449 static_cast<size_t>(length));
1450 success = deserializer.Deserialize({}, skip_exports);
1451 }
1452 }
1453 if (!success) {
1454 CHECK(try_catch.HasCaught());
1455 ReportException(isolate, &try_catch);
1456 }
1457 return success;
1458 }
1459
1460 // Treat every line as a JSON value and parse it.
LoadJSON(Isolate * isolate,const char * file_name)1461 bool Shell::LoadJSON(Isolate* isolate, const char* file_name) {
1462 HandleScope handle_scope(isolate);
1463 PerIsolateData* isolate_data = PerIsolateData::Get(isolate);
1464 Local<Context> realm =
1465 isolate_data->realms_[isolate_data->realm_current_].Get(isolate);
1466 Context::Scope context_scope(realm);
1467 TryCatch try_catch(isolate);
1468
1469 std::string absolute_path = NormalizePath(file_name, GetWorkingDirectory());
1470 int length = 0;
1471 std::unique_ptr<char[]> data(ReadChars(absolute_path.c_str(), &length));
1472 if (length == 0) {
1473 printf("Error reading '%s'\n", file_name);
1474 base::OS::ExitProcess(1);
1475 }
1476 std::stringstream stream(data.get());
1477 std::string line;
1478 while (std::getline(stream, line, '\n')) {
1479 for (int r = 0; r < DeserializationRunCount(); ++r) {
1480 Local<String> source =
1481 String::NewFromUtf8(isolate, line.c_str()).ToLocalChecked();
1482 MaybeLocal<Value> maybe_value = JSON::Parse(realm, source);
1483
1484 Local<Value> value;
1485 if (!maybe_value.ToLocal(&value)) {
1486 DCHECK(try_catch.HasCaught());
1487 ReportException(isolate, &try_catch);
1488 return false;
1489 }
1490 }
1491 }
1492 return true;
1493 }
1494
PerIsolateData(Isolate * isolate)1495 PerIsolateData::PerIsolateData(Isolate* isolate)
1496 : isolate_(isolate), realms_(nullptr) {
1497 isolate->SetData(0, this);
1498 if (i::FLAG_expose_async_hooks) {
1499 async_hooks_wrapper_ = new AsyncHooks(isolate);
1500 }
1501 ignore_unhandled_promises_ = false;
1502 // TODO(v8:11525): Use methods on global Snapshot objects with
1503 // signature checks.
1504 HandleScope scope(isolate);
1505 Shell::CreateSnapshotTemplate(isolate);
1506 }
1507
~PerIsolateData()1508 PerIsolateData::~PerIsolateData() {
1509 isolate_->SetData(0, nullptr); // Not really needed, just to be sure...
1510 if (i::FLAG_expose_async_hooks) {
1511 delete async_hooks_wrapper_; // This uses the isolate
1512 }
1513 #if defined(LEAK_SANITIZER)
1514 for (DynamicImportData* data : import_data_) {
1515 delete data;
1516 }
1517 #endif
1518 }
1519
SetTimeout(Local<Function> callback,Local<Context> context)1520 void PerIsolateData::SetTimeout(Local<Function> callback,
1521 Local<Context> context) {
1522 set_timeout_callbacks_.emplace(isolate_, callback);
1523 set_timeout_contexts_.emplace(isolate_, context);
1524 }
1525
GetTimeoutCallback()1526 MaybeLocal<Function> PerIsolateData::GetTimeoutCallback() {
1527 if (set_timeout_callbacks_.empty()) return MaybeLocal<Function>();
1528 Local<Function> result = set_timeout_callbacks_.front().Get(isolate_);
1529 set_timeout_callbacks_.pop();
1530 return result;
1531 }
1532
GetTimeoutContext()1533 MaybeLocal<Context> PerIsolateData::GetTimeoutContext() {
1534 if (set_timeout_contexts_.empty()) return MaybeLocal<Context>();
1535 Local<Context> result = set_timeout_contexts_.front().Get(isolate_);
1536 set_timeout_contexts_.pop();
1537 return result;
1538 }
1539
RemoveUnhandledPromise(Local<Promise> promise)1540 void PerIsolateData::RemoveUnhandledPromise(Local<Promise> promise) {
1541 if (ignore_unhandled_promises_) return;
1542 // Remove handled promises from the list
1543 DCHECK_EQ(promise->GetIsolate(), isolate_);
1544 for (auto it = unhandled_promises_.begin(); it != unhandled_promises_.end();
1545 ++it) {
1546 v8::Local<v8::Promise> unhandled_promise = std::get<0>(*it).Get(isolate_);
1547 if (unhandled_promise == promise) {
1548 unhandled_promises_.erase(it--);
1549 }
1550 }
1551 }
1552
AddUnhandledPromise(Local<Promise> promise,Local<Message> message,Local<Value> exception)1553 void PerIsolateData::AddUnhandledPromise(Local<Promise> promise,
1554 Local<Message> message,
1555 Local<Value> exception) {
1556 if (ignore_unhandled_promises_) return;
1557 DCHECK_EQ(promise->GetIsolate(), isolate_);
1558 unhandled_promises_.emplace_back(v8::Global<v8::Promise>(isolate_, promise),
1559 v8::Global<v8::Message>(isolate_, message),
1560 v8::Global<v8::Value>(isolate_, exception));
1561 }
1562
HandleUnhandledPromiseRejections()1563 int PerIsolateData::HandleUnhandledPromiseRejections() {
1564 // Avoid recursive calls to HandleUnhandledPromiseRejections.
1565 if (ignore_unhandled_promises_) return 0;
1566 ignore_unhandled_promises_ = true;
1567 v8::HandleScope scope(isolate_);
1568 // Ignore promises that get added during error reporting.
1569 size_t i = 0;
1570 for (; i < unhandled_promises_.size(); i++) {
1571 const auto& tuple = unhandled_promises_[i];
1572 Local<v8::Message> message = std::get<1>(tuple).Get(isolate_);
1573 Local<v8::Value> value = std::get<2>(tuple).Get(isolate_);
1574 Shell::ReportException(isolate_, message, value);
1575 }
1576 unhandled_promises_.clear();
1577 ignore_unhandled_promises_ = false;
1578 return static_cast<int>(i);
1579 }
1580
AddDynamicImportData(DynamicImportData * data)1581 void PerIsolateData::AddDynamicImportData(DynamicImportData* data) {
1582 #if defined(LEAK_SANITIZER)
1583 import_data_.insert(data);
1584 #endif
1585 }
DeleteDynamicImportData(DynamicImportData * data)1586 void PerIsolateData::DeleteDynamicImportData(DynamicImportData* data) {
1587 #if defined(LEAK_SANITIZER)
1588 import_data_.erase(data);
1589 #endif
1590 delete data;
1591 }
1592
GetTestApiObjectCtor() const1593 Local<FunctionTemplate> PerIsolateData::GetTestApiObjectCtor() const {
1594 return test_api_object_ctor_.Get(isolate_);
1595 }
1596
SetTestApiObjectCtor(Local<FunctionTemplate> ctor)1597 void PerIsolateData::SetTestApiObjectCtor(Local<FunctionTemplate> ctor) {
1598 test_api_object_ctor_.Reset(isolate_, ctor);
1599 }
1600
GetSnapshotObjectCtor() const1601 Local<FunctionTemplate> PerIsolateData::GetSnapshotObjectCtor() const {
1602 return snapshot_object_ctor_.Get(isolate_);
1603 }
1604
SetSnapshotObjectCtor(Local<FunctionTemplate> ctor)1605 void PerIsolateData::SetSnapshotObjectCtor(Local<FunctionTemplate> ctor) {
1606 snapshot_object_ctor_.Reset(isolate_, ctor);
1607 }
1608
RealmScope(PerIsolateData * data)1609 PerIsolateData::RealmScope::RealmScope(PerIsolateData* data) : data_(data) {
1610 data_->realm_count_ = 1;
1611 data_->realm_current_ = 0;
1612 data_->realm_switch_ = 0;
1613 data_->realms_ = new Global<Context>[1];
1614 data_->realms_[0].Reset(data_->isolate_,
1615 data_->isolate_->GetEnteredOrMicrotaskContext());
1616 }
1617
~RealmScope()1618 PerIsolateData::RealmScope::~RealmScope() {
1619 // Drop realms to avoid keeping them alive. We don't dispose the
1620 // module embedder data for the first realm here, but instead do
1621 // it in RunShell or in RunMain, if not running in interactive mode
1622 for (int i = 1; i < data_->realm_count_; ++i) {
1623 Global<Context>& realm = data_->realms_[i];
1624 if (realm.IsEmpty()) continue;
1625 DisposeModuleEmbedderData(realm.Get(data_->isolate_));
1626 }
1627 data_->realm_count_ = 0;
1628 delete[] data_->realms_;
1629 }
1630
ExplicitRealmScope(PerIsolateData * data,int index)1631 PerIsolateData::ExplicitRealmScope::ExplicitRealmScope(PerIsolateData* data,
1632 int index)
1633 : data_(data), index_(index) {
1634 realm_ = Local<Context>::New(data->isolate_, data->realms_[index_]);
1635 realm_->Enter();
1636 previous_index_ = data->realm_current_;
1637 data->realm_current_ = data->realm_switch_ = index_;
1638 }
1639
~ExplicitRealmScope()1640 PerIsolateData::ExplicitRealmScope::~ExplicitRealmScope() {
1641 realm_->Exit();
1642 data_->realm_current_ = data_->realm_switch_ = previous_index_;
1643 }
1644
context() const1645 Local<Context> PerIsolateData::ExplicitRealmScope::context() const {
1646 return realm_;
1647 }
1648
RealmFind(Local<Context> context)1649 int PerIsolateData::RealmFind(Local<Context> context) {
1650 for (int i = 0; i < realm_count_; ++i) {
1651 if (realms_[i] == context) return i;
1652 }
1653 return -1;
1654 }
1655
RealmIndexOrThrow(const v8::FunctionCallbackInfo<v8::Value> & args,int arg_offset)1656 int PerIsolateData::RealmIndexOrThrow(
1657 const v8::FunctionCallbackInfo<v8::Value>& args, int arg_offset) {
1658 if (args.Length() < arg_offset || !args[arg_offset]->IsNumber()) {
1659 args.GetIsolate()->ThrowError("Invalid argument");
1660 return -1;
1661 }
1662 int index = args[arg_offset]
1663 ->Int32Value(args.GetIsolate()->GetCurrentContext())
1664 .FromMaybe(-1);
1665 if (index < 0 || index >= realm_count_ || realms_[index].IsEmpty()) {
1666 args.GetIsolate()->ThrowError("Invalid realm index");
1667 return -1;
1668 }
1669 return index;
1670 }
1671
1672 // performance.now() returns a time stamp as double, measured in milliseconds.
1673 // When FLAG_verify_predictable mode is enabled it returns result of
1674 // v8::Platform::MonotonicallyIncreasingTime().
PerformanceNow(const v8::FunctionCallbackInfo<v8::Value> & args)1675 void Shell::PerformanceNow(const v8::FunctionCallbackInfo<v8::Value>& args) {
1676 if (i::FLAG_verify_predictable) {
1677 args.GetReturnValue().Set(g_platform->MonotonicallyIncreasingTime());
1678 } else {
1679 base::TimeDelta delta = base::TimeTicks::Now() - kInitialTicks;
1680 args.GetReturnValue().Set(delta.InMillisecondsF());
1681 }
1682 }
1683
1684 // performance.measureMemory() implements JavaScript Memory API proposal.
1685 // See https://github.com/ulan/javascript-agent-memory/blob/master/explainer.md.
PerformanceMeasureMemory(const v8::FunctionCallbackInfo<v8::Value> & args)1686 void Shell::PerformanceMeasureMemory(
1687 const v8::FunctionCallbackInfo<v8::Value>& args) {
1688 v8::MeasureMemoryMode mode = v8::MeasureMemoryMode::kSummary;
1689 v8::Isolate* isolate = args.GetIsolate();
1690 Local<Context> context = isolate->GetCurrentContext();
1691 if (args.Length() >= 1 && args[0]->IsObject()) {
1692 Local<Object> object = args[0].As<Object>();
1693 Local<Value> value = TryGetValue(isolate, context, object, "detailed")
1694 .FromMaybe(Local<Value>());
1695 if (value.IsEmpty()) {
1696 // Exception was thrown and scheduled, so return from the callback.
1697 return;
1698 }
1699 if (value->IsBoolean() && value->BooleanValue(isolate)) {
1700 mode = v8::MeasureMemoryMode::kDetailed;
1701 }
1702 }
1703 Local<v8::Promise::Resolver> promise_resolver =
1704 v8::Promise::Resolver::New(context).ToLocalChecked();
1705 args.GetIsolate()->MeasureMemory(
1706 v8::MeasureMemoryDelegate::Default(isolate, context, promise_resolver,
1707 mode),
1708 v8::MeasureMemoryExecution::kEager);
1709 args.GetReturnValue().Set(promise_resolver->GetPromise());
1710 }
1711
1712 // Realm.current() returns the index of the currently active realm.
RealmCurrent(const v8::FunctionCallbackInfo<v8::Value> & args)1713 void Shell::RealmCurrent(const v8::FunctionCallbackInfo<v8::Value>& args) {
1714 Isolate* isolate = args.GetIsolate();
1715 PerIsolateData* data = PerIsolateData::Get(isolate);
1716 int index = data->RealmFind(isolate->GetEnteredOrMicrotaskContext());
1717 if (index == -1) return;
1718 args.GetReturnValue().Set(index);
1719 }
1720
1721 // Realm.owner(o) returns the index of the realm that created o.
RealmOwner(const v8::FunctionCallbackInfo<v8::Value> & args)1722 void Shell::RealmOwner(const v8::FunctionCallbackInfo<v8::Value>& args) {
1723 Isolate* isolate = args.GetIsolate();
1724 PerIsolateData* data = PerIsolateData::Get(isolate);
1725 if (args.Length() < 1 || !args[0]->IsObject()) {
1726 args.GetIsolate()->ThrowError("Invalid argument");
1727 return;
1728 }
1729 Local<Object> object =
1730 args[0]->ToObject(isolate->GetCurrentContext()).ToLocalChecked();
1731 i::Handle<i::JSReceiver> i_object = Utils::OpenHandle(*object);
1732 if (i_object->IsJSGlobalProxy() &&
1733 i::Handle<i::JSGlobalProxy>::cast(i_object)->IsDetached()) {
1734 return;
1735 }
1736 Local<Context> creation_context;
1737 if (!object->GetCreationContext().ToLocal(&creation_context)) {
1738 args.GetIsolate()->ThrowError("object doesn't have creation context");
1739 return;
1740 }
1741 int index = data->RealmFind(creation_context);
1742 if (index == -1) return;
1743 args.GetReturnValue().Set(index);
1744 }
1745
1746 // Realm.global(i) returns the global object of realm i.
1747 // (Note that properties of global objects cannot be read/written cross-realm.)
RealmGlobal(const v8::FunctionCallbackInfo<v8::Value> & args)1748 void Shell::RealmGlobal(const v8::FunctionCallbackInfo<v8::Value>& args) {
1749 PerIsolateData* data = PerIsolateData::Get(args.GetIsolate());
1750 int index = data->RealmIndexOrThrow(args, 0);
1751 if (index == -1) return;
1752 // TODO(chromium:324812): Ideally Context::Global should never return raw
1753 // global objects but return a global proxy. Currently it returns global
1754 // object when the global proxy is detached from the global object. The
1755 // following is a workaround till we fix Context::Global so we don't leak
1756 // global objects.
1757 Local<Object> global =
1758 Local<Context>::New(args.GetIsolate(), data->realms_[index])->Global();
1759 i::Handle<i::Object> i_global = Utils::OpenHandle(*global);
1760 if (i_global->IsJSGlobalObject()) {
1761 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(args.GetIsolate());
1762 i::Handle<i::JSObject> i_global_proxy =
1763 handle(i::Handle<i::JSGlobalObject>::cast(i_global)->global_proxy(),
1764 i_isolate);
1765 global = Utils::ToLocal(i_global_proxy);
1766 }
1767 args.GetReturnValue().Set(global);
1768 }
1769
CreateRealm(const v8::FunctionCallbackInfo<v8::Value> & args,int index,v8::MaybeLocal<Value> global_object)1770 MaybeLocal<Context> Shell::CreateRealm(
1771 const v8::FunctionCallbackInfo<v8::Value>& args, int index,
1772 v8::MaybeLocal<Value> global_object) {
1773 const char* kGlobalHandleLabel = "d8::realm";
1774 Isolate* isolate = args.GetIsolate();
1775 TryCatch try_catch(isolate);
1776 PerIsolateData* data = PerIsolateData::Get(isolate);
1777 if (index < 0) {
1778 Global<Context>* old_realms = data->realms_;
1779 index = data->realm_count_;
1780 data->realms_ = new Global<Context>[++data->realm_count_];
1781 for (int i = 0; i < index; ++i) {
1782 Global<Context>& realm = data->realms_[i];
1783 realm.Reset(isolate, old_realms[i]);
1784 if (!realm.IsEmpty()) {
1785 realm.AnnotateStrongRetainer(kGlobalHandleLabel);
1786 }
1787 old_realms[i].Reset();
1788 }
1789 delete[] old_realms;
1790 }
1791 Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
1792 Local<Context> context =
1793 Context::New(isolate, nullptr, global_template, global_object);
1794 if (context.IsEmpty()) return MaybeLocal<Context>();
1795 DCHECK(!try_catch.HasCaught());
1796 InitializeModuleEmbedderData(context);
1797 data->realms_[index].Reset(isolate, context);
1798 data->realms_[index].AnnotateStrongRetainer(kGlobalHandleLabel);
1799 args.GetReturnValue().Set(index);
1800 return context;
1801 }
1802
DisposeRealm(const v8::FunctionCallbackInfo<v8::Value> & args,int index)1803 void Shell::DisposeRealm(const v8::FunctionCallbackInfo<v8::Value>& args,
1804 int index) {
1805 Isolate* isolate = args.GetIsolate();
1806 PerIsolateData* data = PerIsolateData::Get(isolate);
1807 Local<Context> context = data->realms_[index].Get(isolate);
1808 DisposeModuleEmbedderData(context);
1809 data->realms_[index].Reset();
1810 // ContextDisposedNotification expects the disposed context to be entered.
1811 v8::Context::Scope scope(context);
1812 isolate->ContextDisposedNotification();
1813 isolate->IdleNotificationDeadline(g_platform->MonotonicallyIncreasingTime());
1814 }
1815
1816 // Realm.create() creates a new realm with a distinct security token
1817 // and returns its index.
RealmCreate(const v8::FunctionCallbackInfo<v8::Value> & args)1818 void Shell::RealmCreate(const v8::FunctionCallbackInfo<v8::Value>& args) {
1819 CreateRealm(args, -1, v8::MaybeLocal<Value>());
1820 }
1821
1822 // Realm.createAllowCrossRealmAccess() creates a new realm with the same
1823 // security token as the current realm.
RealmCreateAllowCrossRealmAccess(const v8::FunctionCallbackInfo<v8::Value> & args)1824 void Shell::RealmCreateAllowCrossRealmAccess(
1825 const v8::FunctionCallbackInfo<v8::Value>& args) {
1826 Local<Context> context;
1827 if (CreateRealm(args, -1, v8::MaybeLocal<Value>()).ToLocal(&context)) {
1828 context->SetSecurityToken(
1829 args.GetIsolate()->GetEnteredOrMicrotaskContext()->GetSecurityToken());
1830 }
1831 }
1832
1833 // Realm.navigate(i) creates a new realm with a distinct security token
1834 // in place of realm i.
RealmNavigate(const v8::FunctionCallbackInfo<v8::Value> & args)1835 void Shell::RealmNavigate(const v8::FunctionCallbackInfo<v8::Value>& args) {
1836 Isolate* isolate = args.GetIsolate();
1837 PerIsolateData* data = PerIsolateData::Get(isolate);
1838 int index = data->RealmIndexOrThrow(args, 0);
1839 if (index == -1) return;
1840 if (index == 0 || index == data->realm_current_ ||
1841 index == data->realm_switch_) {
1842 args.GetIsolate()->ThrowError("Invalid realm index");
1843 return;
1844 }
1845
1846 Local<Context> context = Local<Context>::New(isolate, data->realms_[index]);
1847 v8::MaybeLocal<Value> global_object = context->Global();
1848
1849 // Context::Global doesn't return JSGlobalProxy if DetachGlobal is called in
1850 // advance.
1851 if (!global_object.IsEmpty()) {
1852 HandleScope scope(isolate);
1853 if (!Utils::OpenHandle(*global_object.ToLocalChecked())
1854 ->IsJSGlobalProxy()) {
1855 global_object = v8::MaybeLocal<Value>();
1856 }
1857 }
1858
1859 DisposeRealm(args, index);
1860 CreateRealm(args, index, global_object);
1861 }
1862
1863 // Realm.detachGlobal(i) detaches the global objects of realm i from realm i.
RealmDetachGlobal(const v8::FunctionCallbackInfo<v8::Value> & args)1864 void Shell::RealmDetachGlobal(const v8::FunctionCallbackInfo<v8::Value>& args) {
1865 Isolate* isolate = args.GetIsolate();
1866 PerIsolateData* data = PerIsolateData::Get(isolate);
1867 int index = data->RealmIndexOrThrow(args, 0);
1868 if (index == -1) return;
1869 if (index == 0 || index == data->realm_current_ ||
1870 index == data->realm_switch_) {
1871 args.GetIsolate()->ThrowError("Invalid realm index");
1872 return;
1873 }
1874
1875 HandleScope scope(isolate);
1876 Local<Context> realm = Local<Context>::New(isolate, data->realms_[index]);
1877 realm->DetachGlobal();
1878 }
1879
1880 // Realm.dispose(i) disposes the reference to the realm i.
RealmDispose(const v8::FunctionCallbackInfo<v8::Value> & args)1881 void Shell::RealmDispose(const v8::FunctionCallbackInfo<v8::Value>& args) {
1882 Isolate* isolate = args.GetIsolate();
1883 PerIsolateData* data = PerIsolateData::Get(isolate);
1884 int index = data->RealmIndexOrThrow(args, 0);
1885 if (index == -1) return;
1886 if (index == 0 || index == data->realm_current_ ||
1887 index == data->realm_switch_) {
1888 args.GetIsolate()->ThrowError("Invalid realm index");
1889 return;
1890 }
1891 DisposeRealm(args, index);
1892 }
1893
1894 // Realm.switch(i) switches to the realm i for consecutive interactive inputs.
RealmSwitch(const v8::FunctionCallbackInfo<v8::Value> & args)1895 void Shell::RealmSwitch(const v8::FunctionCallbackInfo<v8::Value>& args) {
1896 Isolate* isolate = args.GetIsolate();
1897 PerIsolateData* data = PerIsolateData::Get(isolate);
1898 int index = data->RealmIndexOrThrow(args, 0);
1899 if (index == -1) return;
1900 data->realm_switch_ = index;
1901 }
1902
1903 // Realm.eval(i, s) evaluates s in realm i and returns the result.
RealmEval(const v8::FunctionCallbackInfo<v8::Value> & args)1904 void Shell::RealmEval(const v8::FunctionCallbackInfo<v8::Value>& args) {
1905 Isolate* isolate = args.GetIsolate();
1906 PerIsolateData* data = PerIsolateData::Get(isolate);
1907 int index = data->RealmIndexOrThrow(args, 0);
1908 if (index == -1) return;
1909 if (args.Length() < 2) {
1910 isolate->ThrowError("Invalid argument");
1911 return;
1912 }
1913
1914 Local<String> source;
1915 if (!ReadSource(args, 1, CodeType::kString).ToLocal(&source)) {
1916 isolate->ThrowError("Invalid argument");
1917 return;
1918 }
1919 ScriptOrigin origin =
1920 CreateScriptOrigin(isolate, String::NewFromUtf8Literal(isolate, "(d8)"),
1921 ScriptType::kClassic);
1922
1923 ScriptCompiler::Source script_source(source, origin);
1924 Local<UnboundScript> script;
1925 if (!ScriptCompiler::CompileUnboundScript(isolate, &script_source)
1926 .ToLocal(&script)) {
1927 return;
1928 }
1929 Local<Value> result;
1930 {
1931 PerIsolateData::ExplicitRealmScope realm_scope(data, index);
1932 if (!script->BindToCurrentContext()
1933 ->Run(realm_scope.context())
1934 .ToLocal(&result)) {
1935 return;
1936 }
1937 }
1938 args.GetReturnValue().Set(result);
1939 }
1940
1941 // Realm.shared is an accessor for a single shared value across realms.
RealmSharedGet(Local<String> property,const PropertyCallbackInfo<Value> & info)1942 void Shell::RealmSharedGet(Local<String> property,
1943 const PropertyCallbackInfo<Value>& info) {
1944 Isolate* isolate = info.GetIsolate();
1945 PerIsolateData* data = PerIsolateData::Get(isolate);
1946 if (data->realm_shared_.IsEmpty()) return;
1947 info.GetReturnValue().Set(data->realm_shared_);
1948 }
1949
RealmSharedSet(Local<String> property,Local<Value> value,const PropertyCallbackInfo<void> & info)1950 void Shell::RealmSharedSet(Local<String> property, Local<Value> value,
1951 const PropertyCallbackInfo<void>& info) {
1952 Isolate* isolate = info.GetIsolate();
1953 PerIsolateData* data = PerIsolateData::Get(isolate);
1954 data->realm_shared_.Reset(isolate, value);
1955 }
1956
1957 // Realm.takeWebSnapshot(index, exports) takes a snapshot of the list of exports
1958 // in the realm with the specified index and returns the result.
RealmTakeWebSnapshot(const v8::FunctionCallbackInfo<v8::Value> & args)1959 void Shell::RealmTakeWebSnapshot(
1960 const v8::FunctionCallbackInfo<v8::Value>& args) {
1961 Isolate* isolate = args.GetIsolate();
1962 if (args.Length() < 2 || !args[1]->IsArray()) {
1963 isolate->ThrowError("Invalid argument");
1964 return;
1965 }
1966 PerIsolateData* data = PerIsolateData::Get(isolate);
1967 int index = data->RealmIndexOrThrow(args, 0);
1968 if (index == -1) return;
1969 // Create a Local<PrimitiveArray> from the exports array.
1970 Local<Context> current_context = isolate->GetCurrentContext();
1971 Local<Array> exports_array = args[1].As<Array>();
1972 int length = exports_array->Length();
1973 Local<PrimitiveArray> exports = PrimitiveArray::New(isolate, length);
1974 for (int i = 0; i < length; ++i) {
1975 Local<Value> value;
1976 Local<String> str;
1977 if (!exports_array->Get(current_context, i).ToLocal(&value) ||
1978 !value->ToString(current_context).ToLocal(&str) || str.IsEmpty()) {
1979 isolate->ThrowError("Invalid argument");
1980 return;
1981 }
1982 exports->Set(isolate, i, str);
1983 }
1984 // Take the snapshot in the specified Realm.
1985 auto snapshot_data_shared = std::make_shared<i::WebSnapshotData>();
1986 {
1987 TryCatch try_catch(isolate);
1988 try_catch.SetVerbose(true);
1989 PerIsolateData::ExplicitRealmScope realm_scope(data, index);
1990 i::WebSnapshotSerializer serializer(isolate);
1991 if (!serializer.TakeSnapshot(realm_scope.context(), exports,
1992 *snapshot_data_shared)) {
1993 CHECK(try_catch.HasCaught());
1994 args.GetReturnValue().Set(Undefined(isolate));
1995 return;
1996 }
1997 }
1998 // Create a snapshot object and store the WebSnapshotData as an embedder
1999 // field. TODO(v8:11525): Use methods on global Snapshot objects with
2000 // signature checks.
2001 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
2002 i::Handle<i::Object> snapshot_data_managed =
2003 i::Managed<i::WebSnapshotData>::FromSharedPtr(
2004 i_isolate, snapshot_data_shared->buffer_size, snapshot_data_shared);
2005 v8::Local<v8::Value> shapshot_data = Utils::ToLocal(snapshot_data_managed);
2006 Local<ObjectTemplate> snapshot_template =
2007 data->GetSnapshotObjectCtor()->InstanceTemplate();
2008 Local<Object> snapshot_instance =
2009 snapshot_template->NewInstance(isolate->GetCurrentContext())
2010 .ToLocalChecked();
2011 snapshot_instance->SetInternalField(0, shapshot_data);
2012 args.GetReturnValue().Set(snapshot_instance);
2013 }
2014
2015 // Realm.useWebSnapshot(index, snapshot) deserializes the snapshot in the realm
2016 // with the specified index.
RealmUseWebSnapshot(const v8::FunctionCallbackInfo<v8::Value> & args)2017 void Shell::RealmUseWebSnapshot(
2018 const v8::FunctionCallbackInfo<v8::Value>& args) {
2019 Isolate* isolate = args.GetIsolate();
2020 if (args.Length() < 2 || !args[1]->IsObject()) {
2021 isolate->ThrowError("Invalid argument");
2022 return;
2023 }
2024 PerIsolateData* data = PerIsolateData::Get(isolate);
2025 int index = data->RealmIndexOrThrow(args, 0);
2026 if (index == -1) return;
2027 // Restore the snapshot data from the snapshot object.
2028 Local<Object> snapshot_instance = args[1].As<Object>();
2029 Local<FunctionTemplate> snapshot_template = data->GetSnapshotObjectCtor();
2030 if (!snapshot_template->HasInstance(snapshot_instance)) {
2031 isolate->ThrowError("Invalid argument");
2032 return;
2033 }
2034 v8::Local<v8::Value> snapshot_data = snapshot_instance->GetInternalField(0);
2035 i::Handle<i::Object> snapshot_data_handle = Utils::OpenHandle(*snapshot_data);
2036 auto snapshot_data_managed =
2037 i::Handle<i::Managed<i::WebSnapshotData>>::cast(snapshot_data_handle);
2038 std::shared_ptr<i::WebSnapshotData> snapshot_data_shared =
2039 snapshot_data_managed->get();
2040 // Deserialize the snapshot in the specified Realm.
2041 {
2042 PerIsolateData::ExplicitRealmScope realm_scope(data, index);
2043 i::WebSnapshotDeserializer deserializer(isolate,
2044 snapshot_data_shared->buffer,
2045 snapshot_data_shared->buffer_size);
2046 bool success = deserializer.Deserialize();
2047 args.GetReturnValue().Set(success);
2048 }
2049 }
2050
LogGetAndStop(const v8::FunctionCallbackInfo<v8::Value> & args)2051 void Shell::LogGetAndStop(const v8::FunctionCallbackInfo<v8::Value>& args) {
2052 Isolate* isolate = args.GetIsolate();
2053 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
2054 HandleScope handle_scope(isolate);
2055
2056 std::string file_name = i_isolate->logger()->file_name();
2057 if (!i::Log::IsLoggingToTemporaryFile(file_name)) {
2058 isolate->ThrowError("Only capturing from temporary files is supported.");
2059 return;
2060 }
2061 if (!i_isolate->logger()->is_logging()) {
2062 isolate->ThrowError("Logging not enabled.");
2063 return;
2064 }
2065
2066 std::string raw_log;
2067 FILE* log_file = i_isolate->logger()->TearDownAndGetLogFile();
2068 if (!log_file) {
2069 isolate->ThrowError("Log file does not exist.");
2070 return;
2071 }
2072
2073 bool exists = false;
2074 raw_log = i::ReadFile(log_file, &exists, true);
2075 base::Fclose(log_file);
2076
2077 if (!exists) {
2078 isolate->ThrowError("Unable to read log file.");
2079 return;
2080 }
2081 Local<String> result =
2082 String::NewFromUtf8(isolate, raw_log.c_str(), NewStringType::kNormal,
2083 static_cast<int>(raw_log.size()))
2084 .ToLocalChecked();
2085
2086 args.GetReturnValue().Set(result);
2087 }
2088
TestVerifySourcePositions(const v8::FunctionCallbackInfo<v8::Value> & args)2089 void Shell::TestVerifySourcePositions(
2090 const v8::FunctionCallbackInfo<v8::Value>& args) {
2091 Isolate* isolate = args.GetIsolate();
2092 // Check if the argument is a valid function.
2093 if (args.Length() != 1) {
2094 isolate->ThrowError("Expected function as single argument.");
2095 return;
2096 }
2097 auto arg_handle = Utils::OpenHandle(*args[0]);
2098 if (!arg_handle->IsHeapObject() ||
2099 !i::Handle<i::HeapObject>::cast(arg_handle)
2100 ->IsJSFunctionOrBoundFunctionOrWrappedFunction()) {
2101 isolate->ThrowError("Expected function as single argument.");
2102 return;
2103 }
2104
2105 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
2106 HandleScope handle_scope(isolate);
2107
2108 auto callable =
2109 i::Handle<i::JSFunctionOrBoundFunctionOrWrappedFunction>::cast(
2110 arg_handle);
2111 while (callable->IsJSBoundFunction()) {
2112 internal::DisallowGarbageCollection no_gc;
2113 auto bound_function = i::Handle<i::JSBoundFunction>::cast(callable);
2114 auto bound_target = bound_function->bound_target_function();
2115 if (!bound_target.IsJSFunctionOrBoundFunctionOrWrappedFunction()) {
2116 internal::AllowGarbageCollection allow_gc;
2117 isolate->ThrowError("Expected function as bound target.");
2118 return;
2119 }
2120 callable = handle(
2121 i::JSFunctionOrBoundFunctionOrWrappedFunction::cast(bound_target),
2122 i_isolate);
2123 }
2124
2125 i::Handle<i::JSFunction> function = i::Handle<i::JSFunction>::cast(callable);
2126 if (!function->shared().HasBytecodeArray()) {
2127 isolate->ThrowError("Function has no BytecodeArray attached.");
2128 return;
2129 }
2130 i::Handle<i::BytecodeArray> bytecodes =
2131 handle(function->shared().GetBytecodeArray(i_isolate), i_isolate);
2132 i::interpreter::BytecodeArrayIterator bytecode_iterator(bytecodes);
2133 bool has_baseline = function->shared().HasBaselineCode();
2134 i::Handle<i::ByteArray> bytecode_offsets;
2135 std::unique_ptr<i::baseline::BytecodeOffsetIterator> offset_iterator;
2136 if (has_baseline) {
2137 bytecode_offsets =
2138 handle(i::ByteArray::cast(
2139 function->shared().GetCode().bytecode_offset_table()),
2140 i_isolate);
2141 offset_iterator = std::make_unique<i::baseline::BytecodeOffsetIterator>(
2142 bytecode_offsets, bytecodes);
2143 // A freshly initiated BytecodeOffsetIterator points to the prologue.
2144 DCHECK_EQ(offset_iterator->current_pc_start_offset(), 0);
2145 DCHECK_EQ(offset_iterator->current_bytecode_offset(),
2146 i::kFunctionEntryBytecodeOffset);
2147 offset_iterator->Advance();
2148 }
2149 while (!bytecode_iterator.done()) {
2150 if (has_baseline) {
2151 if (offset_iterator->current_bytecode_offset() !=
2152 bytecode_iterator.current_offset()) {
2153 isolate->ThrowError("Baseline bytecode offset mismatch.");
2154 return;
2155 }
2156 // Check that we map every address to this bytecode correctly.
2157 // The start address is exclusive and the end address inclusive.
2158 for (i::Address pc = offset_iterator->current_pc_start_offset() + 1;
2159 pc <= offset_iterator->current_pc_end_offset(); ++pc) {
2160 i::baseline::BytecodeOffsetIterator pc_lookup(bytecode_offsets,
2161 bytecodes);
2162 pc_lookup.AdvanceToPCOffset(pc);
2163 if (pc_lookup.current_bytecode_offset() !=
2164 bytecode_iterator.current_offset()) {
2165 isolate->ThrowError(
2166 "Baseline bytecode offset mismatch for PC lookup.");
2167 return;
2168 }
2169 }
2170 }
2171 bytecode_iterator.Advance();
2172 if (has_baseline && !bytecode_iterator.done()) {
2173 if (offset_iterator->done()) {
2174 isolate->ThrowError("Missing bytecode(s) in baseline offset mapping.");
2175 return;
2176 }
2177 offset_iterator->Advance();
2178 }
2179 }
2180 if (has_baseline && !offset_iterator->done()) {
2181 isolate->ThrowError("Excess offsets in baseline offset mapping.");
2182 return;
2183 }
2184 }
2185
InstallConditionalFeatures(const v8::FunctionCallbackInfo<v8::Value> & args)2186 void Shell::InstallConditionalFeatures(
2187 const v8::FunctionCallbackInfo<v8::Value>& args) {
2188 Isolate* isolate = args.GetIsolate();
2189 isolate->InstallConditionalFeatures(isolate->GetCurrentContext());
2190 }
2191
2192 // async_hooks.createHook() registers functions to be called for different
2193 // lifetime events of each async operation.
AsyncHooksCreateHook(const v8::FunctionCallbackInfo<v8::Value> & args)2194 void Shell::AsyncHooksCreateHook(
2195 const v8::FunctionCallbackInfo<v8::Value>& args) {
2196 Local<Object> wrap =
2197 PerIsolateData::Get(args.GetIsolate())->GetAsyncHooks()->CreateHook(args);
2198 args.GetReturnValue().Set(wrap);
2199 }
2200
2201 // async_hooks.executionAsyncId() returns the asyncId of the current execution
2202 // context.
AsyncHooksExecutionAsyncId(const v8::FunctionCallbackInfo<v8::Value> & args)2203 void Shell::AsyncHooksExecutionAsyncId(
2204 const v8::FunctionCallbackInfo<v8::Value>& args) {
2205 Isolate* isolate = args.GetIsolate();
2206 HandleScope handle_scope(isolate);
2207 args.GetReturnValue().Set(v8::Number::New(
2208 isolate,
2209 PerIsolateData::Get(isolate)->GetAsyncHooks()->GetExecutionAsyncId()));
2210 }
2211
AsyncHooksTriggerAsyncId(const v8::FunctionCallbackInfo<v8::Value> & args)2212 void Shell::AsyncHooksTriggerAsyncId(
2213 const v8::FunctionCallbackInfo<v8::Value>& args) {
2214 Isolate* isolate = args.GetIsolate();
2215 HandleScope handle_scope(isolate);
2216 args.GetReturnValue().Set(v8::Number::New(
2217 isolate,
2218 PerIsolateData::Get(isolate)->GetAsyncHooks()->GetTriggerAsyncId()));
2219 }
2220
2221 static v8::debug::DebugDelegate dummy_delegate;
2222
EnableDebugger(const v8::FunctionCallbackInfo<v8::Value> & args)2223 void Shell::EnableDebugger(const v8::FunctionCallbackInfo<v8::Value>& args) {
2224 v8::debug::SetDebugDelegate(args.GetIsolate(), &dummy_delegate);
2225 }
2226
DisableDebugger(const v8::FunctionCallbackInfo<v8::Value> & args)2227 void Shell::DisableDebugger(const v8::FunctionCallbackInfo<v8::Value>& args) {
2228 v8::debug::SetDebugDelegate(args.GetIsolate(), nullptr);
2229 }
2230
SetPromiseHooks(const v8::FunctionCallbackInfo<v8::Value> & args)2231 void Shell::SetPromiseHooks(const v8::FunctionCallbackInfo<v8::Value>& args) {
2232 Isolate* isolate = args.GetIsolate();
2233 if (i::FLAG_correctness_fuzzer_suppressions) {
2234 // Setting promise hoooks dynamically has unexpected timing side-effects
2235 // with certain promise optimizations. We might not get all callbacks for
2236 // previously scheduled Promises or optimized code-paths that skip Promise
2237 // creation.
2238 isolate->ThrowError(
2239 "d8.promise.setHooks is disabled with "
2240 "--correctness-fuzzer-suppressions");
2241 return;
2242 }
2243 #ifdef V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS
2244 Local<Context> context = isolate->GetCurrentContext();
2245 HandleScope handle_scope(isolate);
2246
2247 context->SetPromiseHooks(
2248 args[0]->IsFunction() ? args[0].As<Function>() : Local<Function>(),
2249 args[1]->IsFunction() ? args[1].As<Function>() : Local<Function>(),
2250 args[2]->IsFunction() ? args[2].As<Function>() : Local<Function>(),
2251 args[3]->IsFunction() ? args[3].As<Function>() : Local<Function>());
2252
2253 args.GetReturnValue().Set(v8::Undefined(isolate));
2254 #else // V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS
2255 isolate->ThrowError(
2256 "d8.promise.setHooks is disabled due to missing build flag "
2257 "v8_enabale_javascript_in_promise_hooks");
2258 #endif // V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS
2259 }
2260
WriteToFile(FILE * file,const v8::FunctionCallbackInfo<v8::Value> & args)2261 void WriteToFile(FILE* file, const v8::FunctionCallbackInfo<v8::Value>& args) {
2262 for (int i = 0; i < args.Length(); i++) {
2263 HandleScope handle_scope(args.GetIsolate());
2264 if (i != 0) {
2265 fprintf(file, " ");
2266 }
2267
2268 // Explicitly catch potential exceptions in toString().
2269 v8::TryCatch try_catch(args.GetIsolate());
2270 Local<Value> arg = args[i];
2271 Local<String> str_obj;
2272
2273 if (arg->IsSymbol()) {
2274 arg = arg.As<Symbol>()->Description(args.GetIsolate());
2275 }
2276 if (!arg->ToString(args.GetIsolate()->GetCurrentContext())
2277 .ToLocal(&str_obj)) {
2278 try_catch.ReThrow();
2279 return;
2280 }
2281
2282 v8::String::Utf8Value str(args.GetIsolate(), str_obj);
2283 int n = static_cast<int>(fwrite(*str, sizeof(**str), str.length(), file));
2284 if (n != str.length()) {
2285 printf("Error in fwrite\n");
2286 base::OS::ExitProcess(1);
2287 }
2288 }
2289 }
2290
WriteAndFlush(FILE * file,const v8::FunctionCallbackInfo<v8::Value> & args)2291 void WriteAndFlush(FILE* file,
2292 const v8::FunctionCallbackInfo<v8::Value>& args) {
2293 WriteToFile(file, args);
2294 fprintf(file, "\n");
2295 fflush(file);
2296 }
2297
Print(const v8::FunctionCallbackInfo<v8::Value> & args)2298 void Shell::Print(const v8::FunctionCallbackInfo<v8::Value>& args) {
2299 WriteAndFlush(stdout, args);
2300 }
2301
PrintErr(const v8::FunctionCallbackInfo<v8::Value> & args)2302 void Shell::PrintErr(const v8::FunctionCallbackInfo<v8::Value>& args) {
2303 WriteAndFlush(stderr, args);
2304 }
2305
WriteStdout(const v8::FunctionCallbackInfo<v8::Value> & args)2306 void Shell::WriteStdout(const v8::FunctionCallbackInfo<v8::Value>& args) {
2307 WriteToFile(stdout, args);
2308 }
2309
ReadFile(const v8::FunctionCallbackInfo<v8::Value> & args)2310 void Shell::ReadFile(const v8::FunctionCallbackInfo<v8::Value>& args) {
2311 String::Utf8Value file_name(args.GetIsolate(), args[0]);
2312 if (*file_name == nullptr) {
2313 args.GetIsolate()->ThrowError("Error converting filename to string");
2314 return;
2315 }
2316 if (args.Length() == 2) {
2317 String::Utf8Value format(args.GetIsolate(), args[1]);
2318 if (*format && std::strcmp(*format, "binary") == 0) {
2319 ReadBuffer(args);
2320 return;
2321 }
2322 }
2323 Local<String> source;
2324 if (!ReadFile(args.GetIsolate(), *file_name).ToLocal(&source)) return;
2325 args.GetReturnValue().Set(source);
2326 }
2327
ReadFromStdin(Isolate * isolate)2328 Local<String> Shell::ReadFromStdin(Isolate* isolate) {
2329 static const int kBufferSize = 256;
2330 char buffer[kBufferSize];
2331 Local<String> accumulator = String::NewFromUtf8Literal(isolate, "");
2332 int length;
2333 while (true) {
2334 // Continue reading if the line ends with an escape '\\' or the line has
2335 // not been fully read into the buffer yet (does not end with '\n').
2336 // If fgets gets an error, just give up.
2337 char* input = nullptr;
2338 input = fgets(buffer, kBufferSize, stdin);
2339 if (input == nullptr) return Local<String>();
2340 length = static_cast<int>(strlen(buffer));
2341 if (length == 0) {
2342 return accumulator;
2343 } else if (buffer[length - 1] != '\n') {
2344 accumulator = String::Concat(
2345 isolate, accumulator,
2346 String::NewFromUtf8(isolate, buffer, NewStringType::kNormal, length)
2347 .ToLocalChecked());
2348 } else if (length > 1 && buffer[length - 2] == '\\') {
2349 buffer[length - 2] = '\n';
2350 accumulator =
2351 String::Concat(isolate, accumulator,
2352 String::NewFromUtf8(isolate, buffer,
2353 NewStringType::kNormal, length - 1)
2354 .ToLocalChecked());
2355 } else {
2356 return String::Concat(
2357 isolate, accumulator,
2358 String::NewFromUtf8(isolate, buffer, NewStringType::kNormal,
2359 length - 1)
2360 .ToLocalChecked());
2361 }
2362 }
2363 }
2364
ExecuteFile(const v8::FunctionCallbackInfo<v8::Value> & args)2365 void Shell::ExecuteFile(const v8::FunctionCallbackInfo<v8::Value>& args) {
2366 Isolate* isolate = args.GetIsolate();
2367 for (int i = 0; i < args.Length(); i++) {
2368 HandleScope handle_scope(isolate);
2369 String::Utf8Value file_name(isolate, args[i]);
2370 if (*file_name == nullptr) {
2371 std::ostringstream oss;
2372 oss << "Cannot convert file[" << i << "] name to string.";
2373 isolate->ThrowError(
2374 String::NewFromUtf8(isolate, oss.str().c_str()).ToLocalChecked());
2375 return;
2376 }
2377 Local<String> source;
2378 if (!ReadFile(isolate, *file_name).ToLocal(&source)) return;
2379 if (!ExecuteString(
2380 args.GetIsolate(), source,
2381 String::NewFromUtf8(isolate, *file_name).ToLocalChecked(),
2382 kNoPrintResult,
2383 options.quiet_load ? kNoReportExceptions : kReportExceptions,
2384 kNoProcessMessageQueue)) {
2385 std::ostringstream oss;
2386 oss << "Error executing file: \"" << *file_name << '"';
2387 isolate->ThrowError(
2388 String::NewFromUtf8(isolate, oss.str().c_str()).ToLocalChecked());
2389 return;
2390 }
2391 }
2392 }
2393
SetTimeout(const v8::FunctionCallbackInfo<v8::Value> & args)2394 void Shell::SetTimeout(const v8::FunctionCallbackInfo<v8::Value>& args) {
2395 Isolate* isolate = args.GetIsolate();
2396 args.GetReturnValue().Set(v8::Number::New(isolate, 0));
2397 if (args.Length() == 0 || !args[0]->IsFunction()) return;
2398 Local<Function> callback = args[0].As<Function>();
2399 Local<Context> context = isolate->GetCurrentContext();
2400 PerIsolateData::Get(isolate)->SetTimeout(callback, context);
2401 }
2402
ReadCodeTypeAndArguments(const v8::FunctionCallbackInfo<v8::Value> & args,int index,CodeType * code_type,Local<Value> * arguments)2403 void Shell::ReadCodeTypeAndArguments(
2404 const v8::FunctionCallbackInfo<v8::Value>& args, int index,
2405 CodeType* code_type, Local<Value>* arguments) {
2406 Isolate* isolate = args.GetIsolate();
2407 if (args.Length() > index && args[index]->IsObject()) {
2408 Local<Object> object = args[index].As<Object>();
2409 Local<Context> context = isolate->GetCurrentContext();
2410 Local<Value> value;
2411 if (!TryGetValue(isolate, context, object, "type").ToLocal(&value)) {
2412 *code_type = CodeType::kNone;
2413 return;
2414 }
2415 if (!value->IsString()) {
2416 *code_type = CodeType::kInvalid;
2417 return;
2418 }
2419 Local<String> worker_type_string =
2420 value->ToString(context).ToLocalChecked();
2421 String::Utf8Value str(isolate, worker_type_string);
2422 if (strcmp("classic", *str) == 0) {
2423 *code_type = CodeType::kFileName;
2424 } else if (strcmp("string", *str) == 0) {
2425 *code_type = CodeType::kString;
2426 } else if (strcmp("function", *str) == 0) {
2427 *code_type = CodeType::kFunction;
2428 } else {
2429 *code_type = CodeType::kInvalid;
2430 }
2431 if (arguments != nullptr) {
2432 bool got_arguments =
2433 TryGetValue(isolate, context, object, "arguments").ToLocal(arguments);
2434 USE(got_arguments);
2435 }
2436 } else {
2437 *code_type = CodeType::kNone;
2438 }
2439 }
2440
FunctionAndArgumentsToString(Local<Function> function,Local<Value> arguments,Local<String> * source,Isolate * isolate)2441 bool Shell::FunctionAndArgumentsToString(Local<Function> function,
2442 Local<Value> arguments,
2443 Local<String>* source,
2444 Isolate* isolate) {
2445 Local<Context> context = isolate->GetCurrentContext();
2446 MaybeLocal<String> maybe_function_string =
2447 function->FunctionProtoToString(context);
2448 Local<String> function_string;
2449 if (!maybe_function_string.ToLocal(&function_string)) {
2450 isolate->ThrowError("Failed to convert function to string");
2451 return false;
2452 }
2453 *source = String::NewFromUtf8Literal(isolate, "(");
2454 *source = String::Concat(isolate, *source, function_string);
2455 Local<String> middle = String::NewFromUtf8Literal(isolate, ")(");
2456 *source = String::Concat(isolate, *source, middle);
2457 if (!arguments.IsEmpty() && !arguments->IsUndefined()) {
2458 if (!arguments->IsArray()) {
2459 isolate->ThrowError("'arguments' must be an array");
2460 return false;
2461 }
2462 Local<String> comma = String::NewFromUtf8Literal(isolate, ",");
2463 Local<Array> array = arguments.As<Array>();
2464 for (uint32_t i = 0; i < array->Length(); ++i) {
2465 if (i > 0) {
2466 *source = String::Concat(isolate, *source, comma);
2467 }
2468 MaybeLocal<Value> maybe_argument = array->Get(context, i);
2469 Local<Value> argument;
2470 if (!maybe_argument.ToLocal(&argument)) {
2471 isolate->ThrowError("Failed to get argument");
2472 return false;
2473 }
2474 Local<String> argument_string;
2475 if (!JSON::Stringify(context, argument).ToLocal(&argument_string)) {
2476 isolate->ThrowError("Failed to convert argument to string");
2477 return false;
2478 }
2479 *source = String::Concat(isolate, *source, argument_string);
2480 }
2481 }
2482 Local<String> suffix = String::NewFromUtf8Literal(isolate, ")");
2483 *source = String::Concat(isolate, *source, suffix);
2484 return true;
2485 }
2486
2487 // ReadSource() supports reading source code through `args[index]` as specified
2488 // by the `default_type` or an optional options bag provided in `args[index+1]`
2489 // (e.g. `options={type: 'code_type', arguments:[...]}`).
ReadSource(const v8::FunctionCallbackInfo<v8::Value> & args,int index,CodeType default_type)2490 MaybeLocal<String> Shell::ReadSource(
2491 const v8::FunctionCallbackInfo<v8::Value>& args, int index,
2492 CodeType default_type) {
2493 CodeType code_type;
2494 Local<Value> arguments;
2495 ReadCodeTypeAndArguments(args, index + 1, &code_type, &arguments);
2496
2497 Isolate* isolate = args.GetIsolate();
2498 Local<String> source;
2499 if (code_type == CodeType::kNone) {
2500 code_type = default_type;
2501 }
2502 switch (code_type) {
2503 case CodeType::kFunction:
2504 if (!args[index]->IsFunction()) {
2505 return MaybeLocal<String>();
2506 }
2507 // Source: ( function_to_string )( params )
2508 if (!FunctionAndArgumentsToString(args[index].As<Function>(), arguments,
2509 &source, isolate)) {
2510 return MaybeLocal<String>();
2511 }
2512 break;
2513 case CodeType::kFileName: {
2514 if (!args[index]->IsString()) {
2515 return MaybeLocal<String>();
2516 }
2517 String::Utf8Value filename(isolate, args[index]);
2518 if (!Shell::ReadFile(isolate, *filename).ToLocal(&source)) {
2519 return MaybeLocal<String>();
2520 };
2521 break;
2522 }
2523 case CodeType::kString:
2524 if (!args[index]->IsString()) {
2525 return MaybeLocal<String>();
2526 }
2527 source = args[index].As<String>();
2528 break;
2529 case CodeType::kNone:
2530 case CodeType::kInvalid:
2531 return MaybeLocal<String>();
2532 }
2533 return source;
2534 }
2535
WorkerNew(const v8::FunctionCallbackInfo<v8::Value> & args)2536 void Shell::WorkerNew(const v8::FunctionCallbackInfo<v8::Value>& args) {
2537 Isolate* isolate = args.GetIsolate();
2538 HandleScope handle_scope(isolate);
2539 if (args.Length() < 1 || (!args[0]->IsString() && !args[0]->IsFunction())) {
2540 isolate->ThrowError("1st argument must be a string or a function");
2541 return;
2542 }
2543
2544 Local<String> source;
2545 if (!ReadSource(args, 0, CodeType::kFileName).ToLocal(&source)) {
2546 isolate->ThrowError("Invalid argument");
2547 return;
2548 }
2549
2550 if (!args.IsConstructCall()) {
2551 isolate->ThrowError("Worker must be constructed with new");
2552 return;
2553 }
2554
2555 // Initialize the embedder field to 0; if we return early without
2556 // creating a new Worker (because the main thread is terminating) we can
2557 // early-out from the instance calls.
2558 args.Holder()->SetInternalField(0, v8::Integer::New(isolate, 0));
2559
2560 {
2561 // Don't allow workers to create more workers if the main thread
2562 // is waiting for existing running workers to terminate.
2563 base::MutexGuard lock_guard(workers_mutex_.Pointer());
2564 if (!allow_new_workers_) return;
2565
2566 String::Utf8Value script(isolate, source);
2567 if (!*script) {
2568 isolate->ThrowError("Can't get worker script");
2569 return;
2570 }
2571
2572 // The C++ worker object's lifetime is shared between the Managed<Worker>
2573 // object on the heap, which the JavaScript object points to, and an
2574 // internal std::shared_ptr in the worker thread itself.
2575 auto worker = std::make_shared<Worker>(*script);
2576 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
2577 const size_t kWorkerSizeEstimate = 4 * 1024 * 1024; // stack + heap.
2578 i::Handle<i::Object> managed = i::Managed<Worker>::FromSharedPtr(
2579 i_isolate, kWorkerSizeEstimate, worker);
2580 args.Holder()->SetInternalField(0, Utils::ToLocal(managed));
2581 if (!Worker::StartWorkerThread(std::move(worker))) {
2582 isolate->ThrowError("Can't start thread");
2583 return;
2584 }
2585 }
2586 }
2587
WorkerPostMessage(const v8::FunctionCallbackInfo<v8::Value> & args)2588 void Shell::WorkerPostMessage(const v8::FunctionCallbackInfo<v8::Value>& args) {
2589 Isolate* isolate = args.GetIsolate();
2590 HandleScope handle_scope(isolate);
2591
2592 if (args.Length() < 1) {
2593 isolate->ThrowError("Invalid argument");
2594 return;
2595 }
2596
2597 std::shared_ptr<Worker> worker =
2598 GetWorkerFromInternalField(isolate, args.Holder());
2599 if (!worker.get()) {
2600 return;
2601 }
2602
2603 Local<Value> message = args[0];
2604 Local<Value> transfer =
2605 args.Length() >= 2 ? args[1] : Undefined(isolate).As<Value>();
2606 std::unique_ptr<SerializationData> data =
2607 Shell::SerializeValue(isolate, message, transfer);
2608 if (data) {
2609 worker->PostMessage(std::move(data));
2610 }
2611 }
2612
WorkerGetMessage(const v8::FunctionCallbackInfo<v8::Value> & args)2613 void Shell::WorkerGetMessage(const v8::FunctionCallbackInfo<v8::Value>& args) {
2614 Isolate* isolate = args.GetIsolate();
2615 HandleScope handle_scope(isolate);
2616 std::shared_ptr<Worker> worker =
2617 GetWorkerFromInternalField(isolate, args.Holder());
2618 if (!worker.get()) {
2619 return;
2620 }
2621
2622 std::unique_ptr<SerializationData> data = worker->GetMessage();
2623 if (data) {
2624 Local<Value> value;
2625 if (Shell::DeserializeValue(isolate, std::move(data)).ToLocal(&value)) {
2626 args.GetReturnValue().Set(value);
2627 }
2628 }
2629 }
2630
WorkerTerminate(const v8::FunctionCallbackInfo<v8::Value> & args)2631 void Shell::WorkerTerminate(const v8::FunctionCallbackInfo<v8::Value>& args) {
2632 Isolate* isolate = args.GetIsolate();
2633 HandleScope handle_scope(isolate);
2634 std::shared_ptr<Worker> worker =
2635 GetWorkerFromInternalField(isolate, args.Holder());
2636 if (!worker.get()) return;
2637 worker->Terminate();
2638 }
2639
WorkerTerminateAndWait(const v8::FunctionCallbackInfo<v8::Value> & args)2640 void Shell::WorkerTerminateAndWait(
2641 const v8::FunctionCallbackInfo<v8::Value>& args) {
2642 Isolate* isolate = args.GetIsolate();
2643 HandleScope handle_scope(isolate);
2644 std::shared_ptr<Worker> worker =
2645 GetWorkerFromInternalField(isolate, args.Holder());
2646 if (!worker.get()) {
2647 return;
2648 }
2649
2650 worker->TerminateAndWaitForThread();
2651 }
2652
QuitOnce(v8::FunctionCallbackInfo<v8::Value> * args)2653 void Shell::QuitOnce(v8::FunctionCallbackInfo<v8::Value>* args) {
2654 int exit_code = (*args)[0]
2655 ->Int32Value(args->GetIsolate()->GetCurrentContext())
2656 .FromMaybe(0);
2657 Isolate* isolate = args->GetIsolate();
2658 isolate->Exit();
2659
2660 // As we exit the process anyway, we do not dispose the platform and other
2661 // global data and manually unlock to quell DCHECKs. Other isolates might
2662 // still be running, so disposing here can cause them to crash.
2663 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
2664 if (i_isolate->thread_manager()->IsLockedByCurrentThread()) {
2665 i_isolate->thread_manager()->Unlock();
2666 }
2667
2668 OnExit(isolate, false);
2669 base::OS::ExitProcess(exit_code);
2670 }
2671
Quit(const v8::FunctionCallbackInfo<v8::Value> & args)2672 void Shell::Quit(const v8::FunctionCallbackInfo<v8::Value>& args) {
2673 base::CallOnce(&quit_once_, &QuitOnce,
2674 const_cast<v8::FunctionCallbackInfo<v8::Value>*>(&args));
2675 }
2676
WaitUntilDone(const v8::FunctionCallbackInfo<v8::Value> & args)2677 void Shell::WaitUntilDone(const v8::FunctionCallbackInfo<v8::Value>& args) {
2678 SetWaitUntilDone(args.GetIsolate(), true);
2679 }
2680
NotifyDone(const v8::FunctionCallbackInfo<v8::Value> & args)2681 void Shell::NotifyDone(const v8::FunctionCallbackInfo<v8::Value>& args) {
2682 SetWaitUntilDone(args.GetIsolate(), false);
2683 }
2684
Version(const v8::FunctionCallbackInfo<v8::Value> & args)2685 void Shell::Version(const v8::FunctionCallbackInfo<v8::Value>& args) {
2686 args.GetReturnValue().Set(
2687 String::NewFromUtf8(args.GetIsolate(), V8::GetVersion())
2688 .ToLocalChecked());
2689 }
2690
2691 #ifdef V8_FUZZILLI
2692
2693 // We have to assume that the fuzzer will be able to call this function e.g. by
2694 // enumerating the properties of the global object and eval'ing them. As such
2695 // this function is implemented in a way that requires passing some magic value
2696 // as first argument (with the idea being that the fuzzer won't be able to
2697 // generate this value) which then also acts as a selector for the operation
2698 // to perform.
Fuzzilli(const v8::FunctionCallbackInfo<v8::Value> & args)2699 void Shell::Fuzzilli(const v8::FunctionCallbackInfo<v8::Value>& args) {
2700 HandleScope handle_scope(args.GetIsolate());
2701
2702 String::Utf8Value operation(args.GetIsolate(), args[0]);
2703 if (*operation == nullptr) {
2704 return;
2705 }
2706
2707 if (strcmp(*operation, "FUZZILLI_CRASH") == 0) {
2708 auto arg = args[1]
2709 ->Int32Value(args.GetIsolate()->GetCurrentContext())
2710 .FromMaybe(0);
2711 switch (arg) {
2712 case 0:
2713 IMMEDIATE_CRASH();
2714 break;
2715 case 1:
2716 CHECK(0);
2717 break;
2718 default:
2719 DCHECK(false);
2720 break;
2721 }
2722 } else if (strcmp(*operation, "FUZZILLI_PRINT") == 0) {
2723 static FILE* fzliout = fdopen(REPRL_DWFD, "w");
2724 if (!fzliout) {
2725 fprintf(
2726 stderr,
2727 "Fuzzer output channel not available, printing to stdout instead\n");
2728 fzliout = stdout;
2729 }
2730
2731 String::Utf8Value string(args.GetIsolate(), args[1]);
2732 if (*string == nullptr) {
2733 return;
2734 }
2735 fprintf(fzliout, "%s\n", *string);
2736 fflush(fzliout);
2737 }
2738 }
2739
2740 #endif // V8_FUZZILLI
2741
ReportException(Isolate * isolate,Local<v8::Message> message,Local<v8::Value> exception_obj)2742 void Shell::ReportException(Isolate* isolate, Local<v8::Message> message,
2743 Local<v8::Value> exception_obj) {
2744 // Using ErrorPrototypeToString for converting the error to string will fail
2745 // if there's a pending exception.
2746 CHECK(!reinterpret_cast<i::Isolate*>(isolate)->has_pending_exception());
2747 HandleScope handle_scope(isolate);
2748 Local<Context> context = isolate->GetCurrentContext();
2749 bool enter_context = context.IsEmpty();
2750 if (enter_context) {
2751 context = Local<Context>::New(isolate, evaluation_context_);
2752 context->Enter();
2753 }
2754 // Converts a V8 value to a C string.
2755 auto ToCString = [](const v8::String::Utf8Value& value) {
2756 return *value ? *value : "<string conversion failed>";
2757 };
2758
2759 v8::String::Utf8Value exception(isolate, exception_obj);
2760 const char* exception_string = ToCString(exception);
2761 if (message.IsEmpty()) {
2762 // V8 didn't provide any extra information about this error; just
2763 // print the exception.
2764 printf("%s\n", exception_string);
2765 } else if (message->GetScriptOrigin().Options().IsWasm()) {
2766 // Print wasm-function[(function index)]:(offset): (message).
2767 int function_index = message->GetWasmFunctionIndex();
2768 int offset = message->GetStartColumn(context).FromJust();
2769 printf("wasm-function[%d]:0x%x: %s\n", function_index, offset,
2770 exception_string);
2771 } else {
2772 // Print (filename):(line number): (message).
2773 v8::String::Utf8Value filename(isolate,
2774 message->GetScriptOrigin().ResourceName());
2775 const char* filename_string = ToCString(filename);
2776 int linenum = message->GetLineNumber(context).FromMaybe(-1);
2777 printf("%s:%i: %s\n", filename_string, linenum, exception_string);
2778 Local<String> sourceline;
2779 if (message->GetSourceLine(context).ToLocal(&sourceline)) {
2780 // Print line of source code.
2781 v8::String::Utf8Value sourcelinevalue(isolate, sourceline);
2782 const char* sourceline_string = ToCString(sourcelinevalue);
2783 printf("%s\n", sourceline_string);
2784 // Print wavy underline (GetUnderline is deprecated).
2785 int start = message->GetStartColumn(context).FromJust();
2786 for (int i = 0; i < start; i++) {
2787 printf(" ");
2788 }
2789 int end = message->GetEndColumn(context).FromJust();
2790 for (int i = start; i < end; i++) {
2791 printf("^");
2792 }
2793 printf("\n");
2794 }
2795 }
2796 Local<Value> stack_trace_string;
2797 if (v8::TryCatch::StackTrace(context, exception_obj)
2798 .ToLocal(&stack_trace_string) &&
2799 stack_trace_string->IsString()) {
2800 v8::String::Utf8Value stack_trace(isolate, stack_trace_string.As<String>());
2801 printf("%s\n", ToCString(stack_trace));
2802 }
2803 printf("\n");
2804 if (enter_context) context->Exit();
2805 }
2806
ReportException(v8::Isolate * isolate,v8::TryCatch * try_catch)2807 void Shell::ReportException(v8::Isolate* isolate, v8::TryCatch* try_catch) {
2808 ReportException(isolate, try_catch->Message(), try_catch->Exception());
2809 }
2810
Bind(const char * name,bool is_histogram)2811 void Counter::Bind(const char* name, bool is_histogram) {
2812 base::OS::StrNCpy(name_, kMaxNameSize, name, kMaxNameSize);
2813 // Explicitly null-terminate, in case {name} is longer than {kMaxNameSize}.
2814 name_[kMaxNameSize - 1] = '\0';
2815 is_histogram_ = is_histogram;
2816 }
2817
AddSample(int sample)2818 void Counter::AddSample(int sample) {
2819 count_.fetch_add(1, std::memory_order_relaxed);
2820 sample_total_.fetch_add(sample, std::memory_order_relaxed);
2821 }
2822
CounterCollection()2823 CounterCollection::CounterCollection() {
2824 magic_number_ = 0xDEADFACE;
2825 max_counters_ = kMaxCounters;
2826 max_name_size_ = Counter::kMaxNameSize;
2827 counters_in_use_ = 0;
2828 }
2829
GetNextCounter()2830 Counter* CounterCollection::GetNextCounter() {
2831 if (counters_in_use_ == kMaxCounters) return nullptr;
2832 return &counters_[counters_in_use_++];
2833 }
2834
MapCounters(v8::Isolate * isolate,const char * name)2835 void Shell::MapCounters(v8::Isolate* isolate, const char* name) {
2836 counters_file_ = base::OS::MemoryMappedFile::create(
2837 name, sizeof(CounterCollection), &local_counters_);
2838 void* memory =
2839 (counters_file_ == nullptr) ? nullptr : counters_file_->memory();
2840 if (memory == nullptr) {
2841 printf("Could not map counters file %s\n", name);
2842 base::OS::ExitProcess(1);
2843 }
2844 counters_ = static_cast<CounterCollection*>(memory);
2845 isolate->SetCounterFunction(LookupCounter);
2846 isolate->SetCreateHistogramFunction(CreateHistogram);
2847 isolate->SetAddHistogramSampleFunction(AddHistogramSample);
2848 }
2849
GetCounter(const char * name,bool is_histogram)2850 Counter* Shell::GetCounter(const char* name, bool is_histogram) {
2851 Counter* counter = nullptr;
2852 {
2853 base::SharedMutexGuard<base::kShared> mutex_guard(&counter_mutex_);
2854 auto map_entry = counter_map_->find(name);
2855 if (map_entry != counter_map_->end()) {
2856 counter = map_entry->second;
2857 }
2858 }
2859
2860 if (counter == nullptr) {
2861 base::SharedMutexGuard<base::kExclusive> mutex_guard(&counter_mutex_);
2862
2863 counter = (*counter_map_)[name];
2864
2865 if (counter == nullptr) {
2866 counter = counters_->GetNextCounter();
2867 if (counter == nullptr) {
2868 // Too many counters.
2869 return nullptr;
2870 }
2871 (*counter_map_)[name] = counter;
2872 counter->Bind(name, is_histogram);
2873 }
2874 }
2875
2876 DCHECK_EQ(is_histogram, counter->is_histogram());
2877 return counter;
2878 }
2879
LookupCounter(const char * name)2880 int* Shell::LookupCounter(const char* name) {
2881 Counter* counter = GetCounter(name, false);
2882 return counter ? counter->ptr() : nullptr;
2883 }
2884
CreateHistogram(const char * name,int min,int max,size_t buckets)2885 void* Shell::CreateHistogram(const char* name, int min, int max,
2886 size_t buckets) {
2887 return GetCounter(name, true);
2888 }
2889
AddHistogramSample(void * histogram,int sample)2890 void Shell::AddHistogramSample(void* histogram, int sample) {
2891 Counter* counter = reinterpret_cast<Counter*>(histogram);
2892 counter->AddSample(sample);
2893 }
2894
2895 // Turn a value into a human-readable string.
Stringify(Isolate * isolate,Local<Value> value)2896 Local<String> Shell::Stringify(Isolate* isolate, Local<Value> value) {
2897 v8::Local<v8::Context> context =
2898 v8::Local<v8::Context>::New(isolate, evaluation_context_);
2899 if (stringify_function_.IsEmpty()) {
2900 Local<String> source =
2901 String::NewFromUtf8(isolate, stringify_source_).ToLocalChecked();
2902 Local<String> name = String::NewFromUtf8Literal(isolate, "d8-stringify");
2903 ScriptOrigin origin(isolate, name);
2904 Local<Script> script =
2905 Script::Compile(context, source, &origin).ToLocalChecked();
2906 stringify_function_.Reset(
2907 isolate, script->Run(context).ToLocalChecked().As<Function>());
2908 }
2909 Local<Function> fun = Local<Function>::New(isolate, stringify_function_);
2910 Local<Value> argv[1] = {value};
2911 v8::TryCatch try_catch(isolate);
2912 MaybeLocal<Value> result = fun->Call(context, Undefined(isolate), 1, argv);
2913 if (result.IsEmpty()) return String::Empty(isolate);
2914 return result.ToLocalChecked().As<String>();
2915 }
2916
NodeTypeCallback(const v8::FunctionCallbackInfo<v8::Value> & args)2917 void Shell::NodeTypeCallback(const v8::FunctionCallbackInfo<v8::Value>& args) {
2918 v8::Isolate* isolate = args.GetIsolate();
2919 args.GetReturnValue().Set(v8::Number::New(isolate, 1));
2920 }
2921
CreateNodeTemplates(Isolate * isolate)2922 Local<FunctionTemplate> Shell::CreateNodeTemplates(Isolate* isolate) {
2923 Local<FunctionTemplate> node = FunctionTemplate::New(isolate);
2924 Local<ObjectTemplate> proto_template = node->PrototypeTemplate();
2925 Local<Signature> signature = v8::Signature::New(isolate, node);
2926 Local<FunctionTemplate> nodeType = FunctionTemplate::New(
2927 isolate, NodeTypeCallback, Local<Value>(), signature);
2928 nodeType->SetAcceptAnyReceiver(false);
2929 proto_template->SetAccessorProperty(
2930 String::NewFromUtf8Literal(isolate, "nodeType"), nodeType);
2931
2932 Local<FunctionTemplate> element = FunctionTemplate::New(isolate);
2933 element->Inherit(node);
2934
2935 Local<FunctionTemplate> html_element = FunctionTemplate::New(isolate);
2936 html_element->Inherit(element);
2937
2938 Local<FunctionTemplate> div_element = FunctionTemplate::New(isolate);
2939 div_element->Inherit(html_element);
2940
2941 return div_element;
2942 }
2943
CreateGlobalTemplate(Isolate * isolate)2944 Local<ObjectTemplate> Shell::CreateGlobalTemplate(Isolate* isolate) {
2945 Local<ObjectTemplate> global_template = ObjectTemplate::New(isolate);
2946 global_template->Set(Symbol::GetToStringTag(isolate),
2947 String::NewFromUtf8Literal(isolate, "global"));
2948 global_template->Set(isolate, "version",
2949 FunctionTemplate::New(isolate, Version));
2950
2951 global_template->Set(isolate, "print", FunctionTemplate::New(isolate, Print));
2952 global_template->Set(isolate, "printErr",
2953 FunctionTemplate::New(isolate, PrintErr));
2954 global_template->Set(isolate, "write",
2955 FunctionTemplate::New(isolate, WriteStdout));
2956 global_template->Set(isolate, "read",
2957 FunctionTemplate::New(isolate, ReadFile));
2958 global_template->Set(isolate, "readbuffer",
2959 FunctionTemplate::New(isolate, ReadBuffer));
2960 global_template->Set(isolate, "readline",
2961 FunctionTemplate::New(isolate, ReadLine));
2962 global_template->Set(isolate, "load",
2963 FunctionTemplate::New(isolate, ExecuteFile));
2964 global_template->Set(isolate, "setTimeout",
2965 FunctionTemplate::New(isolate, SetTimeout));
2966 // Some Emscripten-generated code tries to call 'quit', which in turn would
2967 // call C's exit(). This would lead to memory leaks, because there is no way
2968 // we can terminate cleanly then, so we need a way to hide 'quit'.
2969 if (!options.omit_quit) {
2970 global_template->Set(isolate, "quit", FunctionTemplate::New(isolate, Quit));
2971 }
2972 global_template->Set(isolate, "testRunner",
2973 Shell::CreateTestRunnerTemplate(isolate));
2974 global_template->Set(isolate, "Realm", Shell::CreateRealmTemplate(isolate));
2975 global_template->Set(isolate, "performance",
2976 Shell::CreatePerformanceTemplate(isolate));
2977 global_template->Set(isolate, "Worker", Shell::CreateWorkerTemplate(isolate));
2978
2979 // Prevent fuzzers from creating side effects.
2980 if (!i::FLAG_fuzzing) {
2981 global_template->Set(isolate, "os", Shell::CreateOSTemplate(isolate));
2982 }
2983 global_template->Set(isolate, "d8", Shell::CreateD8Template(isolate));
2984
2985 #ifdef V8_FUZZILLI
2986 global_template->Set(
2987 String::NewFromUtf8(isolate, "fuzzilli", NewStringType::kNormal)
2988 .ToLocalChecked(),
2989 FunctionTemplate::New(isolate, Fuzzilli), PropertyAttribute::DontEnum);
2990 #endif // V8_FUZZILLI
2991
2992 if (i::FLAG_expose_async_hooks) {
2993 global_template->Set(isolate, "async_hooks",
2994 Shell::CreateAsyncHookTemplate(isolate));
2995 }
2996
2997 return global_template;
2998 }
2999
CreateOSTemplate(Isolate * isolate)3000 Local<ObjectTemplate> Shell::CreateOSTemplate(Isolate* isolate) {
3001 Local<ObjectTemplate> os_template = ObjectTemplate::New(isolate);
3002 AddOSMethods(isolate, os_template);
3003 os_template->Set(isolate, "name",
3004 v8::String::NewFromUtf8Literal(isolate, V8_TARGET_OS_STRING),
3005 PropertyAttribute::ReadOnly);
3006 os_template->Set(
3007 isolate, "d8Path",
3008 v8::String::NewFromUtf8(isolate, options.d8_path).ToLocalChecked(),
3009 PropertyAttribute::ReadOnly);
3010 return os_template;
3011 }
3012
CreateWorkerTemplate(Isolate * isolate)3013 Local<FunctionTemplate> Shell::CreateWorkerTemplate(Isolate* isolate) {
3014 Local<FunctionTemplate> worker_fun_template =
3015 FunctionTemplate::New(isolate, WorkerNew);
3016 Local<Signature> worker_signature =
3017 Signature::New(isolate, worker_fun_template);
3018 worker_fun_template->SetClassName(
3019 String::NewFromUtf8Literal(isolate, "Worker"));
3020 worker_fun_template->ReadOnlyPrototype();
3021 worker_fun_template->PrototypeTemplate()->Set(
3022 isolate, "terminate",
3023 FunctionTemplate::New(isolate, WorkerTerminate, Local<Value>(),
3024 worker_signature));
3025 worker_fun_template->PrototypeTemplate()->Set(
3026 isolate, "terminateAndWait",
3027 FunctionTemplate::New(isolate, WorkerTerminateAndWait, Local<Value>(),
3028 worker_signature));
3029 worker_fun_template->PrototypeTemplate()->Set(
3030 isolate, "postMessage",
3031 FunctionTemplate::New(isolate, WorkerPostMessage, Local<Value>(),
3032 worker_signature));
3033 worker_fun_template->PrototypeTemplate()->Set(
3034 isolate, "getMessage",
3035 FunctionTemplate::New(isolate, WorkerGetMessage, Local<Value>(),
3036 worker_signature));
3037 worker_fun_template->InstanceTemplate()->SetInternalFieldCount(1);
3038 return worker_fun_template;
3039 }
3040
CreateAsyncHookTemplate(Isolate * isolate)3041 Local<ObjectTemplate> Shell::CreateAsyncHookTemplate(Isolate* isolate) {
3042 Local<ObjectTemplate> async_hooks_templ = ObjectTemplate::New(isolate);
3043 async_hooks_templ->Set(isolate, "createHook",
3044 FunctionTemplate::New(isolate, AsyncHooksCreateHook));
3045 async_hooks_templ->Set(
3046 isolate, "executionAsyncId",
3047 FunctionTemplate::New(isolate, AsyncHooksExecutionAsyncId));
3048 async_hooks_templ->Set(
3049 isolate, "triggerAsyncId",
3050 FunctionTemplate::New(isolate, AsyncHooksTriggerAsyncId));
3051 return async_hooks_templ;
3052 }
3053
CreateTestRunnerTemplate(Isolate * isolate)3054 Local<ObjectTemplate> Shell::CreateTestRunnerTemplate(Isolate* isolate) {
3055 Local<ObjectTemplate> test_template = ObjectTemplate::New(isolate);
3056 test_template->Set(isolate, "notifyDone",
3057 FunctionTemplate::New(isolate, NotifyDone));
3058 test_template->Set(isolate, "waitUntilDone",
3059 FunctionTemplate::New(isolate, WaitUntilDone));
3060 // Reliable access to quit functionality. The "quit" method function
3061 // installed on the global object can be hidden with the --omit-quit flag
3062 // (e.g. on asan bots).
3063 test_template->Set(isolate, "quit", FunctionTemplate::New(isolate, Quit));
3064
3065 return test_template;
3066 }
3067
CreatePerformanceTemplate(Isolate * isolate)3068 Local<ObjectTemplate> Shell::CreatePerformanceTemplate(Isolate* isolate) {
3069 Local<ObjectTemplate> performance_template = ObjectTemplate::New(isolate);
3070 performance_template->Set(isolate, "now",
3071 FunctionTemplate::New(isolate, PerformanceNow));
3072 performance_template->Set(
3073 isolate, "measureMemory",
3074 FunctionTemplate::New(isolate, PerformanceMeasureMemory));
3075 return performance_template;
3076 }
3077
CreateRealmTemplate(Isolate * isolate)3078 Local<ObjectTemplate> Shell::CreateRealmTemplate(Isolate* isolate) {
3079 Local<ObjectTemplate> realm_template = ObjectTemplate::New(isolate);
3080 realm_template->Set(isolate, "current",
3081 FunctionTemplate::New(isolate, RealmCurrent));
3082 realm_template->Set(isolate, "owner",
3083 FunctionTemplate::New(isolate, RealmOwner));
3084 realm_template->Set(isolate, "global",
3085 FunctionTemplate::New(isolate, RealmGlobal));
3086 realm_template->Set(isolate, "create",
3087 FunctionTemplate::New(isolate, RealmCreate));
3088 realm_template->Set(
3089 isolate, "createAllowCrossRealmAccess",
3090 FunctionTemplate::New(isolate, RealmCreateAllowCrossRealmAccess));
3091 realm_template->Set(isolate, "navigate",
3092 FunctionTemplate::New(isolate, RealmNavigate));
3093 realm_template->Set(isolate, "detachGlobal",
3094 FunctionTemplate::New(isolate, RealmDetachGlobal));
3095 realm_template->Set(isolate, "dispose",
3096 FunctionTemplate::New(isolate, RealmDispose));
3097 realm_template->Set(isolate, "switch",
3098 FunctionTemplate::New(isolate, RealmSwitch));
3099 realm_template->Set(isolate, "eval",
3100 FunctionTemplate::New(isolate, RealmEval));
3101 realm_template->SetAccessor(String::NewFromUtf8Literal(isolate, "shared"),
3102 RealmSharedGet, RealmSharedSet);
3103 if (options.d8_web_snapshot_api) {
3104 realm_template->Set(isolate, "takeWebSnapshot",
3105 FunctionTemplate::New(isolate, RealmTakeWebSnapshot));
3106 realm_template->Set(isolate, "useWebSnapshot",
3107 FunctionTemplate::New(isolate, RealmUseWebSnapshot));
3108 }
3109 return realm_template;
3110 }
3111
CreateSnapshotTemplate(Isolate * isolate)3112 Local<FunctionTemplate> Shell::CreateSnapshotTemplate(Isolate* isolate) {
3113 Local<FunctionTemplate> snapshot_template = FunctionTemplate::New(isolate);
3114 snapshot_template->InstanceTemplate()->SetInternalFieldCount(1);
3115 PerIsolateData::Get(isolate)->SetSnapshotObjectCtor(snapshot_template);
3116 return snapshot_template;
3117 }
CreateD8Template(Isolate * isolate)3118 Local<ObjectTemplate> Shell::CreateD8Template(Isolate* isolate) {
3119 Local<ObjectTemplate> d8_template = ObjectTemplate::New(isolate);
3120 {
3121 Local<ObjectTemplate> file_template = ObjectTemplate::New(isolate);
3122 file_template->Set(isolate, "read",
3123 FunctionTemplate::New(isolate, Shell::ReadFile));
3124 file_template->Set(isolate, "execute",
3125 FunctionTemplate::New(isolate, Shell::ExecuteFile));
3126 d8_template->Set(isolate, "file", file_template);
3127 }
3128 {
3129 Local<ObjectTemplate> log_template = ObjectTemplate::New(isolate);
3130 log_template->Set(isolate, "getAndStop",
3131 FunctionTemplate::New(isolate, LogGetAndStop));
3132
3133 d8_template->Set(isolate, "log", log_template);
3134 }
3135 {
3136 Local<ObjectTemplate> dom_template = ObjectTemplate::New(isolate);
3137 dom_template->Set(isolate, "Div", Shell::CreateNodeTemplates(isolate));
3138 d8_template->Set(isolate, "dom", dom_template);
3139 }
3140 {
3141 Local<ObjectTemplate> test_template = ObjectTemplate::New(isolate);
3142 // For different runs of correctness fuzzing the bytecode of a function
3143 // might get flushed, resulting in spurious errors.
3144 if (!i::FLAG_correctness_fuzzer_suppressions) {
3145 test_template->Set(
3146 isolate, "verifySourcePositions",
3147 FunctionTemplate::New(isolate, TestVerifySourcePositions));
3148 }
3149 // Correctness fuzzing will attempt to compare results of tests with and
3150 // without turbo_fast_api_calls, so we don't expose the fast_c_api
3151 // constructor when --correctness_fuzzer_suppressions is on.
3152 if (options.expose_fast_api && i::FLAG_turbo_fast_api_calls &&
3153 !i::FLAG_correctness_fuzzer_suppressions) {
3154 test_template->Set(isolate, "FastCAPI",
3155 Shell::CreateTestFastCApiTemplate(isolate));
3156 test_template->Set(isolate, "LeafInterfaceType",
3157 Shell::CreateLeafInterfaceTypeTemplate(isolate));
3158 }
3159 // Allows testing code paths that are triggered when Origin Trials are
3160 // added in the browser.
3161 test_template->Set(
3162 isolate, "installConditionalFeatures",
3163 FunctionTemplate::New(isolate, Shell::InstallConditionalFeatures));
3164
3165 d8_template->Set(isolate, "test", test_template);
3166 }
3167 {
3168 Local<ObjectTemplate> promise_template = ObjectTemplate::New(isolate);
3169 promise_template->Set(
3170 isolate, "setHooks",
3171 FunctionTemplate::New(isolate, SetPromiseHooks, Local<Value>(),
3172 Local<Signature>(), 4));
3173 d8_template->Set(isolate, "promise", promise_template);
3174 }
3175 {
3176 Local<ObjectTemplate> debugger_template = ObjectTemplate::New(isolate);
3177 debugger_template->Set(
3178 isolate, "enable",
3179 FunctionTemplate::New(isolate, EnableDebugger, Local<Value>(),
3180 Local<Signature>(), 0));
3181 debugger_template->Set(
3182 isolate, "disable",
3183 FunctionTemplate::New(isolate, DisableDebugger, Local<Value>(),
3184 Local<Signature>(), 0));
3185 d8_template->Set(isolate, "debugger", debugger_template);
3186 }
3187 return d8_template;
3188 }
3189
PrintMessageCallback(Local<Message> message,Local<Value> error)3190 static void PrintMessageCallback(Local<Message> message, Local<Value> error) {
3191 switch (message->ErrorLevel()) {
3192 case v8::Isolate::kMessageWarning:
3193 case v8::Isolate::kMessageLog:
3194 case v8::Isolate::kMessageInfo:
3195 case v8::Isolate::kMessageDebug: {
3196 break;
3197 }
3198
3199 case v8::Isolate::kMessageError: {
3200 Shell::ReportException(message->GetIsolate(), message, error);
3201 return;
3202 }
3203
3204 default: {
3205 UNREACHABLE();
3206 }
3207 }
3208 // Converts a V8 value to a C string.
3209 auto ToCString = [](const v8::String::Utf8Value& value) {
3210 return *value ? *value : "<string conversion failed>";
3211 };
3212 Isolate* isolate = message->GetIsolate();
3213 v8::String::Utf8Value msg(isolate, message->Get());
3214 const char* msg_string = ToCString(msg);
3215 // Print (filename):(line number): (message).
3216 v8::String::Utf8Value filename(isolate,
3217 message->GetScriptOrigin().ResourceName());
3218 const char* filename_string = ToCString(filename);
3219 Maybe<int> maybeline = message->GetLineNumber(isolate->GetCurrentContext());
3220 int linenum = maybeline.IsJust() ? maybeline.FromJust() : -1;
3221 printf("%s:%i: %s\n", filename_string, linenum, msg_string);
3222 }
3223
PromiseRejectCallback(v8::PromiseRejectMessage data)3224 void Shell::PromiseRejectCallback(v8::PromiseRejectMessage data) {
3225 if (options.ignore_unhandled_promises) return;
3226 if (data.GetEvent() == v8::kPromiseRejectAfterResolved ||
3227 data.GetEvent() == v8::kPromiseResolveAfterResolved) {
3228 // Ignore reject/resolve after resolved.
3229 return;
3230 }
3231 v8::Local<v8::Promise> promise = data.GetPromise();
3232 v8::Isolate* isolate = promise->GetIsolate();
3233 PerIsolateData* isolate_data = PerIsolateData::Get(isolate);
3234
3235 if (data.GetEvent() == v8::kPromiseHandlerAddedAfterReject) {
3236 isolate_data->RemoveUnhandledPromise(promise);
3237 return;
3238 }
3239
3240 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
3241 bool capture_exceptions =
3242 i_isolate->get_capture_stack_trace_for_uncaught_exceptions();
3243 isolate->SetCaptureStackTraceForUncaughtExceptions(true);
3244 v8::Local<Value> exception = data.GetValue();
3245 v8::Local<Message> message;
3246 // Assume that all objects are stack-traces.
3247 if (exception->IsObject()) {
3248 message = v8::Exception::CreateMessage(isolate, exception);
3249 }
3250 if (!exception->IsNativeError() &&
3251 (message.IsEmpty() || message->GetStackTrace().IsEmpty())) {
3252 // If there is no real Error object, manually create a stack trace.
3253 exception = v8::Exception::Error(
3254 v8::String::NewFromUtf8Literal(isolate, "Unhandled Promise."));
3255 message = Exception::CreateMessage(isolate, exception);
3256 }
3257 isolate->SetCaptureStackTraceForUncaughtExceptions(capture_exceptions);
3258
3259 isolate_data->AddUnhandledPromise(promise, message, exception);
3260 }
3261
Initialize(Isolate * isolate,D8Console * console,bool isOnMainThread)3262 void Shell::Initialize(Isolate* isolate, D8Console* console,
3263 bool isOnMainThread) {
3264 isolate->SetPromiseRejectCallback(PromiseRejectCallback);
3265 if (isOnMainThread) {
3266 // Set up counters
3267 if (i::FLAG_map_counters[0] != '\0') {
3268 MapCounters(isolate, i::FLAG_map_counters);
3269 }
3270 // Disable default message reporting.
3271 isolate->AddMessageListenerWithErrorLevel(
3272 PrintMessageCallback,
3273 v8::Isolate::kMessageError | v8::Isolate::kMessageWarning |
3274 v8::Isolate::kMessageInfo | v8::Isolate::kMessageDebug |
3275 v8::Isolate::kMessageLog);
3276 }
3277
3278 isolate->SetHostImportModuleDynamicallyCallback(
3279 Shell::HostImportModuleDynamically);
3280 isolate->SetHostInitializeImportMetaObjectCallback(
3281 Shell::HostInitializeImportMetaObject);
3282 isolate->SetHostCreateShadowRealmContextCallback(
3283 Shell::HostCreateShadowRealmContext);
3284
3285 #ifdef V8_FUZZILLI
3286 // Let the parent process (Fuzzilli) know we are ready.
3287 if (options.fuzzilli_enable_builtins_coverage) {
3288 cov_init_builtins_edges(static_cast<uint32_t>(
3289 i::BasicBlockProfiler::Get()
3290 ->GetCoverageBitmap(reinterpret_cast<i::Isolate*>(isolate))
3291 .size()));
3292 }
3293 char helo[] = "HELO";
3294 if (write(REPRL_CWFD, helo, 4) != 4 || read(REPRL_CRFD, helo, 4) != 4) {
3295 fuzzilli_reprl = false;
3296 }
3297
3298 if (memcmp(helo, "HELO", 4) != 0) {
3299 fprintf(stderr, "Invalid response from parent\n");
3300 _exit(-1);
3301 }
3302 #endif // V8_FUZZILLI
3303
3304 debug::SetConsoleDelegate(isolate, console);
3305 }
3306
WasmLoadSourceMapCallback(Isolate * isolate,const char * path)3307 Local<String> Shell::WasmLoadSourceMapCallback(Isolate* isolate,
3308 const char* path) {
3309 return Shell::ReadFile(isolate, path, false).ToLocalChecked();
3310 }
3311
CreateEvaluationContext(Isolate * isolate)3312 Local<Context> Shell::CreateEvaluationContext(Isolate* isolate) {
3313 // This needs to be a critical section since this is not thread-safe
3314 base::MutexGuard lock_guard(context_mutex_.Pointer());
3315 // Initialize the global objects
3316 Local<ObjectTemplate> global_template = CreateGlobalTemplate(isolate);
3317 EscapableHandleScope handle_scope(isolate);
3318 Local<Context> context = Context::New(isolate, nullptr, global_template);
3319 DCHECK_IMPLIES(context.IsEmpty(), isolate->IsExecutionTerminating());
3320 if (context.IsEmpty()) return {};
3321 if (i::FLAG_perf_prof_annotate_wasm || i::FLAG_vtune_prof_annotate_wasm) {
3322 isolate->SetWasmLoadSourceMapCallback(Shell::WasmLoadSourceMapCallback);
3323 }
3324 InitializeModuleEmbedderData(context);
3325 Context::Scope scope(context);
3326 if (options.include_arguments) {
3327 const std::vector<const char*>& args = options.arguments;
3328 int size = static_cast<int>(args.size());
3329 Local<Array> array = Array::New(isolate, size);
3330 for (int i = 0; i < size; i++) {
3331 Local<String> arg =
3332 v8::String::NewFromUtf8(isolate, args[i]).ToLocalChecked();
3333 Local<Number> index = v8::Number::New(isolate, i);
3334 array->Set(context, index, arg).FromJust();
3335 }
3336 Local<String> name = String::NewFromUtf8Literal(
3337 isolate, "arguments", NewStringType::kInternalized);
3338 context->Global()->Set(context, name, array).FromJust();
3339 }
3340 {
3341 // setup console global.
3342 Local<String> name = String::NewFromUtf8Literal(
3343 isolate, "console", NewStringType::kInternalized);
3344 Local<Value> console =
3345 context->GetExtrasBindingObject()->Get(context, name).ToLocalChecked();
3346 context->Global()->Set(context, name, console).FromJust();
3347 }
3348
3349 return handle_scope.Escape(context);
3350 }
3351
WriteIgnitionDispatchCountersFile(v8::Isolate * isolate)3352 void Shell::WriteIgnitionDispatchCountersFile(v8::Isolate* isolate) {
3353 HandleScope handle_scope(isolate);
3354 Local<Context> context = Context::New(isolate);
3355 Context::Scope context_scope(context);
3356
3357 i::Handle<i::JSObject> dispatch_counters =
3358 reinterpret_cast<i::Isolate*>(isolate)
3359 ->interpreter()
3360 ->GetDispatchCountersObject();
3361 std::ofstream dispatch_counters_stream(
3362 i::FLAG_trace_ignition_dispatches_output_file);
3363 dispatch_counters_stream << *String::Utf8Value(
3364 isolate, JSON::Stringify(context, Utils::ToLocal(dispatch_counters))
3365 .ToLocalChecked());
3366 }
3367
3368 namespace {
LineFromOffset(Local<debug::Script> script,int offset)3369 int LineFromOffset(Local<debug::Script> script, int offset) {
3370 debug::Location location = script->GetSourceLocation(offset);
3371 return location.GetLineNumber();
3372 }
3373
WriteLcovDataForRange(std::vector<uint32_t> * lines,int start_line,int end_line,uint32_t count)3374 void WriteLcovDataForRange(std::vector<uint32_t>* lines, int start_line,
3375 int end_line, uint32_t count) {
3376 // Ensure space in the array.
3377 lines->resize(std::max(static_cast<size_t>(end_line + 1), lines->size()), 0);
3378 // Boundary lines could be shared between two functions with different
3379 // invocation counts. Take the maximum.
3380 (*lines)[start_line] = std::max((*lines)[start_line], count);
3381 (*lines)[end_line] = std::max((*lines)[end_line], count);
3382 // Invocation counts for non-boundary lines are overwritten.
3383 for (int k = start_line + 1; k < end_line; k++) (*lines)[k] = count;
3384 }
3385
WriteLcovDataForNamedRange(std::ostream & sink,std::vector<uint32_t> * lines,const std::string & name,int start_line,int end_line,uint32_t count)3386 void WriteLcovDataForNamedRange(std::ostream& sink,
3387 std::vector<uint32_t>* lines,
3388 const std::string& name, int start_line,
3389 int end_line, uint32_t count) {
3390 WriteLcovDataForRange(lines, start_line, end_line, count);
3391 sink << "FN:" << start_line + 1 << "," << name << std::endl;
3392 sink << "FNDA:" << count << "," << name << std::endl;
3393 }
3394 } // namespace
3395
3396 // Write coverage data in LCOV format. See man page for geninfo(1).
WriteLcovData(v8::Isolate * isolate,const char * file)3397 void Shell::WriteLcovData(v8::Isolate* isolate, const char* file) {
3398 if (!file) return;
3399 HandleScope handle_scope(isolate);
3400 debug::Coverage coverage = debug::Coverage::CollectPrecise(isolate);
3401 std::ofstream sink(file, std::ofstream::app);
3402 for (size_t i = 0; i < coverage.ScriptCount(); i++) {
3403 debug::Coverage::ScriptData script_data = coverage.GetScriptData(i);
3404 Local<debug::Script> script = script_data.GetScript();
3405 // Skip unnamed scripts.
3406 Local<String> name;
3407 if (!script->Name().ToLocal(&name)) continue;
3408 std::string file_name = ToSTLString(isolate, name);
3409 // Skip scripts not backed by a file.
3410 if (!std::ifstream(file_name).good()) continue;
3411 sink << "SF:";
3412 sink << NormalizePath(file_name, GetWorkingDirectory()) << std::endl;
3413 std::vector<uint32_t> lines;
3414 for (size_t j = 0; j < script_data.FunctionCount(); j++) {
3415 debug::Coverage::FunctionData function_data =
3416 script_data.GetFunctionData(j);
3417
3418 // Write function stats.
3419 {
3420 debug::Location start =
3421 script->GetSourceLocation(function_data.StartOffset());
3422 debug::Location end =
3423 script->GetSourceLocation(function_data.EndOffset());
3424 int start_line = start.GetLineNumber();
3425 int end_line = end.GetLineNumber();
3426 uint32_t count = function_data.Count();
3427
3428 Local<String> function_name;
3429 std::stringstream name_stream;
3430 if (function_data.Name().ToLocal(&function_name)) {
3431 name_stream << ToSTLString(isolate, function_name);
3432 } else {
3433 name_stream << "<" << start_line + 1 << "-";
3434 name_stream << start.GetColumnNumber() << ">";
3435 }
3436
3437 WriteLcovDataForNamedRange(sink, &lines, name_stream.str(), start_line,
3438 end_line, count);
3439 }
3440
3441 // Process inner blocks.
3442 for (size_t k = 0; k < function_data.BlockCount(); k++) {
3443 debug::Coverage::BlockData block_data = function_data.GetBlockData(k);
3444 int start_line = LineFromOffset(script, block_data.StartOffset());
3445 int end_line = LineFromOffset(script, block_data.EndOffset() - 1);
3446 uint32_t count = block_data.Count();
3447 WriteLcovDataForRange(&lines, start_line, end_line, count);
3448 }
3449 }
3450 // Write per-line coverage. LCOV uses 1-based line numbers.
3451 for (size_t j = 0; j < lines.size(); j++) {
3452 sink << "DA:" << (j + 1) << "," << lines[j] << std::endl;
3453 }
3454 sink << "end_of_record" << std::endl;
3455 }
3456 }
3457
OnExit(v8::Isolate * isolate,bool dispose)3458 void Shell::OnExit(v8::Isolate* isolate, bool dispose) {
3459 isolate->Dispose();
3460 if (shared_isolate) {
3461 i::Isolate::Delete(reinterpret_cast<i::Isolate*>(shared_isolate));
3462 }
3463
3464 // Simulate errors before disposing V8, as that resets flags (via
3465 // FlagList::ResetAllFlags()), but error simulation reads the random seed.
3466 if (options.simulate_errors && is_valid_fuzz_script()) {
3467 // Simulate several errors detectable by fuzzers behind a flag if the
3468 // minimum file size for fuzzing was executed.
3469 FuzzerMonitor::SimulateErrors();
3470 }
3471
3472 if (dispose) {
3473 V8::Dispose();
3474 V8::DisposePlatform();
3475 }
3476
3477 if (options.dump_counters || options.dump_counters_nvp) {
3478 base::SharedMutexGuard<base::kShared> mutex_guard(&counter_mutex_);
3479 std::vector<std::pair<std::string, Counter*>> counters(
3480 counter_map_->begin(), counter_map_->end());
3481 std::sort(counters.begin(), counters.end());
3482
3483 if (options.dump_counters_nvp) {
3484 // Dump counters as name-value pairs.
3485 for (const auto& pair : counters) {
3486 std::string key = pair.first;
3487 Counter* counter = pair.second;
3488 if (counter->is_histogram()) {
3489 std::cout << "\"c:" << key << "\"=" << counter->count() << "\n";
3490 std::cout << "\"t:" << key << "\"=" << counter->sample_total()
3491 << "\n";
3492 } else {
3493 std::cout << "\"" << key << "\"=" << counter->count() << "\n";
3494 }
3495 }
3496 } else {
3497 // Dump counters in formatted boxes.
3498 constexpr int kNameBoxSize = 64;
3499 constexpr int kValueBoxSize = 13;
3500 std::cout << "+" << std::string(kNameBoxSize, '-') << "+"
3501 << std::string(kValueBoxSize, '-') << "+\n";
3502 std::cout << "| Name" << std::string(kNameBoxSize - 5, ' ') << "| Value"
3503 << std::string(kValueBoxSize - 6, ' ') << "|\n";
3504 std::cout << "+" << std::string(kNameBoxSize, '-') << "+"
3505 << std::string(kValueBoxSize, '-') << "+\n";
3506 for (const auto& pair : counters) {
3507 std::string key = pair.first;
3508 Counter* counter = pair.second;
3509 if (counter->is_histogram()) {
3510 std::cout << "| c:" << std::setw(kNameBoxSize - 4) << std::left << key
3511 << " | " << std::setw(kValueBoxSize - 2) << std::right
3512 << counter->count() << " |\n";
3513 std::cout << "| t:" << std::setw(kNameBoxSize - 4) << std::left << key
3514 << " | " << std::setw(kValueBoxSize - 2) << std::right
3515 << counter->sample_total() << " |\n";
3516 } else {
3517 std::cout << "| " << std::setw(kNameBoxSize - 2) << std::left << key
3518 << " | " << std::setw(kValueBoxSize - 2) << std::right
3519 << counter->count() << " |\n";
3520 }
3521 }
3522 std::cout << "+" << std::string(kNameBoxSize, '-') << "+"
3523 << std::string(kValueBoxSize, '-') << "+\n";
3524 }
3525 }
3526
3527 // Only delete the counters if we are done executing; after calling `quit`,
3528 // other isolates might still be running and accessing that memory. This is a
3529 // memory leak, which is OK in this case.
3530 if (dispose) {
3531 delete counters_file_;
3532 delete counter_map_;
3533 }
3534 }
3535
Dummy(char * arg)3536 void Dummy(char* arg) {}
3537
SimulateErrors()3538 V8_NOINLINE void FuzzerMonitor::SimulateErrors() {
3539 // Initialize a fresh RNG to not interfere with JS execution.
3540 std::unique_ptr<base::RandomNumberGenerator> rng;
3541 int64_t seed = internal::FLAG_random_seed;
3542 if (seed != 0) {
3543 rng = std::make_unique<base::RandomNumberGenerator>(seed);
3544 } else {
3545 rng = std::make_unique<base::RandomNumberGenerator>();
3546 }
3547
3548 double p = rng->NextDouble();
3549 if (p < 0.1) {
3550 ControlFlowViolation();
3551 } else if (p < 0.2) {
3552 DCheck();
3553 } else if (p < 0.3) {
3554 Fatal();
3555 } else if (p < 0.4) {
3556 ObservableDifference();
3557 } else if (p < 0.5) {
3558 UndefinedBehavior();
3559 } else if (p < 0.6) {
3560 UseAfterFree();
3561 } else if (p < 0.7) {
3562 UseOfUninitializedValue();
3563 }
3564 }
3565
ControlFlowViolation()3566 V8_NOINLINE void FuzzerMonitor::ControlFlowViolation() {
3567 // Control flow violation caught by CFI.
3568 void (*func)() = (void (*)()) & Dummy;
3569 func();
3570 }
3571
DCheck()3572 V8_NOINLINE void FuzzerMonitor::DCheck() {
3573 // Caught in debug builds.
3574 DCHECK(false);
3575 }
3576
Fatal()3577 V8_NOINLINE void FuzzerMonitor::Fatal() {
3578 // Caught in all build types.
3579 FATAL("Fake error.");
3580 }
3581
ObservableDifference()3582 V8_NOINLINE void FuzzerMonitor::ObservableDifference() {
3583 // Observable difference caught by differential fuzzing.
3584 printf("___fake_difference___\n");
3585 }
3586
UndefinedBehavior()3587 V8_NOINLINE void FuzzerMonitor::UndefinedBehavior() {
3588 // Caught by UBSAN.
3589 int32_t val = -1;
3590 USE(val << 8);
3591 }
3592
UseAfterFree()3593 V8_NOINLINE void FuzzerMonitor::UseAfterFree() {
3594 // Use-after-free caught by ASAN.
3595 std::vector<bool>* storage = new std::vector<bool>(3);
3596 delete storage;
3597 USE(storage->at(1));
3598 }
3599
UseOfUninitializedValue()3600 V8_NOINLINE void FuzzerMonitor::UseOfUninitializedValue() {
3601 // Use-of-uninitialized-value caught by MSAN.
3602 #if defined(__clang__)
3603 int uninitialized[1];
3604 if (uninitialized[0]) USE(uninitialized);
3605 #endif
3606 }
3607
ReadChars(const char * name,int * size_out)3608 char* Shell::ReadChars(const char* name, int* size_out) {
3609 if (options.read_from_tcp_port >= 0) {
3610 return ReadCharsFromTcpPort(name, size_out);
3611 }
3612
3613 FILE* file = base::OS::FOpen(name, "rb");
3614 if (file == nullptr) return nullptr;
3615
3616 fseek(file, 0, SEEK_END);
3617 size_t size = ftell(file);
3618 rewind(file);
3619
3620 char* chars = new char[size + 1];
3621 chars[size] = '\0';
3622 for (size_t i = 0; i < size;) {
3623 i += fread(&chars[i], 1, size - i, file);
3624 if (ferror(file)) {
3625 base::Fclose(file);
3626 delete[] chars;
3627 return nullptr;
3628 }
3629 }
3630 base::Fclose(file);
3631 *size_out = static_cast<int>(size);
3632 return chars;
3633 }
3634
ReadLines(Isolate * isolate,const char * name)3635 MaybeLocal<PrimitiveArray> Shell::ReadLines(Isolate* isolate,
3636 const char* name) {
3637 int length;
3638 std::unique_ptr<char[]> data(ReadChars(name, &length));
3639
3640 if (data.get() == nullptr) {
3641 return MaybeLocal<PrimitiveArray>();
3642 }
3643 std::stringstream stream(data.get());
3644 std::string line;
3645 std::vector<std::string> lines;
3646 while (std::getline(stream, line, '\n')) {
3647 lines.emplace_back(line);
3648 }
3649 // Create a Local<PrimitiveArray> off the read lines.
3650 int size = static_cast<int>(lines.size());
3651 Local<PrimitiveArray> exports = PrimitiveArray::New(isolate, size);
3652 for (int i = 0; i < size; ++i) {
3653 MaybeLocal<String> maybe_str = v8::String::NewFromUtf8(
3654 isolate, lines[i].c_str(), NewStringType::kNormal,
3655 static_cast<int>(lines[i].length()));
3656 Local<String> str;
3657 if (!maybe_str.ToLocal(&str)) {
3658 return MaybeLocal<PrimitiveArray>();
3659 }
3660 exports->Set(isolate, i, str);
3661 }
3662 return exports;
3663 }
3664
ReadBuffer(const v8::FunctionCallbackInfo<v8::Value> & args)3665 void Shell::ReadBuffer(const v8::FunctionCallbackInfo<v8::Value>& args) {
3666 static_assert(sizeof(char) == sizeof(uint8_t),
3667 "char and uint8_t should both have 1 byte");
3668 Isolate* isolate = args.GetIsolate();
3669 String::Utf8Value filename(isolate, args[0]);
3670 int length;
3671 if (*filename == nullptr) {
3672 isolate->ThrowError("Error loading file");
3673 return;
3674 }
3675
3676 uint8_t* data = reinterpret_cast<uint8_t*>(ReadChars(*filename, &length));
3677 if (data == nullptr) {
3678 isolate->ThrowError("Error reading file");
3679 return;
3680 }
3681 Local<v8::ArrayBuffer> buffer = ArrayBuffer::New(isolate, length);
3682 memcpy(buffer->GetBackingStore()->Data(), data, length);
3683 delete[] data;
3684
3685 args.GetReturnValue().Set(buffer);
3686 }
3687
3688 // Reads a file into a v8 string.
ReadFile(Isolate * isolate,const char * name,bool should_throw)3689 MaybeLocal<String> Shell::ReadFile(Isolate* isolate, const char* name,
3690 bool should_throw) {
3691 std::unique_ptr<base::OS::MemoryMappedFile> file(
3692 base::OS::MemoryMappedFile::open(
3693 name, base::OS::MemoryMappedFile::FileMode::kReadOnly));
3694 if (!file) {
3695 if (should_throw) {
3696 std::ostringstream oss;
3697 oss << "Error loading file: " << name;
3698 isolate->ThrowError(
3699 v8::String::NewFromUtf8(
3700 isolate, oss.str().substr(0, String::kMaxLength).c_str())
3701 .ToLocalChecked());
3702 }
3703 return MaybeLocal<String>();
3704 }
3705
3706 int size = static_cast<int>(file->size());
3707 char* chars = static_cast<char*>(file->memory());
3708 if (i::FLAG_use_external_strings && i::String::IsAscii(chars, size)) {
3709 String::ExternalOneByteStringResource* resource =
3710 new ExternalOwningOneByteStringResource(std::move(file));
3711 return String::NewExternalOneByte(isolate, resource);
3712 }
3713 return String::NewFromUtf8(isolate, chars, NewStringType::kNormal, size);
3714 }
3715
WriteChars(const char * name,uint8_t * buffer,size_t buffer_size)3716 void Shell::WriteChars(const char* name, uint8_t* buffer, size_t buffer_size) {
3717 FILE* file = base::Fopen(name, "w");
3718 if (file == nullptr) return;
3719 fwrite(buffer, 1, buffer_size, file);
3720 base::Fclose(file);
3721 }
3722
RunShell(Isolate * isolate)3723 void Shell::RunShell(Isolate* isolate) {
3724 HandleScope outer_scope(isolate);
3725 v8::Local<v8::Context> context =
3726 v8::Local<v8::Context>::New(isolate, evaluation_context_);
3727 v8::Context::Scope context_scope(context);
3728 PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
3729 Local<String> name = String::NewFromUtf8Literal(isolate, "(d8)");
3730 printf("V8 version %s\n", V8::GetVersion());
3731 while (true) {
3732 HandleScope inner_scope(isolate);
3733 printf("d8> ");
3734 Local<String> input = Shell::ReadFromStdin(isolate);
3735 if (input.IsEmpty()) break;
3736 ExecuteString(isolate, input, name, kPrintResult, kReportExceptions,
3737 kProcessMessageQueue);
3738 }
3739 printf("\n");
3740 // We need to explicitly clean up the module embedder data for
3741 // the interative shell context.
3742 DisposeModuleEmbedderData(context);
3743 }
3744
3745 class InspectorFrontend final : public v8_inspector::V8Inspector::Channel {
3746 public:
InspectorFrontend(Local<Context> context)3747 explicit InspectorFrontend(Local<Context> context) {
3748 isolate_ = context->GetIsolate();
3749 context_.Reset(isolate_, context);
3750 }
3751 ~InspectorFrontend() override = default;
3752
3753 private:
sendResponse(int callId,std::unique_ptr<v8_inspector::StringBuffer> message)3754 void sendResponse(
3755 int callId,
3756 std::unique_ptr<v8_inspector::StringBuffer> message) override {
3757 Send(message->string());
3758 }
sendNotification(std::unique_ptr<v8_inspector::StringBuffer> message)3759 void sendNotification(
3760 std::unique_ptr<v8_inspector::StringBuffer> message) override {
3761 Send(message->string());
3762 }
flushProtocolNotifications()3763 void flushProtocolNotifications() override {}
3764
Send(const v8_inspector::StringView & string)3765 void Send(const v8_inspector::StringView& string) {
3766 v8::Isolate::AllowJavascriptExecutionScope allow_script(isolate_);
3767 v8::HandleScope handle_scope(isolate_);
3768 int length = static_cast<int>(string.length());
3769 DCHECK_LT(length, v8::String::kMaxLength);
3770 Local<String> message =
3771 (string.is8Bit()
3772 ? v8::String::NewFromOneByte(
3773 isolate_,
3774 reinterpret_cast<const uint8_t*>(string.characters8()),
3775 v8::NewStringType::kNormal, length)
3776 : v8::String::NewFromTwoByte(
3777 isolate_,
3778 reinterpret_cast<const uint16_t*>(string.characters16()),
3779 v8::NewStringType::kNormal, length))
3780 .ToLocalChecked();
3781 Local<String> callback_name = v8::String::NewFromUtf8Literal(
3782 isolate_, "receive", NewStringType::kInternalized);
3783 Local<Context> context = context_.Get(isolate_);
3784 Local<Value> callback =
3785 context->Global()->Get(context, callback_name).ToLocalChecked();
3786 if (callback->IsFunction()) {
3787 v8::TryCatch try_catch(isolate_);
3788 Local<Value> args[] = {message};
3789 USE(callback.As<Function>()->Call(context, Undefined(isolate_), 1, args));
3790 #ifdef DEBUG
3791 if (try_catch.HasCaught()) {
3792 Local<Object> exception = try_catch.Exception().As<Object>();
3793 Local<String> key = v8::String::NewFromUtf8Literal(
3794 isolate_, "message", NewStringType::kInternalized);
3795 Local<String> expected = v8::String::NewFromUtf8Literal(
3796 isolate_, "Maximum call stack size exceeded");
3797 Local<Value> value = exception->Get(context, key).ToLocalChecked();
3798 DCHECK(value->StrictEquals(expected));
3799 }
3800 #endif
3801 }
3802 }
3803
3804 Isolate* isolate_;
3805 Global<Context> context_;
3806 };
3807
3808 class InspectorClient : public v8_inspector::V8InspectorClient {
3809 public:
InspectorClient(Local<Context> context,bool connect)3810 InspectorClient(Local<Context> context, bool connect) {
3811 if (!connect) return;
3812 isolate_ = context->GetIsolate();
3813 channel_.reset(new InspectorFrontend(context));
3814 inspector_ = v8_inspector::V8Inspector::create(isolate_, this);
3815 session_ =
3816 inspector_->connect(1, channel_.get(), v8_inspector::StringView());
3817 context->SetAlignedPointerInEmbedderData(kInspectorClientIndex, this);
3818 inspector_->contextCreated(v8_inspector::V8ContextInfo(
3819 context, kContextGroupId, v8_inspector::StringView()));
3820
3821 Local<Value> function =
3822 FunctionTemplate::New(isolate_, SendInspectorMessage)
3823 ->GetFunction(context)
3824 .ToLocalChecked();
3825 Local<String> function_name = String::NewFromUtf8Literal(
3826 isolate_, "send", NewStringType::kInternalized);
3827 CHECK(context->Global()->Set(context, function_name, function).FromJust());
3828
3829 context_.Reset(isolate_, context);
3830 }
3831
runMessageLoopOnPause(int contextGroupId)3832 void runMessageLoopOnPause(int contextGroupId) override {
3833 v8::Isolate::AllowJavascriptExecutionScope allow_script(isolate_);
3834 v8::HandleScope handle_scope(isolate_);
3835 Local<String> callback_name = v8::String::NewFromUtf8Literal(
3836 isolate_, "handleInspectorMessage", NewStringType::kInternalized);
3837 Local<Context> context = context_.Get(isolate_);
3838 Local<Value> callback =
3839 context->Global()->Get(context, callback_name).ToLocalChecked();
3840 if (!callback->IsFunction()) return;
3841
3842 v8::TryCatch try_catch(isolate_);
3843 try_catch.SetVerbose(true);
3844 is_paused = true;
3845
3846 while (is_paused) {
3847 USE(callback.As<Function>()->Call(context, Undefined(isolate_), 0, {}));
3848 if (try_catch.HasCaught()) {
3849 is_paused = false;
3850 }
3851 }
3852 }
3853
quitMessageLoopOnPause()3854 void quitMessageLoopOnPause() override { is_paused = false; }
3855
3856 private:
GetSession(Local<Context> context)3857 static v8_inspector::V8InspectorSession* GetSession(Local<Context> context) {
3858 InspectorClient* inspector_client = static_cast<InspectorClient*>(
3859 context->GetAlignedPointerFromEmbedderData(kInspectorClientIndex));
3860 return inspector_client->session_.get();
3861 }
3862
ensureDefaultContextInGroup(int group_id)3863 Local<Context> ensureDefaultContextInGroup(int group_id) override {
3864 DCHECK(isolate_);
3865 DCHECK_EQ(kContextGroupId, group_id);
3866 return context_.Get(isolate_);
3867 }
3868
SendInspectorMessage(const v8::FunctionCallbackInfo<v8::Value> & args)3869 static void SendInspectorMessage(
3870 const v8::FunctionCallbackInfo<v8::Value>& args) {
3871 Isolate* isolate = args.GetIsolate();
3872 v8::HandleScope handle_scope(isolate);
3873 Local<Context> context = isolate->GetCurrentContext();
3874 args.GetReturnValue().Set(Undefined(isolate));
3875 Local<String> message = args[0]->ToString(context).ToLocalChecked();
3876 v8_inspector::V8InspectorSession* session =
3877 InspectorClient::GetSession(context);
3878 int length = message->Length();
3879 std::unique_ptr<uint16_t[]> buffer(new uint16_t[length]);
3880 message->Write(isolate, buffer.get(), 0, length);
3881 v8_inspector::StringView message_view(buffer.get(), length);
3882 {
3883 v8::SealHandleScope seal_handle_scope(isolate);
3884 session->dispatchProtocolMessage(message_view);
3885 }
3886 args.GetReturnValue().Set(True(isolate));
3887 }
3888
3889 static const int kContextGroupId = 1;
3890
3891 std::unique_ptr<v8_inspector::V8Inspector> inspector_;
3892 std::unique_ptr<v8_inspector::V8InspectorSession> session_;
3893 std::unique_ptr<v8_inspector::V8Inspector::Channel> channel_;
3894 bool is_paused = false;
3895 Global<Context> context_;
3896 Isolate* isolate_;
3897 };
3898
~SourceGroup()3899 SourceGroup::~SourceGroup() {
3900 delete thread_;
3901 thread_ = nullptr;
3902 }
3903
ends_with(const char * input,const char * suffix)3904 bool ends_with(const char* input, const char* suffix) {
3905 size_t input_length = strlen(input);
3906 size_t suffix_length = strlen(suffix);
3907 if (suffix_length <= input_length) {
3908 return strcmp(input + input_length - suffix_length, suffix) == 0;
3909 }
3910 return false;
3911 }
3912
Execute(Isolate * isolate)3913 bool SourceGroup::Execute(Isolate* isolate) {
3914 bool success = true;
3915 #ifdef V8_FUZZILLI
3916 if (fuzzilli_reprl) {
3917 HandleScope handle_scope(isolate);
3918 Local<String> file_name =
3919 String::NewFromUtf8(isolate, "fuzzcode.js", NewStringType::kNormal)
3920 .ToLocalChecked();
3921
3922 size_t script_size;
3923 CHECK_EQ(read(REPRL_CRFD, &script_size, 8), 8);
3924 char* buffer = new char[script_size + 1];
3925 char* ptr = buffer;
3926 size_t remaining = script_size;
3927 while (remaining > 0) {
3928 ssize_t rv = read(REPRL_DRFD, ptr, remaining);
3929 CHECK_GE(rv, 0);
3930 remaining -= rv;
3931 ptr += rv;
3932 }
3933 buffer[script_size] = 0;
3934
3935 Local<String> source =
3936 String::NewFromUtf8(isolate, buffer, NewStringType::kNormal)
3937 .ToLocalChecked();
3938 delete[] buffer;
3939 Shell::set_script_executed();
3940 if (!Shell::ExecuteString(isolate, source, file_name, Shell::kNoPrintResult,
3941 Shell::kReportExceptions,
3942 Shell::kNoProcessMessageQueue)) {
3943 return false;
3944 }
3945 }
3946 #endif // V8_FUZZILLI
3947 for (int i = begin_offset_; i < end_offset_; ++i) {
3948 const char* arg = argv_[i];
3949 if (strcmp(arg, "-e") == 0 && i + 1 < end_offset_) {
3950 // Execute argument given to -e option directly.
3951 HandleScope handle_scope(isolate);
3952 Local<String> file_name = String::NewFromUtf8Literal(isolate, "unnamed");
3953 Local<String> source =
3954 String::NewFromUtf8(isolate, argv_[i + 1]).ToLocalChecked();
3955 Shell::set_script_executed();
3956 if (!Shell::ExecuteString(isolate, source, file_name,
3957 Shell::kNoPrintResult, Shell::kReportExceptions,
3958 Shell::kNoProcessMessageQueue)) {
3959 success = false;
3960 break;
3961 }
3962 ++i;
3963 continue;
3964 } else if (ends_with(arg, ".mjs")) {
3965 Shell::set_script_executed();
3966 if (!Shell::ExecuteModule(isolate, arg)) {
3967 success = false;
3968 break;
3969 }
3970 continue;
3971 } else if (strcmp(arg, "--module") == 0 && i + 1 < end_offset_) {
3972 // Treat the next file as a module.
3973 arg = argv_[++i];
3974 Shell::set_script_executed();
3975 if (!Shell::ExecuteModule(isolate, arg)) {
3976 success = false;
3977 break;
3978 }
3979 continue;
3980 } else if (strcmp(arg, "--web-snapshot") == 0 && i + 1 < end_offset_) {
3981 // Treat the next file as a web snapshot.
3982 arg = argv_[++i];
3983 Shell::set_script_executed();
3984 if (!Shell::ExecuteWebSnapshot(isolate, arg)) {
3985 success = false;
3986 break;
3987 }
3988 continue;
3989 } else if (strcmp(arg, "--json") == 0 && i + 1 < end_offset_) {
3990 // Treat the next file as a JSON file.
3991 arg = argv_[++i];
3992 Shell::set_script_executed();
3993 if (!Shell::LoadJSON(isolate, arg)) {
3994 success = false;
3995 break;
3996 }
3997 continue;
3998 } else if (arg[0] == '-') {
3999 // Ignore other options. They have been parsed already.
4000 continue;
4001 }
4002
4003 // Use all other arguments as names of files to load and run.
4004 HandleScope handle_scope(isolate);
4005 Local<String> file_name =
4006 String::NewFromUtf8(isolate, arg).ToLocalChecked();
4007 Local<String> source;
4008 if (!Shell::ReadFile(isolate, arg).ToLocal(&source)) {
4009 printf("Error reading '%s'\n", arg);
4010 base::OS::ExitProcess(1);
4011 }
4012 Shell::set_script_executed();
4013 Shell::update_script_size(source->Length());
4014 if (!Shell::ExecuteString(isolate, source, file_name, Shell::kNoPrintResult,
4015 Shell::kReportExceptions,
4016 Shell::kProcessMessageQueue)) {
4017 success = false;
4018 break;
4019 }
4020 }
4021 return success;
4022 }
4023
IsolateThread(SourceGroup * group)4024 SourceGroup::IsolateThread::IsolateThread(SourceGroup* group)
4025 : base::Thread(GetThreadOptions("IsolateThread")), group_(group) {}
4026
ExecuteInThread()4027 void SourceGroup::ExecuteInThread() {
4028 Isolate::CreateParams create_params;
4029 create_params.array_buffer_allocator = Shell::array_buffer_allocator;
4030 create_params.experimental_attach_to_shared_isolate = Shell::shared_isolate;
4031 Isolate* isolate = Isolate::New(create_params);
4032 Shell::SetWaitUntilDone(isolate, false);
4033 D8Console console(isolate);
4034 Shell::Initialize(isolate, &console, false);
4035
4036 for (int i = 0; i < Shell::options.stress_runs; ++i) {
4037 {
4038 i::ParkedScope parked_scope(
4039 reinterpret_cast<i::Isolate*>(isolate)->main_thread_local_isolate());
4040 next_semaphore_.Wait();
4041 }
4042 {
4043 Isolate::Scope iscope(isolate);
4044 PerIsolateData data(isolate);
4045 {
4046 HandleScope scope(isolate);
4047 Local<Context> context = Shell::CreateEvaluationContext(isolate);
4048 {
4049 Context::Scope cscope(context);
4050 InspectorClient inspector_client(context,
4051 Shell::options.enable_inspector);
4052 PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
4053 Execute(isolate);
4054 Shell::CompleteMessageLoop(isolate);
4055 }
4056 DisposeModuleEmbedderData(context);
4057 }
4058 Shell::CollectGarbage(isolate);
4059 }
4060 done_semaphore_.Signal();
4061 }
4062
4063 isolate->Dispose();
4064 }
4065
StartExecuteInThread()4066 void SourceGroup::StartExecuteInThread() {
4067 if (thread_ == nullptr) {
4068 thread_ = new IsolateThread(this);
4069 CHECK(thread_->Start());
4070 }
4071 next_semaphore_.Signal();
4072 }
4073
WaitForThread()4074 void SourceGroup::WaitForThread() {
4075 if (thread_ == nullptr) return;
4076 done_semaphore_.Wait();
4077 }
4078
JoinThread()4079 void SourceGroup::JoinThread() {
4080 if (thread_ == nullptr) return;
4081 thread_->Join();
4082 }
4083
Enqueue(std::unique_ptr<SerializationData> data)4084 void SerializationDataQueue::Enqueue(std::unique_ptr<SerializationData> data) {
4085 base::MutexGuard lock_guard(&mutex_);
4086 data_.push_back(std::move(data));
4087 }
4088
Dequeue(std::unique_ptr<SerializationData> * out_data)4089 bool SerializationDataQueue::Dequeue(
4090 std::unique_ptr<SerializationData>* out_data) {
4091 out_data->reset();
4092 base::MutexGuard lock_guard(&mutex_);
4093 if (data_.empty()) return false;
4094 *out_data = std::move(data_[0]);
4095 data_.erase(data_.begin());
4096 return true;
4097 }
4098
IsEmpty()4099 bool SerializationDataQueue::IsEmpty() {
4100 base::MutexGuard lock_guard(&mutex_);
4101 return data_.empty();
4102 }
4103
Clear()4104 void SerializationDataQueue::Clear() {
4105 base::MutexGuard lock_guard(&mutex_);
4106 data_.clear();
4107 }
4108
Worker(const char * script)4109 Worker::Worker(const char* script) : script_(i::StrDup(script)) {
4110 state_.store(State::kReady);
4111 }
4112
~Worker()4113 Worker::~Worker() {
4114 CHECK(state_.load() == State::kTerminated);
4115 DCHECK_NULL(isolate_);
4116 delete thread_;
4117 thread_ = nullptr;
4118 delete[] script_;
4119 script_ = nullptr;
4120 }
4121
is_running() const4122 bool Worker::is_running() const { return state_.load() == State::kRunning; }
4123
StartWorkerThread(std::shared_ptr<Worker> worker)4124 bool Worker::StartWorkerThread(std::shared_ptr<Worker> worker) {
4125 auto expected = State::kReady;
4126 CHECK(
4127 worker->state_.compare_exchange_strong(expected, State::kPrepareRunning));
4128 auto thread = new WorkerThread(worker);
4129 worker->thread_ = thread;
4130 if (!thread->Start()) return false;
4131 // Wait until the worker is ready to receive messages.
4132 worker->started_semaphore_.Wait();
4133 Shell::AddRunningWorker(std::move(worker));
4134 return true;
4135 }
4136
Run()4137 void Worker::WorkerThread::Run() {
4138 // Prevent a lifetime cycle from Worker -> WorkerThread -> Worker.
4139 // We must clear the worker_ field of the thread, but we keep the
4140 // worker alive via a stack root until the thread finishes execution
4141 // and removes itself from the running set. Thereafter the only
4142 // remaining reference can be from a JavaScript object via a Managed.
4143 auto worker = std::move(worker_);
4144 worker_ = nullptr;
4145 worker->ExecuteInThread();
4146 Shell::RemoveRunningWorker(worker);
4147 }
4148
4149 class ProcessMessageTask : public i::CancelableTask {
4150 public:
ProcessMessageTask(i::CancelableTaskManager * task_manager,std::shared_ptr<Worker> worker,std::unique_ptr<SerializationData> data)4151 ProcessMessageTask(i::CancelableTaskManager* task_manager,
4152 std::shared_ptr<Worker> worker,
4153 std::unique_ptr<SerializationData> data)
4154 : i::CancelableTask(task_manager),
4155 worker_(worker),
4156 data_(std::move(data)) {}
4157
RunInternal()4158 void RunInternal() override { worker_->ProcessMessage(std::move(data_)); }
4159
4160 private:
4161 std::shared_ptr<Worker> worker_;
4162 std::unique_ptr<SerializationData> data_;
4163 };
4164
PostMessage(std::unique_ptr<SerializationData> data)4165 void Worker::PostMessage(std::unique_ptr<SerializationData> data) {
4166 base::MutexGuard lock_guard(&worker_mutex_);
4167 if (!is_running()) return;
4168 std::unique_ptr<v8::Task> task(new ProcessMessageTask(
4169 task_manager_, shared_from_this(), std::move(data)));
4170 task_runner_->PostNonNestableTask(std::move(task));
4171 }
4172
4173 class TerminateTask : public i::CancelableTask {
4174 public:
TerminateTask(i::CancelableTaskManager * task_manager,std::shared_ptr<Worker> worker)4175 TerminateTask(i::CancelableTaskManager* task_manager,
4176 std::shared_ptr<Worker> worker)
4177 : i::CancelableTask(task_manager), worker_(worker) {}
4178
RunInternal()4179 void RunInternal() override {
4180 auto expected = Worker::State::kTerminating;
4181 CHECK(worker_->state_.compare_exchange_strong(expected,
4182 Worker::State::kTerminated));
4183 }
4184
4185 private:
4186 std::shared_ptr<Worker> worker_;
4187 };
4188
GetMessage()4189 std::unique_ptr<SerializationData> Worker::GetMessage() {
4190 std::unique_ptr<SerializationData> result;
4191 while (!out_queue_.Dequeue(&result)) {
4192 // If the worker is no longer running, and there are no messages in the
4193 // queue, don't expect any more messages from it.
4194 if (!is_running()) break;
4195 out_semaphore_.Wait();
4196 }
4197 return result;
4198 }
4199
TerminateAndWaitForThread()4200 void Worker::TerminateAndWaitForThread() {
4201 Terminate();
4202 {
4203 base::MutexGuard lock_guard(&worker_mutex_);
4204 // Prevent double-joining.
4205 if (is_joined_) return;
4206 is_joined_ = true;
4207 }
4208 thread_->Join();
4209 }
4210
Terminate()4211 void Worker::Terminate() {
4212 base::MutexGuard lock_guard(&worker_mutex_);
4213 auto expected = State::kRunning;
4214 if (!state_.compare_exchange_strong(expected, State::kTerminating)) return;
4215 std::unique_ptr<v8::Task> task(
4216 new TerminateTask(task_manager_, shared_from_this()));
4217 task_runner_->PostTask(std::move(task));
4218 // Also schedule an interrupt in case the worker is running code and never
4219 // returning to the event queue. Since we checked the state before, and we are
4220 // holding the {worker_mutex_}, it's safe to access the isolate.
4221 isolate_->TerminateExecution();
4222 }
4223
ProcessMessage(std::unique_ptr<SerializationData> data)4224 void Worker::ProcessMessage(std::unique_ptr<SerializationData> data) {
4225 if (!is_running()) return;
4226 DCHECK_NOT_NULL(isolate_);
4227 HandleScope scope(isolate_);
4228 Local<Context> context = context_.Get(isolate_);
4229 Context::Scope cscope(context);
4230 Local<Object> global = context->Global();
4231
4232 // Get the message handler.
4233 MaybeLocal<Value> maybe_onmessage = global->Get(
4234 context, String::NewFromUtf8Literal(isolate_, "onmessage",
4235 NewStringType::kInternalized));
4236 Local<Value> onmessage;
4237 if (!maybe_onmessage.ToLocal(&onmessage) || !onmessage->IsFunction()) return;
4238 Local<Function> onmessage_fun = onmessage.As<Function>();
4239
4240 v8::TryCatch try_catch(isolate_);
4241 try_catch.SetVerbose(true);
4242 Local<Value> value;
4243 if (Shell::DeserializeValue(isolate_, std::move(data)).ToLocal(&value)) {
4244 Local<Value> argv[] = {value};
4245 MaybeLocal<Value> result = onmessage_fun->Call(context, global, 1, argv);
4246 USE(result);
4247 }
4248 }
4249
ProcessMessages()4250 void Worker::ProcessMessages() {
4251 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate_);
4252 i::SaveAndSwitchContext saved_context(i_isolate, i::Context());
4253 SealHandleScope shs(isolate_);
4254 while (is_running() && v8::platform::PumpMessageLoop(
4255 g_default_platform, isolate_,
4256 platform::MessageLoopBehavior::kWaitForWork)) {
4257 if (is_running()) {
4258 MicrotasksScope::PerformCheckpoint(isolate_);
4259 }
4260 }
4261 }
4262
ExecuteInThread()4263 void Worker::ExecuteInThread() {
4264 Isolate::CreateParams create_params;
4265 create_params.array_buffer_allocator = Shell::array_buffer_allocator;
4266 create_params.experimental_attach_to_shared_isolate = Shell::shared_isolate;
4267 isolate_ = Isolate::New(create_params);
4268
4269 task_runner_ = g_default_platform->GetForegroundTaskRunner(isolate_);
4270 task_manager_ =
4271 reinterpret_cast<i::Isolate*>(isolate_)->cancelable_task_manager();
4272
4273 auto expected = State::kPrepareRunning;
4274 CHECK(state_.compare_exchange_strong(expected, State::kRunning));
4275
4276 // The Worker is now ready to receive messages.
4277 started_semaphore_.Signal();
4278
4279 D8Console console(isolate_);
4280 Shell::Initialize(isolate_, &console, false);
4281 // This is not really a loop, but the loop allows us to break out of this
4282 // block easily.
4283 for (bool execute = true; execute; execute = false) {
4284 Isolate::Scope iscope(isolate_);
4285 {
4286 HandleScope scope(isolate_);
4287 PerIsolateData data(isolate_);
4288 Local<Context> context = Shell::CreateEvaluationContext(isolate_);
4289 if (context.IsEmpty()) break;
4290 context_.Reset(isolate_, context);
4291 {
4292 Context::Scope cscope(context);
4293 PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate_));
4294
4295 Local<Object> global = context->Global();
4296 Local<Value> this_value = External::New(isolate_, this);
4297 Local<FunctionTemplate> postmessage_fun_template =
4298 FunctionTemplate::New(isolate_, PostMessageOut, this_value);
4299
4300 Local<Function> postmessage_fun;
4301 if (postmessage_fun_template->GetFunction(context).ToLocal(
4302 &postmessage_fun)) {
4303 global
4304 ->Set(context,
4305 v8::String::NewFromUtf8Literal(
4306 isolate_, "postMessage", NewStringType::kInternalized),
4307 postmessage_fun)
4308 .FromJust();
4309 }
4310
4311 // First run the script
4312 Local<String> file_name =
4313 String::NewFromUtf8Literal(isolate_, "unnamed");
4314 Local<String> source =
4315 String::NewFromUtf8(isolate_, script_).ToLocalChecked();
4316 if (Shell::ExecuteString(
4317 isolate_, source, file_name, Shell::kNoPrintResult,
4318 Shell::kReportExceptions, Shell::kProcessMessageQueue)) {
4319 // Check that there's a message handler
4320 MaybeLocal<Value> maybe_onmessage = global->Get(
4321 context,
4322 String::NewFromUtf8Literal(isolate_, "onmessage",
4323 NewStringType::kInternalized));
4324 Local<Value> onmessage;
4325 if (maybe_onmessage.ToLocal(&onmessage) && onmessage->IsFunction()) {
4326 // Now wait for messages.
4327 ProcessMessages();
4328 }
4329 }
4330 }
4331 DisposeModuleEmbedderData(context);
4332 }
4333 Shell::CollectGarbage(isolate_);
4334 }
4335
4336 {
4337 base::MutexGuard lock_guard(&worker_mutex_);
4338 state_.store(State::kTerminated);
4339 CHECK(!is_running());
4340 task_runner_.reset();
4341 task_manager_ = nullptr;
4342 }
4343
4344 context_.Reset();
4345 platform::NotifyIsolateShutdown(g_default_platform, isolate_);
4346 isolate_->Dispose();
4347 isolate_ = nullptr;
4348
4349 // Post nullptr to wake the thread waiting on GetMessage() if there is one.
4350 out_queue_.Enqueue(nullptr);
4351 out_semaphore_.Signal();
4352 }
4353
PostMessageOut(const v8::FunctionCallbackInfo<v8::Value> & args)4354 void Worker::PostMessageOut(const v8::FunctionCallbackInfo<v8::Value>& args) {
4355 Isolate* isolate = args.GetIsolate();
4356 HandleScope handle_scope(isolate);
4357
4358 if (args.Length() < 1) {
4359 isolate->ThrowError("Invalid argument");
4360 return;
4361 }
4362
4363 Local<Value> message = args[0];
4364 Local<Value> transfer = Undefined(isolate);
4365 std::unique_ptr<SerializationData> data =
4366 Shell::SerializeValue(isolate, message, transfer);
4367 if (data) {
4368 DCHECK(args.Data()->IsExternal());
4369 Local<External> this_value = args.Data().As<External>();
4370 Worker* worker = static_cast<Worker*>(this_value->Value());
4371 worker->out_queue_.Enqueue(std::move(data));
4372 worker->out_semaphore_.Signal();
4373 }
4374 }
4375
4376 #if V8_TARGET_OS_WIN
4377 // Enable support for unicode filename path on windows.
4378 // We first convert ansi encoded argv[i] to utf16 encoded, and then
4379 // convert utf16 encoded to utf8 encoded with setting the argv[i]
4380 // to the utf8 encoded arg. We allocate memory for the utf8 encoded
4381 // arg, and we will free it and reset it to nullptr after using
4382 // the filename path arg. And because Execute may be called multiple
4383 // times, we need to free the allocated unicode filename when exit.
4384
4385 // Save the allocated utf8 filenames, and we will free them when exit.
4386 std::vector<char*> utf8_filenames;
4387 #include <shellapi.h>
4388 // Convert utf-16 encoded string to utf-8 encoded.
ConvertUtf16StringToUtf8(const wchar_t * str)4389 char* ConvertUtf16StringToUtf8(const wchar_t* str) {
4390 // On Windows wchar_t must be a 16-bit value.
4391 static_assert(sizeof(wchar_t) == 2, "wrong wchar_t size");
4392 int len =
4393 WideCharToMultiByte(CP_UTF8, 0, str, -1, nullptr, 0, nullptr, FALSE);
4394 DCHECK_LT(0, len);
4395 char* utf8_str = new char[len];
4396 utf8_filenames.push_back(utf8_str);
4397 WideCharToMultiByte(CP_UTF8, 0, str, -1, utf8_str, len, nullptr, FALSE);
4398 return utf8_str;
4399 }
4400
4401 // Convert ansi encoded argv[i] to utf8 encoded.
PreProcessUnicodeFilenameArg(char * argv[],int i)4402 void PreProcessUnicodeFilenameArg(char* argv[], int i) {
4403 int argc;
4404 wchar_t** wargv = CommandLineToArgvW(GetCommandLineW(), &argc);
4405 argv[i] = ConvertUtf16StringToUtf8(wargv[i]);
4406 LocalFree(wargv);
4407 }
4408
4409 #endif
4410
SetOptions(int argc,char * argv[])4411 bool Shell::SetOptions(int argc, char* argv[]) {
4412 bool logfile_per_isolate = false;
4413 bool no_always_opt = false;
4414 options.d8_path = argv[0];
4415 for (int i = 0; i < argc; i++) {
4416 if (strcmp(argv[i], "--") == 0) {
4417 argv[i] = nullptr;
4418 for (int j = i + 1; j < argc; j++) {
4419 options.arguments.push_back(argv[j]);
4420 argv[j] = nullptr;
4421 }
4422 break;
4423 } else if (strcmp(argv[i], "--no-arguments") == 0) {
4424 options.include_arguments = false;
4425 argv[i] = nullptr;
4426 } else if (strcmp(argv[i], "--simulate-errors") == 0) {
4427 options.simulate_errors = true;
4428 argv[i] = nullptr;
4429 } else if (strcmp(argv[i], "--stress-opt") == 0) {
4430 options.stress_opt = true;
4431 argv[i] = nullptr;
4432 } else if (strcmp(argv[i], "--nostress-opt") == 0 ||
4433 strcmp(argv[i], "--no-stress-opt") == 0) {
4434 options.stress_opt = false;
4435 argv[i] = nullptr;
4436 } else if (strcmp(argv[i], "--noalways-opt") == 0 ||
4437 strcmp(argv[i], "--no-always-opt") == 0) {
4438 no_always_opt = true;
4439 } else if (strcmp(argv[i], "--fuzzing") == 0 ||
4440 strcmp(argv[i], "--no-abort-on-contradictory-flags") == 0 ||
4441 strcmp(argv[i], "--noabort-on-contradictory-flags") == 0) {
4442 check_d8_flag_contradictions = false;
4443 } else if (strcmp(argv[i], "--abort-on-contradictory-flags") == 0) {
4444 check_d8_flag_contradictions = true;
4445 } else if (strcmp(argv[i], "--logfile-per-isolate") == 0) {
4446 logfile_per_isolate = true;
4447 argv[i] = nullptr;
4448 } else if (strcmp(argv[i], "--shell") == 0) {
4449 options.interactive_shell = true;
4450 argv[i] = nullptr;
4451 } else if (strcmp(argv[i], "--test") == 0) {
4452 options.test_shell = true;
4453 argv[i] = nullptr;
4454 } else if (strcmp(argv[i], "--notest") == 0 ||
4455 strcmp(argv[i], "--no-test") == 0) {
4456 options.test_shell = false;
4457 argv[i] = nullptr;
4458 } else if (strcmp(argv[i], "--send-idle-notification") == 0) {
4459 options.send_idle_notification = true;
4460 argv[i] = nullptr;
4461 } else if (strcmp(argv[i], "--invoke-weak-callbacks") == 0) {
4462 options.invoke_weak_callbacks = true;
4463 // TODO(v8:3351): Invoking weak callbacks does not always collect all
4464 // available garbage.
4465 options.send_idle_notification = true;
4466 argv[i] = nullptr;
4467 } else if (strcmp(argv[i], "--omit-quit") == 0) {
4468 options.omit_quit = true;
4469 argv[i] = nullptr;
4470 } else if (strcmp(argv[i], "--no-wait-for-background-tasks") == 0) {
4471 // TODO(herhut) Remove this flag once wasm compilation is fully
4472 // isolate-independent.
4473 options.wait_for_background_tasks = false;
4474 argv[i] = nullptr;
4475 } else if (strcmp(argv[i], "-f") == 0) {
4476 // Ignore any -f flags for compatibility with other stand-alone
4477 // JavaScript engines.
4478 continue;
4479 } else if (strcmp(argv[i], "--ignore-unhandled-promises") == 0) {
4480 options.ignore_unhandled_promises = true;
4481 argv[i] = nullptr;
4482 } else if (strcmp(argv[i], "--isolate") == 0) {
4483 options.num_isolates++;
4484 } else if (strcmp(argv[i], "--throws") == 0) {
4485 options.expected_to_throw = true;
4486 argv[i] = nullptr;
4487 } else if (strcmp(argv[i], "--no-fail") == 0) {
4488 options.no_fail = true;
4489 argv[i] = nullptr;
4490 } else if (strcmp(argv[i], "--dump-counters") == 0) {
4491 i::FLAG_slow_histograms = true;
4492 options.dump_counters = true;
4493 argv[i] = nullptr;
4494 } else if (strcmp(argv[i], "--dump-counters-nvp") == 0) {
4495 i::FLAG_slow_histograms = true;
4496 options.dump_counters_nvp = true;
4497 argv[i] = nullptr;
4498 } else if (strncmp(argv[i], "--icu-data-file=", 16) == 0) {
4499 options.icu_data_file = argv[i] + 16;
4500 argv[i] = nullptr;
4501 } else if (strncmp(argv[i], "--icu-locale=", 13) == 0) {
4502 options.icu_locale = argv[i] + 13;
4503 argv[i] = nullptr;
4504 #ifdef V8_USE_EXTERNAL_STARTUP_DATA
4505 } else if (strncmp(argv[i], "--snapshot_blob=", 16) == 0) {
4506 options.snapshot_blob = argv[i] + 16;
4507 argv[i] = nullptr;
4508 #endif // V8_USE_EXTERNAL_STARTUP_DATA
4509 } else if (strcmp(argv[i], "--cache") == 0 ||
4510 strncmp(argv[i], "--cache=", 8) == 0) {
4511 const char* value = argv[i] + 7;
4512 if (!*value || strncmp(value, "=code", 6) == 0) {
4513 options.compile_options = v8::ScriptCompiler::kNoCompileOptions;
4514 options.code_cache_options =
4515 ShellOptions::CodeCacheOptions::kProduceCache;
4516 } else if (strncmp(value, "=none", 6) == 0) {
4517 options.compile_options = v8::ScriptCompiler::kNoCompileOptions;
4518 options.code_cache_options =
4519 ShellOptions::CodeCacheOptions::kNoProduceCache;
4520 } else if (strncmp(value, "=after-execute", 15) == 0) {
4521 options.compile_options = v8::ScriptCompiler::kNoCompileOptions;
4522 options.code_cache_options =
4523 ShellOptions::CodeCacheOptions::kProduceCacheAfterExecute;
4524 } else if (strncmp(value, "=full-code-cache", 17) == 0) {
4525 options.compile_options = v8::ScriptCompiler::kEagerCompile;
4526 options.code_cache_options =
4527 ShellOptions::CodeCacheOptions::kProduceCache;
4528 } else {
4529 printf("Unknown option to --cache.\n");
4530 return false;
4531 }
4532 argv[i] = nullptr;
4533 } else if (strcmp(argv[i], "--streaming-compile") == 0) {
4534 options.streaming_compile = true;
4535 argv[i] = nullptr;
4536 } else if ((strcmp(argv[i], "--no-streaming-compile") == 0) ||
4537 (strcmp(argv[i], "--nostreaming-compile") == 0)) {
4538 options.streaming_compile = false;
4539 argv[i] = nullptr;
4540 } else if (strcmp(argv[i], "--enable-tracing") == 0) {
4541 options.trace_enabled = true;
4542 argv[i] = nullptr;
4543 } else if (strncmp(argv[i], "--trace-path=", 13) == 0) {
4544 options.trace_path = argv[i] + 13;
4545 argv[i] = nullptr;
4546 } else if (strncmp(argv[i], "--trace-config=", 15) == 0) {
4547 options.trace_config = argv[i] + 15;
4548 argv[i] = nullptr;
4549 } else if (strcmp(argv[i], "--enable-inspector") == 0) {
4550 options.enable_inspector = true;
4551 argv[i] = nullptr;
4552 } else if (strncmp(argv[i], "--lcov=", 7) == 0) {
4553 options.lcov_file = argv[i] + 7;
4554 argv[i] = nullptr;
4555 } else if (strcmp(argv[i], "--disable-in-process-stack-traces") == 0) {
4556 options.disable_in_process_stack_traces = true;
4557 argv[i] = nullptr;
4558 #ifdef V8_OS_POSIX
4559 } else if (strncmp(argv[i], "--read-from-tcp-port=", 21) == 0) {
4560 options.read_from_tcp_port = atoi(argv[i] + 21);
4561 argv[i] = nullptr;
4562 #endif // V8_OS_POSIX
4563 } else if (strcmp(argv[i], "--enable-os-system") == 0) {
4564 options.enable_os_system = true;
4565 argv[i] = nullptr;
4566 } else if (strcmp(argv[i], "--quiet-load") == 0) {
4567 options.quiet_load = true;
4568 argv[i] = nullptr;
4569 } else if (strncmp(argv[i], "--thread-pool-size=", 19) == 0) {
4570 options.thread_pool_size = atoi(argv[i] + 19);
4571 argv[i] = nullptr;
4572 } else if (strcmp(argv[i], "--stress-delay-tasks") == 0) {
4573 // Delay execution of tasks by 0-100ms randomly (based on --random-seed).
4574 options.stress_delay_tasks = true;
4575 argv[i] = nullptr;
4576 } else if (strcmp(argv[i], "--cpu-profiler") == 0) {
4577 options.cpu_profiler = true;
4578 argv[i] = nullptr;
4579 } else if (strcmp(argv[i], "--cpu-profiler-print") == 0) {
4580 options.cpu_profiler = true;
4581 options.cpu_profiler_print = true;
4582 argv[i] = nullptr;
4583 } else if (strcmp(argv[i], "--stress-deserialize") == 0) {
4584 options.stress_deserialize = true;
4585 argv[i] = nullptr;
4586 } else if (strncmp(argv[i], "--web-snapshot-config=", 22) == 0) {
4587 options.web_snapshot_config = argv[i] + 22;
4588 argv[i] = nullptr;
4589 } else if (strncmp(argv[i], "--web-snapshot-output=", 22) == 0) {
4590 options.web_snapshot_output = argv[i] + 22;
4591 argv[i] = nullptr;
4592 } else if (strcmp(argv[i], "--experimental-d8-web-snapshot-api") == 0) {
4593 options.d8_web_snapshot_api = true;
4594 argv[i] = nullptr;
4595 } else if (strcmp(argv[i], "--compile-only") == 0) {
4596 options.compile_only = true;
4597 argv[i] = nullptr;
4598 } else if (strncmp(argv[i], "--repeat-compile=", 17) == 0) {
4599 options.repeat_compile = atoi(argv[i] + 17);
4600 argv[i] = nullptr;
4601 #ifdef V8_FUZZILLI
4602 } else if (strcmp(argv[i], "--no-fuzzilli-enable-builtins-coverage") == 0) {
4603 options.fuzzilli_enable_builtins_coverage = false;
4604 argv[i] = nullptr;
4605 } else if (strcmp(argv[i], "--fuzzilli-coverage-statistics") == 0) {
4606 options.fuzzilli_coverage_statistics = true;
4607 argv[i] = nullptr;
4608 #endif
4609 } else if (strcmp(argv[i], "--no-fuzzy-module-file-extensions") == 0) {
4610 DCHECK(options.fuzzy_module_file_extensions);
4611 options.fuzzy_module_file_extensions = false;
4612 argv[i] = nullptr;
4613 #if defined(V8_ENABLE_SYSTEM_INSTRUMENTATION)
4614 } else if (strcmp(argv[i], "--enable-system-instrumentation") == 0) {
4615 options.enable_system_instrumentation = true;
4616 options.trace_enabled = true;
4617 // This needs to be manually triggered for JIT ETW events to work.
4618 i::FLAG_enable_system_instrumentation = true;
4619 #if defined(V8_OS_WIN)
4620 // Guard this bc the flag has a lot of overhead and is not currently used
4621 // by macos
4622 i::FLAG_interpreted_frames_native_stack = true;
4623 #endif
4624 argv[i] = nullptr;
4625 #endif
4626 #if V8_ENABLE_WEBASSEMBLY
4627 } else if (strcmp(argv[i], "--wasm-trap-handler") == 0) {
4628 options.wasm_trap_handler = true;
4629 argv[i] = nullptr;
4630 } else if (strcmp(argv[i], "--no-wasm-trap-handler") == 0) {
4631 options.wasm_trap_handler = false;
4632 argv[i] = nullptr;
4633 #endif // V8_ENABLE_WEBASSEMBLY
4634 } else if (strcmp(argv[i], "--expose-fast-api") == 0) {
4635 options.expose_fast_api = true;
4636 argv[i] = nullptr;
4637 } else {
4638 #ifdef V8_TARGET_OS_WIN
4639 PreProcessUnicodeFilenameArg(argv, i);
4640 #endif
4641 }
4642 }
4643
4644 if (options.stress_opt && no_always_opt && check_d8_flag_contradictions) {
4645 FATAL("Flag --no-always-opt is incompatible with --stress-opt.");
4646 }
4647
4648 const char* usage =
4649 "Synopsis:\n"
4650 " shell [options] [--shell] [<file>...]\n"
4651 " d8 [options] [-e <string>] [--shell] [[--module|--web-snapshot]"
4652 " <file>...]\n\n"
4653 " -e execute a string in V8\n"
4654 " --shell run an interactive JavaScript shell\n"
4655 " --module execute a file as a JavaScript module\n"
4656 " --web-snapshot execute a file as a web snapshot\n\n";
4657 using HelpOptions = i::FlagList::HelpOptions;
4658 i::FLAG_abort_on_contradictory_flags = true;
4659 i::FlagList::SetFlagsFromCommandLine(&argc, argv, true,
4660 HelpOptions(HelpOptions::kExit, usage));
4661 options.mock_arraybuffer_allocator = i::FLAG_mock_arraybuffer_allocator;
4662 options.mock_arraybuffer_allocator_limit =
4663 i::FLAG_mock_arraybuffer_allocator_limit;
4664 #if MULTI_MAPPED_ALLOCATOR_AVAILABLE
4665 options.multi_mapped_mock_allocator = i::FLAG_multi_mapped_mock_allocator;
4666 #endif
4667
4668 if (i::FLAG_stress_snapshot && options.expose_fast_api &&
4669 check_d8_flag_contradictions) {
4670 FATAL("Flag --expose-fast-api is incompatible with --stress-snapshot.");
4671 }
4672
4673 // Set up isolated source groups.
4674 options.isolate_sources = new SourceGroup[options.num_isolates];
4675 SourceGroup* current = options.isolate_sources;
4676 current->Begin(argv, 1);
4677 for (int i = 1; i < argc; i++) {
4678 const char* str = argv[i];
4679 if (strcmp(str, "--isolate") == 0) {
4680 current->End(i);
4681 current++;
4682 current->Begin(argv, i + 1);
4683 } else if (strcmp(str, "--module") == 0 ||
4684 strcmp(str, "--web-snapshot") == 0 ||
4685 strcmp(str, "--json") == 0) {
4686 // Pass on to SourceGroup, which understands these options.
4687 } else if (strncmp(str, "--", 2) == 0) {
4688 if (!i::FLAG_correctness_fuzzer_suppressions) {
4689 printf("Warning: unknown flag %s.\nTry --help for options\n", str);
4690 }
4691 } else if (strcmp(str, "-e") == 0 && i + 1 < argc) {
4692 set_script_executed();
4693 } else if (strncmp(str, "-", 1) != 0) {
4694 // Not a flag, so it must be a script to execute.
4695 set_script_executed();
4696 }
4697 }
4698 current->End(argc);
4699
4700 if (!logfile_per_isolate && options.num_isolates) {
4701 V8::SetFlagsFromString("--no-logfile-per-isolate");
4702 }
4703
4704 return true;
4705 }
4706
RunMain(Isolate * isolate,bool last_run)4707 int Shell::RunMain(Isolate* isolate, bool last_run) {
4708 for (int i = 1; i < options.num_isolates; ++i) {
4709 options.isolate_sources[i].StartExecuteInThread();
4710 }
4711 bool success = true;
4712 {
4713 SetWaitUntilDone(isolate, false);
4714 if (options.lcov_file) {
4715 debug::Coverage::SelectMode(isolate, debug::CoverageMode::kBlockCount);
4716 }
4717 HandleScope scope(isolate);
4718 Local<Context> context = CreateEvaluationContext(isolate);
4719 CreateSnapshotTemplate(isolate);
4720 bool use_existing_context = last_run && use_interactive_shell();
4721 if (use_existing_context) {
4722 // Keep using the same context in the interactive shell.
4723 evaluation_context_.Reset(isolate, context);
4724 }
4725 {
4726 Context::Scope cscope(context);
4727 InspectorClient inspector_client(context, options.enable_inspector);
4728 PerIsolateData::RealmScope realm_scope(PerIsolateData::Get(isolate));
4729 if (!options.isolate_sources[0].Execute(isolate)) success = false;
4730 if (!CompleteMessageLoop(isolate)) success = false;
4731 }
4732 if (!use_existing_context) {
4733 DisposeModuleEmbedderData(context);
4734 }
4735 WriteLcovData(isolate, options.lcov_file);
4736 if (last_run && i::FLAG_stress_snapshot) {
4737 static constexpr bool kClearRecompilableData = true;
4738 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
4739 i::Handle<i::Context> i_context = Utils::OpenHandle(*context);
4740 // TODO(jgruber,v8:10500): Don't deoptimize once we support serialization
4741 // of optimized code.
4742 i::Deoptimizer::DeoptimizeAll(i_isolate);
4743 i::Snapshot::ClearReconstructableDataForSerialization(
4744 i_isolate, kClearRecompilableData);
4745 i::Snapshot::SerializeDeserializeAndVerifyForTesting(i_isolate,
4746 i_context);
4747 }
4748 }
4749 CollectGarbage(isolate);
4750
4751 // Park the main thread here to prevent deadlocks in shared GCs when waiting
4752 // in JoinThread.
4753 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
4754 i::ParkedScope parked(i_isolate->main_thread_local_isolate());
4755
4756 for (int i = 1; i < options.num_isolates; ++i) {
4757 if (last_run) {
4758 options.isolate_sources[i].JoinThread();
4759 } else {
4760 options.isolate_sources[i].WaitForThread();
4761 }
4762 }
4763 WaitForRunningWorkers();
4764 if (Shell::unhandled_promise_rejections_.load() > 0) {
4765 printf("%i pending unhandled Promise rejection(s) detected.\n",
4766 Shell::unhandled_promise_rejections_.load());
4767 success = false;
4768 // RunMain may be executed multiple times, e.g. in REPRL mode, so we have to
4769 // reset this counter.
4770 Shell::unhandled_promise_rejections_.store(0);
4771 }
4772 // In order to finish successfully, success must be != expected_to_throw.
4773 if (Shell::options.no_fail) return 0;
4774 return (success == Shell::options.expected_to_throw ? 1 : 0);
4775 }
4776
CollectGarbage(Isolate * isolate)4777 void Shell::CollectGarbage(Isolate* isolate) {
4778 if (options.send_idle_notification) {
4779 const double kLongIdlePauseInSeconds = 1.0;
4780 isolate->ContextDisposedNotification();
4781 isolate->IdleNotificationDeadline(
4782 g_platform->MonotonicallyIncreasingTime() + kLongIdlePauseInSeconds);
4783 }
4784 if (options.invoke_weak_callbacks) {
4785 // By sending a low memory notifications, we will try hard to collect all
4786 // garbage and will therefore also invoke all weak callbacks of actually
4787 // unreachable persistent handles.
4788 isolate->LowMemoryNotification();
4789 }
4790 }
4791
SetWaitUntilDone(Isolate * isolate,bool value)4792 void Shell::SetWaitUntilDone(Isolate* isolate, bool value) {
4793 base::MutexGuard guard(isolate_status_lock_.Pointer());
4794 isolate_status_[isolate] = value;
4795 }
4796
NotifyStartStreamingTask(Isolate * isolate)4797 void Shell::NotifyStartStreamingTask(Isolate* isolate) {
4798 DCHECK(options.streaming_compile);
4799 base::MutexGuard guard(isolate_status_lock_.Pointer());
4800 ++isolate_running_streaming_tasks_[isolate];
4801 }
4802
NotifyFinishStreamingTask(Isolate * isolate)4803 void Shell::NotifyFinishStreamingTask(Isolate* isolate) {
4804 DCHECK(options.streaming_compile);
4805 base::MutexGuard guard(isolate_status_lock_.Pointer());
4806 --isolate_running_streaming_tasks_[isolate];
4807 DCHECK_GE(isolate_running_streaming_tasks_[isolate], 0);
4808 }
4809
4810 namespace {
RunSetTimeoutCallback(Isolate * isolate,bool * did_run)4811 bool RunSetTimeoutCallback(Isolate* isolate, bool* did_run) {
4812 PerIsolateData* data = PerIsolateData::Get(isolate);
4813 HandleScope handle_scope(isolate);
4814 Local<Function> callback;
4815 if (!data->GetTimeoutCallback().ToLocal(&callback)) return true;
4816 Local<Context> context;
4817 if (!data->GetTimeoutContext().ToLocal(&context)) return true;
4818 TryCatch try_catch(isolate);
4819 try_catch.SetVerbose(true);
4820 Context::Scope context_scope(context);
4821 if (callback->Call(context, Undefined(isolate), 0, nullptr).IsEmpty()) {
4822 return false;
4823 }
4824 *did_run = true;
4825 return true;
4826 }
4827
ProcessMessages(Isolate * isolate,const std::function<platform::MessageLoopBehavior ()> & behavior)4828 bool ProcessMessages(
4829 Isolate* isolate,
4830 const std::function<platform::MessageLoopBehavior()>& behavior) {
4831 while (true) {
4832 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
4833 i::SaveAndSwitchContext saved_context(i_isolate, i::Context());
4834 SealHandleScope shs(isolate);
4835 for (bool ran_tasks = true; ran_tasks;) {
4836 // Execute one foreground task (if one exists), then microtasks.
4837 ran_tasks = v8::platform::PumpMessageLoop(g_default_platform, isolate,
4838 behavior());
4839 if (ran_tasks) MicrotasksScope::PerformCheckpoint(isolate);
4840
4841 // In predictable mode we push all background tasks into the foreground
4842 // task queue of the {kProcessGlobalPredictablePlatformWorkerTaskQueue}
4843 // isolate. We execute all background tasks after running one foreground
4844 // task.
4845 if (i::FLAG_verify_predictable) {
4846 while (v8::platform::PumpMessageLoop(
4847 g_default_platform,
4848 kProcessGlobalPredictablePlatformWorkerTaskQueue,
4849 platform::MessageLoopBehavior::kDoNotWait)) {
4850 ran_tasks = true;
4851 }
4852 }
4853 }
4854 if (g_default_platform->IdleTasksEnabled(isolate)) {
4855 v8::platform::RunIdleTasks(g_default_platform, isolate,
4856 50.0 / base::Time::kMillisecondsPerSecond);
4857 }
4858 bool ran_set_timeout = false;
4859 if (!RunSetTimeoutCallback(isolate, &ran_set_timeout)) return false;
4860 if (!ran_set_timeout) return true;
4861 }
4862 }
4863 } // anonymous namespace
4864
CompleteMessageLoop(Isolate * isolate)4865 bool Shell::CompleteMessageLoop(Isolate* isolate) {
4866 auto get_waiting_behaviour = [isolate]() {
4867 base::MutexGuard guard(isolate_status_lock_.Pointer());
4868 DCHECK_GT(isolate_status_.count(isolate), 0);
4869 bool should_wait = (options.wait_for_background_tasks &&
4870 isolate->HasPendingBackgroundTasks()) ||
4871 isolate_status_[isolate] ||
4872 isolate_running_streaming_tasks_[isolate] > 0;
4873 return should_wait ? platform::MessageLoopBehavior::kWaitForWork
4874 : platform::MessageLoopBehavior::kDoNotWait;
4875 };
4876 if (i::FLAG_verify_predictable) {
4877 bool ran_tasks = ProcessMessages(
4878 isolate, [] { return platform::MessageLoopBehavior::kDoNotWait; });
4879 if (get_waiting_behaviour() ==
4880 platform::MessageLoopBehavior::kWaitForWork) {
4881 FATAL(
4882 "There is outstanding work after executing all tasks in predictable "
4883 "mode -- this would deadlock.");
4884 }
4885 return ran_tasks;
4886 }
4887 return ProcessMessages(isolate, get_waiting_behaviour);
4888 }
4889
EmptyMessageQueues(Isolate * isolate)4890 bool Shell::EmptyMessageQueues(Isolate* isolate) {
4891 return ProcessMessages(
4892 isolate, []() { return platform::MessageLoopBehavior::kDoNotWait; });
4893 }
4894
PostForegroundTask(Isolate * isolate,std::unique_ptr<Task> task)4895 void Shell::PostForegroundTask(Isolate* isolate, std::unique_ptr<Task> task) {
4896 g_default_platform->GetForegroundTaskRunner(isolate)->PostTask(
4897 std::move(task));
4898 }
4899
PostBlockingBackgroundTask(std::unique_ptr<Task> task)4900 void Shell::PostBlockingBackgroundTask(std::unique_ptr<Task> task) {
4901 g_default_platform->CallBlockingTaskOnWorkerThread(std::move(task));
4902 }
4903
HandleUnhandledPromiseRejections(Isolate * isolate)4904 bool Shell::HandleUnhandledPromiseRejections(Isolate* isolate) {
4905 if (options.ignore_unhandled_promises) return true;
4906 PerIsolateData* data = PerIsolateData::Get(isolate);
4907 int count = data->HandleUnhandledPromiseRejections();
4908 Shell::unhandled_promise_rejections_.store(
4909 Shell::unhandled_promise_rejections_.load() + count);
4910 return count == 0;
4911 }
4912
4913 class Serializer : public ValueSerializer::Delegate {
4914 public:
Serializer(Isolate * isolate)4915 explicit Serializer(Isolate* isolate)
4916 : isolate_(isolate),
4917 serializer_(isolate, this),
4918 current_memory_usage_(0) {}
4919
4920 Serializer(const Serializer&) = delete;
4921 Serializer& operator=(const Serializer&) = delete;
4922
WriteValue(Local<Context> context,Local<Value> value,Local<Value> transfer)4923 Maybe<bool> WriteValue(Local<Context> context, Local<Value> value,
4924 Local<Value> transfer) {
4925 bool ok;
4926 DCHECK(!data_);
4927 data_.reset(new SerializationData);
4928 if (!PrepareTransfer(context, transfer).To(&ok)) {
4929 return Nothing<bool>();
4930 }
4931 serializer_.WriteHeader();
4932
4933 if (!serializer_.WriteValue(context, value).To(&ok)) {
4934 data_.reset();
4935 return Nothing<bool>();
4936 }
4937
4938 if (!FinalizeTransfer().To(&ok)) {
4939 return Nothing<bool>();
4940 }
4941
4942 std::pair<uint8_t*, size_t> pair = serializer_.Release();
4943 data_->data_.reset(pair.first);
4944 data_->size_ = pair.second;
4945 return Just(true);
4946 }
4947
Release()4948 std::unique_ptr<SerializationData> Release() { return std::move(data_); }
4949
AppendBackingStoresTo(std::vector<std::shared_ptr<BackingStore>> * to)4950 void AppendBackingStoresTo(std::vector<std::shared_ptr<BackingStore>>* to) {
4951 to->insert(to->end(), std::make_move_iterator(backing_stores_.begin()),
4952 std::make_move_iterator(backing_stores_.end()));
4953 backing_stores_.clear();
4954 }
4955
4956 protected:
4957 // Implements ValueSerializer::Delegate.
ThrowDataCloneError(Local<String> message)4958 void ThrowDataCloneError(Local<String> message) override {
4959 isolate_->ThrowException(Exception::Error(message));
4960 }
4961
GetSharedArrayBufferId(Isolate * isolate,Local<SharedArrayBuffer> shared_array_buffer)4962 Maybe<uint32_t> GetSharedArrayBufferId(
4963 Isolate* isolate, Local<SharedArrayBuffer> shared_array_buffer) override {
4964 DCHECK_NOT_NULL(data_);
4965 for (size_t index = 0; index < shared_array_buffers_.size(); ++index) {
4966 if (shared_array_buffers_[index] == shared_array_buffer) {
4967 return Just<uint32_t>(static_cast<uint32_t>(index));
4968 }
4969 }
4970
4971 size_t index = shared_array_buffers_.size();
4972 shared_array_buffers_.emplace_back(isolate_, shared_array_buffer);
4973 data_->sab_backing_stores_.push_back(
4974 shared_array_buffer->GetBackingStore());
4975 return Just<uint32_t>(static_cast<uint32_t>(index));
4976 }
4977
GetWasmModuleTransferId(Isolate * isolate,Local<WasmModuleObject> module)4978 Maybe<uint32_t> GetWasmModuleTransferId(
4979 Isolate* isolate, Local<WasmModuleObject> module) override {
4980 DCHECK_NOT_NULL(data_);
4981 for (size_t index = 0; index < wasm_modules_.size(); ++index) {
4982 if (wasm_modules_[index] == module) {
4983 return Just<uint32_t>(static_cast<uint32_t>(index));
4984 }
4985 }
4986
4987 size_t index = wasm_modules_.size();
4988 wasm_modules_.emplace_back(isolate_, module);
4989 data_->compiled_wasm_modules_.push_back(module->GetCompiledModule());
4990 return Just<uint32_t>(static_cast<uint32_t>(index));
4991 }
4992
ReallocateBufferMemory(void * old_buffer,size_t size,size_t * actual_size)4993 void* ReallocateBufferMemory(void* old_buffer, size_t size,
4994 size_t* actual_size) override {
4995 // Not accurate, because we don't take into account reallocated buffers,
4996 // but this is fine for testing.
4997 current_memory_usage_ += size;
4998 if (current_memory_usage_ > kMaxSerializerMemoryUsage) return nullptr;
4999
5000 void* result = base::Realloc(old_buffer, size);
5001 *actual_size = result ? size : 0;
5002 return result;
5003 }
5004
FreeBufferMemory(void * buffer)5005 void FreeBufferMemory(void* buffer) override { base::Free(buffer); }
5006
SupportsSharedValues() const5007 bool SupportsSharedValues() const override { return true; }
5008
GetSharedValueId(Isolate * isolate,Local<Value> shared_value)5009 Maybe<uint32_t> GetSharedValueId(Isolate* isolate,
5010 Local<Value> shared_value) override {
5011 DCHECK_NOT_NULL(data_);
5012 for (size_t index = 0; index < data_->shared_values_.size(); ++index) {
5013 if (data_->shared_values_[index] == shared_value) {
5014 return Just<uint32_t>(static_cast<uint32_t>(index));
5015 }
5016 }
5017
5018 size_t index = data_->shared_values_.size();
5019 // Shared values in transit are kept alive by global handles in the shared
5020 // isolate. No code ever runs in the shared Isolate, so locking it does not
5021 // contend with long-running tasks.
5022 {
5023 DCHECK_EQ(reinterpret_cast<i::Isolate*>(isolate)->shared_isolate(),
5024 reinterpret_cast<i::Isolate*>(Shell::shared_isolate));
5025 v8::Locker locker(Shell::shared_isolate);
5026 data_->shared_values_.emplace_back(Shell::shared_isolate, shared_value);
5027 }
5028 return Just<uint32_t>(static_cast<uint32_t>(index));
5029 }
5030
5031 private:
PrepareTransfer(Local<Context> context,Local<Value> transfer)5032 Maybe<bool> PrepareTransfer(Local<Context> context, Local<Value> transfer) {
5033 if (transfer->IsArray()) {
5034 Local<Array> transfer_array = transfer.As<Array>();
5035 uint32_t length = transfer_array->Length();
5036 for (uint32_t i = 0; i < length; ++i) {
5037 Local<Value> element;
5038 if (transfer_array->Get(context, i).ToLocal(&element)) {
5039 if (!element->IsArrayBuffer()) {
5040 isolate_->ThrowError(
5041 "Transfer array elements must be an ArrayBuffer");
5042 return Nothing<bool>();
5043 }
5044
5045 Local<ArrayBuffer> array_buffer = element.As<ArrayBuffer>();
5046
5047 if (std::find(array_buffers_.begin(), array_buffers_.end(),
5048 array_buffer) != array_buffers_.end()) {
5049 isolate_->ThrowError(
5050 "ArrayBuffer occurs in the transfer array more than once");
5051 return Nothing<bool>();
5052 }
5053
5054 serializer_.TransferArrayBuffer(
5055 static_cast<uint32_t>(array_buffers_.size()), array_buffer);
5056 array_buffers_.emplace_back(isolate_, array_buffer);
5057 } else {
5058 return Nothing<bool>();
5059 }
5060 }
5061 return Just(true);
5062 } else if (transfer->IsUndefined()) {
5063 return Just(true);
5064 } else {
5065 isolate_->ThrowError("Transfer list must be an Array or undefined");
5066 return Nothing<bool>();
5067 }
5068 }
5069
FinalizeTransfer()5070 Maybe<bool> FinalizeTransfer() {
5071 for (const auto& global_array_buffer : array_buffers_) {
5072 Local<ArrayBuffer> array_buffer =
5073 Local<ArrayBuffer>::New(isolate_, global_array_buffer);
5074 if (!array_buffer->IsDetachable()) {
5075 isolate_->ThrowError(
5076 "ArrayBuffer is not detachable and could not be transferred");
5077 return Nothing<bool>();
5078 }
5079
5080 auto backing_store = array_buffer->GetBackingStore();
5081 data_->backing_stores_.push_back(std::move(backing_store));
5082 array_buffer->Detach();
5083 }
5084
5085 return Just(true);
5086 }
5087
5088 Isolate* isolate_;
5089 ValueSerializer serializer_;
5090 std::unique_ptr<SerializationData> data_;
5091 std::vector<Global<ArrayBuffer>> array_buffers_;
5092 std::vector<Global<SharedArrayBuffer>> shared_array_buffers_;
5093 std::vector<Global<WasmModuleObject>> wasm_modules_;
5094 std::vector<std::shared_ptr<v8::BackingStore>> backing_stores_;
5095 size_t current_memory_usage_;
5096 };
5097
ClearSharedValuesUnderLockIfNeeded()5098 void SerializationData::ClearSharedValuesUnderLockIfNeeded() {
5099 if (shared_values_.empty()) return;
5100 v8::Locker locker(Shell::shared_isolate);
5101 shared_values_.clear();
5102 }
5103
5104 class Deserializer : public ValueDeserializer::Delegate {
5105 public:
Deserializer(Isolate * isolate,std::unique_ptr<SerializationData> data)5106 Deserializer(Isolate* isolate, std::unique_ptr<SerializationData> data)
5107 : isolate_(isolate),
5108 deserializer_(isolate, data->data(), data->size(), this),
5109 data_(std::move(data)) {
5110 deserializer_.SetSupportsLegacyWireFormat(true);
5111 }
5112
~Deserializer()5113 ~Deserializer() {
5114 DCHECK_EQ(reinterpret_cast<i::Isolate*>(isolate_)->shared_isolate(),
5115 reinterpret_cast<i::Isolate*>(Shell::shared_isolate));
5116 data_->ClearSharedValuesUnderLockIfNeeded();
5117 }
5118
5119 Deserializer(const Deserializer&) = delete;
5120 Deserializer& operator=(const Deserializer&) = delete;
5121
ReadValue(Local<Context> context)5122 MaybeLocal<Value> ReadValue(Local<Context> context) {
5123 bool read_header;
5124 if (!deserializer_.ReadHeader(context).To(&read_header)) {
5125 return MaybeLocal<Value>();
5126 }
5127
5128 uint32_t index = 0;
5129 for (const auto& backing_store : data_->backing_stores()) {
5130 Local<ArrayBuffer> array_buffer =
5131 ArrayBuffer::New(isolate_, std::move(backing_store));
5132 deserializer_.TransferArrayBuffer(index++, array_buffer);
5133 }
5134
5135 return deserializer_.ReadValue(context);
5136 }
5137
GetSharedArrayBufferFromId(Isolate * isolate,uint32_t clone_id)5138 MaybeLocal<SharedArrayBuffer> GetSharedArrayBufferFromId(
5139 Isolate* isolate, uint32_t clone_id) override {
5140 DCHECK_NOT_NULL(data_);
5141 if (clone_id < data_->sab_backing_stores().size()) {
5142 return SharedArrayBuffer::New(
5143 isolate_, std::move(data_->sab_backing_stores().at(clone_id)));
5144 }
5145 return MaybeLocal<SharedArrayBuffer>();
5146 }
5147
GetWasmModuleFromId(Isolate * isolate,uint32_t transfer_id)5148 MaybeLocal<WasmModuleObject> GetWasmModuleFromId(
5149 Isolate* isolate, uint32_t transfer_id) override {
5150 DCHECK_NOT_NULL(data_);
5151 if (transfer_id >= data_->compiled_wasm_modules().size()) return {};
5152 return WasmModuleObject::FromCompiledModule(
5153 isolate_, data_->compiled_wasm_modules().at(transfer_id));
5154 }
5155
SupportsSharedValues() const5156 bool SupportsSharedValues() const override { return true; }
5157
GetSharedValueFromId(Isolate * isolate,uint32_t id)5158 MaybeLocal<Value> GetSharedValueFromId(Isolate* isolate,
5159 uint32_t id) override {
5160 DCHECK_NOT_NULL(data_);
5161 if (id < data_->shared_values().size()) {
5162 return data_->shared_values().at(id).Get(isolate);
5163 }
5164 return MaybeLocal<Value>();
5165 }
5166
5167 private:
5168 Isolate* isolate_;
5169 ValueDeserializer deserializer_;
5170 std::unique_ptr<SerializationData> data_;
5171 };
5172
5173 class D8Testing {
5174 public:
5175 /**
5176 * Get the number of runs of a given test that is required to get the full
5177 * stress coverage.
5178 */
GetStressRuns()5179 static int GetStressRuns() {
5180 if (internal::FLAG_stress_runs != 0) return internal::FLAG_stress_runs;
5181 #ifdef DEBUG
5182 // In debug mode the code runs much slower so stressing will only make two
5183 // runs.
5184 return 2;
5185 #else
5186 return 5;
5187 #endif
5188 }
5189
5190 /**
5191 * Indicate the number of the run which is about to start. The value of run
5192 * should be between 0 and one less than the result from GetStressRuns()
5193 */
PrepareStressRun(int run)5194 static void PrepareStressRun(int run) {
5195 static const char* kLazyOptimizations =
5196 "--prepare-always-opt "
5197 "--max-inlined-bytecode-size=999999 "
5198 "--max-inlined-bytecode-size-cumulative=999999 "
5199 "--noalways-opt";
5200
5201 if (run == 0) {
5202 V8::SetFlagsFromString(kLazyOptimizations);
5203 } else if (run == GetStressRuns() - 1) {
5204 i::FLAG_always_opt = true;
5205 }
5206 }
5207
5208 /**
5209 * Force deoptimization of all functions.
5210 */
DeoptimizeAll(Isolate * isolate)5211 static void DeoptimizeAll(Isolate* isolate) {
5212 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
5213 i::HandleScope scope(i_isolate);
5214 i::Deoptimizer::DeoptimizeAll(i_isolate);
5215 }
5216 };
5217
SerializeValue(Isolate * isolate,Local<Value> value,Local<Value> transfer)5218 std::unique_ptr<SerializationData> Shell::SerializeValue(
5219 Isolate* isolate, Local<Value> value, Local<Value> transfer) {
5220 bool ok;
5221 Local<Context> context = isolate->GetCurrentContext();
5222 Serializer serializer(isolate);
5223 std::unique_ptr<SerializationData> data;
5224 if (serializer.WriteValue(context, value, transfer).To(&ok)) {
5225 data = serializer.Release();
5226 }
5227 return data;
5228 }
5229
DeserializeValue(Isolate * isolate,std::unique_ptr<SerializationData> data)5230 MaybeLocal<Value> Shell::DeserializeValue(
5231 Isolate* isolate, std::unique_ptr<SerializationData> data) {
5232 Local<Value> value;
5233 Local<Context> context = isolate->GetCurrentContext();
5234 Deserializer deserializer(isolate, std::move(data));
5235 return deserializer.ReadValue(context);
5236 }
5237
AddRunningWorker(std::shared_ptr<Worker> worker)5238 void Shell::AddRunningWorker(std::shared_ptr<Worker> worker) {
5239 workers_mutex_.Pointer()->AssertHeld(); // caller should hold the mutex.
5240 running_workers_.insert(worker);
5241 }
5242
RemoveRunningWorker(const std::shared_ptr<Worker> & worker)5243 void Shell::RemoveRunningWorker(const std::shared_ptr<Worker>& worker) {
5244 base::MutexGuard lock_guard(workers_mutex_.Pointer());
5245 auto it = running_workers_.find(worker);
5246 if (it != running_workers_.end()) running_workers_.erase(it);
5247 }
5248
WaitForRunningWorkers()5249 void Shell::WaitForRunningWorkers() {
5250 // Make a copy of running_workers_, because we don't want to call
5251 // Worker::Terminate while holding the workers_mutex_ lock. Otherwise, if a
5252 // worker is about to create a new Worker, it would deadlock.
5253 std::unordered_set<std::shared_ptr<Worker>> workers_copy;
5254 {
5255 base::MutexGuard lock_guard(workers_mutex_.Pointer());
5256 allow_new_workers_ = false;
5257 workers_copy.swap(running_workers_);
5258 }
5259
5260 for (auto& worker : workers_copy) {
5261 worker->TerminateAndWaitForThread();
5262 }
5263
5264 // Now that all workers are terminated, we can re-enable Worker creation.
5265 base::MutexGuard lock_guard(workers_mutex_.Pointer());
5266 DCHECK(running_workers_.empty());
5267 allow_new_workers_ = true;
5268 }
5269
5270 namespace {
5271
HasFlagThatRequiresSharedIsolate()5272 bool HasFlagThatRequiresSharedIsolate() {
5273 return i::FLAG_shared_string_table || i::FLAG_harmony_struct;
5274 }
5275
5276 } // namespace
5277
Main(int argc,char * argv[])5278 int Shell::Main(int argc, char* argv[]) {
5279 v8::base::EnsureConsoleOutput();
5280 if (!SetOptions(argc, argv)) return 1;
5281
5282 v8::V8::InitializeICUDefaultLocation(argv[0], options.icu_data_file);
5283
5284 #ifdef V8_INTL_SUPPORT
5285 if (options.icu_locale != nullptr) {
5286 icu::Locale locale(options.icu_locale);
5287 UErrorCode error_code = U_ZERO_ERROR;
5288 icu::Locale::setDefault(locale, error_code);
5289 }
5290 #endif // V8_INTL_SUPPORT
5291
5292 v8::platform::InProcessStackDumping in_process_stack_dumping =
5293 options.disable_in_process_stack_traces
5294 ? v8::platform::InProcessStackDumping::kDisabled
5295 : v8::platform::InProcessStackDumping::kEnabled;
5296
5297 std::ofstream trace_file;
5298 std::unique_ptr<platform::tracing::TracingController> tracing;
5299 if (options.trace_enabled && !i::FLAG_verify_predictable) {
5300 tracing = std::make_unique<platform::tracing::TracingController>();
5301
5302 if (!options.enable_system_instrumentation) {
5303 const char* trace_path =
5304 options.trace_path ? options.trace_path : "v8_trace.json";
5305 trace_file.open(trace_path);
5306 if (!trace_file.good()) {
5307 printf("Cannot open trace file '%s' for writing: %s.\n", trace_path,
5308 strerror(errno));
5309 return 1;
5310 }
5311 }
5312
5313 #ifdef V8_USE_PERFETTO
5314 // Set up the in-process backend that the tracing controller will connect
5315 // to.
5316 perfetto::TracingInitArgs init_args;
5317 init_args.backends = perfetto::BackendType::kInProcessBackend;
5318 perfetto::Tracing::Initialize(init_args);
5319
5320 tracing->InitializeForPerfetto(&trace_file);
5321 #else
5322 platform::tracing::TraceBuffer* trace_buffer = nullptr;
5323 #if defined(V8_ENABLE_SYSTEM_INSTRUMENTATION)
5324 if (options.enable_system_instrumentation) {
5325 trace_buffer =
5326 platform::tracing::TraceBuffer::CreateTraceBufferRingBuffer(
5327 platform::tracing::TraceBuffer::kRingBufferChunks,
5328 platform::tracing::TraceWriter::
5329 CreateSystemInstrumentationTraceWriter());
5330 }
5331 #endif // V8_ENABLE_SYSTEM_INSTRUMENTATION
5332 if (!trace_buffer) {
5333 trace_buffer =
5334 platform::tracing::TraceBuffer::CreateTraceBufferRingBuffer(
5335 platform::tracing::TraceBuffer::kRingBufferChunks,
5336 platform::tracing::TraceWriter::CreateJSONTraceWriter(
5337 trace_file));
5338 }
5339 tracing->Initialize(trace_buffer);
5340 #endif // V8_USE_PERFETTO
5341 }
5342
5343 platform::tracing::TracingController* tracing_controller = tracing.get();
5344 g_platform = v8::platform::NewDefaultPlatform(
5345 options.thread_pool_size, v8::platform::IdleTaskSupport::kEnabled,
5346 in_process_stack_dumping, std::move(tracing));
5347 g_default_platform = g_platform.get();
5348 if (i::FLAG_predictable) {
5349 g_platform = MakePredictablePlatform(std::move(g_platform));
5350 }
5351 if (options.stress_delay_tasks) {
5352 int64_t random_seed = i::FLAG_fuzzer_random_seed;
5353 if (!random_seed) random_seed = i::FLAG_random_seed;
5354 // If random_seed is still 0 here, the {DelayedTasksPlatform} will choose a
5355 // random seed.
5356 g_platform = MakeDelayedTasksPlatform(std::move(g_platform), random_seed);
5357 }
5358
5359 if (i::FLAG_trace_turbo_cfg_file == nullptr) {
5360 V8::SetFlagsFromString("--trace-turbo-cfg-file=turbo.cfg");
5361 }
5362 if (i::FLAG_redirect_code_traces_to == nullptr) {
5363 V8::SetFlagsFromString("--redirect-code-traces-to=code.asm");
5364 }
5365 v8::V8::InitializePlatform(g_platform.get());
5366 #ifdef V8_SANDBOX
5367 if (!v8::V8::InitializeSandbox()) {
5368 FATAL("Could not initialize the sandbox");
5369 }
5370 #endif
5371 v8::V8::Initialize();
5372 if (options.snapshot_blob) {
5373 v8::V8::InitializeExternalStartupDataFromFile(options.snapshot_blob);
5374 } else {
5375 v8::V8::InitializeExternalStartupData(argv[0]);
5376 }
5377 int result = 0;
5378 Isolate::CreateParams create_params;
5379 ShellArrayBufferAllocator shell_array_buffer_allocator;
5380 MockArrayBufferAllocator mock_arraybuffer_allocator;
5381 const size_t memory_limit =
5382 options.mock_arraybuffer_allocator_limit * options.num_isolates;
5383 MockArrayBufferAllocatiorWithLimit mock_arraybuffer_allocator_with_limit(
5384 memory_limit >= options.mock_arraybuffer_allocator_limit
5385 ? memory_limit
5386 : std::numeric_limits<size_t>::max());
5387 #if MULTI_MAPPED_ALLOCATOR_AVAILABLE
5388 MultiMappedAllocator multi_mapped_mock_allocator;
5389 #endif
5390 if (options.mock_arraybuffer_allocator) {
5391 if (memory_limit) {
5392 Shell::array_buffer_allocator = &mock_arraybuffer_allocator_with_limit;
5393 } else {
5394 Shell::array_buffer_allocator = &mock_arraybuffer_allocator;
5395 }
5396 #if MULTI_MAPPED_ALLOCATOR_AVAILABLE
5397 } else if (options.multi_mapped_mock_allocator) {
5398 Shell::array_buffer_allocator = &multi_mapped_mock_allocator;
5399 #endif
5400 } else {
5401 Shell::array_buffer_allocator = &shell_array_buffer_allocator;
5402 }
5403 create_params.array_buffer_allocator = Shell::array_buffer_allocator;
5404 #ifdef ENABLE_VTUNE_JIT_INTERFACE
5405 create_params.code_event_handler = vTune::GetVtuneCodeEventHandler();
5406 #endif
5407 create_params.constraints.ConfigureDefaults(
5408 base::SysInfo::AmountOfPhysicalMemory(),
5409 base::SysInfo::AmountOfVirtualMemory());
5410
5411 Shell::counter_map_ = new CounterMap();
5412 if (options.dump_counters || options.dump_counters_nvp ||
5413 i::TracingFlags::is_gc_stats_enabled()) {
5414 create_params.counter_lookup_callback = LookupCounter;
5415 create_params.create_histogram_callback = CreateHistogram;
5416 create_params.add_histogram_sample_callback = AddHistogramSample;
5417 }
5418
5419 #if V8_ENABLE_WEBASSEMBLY
5420 if (V8_TRAP_HANDLER_SUPPORTED && options.wasm_trap_handler) {
5421 constexpr bool kUseDefaultTrapHandler = true;
5422 if (!v8::V8::EnableWebAssemblyTrapHandler(kUseDefaultTrapHandler)) {
5423 FATAL("Could not register trap handler");
5424 }
5425 }
5426 #endif // V8_ENABLE_WEBASSEMBLY
5427
5428 if (HasFlagThatRequiresSharedIsolate()) {
5429 Isolate::CreateParams shared_create_params;
5430 shared_create_params.constraints.ConfigureDefaults(
5431 base::SysInfo::AmountOfPhysicalMemory(),
5432 base::SysInfo::AmountOfVirtualMemory());
5433 shared_create_params.array_buffer_allocator = Shell::array_buffer_allocator;
5434 shared_isolate =
5435 reinterpret_cast<Isolate*>(i::Isolate::NewShared(shared_create_params));
5436 create_params.experimental_attach_to_shared_isolate = shared_isolate;
5437 }
5438
5439 Isolate* isolate = Isolate::New(create_params);
5440
5441 {
5442 D8Console console(isolate);
5443 Isolate::Scope scope(isolate);
5444 Initialize(isolate, &console);
5445 PerIsolateData data(isolate);
5446
5447 // Fuzzilli REPRL = read-eval-print-loop
5448 do {
5449 #ifdef V8_FUZZILLI
5450 if (fuzzilli_reprl) {
5451 unsigned action = 0;
5452 ssize_t nread = read(REPRL_CRFD, &action, 4);
5453 if (nread != 4 || action != 'cexe') {
5454 fprintf(stderr, "Unknown action: %u\n", action);
5455 _exit(-1);
5456 }
5457 }
5458 #endif // V8_FUZZILLI
5459
5460 result = 0;
5461
5462 if (options.trace_enabled) {
5463 platform::tracing::TraceConfig* trace_config;
5464 if (options.trace_config) {
5465 int size = 0;
5466 char* trace_config_json_str = ReadChars(options.trace_config, &size);
5467 trace_config = tracing::CreateTraceConfigFromJSON(
5468 isolate, trace_config_json_str);
5469 delete[] trace_config_json_str;
5470 } else {
5471 trace_config =
5472 platform::tracing::TraceConfig::CreateDefaultTraceConfig();
5473 if (options.enable_system_instrumentation) {
5474 trace_config->AddIncludedCategory("disabled-by-default-v8.compile");
5475 }
5476 }
5477 tracing_controller->StartTracing(trace_config);
5478 }
5479
5480 CpuProfiler* cpu_profiler;
5481 if (options.cpu_profiler) {
5482 cpu_profiler = CpuProfiler::New(isolate);
5483 CpuProfilingOptions profile_options;
5484 cpu_profiler->StartProfiling(String::Empty(isolate), profile_options);
5485 }
5486
5487 if (options.stress_opt) {
5488 options.stress_runs = D8Testing::GetStressRuns();
5489 for (int i = 0; i < options.stress_runs && result == 0; i++) {
5490 printf("============ Stress %d/%d ============\n", i + 1,
5491 options.stress_runs.get());
5492 D8Testing::PrepareStressRun(i);
5493 bool last_run = i == options.stress_runs - 1;
5494 result = RunMain(isolate, last_run);
5495 }
5496 printf("======== Full Deoptimization =======\n");
5497 D8Testing::DeoptimizeAll(isolate);
5498 } else if (i::FLAG_stress_runs > 0) {
5499 options.stress_runs = i::FLAG_stress_runs;
5500 for (int i = 0; i < options.stress_runs && result == 0; i++) {
5501 printf("============ Run %d/%d ============\n", i + 1,
5502 options.stress_runs.get());
5503 bool last_run = i == options.stress_runs - 1;
5504 result = RunMain(isolate, last_run);
5505 }
5506 } else if (options.code_cache_options !=
5507 ShellOptions::CodeCacheOptions::kNoProduceCache) {
5508 {
5509 // Park the main thread here in case the new isolate wants to perform
5510 // a shared GC to prevent a deadlock.
5511 i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate);
5512 i::ParkedScope parked(i_isolate->main_thread_local_isolate());
5513
5514 printf("============ Run: Produce code cache ============\n");
5515 // First run to produce the cache
5516 Isolate::CreateParams create_params2;
5517 create_params2.array_buffer_allocator = Shell::array_buffer_allocator;
5518 create_params2.experimental_attach_to_shared_isolate =
5519 Shell::shared_isolate;
5520 i::FLAG_hash_seed ^= 1337; // Use a different hash seed.
5521 Isolate* isolate2 = Isolate::New(create_params2);
5522 i::FLAG_hash_seed ^= 1337; // Restore old hash seed.
5523 {
5524 D8Console console2(isolate2);
5525 Initialize(isolate2, &console2);
5526 PerIsolateData data2(isolate2);
5527 Isolate::Scope isolate_scope(isolate2);
5528
5529 result = RunMain(isolate2, false);
5530 }
5531 isolate2->Dispose();
5532 }
5533
5534 // Change the options to consume cache
5535 DCHECK(options.compile_options == v8::ScriptCompiler::kEagerCompile ||
5536 options.compile_options ==
5537 v8::ScriptCompiler::kNoCompileOptions);
5538 options.compile_options.Overwrite(
5539 v8::ScriptCompiler::kConsumeCodeCache);
5540 options.code_cache_options.Overwrite(
5541 ShellOptions::CodeCacheOptions::kNoProduceCache);
5542
5543 printf("============ Run: Consume code cache ============\n");
5544 // Second run to consume the cache in current isolate
5545 result = RunMain(isolate, true);
5546 options.compile_options.Overwrite(
5547 v8::ScriptCompiler::kNoCompileOptions);
5548 } else {
5549 bool last_run = true;
5550 result = RunMain(isolate, last_run);
5551 }
5552
5553 // Run interactive shell if explicitly requested or if no script has been
5554 // executed, but never on --test
5555 if (use_interactive_shell()) {
5556 RunShell(isolate);
5557 }
5558
5559 if (i::FLAG_trace_ignition_dispatches_output_file != nullptr) {
5560 WriteIgnitionDispatchCountersFile(isolate);
5561 }
5562
5563 if (options.cpu_profiler) {
5564 CpuProfile* profile =
5565 cpu_profiler->StopProfiling(String::Empty(isolate));
5566 if (options.cpu_profiler_print) {
5567 const internal::ProfileNode* root =
5568 reinterpret_cast<const internal::ProfileNode*>(
5569 profile->GetTopDownRoot());
5570 root->Print(0);
5571 }
5572 profile->Delete();
5573 cpu_profiler->Dispose();
5574 }
5575
5576 // Shut down contexts and collect garbage.
5577 cached_code_map_.clear();
5578 evaluation_context_.Reset();
5579 stringify_function_.Reset();
5580 CollectGarbage(isolate);
5581 #ifdef V8_FUZZILLI
5582 // Send result to parent (fuzzilli) and reset edge guards.
5583 if (fuzzilli_reprl) {
5584 int status = result << 8;
5585 std::vector<bool> bitmap;
5586 if (options.fuzzilli_enable_builtins_coverage) {
5587 bitmap = i::BasicBlockProfiler::Get()->GetCoverageBitmap(
5588 reinterpret_cast<i::Isolate*>(isolate));
5589 cov_update_builtins_basic_block_coverage(bitmap);
5590 }
5591 if (options.fuzzilli_coverage_statistics) {
5592 int tot = 0;
5593 for (bool b : bitmap) {
5594 if (b) tot++;
5595 }
5596 static int iteration_counter = 0;
5597 std::ofstream covlog("covlog.txt", std::ios::app);
5598 covlog << iteration_counter << "\t" << tot << "\t"
5599 << sanitizer_cov_count_discovered_edges() << "\t"
5600 << bitmap.size() << std::endl;
5601 iteration_counter++;
5602 }
5603 // In REPRL mode, stdout and stderr can be regular files, so they need
5604 // to be flushed after every execution
5605 fflush(stdout);
5606 fflush(stderr);
5607 CHECK_EQ(write(REPRL_CWFD, &status, 4), 4);
5608 sanitizer_cov_reset_edgeguards();
5609 if (options.fuzzilli_enable_builtins_coverage) {
5610 i::BasicBlockProfiler::Get()->ResetCounts(
5611 reinterpret_cast<i::Isolate*>(isolate));
5612 }
5613 }
5614 #endif // V8_FUZZILLI
5615 } while (fuzzilli_reprl);
5616 }
5617 OnExit(isolate, true);
5618
5619 // Delete the platform explicitly here to write the tracing output to the
5620 // tracing file.
5621 if (options.trace_enabled) {
5622 tracing_controller->StopTracing();
5623 }
5624 g_platform.reset();
5625
5626 #ifdef V8_TARGET_OS_WIN
5627 // We need to free the allocated utf8 filenames in
5628 // PreProcessUnicodeFilenameArg.
5629 for (char* utf8_str : utf8_filenames) {
5630 delete[] utf8_str;
5631 }
5632 utf8_filenames.clear();
5633 #endif
5634
5635 return result;
5636 }
5637
5638 } // namespace v8
5639
main(int argc,char * argv[])5640 int main(int argc, char* argv[]) { return v8::Shell::Main(argc, argv); }
5641
5642 #undef CHECK
5643 #undef DCHECK
5644 #undef TRACE_BS
5645