1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2012 the V8 project authors. All rights reserved.
36
37 #include "src/codegen/ia32/assembler-ia32.h"
38
39 #include <cstring>
40
41 #if V8_TARGET_ARCH_IA32
42
43 #if V8_LIBC_MSVCRT
44 #include <intrin.h> // _xgetbv()
45 #endif
46 #if V8_OS_DARWIN
47 #include <sys/sysctl.h>
48 #endif
49
50 #include "src/base/bits.h"
51 #include "src/base/cpu.h"
52 #include "src/codegen/assembler-inl.h"
53 #include "src/codegen/macro-assembler.h"
54 #include "src/codegen/string-constants.h"
55 #include "src/deoptimizer/deoptimizer.h"
56 #include "src/diagnostics/disassembler.h"
57 #include "src/init/v8.h"
58 #include "src/numbers/conversions-inl.h"
59
60 namespace v8 {
61 namespace internal {
62
EmbeddedNumber(double value)63 Immediate Immediate::EmbeddedNumber(double value) {
64 int32_t smi;
65 if (DoubleToSmiInteger(value, &smi)) return Immediate(Smi::FromInt(smi));
66 Immediate result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
67 result.is_heap_object_request_ = true;
68 result.value_.heap_object_request = HeapObjectRequest(value);
69 return result;
70 }
71
EmbeddedStringConstant(const StringConstantBase * str)72 Immediate Immediate::EmbeddedStringConstant(const StringConstantBase* str) {
73 Immediate result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
74 result.is_heap_object_request_ = true;
75 result.value_.heap_object_request = HeapObjectRequest(str);
76 return result;
77 }
78
79 // -----------------------------------------------------------------------------
80 // Implementation of CpuFeatures
81
82 namespace {
83
xgetbv(unsigned int xcr)84 V8_INLINE uint64_t xgetbv(unsigned int xcr) {
85 #if V8_LIBC_MSVCRT
86 return _xgetbv(xcr);
87 #else
88 unsigned eax, edx;
89 // Check xgetbv; this uses a .byte sequence instead of the instruction
90 // directly because older assemblers do not include support for xgetbv and
91 // there is no easy way to conditionally compile based on the assembler
92 // used.
93 __asm__ volatile(".byte 0x0F, 0x01, 0xD0" : "=a"(eax), "=d"(edx) : "c"(xcr));
94 return static_cast<uint64_t>(eax) | (static_cast<uint64_t>(edx) << 32);
95 #endif
96 }
97
OSHasAVXSupport()98 bool OSHasAVXSupport() {
99 #if V8_OS_DARWIN
100 // Mac OS X up to 10.9 has a bug where AVX transitions were indeed being
101 // caused by ISRs, so we detect that here and disable AVX in that case.
102 char buffer[128];
103 size_t buffer_size = arraysize(buffer);
104 int ctl_name[] = {CTL_KERN, KERN_OSRELEASE};
105 if (sysctl(ctl_name, 2, buffer, &buffer_size, nullptr, 0) != 0) {
106 FATAL("V8 failed to get kernel version");
107 }
108 // The buffer now contains a string of the form XX.YY.ZZ, where
109 // XX is the major kernel version component.
110 char* period_pos = strchr(buffer, '.');
111 DCHECK_NOT_NULL(period_pos);
112 *period_pos = '\0';
113 long kernel_version_major = strtol(buffer, nullptr, 10); // NOLINT
114 if (kernel_version_major <= 13) return false;
115 #endif // V8_OS_DARWIN
116 // Check whether OS claims to support AVX.
117 uint64_t feature_mask = xgetbv(0); // XCR_XFEATURE_ENABLED_MASK
118 return (feature_mask & 0x6) == 0x6;
119 }
120
121 #undef _XCR_XFEATURE_ENABLED_MASK
122
123 } // namespace
124
SupportsWasmSimd128()125 bool CpuFeatures::SupportsWasmSimd128() {
126 #if V8_ENABLE_WEBASSEMBLY
127 if (IsSupported(SSE4_1)) return true;
128 if (FLAG_wasm_simd_ssse3_codegen && IsSupported(SSSE3)) return true;
129 #endif // V8_ENABLE_WEBASSEMBLY
130 return false;
131 }
132
ProbeImpl(bool cross_compile)133 void CpuFeatures::ProbeImpl(bool cross_compile) {
134 base::CPU cpu;
135 CHECK(cpu.has_sse2()); // SSE2 support is mandatory.
136 CHECK(cpu.has_cmov()); // CMOV support is mandatory.
137
138 // Only use statically determined features for cross compile (snapshot).
139 if (cross_compile) return;
140
141 if (cpu.has_sse42()) SetSupported(SSE4_2);
142 if (cpu.has_sse41()) SetSupported(SSE4_1);
143 if (cpu.has_ssse3()) SetSupported(SSSE3);
144 if (cpu.has_sse3()) SetSupported(SSE3);
145 if (cpu.has_avx() && cpu.has_osxsave() && OSHasAVXSupport()) {
146 SetSupported(AVX);
147 if (cpu.has_avx2()) SetSupported(AVX2);
148 if (cpu.has_fma3()) SetSupported(FMA3);
149 }
150
151 if (cpu.has_bmi1() && FLAG_enable_bmi1) SetSupported(BMI1);
152 if (cpu.has_bmi2() && FLAG_enable_bmi2) SetSupported(BMI2);
153 if (cpu.has_lzcnt() && FLAG_enable_lzcnt) SetSupported(LZCNT);
154 if (cpu.has_popcnt() && FLAG_enable_popcnt) SetSupported(POPCNT);
155 if (strcmp(FLAG_mcpu, "auto") == 0) {
156 if (cpu.is_atom()) SetSupported(INTEL_ATOM);
157 } else if (strcmp(FLAG_mcpu, "atom") == 0) {
158 SetSupported(INTEL_ATOM);
159 }
160
161 // Ensure that supported cpu features make sense. E.g. it is wrong to support
162 // AVX but not SSE4_2, if we have --enable-avx and --no-enable-sse4-2, the
163 // code above would set AVX to supported, and SSE4_2 to unsupported, then the
164 // checks below will set AVX to unsupported.
165 if (!FLAG_enable_sse3) SetUnsupported(SSE3);
166 if (!FLAG_enable_ssse3 || !IsSupported(SSE3)) SetUnsupported(SSSE3);
167 if (!FLAG_enable_sse4_1 || !IsSupported(SSSE3)) SetUnsupported(SSE4_1);
168 if (!FLAG_enable_sse4_2 || !IsSupported(SSE4_1)) SetUnsupported(SSE4_2);
169 if (!FLAG_enable_avx || !IsSupported(SSE4_2)) SetUnsupported(AVX);
170 if (!FLAG_enable_avx2 || !IsSupported(AVX)) SetUnsupported(AVX2);
171 if (!FLAG_enable_fma3 || !IsSupported(AVX)) SetUnsupported(FMA3);
172
173 // Set a static value on whether Simd is supported.
174 // This variable is only used for certain archs to query SupportWasmSimd128()
175 // at runtime in builtins using an extern ref. Other callers should use
176 // CpuFeatures::SupportWasmSimd128().
177 CpuFeatures::supports_wasm_simd_128_ = CpuFeatures::SupportsWasmSimd128();
178 }
179
PrintTarget()180 void CpuFeatures::PrintTarget() {}
PrintFeatures()181 void CpuFeatures::PrintFeatures() {
182 printf(
183 "SSE3=%d SSSE3=%d SSE4_1=%d AVX=%d AVX2=%d FMA3=%d BMI1=%d BMI2=%d "
184 "LZCNT=%d "
185 "POPCNT=%d ATOM=%d\n",
186 CpuFeatures::IsSupported(SSE3), CpuFeatures::IsSupported(SSSE3),
187 CpuFeatures::IsSupported(SSE4_1), CpuFeatures::IsSupported(AVX),
188 CpuFeatures::IsSupported(AVX2), CpuFeatures::IsSupported(FMA3),
189 CpuFeatures::IsSupported(BMI1), CpuFeatures::IsSupported(BMI2),
190 CpuFeatures::IsSupported(LZCNT), CpuFeatures::IsSupported(POPCNT),
191 CpuFeatures::IsSupported(INTEL_ATOM));
192 }
193
194 // -----------------------------------------------------------------------------
195 // Implementation of Displacement
196
init(Label * L,Type type)197 void Displacement::init(Label* L, Type type) {
198 DCHECK(!L->is_bound());
199 int next = 0;
200 if (L->is_linked()) {
201 next = L->pos();
202 DCHECK_GT(next, 0); // Displacements must be at positions > 0
203 }
204 // Ensure that we _never_ overflow the next field.
205 DCHECK(NextField::is_valid(Assembler::kMaximalBufferSize));
206 data_ = NextField::encode(next) | TypeField::encode(type);
207 }
208
209 // -----------------------------------------------------------------------------
210 // Implementation of RelocInfo
211
212 const int RelocInfo::kApplyMask =
213 RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
214 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
215 RelocInfo::ModeMask(RelocInfo::OFF_HEAP_TARGET) |
216 RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY);
217
IsCodedSpecially()218 bool RelocInfo::IsCodedSpecially() {
219 // The deserializer needs to know whether a pointer is specially coded. Being
220 // specially coded on IA32 means that it is a relative address, as used by
221 // branch instructions. These are also the ones that need changing when a
222 // code object moves.
223 return RelocInfo::ModeMask(rmode_) & kApplyMask;
224 }
225
IsInConstantPool()226 bool RelocInfo::IsInConstantPool() { return false; }
227
wasm_call_tag() const228 uint32_t RelocInfo::wasm_call_tag() const {
229 DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL);
230 return ReadUnalignedValue<uint32_t>(pc_);
231 }
232
233 // -----------------------------------------------------------------------------
234 // Implementation of Operand
235
Operand(Register base,int32_t disp,RelocInfo::Mode rmode)236 Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
237 // [base + disp/r]
238 if (disp == 0 && RelocInfo::IsNoInfo(rmode) && base != ebp) {
239 // [base]
240 set_modrm(0, base);
241 if (base == esp) set_sib(times_1, esp, base);
242 } else if (is_int8(disp) && RelocInfo::IsNoInfo(rmode)) {
243 // [base + disp8]
244 set_modrm(1, base);
245 if (base == esp) set_sib(times_1, esp, base);
246 set_disp8(disp);
247 } else {
248 // [base + disp/r]
249 set_modrm(2, base);
250 if (base == esp) set_sib(times_1, esp, base);
251 set_dispr(disp, rmode);
252 }
253 }
254
Operand(Register base,Register index,ScaleFactor scale,int32_t disp,RelocInfo::Mode rmode)255 Operand::Operand(Register base, Register index, ScaleFactor scale, int32_t disp,
256 RelocInfo::Mode rmode) {
257 DCHECK(index != esp); // illegal addressing mode
258 // [base + index*scale + disp/r]
259 if (disp == 0 && RelocInfo::IsNoInfo(rmode) && base != ebp) {
260 // [base + index*scale]
261 set_modrm(0, esp);
262 set_sib(scale, index, base);
263 } else if (is_int8(disp) && RelocInfo::IsNoInfo(rmode)) {
264 // [base + index*scale + disp8]
265 set_modrm(1, esp);
266 set_sib(scale, index, base);
267 set_disp8(disp);
268 } else {
269 // [base + index*scale + disp/r]
270 set_modrm(2, esp);
271 set_sib(scale, index, base);
272 set_dispr(disp, rmode);
273 }
274 }
275
Operand(Register index,ScaleFactor scale,int32_t disp,RelocInfo::Mode rmode)276 Operand::Operand(Register index, ScaleFactor scale, int32_t disp,
277 RelocInfo::Mode rmode) {
278 DCHECK(index != esp); // illegal addressing mode
279 // [index*scale + disp/r]
280 set_modrm(0, esp);
281 set_sib(scale, index, ebp);
282 set_dispr(disp, rmode);
283 }
284
is_reg_only() const285 bool Operand::is_reg_only() const {
286 return (buf_[0] & 0xF8) == 0xC0; // Addressing mode is register only.
287 }
288
reg() const289 Register Operand::reg() const {
290 DCHECK(is_reg_only());
291 return Register::from_code(buf_[0] & 0x07);
292 }
293
operator !=(Operand op,XMMRegister r)294 bool operator!=(Operand op, XMMRegister r) { return !op.is_reg(r); }
295
AllocateAndInstallRequestedHeapObjects(Isolate * isolate)296 void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) {
297 DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty());
298 for (auto& request : heap_object_requests_) {
299 Handle<HeapObject> object;
300 switch (request.kind()) {
301 case HeapObjectRequest::kHeapNumber:
302 object = isolate->factory()->NewHeapNumber<AllocationType::kOld>(
303 request.heap_number());
304 break;
305 case HeapObjectRequest::kStringConstant: {
306 const StringConstantBase* str = request.string();
307 CHECK_NOT_NULL(str);
308 object = str->AllocateStringConstant(isolate);
309 break;
310 }
311 }
312 Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset();
313 WriteUnalignedValue(pc, object);
314 }
315 }
316
317 // -----------------------------------------------------------------------------
318 // Implementation of Assembler.
319
320 // Emit a single byte. Must always be inlined.
321 #define EMIT(x) *pc_++ = (x)
322
Assembler(const AssemblerOptions & options,std::unique_ptr<AssemblerBuffer> buffer)323 Assembler::Assembler(const AssemblerOptions& options,
324 std::unique_ptr<AssemblerBuffer> buffer)
325 : AssemblerBase(options, std::move(buffer)) {
326 reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_);
327 if (CpuFeatures::IsSupported(SSE4_2)) {
328 EnableCpuFeature(SSE4_1);
329 }
330 if (CpuFeatures::IsSupported(SSE4_1)) {
331 EnableCpuFeature(SSSE3);
332 }
333 if (CpuFeatures::IsSupported(SSSE3)) {
334 EnableCpuFeature(SSE3);
335 }
336 }
337
GetCode(Isolate * isolate,CodeDesc * desc,SafepointTableBuilder * safepoint_table_builder,int handler_table_offset)338 void Assembler::GetCode(Isolate* isolate, CodeDesc* desc,
339 SafepointTableBuilder* safepoint_table_builder,
340 int handler_table_offset) {
341 // As a crutch to avoid having to add manual Align calls wherever we use a
342 // raw workflow to create Code objects (mostly in tests), add another Align
343 // call here. It does no harm - the end of the Code object is aligned to the
344 // (larger) kCodeAlignment anyways.
345 // TODO(jgruber): Consider moving responsibility for proper alignment to
346 // metadata table builders (safepoint, handler, constant pool, code
347 // comments).
348 DataAlign(Code::kMetadataAlignment);
349
350 const int code_comments_size = WriteCodeComments();
351
352 // Finalize code (at this point overflow() may be true, but the gap ensures
353 // that we are still not overlapping instructions and relocation info).
354 DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap.
355
356 AllocateAndInstallRequestedHeapObjects(isolate);
357
358 // Set up code descriptor.
359 // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to
360 // this point to make CodeDesc initialization less fiddly.
361
362 static constexpr int kConstantPoolSize = 0;
363 const int instruction_size = pc_offset();
364 const int code_comments_offset = instruction_size - code_comments_size;
365 const int constant_pool_offset = code_comments_offset - kConstantPoolSize;
366 const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable)
367 ? constant_pool_offset
368 : handler_table_offset;
369 const int safepoint_table_offset =
370 (safepoint_table_builder == kNoSafepointTable)
371 ? handler_table_offset2
372 : safepoint_table_builder->safepoint_table_offset();
373 const int reloc_info_offset =
374 static_cast<int>(reloc_info_writer.pos() - buffer_->start());
375 CodeDesc::Initialize(desc, this, safepoint_table_offset,
376 handler_table_offset2, constant_pool_offset,
377 code_comments_offset, reloc_info_offset);
378 }
379
FinalizeJumpOptimizationInfo()380 void Assembler::FinalizeJumpOptimizationInfo() {
381 // Collection stage
382 auto jump_opt = jump_optimization_info();
383 if (jump_opt && jump_opt->is_collecting()) {
384 auto& bitmap = jump_opt->farjmp_bitmap();
385 int num = static_cast<int>(farjmp_positions_.size());
386 if (num && bitmap.empty()) {
387 bool can_opt = false;
388
389 bitmap.resize((num + 31) / 32, 0);
390 for (int i = 0; i < num; i++) {
391 int disp_pos = farjmp_positions_[i];
392 int disp = long_at(disp_pos);
393 if (is_int8(disp)) {
394 bitmap[i / 32] |= 1 << (i & 31);
395 can_opt = true;
396 }
397 }
398 if (can_opt) {
399 jump_opt->set_optimizable();
400 }
401 }
402 }
403 }
404
Align(int m)405 void Assembler::Align(int m) {
406 DCHECK(base::bits::IsPowerOfTwo(m));
407 int mask = m - 1;
408 int addr = pc_offset();
409 Nop((m - (addr & mask)) & mask);
410 }
411
IsNop(Address addr)412 bool Assembler::IsNop(Address addr) {
413 byte* a = reinterpret_cast<byte*>(addr);
414 while (*a == 0x66) a++;
415 if (*a == 0x90) return true;
416 if (a[0] == 0xF && a[1] == 0x1F) return true;
417 return false;
418 }
419
Nop(int bytes)420 void Assembler::Nop(int bytes) {
421 EnsureSpace ensure_space(this);
422 // Multi byte nops from http://support.amd.com/us/Processor_TechDocs/40546.pdf
423 while (bytes > 0) {
424 switch (bytes) {
425 case 2:
426 EMIT(0x66);
427 V8_FALLTHROUGH;
428 case 1:
429 EMIT(0x90);
430 return;
431 case 3:
432 EMIT(0xF);
433 EMIT(0x1F);
434 EMIT(0);
435 return;
436 case 4:
437 EMIT(0xF);
438 EMIT(0x1F);
439 EMIT(0x40);
440 EMIT(0);
441 return;
442 case 6:
443 EMIT(0x66);
444 V8_FALLTHROUGH;
445 case 5:
446 EMIT(0xF);
447 EMIT(0x1F);
448 EMIT(0x44);
449 EMIT(0);
450 EMIT(0);
451 return;
452 case 7:
453 EMIT(0xF);
454 EMIT(0x1F);
455 EMIT(0x80);
456 EMIT(0);
457 EMIT(0);
458 EMIT(0);
459 EMIT(0);
460 return;
461 default:
462 case 11:
463 EMIT(0x66);
464 bytes--;
465 V8_FALLTHROUGH;
466 case 10:
467 EMIT(0x66);
468 bytes--;
469 V8_FALLTHROUGH;
470 case 9:
471 EMIT(0x66);
472 bytes--;
473 V8_FALLTHROUGH;
474 case 8:
475 EMIT(0xF);
476 EMIT(0x1F);
477 EMIT(0x84);
478 EMIT(0);
479 EMIT(0);
480 EMIT(0);
481 EMIT(0);
482 EMIT(0);
483 bytes -= 8;
484 }
485 }
486 }
487
CodeTargetAlign()488 void Assembler::CodeTargetAlign() {
489 Align(16); // Preferred alignment of jump targets on ia32.
490 }
491
cpuid()492 void Assembler::cpuid() {
493 EnsureSpace ensure_space(this);
494 EMIT(0x0F);
495 EMIT(0xA2);
496 }
497
pushad()498 void Assembler::pushad() {
499 EnsureSpace ensure_space(this);
500 EMIT(0x60);
501 }
502
popad()503 void Assembler::popad() {
504 EnsureSpace ensure_space(this);
505 EMIT(0x61);
506 }
507
pushfd()508 void Assembler::pushfd() {
509 EnsureSpace ensure_space(this);
510 EMIT(0x9C);
511 }
512
popfd()513 void Assembler::popfd() {
514 EnsureSpace ensure_space(this);
515 EMIT(0x9D);
516 }
517
push(const Immediate & x)518 void Assembler::push(const Immediate& x) {
519 EnsureSpace ensure_space(this);
520 if (x.is_int8()) {
521 EMIT(0x6A);
522 EMIT(x.immediate());
523 } else {
524 EMIT(0x68);
525 emit(x);
526 }
527 }
528
push_imm32(int32_t imm32)529 void Assembler::push_imm32(int32_t imm32) {
530 EnsureSpace ensure_space(this);
531 EMIT(0x68);
532 emit(imm32);
533 }
534
push(Register src)535 void Assembler::push(Register src) {
536 EnsureSpace ensure_space(this);
537 EMIT(0x50 | src.code());
538 }
539
push(Operand src)540 void Assembler::push(Operand src) {
541 EnsureSpace ensure_space(this);
542 EMIT(0xFF);
543 emit_operand(esi, src);
544 }
545
pop(Register dst)546 void Assembler::pop(Register dst) {
547 DCHECK_NOT_NULL(reloc_info_writer.last_pc());
548 EnsureSpace ensure_space(this);
549 EMIT(0x58 | dst.code());
550 }
551
pop(Operand dst)552 void Assembler::pop(Operand dst) {
553 EnsureSpace ensure_space(this);
554 EMIT(0x8F);
555 emit_operand(eax, dst);
556 }
557
leave()558 void Assembler::leave() {
559 EnsureSpace ensure_space(this);
560 EMIT(0xC9);
561 }
562
mov_b(Register dst,Operand src)563 void Assembler::mov_b(Register dst, Operand src) {
564 CHECK(dst.is_byte_register());
565 EnsureSpace ensure_space(this);
566 EMIT(0x8A);
567 emit_operand(dst, src);
568 }
569
mov_b(Operand dst,const Immediate & src)570 void Assembler::mov_b(Operand dst, const Immediate& src) {
571 EnsureSpace ensure_space(this);
572 EMIT(0xC6);
573 emit_operand(eax, dst);
574 EMIT(static_cast<int8_t>(src.immediate()));
575 }
576
mov_b(Operand dst,Register src)577 void Assembler::mov_b(Operand dst, Register src) {
578 CHECK(src.is_byte_register());
579 EnsureSpace ensure_space(this);
580 EMIT(0x88);
581 emit_operand(src, dst);
582 }
583
mov_w(Register dst,Operand src)584 void Assembler::mov_w(Register dst, Operand src) {
585 EnsureSpace ensure_space(this);
586 EMIT(0x66);
587 EMIT(0x8B);
588 emit_operand(dst, src);
589 }
590
mov_w(Operand dst,Register src)591 void Assembler::mov_w(Operand dst, Register src) {
592 EnsureSpace ensure_space(this);
593 EMIT(0x66);
594 EMIT(0x89);
595 emit_operand(src, dst);
596 }
597
mov_w(Operand dst,const Immediate & src)598 void Assembler::mov_w(Operand dst, const Immediate& src) {
599 EnsureSpace ensure_space(this);
600 EMIT(0x66);
601 EMIT(0xC7);
602 emit_operand(eax, dst);
603 EMIT(static_cast<int8_t>(src.immediate() & 0xFF));
604 EMIT(static_cast<int8_t>(src.immediate() >> 8));
605 }
606
mov(Register dst,int32_t imm32)607 void Assembler::mov(Register dst, int32_t imm32) {
608 EnsureSpace ensure_space(this);
609 EMIT(0xB8 | dst.code());
610 emit(imm32);
611 }
612
mov(Register dst,const Immediate & x)613 void Assembler::mov(Register dst, const Immediate& x) {
614 EnsureSpace ensure_space(this);
615 EMIT(0xB8 | dst.code());
616 emit(x);
617 }
618
mov(Register dst,Handle<HeapObject> handle)619 void Assembler::mov(Register dst, Handle<HeapObject> handle) {
620 EnsureSpace ensure_space(this);
621 EMIT(0xB8 | dst.code());
622 emit(handle);
623 }
624
mov(Register dst,Operand src)625 void Assembler::mov(Register dst, Operand src) {
626 EnsureSpace ensure_space(this);
627 EMIT(0x8B);
628 emit_operand(dst, src);
629 }
630
mov(Register dst,Register src)631 void Assembler::mov(Register dst, Register src) {
632 EnsureSpace ensure_space(this);
633 EMIT(0x89);
634 EMIT(0xC0 | src.code() << 3 | dst.code());
635 }
636
mov(Operand dst,const Immediate & x)637 void Assembler::mov(Operand dst, const Immediate& x) {
638 EnsureSpace ensure_space(this);
639 EMIT(0xC7);
640 emit_operand(eax, dst);
641 emit(x);
642 }
643
mov(Operand dst,Address src,RelocInfo::Mode rmode)644 void Assembler::mov(Operand dst, Address src, RelocInfo::Mode rmode) {
645 EnsureSpace ensure_space(this);
646 EMIT(0xC7);
647 emit_operand(eax, dst);
648 emit(src, rmode);
649 }
650
mov(Operand dst,Handle<HeapObject> handle)651 void Assembler::mov(Operand dst, Handle<HeapObject> handle) {
652 EnsureSpace ensure_space(this);
653 EMIT(0xC7);
654 emit_operand(eax, dst);
655 emit(handle);
656 }
657
mov(Operand dst,Register src)658 void Assembler::mov(Operand dst, Register src) {
659 EnsureSpace ensure_space(this);
660 EMIT(0x89);
661 emit_operand(src, dst);
662 }
663
movsx_b(Register dst,Operand src)664 void Assembler::movsx_b(Register dst, Operand src) {
665 DCHECK_IMPLIES(src.is_reg_only(), src.reg().is_byte_register());
666 EnsureSpace ensure_space(this);
667 EMIT(0x0F);
668 EMIT(0xBE);
669 emit_operand(dst, src);
670 }
671
movsx_w(Register dst,Operand src)672 void Assembler::movsx_w(Register dst, Operand src) {
673 EnsureSpace ensure_space(this);
674 EMIT(0x0F);
675 EMIT(0xBF);
676 emit_operand(dst, src);
677 }
678
movzx_b(Register dst,Operand src)679 void Assembler::movzx_b(Register dst, Operand src) {
680 DCHECK_IMPLIES(src.is_reg_only(), src.reg().is_byte_register());
681 EnsureSpace ensure_space(this);
682 EMIT(0x0F);
683 EMIT(0xB6);
684 emit_operand(dst, src);
685 }
686
movzx_w(Register dst,Operand src)687 void Assembler::movzx_w(Register dst, Operand src) {
688 EnsureSpace ensure_space(this);
689 EMIT(0x0F);
690 EMIT(0xB7);
691 emit_operand(dst, src);
692 }
693
movq(XMMRegister dst,Operand src)694 void Assembler::movq(XMMRegister dst, Operand src) {
695 EnsureSpace ensure_space(this);
696 EMIT(0xF3);
697 EMIT(0x0F);
698 EMIT(0x7E);
699 emit_operand(dst, src);
700 }
701
movq(Operand dst,XMMRegister src)702 void Assembler::movq(Operand dst, XMMRegister src) {
703 EnsureSpace ensure_space(this);
704 EMIT(0x66);
705 EMIT(0x0F);
706 EMIT(0xD6);
707 emit_operand(src, dst);
708 }
709
cmov(Condition cc,Register dst,Operand src)710 void Assembler::cmov(Condition cc, Register dst, Operand src) {
711 EnsureSpace ensure_space(this);
712 // Opcode: 0f 40 + cc /r.
713 EMIT(0x0F);
714 EMIT(0x40 + cc);
715 emit_operand(dst, src);
716 }
717
cld()718 void Assembler::cld() {
719 EnsureSpace ensure_space(this);
720 EMIT(0xFC);
721 }
722
rep_movs()723 void Assembler::rep_movs() {
724 EnsureSpace ensure_space(this);
725 EMIT(0xF3);
726 EMIT(0xA5);
727 }
728
rep_stos()729 void Assembler::rep_stos() {
730 EnsureSpace ensure_space(this);
731 EMIT(0xF3);
732 EMIT(0xAB);
733 }
734
stos()735 void Assembler::stos() {
736 EnsureSpace ensure_space(this);
737 EMIT(0xAB);
738 }
739
xadd(Operand dst,Register src)740 void Assembler::xadd(Operand dst, Register src) {
741 EnsureSpace ensure_space(this);
742 EMIT(0x0F);
743 EMIT(0xC1);
744 emit_operand(src, dst);
745 }
746
xadd_b(Operand dst,Register src)747 void Assembler::xadd_b(Operand dst, Register src) {
748 DCHECK(src.is_byte_register());
749 EnsureSpace ensure_space(this);
750 EMIT(0x0F);
751 EMIT(0xC0);
752 emit_operand(src, dst);
753 }
754
xadd_w(Operand dst,Register src)755 void Assembler::xadd_w(Operand dst, Register src) {
756 EnsureSpace ensure_space(this);
757 EMIT(0x66);
758 EMIT(0x0F);
759 EMIT(0xC1);
760 emit_operand(src, dst);
761 }
762
xchg(Register dst,Register src)763 void Assembler::xchg(Register dst, Register src) {
764 EnsureSpace ensure_space(this);
765 if (src == eax || dst == eax) { // Single-byte encoding.
766 EMIT(0x90 | (src == eax ? dst.code() : src.code()));
767 } else {
768 EMIT(0x87);
769 EMIT(0xC0 | src.code() << 3 | dst.code());
770 }
771 }
772
xchg(Register dst,Operand src)773 void Assembler::xchg(Register dst, Operand src) {
774 EnsureSpace ensure_space(this);
775 EMIT(0x87);
776 emit_operand(dst, src);
777 }
778
xchg_b(Register reg,Operand op)779 void Assembler::xchg_b(Register reg, Operand op) {
780 DCHECK(reg.is_byte_register());
781 EnsureSpace ensure_space(this);
782 EMIT(0x86);
783 emit_operand(reg, op);
784 }
785
xchg_w(Register reg,Operand op)786 void Assembler::xchg_w(Register reg, Operand op) {
787 EnsureSpace ensure_space(this);
788 EMIT(0x66);
789 EMIT(0x87);
790 emit_operand(reg, op);
791 }
792
lock()793 void Assembler::lock() {
794 EnsureSpace ensure_space(this);
795 EMIT(0xF0);
796 }
797
cmpxchg(Operand dst,Register src)798 void Assembler::cmpxchg(Operand dst, Register src) {
799 EnsureSpace ensure_space(this);
800 EMIT(0x0F);
801 EMIT(0xB1);
802 emit_operand(src, dst);
803 }
804
cmpxchg_b(Operand dst,Register src)805 void Assembler::cmpxchg_b(Operand dst, Register src) {
806 DCHECK(src.is_byte_register());
807 EnsureSpace ensure_space(this);
808 EMIT(0x0F);
809 EMIT(0xB0);
810 emit_operand(src, dst);
811 }
812
cmpxchg_w(Operand dst,Register src)813 void Assembler::cmpxchg_w(Operand dst, Register src) {
814 EnsureSpace ensure_space(this);
815 EMIT(0x66);
816 EMIT(0x0F);
817 EMIT(0xB1);
818 emit_operand(src, dst);
819 }
820
cmpxchg8b(Operand dst)821 void Assembler::cmpxchg8b(Operand dst) {
822 EnsureSpace enure_space(this);
823 EMIT(0x0F);
824 EMIT(0xC7);
825 emit_operand(ecx, dst);
826 }
827
mfence()828 void Assembler::mfence() {
829 EnsureSpace ensure_space(this);
830 EMIT(0x0F);
831 EMIT(0xAE);
832 EMIT(0xF0);
833 }
834
lfence()835 void Assembler::lfence() {
836 EnsureSpace ensure_space(this);
837 EMIT(0x0F);
838 EMIT(0xAE);
839 EMIT(0xE8);
840 }
841
pause()842 void Assembler::pause() {
843 EnsureSpace ensure_space(this);
844 EMIT(0xF3);
845 EMIT(0x90);
846 }
847
adc(Register dst,int32_t imm32)848 void Assembler::adc(Register dst, int32_t imm32) {
849 EnsureSpace ensure_space(this);
850 emit_arith(2, Operand(dst), Immediate(imm32));
851 }
852
adc(Register dst,Operand src)853 void Assembler::adc(Register dst, Operand src) {
854 EnsureSpace ensure_space(this);
855 EMIT(0x13);
856 emit_operand(dst, src);
857 }
858
add(Register dst,Operand src)859 void Assembler::add(Register dst, Operand src) {
860 EnsureSpace ensure_space(this);
861 EMIT(0x03);
862 emit_operand(dst, src);
863 }
864
add(Operand dst,Register src)865 void Assembler::add(Operand dst, Register src) {
866 EnsureSpace ensure_space(this);
867 EMIT(0x01);
868 emit_operand(src, dst);
869 }
870
add(Operand dst,const Immediate & x)871 void Assembler::add(Operand dst, const Immediate& x) {
872 DCHECK_NOT_NULL(reloc_info_writer.last_pc());
873 EnsureSpace ensure_space(this);
874 emit_arith(0, dst, x);
875 }
876
and_(Register dst,int32_t imm32)877 void Assembler::and_(Register dst, int32_t imm32) {
878 and_(dst, Immediate(imm32));
879 }
880
and_(Register dst,const Immediate & x)881 void Assembler::and_(Register dst, const Immediate& x) {
882 EnsureSpace ensure_space(this);
883 emit_arith(4, Operand(dst), x);
884 }
885
and_(Register dst,Operand src)886 void Assembler::and_(Register dst, Operand src) {
887 EnsureSpace ensure_space(this);
888 EMIT(0x23);
889 emit_operand(dst, src);
890 }
891
and_(Operand dst,const Immediate & x)892 void Assembler::and_(Operand dst, const Immediate& x) {
893 EnsureSpace ensure_space(this);
894 emit_arith(4, dst, x);
895 }
896
and_(Operand dst,Register src)897 void Assembler::and_(Operand dst, Register src) {
898 EnsureSpace ensure_space(this);
899 EMIT(0x21);
900 emit_operand(src, dst);
901 }
902
cmpb(Operand op,Immediate imm8)903 void Assembler::cmpb(Operand op, Immediate imm8) {
904 DCHECK(imm8.is_int8() || imm8.is_uint8());
905 EnsureSpace ensure_space(this);
906 if (op.is_reg(eax)) {
907 EMIT(0x3C);
908 } else {
909 EMIT(0x80);
910 emit_operand(edi, op); // edi == 7
911 }
912 emit_b(imm8);
913 }
914
cmpb(Operand op,Register reg)915 void Assembler::cmpb(Operand op, Register reg) {
916 CHECK(reg.is_byte_register());
917 EnsureSpace ensure_space(this);
918 EMIT(0x38);
919 emit_operand(reg, op);
920 }
921
cmpb(Register reg,Operand op)922 void Assembler::cmpb(Register reg, Operand op) {
923 CHECK(reg.is_byte_register());
924 EnsureSpace ensure_space(this);
925 EMIT(0x3A);
926 emit_operand(reg, op);
927 }
928
cmpw(Operand op,Immediate imm16)929 void Assembler::cmpw(Operand op, Immediate imm16) {
930 DCHECK(imm16.is_int16() || imm16.is_uint16());
931 EnsureSpace ensure_space(this);
932 EMIT(0x66);
933 EMIT(0x81);
934 emit_operand(edi, op);
935 emit_w(imm16);
936 }
937
cmpw(Register reg,Operand op)938 void Assembler::cmpw(Register reg, Operand op) {
939 EnsureSpace ensure_space(this);
940 EMIT(0x66);
941 EMIT(0x3B);
942 emit_operand(reg, op);
943 }
944
cmpw(Operand op,Register reg)945 void Assembler::cmpw(Operand op, Register reg) {
946 EnsureSpace ensure_space(this);
947 EMIT(0x66);
948 EMIT(0x39);
949 emit_operand(reg, op);
950 }
951
cmp(Register reg,int32_t imm32)952 void Assembler::cmp(Register reg, int32_t imm32) {
953 EnsureSpace ensure_space(this);
954 emit_arith(7, Operand(reg), Immediate(imm32));
955 }
956
cmp(Register reg,Handle<HeapObject> handle)957 void Assembler::cmp(Register reg, Handle<HeapObject> handle) {
958 EnsureSpace ensure_space(this);
959 emit_arith(7, Operand(reg), Immediate(handle));
960 }
961
cmp(Register reg,Operand op)962 void Assembler::cmp(Register reg, Operand op) {
963 EnsureSpace ensure_space(this);
964 EMIT(0x3B);
965 emit_operand(reg, op);
966 }
967
cmp(Operand op,Register reg)968 void Assembler::cmp(Operand op, Register reg) {
969 EnsureSpace ensure_space(this);
970 EMIT(0x39);
971 emit_operand(reg, op);
972 }
973
cmp(Operand op,const Immediate & imm)974 void Assembler::cmp(Operand op, const Immediate& imm) {
975 EnsureSpace ensure_space(this);
976 emit_arith(7, op, imm);
977 }
978
cmp(Operand op,Handle<HeapObject> handle)979 void Assembler::cmp(Operand op, Handle<HeapObject> handle) {
980 EnsureSpace ensure_space(this);
981 emit_arith(7, op, Immediate(handle));
982 }
983
cmpb_al(Operand op)984 void Assembler::cmpb_al(Operand op) {
985 EnsureSpace ensure_space(this);
986 EMIT(0x38); // CMP r/m8, r8
987 emit_operand(eax, op); // eax has same code as register al.
988 }
989
cmpw_ax(Operand op)990 void Assembler::cmpw_ax(Operand op) {
991 EnsureSpace ensure_space(this);
992 EMIT(0x66);
993 EMIT(0x39); // CMP r/m16, r16
994 emit_operand(eax, op); // eax has same code as register ax.
995 }
996
dec_b(Register dst)997 void Assembler::dec_b(Register dst) {
998 CHECK(dst.is_byte_register());
999 EnsureSpace ensure_space(this);
1000 EMIT(0xFE);
1001 EMIT(0xC8 | dst.code());
1002 }
1003
dec_b(Operand dst)1004 void Assembler::dec_b(Operand dst) {
1005 EnsureSpace ensure_space(this);
1006 EMIT(0xFE);
1007 emit_operand(ecx, dst);
1008 }
1009
dec(Register dst)1010 void Assembler::dec(Register dst) {
1011 EnsureSpace ensure_space(this);
1012 EMIT(0x48 | dst.code());
1013 }
1014
dec(Operand dst)1015 void Assembler::dec(Operand dst) {
1016 EnsureSpace ensure_space(this);
1017 EMIT(0xFF);
1018 emit_operand(ecx, dst);
1019 }
1020
cdq()1021 void Assembler::cdq() {
1022 EnsureSpace ensure_space(this);
1023 EMIT(0x99);
1024 }
1025
idiv(Operand src)1026 void Assembler::idiv(Operand src) {
1027 EnsureSpace ensure_space(this);
1028 EMIT(0xF7);
1029 emit_operand(edi, src);
1030 }
1031
div(Operand src)1032 void Assembler::div(Operand src) {
1033 EnsureSpace ensure_space(this);
1034 EMIT(0xF7);
1035 emit_operand(esi, src);
1036 }
1037
imul(Register reg)1038 void Assembler::imul(Register reg) {
1039 EnsureSpace ensure_space(this);
1040 EMIT(0xF7);
1041 EMIT(0xE8 | reg.code());
1042 }
1043
imul(Register dst,Operand src)1044 void Assembler::imul(Register dst, Operand src) {
1045 EnsureSpace ensure_space(this);
1046 EMIT(0x0F);
1047 EMIT(0xAF);
1048 emit_operand(dst, src);
1049 }
1050
imul(Register dst,Register src,int32_t imm32)1051 void Assembler::imul(Register dst, Register src, int32_t imm32) {
1052 imul(dst, Operand(src), imm32);
1053 }
1054
imul(Register dst,Operand src,int32_t imm32)1055 void Assembler::imul(Register dst, Operand src, int32_t imm32) {
1056 EnsureSpace ensure_space(this);
1057 if (is_int8(imm32)) {
1058 EMIT(0x6B);
1059 emit_operand(dst, src);
1060 EMIT(imm32);
1061 } else {
1062 EMIT(0x69);
1063 emit_operand(dst, src);
1064 emit(imm32);
1065 }
1066 }
1067
inc(Register dst)1068 void Assembler::inc(Register dst) {
1069 EnsureSpace ensure_space(this);
1070 EMIT(0x40 | dst.code());
1071 }
1072
inc(Operand dst)1073 void Assembler::inc(Operand dst) {
1074 EnsureSpace ensure_space(this);
1075 EMIT(0xFF);
1076 emit_operand(eax, dst);
1077 }
1078
lea(Register dst,Operand src)1079 void Assembler::lea(Register dst, Operand src) {
1080 EnsureSpace ensure_space(this);
1081 EMIT(0x8D);
1082 emit_operand(dst, src);
1083 }
1084
mul(Register src)1085 void Assembler::mul(Register src) {
1086 EnsureSpace ensure_space(this);
1087 EMIT(0xF7);
1088 EMIT(0xE0 | src.code());
1089 }
1090
neg(Register dst)1091 void Assembler::neg(Register dst) {
1092 EnsureSpace ensure_space(this);
1093 EMIT(0xF7);
1094 EMIT(0xD8 | dst.code());
1095 }
1096
neg(Operand dst)1097 void Assembler::neg(Operand dst) {
1098 EnsureSpace ensure_space(this);
1099 EMIT(0xF7);
1100 emit_operand(ebx, dst);
1101 }
1102
not_(Register dst)1103 void Assembler::not_(Register dst) {
1104 EnsureSpace ensure_space(this);
1105 EMIT(0xF7);
1106 EMIT(0xD0 | dst.code());
1107 }
1108
not_(Operand dst)1109 void Assembler::not_(Operand dst) {
1110 EnsureSpace ensure_space(this);
1111 EMIT(0xF7);
1112 emit_operand(edx, dst);
1113 }
1114
or_(Register dst,int32_t imm32)1115 void Assembler::or_(Register dst, int32_t imm32) {
1116 EnsureSpace ensure_space(this);
1117 emit_arith(1, Operand(dst), Immediate(imm32));
1118 }
1119
or_(Register dst,Operand src)1120 void Assembler::or_(Register dst, Operand src) {
1121 EnsureSpace ensure_space(this);
1122 EMIT(0x0B);
1123 emit_operand(dst, src);
1124 }
1125
or_(Operand dst,const Immediate & x)1126 void Assembler::or_(Operand dst, const Immediate& x) {
1127 EnsureSpace ensure_space(this);
1128 emit_arith(1, dst, x);
1129 }
1130
or_(Operand dst,Register src)1131 void Assembler::or_(Operand dst, Register src) {
1132 EnsureSpace ensure_space(this);
1133 EMIT(0x09);
1134 emit_operand(src, dst);
1135 }
1136
rcl(Register dst,uint8_t imm8)1137 void Assembler::rcl(Register dst, uint8_t imm8) {
1138 EnsureSpace ensure_space(this);
1139 DCHECK(is_uint5(imm8)); // illegal shift count
1140 if (imm8 == 1) {
1141 EMIT(0xD1);
1142 EMIT(0xD0 | dst.code());
1143 } else {
1144 EMIT(0xC1);
1145 EMIT(0xD0 | dst.code());
1146 EMIT(imm8);
1147 }
1148 }
1149
rcr(Register dst,uint8_t imm8)1150 void Assembler::rcr(Register dst, uint8_t imm8) {
1151 EnsureSpace ensure_space(this);
1152 DCHECK(is_uint5(imm8)); // illegal shift count
1153 if (imm8 == 1) {
1154 EMIT(0xD1);
1155 EMIT(0xD8 | dst.code());
1156 } else {
1157 EMIT(0xC1);
1158 EMIT(0xD8 | dst.code());
1159 EMIT(imm8);
1160 }
1161 }
1162
rol(Operand dst,uint8_t imm8)1163 void Assembler::rol(Operand dst, uint8_t imm8) {
1164 EnsureSpace ensure_space(this);
1165 DCHECK(is_uint5(imm8)); // illegal shift count
1166 if (imm8 == 1) {
1167 EMIT(0xD1);
1168 emit_operand(eax, dst);
1169 } else {
1170 EMIT(0xC1);
1171 emit_operand(eax, dst);
1172 EMIT(imm8);
1173 }
1174 }
1175
rol_cl(Operand dst)1176 void Assembler::rol_cl(Operand dst) {
1177 EnsureSpace ensure_space(this);
1178 EMIT(0xD3);
1179 emit_operand(eax, dst);
1180 }
1181
ror(Operand dst,uint8_t imm8)1182 void Assembler::ror(Operand dst, uint8_t imm8) {
1183 EnsureSpace ensure_space(this);
1184 DCHECK(is_uint5(imm8)); // illegal shift count
1185 if (imm8 == 1) {
1186 EMIT(0xD1);
1187 emit_operand(ecx, dst);
1188 } else {
1189 EMIT(0xC1);
1190 emit_operand(ecx, dst);
1191 EMIT(imm8);
1192 }
1193 }
1194
ror_cl(Operand dst)1195 void Assembler::ror_cl(Operand dst) {
1196 EnsureSpace ensure_space(this);
1197 EMIT(0xD3);
1198 emit_operand(ecx, dst);
1199 }
1200
sar(Operand dst,uint8_t imm8)1201 void Assembler::sar(Operand dst, uint8_t imm8) {
1202 EnsureSpace ensure_space(this);
1203 DCHECK(is_uint5(imm8)); // illegal shift count
1204 if (imm8 == 1) {
1205 EMIT(0xD1);
1206 emit_operand(edi, dst);
1207 } else {
1208 EMIT(0xC1);
1209 emit_operand(edi, dst);
1210 EMIT(imm8);
1211 }
1212 }
1213
sar_cl(Operand dst)1214 void Assembler::sar_cl(Operand dst) {
1215 EnsureSpace ensure_space(this);
1216 EMIT(0xD3);
1217 emit_operand(edi, dst);
1218 }
1219
sbb(Register dst,Operand src)1220 void Assembler::sbb(Register dst, Operand src) {
1221 EnsureSpace ensure_space(this);
1222 EMIT(0x1B);
1223 emit_operand(dst, src);
1224 }
1225
shld(Register dst,Register src,uint8_t shift)1226 void Assembler::shld(Register dst, Register src, uint8_t shift) {
1227 DCHECK(is_uint5(shift));
1228 EnsureSpace ensure_space(this);
1229 EMIT(0x0F);
1230 EMIT(0xA4);
1231 emit_operand(src, Operand(dst));
1232 EMIT(shift);
1233 }
1234
shld_cl(Register dst,Register src)1235 void Assembler::shld_cl(Register dst, Register src) {
1236 EnsureSpace ensure_space(this);
1237 EMIT(0x0F);
1238 EMIT(0xA5);
1239 emit_operand(src, Operand(dst));
1240 }
1241
shl(Operand dst,uint8_t imm8)1242 void Assembler::shl(Operand dst, uint8_t imm8) {
1243 EnsureSpace ensure_space(this);
1244 DCHECK(is_uint5(imm8)); // illegal shift count
1245 if (imm8 == 1) {
1246 EMIT(0xD1);
1247 emit_operand(esp, dst);
1248 } else {
1249 EMIT(0xC1);
1250 emit_operand(esp, dst);
1251 EMIT(imm8);
1252 }
1253 }
1254
shl_cl(Operand dst)1255 void Assembler::shl_cl(Operand dst) {
1256 EnsureSpace ensure_space(this);
1257 EMIT(0xD3);
1258 emit_operand(esp, dst);
1259 }
1260
shr(Operand dst,uint8_t imm8)1261 void Assembler::shr(Operand dst, uint8_t imm8) {
1262 EnsureSpace ensure_space(this);
1263 DCHECK(is_uint5(imm8)); // illegal shift count
1264 if (imm8 == 1) {
1265 EMIT(0xD1);
1266 emit_operand(ebp, dst);
1267 } else {
1268 EMIT(0xC1);
1269 emit_operand(ebp, dst);
1270 EMIT(imm8);
1271 }
1272 }
1273
shr_cl(Operand dst)1274 void Assembler::shr_cl(Operand dst) {
1275 EnsureSpace ensure_space(this);
1276 EMIT(0xD3);
1277 emit_operand(ebp, dst);
1278 }
1279
shrd(Register dst,Register src,uint8_t shift)1280 void Assembler::shrd(Register dst, Register src, uint8_t shift) {
1281 DCHECK(is_uint5(shift));
1282 EnsureSpace ensure_space(this);
1283 EMIT(0x0F);
1284 EMIT(0xAC);
1285 emit_operand(src, Operand(dst));
1286 EMIT(shift);
1287 }
1288
shrd_cl(Operand dst,Register src)1289 void Assembler::shrd_cl(Operand dst, Register src) {
1290 EnsureSpace ensure_space(this);
1291 EMIT(0x0F);
1292 EMIT(0xAD);
1293 emit_operand(src, dst);
1294 }
1295
sub(Operand dst,const Immediate & x)1296 void Assembler::sub(Operand dst, const Immediate& x) {
1297 EnsureSpace ensure_space(this);
1298 emit_arith(5, dst, x);
1299 }
1300
sub(Register dst,Operand src)1301 void Assembler::sub(Register dst, Operand src) {
1302 EnsureSpace ensure_space(this);
1303 EMIT(0x2B);
1304 emit_operand(dst, src);
1305 }
1306
sub(Operand dst,Register src)1307 void Assembler::sub(Operand dst, Register src) {
1308 EnsureSpace ensure_space(this);
1309 EMIT(0x29);
1310 emit_operand(src, dst);
1311 }
1312
sub_sp_32(uint32_t imm)1313 void Assembler::sub_sp_32(uint32_t imm) {
1314 EnsureSpace ensure_space(this);
1315 EMIT(0x81); // using a literal 32-bit immediate.
1316 static constexpr Register ireg = Register::from_code(5);
1317 emit_operand(ireg, Operand(esp));
1318 emit(imm);
1319 }
1320
test(Register reg,const Immediate & imm)1321 void Assembler::test(Register reg, const Immediate& imm) {
1322 if (imm.is_uint8()) {
1323 test_b(reg, imm);
1324 return;
1325 }
1326
1327 EnsureSpace ensure_space(this);
1328 // This is not using emit_arith because test doesn't support
1329 // sign-extension of 8-bit operands.
1330 if (reg == eax) {
1331 EMIT(0xA9);
1332 } else {
1333 EMIT(0xF7);
1334 EMIT(0xC0 | reg.code());
1335 }
1336 emit(imm);
1337 }
1338
test(Register reg,Operand op)1339 void Assembler::test(Register reg, Operand op) {
1340 EnsureSpace ensure_space(this);
1341 EMIT(0x85);
1342 emit_operand(reg, op);
1343 }
1344
test_b(Register reg,Operand op)1345 void Assembler::test_b(Register reg, Operand op) {
1346 CHECK(reg.is_byte_register());
1347 EnsureSpace ensure_space(this);
1348 EMIT(0x84);
1349 emit_operand(reg, op);
1350 }
1351
test(Operand op,const Immediate & imm)1352 void Assembler::test(Operand op, const Immediate& imm) {
1353 if (op.is_reg_only()) {
1354 test(op.reg(), imm);
1355 return;
1356 }
1357 if (imm.is_uint8()) {
1358 return test_b(op, imm);
1359 }
1360 EnsureSpace ensure_space(this);
1361 EMIT(0xF7);
1362 emit_operand(eax, op);
1363 emit(imm);
1364 }
1365
test_b(Register reg,Immediate imm8)1366 void Assembler::test_b(Register reg, Immediate imm8) {
1367 DCHECK(imm8.is_uint8());
1368 EnsureSpace ensure_space(this);
1369 // Only use test against byte for registers that have a byte
1370 // variant: eax, ebx, ecx, and edx.
1371 if (reg == eax) {
1372 EMIT(0xA8);
1373 emit_b(imm8);
1374 } else if (reg.is_byte_register()) {
1375 emit_arith_b(0xF6, 0xC0, reg, static_cast<uint8_t>(imm8.immediate()));
1376 } else {
1377 EMIT(0x66);
1378 EMIT(0xF7);
1379 EMIT(0xC0 | reg.code());
1380 emit_w(imm8);
1381 }
1382 }
1383
test_b(Operand op,Immediate imm8)1384 void Assembler::test_b(Operand op, Immediate imm8) {
1385 if (op.is_reg_only()) {
1386 test_b(op.reg(), imm8);
1387 return;
1388 }
1389 EnsureSpace ensure_space(this);
1390 EMIT(0xF6);
1391 emit_operand(eax, op);
1392 emit_b(imm8);
1393 }
1394
test_w(Register reg,Immediate imm16)1395 void Assembler::test_w(Register reg, Immediate imm16) {
1396 DCHECK(imm16.is_int16() || imm16.is_uint16());
1397 EnsureSpace ensure_space(this);
1398 if (reg == eax) {
1399 EMIT(0xA9);
1400 emit_w(imm16);
1401 } else {
1402 EMIT(0x66);
1403 EMIT(0xF7);
1404 EMIT(0xC0 | reg.code());
1405 emit_w(imm16);
1406 }
1407 }
1408
test_w(Register reg,Operand op)1409 void Assembler::test_w(Register reg, Operand op) {
1410 EnsureSpace ensure_space(this);
1411 EMIT(0x66);
1412 EMIT(0x85);
1413 emit_operand(reg, op);
1414 }
1415
test_w(Operand op,Immediate imm16)1416 void Assembler::test_w(Operand op, Immediate imm16) {
1417 DCHECK(imm16.is_int16() || imm16.is_uint16());
1418 if (op.is_reg_only()) {
1419 test_w(op.reg(), imm16);
1420 return;
1421 }
1422 EnsureSpace ensure_space(this);
1423 EMIT(0x66);
1424 EMIT(0xF7);
1425 emit_operand(eax, op);
1426 emit_w(imm16);
1427 }
1428
xor_(Register dst,int32_t imm32)1429 void Assembler::xor_(Register dst, int32_t imm32) {
1430 EnsureSpace ensure_space(this);
1431 emit_arith(6, Operand(dst), Immediate(imm32));
1432 }
1433
xor_(Register dst,Operand src)1434 void Assembler::xor_(Register dst, Operand src) {
1435 EnsureSpace ensure_space(this);
1436 EMIT(0x33);
1437 emit_operand(dst, src);
1438 }
1439
xor_(Operand dst,Register src)1440 void Assembler::xor_(Operand dst, Register src) {
1441 EnsureSpace ensure_space(this);
1442 EMIT(0x31);
1443 emit_operand(src, dst);
1444 }
1445
xor_(Operand dst,const Immediate & x)1446 void Assembler::xor_(Operand dst, const Immediate& x) {
1447 EnsureSpace ensure_space(this);
1448 emit_arith(6, dst, x);
1449 }
1450
bswap(Register dst)1451 void Assembler::bswap(Register dst) {
1452 EnsureSpace ensure_space(this);
1453 EMIT(0x0F);
1454 EMIT(0xC8 + dst.code());
1455 }
1456
bt(Operand dst,Register src)1457 void Assembler::bt(Operand dst, Register src) {
1458 EnsureSpace ensure_space(this);
1459 EMIT(0x0F);
1460 EMIT(0xA3);
1461 emit_operand(src, dst);
1462 }
1463
bts(Operand dst,Register src)1464 void Assembler::bts(Operand dst, Register src) {
1465 EnsureSpace ensure_space(this);
1466 EMIT(0x0F);
1467 EMIT(0xAB);
1468 emit_operand(src, dst);
1469 }
1470
bsr(Register dst,Operand src)1471 void Assembler::bsr(Register dst, Operand src) {
1472 EnsureSpace ensure_space(this);
1473 EMIT(0x0F);
1474 EMIT(0xBD);
1475 emit_operand(dst, src);
1476 }
1477
bsf(Register dst,Operand src)1478 void Assembler::bsf(Register dst, Operand src) {
1479 EnsureSpace ensure_space(this);
1480 EMIT(0x0F);
1481 EMIT(0xBC);
1482 emit_operand(dst, src);
1483 }
1484
hlt()1485 void Assembler::hlt() {
1486 EnsureSpace ensure_space(this);
1487 EMIT(0xF4);
1488 }
1489
int3()1490 void Assembler::int3() {
1491 EnsureSpace ensure_space(this);
1492 EMIT(0xCC);
1493 }
1494
nop()1495 void Assembler::nop() {
1496 EnsureSpace ensure_space(this);
1497 EMIT(0x90);
1498 }
1499
ret(int imm16)1500 void Assembler::ret(int imm16) {
1501 EnsureSpace ensure_space(this);
1502 DCHECK(is_uint16(imm16));
1503 if (imm16 == 0) {
1504 EMIT(0xC3);
1505 } else {
1506 EMIT(0xC2);
1507 EMIT(imm16 & 0xFF);
1508 EMIT((imm16 >> 8) & 0xFF);
1509 }
1510 }
1511
ud2()1512 void Assembler::ud2() {
1513 EnsureSpace ensure_space(this);
1514 EMIT(0x0F);
1515 EMIT(0x0B);
1516 }
1517
1518 // Labels refer to positions in the (to be) generated code.
1519 // There are bound, linked, and unused labels.
1520 //
1521 // Bound labels refer to known positions in the already
1522 // generated code. pos() is the position the label refers to.
1523 //
1524 // Linked labels refer to unknown positions in the code
1525 // to be generated; pos() is the position of the 32bit
1526 // Displacement of the last instruction using the label.
1527
print(const Label * L)1528 void Assembler::print(const Label* L) {
1529 if (L->is_unused()) {
1530 PrintF("unused label\n");
1531 } else if (L->is_bound()) {
1532 PrintF("bound label to %d\n", L->pos());
1533 } else if (L->is_linked()) {
1534 Label l;
1535 l.link_to(L->pos());
1536 PrintF("unbound label");
1537 while (l.is_linked()) {
1538 Displacement disp = disp_at(&l);
1539 PrintF("@ %d ", l.pos());
1540 disp.print();
1541 PrintF("\n");
1542 disp.next(&l);
1543 }
1544 } else {
1545 PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
1546 }
1547 }
1548
bind_to(Label * L,int pos)1549 void Assembler::bind_to(Label* L, int pos) {
1550 EnsureSpace ensure_space(this);
1551 DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position
1552 while (L->is_linked()) {
1553 Displacement disp = disp_at(L);
1554 int fixup_pos = L->pos();
1555 if (disp.type() == Displacement::CODE_ABSOLUTE) {
1556 long_at_put(fixup_pos, reinterpret_cast<int>(buffer_start_ + pos));
1557 internal_reference_positions_.push_back(fixup_pos);
1558 } else if (disp.type() == Displacement::CODE_RELATIVE) {
1559 // Relative to Code heap object pointer.
1560 long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
1561 } else {
1562 if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
1563 DCHECK_EQ(byte_at(fixup_pos - 1), 0xE9); // jmp expected
1564 }
1565 // Relative address, relative to point after address.
1566 int imm32 = pos - (fixup_pos + sizeof(int32_t));
1567 long_at_put(fixup_pos, imm32);
1568 }
1569 disp.next(L);
1570 }
1571 while (L->is_near_linked()) {
1572 int fixup_pos = L->near_link_pos();
1573 int offset_to_next =
1574 static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
1575 DCHECK_LE(offset_to_next, 0);
1576 // Relative address, relative to point after address.
1577 int disp = pos - fixup_pos - sizeof(int8_t);
1578 CHECK(0 <= disp && disp <= 127);
1579 set_byte_at(fixup_pos, disp);
1580 if (offset_to_next < 0) {
1581 L->link_to(fixup_pos + offset_to_next, Label::kNear);
1582 } else {
1583 L->UnuseNear();
1584 }
1585 }
1586
1587 // Optimization stage
1588 auto jump_opt = jump_optimization_info();
1589 if (jump_opt && jump_opt->is_optimizing()) {
1590 auto it = label_farjmp_maps_.find(L);
1591 if (it != label_farjmp_maps_.end()) {
1592 auto& pos_vector = it->second;
1593 for (auto fixup_pos : pos_vector) {
1594 int disp = pos - (fixup_pos + sizeof(int8_t));
1595 CHECK(is_int8(disp));
1596 set_byte_at(fixup_pos, disp);
1597 }
1598 label_farjmp_maps_.erase(it);
1599 }
1600 }
1601 L->bind_to(pos);
1602 }
1603
bind(Label * L)1604 void Assembler::bind(Label* L) {
1605 EnsureSpace ensure_space(this);
1606 DCHECK(!L->is_bound()); // label can only be bound once
1607 bind_to(L, pc_offset());
1608 }
1609
record_farjmp_position(Label * L,int pos)1610 void Assembler::record_farjmp_position(Label* L, int pos) {
1611 auto& pos_vector = label_farjmp_maps_[L];
1612 pos_vector.push_back(pos);
1613 }
1614
is_optimizable_farjmp(int idx)1615 bool Assembler::is_optimizable_farjmp(int idx) {
1616 if (predictable_code_size()) return false;
1617
1618 auto jump_opt = jump_optimization_info();
1619 CHECK(jump_opt->is_optimizing());
1620
1621 auto& bitmap = jump_opt->farjmp_bitmap();
1622 CHECK(idx < static_cast<int>(bitmap.size() * 32));
1623 return !!(bitmap[idx / 32] & (1 << (idx & 31)));
1624 }
1625
call(Label * L)1626 void Assembler::call(Label* L) {
1627 EnsureSpace ensure_space(this);
1628 if (L->is_bound()) {
1629 const int long_size = 5;
1630 int offs = L->pos() - pc_offset();
1631 DCHECK_LE(offs, 0);
1632 // 1110 1000 #32-bit disp.
1633 EMIT(0xE8);
1634 emit(offs - long_size);
1635 } else {
1636 // 1110 1000 #32-bit disp.
1637 EMIT(0xE8);
1638 emit_disp(L, Displacement::OTHER);
1639 }
1640 }
1641
call(Address entry,RelocInfo::Mode rmode)1642 void Assembler::call(Address entry, RelocInfo::Mode rmode) {
1643 EnsureSpace ensure_space(this);
1644 DCHECK(!RelocInfo::IsCodeTarget(rmode));
1645 EMIT(0xE8);
1646 if (RelocInfo::IsRuntimeEntry(rmode)) {
1647 emit(entry, rmode);
1648 } else {
1649 emit(entry - (reinterpret_cast<Address>(pc_) + sizeof(int32_t)), rmode);
1650 }
1651 }
1652
wasm_call(Address entry,RelocInfo::Mode rmode)1653 void Assembler::wasm_call(Address entry, RelocInfo::Mode rmode) {
1654 EnsureSpace ensure_space(this);
1655 EMIT(0xE8);
1656 emit(entry, rmode);
1657 }
1658
call(Operand adr)1659 void Assembler::call(Operand adr) {
1660 EnsureSpace ensure_space(this);
1661 EMIT(0xFF);
1662 emit_operand(edx, adr);
1663 }
1664
call(Handle<Code> code,RelocInfo::Mode rmode)1665 void Assembler::call(Handle<Code> code, RelocInfo::Mode rmode) {
1666 EnsureSpace ensure_space(this);
1667 DCHECK(RelocInfo::IsCodeTarget(rmode));
1668 DCHECK(code->IsExecutable());
1669 EMIT(0xE8);
1670 emit(code, rmode);
1671 }
1672
jmp_rel(int offset)1673 void Assembler::jmp_rel(int offset) {
1674 EnsureSpace ensure_space(this);
1675 const int short_size = 2;
1676 const int long_size = 5;
1677 if (is_int8(offset - short_size) && !predictable_code_size()) {
1678 // 1110 1011 #8-bit disp.
1679 EMIT(0xEB);
1680 EMIT((offset - short_size) & 0xFF);
1681 } else {
1682 // 1110 1001 #32-bit disp.
1683 EMIT(0xE9);
1684 emit(offset - long_size);
1685 }
1686 }
1687
jmp(Label * L,Label::Distance distance)1688 void Assembler::jmp(Label* L, Label::Distance distance) {
1689 if (L->is_bound()) {
1690 int offset = L->pos() - pc_offset();
1691 DCHECK_LE(offset, 0); // backward jump.
1692 jmp_rel(offset);
1693 return;
1694 }
1695
1696 EnsureSpace ensure_space(this);
1697 if (distance == Label::kNear) {
1698 EMIT(0xEB);
1699 emit_near_disp(L);
1700 } else {
1701 auto jump_opt = jump_optimization_info();
1702 if (V8_UNLIKELY(jump_opt)) {
1703 if (jump_opt->is_optimizing() && is_optimizable_farjmp(farjmp_num_++)) {
1704 EMIT(0xEB);
1705 record_farjmp_position(L, pc_offset());
1706 EMIT(0);
1707 return;
1708 }
1709 if (jump_opt->is_collecting()) {
1710 farjmp_positions_.push_back(pc_offset() + 1);
1711 }
1712 }
1713 // 1110 1001 #32-bit disp.
1714 EMIT(0xE9);
1715 emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
1716 }
1717 }
1718
jmp(Address entry,RelocInfo::Mode rmode)1719 void Assembler::jmp(Address entry, RelocInfo::Mode rmode) {
1720 EnsureSpace ensure_space(this);
1721 DCHECK(!RelocInfo::IsCodeTarget(rmode));
1722 EMIT(0xE9);
1723 if (RelocInfo::IsRuntimeEntry(rmode) || RelocInfo::IsWasmCall(rmode)) {
1724 emit(entry, rmode);
1725 } else {
1726 emit(entry - (reinterpret_cast<Address>(pc_) + sizeof(int32_t)), rmode);
1727 }
1728 }
1729
jmp(Operand adr)1730 void Assembler::jmp(Operand adr) {
1731 EnsureSpace ensure_space(this);
1732 EMIT(0xFF);
1733 emit_operand(esp, adr);
1734 }
1735
jmp(Handle<Code> code,RelocInfo::Mode rmode)1736 void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
1737 EnsureSpace ensure_space(this);
1738 DCHECK(RelocInfo::IsCodeTarget(rmode));
1739 EMIT(0xE9);
1740 emit(code, rmode);
1741 }
1742
j(Condition cc,Label * L,Label::Distance distance)1743 void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
1744 EnsureSpace ensure_space(this);
1745 DCHECK(0 <= cc && static_cast<int>(cc) < 16);
1746 if (L->is_bound()) {
1747 const int short_size = 2;
1748 const int long_size = 6;
1749 int offs = L->pos() - pc_offset();
1750 DCHECK_LE(offs, 0);
1751 if (is_int8(offs - short_size)) {
1752 // 0111 tttn #8-bit disp
1753 EMIT(0x70 | cc);
1754 EMIT((offs - short_size) & 0xFF);
1755 } else {
1756 // 0000 1111 1000 tttn #32-bit disp
1757 EMIT(0x0F);
1758 EMIT(0x80 | cc);
1759 emit(offs - long_size);
1760 }
1761 } else if (distance == Label::kNear) {
1762 EMIT(0x70 | cc);
1763 emit_near_disp(L);
1764 } else {
1765 auto jump_opt = jump_optimization_info();
1766 if (V8_UNLIKELY(jump_opt)) {
1767 if (jump_opt->is_optimizing() && is_optimizable_farjmp(farjmp_num_++)) {
1768 // 0111 tttn #8-bit disp
1769 EMIT(0x70 | cc);
1770 record_farjmp_position(L, pc_offset());
1771 EMIT(0);
1772 return;
1773 }
1774 if (jump_opt->is_collecting()) {
1775 farjmp_positions_.push_back(pc_offset() + 2);
1776 }
1777 }
1778 // 0000 1111 1000 tttn #32-bit disp
1779 // Note: could eliminate cond. jumps to this jump if condition
1780 // is the same however, seems to be rather unlikely case.
1781 EMIT(0x0F);
1782 EMIT(0x80 | cc);
1783 emit_disp(L, Displacement::OTHER);
1784 }
1785 }
1786
j(Condition cc,byte * entry,RelocInfo::Mode rmode)1787 void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) {
1788 EnsureSpace ensure_space(this);
1789 DCHECK((0 <= cc) && (static_cast<int>(cc) < 16));
1790 // 0000 1111 1000 tttn #32-bit disp.
1791 EMIT(0x0F);
1792 EMIT(0x80 | cc);
1793 if (RelocInfo::IsRuntimeEntry(rmode)) {
1794 emit(reinterpret_cast<uint32_t>(entry), rmode);
1795 } else {
1796 emit(entry - (pc_ + sizeof(int32_t)), rmode);
1797 }
1798 }
1799
j(Condition cc,Handle<Code> code,RelocInfo::Mode rmode)1800 void Assembler::j(Condition cc, Handle<Code> code, RelocInfo::Mode rmode) {
1801 EnsureSpace ensure_space(this);
1802 // 0000 1111 1000 tttn #32-bit disp
1803 EMIT(0x0F);
1804 EMIT(0x80 | cc);
1805 emit(code, rmode);
1806 }
1807
1808 // FPU instructions.
1809
fld(int i)1810 void Assembler::fld(int i) {
1811 EnsureSpace ensure_space(this);
1812 emit_farith(0xD9, 0xC0, i);
1813 }
1814
fstp(int i)1815 void Assembler::fstp(int i) {
1816 EnsureSpace ensure_space(this);
1817 emit_farith(0xDD, 0xD8, i);
1818 }
1819
fld1()1820 void Assembler::fld1() {
1821 EnsureSpace ensure_space(this);
1822 EMIT(0xD9);
1823 EMIT(0xE8);
1824 }
1825
fldpi()1826 void Assembler::fldpi() {
1827 EnsureSpace ensure_space(this);
1828 EMIT(0xD9);
1829 EMIT(0xEB);
1830 }
1831
fldz()1832 void Assembler::fldz() {
1833 EnsureSpace ensure_space(this);
1834 EMIT(0xD9);
1835 EMIT(0xEE);
1836 }
1837
fldln2()1838 void Assembler::fldln2() {
1839 EnsureSpace ensure_space(this);
1840 EMIT(0xD9);
1841 EMIT(0xED);
1842 }
1843
fld_s(Operand adr)1844 void Assembler::fld_s(Operand adr) {
1845 EnsureSpace ensure_space(this);
1846 EMIT(0xD9);
1847 emit_operand(eax, adr);
1848 }
1849
fld_d(Operand adr)1850 void Assembler::fld_d(Operand adr) {
1851 EnsureSpace ensure_space(this);
1852 EMIT(0xDD);
1853 emit_operand(eax, adr);
1854 }
1855
fstp_s(Operand adr)1856 void Assembler::fstp_s(Operand adr) {
1857 EnsureSpace ensure_space(this);
1858 EMIT(0xD9);
1859 emit_operand(ebx, adr);
1860 }
1861
fst_s(Operand adr)1862 void Assembler::fst_s(Operand adr) {
1863 EnsureSpace ensure_space(this);
1864 EMIT(0xD9);
1865 emit_operand(edx, adr);
1866 }
1867
fstp_d(Operand adr)1868 void Assembler::fstp_d(Operand adr) {
1869 EnsureSpace ensure_space(this);
1870 EMIT(0xDD);
1871 emit_operand(ebx, adr);
1872 }
1873
fst_d(Operand adr)1874 void Assembler::fst_d(Operand adr) {
1875 EnsureSpace ensure_space(this);
1876 EMIT(0xDD);
1877 emit_operand(edx, adr);
1878 }
1879
fild_s(Operand adr)1880 void Assembler::fild_s(Operand adr) {
1881 EnsureSpace ensure_space(this);
1882 EMIT(0xDB);
1883 emit_operand(eax, adr);
1884 }
1885
fild_d(Operand adr)1886 void Assembler::fild_d(Operand adr) {
1887 EnsureSpace ensure_space(this);
1888 EMIT(0xDF);
1889 emit_operand(ebp, adr);
1890 }
1891
fistp_s(Operand adr)1892 void Assembler::fistp_s(Operand adr) {
1893 EnsureSpace ensure_space(this);
1894 EMIT(0xDB);
1895 emit_operand(ebx, adr);
1896 }
1897
fisttp_s(Operand adr)1898 void Assembler::fisttp_s(Operand adr) {
1899 DCHECK(IsEnabled(SSE3));
1900 EnsureSpace ensure_space(this);
1901 EMIT(0xDB);
1902 emit_operand(ecx, adr);
1903 }
1904
fisttp_d(Operand adr)1905 void Assembler::fisttp_d(Operand adr) {
1906 DCHECK(IsEnabled(SSE3));
1907 EnsureSpace ensure_space(this);
1908 EMIT(0xDD);
1909 emit_operand(ecx, adr);
1910 }
1911
fist_s(Operand adr)1912 void Assembler::fist_s(Operand adr) {
1913 EnsureSpace ensure_space(this);
1914 EMIT(0xDB);
1915 emit_operand(edx, adr);
1916 }
1917
fistp_d(Operand adr)1918 void Assembler::fistp_d(Operand adr) {
1919 EnsureSpace ensure_space(this);
1920 EMIT(0xDF);
1921 emit_operand(edi, adr);
1922 }
1923
fabs()1924 void Assembler::fabs() {
1925 EnsureSpace ensure_space(this);
1926 EMIT(0xD9);
1927 EMIT(0xE1);
1928 }
1929
fchs()1930 void Assembler::fchs() {
1931 EnsureSpace ensure_space(this);
1932 EMIT(0xD9);
1933 EMIT(0xE0);
1934 }
1935
fcos()1936 void Assembler::fcos() {
1937 EnsureSpace ensure_space(this);
1938 EMIT(0xD9);
1939 EMIT(0xFF);
1940 }
1941
fsin()1942 void Assembler::fsin() {
1943 EnsureSpace ensure_space(this);
1944 EMIT(0xD9);
1945 EMIT(0xFE);
1946 }
1947
fptan()1948 void Assembler::fptan() {
1949 EnsureSpace ensure_space(this);
1950 EMIT(0xD9);
1951 EMIT(0xF2);
1952 }
1953
fyl2x()1954 void Assembler::fyl2x() {
1955 EnsureSpace ensure_space(this);
1956 EMIT(0xD9);
1957 EMIT(0xF1);
1958 }
1959
f2xm1()1960 void Assembler::f2xm1() {
1961 EnsureSpace ensure_space(this);
1962 EMIT(0xD9);
1963 EMIT(0xF0);
1964 }
1965
fscale()1966 void Assembler::fscale() {
1967 EnsureSpace ensure_space(this);
1968 EMIT(0xD9);
1969 EMIT(0xFD);
1970 }
1971
fninit()1972 void Assembler::fninit() {
1973 EnsureSpace ensure_space(this);
1974 EMIT(0xDB);
1975 EMIT(0xE3);
1976 }
1977
fadd(int i)1978 void Assembler::fadd(int i) {
1979 EnsureSpace ensure_space(this);
1980 emit_farith(0xDC, 0xC0, i);
1981 }
1982
fadd_i(int i)1983 void Assembler::fadd_i(int i) {
1984 EnsureSpace ensure_space(this);
1985 emit_farith(0xD8, 0xC0, i);
1986 }
1987
fsub(int i)1988 void Assembler::fsub(int i) {
1989 EnsureSpace ensure_space(this);
1990 emit_farith(0xDC, 0xE8, i);
1991 }
1992
fsub_i(int i)1993 void Assembler::fsub_i(int i) {
1994 EnsureSpace ensure_space(this);
1995 emit_farith(0xD8, 0xE0, i);
1996 }
1997
fisub_s(Operand adr)1998 void Assembler::fisub_s(Operand adr) {
1999 EnsureSpace ensure_space(this);
2000 EMIT(0xDA);
2001 emit_operand(esp, adr);
2002 }
2003
fmul_i(int i)2004 void Assembler::fmul_i(int i) {
2005 EnsureSpace ensure_space(this);
2006 emit_farith(0xD8, 0xC8, i);
2007 }
2008
fmul(int i)2009 void Assembler::fmul(int i) {
2010 EnsureSpace ensure_space(this);
2011 emit_farith(0xDC, 0xC8, i);
2012 }
2013
fdiv(int i)2014 void Assembler::fdiv(int i) {
2015 EnsureSpace ensure_space(this);
2016 emit_farith(0xDC, 0xF8, i);
2017 }
2018
fdiv_i(int i)2019 void Assembler::fdiv_i(int i) {
2020 EnsureSpace ensure_space(this);
2021 emit_farith(0xD8, 0xF0, i);
2022 }
2023
faddp(int i)2024 void Assembler::faddp(int i) {
2025 EnsureSpace ensure_space(this);
2026 emit_farith(0xDE, 0xC0, i);
2027 }
2028
fsubp(int i)2029 void Assembler::fsubp(int i) {
2030 EnsureSpace ensure_space(this);
2031 emit_farith(0xDE, 0xE8, i);
2032 }
2033
fsubrp(int i)2034 void Assembler::fsubrp(int i) {
2035 EnsureSpace ensure_space(this);
2036 emit_farith(0xDE, 0xE0, i);
2037 }
2038
fmulp(int i)2039 void Assembler::fmulp(int i) {
2040 EnsureSpace ensure_space(this);
2041 emit_farith(0xDE, 0xC8, i);
2042 }
2043
fdivp(int i)2044 void Assembler::fdivp(int i) {
2045 EnsureSpace ensure_space(this);
2046 emit_farith(0xDE, 0xF8, i);
2047 }
2048
fprem()2049 void Assembler::fprem() {
2050 EnsureSpace ensure_space(this);
2051 EMIT(0xD9);
2052 EMIT(0xF8);
2053 }
2054
fprem1()2055 void Assembler::fprem1() {
2056 EnsureSpace ensure_space(this);
2057 EMIT(0xD9);
2058 EMIT(0xF5);
2059 }
2060
fxch(int i)2061 void Assembler::fxch(int i) {
2062 EnsureSpace ensure_space(this);
2063 emit_farith(0xD9, 0xC8, i);
2064 }
2065
fincstp()2066 void Assembler::fincstp() {
2067 EnsureSpace ensure_space(this);
2068 EMIT(0xD9);
2069 EMIT(0xF7);
2070 }
2071
ffree(int i)2072 void Assembler::ffree(int i) {
2073 EnsureSpace ensure_space(this);
2074 emit_farith(0xDD, 0xC0, i);
2075 }
2076
ftst()2077 void Assembler::ftst() {
2078 EnsureSpace ensure_space(this);
2079 EMIT(0xD9);
2080 EMIT(0xE4);
2081 }
2082
fucomp(int i)2083 void Assembler::fucomp(int i) {
2084 EnsureSpace ensure_space(this);
2085 emit_farith(0xDD, 0xE8, i);
2086 }
2087
fucompp()2088 void Assembler::fucompp() {
2089 EnsureSpace ensure_space(this);
2090 EMIT(0xDA);
2091 EMIT(0xE9);
2092 }
2093
fucomi(int i)2094 void Assembler::fucomi(int i) {
2095 EnsureSpace ensure_space(this);
2096 EMIT(0xDB);
2097 EMIT(0xE8 + i);
2098 }
2099
fucomip()2100 void Assembler::fucomip() {
2101 EnsureSpace ensure_space(this);
2102 EMIT(0xDF);
2103 EMIT(0xE9);
2104 }
2105
fcompp()2106 void Assembler::fcompp() {
2107 EnsureSpace ensure_space(this);
2108 EMIT(0xDE);
2109 EMIT(0xD9);
2110 }
2111
fnstsw_ax()2112 void Assembler::fnstsw_ax() {
2113 EnsureSpace ensure_space(this);
2114 EMIT(0xDF);
2115 EMIT(0xE0);
2116 }
2117
fwait()2118 void Assembler::fwait() {
2119 EnsureSpace ensure_space(this);
2120 EMIT(0x9B);
2121 }
2122
frndint()2123 void Assembler::frndint() {
2124 EnsureSpace ensure_space(this);
2125 EMIT(0xD9);
2126 EMIT(0xFC);
2127 }
2128
fnclex()2129 void Assembler::fnclex() {
2130 EnsureSpace ensure_space(this);
2131 EMIT(0xDB);
2132 EMIT(0xE2);
2133 }
2134
sahf()2135 void Assembler::sahf() {
2136 EnsureSpace ensure_space(this);
2137 EMIT(0x9E);
2138 }
2139
setcc(Condition cc,Register reg)2140 void Assembler::setcc(Condition cc, Register reg) {
2141 DCHECK(reg.is_byte_register());
2142 EnsureSpace ensure_space(this);
2143 EMIT(0x0F);
2144 EMIT(0x90 | cc);
2145 EMIT(0xC0 | reg.code());
2146 }
2147
cvttss2si(Register dst,Operand src)2148 void Assembler::cvttss2si(Register dst, Operand src) {
2149 EnsureSpace ensure_space(this);
2150 // The [src] might contain ebx's register code, but in
2151 // this case, it refers to xmm3, so it is OK to emit.
2152 EMIT(0xF3);
2153 EMIT(0x0F);
2154 EMIT(0x2C);
2155 emit_operand(dst, src);
2156 }
2157
cvttsd2si(Register dst,Operand src)2158 void Assembler::cvttsd2si(Register dst, Operand src) {
2159 EnsureSpace ensure_space(this);
2160 // The [src] might contain ebx's register code, but in
2161 // this case, it refers to xmm3, so it is OK to emit.
2162 EMIT(0xF2);
2163 EMIT(0x0F);
2164 EMIT(0x2C);
2165 emit_operand(dst, src);
2166 }
2167
cvtsd2si(Register dst,XMMRegister src)2168 void Assembler::cvtsd2si(Register dst, XMMRegister src) {
2169 EnsureSpace ensure_space(this);
2170 EMIT(0xF2);
2171 EMIT(0x0F);
2172 EMIT(0x2D);
2173 emit_sse_operand(dst, src);
2174 }
2175
cvtsi2ss(XMMRegister dst,Operand src)2176 void Assembler::cvtsi2ss(XMMRegister dst, Operand src) {
2177 EnsureSpace ensure_space(this);
2178 EMIT(0xF3);
2179 EMIT(0x0F);
2180 EMIT(0x2A);
2181 emit_sse_operand(dst, src);
2182 }
2183
cvtsi2sd(XMMRegister dst,Operand src)2184 void Assembler::cvtsi2sd(XMMRegister dst, Operand src) {
2185 EnsureSpace ensure_space(this);
2186 EMIT(0xF2);
2187 EMIT(0x0F);
2188 EMIT(0x2A);
2189 emit_sse_operand(dst, src);
2190 }
2191
cvtss2sd(XMMRegister dst,Operand src)2192 void Assembler::cvtss2sd(XMMRegister dst, Operand src) {
2193 EnsureSpace ensure_space(this);
2194 EMIT(0xF3);
2195 EMIT(0x0F);
2196 EMIT(0x5A);
2197 emit_sse_operand(dst, src);
2198 }
2199
cvtdq2pd(XMMRegister dst,XMMRegister src)2200 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
2201 EnsureSpace ensure_space(this);
2202 EMIT(0xF3);
2203 EMIT(0x0F);
2204 EMIT(0xE6);
2205 emit_sse_operand(dst, src);
2206 }
2207
cvtpd2ps(XMMRegister dst,XMMRegister src)2208 void Assembler::cvtpd2ps(XMMRegister dst, XMMRegister src) {
2209 EnsureSpace ensure_space(this);
2210 EMIT(0x66);
2211 EMIT(0x0F);
2212 EMIT(0x5A);
2213 emit_sse_operand(dst, src);
2214 }
2215
cvttps2dq(XMMRegister dst,Operand src)2216 void Assembler::cvttps2dq(XMMRegister dst, Operand src) {
2217 EnsureSpace ensure_space(this);
2218 EMIT(0xF3);
2219 EMIT(0x0F);
2220 EMIT(0x5B);
2221 emit_sse_operand(dst, src);
2222 }
2223
cvttpd2dq(XMMRegister dst,XMMRegister src)2224 void Assembler::cvttpd2dq(XMMRegister dst, XMMRegister src) {
2225 EnsureSpace ensure_space(this);
2226 EMIT(0x66);
2227 EMIT(0x0F);
2228 EMIT(0xE6);
2229 emit_sse_operand(dst, src);
2230 }
2231
cmpps(XMMRegister dst,Operand src,uint8_t cmp)2232 void Assembler::cmpps(XMMRegister dst, Operand src, uint8_t cmp) {
2233 EnsureSpace ensure_space(this);
2234 EMIT(0x0F);
2235 EMIT(0xC2);
2236 emit_sse_operand(dst, src);
2237 EMIT(cmp);
2238 }
2239
cmppd(XMMRegister dst,Operand src,uint8_t cmp)2240 void Assembler::cmppd(XMMRegister dst, Operand src, uint8_t cmp) {
2241 EnsureSpace ensure_space(this);
2242 EMIT(0x66);
2243 EMIT(0x0F);
2244 EMIT(0xC2);
2245 emit_sse_operand(dst, src);
2246 EMIT(cmp);
2247 }
2248
haddps(XMMRegister dst,Operand src)2249 void Assembler::haddps(XMMRegister dst, Operand src) {
2250 DCHECK(IsEnabled(SSE3));
2251 EnsureSpace ensure_space(this);
2252 EMIT(0xF2);
2253 EMIT(0x0F);
2254 EMIT(0x7C);
2255 emit_sse_operand(dst, src);
2256 }
2257
ucomisd(XMMRegister dst,Operand src)2258 void Assembler::ucomisd(XMMRegister dst, Operand src) {
2259 EnsureSpace ensure_space(this);
2260 EMIT(0x66);
2261 EMIT(0x0F);
2262 EMIT(0x2E);
2263 emit_sse_operand(dst, src);
2264 }
2265
roundps(XMMRegister dst,XMMRegister src,RoundingMode mode)2266 void Assembler::roundps(XMMRegister dst, XMMRegister src, RoundingMode mode) {
2267 DCHECK(IsEnabled(SSE4_1));
2268 EnsureSpace ensure_space(this);
2269 EMIT(0x66);
2270 EMIT(0x0F);
2271 EMIT(0x3A);
2272 EMIT(0x08);
2273 emit_sse_operand(dst, src);
2274 // Mask precision exeption.
2275 EMIT(static_cast<byte>(mode) | 0x8);
2276 }
2277
roundpd(XMMRegister dst,XMMRegister src,RoundingMode mode)2278 void Assembler::roundpd(XMMRegister dst, XMMRegister src, RoundingMode mode) {
2279 DCHECK(IsEnabled(SSE4_1));
2280 EnsureSpace ensure_space(this);
2281 EMIT(0x66);
2282 EMIT(0x0F);
2283 EMIT(0x3A);
2284 EMIT(0x09);
2285 emit_sse_operand(dst, src);
2286 // Mask precision exeption.
2287 EMIT(static_cast<byte>(mode) | 0x8);
2288 }
2289
roundss(XMMRegister dst,XMMRegister src,RoundingMode mode)2290 void Assembler::roundss(XMMRegister dst, XMMRegister src, RoundingMode mode) {
2291 DCHECK(IsEnabled(SSE4_1));
2292 EnsureSpace ensure_space(this);
2293 EMIT(0x66);
2294 EMIT(0x0F);
2295 EMIT(0x3A);
2296 EMIT(0x0A);
2297 emit_sse_operand(dst, src);
2298 // Mask precision exeption.
2299 EMIT(static_cast<byte>(mode) | 0x8);
2300 }
2301
roundsd(XMMRegister dst,XMMRegister src,RoundingMode mode)2302 void Assembler::roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode) {
2303 DCHECK(IsEnabled(SSE4_1));
2304 EnsureSpace ensure_space(this);
2305 EMIT(0x66);
2306 EMIT(0x0F);
2307 EMIT(0x3A);
2308 EMIT(0x0B);
2309 emit_sse_operand(dst, src);
2310 // Mask precision exeption.
2311 EMIT(static_cast<byte>(mode) | 0x8);
2312 }
2313
movmskpd(Register dst,XMMRegister src)2314 void Assembler::movmskpd(Register dst, XMMRegister src) {
2315 EnsureSpace ensure_space(this);
2316 EMIT(0x66);
2317 EMIT(0x0F);
2318 EMIT(0x50);
2319 emit_sse_operand(dst, src);
2320 }
2321
movmskps(Register dst,XMMRegister src)2322 void Assembler::movmskps(Register dst, XMMRegister src) {
2323 EnsureSpace ensure_space(this);
2324 EMIT(0x0F);
2325 EMIT(0x50);
2326 emit_sse_operand(dst, src);
2327 }
2328
pmovmskb(Register dst,XMMRegister src)2329 void Assembler::pmovmskb(Register dst, XMMRegister src) {
2330 EnsureSpace ensure_space(this);
2331 EMIT(0x66);
2332 EMIT(0x0F);
2333 EMIT(0xD7);
2334 emit_sse_operand(dst, src);
2335 }
2336
cmpltsd(XMMRegister dst,XMMRegister src)2337 void Assembler::cmpltsd(XMMRegister dst, XMMRegister src) {
2338 EnsureSpace ensure_space(this);
2339 EMIT(0xF2);
2340 EMIT(0x0F);
2341 EMIT(0xC2);
2342 emit_sse_operand(dst, src);
2343 EMIT(1); // LT == 1
2344 }
2345
movaps(XMMRegister dst,Operand src)2346 void Assembler::movaps(XMMRegister dst, Operand src) {
2347 EnsureSpace ensure_space(this);
2348 EMIT(0x0F);
2349 EMIT(0x28);
2350 emit_sse_operand(dst, src);
2351 }
2352
movups(XMMRegister dst,Operand src)2353 void Assembler::movups(XMMRegister dst, Operand src) {
2354 EnsureSpace ensure_space(this);
2355 EMIT(0x0F);
2356 EMIT(0x10);
2357 emit_sse_operand(dst, src);
2358 }
2359
movups(Operand dst,XMMRegister src)2360 void Assembler::movups(Operand dst, XMMRegister src) {
2361 EnsureSpace ensure_space(this);
2362 EMIT(0x0F);
2363 EMIT(0x11);
2364 emit_sse_operand(src, dst);
2365 }
2366
movddup(XMMRegister dst,Operand src)2367 void Assembler::movddup(XMMRegister dst, Operand src) {
2368 DCHECK(IsEnabled(SSE3));
2369 EnsureSpace ensure_space(this);
2370 EMIT(0xF2);
2371 EMIT(0x0F);
2372 EMIT(0x12);
2373 emit_sse_operand(dst, src);
2374 }
2375
movshdup(XMMRegister dst,XMMRegister src)2376 void Assembler::movshdup(XMMRegister dst, XMMRegister src) {
2377 DCHECK(IsEnabled(SSE3));
2378 EnsureSpace ensure_space(this);
2379 EMIT(0xF3);
2380 EMIT(0x0F);
2381 EMIT(0x16);
2382 emit_sse_operand(dst, src);
2383 }
2384
shufps(XMMRegister dst,XMMRegister src,byte imm8)2385 void Assembler::shufps(XMMRegister dst, XMMRegister src, byte imm8) {
2386 DCHECK(is_uint8(imm8));
2387 EnsureSpace ensure_space(this);
2388 EMIT(0x0F);
2389 EMIT(0xC6);
2390 emit_sse_operand(dst, src);
2391 EMIT(imm8);
2392 }
2393
shufpd(XMMRegister dst,XMMRegister src,byte imm8)2394 void Assembler::shufpd(XMMRegister dst, XMMRegister src, byte imm8) {
2395 DCHECK(is_uint8(imm8));
2396 EnsureSpace ensure_space(this);
2397 EMIT(0x66);
2398 EMIT(0x0F);
2399 EMIT(0xC6);
2400 emit_sse_operand(dst, src);
2401 EMIT(imm8);
2402 }
2403
movhlps(XMMRegister dst,XMMRegister src)2404 void Assembler::movhlps(XMMRegister dst, XMMRegister src) {
2405 EnsureSpace ensure_space(this);
2406 EMIT(0x0F);
2407 EMIT(0x12);
2408 emit_sse_operand(dst, src);
2409 }
2410
movlhps(XMMRegister dst,XMMRegister src)2411 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2412 EnsureSpace ensure_space(this);
2413 EMIT(0x0F);
2414 EMIT(0x16);
2415 emit_sse_operand(dst, src);
2416 }
2417
movlps(XMMRegister dst,Operand src)2418 void Assembler::movlps(XMMRegister dst, Operand src) {
2419 EnsureSpace ensure_space(this);
2420 EMIT(0x0F);
2421 EMIT(0x12);
2422 emit_sse_operand(dst, src);
2423 }
2424
movlps(Operand dst,XMMRegister src)2425 void Assembler::movlps(Operand dst, XMMRegister src) {
2426 EnsureSpace ensure_space(this);
2427 EMIT(0x0F);
2428 EMIT(0x13);
2429 emit_sse_operand(src, dst);
2430 }
2431
movhps(XMMRegister dst,Operand src)2432 void Assembler::movhps(XMMRegister dst, Operand src) {
2433 EnsureSpace ensure_space(this);
2434 EMIT(0x0F);
2435 EMIT(0x16);
2436 emit_sse_operand(dst, src);
2437 }
2438
movhps(Operand dst,XMMRegister src)2439 void Assembler::movhps(Operand dst, XMMRegister src) {
2440 EnsureSpace ensure_space(this);
2441 EMIT(0x0F);
2442 EMIT(0x17);
2443 emit_sse_operand(src, dst);
2444 }
2445
movdqa(Operand dst,XMMRegister src)2446 void Assembler::movdqa(Operand dst, XMMRegister src) {
2447 EnsureSpace ensure_space(this);
2448 EMIT(0x66);
2449 EMIT(0x0F);
2450 EMIT(0x7F);
2451 emit_sse_operand(src, dst);
2452 }
2453
movdqa(XMMRegister dst,Operand src)2454 void Assembler::movdqa(XMMRegister dst, Operand src) {
2455 EnsureSpace ensure_space(this);
2456 EMIT(0x66);
2457 EMIT(0x0F);
2458 EMIT(0x6F);
2459 emit_sse_operand(dst, src);
2460 }
2461
movdqa(XMMRegister dst,XMMRegister src)2462 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2463 EnsureSpace ensure_space(this);
2464 EMIT(0x66);
2465 EMIT(0x0F);
2466 EMIT(0x6F);
2467 emit_sse_operand(dst, src);
2468 }
2469
movdqu(Operand dst,XMMRegister src)2470 void Assembler::movdqu(Operand dst, XMMRegister src) {
2471 EnsureSpace ensure_space(this);
2472 EMIT(0xF3);
2473 EMIT(0x0F);
2474 EMIT(0x7F);
2475 emit_sse_operand(src, dst);
2476 }
2477
movdqu(XMMRegister dst,Operand src)2478 void Assembler::movdqu(XMMRegister dst, Operand src) {
2479 EnsureSpace ensure_space(this);
2480 EMIT(0xF3);
2481 EMIT(0x0F);
2482 EMIT(0x6F);
2483 emit_sse_operand(dst, src);
2484 }
2485
movdqu(XMMRegister dst,XMMRegister src)2486 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2487 EnsureSpace ensure_space(this);
2488 EMIT(0xF3);
2489 EMIT(0x0F);
2490 EMIT(0x7F);
2491 emit_sse_operand(src, dst);
2492 }
2493
prefetch(Operand src,int level)2494 void Assembler::prefetch(Operand src, int level) {
2495 DCHECK(is_uint2(level));
2496 EnsureSpace ensure_space(this);
2497 EMIT(0x0F);
2498 EMIT(0x18);
2499 // Emit hint number in Reg position of RegR/M.
2500 XMMRegister code = XMMRegister::from_code(level);
2501 emit_sse_operand(code, src);
2502 }
2503
movsd(Operand dst,XMMRegister src)2504 void Assembler::movsd(Operand dst, XMMRegister src) {
2505 EnsureSpace ensure_space(this);
2506 EMIT(0xF2); // double
2507 EMIT(0x0F);
2508 EMIT(0x11); // store
2509 emit_sse_operand(src, dst);
2510 }
2511
movsd(XMMRegister dst,Operand src)2512 void Assembler::movsd(XMMRegister dst, Operand src) {
2513 EnsureSpace ensure_space(this);
2514 EMIT(0xF2); // double
2515 EMIT(0x0F);
2516 EMIT(0x10); // load
2517 emit_sse_operand(dst, src);
2518 }
2519
movss(Operand dst,XMMRegister src)2520 void Assembler::movss(Operand dst, XMMRegister src) {
2521 EnsureSpace ensure_space(this);
2522 EMIT(0xF3); // float
2523 EMIT(0x0F);
2524 EMIT(0x11); // store
2525 emit_sse_operand(src, dst);
2526 }
2527
movss(XMMRegister dst,Operand src)2528 void Assembler::movss(XMMRegister dst, Operand src) {
2529 EnsureSpace ensure_space(this);
2530 EMIT(0xF3); // float
2531 EMIT(0x0F);
2532 EMIT(0x10); // load
2533 emit_sse_operand(dst, src);
2534 }
2535
movd(XMMRegister dst,Operand src)2536 void Assembler::movd(XMMRegister dst, Operand src) {
2537 EnsureSpace ensure_space(this);
2538 EMIT(0x66);
2539 EMIT(0x0F);
2540 EMIT(0x6E);
2541 emit_sse_operand(dst, src);
2542 }
2543
movd(Operand dst,XMMRegister src)2544 void Assembler::movd(Operand dst, XMMRegister src) {
2545 EnsureSpace ensure_space(this);
2546 EMIT(0x66);
2547 EMIT(0x0F);
2548 EMIT(0x7E);
2549 emit_sse_operand(src, dst);
2550 }
2551
extractps(Operand dst,XMMRegister src,byte imm8)2552 void Assembler::extractps(Operand dst, XMMRegister src, byte imm8) {
2553 DCHECK(IsEnabled(SSE4_1));
2554 DCHECK(is_uint8(imm8));
2555 EnsureSpace ensure_space(this);
2556 EMIT(0x66);
2557 EMIT(0x0F);
2558 EMIT(0x3A);
2559 EMIT(0x17);
2560 emit_sse_operand(src, dst);
2561 EMIT(imm8);
2562 }
2563
extractps(Register dst,XMMRegister src,byte imm8)2564 void Assembler::extractps(Register dst, XMMRegister src, byte imm8) {
2565 DCHECK(IsEnabled(SSE4_1));
2566 DCHECK(is_uint8(imm8));
2567 EnsureSpace ensure_space(this);
2568 EMIT(0x66);
2569 EMIT(0x0F);
2570 EMIT(0x3A);
2571 EMIT(0x17);
2572 emit_sse_operand(src, dst);
2573 EMIT(imm8);
2574 }
2575
pcmpgtq(XMMRegister dst,XMMRegister src)2576 void Assembler::pcmpgtq(XMMRegister dst, XMMRegister src) {
2577 DCHECK(IsEnabled(SSE4_2));
2578 EnsureSpace ensure_space(this);
2579 EMIT(0x66);
2580 EMIT(0x0F);
2581 EMIT(0x38);
2582 EMIT(0x37);
2583 emit_sse_operand(dst, src);
2584 }
2585
psllw(XMMRegister reg,uint8_t shift)2586 void Assembler::psllw(XMMRegister reg, uint8_t shift) {
2587 EnsureSpace ensure_space(this);
2588 EMIT(0x66);
2589 EMIT(0x0F);
2590 EMIT(0x71);
2591 emit_sse_operand(esi, reg); // esi == 6
2592 EMIT(shift);
2593 }
2594
pslld(XMMRegister reg,uint8_t shift)2595 void Assembler::pslld(XMMRegister reg, uint8_t shift) {
2596 EnsureSpace ensure_space(this);
2597 EMIT(0x66);
2598 EMIT(0x0F);
2599 EMIT(0x72);
2600 emit_sse_operand(esi, reg); // esi == 6
2601 EMIT(shift);
2602 }
2603
psrlw(XMMRegister reg,uint8_t shift)2604 void Assembler::psrlw(XMMRegister reg, uint8_t shift) {
2605 EnsureSpace ensure_space(this);
2606 EMIT(0x66);
2607 EMIT(0x0F);
2608 EMIT(0x71);
2609 emit_sse_operand(edx, reg); // edx == 2
2610 EMIT(shift);
2611 }
2612
psrld(XMMRegister reg,uint8_t shift)2613 void Assembler::psrld(XMMRegister reg, uint8_t shift) {
2614 EnsureSpace ensure_space(this);
2615 EMIT(0x66);
2616 EMIT(0x0F);
2617 EMIT(0x72);
2618 emit_sse_operand(edx, reg); // edx == 2
2619 EMIT(shift);
2620 }
2621
psraw(XMMRegister reg,uint8_t shift)2622 void Assembler::psraw(XMMRegister reg, uint8_t shift) {
2623 EnsureSpace ensure_space(this);
2624 EMIT(0x66);
2625 EMIT(0x0F);
2626 EMIT(0x71);
2627 emit_sse_operand(esp, reg); // esp == 4
2628 EMIT(shift);
2629 }
2630
psrad(XMMRegister reg,uint8_t shift)2631 void Assembler::psrad(XMMRegister reg, uint8_t shift) {
2632 EnsureSpace ensure_space(this);
2633 EMIT(0x66);
2634 EMIT(0x0F);
2635 EMIT(0x72);
2636 emit_sse_operand(esp, reg); // esp == 4
2637 EMIT(shift);
2638 }
2639
psllq(XMMRegister reg,uint8_t shift)2640 void Assembler::psllq(XMMRegister reg, uint8_t shift) {
2641 EnsureSpace ensure_space(this);
2642 EMIT(0x66);
2643 EMIT(0x0F);
2644 EMIT(0x73);
2645 emit_sse_operand(esi, reg); // esi == 6
2646 EMIT(shift);
2647 }
2648
psrlq(XMMRegister reg,uint8_t shift)2649 void Assembler::psrlq(XMMRegister reg, uint8_t shift) {
2650 EnsureSpace ensure_space(this);
2651 EMIT(0x66);
2652 EMIT(0x0F);
2653 EMIT(0x73);
2654 emit_sse_operand(edx, reg); // edx == 2
2655 EMIT(shift);
2656 }
2657
pshufhw(XMMRegister dst,Operand src,uint8_t shuffle)2658 void Assembler::pshufhw(XMMRegister dst, Operand src, uint8_t shuffle) {
2659 EnsureSpace ensure_space(this);
2660 EMIT(0xF3);
2661 EMIT(0x0F);
2662 EMIT(0x70);
2663 emit_sse_operand(dst, src);
2664 EMIT(shuffle);
2665 }
2666
pshuflw(XMMRegister dst,Operand src,uint8_t shuffle)2667 void Assembler::pshuflw(XMMRegister dst, Operand src, uint8_t shuffle) {
2668 EnsureSpace ensure_space(this);
2669 EMIT(0xF2);
2670 EMIT(0x0F);
2671 EMIT(0x70);
2672 emit_sse_operand(dst, src);
2673 EMIT(shuffle);
2674 }
2675
pshufd(XMMRegister dst,Operand src,uint8_t shuffle)2676 void Assembler::pshufd(XMMRegister dst, Operand src, uint8_t shuffle) {
2677 EnsureSpace ensure_space(this);
2678 EMIT(0x66);
2679 EMIT(0x0F);
2680 EMIT(0x70);
2681 emit_sse_operand(dst, src);
2682 EMIT(shuffle);
2683 }
2684
pblendw(XMMRegister dst,Operand src,uint8_t mask)2685 void Assembler::pblendw(XMMRegister dst, Operand src, uint8_t mask) {
2686 DCHECK(IsEnabled(SSE4_1));
2687 EnsureSpace ensure_space(this);
2688 EMIT(0x66);
2689 EMIT(0x0F);
2690 EMIT(0x3A);
2691 EMIT(0x0E);
2692 emit_sse_operand(dst, src);
2693 EMIT(mask);
2694 }
2695
palignr(XMMRegister dst,Operand src,uint8_t mask)2696 void Assembler::palignr(XMMRegister dst, Operand src, uint8_t mask) {
2697 DCHECK(IsEnabled(SSSE3));
2698 EnsureSpace ensure_space(this);
2699 EMIT(0x66);
2700 EMIT(0x0F);
2701 EMIT(0x3A);
2702 EMIT(0x0F);
2703 emit_sse_operand(dst, src);
2704 EMIT(mask);
2705 }
2706
pextrb(Operand dst,XMMRegister src,uint8_t offset)2707 void Assembler::pextrb(Operand dst, XMMRegister src, uint8_t offset) {
2708 DCHECK(IsEnabled(SSE4_1));
2709 EnsureSpace ensure_space(this);
2710 EMIT(0x66);
2711 EMIT(0x0F);
2712 EMIT(0x3A);
2713 EMIT(0x14);
2714 emit_sse_operand(src, dst);
2715 EMIT(offset);
2716 }
2717
pextrw(Operand dst,XMMRegister src,uint8_t offset)2718 void Assembler::pextrw(Operand dst, XMMRegister src, uint8_t offset) {
2719 DCHECK(IsEnabled(SSE4_1));
2720 EnsureSpace ensure_space(this);
2721 EMIT(0x66);
2722 EMIT(0x0F);
2723 EMIT(0x3A);
2724 EMIT(0x15);
2725 emit_sse_operand(src, dst);
2726 EMIT(offset);
2727 }
2728
pextrd(Operand dst,XMMRegister src,uint8_t offset)2729 void Assembler::pextrd(Operand dst, XMMRegister src, uint8_t offset) {
2730 DCHECK(IsEnabled(SSE4_1));
2731 EnsureSpace ensure_space(this);
2732 EMIT(0x66);
2733 EMIT(0x0F);
2734 EMIT(0x3A);
2735 EMIT(0x16);
2736 emit_sse_operand(src, dst);
2737 EMIT(offset);
2738 }
2739
insertps(XMMRegister dst,Operand src,uint8_t offset)2740 void Assembler::insertps(XMMRegister dst, Operand src, uint8_t offset) {
2741 DCHECK(IsEnabled(SSE4_1));
2742 EnsureSpace ensure_space(this);
2743 EMIT(0x66);
2744 EMIT(0x0F);
2745 EMIT(0x3A);
2746 EMIT(0x21);
2747 emit_sse_operand(dst, src);
2748 EMIT(offset);
2749 }
2750
pinsrb(XMMRegister dst,Operand src,uint8_t offset)2751 void Assembler::pinsrb(XMMRegister dst, Operand src, uint8_t offset) {
2752 DCHECK(IsEnabled(SSE4_1));
2753 EnsureSpace ensure_space(this);
2754 EMIT(0x66);
2755 EMIT(0x0F);
2756 EMIT(0x3A);
2757 EMIT(0x20);
2758 emit_sse_operand(dst, src);
2759 EMIT(offset);
2760 }
2761
pinsrw(XMMRegister dst,Operand src,uint8_t offset)2762 void Assembler::pinsrw(XMMRegister dst, Operand src, uint8_t offset) {
2763 DCHECK(is_uint8(offset));
2764 EnsureSpace ensure_space(this);
2765 EMIT(0x66);
2766 EMIT(0x0F);
2767 EMIT(0xC4);
2768 emit_sse_operand(dst, src);
2769 EMIT(offset);
2770 }
2771
pinsrd(XMMRegister dst,Operand src,uint8_t offset)2772 void Assembler::pinsrd(XMMRegister dst, Operand src, uint8_t offset) {
2773 DCHECK(IsEnabled(SSE4_1));
2774 EnsureSpace ensure_space(this);
2775 EMIT(0x66);
2776 EMIT(0x0F);
2777 EMIT(0x3A);
2778 EMIT(0x22);
2779 emit_sse_operand(dst, src);
2780 EMIT(offset);
2781 }
2782
addss(XMMRegister dst,Operand src)2783 void Assembler::addss(XMMRegister dst, Operand src) {
2784 EnsureSpace ensure_space(this);
2785 EMIT(0xF3);
2786 EMIT(0x0F);
2787 EMIT(0x58);
2788 emit_sse_operand(dst, src);
2789 }
2790
subss(XMMRegister dst,Operand src)2791 void Assembler::subss(XMMRegister dst, Operand src) {
2792 EnsureSpace ensure_space(this);
2793 EMIT(0xF3);
2794 EMIT(0x0F);
2795 EMIT(0x5C);
2796 emit_sse_operand(dst, src);
2797 }
2798
mulss(XMMRegister dst,Operand src)2799 void Assembler::mulss(XMMRegister dst, Operand src) {
2800 EnsureSpace ensure_space(this);
2801 EMIT(0xF3);
2802 EMIT(0x0F);
2803 EMIT(0x59);
2804 emit_sse_operand(dst, src);
2805 }
2806
divss(XMMRegister dst,Operand src)2807 void Assembler::divss(XMMRegister dst, Operand src) {
2808 EnsureSpace ensure_space(this);
2809 EMIT(0xF3);
2810 EMIT(0x0F);
2811 EMIT(0x5E);
2812 emit_sse_operand(dst, src);
2813 }
2814
sqrtss(XMMRegister dst,Operand src)2815 void Assembler::sqrtss(XMMRegister dst, Operand src) {
2816 EnsureSpace ensure_space(this);
2817 EMIT(0xF3);
2818 EMIT(0x0F);
2819 EMIT(0x51);
2820 emit_sse_operand(dst, src);
2821 }
2822
ucomiss(XMMRegister dst,Operand src)2823 void Assembler::ucomiss(XMMRegister dst, Operand src) {
2824 EnsureSpace ensure_space(this);
2825 EMIT(0x0F);
2826 EMIT(0x2E);
2827 emit_sse_operand(dst, src);
2828 }
2829
maxss(XMMRegister dst,Operand src)2830 void Assembler::maxss(XMMRegister dst, Operand src) {
2831 EnsureSpace ensure_space(this);
2832 EMIT(0xF3);
2833 EMIT(0x0F);
2834 EMIT(0x5F);
2835 emit_sse_operand(dst, src);
2836 }
2837
minss(XMMRegister dst,Operand src)2838 void Assembler::minss(XMMRegister dst, Operand src) {
2839 EnsureSpace ensure_space(this);
2840 EMIT(0xF3);
2841 EMIT(0x0F);
2842 EMIT(0x5D);
2843 emit_sse_operand(dst, src);
2844 }
2845
2846 // Packed single-precision floating-point SSE instructions.
ps(byte opcode,XMMRegister dst,Operand src)2847 void Assembler::ps(byte opcode, XMMRegister dst, Operand src) {
2848 EnsureSpace ensure_space(this);
2849 EMIT(0x0F);
2850 EMIT(opcode);
2851 emit_sse_operand(dst, src);
2852 }
2853
2854 // Packed double-precision floating-point SSE instructions.
pd(byte opcode,XMMRegister dst,Operand src)2855 void Assembler::pd(byte opcode, XMMRegister dst, Operand src) {
2856 EnsureSpace ensure_space(this);
2857 EMIT(0x66);
2858 EMIT(0x0F);
2859 EMIT(opcode);
2860 emit_sse_operand(dst, src);
2861 }
2862
2863 // AVX instructions
2864
vss(byte op,XMMRegister dst,XMMRegister src1,Operand src2)2865 void Assembler::vss(byte op, XMMRegister dst, XMMRegister src1, Operand src2) {
2866 vinstr(op, dst, src1, src2, kF3, k0F, kWIG);
2867 }
2868
vps(byte op,XMMRegister dst,XMMRegister src1,Operand src2)2869 void Assembler::vps(byte op, XMMRegister dst, XMMRegister src1, Operand src2) {
2870 vinstr(op, dst, src1, src2, kNoPrefix, k0F, kWIG);
2871 }
2872
vpd(byte op,XMMRegister dst,XMMRegister src1,Operand src2)2873 void Assembler::vpd(byte op, XMMRegister dst, XMMRegister src1, Operand src2) {
2874 vinstr(op, dst, src1, src2, k66, k0F, kWIG);
2875 }
2876
vshufpd(XMMRegister dst,XMMRegister src1,Operand src2,byte imm8)2877 void Assembler::vshufpd(XMMRegister dst, XMMRegister src1, Operand src2,
2878 byte imm8) {
2879 DCHECK(is_uint8(imm8));
2880 vpd(0xC6, dst, src1, src2);
2881 EMIT(imm8);
2882 }
2883
vmovhlps(XMMRegister dst,XMMRegister src1,XMMRegister src2)2884 void Assembler::vmovhlps(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
2885 vinstr(0x12, dst, src1, src2, kNoPrefix, k0F, kWIG);
2886 }
2887
vmovlhps(XMMRegister dst,XMMRegister src1,XMMRegister src2)2888 void Assembler::vmovlhps(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
2889 vinstr(0x16, dst, src1, src2, kNoPrefix, k0F, kWIG);
2890 }
2891
vmovlps(XMMRegister dst,XMMRegister src1,Operand src2)2892 void Assembler::vmovlps(XMMRegister dst, XMMRegister src1, Operand src2) {
2893 vinstr(0x12, dst, src1, src2, kNoPrefix, k0F, kWIG);
2894 }
2895
vmovlps(Operand dst,XMMRegister src)2896 void Assembler::vmovlps(Operand dst, XMMRegister src) {
2897 vinstr(0x13, src, xmm0, dst, kNoPrefix, k0F, kWIG);
2898 }
2899
vmovhps(XMMRegister dst,XMMRegister src1,Operand src2)2900 void Assembler::vmovhps(XMMRegister dst, XMMRegister src1, Operand src2) {
2901 vinstr(0x16, dst, src1, src2, kNoPrefix, k0F, kWIG);
2902 }
2903
vmovhps(Operand dst,XMMRegister src)2904 void Assembler::vmovhps(Operand dst, XMMRegister src) {
2905 vinstr(0x17, src, xmm0, dst, kNoPrefix, k0F, kWIG);
2906 }
2907
vcmpps(XMMRegister dst,XMMRegister src1,Operand src2,uint8_t cmp)2908 void Assembler::vcmpps(XMMRegister dst, XMMRegister src1, Operand src2,
2909 uint8_t cmp) {
2910 vps(0xC2, dst, src1, src2);
2911 EMIT(cmp);
2912 }
2913
vcmppd(XMMRegister dst,XMMRegister src1,Operand src2,uint8_t cmp)2914 void Assembler::vcmppd(XMMRegister dst, XMMRegister src1, Operand src2,
2915 uint8_t cmp) {
2916 vpd(0xC2, dst, src1, src2);
2917 EMIT(cmp);
2918 }
2919
vshufps(XMMRegister dst,XMMRegister src1,Operand src2,byte imm8)2920 void Assembler::vshufps(XMMRegister dst, XMMRegister src1, Operand src2,
2921 byte imm8) {
2922 DCHECK(is_uint8(imm8));
2923 vps(0xC6, dst, src1, src2);
2924 EMIT(imm8);
2925 }
2926
vpsllw(XMMRegister dst,XMMRegister src,uint8_t imm8)2927 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, uint8_t imm8) {
2928 XMMRegister iop = XMMRegister::from_code(6);
2929 vinstr(0x71, iop, dst, Operand(src), k66, k0F, kWIG);
2930 EMIT(imm8);
2931 }
2932
vpslld(XMMRegister dst,XMMRegister src,uint8_t imm8)2933 void Assembler::vpslld(XMMRegister dst, XMMRegister src, uint8_t imm8) {
2934 XMMRegister iop = XMMRegister::from_code(6);
2935 vinstr(0x72, iop, dst, Operand(src), k66, k0F, kWIG);
2936 EMIT(imm8);
2937 }
2938
vpsllq(XMMRegister dst,XMMRegister src,uint8_t imm8)2939 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, uint8_t imm8) {
2940 XMMRegister iop = XMMRegister::from_code(6);
2941 vinstr(0x73, iop, dst, Operand(src), k66, k0F, kWIG);
2942 EMIT(imm8);
2943 }
2944
vpsrlw(XMMRegister dst,XMMRegister src,uint8_t imm8)2945 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, uint8_t imm8) {
2946 XMMRegister iop = XMMRegister::from_code(2);
2947 vinstr(0x71, iop, dst, Operand(src), k66, k0F, kWIG);
2948 EMIT(imm8);
2949 }
2950
vpsrld(XMMRegister dst,XMMRegister src,uint8_t imm8)2951 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, uint8_t imm8) {
2952 XMMRegister iop = XMMRegister::from_code(2);
2953 vinstr(0x72, iop, dst, Operand(src), k66, k0F, kWIG);
2954 EMIT(imm8);
2955 }
2956
vpsrlq(XMMRegister dst,XMMRegister src,uint8_t imm8)2957 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, uint8_t imm8) {
2958 XMMRegister iop = XMMRegister::from_code(2);
2959 vinstr(0x73, iop, dst, Operand(src), k66, k0F, kWIG);
2960 EMIT(imm8);
2961 }
2962
vpsraw(XMMRegister dst,XMMRegister src,uint8_t imm8)2963 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, uint8_t imm8) {
2964 XMMRegister iop = XMMRegister::from_code(4);
2965 vinstr(0x71, iop, dst, Operand(src), k66, k0F, kWIG);
2966 EMIT(imm8);
2967 }
2968
vpsrad(XMMRegister dst,XMMRegister src,uint8_t imm8)2969 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, uint8_t imm8) {
2970 XMMRegister iop = XMMRegister::from_code(4);
2971 vinstr(0x72, iop, dst, Operand(src), k66, k0F, kWIG);
2972 EMIT(imm8);
2973 }
2974
vpshufhw(XMMRegister dst,Operand src,uint8_t shuffle)2975 void Assembler::vpshufhw(XMMRegister dst, Operand src, uint8_t shuffle) {
2976 vinstr(0x70, dst, xmm0, src, kF3, k0F, kWIG);
2977 EMIT(shuffle);
2978 }
2979
vpshuflw(XMMRegister dst,Operand src,uint8_t shuffle)2980 void Assembler::vpshuflw(XMMRegister dst, Operand src, uint8_t shuffle) {
2981 vinstr(0x70, dst, xmm0, src, kF2, k0F, kWIG);
2982 EMIT(shuffle);
2983 }
2984
vpshufd(XMMRegister dst,Operand src,uint8_t shuffle)2985 void Assembler::vpshufd(XMMRegister dst, Operand src, uint8_t shuffle) {
2986 vinstr(0x70, dst, xmm0, src, k66, k0F, kWIG);
2987 EMIT(shuffle);
2988 }
2989
vblendvps(XMMRegister dst,XMMRegister src1,XMMRegister src2,XMMRegister mask)2990 void Assembler::vblendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2,
2991 XMMRegister mask) {
2992 vinstr(0x4A, dst, src1, src2, k66, k0F3A, kW0);
2993 EMIT(mask.code() << 4);
2994 }
2995
vblendvpd(XMMRegister dst,XMMRegister src1,XMMRegister src2,XMMRegister mask)2996 void Assembler::vblendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2,
2997 XMMRegister mask) {
2998 vinstr(0x4B, dst, src1, src2, k66, k0F3A, kW0);
2999 EMIT(mask.code() << 4);
3000 }
3001
vpblendvb(XMMRegister dst,XMMRegister src1,XMMRegister src2,XMMRegister mask)3002 void Assembler::vpblendvb(XMMRegister dst, XMMRegister src1, XMMRegister src2,
3003 XMMRegister mask) {
3004 vinstr(0x4C, dst, src1, src2, k66, k0F3A, kW0);
3005 EMIT(mask.code() << 4);
3006 }
3007
vpblendw(XMMRegister dst,XMMRegister src1,Operand src2,uint8_t mask)3008 void Assembler::vpblendw(XMMRegister dst, XMMRegister src1, Operand src2,
3009 uint8_t mask) {
3010 vinstr(0x0E, dst, src1, src2, k66, k0F3A, kWIG);
3011 EMIT(mask);
3012 }
3013
vpalignr(XMMRegister dst,XMMRegister src1,Operand src2,uint8_t mask)3014 void Assembler::vpalignr(XMMRegister dst, XMMRegister src1, Operand src2,
3015 uint8_t mask) {
3016 vinstr(0x0F, dst, src1, src2, k66, k0F3A, kWIG);
3017 EMIT(mask);
3018 }
3019
vpextrb(Operand dst,XMMRegister src,uint8_t offset)3020 void Assembler::vpextrb(Operand dst, XMMRegister src, uint8_t offset) {
3021 vinstr(0x14, src, xmm0, dst, k66, k0F3A, kWIG);
3022 EMIT(offset);
3023 }
3024
vpextrw(Operand dst,XMMRegister src,uint8_t offset)3025 void Assembler::vpextrw(Operand dst, XMMRegister src, uint8_t offset) {
3026 vinstr(0x15, src, xmm0, dst, k66, k0F3A, kWIG);
3027 EMIT(offset);
3028 }
3029
vpextrd(Operand dst,XMMRegister src,uint8_t offset)3030 void Assembler::vpextrd(Operand dst, XMMRegister src, uint8_t offset) {
3031 vinstr(0x16, src, xmm0, dst, k66, k0F3A, kWIG);
3032 EMIT(offset);
3033 }
3034
vinsertps(XMMRegister dst,XMMRegister src1,Operand src2,uint8_t offset)3035 void Assembler::vinsertps(XMMRegister dst, XMMRegister src1, Operand src2,
3036 uint8_t offset) {
3037 vinstr(0x21, dst, src1, src2, k66, k0F3A, kWIG);
3038 EMIT(offset);
3039 }
3040
vpinsrb(XMMRegister dst,XMMRegister src1,Operand src2,uint8_t offset)3041 void Assembler::vpinsrb(XMMRegister dst, XMMRegister src1, Operand src2,
3042 uint8_t offset) {
3043 vinstr(0x20, dst, src1, src2, k66, k0F3A, kWIG);
3044 EMIT(offset);
3045 }
3046
vpinsrw(XMMRegister dst,XMMRegister src1,Operand src2,uint8_t offset)3047 void Assembler::vpinsrw(XMMRegister dst, XMMRegister src1, Operand src2,
3048 uint8_t offset) {
3049 vinstr(0xC4, dst, src1, src2, k66, k0F, kWIG);
3050 EMIT(offset);
3051 }
3052
vpinsrd(XMMRegister dst,XMMRegister src1,Operand src2,uint8_t offset)3053 void Assembler::vpinsrd(XMMRegister dst, XMMRegister src1, Operand src2,
3054 uint8_t offset) {
3055 vinstr(0x22, dst, src1, src2, k66, k0F3A, kWIG);
3056 EMIT(offset);
3057 }
3058
vroundsd(XMMRegister dst,XMMRegister src1,XMMRegister src2,RoundingMode mode)3059 void Assembler::vroundsd(XMMRegister dst, XMMRegister src1, XMMRegister src2,
3060 RoundingMode mode) {
3061 vinstr(0x0b, dst, src1, src2, k66, k0F3A, kWIG);
3062 EMIT(static_cast<byte>(mode) | 0x8); // Mask precision exception.
3063 }
vroundss(XMMRegister dst,XMMRegister src1,XMMRegister src2,RoundingMode mode)3064 void Assembler::vroundss(XMMRegister dst, XMMRegister src1, XMMRegister src2,
3065 RoundingMode mode) {
3066 vinstr(0x0a, dst, src1, src2, k66, k0F3A, kWIG);
3067 EMIT(static_cast<byte>(mode) | 0x8); // Mask precision exception.
3068 }
vroundps(XMMRegister dst,XMMRegister src,RoundingMode mode)3069 void Assembler::vroundps(XMMRegister dst, XMMRegister src, RoundingMode mode) {
3070 vinstr(0x08, dst, xmm0, Operand(src), k66, k0F3A, kWIG);
3071 EMIT(static_cast<byte>(mode) | 0x8); // Mask precision exception.
3072 }
vroundpd(XMMRegister dst,XMMRegister src,RoundingMode mode)3073 void Assembler::vroundpd(XMMRegister dst, XMMRegister src, RoundingMode mode) {
3074 vinstr(0x09, dst, xmm0, Operand(src), k66, k0F3A, kWIG);
3075 EMIT(static_cast<byte>(mode) | 0x8); // Mask precision exception.
3076 }
3077
vmovmskpd(Register dst,XMMRegister src)3078 void Assembler::vmovmskpd(Register dst, XMMRegister src) {
3079 DCHECK(IsEnabled(AVX));
3080 EnsureSpace ensure_space(this);
3081 emit_vex_prefix(xmm0, kL128, k66, k0F, kWIG);
3082 EMIT(0x50);
3083 emit_sse_operand(dst, src);
3084 }
3085
vmovmskps(Register dst,XMMRegister src)3086 void Assembler::vmovmskps(Register dst, XMMRegister src) {
3087 DCHECK(IsEnabled(AVX));
3088 EnsureSpace ensure_space(this);
3089 emit_vex_prefix(xmm0, kL128, kNoPrefix, k0F, kWIG);
3090 EMIT(0x50);
3091 emit_sse_operand(dst, src);
3092 }
3093
vpmovmskb(Register dst,XMMRegister src)3094 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3095 DCHECK(IsEnabled(AVX));
3096 EnsureSpace ensure_space(this);
3097 emit_vex_prefix(xmm0, kL128, k66, k0F, kWIG);
3098 EMIT(0xD7);
3099 emit_sse_operand(dst, src);
3100 }
3101
vextractps(Operand dst,XMMRegister src,byte imm8)3102 void Assembler::vextractps(Operand dst, XMMRegister src, byte imm8) {
3103 vinstr(0x17, src, xmm0, dst, k66, k0F3A, VexW::kWIG);
3104 EMIT(imm8);
3105 }
3106
vpcmpgtq(XMMRegister dst,XMMRegister src1,XMMRegister src2)3107 void Assembler::vpcmpgtq(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
3108 vinstr(0x37, dst, src1, src2, k66, k0F38, VexW::kWIG);
3109 }
3110
bmi1(byte op,Register reg,Register vreg,Operand rm)3111 void Assembler::bmi1(byte op, Register reg, Register vreg, Operand rm) {
3112 DCHECK(IsEnabled(BMI1));
3113 EnsureSpace ensure_space(this);
3114 emit_vex_prefix(vreg, kLZ, kNoPrefix, k0F38, kW0);
3115 EMIT(op);
3116 emit_operand(reg, rm);
3117 }
3118
tzcnt(Register dst,Operand src)3119 void Assembler::tzcnt(Register dst, Operand src) {
3120 DCHECK(IsEnabled(BMI1));
3121 EnsureSpace ensure_space(this);
3122 EMIT(0xF3);
3123 EMIT(0x0F);
3124 EMIT(0xBC);
3125 emit_operand(dst, src);
3126 }
3127
lzcnt(Register dst,Operand src)3128 void Assembler::lzcnt(Register dst, Operand src) {
3129 DCHECK(IsEnabled(LZCNT));
3130 EnsureSpace ensure_space(this);
3131 EMIT(0xF3);
3132 EMIT(0x0F);
3133 EMIT(0xBD);
3134 emit_operand(dst, src);
3135 }
3136
popcnt(Register dst,Operand src)3137 void Assembler::popcnt(Register dst, Operand src) {
3138 DCHECK(IsEnabled(POPCNT));
3139 EnsureSpace ensure_space(this);
3140 EMIT(0xF3);
3141 EMIT(0x0F);
3142 EMIT(0xB8);
3143 emit_operand(dst, src);
3144 }
3145
bmi2(SIMDPrefix pp,byte op,Register reg,Register vreg,Operand rm)3146 void Assembler::bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg,
3147 Operand rm) {
3148 DCHECK(IsEnabled(BMI2));
3149 EnsureSpace ensure_space(this);
3150 emit_vex_prefix(vreg, kLZ, pp, k0F38, kW0);
3151 EMIT(op);
3152 emit_operand(reg, rm);
3153 }
3154
rorx(Register dst,Operand src,byte imm8)3155 void Assembler::rorx(Register dst, Operand src, byte imm8) {
3156 DCHECK(IsEnabled(BMI2));
3157 DCHECK(is_uint8(imm8));
3158 Register vreg = Register::from_code(0); // VEX.vvvv unused
3159 EnsureSpace ensure_space(this);
3160 emit_vex_prefix(vreg, kLZ, kF2, k0F3A, kW0);
3161 EMIT(0xF0);
3162 emit_operand(dst, src);
3163 EMIT(imm8);
3164 }
3165
sse_instr(XMMRegister dst,Operand src,byte escape,byte opcode)3166 void Assembler::sse_instr(XMMRegister dst, Operand src, byte escape,
3167 byte opcode) {
3168 EnsureSpace ensure_space(this);
3169 EMIT(escape);
3170 EMIT(opcode);
3171 emit_sse_operand(dst, src);
3172 }
3173
sse2_instr(XMMRegister dst,Operand src,byte prefix,byte escape,byte opcode)3174 void Assembler::sse2_instr(XMMRegister dst, Operand src, byte prefix,
3175 byte escape, byte opcode) {
3176 EnsureSpace ensure_space(this);
3177 EMIT(prefix);
3178 EMIT(escape);
3179 EMIT(opcode);
3180 emit_sse_operand(dst, src);
3181 }
3182
ssse3_instr(XMMRegister dst,Operand src,byte prefix,byte escape1,byte escape2,byte opcode)3183 void Assembler::ssse3_instr(XMMRegister dst, Operand src, byte prefix,
3184 byte escape1, byte escape2, byte opcode) {
3185 DCHECK(IsEnabled(SSSE3));
3186 EnsureSpace ensure_space(this);
3187 EMIT(prefix);
3188 EMIT(escape1);
3189 EMIT(escape2);
3190 EMIT(opcode);
3191 emit_sse_operand(dst, src);
3192 }
3193
sse4_instr(XMMRegister dst,Operand src,byte prefix,byte escape1,byte escape2,byte opcode)3194 void Assembler::sse4_instr(XMMRegister dst, Operand src, byte prefix,
3195 byte escape1, byte escape2, byte opcode) {
3196 DCHECK(IsEnabled(SSE4_1));
3197 EnsureSpace ensure_space(this);
3198 EMIT(prefix);
3199 EMIT(escape1);
3200 EMIT(escape2);
3201 EMIT(opcode);
3202 emit_sse_operand(dst, src);
3203 }
3204
vinstr(byte op,XMMRegister dst,XMMRegister src1,XMMRegister src2,SIMDPrefix pp,LeadingOpcode m,VexW w,CpuFeature feature)3205 void Assembler::vinstr(byte op, XMMRegister dst, XMMRegister src1,
3206 XMMRegister src2, SIMDPrefix pp, LeadingOpcode m, VexW w,
3207 CpuFeature feature) {
3208 vinstr(op, dst, src1, src2, kL128, pp, m, w, feature);
3209 }
3210
vinstr(byte op,XMMRegister dst,XMMRegister src1,Operand src2,SIMDPrefix pp,LeadingOpcode m,VexW w,CpuFeature feature)3211 void Assembler::vinstr(byte op, XMMRegister dst, XMMRegister src1, Operand src2,
3212 SIMDPrefix pp, LeadingOpcode m, VexW w,
3213 CpuFeature feature) {
3214 vinstr(op, dst, src1, src2, kL128, pp, m, w, feature);
3215 }
3216
vinstr(byte op,XMMRegister dst,XMMRegister src1,XMMRegister src2,VectorLength l,SIMDPrefix pp,LeadingOpcode m,VexW w,CpuFeature feature)3217 void Assembler::vinstr(byte op, XMMRegister dst, XMMRegister src1,
3218 XMMRegister src2, VectorLength l, SIMDPrefix pp,
3219 LeadingOpcode m, VexW w, CpuFeature feature) {
3220 DCHECK(IsEnabled(feature));
3221 EnsureSpace ensure_space(this);
3222 emit_vex_prefix(src1, l, pp, m, w);
3223 EMIT(op);
3224 emit_sse_operand(dst, src2);
3225 }
3226
vinstr(byte op,XMMRegister dst,XMMRegister src1,Operand src2,VectorLength l,SIMDPrefix pp,LeadingOpcode m,VexW w,CpuFeature feature)3227 void Assembler::vinstr(byte op, XMMRegister dst, XMMRegister src1, Operand src2,
3228 VectorLength l, SIMDPrefix pp, LeadingOpcode m, VexW w,
3229 CpuFeature feature) {
3230 DCHECK(IsEnabled(feature));
3231 EnsureSpace ensure_space(this);
3232 emit_vex_prefix(src1, l, pp, m, w);
3233 EMIT(op);
3234 emit_sse_operand(dst, src2);
3235 }
3236
emit_sse_operand(XMMRegister reg,Operand adr)3237 void Assembler::emit_sse_operand(XMMRegister reg, Operand adr) {
3238 Register ireg = Register::from_code(reg.code());
3239 emit_operand(ireg, adr);
3240 }
3241
emit_sse_operand(XMMRegister dst,XMMRegister src)3242 void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) {
3243 EMIT(0xC0 | dst.code() << 3 | src.code());
3244 }
3245
emit_sse_operand(Register dst,XMMRegister src)3246 void Assembler::emit_sse_operand(Register dst, XMMRegister src) {
3247 EMIT(0xC0 | dst.code() << 3 | src.code());
3248 }
3249
emit_sse_operand(XMMRegister dst,Register src)3250 void Assembler::emit_sse_operand(XMMRegister dst, Register src) {
3251 EMIT(0xC0 | (dst.code() << 3) | src.code());
3252 }
3253
emit_vex_prefix(XMMRegister vreg,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)3254 void Assembler::emit_vex_prefix(XMMRegister vreg, VectorLength l, SIMDPrefix pp,
3255 LeadingOpcode mm, VexW w) {
3256 if (mm != k0F || w != kW0) {
3257 EMIT(0xC4);
3258 // Change RXB from "110" to "111" to align with gdb disassembler.
3259 EMIT(0xE0 | mm);
3260 EMIT(w | ((~vreg.code() & 0xF) << 3) | l | pp);
3261 } else {
3262 EMIT(0xC5);
3263 EMIT(((~vreg.code()) << 3) | l | pp);
3264 }
3265 }
3266
emit_vex_prefix(Register vreg,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)3267 void Assembler::emit_vex_prefix(Register vreg, VectorLength l, SIMDPrefix pp,
3268 LeadingOpcode mm, VexW w) {
3269 XMMRegister ivreg = XMMRegister::from_code(vreg.code());
3270 emit_vex_prefix(ivreg, l, pp, mm, w);
3271 }
3272
GrowBuffer()3273 void Assembler::GrowBuffer() {
3274 DCHECK(buffer_overflow());
3275 DCHECK_EQ(buffer_start_, buffer_->start());
3276
3277 // Compute new buffer size.
3278 int old_size = buffer_->size();
3279 int new_size = 2 * old_size;
3280
3281 // Some internal data structures overflow for very large buffers,
3282 // they must ensure that kMaximalBufferSize is not too large.
3283 if (new_size > kMaximalBufferSize) {
3284 V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer");
3285 }
3286
3287 // Set up new buffer.
3288 std::unique_ptr<AssemblerBuffer> new_buffer = buffer_->Grow(new_size);
3289 DCHECK_EQ(new_size, new_buffer->size());
3290 byte* new_start = new_buffer->start();
3291
3292 // Copy the data.
3293 intptr_t pc_delta = new_start - buffer_start_;
3294 intptr_t rc_delta = (new_start + new_size) - (buffer_start_ + old_size);
3295 size_t reloc_size = (buffer_start_ + old_size) - reloc_info_writer.pos();
3296 MemMove(new_start, buffer_start_, pc_offset());
3297 MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
3298 reloc_size);
3299
3300 // Switch buffers.
3301 buffer_ = std::move(new_buffer);
3302 buffer_start_ = new_start;
3303 pc_ += pc_delta;
3304 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
3305 reloc_info_writer.last_pc() + pc_delta);
3306
3307 // Relocate internal references.
3308 for (auto pos : internal_reference_positions_) {
3309 Address p = reinterpret_cast<Address>(buffer_start_ + pos);
3310 WriteUnalignedValue(p, ReadUnalignedValue<int>(p) + pc_delta);
3311 }
3312
3313 // Relocate pc-relative references.
3314 int mode_mask = RelocInfo::ModeMask(RelocInfo::OFF_HEAP_TARGET);
3315 DCHECK_EQ(mode_mask, RelocInfo::kApplyMask & mode_mask);
3316 base::Vector<byte> instructions{buffer_start_,
3317 static_cast<size_t>(pc_offset())};
3318 base::Vector<const byte> reloc_info{reloc_info_writer.pos(), reloc_size};
3319 for (RelocIterator it(instructions, reloc_info, 0, mode_mask); !it.done();
3320 it.next()) {
3321 it.rinfo()->apply(pc_delta);
3322 }
3323
3324 DCHECK(!buffer_overflow());
3325 }
3326
emit_arith_b(int op1,int op2,Register dst,int imm8)3327 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
3328 DCHECK(is_uint8(op1) && is_uint8(op2)); // wrong opcode
3329 DCHECK(is_uint8(imm8));
3330 DCHECK_EQ(op1 & 0x01, 0); // should be 8bit operation
3331 EMIT(op1);
3332 EMIT(op2 | dst.code());
3333 EMIT(imm8);
3334 }
3335
emit_arith(int sel,Operand dst,const Immediate & x)3336 void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
3337 DCHECK((0 <= sel) && (sel <= 7));
3338 Register ireg = Register::from_code(sel);
3339 if (x.is_int8()) {
3340 EMIT(0x83); // using a sign-extended 8-bit immediate.
3341 emit_operand(ireg, dst);
3342 EMIT(x.immediate() & 0xFF);
3343 } else if (dst.is_reg(eax)) {
3344 EMIT((sel << 3) | 0x05); // short form if the destination is eax.
3345 emit(x);
3346 } else {
3347 EMIT(0x81); // using a literal 32-bit immediate.
3348 emit_operand(ireg, dst);
3349 emit(x);
3350 }
3351 }
3352
emit_operand(Register reg,Operand adr)3353 void Assembler::emit_operand(Register reg, Operand adr) {
3354 emit_operand(reg.code(), adr);
3355 }
3356
emit_operand(XMMRegister reg,Operand adr)3357 void Assembler::emit_operand(XMMRegister reg, Operand adr) {
3358 Register ireg = Register::from_code(reg.code());
3359 emit_operand(ireg, adr);
3360 }
3361
emit_operand(int code,Operand adr)3362 void Assembler::emit_operand(int code, Operand adr) {
3363 // Isolate-independent code may not embed relocatable addresses.
3364 DCHECK_IMPLIES(options().isolate_independent_code,
3365 adr.rmode() != RelocInfo::CODE_TARGET);
3366 DCHECK_IMPLIES(options().isolate_independent_code,
3367 adr.rmode() != RelocInfo::FULL_EMBEDDED_OBJECT);
3368 DCHECK_IMPLIES(options().isolate_independent_code,
3369 adr.rmode() != RelocInfo::EXTERNAL_REFERENCE);
3370
3371 const unsigned length = adr.encoded_bytes().length();
3372 DCHECK_GT(length, 0);
3373
3374 // Emit updated ModRM byte containing the given register.
3375 EMIT((adr.encoded_bytes()[0] & ~0x38) | (code << 3));
3376
3377 // Emit the rest of the encoded operand.
3378 for (unsigned i = 1; i < length; i++) EMIT(adr.encoded_bytes()[i]);
3379
3380 // Emit relocation information if necessary.
3381 if (length >= sizeof(int32_t) && !RelocInfo::IsNoInfo(adr.rmode())) {
3382 pc_ -= sizeof(int32_t); // pc_ must be *at* disp32
3383 RecordRelocInfo(adr.rmode());
3384 if (adr.rmode() == RelocInfo::INTERNAL_REFERENCE) { // Fixup for labels
3385 emit_label(ReadUnalignedValue<Label*>(reinterpret_cast<Address>(pc_)));
3386 } else {
3387 pc_ += sizeof(int32_t);
3388 }
3389 }
3390 }
3391
emit_label(Label * label)3392 void Assembler::emit_label(Label* label) {
3393 if (label->is_bound()) {
3394 internal_reference_positions_.push_back(pc_offset());
3395 emit(reinterpret_cast<uint32_t>(buffer_start_ + label->pos()));
3396 } else {
3397 emit_disp(label, Displacement::CODE_ABSOLUTE);
3398 }
3399 }
3400
emit_farith(int b1,int b2,int i)3401 void Assembler::emit_farith(int b1, int b2, int i) {
3402 DCHECK(is_uint8(b1) && is_uint8(b2)); // wrong opcode
3403 DCHECK(0 <= i && i < 8); // illegal stack offset
3404 EMIT(b1);
3405 EMIT(b2 + i);
3406 }
3407
db(uint8_t data)3408 void Assembler::db(uint8_t data) {
3409 EnsureSpace ensure_space(this);
3410 EMIT(data);
3411 }
3412
dd(uint32_t data,RelocInfo::Mode rmode)3413 void Assembler::dd(uint32_t data, RelocInfo::Mode rmode) {
3414 EnsureSpace ensure_space(this);
3415 if (!RelocInfo::IsNoInfo(rmode)) {
3416 DCHECK(RelocInfo::IsDataEmbeddedObject(rmode) ||
3417 RelocInfo::IsLiteralConstant(rmode));
3418 RecordRelocInfo(rmode);
3419 }
3420 emit(data);
3421 }
3422
dq(uint64_t data,RelocInfo::Mode rmode)3423 void Assembler::dq(uint64_t data, RelocInfo::Mode rmode) {
3424 EnsureSpace ensure_space(this);
3425 if (!RelocInfo::IsNoInfo(rmode)) {
3426 DCHECK(RelocInfo::IsDataEmbeddedObject(rmode));
3427 RecordRelocInfo(rmode);
3428 }
3429 emit_q(data);
3430 }
3431
dd(Label * label)3432 void Assembler::dd(Label* label) {
3433 EnsureSpace ensure_space(this);
3434 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
3435 emit_label(label);
3436 }
3437
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)3438 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
3439 if (!ShouldRecordRelocInfo(rmode)) return;
3440 RelocInfo rinfo(reinterpret_cast<Address>(pc_), rmode, data, Code());
3441 reloc_info_writer.Write(&rinfo);
3442 }
3443
3444 #undef EMIT
3445
3446 } // namespace internal
3447 } // namespace v8
3448
3449 #endif // V8_TARGET_ARCH_IA32
3450