1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27
28 #include "dm_services.h"
29
30 #include "dc.h"
31
32 #include "core_status.h"
33 #include "core_types.h"
34 #include "hw_sequencer.h"
35 #include "dce/dce_hwseq.h"
36
37 #include "resource.h"
38
39 #include "clk_mgr.h"
40 #include "clock_source.h"
41 #include "dc_bios_types.h"
42
43 #include "bios_parser_interface.h"
44 #include "include/irq_service_interface.h"
45 #include "transform.h"
46 #include "dmcu.h"
47 #include "dpp.h"
48 #include "timing_generator.h"
49 #include "abm.h"
50 #include "virtual/virtual_link_encoder.h"
51
52 #include "link_hwss.h"
53 #include "link_encoder.h"
54
55 #include "dc_link_ddc.h"
56 #include "dm_helpers.h"
57 #include "mem_input.h"
58 #include "hubp.h"
59
60 #include "dc_link_dp.h"
61 #include "dc_dmub_srv.h"
62
63 #include "dsc.h"
64
65 #include "vm_helper.h"
66
67 #include "dce/dce_i2c.h"
68
69 #include "dmub/dmub_srv.h"
70
71 #include "dce/dmub_hw_lock_mgr.h"
72
73 #define CTX \
74 dc->ctx
75
76 #define DC_LOGGER \
77 dc->ctx->logger
78
79 static const char DC_BUILD_ID[] = "production-build";
80
81 /**
82 * DOC: Overview
83 *
84 * DC is the OS-agnostic component of the amdgpu DC driver.
85 *
86 * DC maintains and validates a set of structs representing the state of the
87 * driver and writes that state to AMD hardware
88 *
89 * Main DC HW structs:
90 *
91 * struct dc - The central struct. One per driver. Created on driver load,
92 * destroyed on driver unload.
93 *
94 * struct dc_context - One per driver.
95 * Used as a backpointer by most other structs in dc.
96 *
97 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
98 * plugpoints). Created on driver load, destroyed on driver unload.
99 *
100 * struct dc_sink - One per display. Created on boot or hotplug.
101 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
102 * (the display directly attached). It may also have one or more remote
103 * sinks (in the Multi-Stream Transport case)
104 *
105 * struct resource_pool - One per driver. Represents the hw blocks not in the
106 * main pipeline. Not directly accessible by dm.
107 *
108 * Main dc state structs:
109 *
110 * These structs can be created and destroyed as needed. There is a full set of
111 * these structs in dc->current_state representing the currently programmed state.
112 *
113 * struct dc_state - The global DC state to track global state information,
114 * such as bandwidth values.
115 *
116 * struct dc_stream_state - Represents the hw configuration for the pipeline from
117 * a framebuffer to a display. Maps one-to-one with dc_sink.
118 *
119 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
120 * and may have more in the Multi-Plane Overlay case.
121 *
122 * struct resource_context - Represents the programmable state of everything in
123 * the resource_pool. Not directly accessible by dm.
124 *
125 * struct pipe_ctx - A member of struct resource_context. Represents the
126 * internal hardware pipeline components. Each dc_plane_state has either
127 * one or two (in the pipe-split case).
128 */
129
130 /*******************************************************************************
131 * Private functions
132 ******************************************************************************/
133
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)134 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
135 {
136 if (new > *original)
137 *original = new;
138 }
139
destroy_links(struct dc * dc)140 static void destroy_links(struct dc *dc)
141 {
142 uint32_t i;
143
144 for (i = 0; i < dc->link_count; i++) {
145 if (NULL != dc->links[i])
146 link_destroy(&dc->links[i]);
147 }
148 }
149
create_links(struct dc * dc,uint32_t num_virtual_links)150 static bool create_links(
151 struct dc *dc,
152 uint32_t num_virtual_links)
153 {
154 int i;
155 int connectors_num;
156 struct dc_bios *bios = dc->ctx->dc_bios;
157
158 dc->link_count = 0;
159
160 connectors_num = bios->funcs->get_connectors_number(bios);
161
162 if (connectors_num > ENUM_ID_COUNT) {
163 dm_error(
164 "DC: Number of connectors %d exceeds maximum of %d!\n",
165 connectors_num,
166 ENUM_ID_COUNT);
167 return false;
168 }
169
170 dm_output_to_console(
171 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
172 __func__,
173 connectors_num,
174 num_virtual_links);
175
176 for (i = 0; i < connectors_num; i++) {
177 struct link_init_data link_init_params = {0};
178 struct dc_link *link;
179
180 link_init_params.ctx = dc->ctx;
181 /* next BIOS object table connector */
182 link_init_params.connector_index = i;
183 link_init_params.link_index = dc->link_count;
184 link_init_params.dc = dc;
185 link = link_create(&link_init_params);
186
187 if (link) {
188 bool should_destory_link = false;
189
190 if (link->connector_signal == SIGNAL_TYPE_EDP) {
191 if (dc->config.edp_not_connected) {
192 if (!IS_DIAG_DC(dc->ctx->dce_environment))
193 should_destory_link = true;
194 } else {
195 enum dc_connection_type type;
196 dc_link_detect_sink(link, &type);
197 if (type == dc_connection_none)
198 should_destory_link = true;
199 }
200 }
201
202 if (dc->config.force_enum_edp || !should_destory_link) {
203 dc->links[dc->link_count] = link;
204 link->dc = dc;
205 ++dc->link_count;
206 } else {
207 link_destroy(&link);
208 }
209 }
210 }
211
212 for (i = 0; i < num_virtual_links; i++) {
213 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
214 struct encoder_init_data enc_init = {0};
215
216 if (link == NULL) {
217 BREAK_TO_DEBUGGER();
218 goto failed_alloc;
219 }
220
221 link->link_index = dc->link_count;
222 dc->links[dc->link_count] = link;
223 dc->link_count++;
224
225 link->ctx = dc->ctx;
226 link->dc = dc;
227 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
228 link->link_id.type = OBJECT_TYPE_CONNECTOR;
229 link->link_id.id = CONNECTOR_ID_VIRTUAL;
230 link->link_id.enum_id = ENUM_ID_1;
231 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
232
233 if (!link->link_enc) {
234 BREAK_TO_DEBUGGER();
235 goto failed_alloc;
236 }
237
238 link->link_status.dpcd_caps = &link->dpcd_caps;
239
240 enc_init.ctx = dc->ctx;
241 enc_init.channel = CHANNEL_ID_UNKNOWN;
242 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
243 enc_init.transmitter = TRANSMITTER_UNKNOWN;
244 enc_init.connector = link->link_id;
245 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
246 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
247 enc_init.encoder.enum_id = ENUM_ID_1;
248 virtual_link_encoder_construct(link->link_enc, &enc_init);
249 }
250
251 return true;
252
253 failed_alloc:
254 return false;
255 }
256
dc_perf_trace_create(void)257 static struct dc_perf_trace *dc_perf_trace_create(void)
258 {
259 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
260 }
261
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)262 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
263 {
264 kfree(*perf_trace);
265 *perf_trace = NULL;
266 }
267
268 /**
269 *****************************************************************************
270 * Function: dc_stream_adjust_vmin_vmax
271 *
272 * @brief
273 * Looks up the pipe context of dc_stream_state and updates the
274 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
275 * Rate, which is a power-saving feature that targets reducing panel
276 * refresh rate while the screen is static
277 *
278 * @param [in] dc: dc reference
279 * @param [in] stream: Initial dc stream state
280 * @param [in] adjust: Updated parameters for vertical_total_min and
281 * vertical_total_max
282 *****************************************************************************
283 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)284 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
285 struct dc_stream_state *stream,
286 struct dc_crtc_timing_adjust *adjust)
287 {
288 int i = 0;
289 bool ret = false;
290
291 stream->adjust = *adjust;
292
293 for (i = 0; i < MAX_PIPES; i++) {
294 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
295
296 if (pipe->stream == stream && pipe->stream_res.tg) {
297 dc->hwss.set_drr(&pipe,
298 1,
299 adjust->v_total_min,
300 adjust->v_total_max,
301 adjust->v_total_mid,
302 adjust->v_total_mid_frame_num);
303
304 ret = true;
305 }
306 }
307 return ret;
308 }
309
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)310 bool dc_stream_get_crtc_position(struct dc *dc,
311 struct dc_stream_state **streams, int num_streams,
312 unsigned int *v_pos, unsigned int *nom_v_pos)
313 {
314 /* TODO: Support multiple streams */
315 const struct dc_stream_state *stream = streams[0];
316 int i = 0;
317 bool ret = false;
318 struct crtc_position position;
319
320 for (i = 0; i < MAX_PIPES; i++) {
321 struct pipe_ctx *pipe =
322 &dc->current_state->res_ctx.pipe_ctx[i];
323
324 if (pipe->stream == stream && pipe->stream_res.stream_enc) {
325 dc->hwss.get_position(&pipe, 1, &position);
326
327 *v_pos = position.vertical_count;
328 *nom_v_pos = position.nominal_vcount;
329 ret = true;
330 }
331 }
332 return ret;
333 }
334
335 /**
336 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
337 * @dc: DC Object
338 * @stream: The stream to configure CRC on.
339 * @enable: Enable CRC if true, disable otherwise.
340 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
341 * once.
342 *
343 * By default, only CRC0 is configured, and the entire frame is used to
344 * calculate the crc.
345 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,bool enable,bool continuous)346 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
347 bool enable, bool continuous)
348 {
349 int i;
350 struct pipe_ctx *pipe;
351 struct crc_params param;
352 struct timing_generator *tg;
353
354 for (i = 0; i < MAX_PIPES; i++) {
355 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
356 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
357 break;
358 }
359 /* Stream not found */
360 if (i == MAX_PIPES)
361 return false;
362
363 /* Always capture the full frame */
364 param.windowa_x_start = 0;
365 param.windowa_y_start = 0;
366 param.windowa_x_end = pipe->stream->timing.h_addressable;
367 param.windowa_y_end = pipe->stream->timing.v_addressable;
368 param.windowb_x_start = 0;
369 param.windowb_y_start = 0;
370 param.windowb_x_end = pipe->stream->timing.h_addressable;
371 param.windowb_y_end = pipe->stream->timing.v_addressable;
372
373 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
374 param.odm_mode = pipe->next_odm_pipe ? 1:0;
375
376 /* Default to the union of both windows */
377 param.selection = UNION_WINDOW_A_B;
378 param.continuous_mode = continuous;
379 param.enable = enable;
380
381 tg = pipe->stream_res.tg;
382
383 /* Only call if supported */
384 if (tg->funcs->configure_crc)
385 return tg->funcs->configure_crc(tg, ¶m);
386 DC_LOG_WARNING("CRC capture not supported.");
387 return false;
388 }
389
390 /**
391 * dc_stream_get_crc() - Get CRC values for the given stream.
392 * @dc: DC object
393 * @stream: The DC stream state of the stream to get CRCs from.
394 * @r_cr, g_y, b_cb: CRC values for the three channels are stored here.
395 *
396 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
397 * Return false if stream is not found, or if CRCs are not enabled.
398 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)399 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
400 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
401 {
402 int i;
403 struct pipe_ctx *pipe;
404 struct timing_generator *tg;
405
406 for (i = 0; i < MAX_PIPES; i++) {
407 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
408 if (pipe->stream == stream)
409 break;
410 }
411 /* Stream not found */
412 if (i == MAX_PIPES)
413 return false;
414
415 tg = pipe->stream_res.tg;
416
417 if (tg->funcs->get_crc)
418 return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
419 DC_LOG_WARNING("CRC capture not supported.");
420 return false;
421 }
422
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)423 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
424 enum dc_dynamic_expansion option)
425 {
426 /* OPP FMT dyn expansion updates*/
427 int i = 0;
428 struct pipe_ctx *pipe_ctx;
429
430 for (i = 0; i < MAX_PIPES; i++) {
431 if (dc->current_state->res_ctx.pipe_ctx[i].stream
432 == stream) {
433 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
434 pipe_ctx->stream_res.opp->dyn_expansion = option;
435 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
436 pipe_ctx->stream_res.opp,
437 COLOR_SPACE_YCBCR601,
438 stream->timing.display_color_depth,
439 stream->signal);
440 }
441 }
442 }
443
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)444 void dc_stream_set_dither_option(struct dc_stream_state *stream,
445 enum dc_dither_option option)
446 {
447 struct bit_depth_reduction_params params;
448 struct dc_link *link = stream->link;
449 struct pipe_ctx *pipes = NULL;
450 int i;
451
452 for (i = 0; i < MAX_PIPES; i++) {
453 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
454 stream) {
455 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
456 break;
457 }
458 }
459
460 if (!pipes)
461 return;
462 if (option > DITHER_OPTION_MAX)
463 return;
464
465 stream->dither_option = option;
466
467 memset(¶ms, 0, sizeof(params));
468 resource_build_bit_depth_reduction_params(stream, ¶ms);
469 stream->bit_depth_params = params;
470
471 if (pipes->plane_res.xfm &&
472 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
473 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
474 pipes->plane_res.xfm,
475 pipes->plane_res.scl_data.lb_params.depth,
476 &stream->bit_depth_params);
477 }
478
479 pipes->stream_res.opp->funcs->
480 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
481 }
482
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)483 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
484 {
485 int i = 0;
486 bool ret = false;
487 struct pipe_ctx *pipes;
488
489 for (i = 0; i < MAX_PIPES; i++) {
490 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
491 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
492 dc->hwss.program_gamut_remap(pipes);
493 ret = true;
494 }
495 }
496
497 return ret;
498 }
499
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)500 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
501 {
502 int i = 0;
503 bool ret = false;
504 struct pipe_ctx *pipes;
505
506 for (i = 0; i < MAX_PIPES; i++) {
507 if (dc->current_state->res_ctx.pipe_ctx[i].stream
508 == stream) {
509
510 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
511 dc->hwss.program_output_csc(dc,
512 pipes,
513 stream->output_color_space,
514 stream->csc_color_matrix.matrix,
515 pipes->stream_res.opp->inst);
516 ret = true;
517 }
518 }
519
520 return ret;
521 }
522
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)523 void dc_stream_set_static_screen_params(struct dc *dc,
524 struct dc_stream_state **streams,
525 int num_streams,
526 const struct dc_static_screen_params *params)
527 {
528 int i = 0;
529 int j = 0;
530 struct pipe_ctx *pipes_affected[MAX_PIPES];
531 int num_pipes_affected = 0;
532
533 for (i = 0; i < num_streams; i++) {
534 struct dc_stream_state *stream = streams[i];
535
536 for (j = 0; j < MAX_PIPES; j++) {
537 if (dc->current_state->res_ctx.pipe_ctx[j].stream
538 == stream) {
539 pipes_affected[num_pipes_affected++] =
540 &dc->current_state->res_ctx.pipe_ctx[j];
541 }
542 }
543 }
544
545 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
546 }
547
dc_destruct(struct dc * dc)548 static void dc_destruct(struct dc *dc)
549 {
550 if (dc->current_state) {
551 dc_release_state(dc->current_state);
552 dc->current_state = NULL;
553 }
554
555 destroy_links(dc);
556
557 if (dc->clk_mgr) {
558 dc_destroy_clk_mgr(dc->clk_mgr);
559 dc->clk_mgr = NULL;
560 }
561
562 dc_destroy_resource_pool(dc);
563
564 if (dc->ctx->gpio_service)
565 dal_gpio_service_destroy(&dc->ctx->gpio_service);
566
567 if (dc->ctx->created_bios)
568 dal_bios_parser_destroy(&dc->ctx->dc_bios);
569
570 dc_perf_trace_destroy(&dc->ctx->perf_trace);
571
572 kfree(dc->ctx);
573 dc->ctx = NULL;
574
575 kfree(dc->bw_vbios);
576 dc->bw_vbios = NULL;
577
578 kfree(dc->bw_dceip);
579 dc->bw_dceip = NULL;
580
581 #ifdef CONFIG_DRM_AMD_DC_DCN
582 kfree(dc->dcn_soc);
583 dc->dcn_soc = NULL;
584
585 kfree(dc->dcn_ip);
586 dc->dcn_ip = NULL;
587
588 #endif
589 kfree(dc->vm_helper);
590 dc->vm_helper = NULL;
591
592 }
593
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)594 static bool dc_construct_ctx(struct dc *dc,
595 const struct dc_init_data *init_params)
596 {
597 struct dc_context *dc_ctx;
598 enum dce_version dc_version = DCE_VERSION_UNKNOWN;
599
600 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
601 if (!dc_ctx)
602 return false;
603
604 dc_ctx->cgs_device = init_params->cgs_device;
605 dc_ctx->driver_context = init_params->driver;
606 dc_ctx->dc = dc;
607 dc_ctx->asic_id = init_params->asic_id;
608 dc_ctx->dc_sink_id_count = 0;
609 dc_ctx->dc_stream_id_count = 0;
610 dc_ctx->dce_environment = init_params->dce_environment;
611
612 /* Create logger */
613
614 dc_version = resource_parse_asic_id(init_params->asic_id);
615 dc_ctx->dce_version = dc_version;
616
617 dc_ctx->perf_trace = dc_perf_trace_create();
618 if (!dc_ctx->perf_trace) {
619 kfree(dc_ctx);
620 ASSERT_CRITICAL(false);
621 return false;
622 }
623
624 dc->ctx = dc_ctx;
625
626 return true;
627 }
628
dc_construct(struct dc * dc,const struct dc_init_data * init_params)629 static bool dc_construct(struct dc *dc,
630 const struct dc_init_data *init_params)
631 {
632 struct dc_context *dc_ctx;
633 struct bw_calcs_dceip *dc_dceip;
634 struct bw_calcs_vbios *dc_vbios;
635 #ifdef CONFIG_DRM_AMD_DC_DCN
636 struct dcn_soc_bounding_box *dcn_soc;
637 struct dcn_ip_params *dcn_ip;
638 #endif
639
640 dc->config = init_params->flags;
641
642 // Allocate memory for the vm_helper
643 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
644 if (!dc->vm_helper) {
645 dm_error("%s: failed to create dc->vm_helper\n", __func__);
646 goto fail;
647 }
648
649 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
650
651 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
652 if (!dc_dceip) {
653 dm_error("%s: failed to create dceip\n", __func__);
654 goto fail;
655 }
656
657 dc->bw_dceip = dc_dceip;
658
659 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
660 if (!dc_vbios) {
661 dm_error("%s: failed to create vbios\n", __func__);
662 goto fail;
663 }
664
665 dc->bw_vbios = dc_vbios;
666 #ifdef CONFIG_DRM_AMD_DC_DCN
667 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
668 if (!dcn_soc) {
669 dm_error("%s: failed to create dcn_soc\n", __func__);
670 goto fail;
671 }
672
673 dc->dcn_soc = dcn_soc;
674
675 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
676 if (!dcn_ip) {
677 dm_error("%s: failed to create dcn_ip\n", __func__);
678 goto fail;
679 }
680
681 dc->dcn_ip = dcn_ip;
682 dc->soc_bounding_box = init_params->soc_bounding_box;
683 #endif
684
685 if (!dc_construct_ctx(dc, init_params)) {
686 dm_error("%s: failed to create ctx\n", __func__);
687 goto fail;
688 }
689
690 dc_ctx = dc->ctx;
691
692 /* Resource should construct all asic specific resources.
693 * This should be the only place where we need to parse the asic id
694 */
695 if (init_params->vbios_override)
696 dc_ctx->dc_bios = init_params->vbios_override;
697 else {
698 /* Create BIOS parser */
699 struct bp_init_data bp_init_data;
700
701 bp_init_data.ctx = dc_ctx;
702 bp_init_data.bios = init_params->asic_id.atombios_base_address;
703
704 dc_ctx->dc_bios = dal_bios_parser_create(
705 &bp_init_data, dc_ctx->dce_version);
706
707 if (!dc_ctx->dc_bios) {
708 ASSERT_CRITICAL(false);
709 goto fail;
710 }
711
712 dc_ctx->created_bios = true;
713 }
714
715 dc->vendor_signature = init_params->vendor_signature;
716
717 /* Create GPIO service */
718 dc_ctx->gpio_service = dal_gpio_service_create(
719 dc_ctx->dce_version,
720 dc_ctx->dce_environment,
721 dc_ctx);
722
723 if (!dc_ctx->gpio_service) {
724 ASSERT_CRITICAL(false);
725 goto fail;
726 }
727
728 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
729 if (!dc->res_pool)
730 goto fail;
731
732 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
733 if (!dc->clk_mgr)
734 goto fail;
735 #ifdef CONFIG_DRM_AMD_DC_DCN3_0
736 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
737 #endif
738
739 dc->debug.force_ignore_link_settings = init_params->force_ignore_link_settings;
740
741 if (dc->res_pool->funcs->update_bw_bounding_box)
742 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
743
744 /* Creation of current_state must occur after dc->dml
745 * is initialized in dc_create_resource_pool because
746 * on creation it copies the contents of dc->dml
747 */
748
749 dc->current_state = dc_create_state(dc);
750
751 if (!dc->current_state) {
752 dm_error("%s: failed to create validate ctx\n", __func__);
753 goto fail;
754 }
755
756 dc_resource_state_construct(dc, dc->current_state);
757
758 if (!create_links(dc, init_params->num_virtual_links))
759 goto fail;
760
761 return true;
762
763 fail:
764 return false;
765 }
766
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)767 static bool disable_all_writeback_pipes_for_stream(
768 const struct dc *dc,
769 struct dc_stream_state *stream,
770 struct dc_state *context)
771 {
772 int i;
773
774 for (i = 0; i < stream->num_wb_info; i++)
775 stream->writeback_info[i].wb_enabled = false;
776
777 return true;
778 }
779
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)780 void apply_ctx_interdependent_lock(struct dc *dc, struct dc_state *context, struct dc_stream_state *stream, bool lock)
781 {
782 int i = 0;
783
784 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
785 if (dc->hwss.interdependent_update_lock)
786 dc->hwss.interdependent_update_lock(dc, context, lock);
787 else {
788 for (i = 0; i < dc->res_pool->pipe_count; i++) {
789 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
790 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
791
792 // Copied conditions that were previously in dce110_apply_ctx_for_surface
793 if (stream == pipe_ctx->stream) {
794 if (!pipe_ctx->top_pipe &&
795 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
796 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
797 }
798 }
799 }
800 }
801
disable_dangling_plane(struct dc * dc,struct dc_state * context)802 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
803 {
804 int i, j;
805 struct dc_state *dangling_context = dc_create_state(dc);
806 struct dc_state *current_ctx;
807
808 if (dangling_context == NULL)
809 return;
810
811 dc_resource_state_copy_construct(dc->current_state, dangling_context);
812
813 for (i = 0; i < dc->res_pool->pipe_count; i++) {
814 struct dc_stream_state *old_stream =
815 dc->current_state->res_ctx.pipe_ctx[i].stream;
816 bool should_disable = true;
817
818 for (j = 0; j < context->stream_count; j++) {
819 if (old_stream == context->streams[j]) {
820 should_disable = false;
821 break;
822 }
823 }
824 if (should_disable && old_stream) {
825 dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
826 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
827
828 if (dc->hwss.apply_ctx_for_surface) {
829 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
830 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
831 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
832 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
833 }
834 if (dc->hwss.program_front_end_for_ctx) {
835 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
836 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
837 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
838 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
839 }
840 }
841 }
842
843 current_ctx = dc->current_state;
844 dc->current_state = dangling_context;
845 dc_release_state(current_ctx);
846 }
847
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)848 static void disable_vbios_mode_if_required(
849 struct dc *dc,
850 struct dc_state *context)
851 {
852 unsigned int i, j;
853
854 /* check if timing_changed, disable stream*/
855 for (i = 0; i < dc->res_pool->pipe_count; i++) {
856 struct dc_stream_state *stream = NULL;
857 struct dc_link *link = NULL;
858 struct pipe_ctx *pipe = NULL;
859
860 pipe = &context->res_ctx.pipe_ctx[i];
861 stream = pipe->stream;
862 if (stream == NULL)
863 continue;
864
865 if (stream->link->local_sink &&
866 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
867 link = stream->link;
868 }
869
870 if (link != NULL) {
871 unsigned int enc_inst, tg_inst = 0;
872 unsigned int pix_clk_100hz;
873
874 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
875 if (enc_inst != ENGINE_ID_UNKNOWN) {
876 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
877 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
878 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
879 dc->res_pool->stream_enc[j]);
880 break;
881 }
882 }
883
884 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
885 dc->res_pool->dp_clock_source,
886 tg_inst, &pix_clk_100hz);
887
888 if (link->link_status.link_active) {
889 uint32_t requested_pix_clk_100hz =
890 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
891
892 if (pix_clk_100hz != requested_pix_clk_100hz) {
893 core_link_disable_stream(pipe);
894 pipe->stream->dpms_off = false;
895 }
896 }
897 }
898 }
899 }
900 }
901
wait_for_no_pipes_pending(struct dc * dc,struct dc_state * context)902 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
903 {
904 int i;
905 PERF_TRACE();
906 for (i = 0; i < MAX_PIPES; i++) {
907 int count = 0;
908 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
909
910 if (!pipe->plane_state)
911 continue;
912
913 /* Timeout 100 ms */
914 while (count < 100000) {
915 /* Must set to false to start with, due to OR in update function */
916 pipe->plane_state->status.is_flip_pending = false;
917 dc->hwss.update_pending_status(pipe);
918 if (!pipe->plane_state->status.is_flip_pending)
919 break;
920 udelay(1);
921 count++;
922 }
923 ASSERT(!pipe->plane_state->status.is_flip_pending);
924 }
925 PERF_TRACE();
926 }
927
928 /*******************************************************************************
929 * Public functions
930 ******************************************************************************/
931
dc_create(const struct dc_init_data * init_params)932 struct dc *dc_create(const struct dc_init_data *init_params)
933 {
934 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
935 unsigned int full_pipe_count;
936
937 if (NULL == dc)
938 goto alloc_fail;
939
940 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
941 if (false == dc_construct_ctx(dc, init_params)) {
942 dc_destruct(dc);
943 goto construct_fail;
944 }
945 } else {
946 if (false == dc_construct(dc, init_params)) {
947 dc_destruct(dc);
948 goto construct_fail;
949 }
950
951 full_pipe_count = dc->res_pool->pipe_count;
952 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
953 full_pipe_count--;
954 dc->caps.max_streams = min(
955 full_pipe_count,
956 dc->res_pool->stream_enc_count);
957
958 dc->optimize_seamless_boot_streams = 0;
959 dc->caps.max_links = dc->link_count;
960 dc->caps.max_audios = dc->res_pool->audio_count;
961 dc->caps.linear_pitch_alignment = 64;
962
963 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
964
965 if (dc->res_pool->dmcu != NULL)
966 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
967 }
968
969 /* Populate versioning information */
970 dc->versions.dc_ver = DC_VER;
971
972 dc->build_id = DC_BUILD_ID;
973
974 DC_LOG_DC("Display Core initialized\n");
975
976
977
978 return dc;
979
980 construct_fail:
981 kfree(dc);
982
983 alloc_fail:
984 return NULL;
985 }
986
dc_hardware_init(struct dc * dc)987 void dc_hardware_init(struct dc *dc)
988 {
989 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
990 dc->hwss.init_hw(dc);
991 }
992
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)993 void dc_init_callbacks(struct dc *dc,
994 const struct dc_callback_init *init_params)
995 {
996 #ifdef CONFIG_DRM_AMD_DC_HDCP
997 dc->ctx->cp_psp = init_params->cp_psp;
998 #endif
999 }
1000
dc_deinit_callbacks(struct dc * dc)1001 void dc_deinit_callbacks(struct dc *dc)
1002 {
1003 #ifdef CONFIG_DRM_AMD_DC_HDCP
1004 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1005 #endif
1006 }
1007
dc_destroy(struct dc ** dc)1008 void dc_destroy(struct dc **dc)
1009 {
1010 dc_destruct(*dc);
1011 kfree(*dc);
1012 *dc = NULL;
1013 }
1014
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1015 static void enable_timing_multisync(
1016 struct dc *dc,
1017 struct dc_state *ctx)
1018 {
1019 int i = 0, multisync_count = 0;
1020 int pipe_count = dc->res_pool->pipe_count;
1021 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1022
1023 for (i = 0; i < pipe_count; i++) {
1024 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1025 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1026 continue;
1027 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1028 continue;
1029 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1030 multisync_count++;
1031 }
1032
1033 if (multisync_count > 0) {
1034 dc->hwss.enable_per_frame_crtc_position_reset(
1035 dc, multisync_count, multisync_pipes);
1036 }
1037 }
1038
program_timing_sync(struct dc * dc,struct dc_state * ctx)1039 static void program_timing_sync(
1040 struct dc *dc,
1041 struct dc_state *ctx)
1042 {
1043 int i, j, k;
1044 int group_index = 0;
1045 int num_group = 0;
1046 int pipe_count = dc->res_pool->pipe_count;
1047 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1048
1049 for (i = 0; i < pipe_count; i++) {
1050 if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe)
1051 continue;
1052
1053 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1054 }
1055
1056 for (i = 0; i < pipe_count; i++) {
1057 int group_size = 1;
1058 struct pipe_ctx *pipe_set[MAX_PIPES];
1059
1060 if (!unsynced_pipes[i])
1061 continue;
1062
1063 pipe_set[0] = unsynced_pipes[i];
1064 unsynced_pipes[i] = NULL;
1065
1066 /* Add tg to the set, search rest of the tg's for ones with
1067 * same timing, add all tgs with same timing to the group
1068 */
1069 for (j = i + 1; j < pipe_count; j++) {
1070 if (!unsynced_pipes[j])
1071 continue;
1072
1073 if (resource_are_streams_timing_synchronizable(
1074 unsynced_pipes[j]->stream,
1075 pipe_set[0]->stream)) {
1076 pipe_set[group_size] = unsynced_pipes[j];
1077 unsynced_pipes[j] = NULL;
1078 group_size++;
1079 }
1080 }
1081
1082 /* set first unblanked pipe as master */
1083 for (j = 0; j < group_size; j++) {
1084 bool is_blanked;
1085
1086 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1087 is_blanked =
1088 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1089 else
1090 is_blanked =
1091 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1092 if (!is_blanked) {
1093 if (j == 0)
1094 break;
1095
1096 swap(pipe_set[0], pipe_set[j]);
1097 break;
1098 }
1099 }
1100
1101
1102 for (k = 0; k < group_size; k++) {
1103 struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1104
1105 status->timing_sync_info.group_id = num_group;
1106 status->timing_sync_info.group_size = group_size;
1107 if (k == 0)
1108 status->timing_sync_info.master = true;
1109 else
1110 status->timing_sync_info.master = false;
1111
1112 }
1113 /* remove any other unblanked pipes as they have already been synced */
1114 for (j = j + 1; j < group_size; j++) {
1115 bool is_blanked;
1116
1117 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1118 is_blanked =
1119 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1120 else
1121 is_blanked =
1122 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1123 if (!is_blanked) {
1124 group_size--;
1125 pipe_set[j] = pipe_set[group_size];
1126 j--;
1127 }
1128 }
1129
1130 if (group_size > 1) {
1131 dc->hwss.enable_timing_synchronization(
1132 dc, group_index, group_size, pipe_set);
1133 group_index++;
1134 }
1135 num_group++;
1136 }
1137 }
1138
context_changed(struct dc * dc,struct dc_state * context)1139 static bool context_changed(
1140 struct dc *dc,
1141 struct dc_state *context)
1142 {
1143 uint8_t i;
1144
1145 if (context->stream_count != dc->current_state->stream_count)
1146 return true;
1147
1148 for (i = 0; i < dc->current_state->stream_count; i++) {
1149 if (dc->current_state->streams[i] != context->streams[i])
1150 return true;
1151 }
1152
1153 return false;
1154 }
1155
dc_validate_seamless_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1156 bool dc_validate_seamless_boot_timing(const struct dc *dc,
1157 const struct dc_sink *sink,
1158 struct dc_crtc_timing *crtc_timing)
1159 {
1160 struct timing_generator *tg;
1161 struct stream_encoder *se = NULL;
1162
1163 struct dc_crtc_timing hw_crtc_timing = {0};
1164
1165 struct dc_link *link = sink->link;
1166 unsigned int i, enc_inst, tg_inst = 0;
1167
1168 // Seamless port only support single DP and EDP so far
1169 if (sink->sink_signal != SIGNAL_TYPE_DISPLAY_PORT &&
1170 sink->sink_signal != SIGNAL_TYPE_EDP)
1171 return false;
1172
1173 /* Check for enabled DIG to identify enabled display */
1174 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1175 return false;
1176
1177 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1178
1179 if (enc_inst == ENGINE_ID_UNKNOWN)
1180 return false;
1181
1182 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1183 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1184
1185 se = dc->res_pool->stream_enc[i];
1186
1187 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1188 dc->res_pool->stream_enc[i]);
1189 break;
1190 }
1191 }
1192
1193 // tg_inst not found
1194 if (i == dc->res_pool->stream_enc_count)
1195 return false;
1196
1197 if (tg_inst >= dc->res_pool->timing_generator_count)
1198 return false;
1199
1200 tg = dc->res_pool->timing_generators[tg_inst];
1201
1202 if (!tg->funcs->get_hw_timing)
1203 return false;
1204
1205 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1206 return false;
1207
1208 if (crtc_timing->h_total != hw_crtc_timing.h_total)
1209 return false;
1210
1211 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1212 return false;
1213
1214 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1215 return false;
1216
1217 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1218 return false;
1219
1220 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1221 return false;
1222
1223 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1224 return false;
1225
1226 if (crtc_timing->v_total != hw_crtc_timing.v_total)
1227 return false;
1228
1229 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1230 return false;
1231
1232 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1233 return false;
1234
1235 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1236 return false;
1237
1238 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1239 return false;
1240
1241 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1242 return false;
1243
1244 if (dc_is_dp_signal(link->connector_signal)) {
1245 unsigned int pix_clk_100hz;
1246
1247 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1248 dc->res_pool->dp_clock_source,
1249 tg_inst, &pix_clk_100hz);
1250
1251 if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1252 return false;
1253
1254 if (!se->funcs->dp_get_pixel_format)
1255 return false;
1256
1257 if (!se->funcs->dp_get_pixel_format(
1258 se,
1259 &hw_crtc_timing.pixel_encoding,
1260 &hw_crtc_timing.display_color_depth))
1261 return false;
1262
1263 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1264 return false;
1265
1266 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1267 return false;
1268 }
1269
1270 return true;
1271 }
1272
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1273 bool dc_enable_stereo(
1274 struct dc *dc,
1275 struct dc_state *context,
1276 struct dc_stream_state *streams[],
1277 uint8_t stream_count)
1278 {
1279 bool ret = true;
1280 int i, j;
1281 struct pipe_ctx *pipe;
1282
1283 for (i = 0; i < MAX_PIPES; i++) {
1284 if (context != NULL)
1285 pipe = &context->res_ctx.pipe_ctx[i];
1286 else
1287 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1288 for (j = 0 ; pipe && j < stream_count; j++) {
1289 if (streams[j] && streams[j] == pipe->stream &&
1290 dc->hwss.setup_stereo)
1291 dc->hwss.setup_stereo(pipe, dc);
1292 }
1293 }
1294
1295 return ret;
1296 }
1297
dc_trigger_sync(struct dc * dc,struct dc_state * context)1298 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1299 {
1300 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1301 enable_timing_multisync(dc, context);
1302 program_timing_sync(dc, context);
1303 }
1304 }
1305
get_stream_mask(struct dc * dc,struct dc_state * context)1306 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1307 {
1308 int i;
1309 unsigned int stream_mask = 0;
1310
1311 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1312 if (context->res_ctx.pipe_ctx[i].stream)
1313 stream_mask |= 1 << i;
1314 }
1315
1316 return stream_mask;
1317 }
1318
1319 /*
1320 * Applies given context to HW and copy it into current context.
1321 * It's up to the user to release the src context afterwards.
1322 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1323 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1324 {
1325 struct dc_bios *dcb = dc->ctx->dc_bios;
1326 enum dc_status result = DC_ERROR_UNEXPECTED;
1327 struct pipe_ctx *pipe;
1328 int i, k, l;
1329 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1330
1331 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
1332 dc_allow_idle_optimizations(dc, false);
1333 #endif
1334
1335 for (i = 0; i < context->stream_count; i++)
1336 dc_streams[i] = context->streams[i];
1337
1338 if (!dcb->funcs->is_accelerated_mode(dcb)) {
1339 disable_vbios_mode_if_required(dc, context);
1340 dc->hwss.enable_accelerated_mode(dc, context);
1341 }
1342
1343 for (i = 0; i < context->stream_count; i++)
1344 if (context->streams[i]->apply_seamless_boot_optimization)
1345 dc->optimize_seamless_boot_streams++;
1346
1347 if (context->stream_count > dc->optimize_seamless_boot_streams ||
1348 context->stream_count == 0)
1349 dc->hwss.prepare_bandwidth(dc, context);
1350
1351 disable_dangling_plane(dc, context);
1352 /* re-program planes for existing stream, in case we need to
1353 * free up plane resource for later use
1354 */
1355 if (dc->hwss.apply_ctx_for_surface) {
1356 for (i = 0; i < context->stream_count; i++) {
1357 if (context->streams[i]->mode_changed)
1358 continue;
1359 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1360 dc->hwss.apply_ctx_for_surface(
1361 dc, context->streams[i],
1362 context->stream_status[i].plane_count,
1363 context); /* use new pipe config in new context */
1364 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1365 dc->hwss.post_unlock_program_front_end(dc, context);
1366 }
1367 }
1368
1369 /* Program hardware */
1370 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1371 pipe = &context->res_ctx.pipe_ctx[i];
1372 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1373 }
1374
1375 result = dc->hwss.apply_ctx_to_hw(dc, context);
1376
1377 if (result != DC_OK)
1378 return result;
1379
1380 dc_trigger_sync(dc, context);
1381
1382 /* Program all planes within new context*/
1383 if (dc->hwss.program_front_end_for_ctx) {
1384 dc->hwss.interdependent_update_lock(dc, context, true);
1385 dc->hwss.program_front_end_for_ctx(dc, context);
1386 dc->hwss.interdependent_update_lock(dc, context, false);
1387 dc->hwss.post_unlock_program_front_end(dc, context);
1388 }
1389 for (i = 0; i < context->stream_count; i++) {
1390 const struct dc_link *link = context->streams[i]->link;
1391
1392 if (!context->streams[i]->mode_changed)
1393 continue;
1394
1395 if (dc->hwss.apply_ctx_for_surface) {
1396 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1397 dc->hwss.apply_ctx_for_surface(
1398 dc, context->streams[i],
1399 context->stream_status[i].plane_count,
1400 context);
1401 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1402 dc->hwss.post_unlock_program_front_end(dc, context);
1403 }
1404
1405 /*
1406 * enable stereo
1407 * TODO rework dc_enable_stereo call to work with validation sets?
1408 */
1409 for (k = 0; k < MAX_PIPES; k++) {
1410 pipe = &context->res_ctx.pipe_ctx[k];
1411
1412 for (l = 0 ; pipe && l < context->stream_count; l++) {
1413 if (context->streams[l] &&
1414 context->streams[l] == pipe->stream &&
1415 dc->hwss.setup_stereo)
1416 dc->hwss.setup_stereo(pipe, dc);
1417 }
1418 }
1419
1420 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1421 context->streams[i]->timing.h_addressable,
1422 context->streams[i]->timing.v_addressable,
1423 context->streams[i]->timing.h_total,
1424 context->streams[i]->timing.v_total,
1425 context->streams[i]->timing.pix_clk_100hz / 10);
1426 }
1427
1428 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1429
1430 if (context->stream_count > dc->optimize_seamless_boot_streams ||
1431 context->stream_count == 0) {
1432 /* Must wait for no flips to be pending before doing optimize bw */
1433 wait_for_no_pipes_pending(dc, context);
1434 /* pplib is notified if disp_num changed */
1435 dc->hwss.optimize_bandwidth(dc, context);
1436 }
1437
1438 context->stream_mask = get_stream_mask(dc, context);
1439
1440 if (context->stream_mask != dc->current_state->stream_mask)
1441 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1442
1443 for (i = 0; i < context->stream_count; i++)
1444 context->streams[i]->mode_changed = false;
1445
1446 dc_release_state(dc->current_state);
1447
1448 dc->current_state = context;
1449
1450 dc_retain_state(dc->current_state);
1451
1452 return result;
1453 }
1454
dc_commit_state(struct dc * dc,struct dc_state * context)1455 bool dc_commit_state(struct dc *dc, struct dc_state *context)
1456 {
1457 enum dc_status result = DC_ERROR_UNEXPECTED;
1458 int i;
1459
1460 if (false == context_changed(dc, context))
1461 return DC_OK;
1462
1463 DC_LOG_DC("%s: %d streams\n",
1464 __func__, context->stream_count);
1465
1466 for (i = 0; i < context->stream_count; i++) {
1467 struct dc_stream_state *stream = context->streams[i];
1468
1469 dc_stream_log(dc, stream);
1470 }
1471
1472 result = dc_commit_state_no_check(dc, context);
1473
1474 return (result == DC_OK);
1475 }
1476
1477 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1478 bool dc_acquire_release_mpc_3dlut(
1479 struct dc *dc, bool acquire,
1480 struct dc_stream_state *stream,
1481 struct dc_3dlut **lut,
1482 struct dc_transfer_func **shaper)
1483 {
1484 int pipe_idx;
1485 bool ret = false;
1486 bool found_pipe_idx = false;
1487 const struct resource_pool *pool = dc->res_pool;
1488 struct resource_context *res_ctx = &dc->current_state->res_ctx;
1489 int mpcc_id = 0;
1490
1491 if (pool && res_ctx) {
1492 if (acquire) {
1493 /*find pipe idx for the given stream*/
1494 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
1495 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
1496 found_pipe_idx = true;
1497 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
1498 break;
1499 }
1500 }
1501 } else
1502 found_pipe_idx = true;/*for release pipe_idx is not required*/
1503
1504 if (found_pipe_idx) {
1505 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
1506 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
1507 else if (acquire == false && pool->funcs->release_post_bldn_3dlut)
1508 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
1509 }
1510 }
1511 return ret;
1512 }
1513 #endif
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)1514 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
1515 {
1516 int i;
1517 struct pipe_ctx *pipe;
1518
1519 for (i = 0; i < MAX_PIPES; i++) {
1520 pipe = &context->res_ctx.pipe_ctx[i];
1521
1522 if (!pipe->plane_state)
1523 continue;
1524
1525 /* Must set to false to start with, due to OR in update function */
1526 pipe->plane_state->status.is_flip_pending = false;
1527 dc->hwss.update_pending_status(pipe);
1528 if (pipe->plane_state->status.is_flip_pending)
1529 return true;
1530 }
1531 return false;
1532 }
1533
dc_post_update_surfaces_to_stream(struct dc * dc)1534 bool dc_post_update_surfaces_to_stream(struct dc *dc)
1535 {
1536 int i;
1537 struct dc_state *context = dc->current_state;
1538
1539 if ((!dc->optimized_required) || dc->optimize_seamless_boot_streams > 0)
1540 return true;
1541
1542 post_surface_trace(dc);
1543
1544 if (is_flip_pending_in_pipes(dc, context))
1545 return true;
1546
1547 for (i = 0; i < dc->res_pool->pipe_count; i++)
1548 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
1549 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
1550 context->res_ctx.pipe_ctx[i].pipe_idx = i;
1551 dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
1552 }
1553
1554 dc->hwss.optimize_bandwidth(dc, context);
1555
1556 dc->optimized_required = false;
1557 dc->wm_optimized_required = false;
1558
1559 return true;
1560 }
1561
init_state(struct dc * dc,struct dc_state * context)1562 static void init_state(struct dc *dc, struct dc_state *context)
1563 {
1564 /* Each context must have their own instance of VBA and in order to
1565 * initialize and obtain IP and SOC the base DML instance from DC is
1566 * initially copied into every context
1567 */
1568 #ifdef CONFIG_DRM_AMD_DC_DCN
1569 memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
1570 #endif
1571 }
1572
dc_create_state(struct dc * dc)1573 struct dc_state *dc_create_state(struct dc *dc)
1574 {
1575 struct dc_state *context = kvzalloc(sizeof(struct dc_state),
1576 GFP_KERNEL);
1577
1578 if (!context)
1579 return NULL;
1580
1581 init_state(dc, context);
1582
1583 kref_init(&context->refcount);
1584
1585 return context;
1586 }
1587
dc_copy_state(struct dc_state * src_ctx)1588 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
1589 {
1590 int i, j;
1591 struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
1592
1593 if (!new_ctx)
1594 return NULL;
1595 memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
1596
1597 for (i = 0; i < MAX_PIPES; i++) {
1598 struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
1599
1600 if (cur_pipe->top_pipe)
1601 cur_pipe->top_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
1602
1603 if (cur_pipe->bottom_pipe)
1604 cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
1605
1606 if (cur_pipe->prev_odm_pipe)
1607 cur_pipe->prev_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
1608
1609 if (cur_pipe->next_odm_pipe)
1610 cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
1611
1612 }
1613
1614 for (i = 0; i < new_ctx->stream_count; i++) {
1615 dc_stream_retain(new_ctx->streams[i]);
1616 for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
1617 dc_plane_state_retain(
1618 new_ctx->stream_status[i].plane_states[j]);
1619 }
1620
1621 kref_init(&new_ctx->refcount);
1622
1623 return new_ctx;
1624 }
1625
dc_retain_state(struct dc_state * context)1626 void dc_retain_state(struct dc_state *context)
1627 {
1628 kref_get(&context->refcount);
1629 }
1630
dc_state_free(struct kref * kref)1631 static void dc_state_free(struct kref *kref)
1632 {
1633 struct dc_state *context = container_of(kref, struct dc_state, refcount);
1634 dc_resource_state_destruct(context);
1635 kvfree(context);
1636 }
1637
dc_release_state(struct dc_state * context)1638 void dc_release_state(struct dc_state *context)
1639 {
1640 kref_put(&context->refcount, dc_state_free);
1641 }
1642
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)1643 bool dc_set_generic_gpio_for_stereo(bool enable,
1644 struct gpio_service *gpio_service)
1645 {
1646 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
1647 struct gpio_pin_info pin_info;
1648 struct gpio *generic;
1649 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
1650 GFP_KERNEL);
1651
1652 if (!config)
1653 return false;
1654 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
1655
1656 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
1657 kfree(config);
1658 return false;
1659 } else {
1660 generic = dal_gpio_service_create_generic_mux(
1661 gpio_service,
1662 pin_info.offset,
1663 pin_info.mask);
1664 }
1665
1666 if (!generic) {
1667 kfree(config);
1668 return false;
1669 }
1670
1671 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
1672
1673 config->enable_output_from_mux = enable;
1674 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
1675
1676 if (gpio_result == GPIO_RESULT_OK)
1677 gpio_result = dal_mux_setup_config(generic, config);
1678
1679 if (gpio_result == GPIO_RESULT_OK) {
1680 dal_gpio_close(generic);
1681 dal_gpio_destroy_generic_mux(&generic);
1682 kfree(config);
1683 return true;
1684 } else {
1685 dal_gpio_close(generic);
1686 dal_gpio_destroy_generic_mux(&generic);
1687 kfree(config);
1688 return false;
1689 }
1690 }
1691
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)1692 static bool is_surface_in_context(
1693 const struct dc_state *context,
1694 const struct dc_plane_state *plane_state)
1695 {
1696 int j;
1697
1698 for (j = 0; j < MAX_PIPES; j++) {
1699 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
1700
1701 if (plane_state == pipe_ctx->plane_state) {
1702 return true;
1703 }
1704 }
1705
1706 return false;
1707 }
1708
get_plane_info_update_type(const struct dc_surface_update * u)1709 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
1710 {
1711 union surface_update_flags *update_flags = &u->surface->update_flags;
1712 enum surface_update_type update_type = UPDATE_TYPE_FAST;
1713
1714 if (!u->plane_info)
1715 return UPDATE_TYPE_FAST;
1716
1717 if (u->plane_info->color_space != u->surface->color_space) {
1718 update_flags->bits.color_space_change = 1;
1719 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1720 }
1721
1722 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
1723 update_flags->bits.horizontal_mirror_change = 1;
1724 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1725 }
1726
1727 if (u->plane_info->rotation != u->surface->rotation) {
1728 update_flags->bits.rotation_change = 1;
1729 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1730 }
1731
1732 if (u->plane_info->format != u->surface->format) {
1733 update_flags->bits.pixel_format_change = 1;
1734 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1735 }
1736
1737 if (u->plane_info->stereo_format != u->surface->stereo_format) {
1738 update_flags->bits.stereo_format_change = 1;
1739 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1740 }
1741
1742 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
1743 update_flags->bits.per_pixel_alpha_change = 1;
1744 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1745 }
1746
1747 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
1748 update_flags->bits.global_alpha_change = 1;
1749 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1750 }
1751
1752 if (u->plane_info->dcc.enable != u->surface->dcc.enable
1753 || u->plane_info->dcc.independent_64b_blks != u->surface->dcc.independent_64b_blks
1754 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
1755 update_flags->bits.dcc_change = 1;
1756 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1757 }
1758
1759 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
1760 resource_pixel_format_to_bpp(u->surface->format)) {
1761 /* different bytes per element will require full bandwidth
1762 * and DML calculation
1763 */
1764 update_flags->bits.bpp_change = 1;
1765 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1766 }
1767
1768 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
1769 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
1770 update_flags->bits.plane_size_change = 1;
1771 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1772 }
1773
1774
1775 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
1776 sizeof(union dc_tiling_info)) != 0) {
1777 update_flags->bits.swizzle_change = 1;
1778 elevate_update_type(&update_type, UPDATE_TYPE_MED);
1779
1780 /* todo: below are HW dependent, we should add a hook to
1781 * DCE/N resource and validated there.
1782 */
1783 if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
1784 /* swizzled mode requires RQ to be setup properly,
1785 * thus need to run DML to calculate RQ settings
1786 */
1787 update_flags->bits.bandwidth_change = 1;
1788 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
1789 }
1790 }
1791
1792 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
1793 return update_type;
1794 }
1795
get_scaling_info_update_type(const struct dc_surface_update * u)1796 static enum surface_update_type get_scaling_info_update_type(
1797 const struct dc_surface_update *u)
1798 {
1799 union surface_update_flags *update_flags = &u->surface->update_flags;
1800
1801 if (!u->scaling_info)
1802 return UPDATE_TYPE_FAST;
1803
1804 if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width
1805 || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
1806 || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
1807 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
1808 || u->scaling_info->scaling_quality.integer_scaling !=
1809 u->surface->scaling_quality.integer_scaling
1810 ) {
1811 update_flags->bits.scaling_change = 1;
1812
1813 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
1814 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
1815 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
1816 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
1817 /* Making dst rect smaller requires a bandwidth change */
1818 update_flags->bits.bandwidth_change = 1;
1819 }
1820
1821 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
1822 || u->scaling_info->src_rect.height != u->surface->src_rect.height) {
1823
1824 update_flags->bits.scaling_change = 1;
1825 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
1826 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
1827 /* Making src rect bigger requires a bandwidth change */
1828 update_flags->bits.clock_change = 1;
1829 }
1830
1831 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
1832 || u->scaling_info->src_rect.y != u->surface->src_rect.y
1833 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
1834 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
1835 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
1836 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
1837 update_flags->bits.position_change = 1;
1838
1839 if (update_flags->bits.clock_change
1840 || update_flags->bits.bandwidth_change
1841 || update_flags->bits.scaling_change)
1842 return UPDATE_TYPE_FULL;
1843
1844 if (update_flags->bits.position_change)
1845 return UPDATE_TYPE_MED;
1846
1847 return UPDATE_TYPE_FAST;
1848 }
1849
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)1850 static enum surface_update_type det_surface_update(const struct dc *dc,
1851 const struct dc_surface_update *u)
1852 {
1853 const struct dc_state *context = dc->current_state;
1854 enum surface_update_type type;
1855 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1856 union surface_update_flags *update_flags = &u->surface->update_flags;
1857
1858 if (u->flip_addr)
1859 update_flags->bits.addr_update = 1;
1860
1861 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
1862 update_flags->raw = 0xFFFFFFFF;
1863 return UPDATE_TYPE_FULL;
1864 }
1865
1866 update_flags->raw = 0; // Reset all flags
1867
1868 type = get_plane_info_update_type(u);
1869 elevate_update_type(&overall_type, type);
1870
1871 type = get_scaling_info_update_type(u);
1872 elevate_update_type(&overall_type, type);
1873
1874 if (u->flip_addr)
1875 update_flags->bits.addr_update = 1;
1876
1877 if (u->in_transfer_func)
1878 update_flags->bits.in_transfer_func_change = 1;
1879
1880 if (u->input_csc_color_matrix)
1881 update_flags->bits.input_csc_change = 1;
1882
1883 if (u->coeff_reduction_factor)
1884 update_flags->bits.coeff_reduction_change = 1;
1885
1886 if (u->gamut_remap_matrix)
1887 update_flags->bits.gamut_remap_change = 1;
1888
1889 if (u->gamma) {
1890 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
1891
1892 if (u->plane_info)
1893 format = u->plane_info->format;
1894 else if (u->surface)
1895 format = u->surface->format;
1896
1897 if (dce_use_lut(format))
1898 update_flags->bits.gamma_change = 1;
1899 }
1900
1901 if (u->hdr_mult.value)
1902 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
1903 update_flags->bits.hdr_mult = 1;
1904 elevate_update_type(&overall_type, UPDATE_TYPE_MED);
1905 }
1906
1907 if (update_flags->bits.in_transfer_func_change) {
1908 type = UPDATE_TYPE_MED;
1909 elevate_update_type(&overall_type, type);
1910 }
1911
1912 if (update_flags->bits.input_csc_change
1913 || update_flags->bits.coeff_reduction_change
1914 || update_flags->bits.gamma_change
1915 || update_flags->bits.gamut_remap_change) {
1916 type = UPDATE_TYPE_FULL;
1917 elevate_update_type(&overall_type, type);
1918 }
1919
1920 return overall_type;
1921 }
1922
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)1923 static enum surface_update_type check_update_surfaces_for_stream(
1924 struct dc *dc,
1925 struct dc_surface_update *updates,
1926 int surface_count,
1927 struct dc_stream_update *stream_update,
1928 const struct dc_stream_status *stream_status)
1929 {
1930 int i;
1931 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
1932
1933 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
1934 if (dc->idle_optimizations_allowed)
1935 overall_type = UPDATE_TYPE_FULL;
1936
1937 #endif
1938 if (stream_status == NULL || stream_status->plane_count != surface_count)
1939 overall_type = UPDATE_TYPE_FULL;
1940
1941 /* some stream updates require passive update */
1942 if (stream_update) {
1943 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
1944
1945 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
1946 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
1947 stream_update->integer_scaling_update)
1948 su_flags->bits.scaling = 1;
1949
1950 if (stream_update->out_transfer_func)
1951 su_flags->bits.out_tf = 1;
1952
1953 if (stream_update->abm_level)
1954 su_flags->bits.abm_level = 1;
1955
1956 if (stream_update->dpms_off)
1957 su_flags->bits.dpms_off = 1;
1958
1959 if (stream_update->gamut_remap)
1960 su_flags->bits.gamut_remap = 1;
1961
1962 if (stream_update->wb_update)
1963 su_flags->bits.wb_update = 1;
1964
1965 if (stream_update->dsc_config)
1966 su_flags->bits.dsc_changed = 1;
1967
1968 if (su_flags->raw != 0)
1969 overall_type = UPDATE_TYPE_FULL;
1970
1971 if (stream_update->output_csc_transform || stream_update->output_color_space)
1972 su_flags->bits.out_csc = 1;
1973 }
1974
1975 for (i = 0 ; i < surface_count; i++) {
1976 enum surface_update_type type =
1977 det_surface_update(dc, &updates[i]);
1978
1979 elevate_update_type(&overall_type, type);
1980 }
1981
1982 return overall_type;
1983 }
1984
1985 /**
1986 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
1987 *
1988 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
1989 */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)1990 enum surface_update_type dc_check_update_surfaces_for_stream(
1991 struct dc *dc,
1992 struct dc_surface_update *updates,
1993 int surface_count,
1994 struct dc_stream_update *stream_update,
1995 const struct dc_stream_status *stream_status)
1996 {
1997 int i;
1998 enum surface_update_type type;
1999
2000 if (stream_update)
2001 stream_update->stream->update_flags.raw = 0;
2002 for (i = 0; i < surface_count; i++)
2003 updates[i].surface->update_flags.raw = 0;
2004
2005 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2006 if (type == UPDATE_TYPE_FULL) {
2007 if (stream_update) {
2008 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2009 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2010 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2011 }
2012 for (i = 0; i < surface_count; i++)
2013 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2014 }
2015
2016 if (type == UPDATE_TYPE_FAST) {
2017 // If there's an available clock comparator, we use that.
2018 if (dc->clk_mgr->funcs->are_clock_states_equal) {
2019 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2020 dc->optimized_required = true;
2021 // Else we fallback to mem compare.
2022 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2023 dc->optimized_required = true;
2024 }
2025
2026 dc->optimized_required |= dc->wm_optimized_required;
2027 }
2028
2029 return type;
2030 }
2031
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2032 static struct dc_stream_status *stream_get_status(
2033 struct dc_state *ctx,
2034 struct dc_stream_state *stream)
2035 {
2036 uint8_t i;
2037
2038 for (i = 0; i < ctx->stream_count; i++) {
2039 if (stream == ctx->streams[i]) {
2040 return &ctx->stream_status[i];
2041 }
2042 }
2043
2044 return NULL;
2045 }
2046
2047 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2048
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2049 static void copy_surface_update_to_plane(
2050 struct dc_plane_state *surface,
2051 struct dc_surface_update *srf_update)
2052 {
2053 if (srf_update->flip_addr) {
2054 surface->address = srf_update->flip_addr->address;
2055 surface->flip_immediate =
2056 srf_update->flip_addr->flip_immediate;
2057 surface->time.time_elapsed_in_us[surface->time.index] =
2058 srf_update->flip_addr->flip_timestamp_in_us -
2059 surface->time.prev_update_time_in_us;
2060 surface->time.prev_update_time_in_us =
2061 srf_update->flip_addr->flip_timestamp_in_us;
2062 surface->time.index++;
2063 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2064 surface->time.index = 0;
2065
2066 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2067 }
2068
2069 if (srf_update->scaling_info) {
2070 surface->scaling_quality =
2071 srf_update->scaling_info->scaling_quality;
2072 surface->dst_rect =
2073 srf_update->scaling_info->dst_rect;
2074 surface->src_rect =
2075 srf_update->scaling_info->src_rect;
2076 surface->clip_rect =
2077 srf_update->scaling_info->clip_rect;
2078 }
2079
2080 if (srf_update->plane_info) {
2081 surface->color_space =
2082 srf_update->plane_info->color_space;
2083 surface->format =
2084 srf_update->plane_info->format;
2085 surface->plane_size =
2086 srf_update->plane_info->plane_size;
2087 surface->rotation =
2088 srf_update->plane_info->rotation;
2089 surface->horizontal_mirror =
2090 srf_update->plane_info->horizontal_mirror;
2091 surface->stereo_format =
2092 srf_update->plane_info->stereo_format;
2093 surface->tiling_info =
2094 srf_update->plane_info->tiling_info;
2095 surface->visible =
2096 srf_update->plane_info->visible;
2097 surface->per_pixel_alpha =
2098 srf_update->plane_info->per_pixel_alpha;
2099 surface->global_alpha =
2100 srf_update->plane_info->global_alpha;
2101 surface->global_alpha_value =
2102 srf_update->plane_info->global_alpha_value;
2103 surface->dcc =
2104 srf_update->plane_info->dcc;
2105 surface->layer_index =
2106 srf_update->plane_info->layer_index;
2107 }
2108
2109 if (srf_update->gamma &&
2110 (surface->gamma_correction !=
2111 srf_update->gamma)) {
2112 memcpy(&surface->gamma_correction->entries,
2113 &srf_update->gamma->entries,
2114 sizeof(struct dc_gamma_entries));
2115 surface->gamma_correction->is_identity =
2116 srf_update->gamma->is_identity;
2117 surface->gamma_correction->num_entries =
2118 srf_update->gamma->num_entries;
2119 surface->gamma_correction->type =
2120 srf_update->gamma->type;
2121 }
2122
2123 if (srf_update->in_transfer_func &&
2124 (surface->in_transfer_func !=
2125 srf_update->in_transfer_func)) {
2126 surface->in_transfer_func->sdr_ref_white_level =
2127 srf_update->in_transfer_func->sdr_ref_white_level;
2128 surface->in_transfer_func->tf =
2129 srf_update->in_transfer_func->tf;
2130 surface->in_transfer_func->type =
2131 srf_update->in_transfer_func->type;
2132 memcpy(&surface->in_transfer_func->tf_pts,
2133 &srf_update->in_transfer_func->tf_pts,
2134 sizeof(struct dc_transfer_func_distributed_points));
2135 }
2136
2137 if (srf_update->func_shaper &&
2138 (surface->in_shaper_func !=
2139 srf_update->func_shaper))
2140 memcpy(surface->in_shaper_func, srf_update->func_shaper,
2141 sizeof(*surface->in_shaper_func));
2142
2143 if (srf_update->lut3d_func &&
2144 (surface->lut3d_func !=
2145 srf_update->lut3d_func))
2146 memcpy(surface->lut3d_func, srf_update->lut3d_func,
2147 sizeof(*surface->lut3d_func));
2148
2149 if (srf_update->hdr_mult.value)
2150 surface->hdr_mult =
2151 srf_update->hdr_mult;
2152
2153 if (srf_update->blend_tf &&
2154 (surface->blend_tf !=
2155 srf_update->blend_tf))
2156 memcpy(surface->blend_tf, srf_update->blend_tf,
2157 sizeof(*surface->blend_tf));
2158
2159 if (srf_update->input_csc_color_matrix)
2160 surface->input_csc_color_matrix =
2161 *srf_update->input_csc_color_matrix;
2162
2163 if (srf_update->coeff_reduction_factor)
2164 surface->coeff_reduction_factor =
2165 *srf_update->coeff_reduction_factor;
2166
2167 if (srf_update->gamut_remap_matrix)
2168 surface->gamut_remap_matrix =
2169 *srf_update->gamut_remap_matrix;
2170 }
2171
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2172 static void copy_stream_update_to_stream(struct dc *dc,
2173 struct dc_state *context,
2174 struct dc_stream_state *stream,
2175 struct dc_stream_update *update)
2176 {
2177 struct dc_context *dc_ctx = dc->ctx;
2178
2179 if (update == NULL || stream == NULL)
2180 return;
2181
2182 if (update->src.height && update->src.width)
2183 stream->src = update->src;
2184
2185 if (update->dst.height && update->dst.width)
2186 stream->dst = update->dst;
2187
2188 if (update->out_transfer_func &&
2189 stream->out_transfer_func != update->out_transfer_func) {
2190 stream->out_transfer_func->sdr_ref_white_level =
2191 update->out_transfer_func->sdr_ref_white_level;
2192 stream->out_transfer_func->tf = update->out_transfer_func->tf;
2193 stream->out_transfer_func->type =
2194 update->out_transfer_func->type;
2195 memcpy(&stream->out_transfer_func->tf_pts,
2196 &update->out_transfer_func->tf_pts,
2197 sizeof(struct dc_transfer_func_distributed_points));
2198 }
2199
2200 if (update->hdr_static_metadata)
2201 stream->hdr_static_metadata = *update->hdr_static_metadata;
2202
2203 if (update->abm_level)
2204 stream->abm_level = *update->abm_level;
2205
2206 if (update->periodic_interrupt)
2207 stream->periodic_interrupt = *update->periodic_interrupt;
2208
2209 if (update->gamut_remap)
2210 stream->gamut_remap_matrix = *update->gamut_remap;
2211
2212 /* Note: this being updated after mode set is currently not a use case
2213 * however if it arises OCSC would need to be reprogrammed at the
2214 * minimum
2215 */
2216 if (update->output_color_space)
2217 stream->output_color_space = *update->output_color_space;
2218
2219 if (update->output_csc_transform)
2220 stream->csc_color_matrix = *update->output_csc_transform;
2221
2222 if (update->vrr_infopacket)
2223 stream->vrr_infopacket = *update->vrr_infopacket;
2224
2225 if (update->dpms_off)
2226 stream->dpms_off = *update->dpms_off;
2227
2228 if (update->vsc_infopacket)
2229 stream->vsc_infopacket = *update->vsc_infopacket;
2230
2231 if (update->vsp_infopacket)
2232 stream->vsp_infopacket = *update->vsp_infopacket;
2233
2234 if (update->dither_option)
2235 stream->dither_option = *update->dither_option;
2236 /* update current stream with writeback info */
2237 if (update->wb_update) {
2238 int i;
2239
2240 stream->num_wb_info = update->wb_update->num_wb_info;
2241 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2242 for (i = 0; i < stream->num_wb_info; i++)
2243 stream->writeback_info[i] =
2244 update->wb_update->writeback_info[i];
2245 }
2246 if (update->dsc_config) {
2247 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2248 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2249 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2250 update->dsc_config->num_slices_v != 0);
2251
2252 /* Use temporarry context for validating new DSC config */
2253 struct dc_state *dsc_validate_context = dc_create_state(dc);
2254
2255 if (dsc_validate_context) {
2256 dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
2257
2258 stream->timing.dsc_cfg = *update->dsc_config;
2259 stream->timing.flags.DSC = enable_dsc;
2260 if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2261 stream->timing.dsc_cfg = old_dsc_cfg;
2262 stream->timing.flags.DSC = old_dsc_enabled;
2263 update->dsc_config = NULL;
2264 }
2265
2266 dc_release_state(dsc_validate_context);
2267 } else {
2268 DC_ERROR("Failed to allocate new validate context for DSC change\n");
2269 update->dsc_config = NULL;
2270 }
2271 }
2272 }
2273
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2274 static void commit_planes_do_stream_update(struct dc *dc,
2275 struct dc_stream_state *stream,
2276 struct dc_stream_update *stream_update,
2277 enum surface_update_type update_type,
2278 struct dc_state *context)
2279 {
2280 int j;
2281 bool should_program_abm;
2282
2283 // Stream updates
2284 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2285 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2286
2287 if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->stream == stream) {
2288
2289 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
2290 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
2291
2292 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
2293 stream_update->vrr_infopacket ||
2294 stream_update->vsc_infopacket ||
2295 stream_update->vsp_infopacket) {
2296 resource_build_info_frame(pipe_ctx);
2297 dc->hwss.update_info_frame(pipe_ctx);
2298 }
2299
2300 if (stream_update->hdr_static_metadata &&
2301 stream->use_dynamic_meta &&
2302 dc->hwss.set_dmdata_attributes &&
2303 pipe_ctx->stream->dmdata_address.quad_part != 0)
2304 dc->hwss.set_dmdata_attributes(pipe_ctx);
2305
2306 if (stream_update->gamut_remap)
2307 dc_stream_set_gamut_remap(dc, stream);
2308
2309 if (stream_update->output_csc_transform)
2310 dc_stream_program_csc_matrix(dc, stream);
2311
2312 if (stream_update->dither_option) {
2313 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
2314 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
2315 &pipe_ctx->stream->bit_depth_params);
2316 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
2317 &stream->bit_depth_params,
2318 &stream->clamping);
2319 while (odm_pipe) {
2320 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
2321 &stream->bit_depth_params,
2322 &stream->clamping);
2323 odm_pipe = odm_pipe->next_odm_pipe;
2324 }
2325 }
2326
2327 /* Full fe update*/
2328 if (update_type == UPDATE_TYPE_FAST)
2329 continue;
2330
2331 if (stream_update->dsc_config)
2332 dp_update_dsc_config(pipe_ctx);
2333
2334 if (stream_update->dpms_off) {
2335 if (*stream_update->dpms_off) {
2336 core_link_disable_stream(pipe_ctx);
2337 /* for dpms, keep acquired resources*/
2338 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
2339 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
2340
2341 dc->optimized_required = true;
2342
2343 } else {
2344 if (dc->optimize_seamless_boot_streams == 0)
2345 dc->hwss.prepare_bandwidth(dc, dc->current_state);
2346
2347 core_link_enable_stream(dc->current_state, pipe_ctx);
2348 }
2349 }
2350
2351 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
2352 should_program_abm = true;
2353
2354 // if otg funcs defined check if blanked before programming
2355 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
2356 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
2357 should_program_abm = false;
2358
2359 if (should_program_abm) {
2360 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
2361 dc->hwss.set_abm_immediate_disable(pipe_ctx);
2362 } else {
2363 pipe_ctx->stream_res.abm->funcs->set_abm_level(
2364 pipe_ctx->stream_res.abm, stream->abm_level);
2365 }
2366 }
2367 }
2368 }
2369 }
2370 }
2371
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)2372 static void commit_planes_for_stream(struct dc *dc,
2373 struct dc_surface_update *srf_updates,
2374 int surface_count,
2375 struct dc_stream_state *stream,
2376 struct dc_stream_update *stream_update,
2377 enum surface_update_type update_type,
2378 struct dc_state *context)
2379 {
2380 bool mpcc_disconnected = false;
2381 int i, j;
2382 struct pipe_ctx *top_pipe_to_program = NULL;
2383
2384 if (dc->optimize_seamless_boot_streams > 0 && surface_count > 0) {
2385 /* Optimize seamless boot flag keeps clocks and watermarks high until
2386 * first flip. After first flip, optimization is required to lower
2387 * bandwidth. Important to note that it is expected UEFI will
2388 * only light up a single display on POST, therefore we only expect
2389 * one stream with seamless boot flag set.
2390 */
2391 if (stream->apply_seamless_boot_optimization) {
2392 stream->apply_seamless_boot_optimization = false;
2393 dc->optimize_seamless_boot_streams--;
2394
2395 if (dc->optimize_seamless_boot_streams == 0)
2396 dc->optimized_required = true;
2397 }
2398 }
2399
2400 if (update_type == UPDATE_TYPE_FULL) {
2401 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
2402 dc_allow_idle_optimizations(dc, false);
2403
2404 #endif
2405 if (dc->optimize_seamless_boot_streams == 0)
2406 dc->hwss.prepare_bandwidth(dc, context);
2407
2408 context_clock_trace(dc, context);
2409 }
2410
2411 if (update_type != UPDATE_TYPE_FAST && dc->hwss.interdependent_update_lock &&
2412 dc->hwss.disconnect_pipes && dc->hwss.wait_for_pending_cleared){
2413 dc->hwss.interdependent_update_lock(dc, context, true);
2414 mpcc_disconnected = dc->hwss.disconnect_pipes(dc, context);
2415 dc->hwss.interdependent_update_lock(dc, context, false);
2416 if (mpcc_disconnected)
2417 dc->hwss.wait_for_pending_cleared(dc, context);
2418 }
2419
2420 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2421 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2422
2423 if (!pipe_ctx->top_pipe &&
2424 !pipe_ctx->prev_odm_pipe &&
2425 pipe_ctx->stream &&
2426 pipe_ctx->stream == stream) {
2427 top_pipe_to_program = pipe_ctx;
2428 }
2429 }
2430
2431 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2432 if (top_pipe_to_program &&
2433 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2434 if (should_use_dmub_lock(stream->link)) {
2435 union dmub_hw_lock_flags hw_locks = { 0 };
2436 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2437
2438 hw_locks.bits.lock_dig = 1;
2439 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2440
2441 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2442 true,
2443 &hw_locks,
2444 &inst_flags);
2445 } else
2446 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
2447 top_pipe_to_program->stream_res.tg);
2448 }
2449
2450 if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2451 dc->hwss.interdependent_update_lock(dc, context, true);
2452 else
2453 /* Lock the top pipe while updating plane addrs, since freesync requires
2454 * plane addr update event triggers to be synchronized.
2455 * top_pipe_to_program is expected to never be NULL
2456 */
2457 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
2458
2459
2460 // Stream updates
2461 if (stream_update)
2462 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
2463
2464 if (surface_count == 0) {
2465 /*
2466 * In case of turning off screen, no need to program front end a second time.
2467 * just return after program blank.
2468 */
2469 if (dc->hwss.apply_ctx_for_surface)
2470 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
2471 if (dc->hwss.program_front_end_for_ctx)
2472 dc->hwss.program_front_end_for_ctx(dc, context);
2473
2474 if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2475 dc->hwss.interdependent_update_lock(dc, context, false);
2476 else
2477 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2478
2479 dc->hwss.post_unlock_program_front_end(dc, context);
2480 return;
2481 }
2482
2483 if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
2484 for (i = 0; i < surface_count; i++) {
2485 struct dc_plane_state *plane_state = srf_updates[i].surface;
2486 /*set logical flag for lock/unlock use*/
2487 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2488 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2489 if (!pipe_ctx->plane_state)
2490 continue;
2491 if (pipe_ctx->plane_state != plane_state)
2492 continue;
2493 plane_state->triplebuffer_flips = false;
2494 if (update_type == UPDATE_TYPE_FAST &&
2495 dc->hwss.program_triplebuffer != NULL &&
2496 !plane_state->flip_immediate && dc->debug.enable_tri_buf) {
2497 /*triple buffer for VUpdate only*/
2498 plane_state->triplebuffer_flips = true;
2499 }
2500 }
2501 if (update_type == UPDATE_TYPE_FULL) {
2502 /* force vsync flip when reconfiguring pipes to prevent underflow */
2503 plane_state->flip_immediate = false;
2504 }
2505 }
2506 }
2507
2508 // Update Type FULL, Surface updates
2509 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2510 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2511
2512 if (!pipe_ctx->top_pipe &&
2513 !pipe_ctx->prev_odm_pipe &&
2514 pipe_ctx->stream &&
2515 pipe_ctx->stream == stream) {
2516 struct dc_stream_status *stream_status = NULL;
2517
2518 if (!pipe_ctx->plane_state)
2519 continue;
2520
2521 /* Full fe update*/
2522 if (update_type == UPDATE_TYPE_FAST)
2523 continue;
2524
2525 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
2526
2527 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2528 /*turn off triple buffer for full update*/
2529 dc->hwss.program_triplebuffer(
2530 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
2531 }
2532 stream_status =
2533 stream_get_status(context, pipe_ctx->stream);
2534
2535 if (dc->hwss.apply_ctx_for_surface)
2536 dc->hwss.apply_ctx_for_surface(
2537 dc, pipe_ctx->stream, stream_status->plane_count, context);
2538 }
2539 }
2540 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
2541 dc->hwss.program_front_end_for_ctx(dc, context);
2542 #ifdef CONFIG_DRM_AMD_DC_DCN
2543 if (dc->debug.validate_dml_output) {
2544 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2545 struct pipe_ctx cur_pipe = context->res_ctx.pipe_ctx[i];
2546 if (cur_pipe.stream == NULL)
2547 continue;
2548
2549 cur_pipe.plane_res.hubp->funcs->validate_dml_output(
2550 cur_pipe.plane_res.hubp, dc->ctx,
2551 &context->res_ctx.pipe_ctx[i].rq_regs,
2552 &context->res_ctx.pipe_ctx[i].dlg_regs,
2553 &context->res_ctx.pipe_ctx[i].ttu_regs);
2554 }
2555 }
2556 #endif
2557 }
2558
2559 // Update Type FAST, Surface updates
2560 if (update_type == UPDATE_TYPE_FAST) {
2561 if (dc->hwss.set_flip_control_gsl)
2562 for (i = 0; i < surface_count; i++) {
2563 struct dc_plane_state *plane_state = srf_updates[i].surface;
2564
2565 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2566 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2567
2568 if (pipe_ctx->stream != stream)
2569 continue;
2570
2571 if (pipe_ctx->plane_state != plane_state)
2572 continue;
2573
2574 // GSL has to be used for flip immediate
2575 dc->hwss.set_flip_control_gsl(pipe_ctx,
2576 plane_state->flip_immediate);
2577 }
2578 }
2579 /* Perform requested Updates */
2580 for (i = 0; i < surface_count; i++) {
2581 struct dc_plane_state *plane_state = srf_updates[i].surface;
2582
2583 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2584 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2585
2586 if (pipe_ctx->stream != stream)
2587 continue;
2588
2589 if (pipe_ctx->plane_state != plane_state)
2590 continue;
2591 /*program triple buffer after lock based on flip type*/
2592 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
2593 /*only enable triplebuffer for fast_update*/
2594 dc->hwss.program_triplebuffer(
2595 dc, pipe_ctx, plane_state->triplebuffer_flips);
2596 }
2597 if (srf_updates[i].flip_addr)
2598 dc->hwss.update_plane_addr(dc, pipe_ctx);
2599 }
2600 }
2601 }
2602
2603 if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock)
2604 dc->hwss.interdependent_update_lock(dc, context, false);
2605 else
2606 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
2607
2608 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
2609 if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
2610 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2611 top_pipe_to_program->stream_res.tg,
2612 CRTC_STATE_VACTIVE);
2613 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2614 top_pipe_to_program->stream_res.tg,
2615 CRTC_STATE_VBLANK);
2616 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
2617 top_pipe_to_program->stream_res.tg,
2618 CRTC_STATE_VACTIVE);
2619
2620 if (stream && should_use_dmub_lock(stream->link)) {
2621 union dmub_hw_lock_flags hw_locks = { 0 };
2622 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
2623
2624 hw_locks.bits.lock_dig = 1;
2625 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
2626
2627 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
2628 false,
2629 &hw_locks,
2630 &inst_flags);
2631 } else
2632 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
2633 top_pipe_to_program->stream_res.tg);
2634 }
2635
2636 if (update_type != UPDATE_TYPE_FAST)
2637 dc->hwss.post_unlock_program_front_end(dc, context);
2638
2639 // Fire manual trigger only when bottom plane is flipped
2640 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2641 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2642
2643 if (pipe_ctx->bottom_pipe ||
2644 !pipe_ctx->stream ||
2645 pipe_ctx->stream != stream ||
2646 !pipe_ctx->plane_state->update_flags.bits.addr_update)
2647 continue;
2648
2649 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
2650 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
2651 }
2652 }
2653
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)2654 void dc_commit_updates_for_stream(struct dc *dc,
2655 struct dc_surface_update *srf_updates,
2656 int surface_count,
2657 struct dc_stream_state *stream,
2658 struct dc_stream_update *stream_update,
2659 struct dc_state *state)
2660 {
2661 const struct dc_stream_status *stream_status;
2662 enum surface_update_type update_type;
2663 struct dc_state *context;
2664 struct dc_context *dc_ctx = dc->ctx;
2665 int i, j;
2666
2667 stream_status = dc_stream_get_status(stream);
2668 context = dc->current_state;
2669
2670 update_type = dc_check_update_surfaces_for_stream(
2671 dc, srf_updates, surface_count, stream_update, stream_status);
2672
2673 if (update_type >= update_surface_trace_level)
2674 update_surface_trace(dc, srf_updates, surface_count);
2675
2676
2677 if (update_type >= UPDATE_TYPE_FULL) {
2678
2679 /* initialize scratch memory for building context */
2680 context = dc_create_state(dc);
2681 if (context == NULL) {
2682 DC_ERROR("Failed to allocate new validate context!\n");
2683 return;
2684 }
2685
2686 dc_resource_state_copy_construct(state, context);
2687
2688 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2689 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
2690 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2691
2692 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
2693 new_pipe->plane_state->force_full_update = true;
2694 }
2695 }
2696
2697
2698 for (i = 0; i < surface_count; i++) {
2699 struct dc_plane_state *surface = srf_updates[i].surface;
2700
2701 copy_surface_update_to_plane(surface, &srf_updates[i]);
2702
2703 if (update_type >= UPDATE_TYPE_MED) {
2704 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2705 struct pipe_ctx *pipe_ctx =
2706 &context->res_ctx.pipe_ctx[j];
2707
2708 if (pipe_ctx->plane_state != surface)
2709 continue;
2710
2711 resource_build_scaling_params(pipe_ctx);
2712 }
2713 }
2714 }
2715
2716 copy_stream_update_to_stream(dc, context, stream, stream_update);
2717
2718 if (update_type >= UPDATE_TYPE_FULL) {
2719 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
2720 DC_ERROR("Mode validation failed for stream update!\n");
2721 dc_release_state(context);
2722 return;
2723 }
2724 }
2725
2726 commit_planes_for_stream(
2727 dc,
2728 srf_updates,
2729 surface_count,
2730 stream,
2731 stream_update,
2732 update_type,
2733 context);
2734 /*update current_State*/
2735 if (dc->current_state != context) {
2736
2737 struct dc_state *old = dc->current_state;
2738
2739 dc->current_state = context;
2740 dc_release_state(old);
2741
2742 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2743 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2744
2745 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
2746 pipe_ctx->plane_state->force_full_update = false;
2747 }
2748 }
2749 /*let's use current_state to update watermark etc*/
2750 if (update_type >= UPDATE_TYPE_FULL)
2751 dc_post_update_surfaces_to_stream(dc);
2752
2753 return;
2754
2755 }
2756
dc_get_current_stream_count(struct dc * dc)2757 uint8_t dc_get_current_stream_count(struct dc *dc)
2758 {
2759 return dc->current_state->stream_count;
2760 }
2761
dc_get_stream_at_index(struct dc * dc,uint8_t i)2762 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
2763 {
2764 if (i < dc->current_state->stream_count)
2765 return dc->current_state->streams[i];
2766 return NULL;
2767 }
2768
dc_stream_find_from_link(const struct dc_link * link)2769 struct dc_stream_state *dc_stream_find_from_link(const struct dc_link *link)
2770 {
2771 uint8_t i;
2772 struct dc_context *ctx = link->ctx;
2773
2774 for (i = 0; i < ctx->dc->current_state->stream_count; i++) {
2775 if (ctx->dc->current_state->streams[i]->link == link)
2776 return ctx->dc->current_state->streams[i];
2777 }
2778
2779 return NULL;
2780 }
2781
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)2782 enum dc_irq_source dc_interrupt_to_irq_source(
2783 struct dc *dc,
2784 uint32_t src_id,
2785 uint32_t ext_id)
2786 {
2787 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
2788 }
2789
2790 /**
2791 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
2792 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)2793 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
2794 {
2795
2796 if (dc == NULL)
2797 return false;
2798
2799 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
2800 }
2801
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)2802 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
2803 {
2804 dal_irq_service_ack(dc->res_pool->irqs, src);
2805 }
2806
dc_power_down_on_boot(struct dc * dc)2807 void dc_power_down_on_boot(struct dc *dc)
2808 {
2809 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
2810 dc->hwss.power_down_on_boot)
2811 dc->hwss.power_down_on_boot(dc);
2812 }
2813
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)2814 void dc_set_power_state(
2815 struct dc *dc,
2816 enum dc_acpi_cm_power_state power_state)
2817 {
2818 struct kref refcount;
2819 struct display_mode_lib *dml;
2820
2821 switch (power_state) {
2822 case DC_ACPI_CM_POWER_STATE_D0:
2823 dc_resource_state_construct(dc, dc->current_state);
2824
2825 if (dc->ctx->dmub_srv)
2826 dc_dmub_srv_wait_phy_init(dc->ctx->dmub_srv);
2827
2828 dc->hwss.init_hw(dc);
2829
2830 if (dc->hwss.init_sys_ctx != NULL &&
2831 dc->vm_pa_config.valid) {
2832 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
2833 }
2834
2835 break;
2836 default:
2837 ASSERT(dc->current_state->stream_count == 0);
2838 /* Zero out the current context so that on resume we start with
2839 * clean state, and dc hw programming optimizations will not
2840 * cause any trouble.
2841 */
2842 dml = kzalloc(sizeof(struct display_mode_lib),
2843 GFP_KERNEL);
2844
2845 ASSERT(dml);
2846 if (!dml)
2847 return;
2848
2849 /* Preserve refcount */
2850 refcount = dc->current_state->refcount;
2851 /* Preserve display mode lib */
2852 memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
2853
2854 dc_resource_state_destruct(dc->current_state);
2855 memset(dc->current_state, 0,
2856 sizeof(*dc->current_state));
2857
2858 dc->current_state->refcount = refcount;
2859 dc->current_state->bw_ctx.dml = *dml;
2860
2861 kfree(dml);
2862
2863 break;
2864 }
2865 }
2866
dc_resume(struct dc * dc)2867 void dc_resume(struct dc *dc)
2868 {
2869 uint32_t i;
2870
2871 for (i = 0; i < dc->link_count; i++)
2872 core_link_resume(dc->links[i]);
2873 }
2874
dc_is_dmcu_initialized(struct dc * dc)2875 bool dc_is_dmcu_initialized(struct dc *dc)
2876 {
2877 struct dmcu *dmcu = dc->res_pool->dmcu;
2878
2879 if (dmcu)
2880 return dmcu->funcs->is_dmcu_initialized(dmcu);
2881 return false;
2882 }
2883
dc_submit_i2c(struct dc * dc,uint32_t link_index,struct i2c_command * cmd)2884 bool dc_submit_i2c(
2885 struct dc *dc,
2886 uint32_t link_index,
2887 struct i2c_command *cmd)
2888 {
2889
2890 struct dc_link *link = dc->links[link_index];
2891 struct ddc_service *ddc = link->ddc;
2892 return dce_i2c_submit_command(
2893 dc->res_pool,
2894 ddc->ddc_pin,
2895 cmd);
2896 }
2897
dc_submit_i2c_oem(struct dc * dc,struct i2c_command * cmd)2898 bool dc_submit_i2c_oem(
2899 struct dc *dc,
2900 struct i2c_command *cmd)
2901 {
2902 struct ddc_service *ddc = dc->res_pool->oem_device;
2903 return dce_i2c_submit_command(
2904 dc->res_pool,
2905 ddc->ddc_pin,
2906 cmd);
2907 }
2908
link_add_remote_sink_helper(struct dc_link * dc_link,struct dc_sink * sink)2909 static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink)
2910 {
2911 if (dc_link->sink_count >= MAX_SINKS_PER_LINK) {
2912 BREAK_TO_DEBUGGER();
2913 return false;
2914 }
2915
2916 dc_sink_retain(sink);
2917
2918 dc_link->remote_sinks[dc_link->sink_count] = sink;
2919 dc_link->sink_count++;
2920
2921 return true;
2922 }
2923
2924 /**
2925 * dc_link_add_remote_sink() - Create a sink and attach it to an existing link
2926 *
2927 * EDID length is in bytes
2928 */
dc_link_add_remote_sink(struct dc_link * link,const uint8_t * edid,int len,struct dc_sink_init_data * init_data)2929 struct dc_sink *dc_link_add_remote_sink(
2930 struct dc_link *link,
2931 const uint8_t *edid,
2932 int len,
2933 struct dc_sink_init_data *init_data)
2934 {
2935 struct dc_sink *dc_sink;
2936 enum dc_edid_status edid_status;
2937
2938 if (len > DC_MAX_EDID_BUFFER_SIZE) {
2939 dm_error("Max EDID buffer size breached!\n");
2940 return NULL;
2941 }
2942
2943 if (!init_data) {
2944 BREAK_TO_DEBUGGER();
2945 return NULL;
2946 }
2947
2948 if (!init_data->link) {
2949 BREAK_TO_DEBUGGER();
2950 return NULL;
2951 }
2952
2953 dc_sink = dc_sink_create(init_data);
2954
2955 if (!dc_sink)
2956 return NULL;
2957
2958 memmove(dc_sink->dc_edid.raw_edid, edid, len);
2959 dc_sink->dc_edid.length = len;
2960
2961 if (!link_add_remote_sink_helper(
2962 link,
2963 dc_sink))
2964 goto fail_add_sink;
2965
2966 edid_status = dm_helpers_parse_edid_caps(
2967 link->ctx,
2968 &dc_sink->dc_edid,
2969 &dc_sink->edid_caps);
2970
2971 /*
2972 * Treat device as no EDID device if EDID
2973 * parsing fails
2974 */
2975 if (edid_status != EDID_OK) {
2976 dc_sink->dc_edid.length = 0;
2977 dm_error("Bad EDID, status%d!\n", edid_status);
2978 }
2979
2980 return dc_sink;
2981
2982 fail_add_sink:
2983 dc_sink_release(dc_sink);
2984 return NULL;
2985 }
2986
2987 /**
2988 * dc_link_remove_remote_sink() - Remove a remote sink from a dc_link
2989 *
2990 * Note that this just removes the struct dc_sink - it doesn't
2991 * program hardware or alter other members of dc_link
2992 */
dc_link_remove_remote_sink(struct dc_link * link,struct dc_sink * sink)2993 void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink)
2994 {
2995 int i;
2996
2997 if (!link->sink_count) {
2998 BREAK_TO_DEBUGGER();
2999 return;
3000 }
3001
3002 for (i = 0; i < link->sink_count; i++) {
3003 if (link->remote_sinks[i] == sink) {
3004 dc_sink_release(sink);
3005 link->remote_sinks[i] = NULL;
3006
3007 /* shrink array to remove empty place */
3008 while (i < link->sink_count - 1) {
3009 link->remote_sinks[i] = link->remote_sinks[i+1];
3010 i++;
3011 }
3012 link->remote_sinks[i] = NULL;
3013 link->sink_count--;
3014 return;
3015 }
3016 }
3017 }
3018
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)3019 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
3020 {
3021 info->displayClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
3022 info->engineClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
3023 info->memoryClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
3024 info->maxSupportedDppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
3025 info->dppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
3026 info->socClock = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
3027 info->dcfClockDeepSleep = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
3028 info->fClock = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
3029 info->phyClock = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
3030 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)3031 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
3032 {
3033 if (dc->hwss.set_clock)
3034 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
3035 return DC_ERROR_UNEXPECTED;
3036 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)3037 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
3038 {
3039 if (dc->hwss.get_clock)
3040 dc->hwss.get_clock(dc, clock_type, clock_cfg);
3041 }
3042
3043 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)3044 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
3045 {
3046 int i;
3047
3048 for (i = 0; i < dc->current_state->stream_count ; i++) {
3049 struct dc_link *link;
3050 struct dc_stream_state *stream = dc->current_state->streams[i];
3051
3052 link = stream->link;
3053 if (!link)
3054 continue;
3055
3056 if (link->psr_settings.psr_feature_enabled) {
3057 if (enable && !link->psr_settings.psr_allow_active)
3058 return dc_link_set_psr_allow_active(link, true, false);
3059 else if (!enable && link->psr_settings.psr_allow_active)
3060 return dc_link_set_psr_allow_active(link, false, true);
3061 }
3062 }
3063
3064 return true;
3065 }
3066
3067 #if defined(CONFIG_DRM_AMD_DC_DCN3_0)
3068
dc_allow_idle_optimizations(struct dc * dc,bool allow)3069 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
3070 {
3071 if (dc->debug.disable_idle_power_optimizations)
3072 return;
3073
3074 if (allow == dc->idle_optimizations_allowed)
3075 return;
3076
3077 if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
3078 dc->idle_optimizations_allowed = allow;
3079 }
3080
3081 /*
3082 * blank all streams, and set min and max memory clock to
3083 * lowest and highest DPM level, respectively
3084 */
dc_unlock_memory_clock_frequency(struct dc * dc)3085 void dc_unlock_memory_clock_frequency(struct dc *dc)
3086 {
3087 unsigned int i;
3088
3089 for (i = 0; i < MAX_PIPES; i++)
3090 if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3091 core_link_disable_stream(&dc->current_state->res_ctx.pipe_ctx[i]);
3092
3093 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
3094 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3095 }
3096
3097 /*
3098 * set min memory clock to the min required for current mode,
3099 * max to maxDPM, and unblank streams
3100 */
dc_lock_memory_clock_frequency(struct dc * dc)3101 void dc_lock_memory_clock_frequency(struct dc *dc)
3102 {
3103 unsigned int i;
3104
3105 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
3106 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
3107 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
3108
3109 for (i = 0; i < MAX_PIPES; i++)
3110 if (dc->current_state->res_ctx.pipe_ctx[i].plane_state)
3111 core_link_enable_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i]);
3112 }
3113
dc_is_plane_eligible_for_idle_optimizaitons(struct dc * dc,struct dc_plane_state * plane)3114 bool dc_is_plane_eligible_for_idle_optimizaitons(struct dc *dc,
3115 struct dc_plane_state *plane)
3116 {
3117 return false;
3118 }
3119 #endif
3120