1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34
35 // A light-weight IA32 Assembler.
36
37 #ifndef V8_CODEGEN_IA32_ASSEMBLER_IA32_INL_H_
38 #define V8_CODEGEN_IA32_ASSEMBLER_IA32_INL_H_
39
40 #include "src/codegen/ia32/assembler-ia32.h"
41
42 #include "src/base/memory.h"
43 #include "src/codegen/assembler.h"
44 #include "src/debug/debug.h"
45 #include "src/objects/objects-inl.h"
46
47 namespace v8 {
48 namespace internal {
49
SupportsOptimizer()50 bool CpuFeatures::SupportsOptimizer() { return true; }
51
52 // The modes possibly affected by apply must be in kApplyMask.
apply(intptr_t delta)53 void RelocInfo::apply(intptr_t delta) {
54 DCHECK_EQ(kApplyMask, (RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
55 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
56 RelocInfo::ModeMask(RelocInfo::OFF_HEAP_TARGET) |
57 RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY)));
58 if (IsRuntimeEntry(rmode_) || IsCodeTarget(rmode_) ||
59 IsOffHeapTarget(rmode_)) {
60 base::WriteUnalignedValue(pc_,
61 base::ReadUnalignedValue<int32_t>(pc_) - delta);
62 } else if (IsInternalReference(rmode_)) {
63 // Absolute code pointer inside code object moves with the code object.
64 base::WriteUnalignedValue(pc_,
65 base::ReadUnalignedValue<int32_t>(pc_) + delta);
66 }
67 }
68
target_address()69 Address RelocInfo::target_address() {
70 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
71 return Assembler::target_address_at(pc_, constant_pool_);
72 }
73
target_address_address()74 Address RelocInfo::target_address_address() {
75 DCHECK(HasTargetAddressAddress());
76 return pc_;
77 }
78
constant_pool_entry_address()79 Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); }
80
target_address_size()81 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
82
target_object(PtrComprCageBase cage_base)83 HeapObject RelocInfo::target_object(PtrComprCageBase cage_base) {
84 DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_) ||
85 IsDataEmbeddedObject(rmode_));
86 return HeapObject::cast(Object(ReadUnalignedValue<Address>(pc_)));
87 }
88
target_object_handle(Assembler * origin)89 Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
90 DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_) ||
91 IsDataEmbeddedObject(rmode_));
92 return Handle<HeapObject>::cast(ReadUnalignedValue<Handle<Object>>(pc_));
93 }
94
set_target_object(Heap * heap,HeapObject target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)95 void RelocInfo::set_target_object(Heap* heap, HeapObject target,
96 WriteBarrierMode write_barrier_mode,
97 ICacheFlushMode icache_flush_mode) {
98 DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_) ||
99 IsDataEmbeddedObject(rmode_));
100 WriteUnalignedValue(pc_, target.ptr());
101 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
102 FlushInstructionCache(pc_, sizeof(Address));
103 }
104 if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null() &&
105 !FLAG_disable_write_barriers) {
106 WriteBarrierForCode(host(), this, target);
107 }
108 }
109
target_external_reference()110 Address RelocInfo::target_external_reference() {
111 DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
112 return ReadUnalignedValue<Address>(pc_);
113 }
114
set_target_external_reference(Address target,ICacheFlushMode icache_flush_mode)115 void RelocInfo::set_target_external_reference(
116 Address target, ICacheFlushMode icache_flush_mode) {
117 DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
118 WriteUnalignedValue(pc_, target);
119 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
120 FlushInstructionCache(pc_, sizeof(Address));
121 }
122 }
123
target_internal_reference()124 Address RelocInfo::target_internal_reference() {
125 DCHECK(rmode_ == INTERNAL_REFERENCE);
126 return ReadUnalignedValue<Address>(pc_);
127 }
128
target_internal_reference_address()129 Address RelocInfo::target_internal_reference_address() {
130 DCHECK(rmode_ == INTERNAL_REFERENCE);
131 return pc_;
132 }
133
target_runtime_entry(Assembler * origin)134 Address RelocInfo::target_runtime_entry(Assembler* origin) {
135 DCHECK(IsRuntimeEntry(rmode_));
136 return ReadUnalignedValue<Address>(pc_);
137 }
138
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)139 void RelocInfo::set_target_runtime_entry(Address target,
140 WriteBarrierMode write_barrier_mode,
141 ICacheFlushMode icache_flush_mode) {
142 DCHECK(IsRuntimeEntry(rmode_));
143 if (target_address() != target) {
144 set_target_address(target, write_barrier_mode, icache_flush_mode);
145 }
146 }
147
target_off_heap_target()148 Address RelocInfo::target_off_heap_target() {
149 DCHECK(IsOffHeapTarget(rmode_));
150 return Assembler::target_address_at(pc_, constant_pool_);
151 }
152
WipeOut()153 void RelocInfo::WipeOut() {
154 if (IsFullEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
155 IsInternalReference(rmode_)) {
156 WriteUnalignedValue(pc_, kNullAddress);
157 } else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) ||
158 IsOffHeapTarget(rmode_)) {
159 // Effectively write zero into the relocation.
160 Assembler::set_target_address_at(pc_, constant_pool_,
161 pc_ + sizeof(int32_t));
162 } else {
163 UNREACHABLE();
164 }
165 }
166
emit(uint32_t x)167 void Assembler::emit(uint32_t x) {
168 WriteUnalignedValue(reinterpret_cast<Address>(pc_), x);
169 pc_ += sizeof(uint32_t);
170 }
171
emit_q(uint64_t x)172 void Assembler::emit_q(uint64_t x) {
173 WriteUnalignedValue(reinterpret_cast<Address>(pc_), x);
174 pc_ += sizeof(uint64_t);
175 }
176
emit(Handle<HeapObject> handle)177 void Assembler::emit(Handle<HeapObject> handle) {
178 emit(handle.address(), RelocInfo::FULL_EMBEDDED_OBJECT);
179 }
180
emit(uint32_t x,RelocInfo::Mode rmode)181 void Assembler::emit(uint32_t x, RelocInfo::Mode rmode) {
182 if (!RelocInfo::IsNoInfo(rmode)) {
183 RecordRelocInfo(rmode);
184 }
185 emit(x);
186 }
187
emit(Handle<Code> code,RelocInfo::Mode rmode)188 void Assembler::emit(Handle<Code> code, RelocInfo::Mode rmode) {
189 emit(code.address(), rmode);
190 }
191
emit(const Immediate & x)192 void Assembler::emit(const Immediate& x) {
193 if (x.rmode_ == RelocInfo::INTERNAL_REFERENCE) {
194 Label* label = reinterpret_cast<Label*>(x.immediate());
195 emit_code_relative_offset(label);
196 return;
197 }
198 if (!RelocInfo::IsNoInfo(x.rmode_)) RecordRelocInfo(x.rmode_);
199 if (x.is_heap_object_request()) {
200 RequestHeapObject(x.heap_object_request());
201 emit(0);
202 return;
203 }
204 emit(x.immediate());
205 }
206
emit_code_relative_offset(Label * label)207 void Assembler::emit_code_relative_offset(Label* label) {
208 if (label->is_bound()) {
209 int32_t pos;
210 pos = label->pos() + Code::kHeaderSize - kHeapObjectTag;
211 emit(pos);
212 } else {
213 emit_disp(label, Displacement::CODE_RELATIVE);
214 }
215 }
216
emit_b(Immediate x)217 void Assembler::emit_b(Immediate x) {
218 DCHECK(x.is_int8() || x.is_uint8());
219 uint8_t value = static_cast<uint8_t>(x.immediate());
220 *pc_++ = value;
221 }
222
emit_w(const Immediate & x)223 void Assembler::emit_w(const Immediate& x) {
224 DCHECK(RelocInfo::IsNoInfo(x.rmode_));
225 uint16_t value = static_cast<uint16_t>(x.immediate());
226 WriteUnalignedValue(reinterpret_cast<Address>(pc_), value);
227 pc_ += sizeof(uint16_t);
228 }
229
target_address_at(Address pc,Address constant_pool)230 Address Assembler::target_address_at(Address pc, Address constant_pool) {
231 return pc + sizeof(int32_t) + ReadUnalignedValue<int32_t>(pc);
232 }
233
set_target_address_at(Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode)234 void Assembler::set_target_address_at(Address pc, Address constant_pool,
235 Address target,
236 ICacheFlushMode icache_flush_mode) {
237 WriteUnalignedValue(pc, target - (pc + sizeof(int32_t)));
238 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
239 FlushInstructionCache(pc, sizeof(int32_t));
240 }
241 }
242
deserialization_set_special_target_at(Address instruction_payload,Code code,Address target)243 void Assembler::deserialization_set_special_target_at(
244 Address instruction_payload, Code code, Address target) {
245 set_target_address_at(instruction_payload,
246 !code.is_null() ? code.constant_pool() : kNullAddress,
247 target);
248 }
249
deserialization_special_target_size(Address instruction_payload)250 int Assembler::deserialization_special_target_size(
251 Address instruction_payload) {
252 return kSpecialTargetSize;
253 }
254
disp_at(Label * L)255 Displacement Assembler::disp_at(Label* L) {
256 return Displacement(long_at(L->pos()));
257 }
258
disp_at_put(Label * L,Displacement disp)259 void Assembler::disp_at_put(Label* L, Displacement disp) {
260 long_at_put(L->pos(), disp.data());
261 }
262
emit_disp(Label * L,Displacement::Type type)263 void Assembler::emit_disp(Label* L, Displacement::Type type) {
264 Displacement disp(L, type);
265 L->link_to(pc_offset());
266 emit(static_cast<int>(disp.data()));
267 }
268
emit_near_disp(Label * L)269 void Assembler::emit_near_disp(Label* L) {
270 byte disp = 0x00;
271 if (L->is_near_linked()) {
272 int offset = L->near_link_pos() - pc_offset();
273 DCHECK(is_int8(offset));
274 disp = static_cast<byte>(offset & 0xFF);
275 }
276 L->link_to(pc_offset(), Label::kNear);
277 *pc_++ = disp;
278 }
279
deserialization_set_target_internal_reference_at(Address pc,Address target,RelocInfo::Mode mode)280 void Assembler::deserialization_set_target_internal_reference_at(
281 Address pc, Address target, RelocInfo::Mode mode) {
282 WriteUnalignedValue(pc, target);
283 }
284
set_sib(ScaleFactor scale,Register index,Register base)285 void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
286 DCHECK_EQ(len_, 1);
287 DCHECK_EQ(scale & -4, 0);
288 // Use SIB with no index register only for base esp.
289 DCHECK(index != esp || base == esp);
290 buf_[1] = scale << 6 | index.code() << 3 | base.code();
291 len_ = 2;
292 }
293
set_disp8(int8_t disp)294 void Operand::set_disp8(int8_t disp) {
295 DCHECK(len_ == 1 || len_ == 2);
296 *reinterpret_cast<int8_t*>(&buf_[len_++]) = disp;
297 }
298
299 } // namespace internal
300 } // namespace v8
301
302 #endif // V8_CODEGEN_IA32_ASSEMBLER_IA32_INL_H_
303