1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49
50 #include "ext4.h"
51 #include "ext4_extents.h" /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static void ext4_update_super(struct super_block *sb);
69 static int ext4_commit_super(struct super_block *sb);
70 static int ext4_mark_recovery_complete(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_clear_journal_err(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_sync_fs(struct super_block *sb, int wait);
75 static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 static int ext4_unfreeze(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87 static struct inode *ext4_get_journal_inode(struct super_block *sb,
88 unsigned int journal_inum);
89
90 /*
91 * Lock ordering
92 *
93 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
94 * i_mmap_rwsem (inode->i_mmap_rwsem)!
95 *
96 * page fault path:
97 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
98 * page lock -> i_data_sem (rw)
99 *
100 * buffered write path:
101 * sb_start_write -> i_mutex -> mmap_lock
102 * sb_start_write -> i_mutex -> transaction start -> page lock ->
103 * i_data_sem (rw)
104 *
105 * truncate:
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
107 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
108 * i_data_sem (rw)
109 *
110 * direct IO:
111 * sb_start_write -> i_mutex -> mmap_lock
112 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
113 *
114 * writepages:
115 * transaction start -> page lock(s) -> i_data_sem (rw)
116 */
117
118 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
119 static struct file_system_type ext2_fs_type = {
120 .owner = THIS_MODULE,
121 .name = "ext2",
122 .mount = ext4_mount,
123 .kill_sb = kill_block_super,
124 .fs_flags = FS_REQUIRES_DEV,
125 };
126 MODULE_ALIAS_FS("ext2");
127 MODULE_ALIAS("ext2");
128 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
129 #else
130 #define IS_EXT2_SB(sb) (0)
131 #endif
132
133
134 static struct file_system_type ext3_fs_type = {
135 .owner = THIS_MODULE,
136 .name = "ext3",
137 .mount = ext4_mount,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext3");
142 MODULE_ALIAS("ext3");
143 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
144
145
__ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)146 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
147 bh_end_io_t *end_io)
148 {
149 /*
150 * buffer's verified bit is no longer valid after reading from
151 * disk again due to write out error, clear it to make sure we
152 * recheck the buffer contents.
153 */
154 clear_buffer_verified(bh);
155
156 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
157 get_bh(bh);
158 submit_bh(REQ_OP_READ, op_flags, bh);
159 }
160
ext4_read_bh_nowait(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)161 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
162 bh_end_io_t *end_io)
163 {
164 BUG_ON(!buffer_locked(bh));
165
166 if (ext4_buffer_uptodate(bh)) {
167 unlock_buffer(bh);
168 return;
169 }
170 __ext4_read_bh(bh, op_flags, end_io);
171 }
172
ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)173 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
174 {
175 BUG_ON(!buffer_locked(bh));
176
177 if (ext4_buffer_uptodate(bh)) {
178 unlock_buffer(bh);
179 return 0;
180 }
181
182 __ext4_read_bh(bh, op_flags, end_io);
183
184 wait_on_buffer(bh);
185 if (buffer_uptodate(bh))
186 return 0;
187 return -EIO;
188 }
189
ext4_read_bh_lock(struct buffer_head * bh,int op_flags,bool wait)190 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
191 {
192 lock_buffer(bh);
193 if (!wait) {
194 ext4_read_bh_nowait(bh, op_flags, NULL);
195 return 0;
196 }
197 return ext4_read_bh(bh, op_flags, NULL);
198 }
199
200 /*
201 * This works like __bread_gfp() except it uses ERR_PTR for error
202 * returns. Currently with sb_bread it's impossible to distinguish
203 * between ENOMEM and EIO situations (since both result in a NULL
204 * return.
205 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,int op_flags,gfp_t gfp)206 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
207 sector_t block, int op_flags,
208 gfp_t gfp)
209 {
210 struct buffer_head *bh;
211 int ret;
212
213 bh = sb_getblk_gfp(sb, block, gfp);
214 if (bh == NULL)
215 return ERR_PTR(-ENOMEM);
216 if (ext4_buffer_uptodate(bh))
217 return bh;
218
219 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
220 if (ret) {
221 put_bh(bh);
222 return ERR_PTR(ret);
223 }
224 return bh;
225 }
226
ext4_sb_bread(struct super_block * sb,sector_t block,int op_flags)227 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
228 int op_flags)
229 {
230 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
231 }
232
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)233 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
234 sector_t block)
235 {
236 return __ext4_sb_bread_gfp(sb, block, 0, 0);
237 }
238
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)239 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
240 {
241 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
242
243 if (likely(bh)) {
244 if (trylock_buffer(bh))
245 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
246 brelse(bh);
247 }
248 }
249
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)250 static int ext4_verify_csum_type(struct super_block *sb,
251 struct ext4_super_block *es)
252 {
253 if (!ext4_has_feature_metadata_csum(sb))
254 return 1;
255
256 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
257 }
258
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)259 static __le32 ext4_superblock_csum(struct super_block *sb,
260 struct ext4_super_block *es)
261 {
262 struct ext4_sb_info *sbi = EXT4_SB(sb);
263 int offset = offsetof(struct ext4_super_block, s_checksum);
264 __u32 csum;
265
266 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
267
268 return cpu_to_le32(csum);
269 }
270
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)271 static int ext4_superblock_csum_verify(struct super_block *sb,
272 struct ext4_super_block *es)
273 {
274 if (!ext4_has_metadata_csum(sb))
275 return 1;
276
277 return es->s_checksum == ext4_superblock_csum(sb, es);
278 }
279
ext4_superblock_csum_set(struct super_block * sb)280 void ext4_superblock_csum_set(struct super_block *sb)
281 {
282 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
283
284 if (!ext4_has_metadata_csum(sb))
285 return;
286
287 es->s_checksum = ext4_superblock_csum(sb, es);
288 }
289
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)290 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
291 struct ext4_group_desc *bg)
292 {
293 return le32_to_cpu(bg->bg_block_bitmap_lo) |
294 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
295 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
296 }
297
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)298 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
299 struct ext4_group_desc *bg)
300 {
301 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
302 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
303 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
304 }
305
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)306 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
307 struct ext4_group_desc *bg)
308 {
309 return le32_to_cpu(bg->bg_inode_table_lo) |
310 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
311 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
312 }
313
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)314 __u32 ext4_free_group_clusters(struct super_block *sb,
315 struct ext4_group_desc *bg)
316 {
317 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
320 }
321
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)322 __u32 ext4_free_inodes_count(struct super_block *sb,
323 struct ext4_group_desc *bg)
324 {
325 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
328 }
329
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)330 __u32 ext4_used_dirs_count(struct super_block *sb,
331 struct ext4_group_desc *bg)
332 {
333 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
336 }
337
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)338 __u32 ext4_itable_unused_count(struct super_block *sb,
339 struct ext4_group_desc *bg)
340 {
341 return le16_to_cpu(bg->bg_itable_unused_lo) |
342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
344 }
345
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)346 void ext4_block_bitmap_set(struct super_block *sb,
347 struct ext4_group_desc *bg, ext4_fsblk_t blk)
348 {
349 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
350 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
351 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
352 }
353
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)354 void ext4_inode_bitmap_set(struct super_block *sb,
355 struct ext4_group_desc *bg, ext4_fsblk_t blk)
356 {
357 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
358 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
359 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
360 }
361
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)362 void ext4_inode_table_set(struct super_block *sb,
363 struct ext4_group_desc *bg, ext4_fsblk_t blk)
364 {
365 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
366 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
367 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
368 }
369
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)370 void ext4_free_group_clusters_set(struct super_block *sb,
371 struct ext4_group_desc *bg, __u32 count)
372 {
373 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
376 }
377
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)378 void ext4_free_inodes_set(struct super_block *sb,
379 struct ext4_group_desc *bg, __u32 count)
380 {
381 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
384 }
385
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)386 void ext4_used_dirs_set(struct super_block *sb,
387 struct ext4_group_desc *bg, __u32 count)
388 {
389 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
392 }
393
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)394 void ext4_itable_unused_set(struct super_block *sb,
395 struct ext4_group_desc *bg, __u32 count)
396 {
397 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
400 }
401
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)402 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
403 {
404 now = clamp_val(now, 0, (1ull << 40) - 1);
405
406 *lo = cpu_to_le32(lower_32_bits(now));
407 *hi = upper_32_bits(now);
408 }
409
__ext4_get_tstamp(__le32 * lo,__u8 * hi)410 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
411 {
412 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
413 }
414 #define ext4_update_tstamp(es, tstamp) \
415 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
416 ktime_get_real_seconds())
417 #define ext4_get_tstamp(es, tstamp) \
418 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
419
420 /*
421 * The del_gendisk() function uninitializes the disk-specific data
422 * structures, including the bdi structure, without telling anyone
423 * else. Once this happens, any attempt to call mark_buffer_dirty()
424 * (for example, by ext4_commit_super), will cause a kernel OOPS.
425 * This is a kludge to prevent these oops until we can put in a proper
426 * hook in del_gendisk() to inform the VFS and file system layers.
427 */
block_device_ejected(struct super_block * sb)428 static int block_device_ejected(struct super_block *sb)
429 {
430 struct inode *bd_inode = sb->s_bdev->bd_inode;
431 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
432
433 return bdi->dev == NULL;
434 }
435
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)436 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
437 {
438 struct super_block *sb = journal->j_private;
439 struct ext4_sb_info *sbi = EXT4_SB(sb);
440 int error = is_journal_aborted(journal);
441 struct ext4_journal_cb_entry *jce;
442
443 BUG_ON(txn->t_state == T_FINISHED);
444
445 ext4_process_freed_data(sb, txn->t_tid);
446
447 spin_lock(&sbi->s_md_lock);
448 while (!list_empty(&txn->t_private_list)) {
449 jce = list_entry(txn->t_private_list.next,
450 struct ext4_journal_cb_entry, jce_list);
451 list_del_init(&jce->jce_list);
452 spin_unlock(&sbi->s_md_lock);
453 jce->jce_func(sb, jce, error);
454 spin_lock(&sbi->s_md_lock);
455 }
456 spin_unlock(&sbi->s_md_lock);
457 }
458
459 /*
460 * This writepage callback for write_cache_pages()
461 * takes care of a few cases after page cleaning.
462 *
463 * write_cache_pages() already checks for dirty pages
464 * and calls clear_page_dirty_for_io(), which we want,
465 * to write protect the pages.
466 *
467 * However, we may have to redirty a page (see below.)
468 */
ext4_journalled_writepage_callback(struct page * page,struct writeback_control * wbc,void * data)469 static int ext4_journalled_writepage_callback(struct page *page,
470 struct writeback_control *wbc,
471 void *data)
472 {
473 transaction_t *transaction = (transaction_t *) data;
474 struct buffer_head *bh, *head;
475 struct journal_head *jh;
476
477 bh = head = page_buffers(page);
478 do {
479 /*
480 * We have to redirty a page in these cases:
481 * 1) If buffer is dirty, it means the page was dirty because it
482 * contains a buffer that needs checkpointing. So the dirty bit
483 * needs to be preserved so that checkpointing writes the buffer
484 * properly.
485 * 2) If buffer is not part of the committing transaction
486 * (we may have just accidentally come across this buffer because
487 * inode range tracking is not exact) or if the currently running
488 * transaction already contains this buffer as well, dirty bit
489 * needs to be preserved so that the buffer gets writeprotected
490 * properly on running transaction's commit.
491 */
492 jh = bh2jh(bh);
493 if (buffer_dirty(bh) ||
494 (jh && (jh->b_transaction != transaction ||
495 jh->b_next_transaction))) {
496 redirty_page_for_writepage(wbc, page);
497 goto out;
498 }
499 } while ((bh = bh->b_this_page) != head);
500
501 out:
502 return AOP_WRITEPAGE_ACTIVATE;
503 }
504
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)505 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
506 {
507 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
508 struct writeback_control wbc = {
509 .sync_mode = WB_SYNC_ALL,
510 .nr_to_write = LONG_MAX,
511 .range_start = jinode->i_dirty_start,
512 .range_end = jinode->i_dirty_end,
513 };
514
515 return write_cache_pages(mapping, &wbc,
516 ext4_journalled_writepage_callback,
517 jinode->i_transaction);
518 }
519
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)520 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
521 {
522 int ret;
523
524 if (ext4_should_journal_data(jinode->i_vfs_inode))
525 ret = ext4_journalled_submit_inode_data_buffers(jinode);
526 else
527 ret = jbd2_journal_submit_inode_data_buffers(jinode);
528
529 return ret;
530 }
531
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)532 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
533 {
534 int ret = 0;
535
536 if (!ext4_should_journal_data(jinode->i_vfs_inode))
537 ret = jbd2_journal_finish_inode_data_buffers(jinode);
538
539 return ret;
540 }
541
system_going_down(void)542 static bool system_going_down(void)
543 {
544 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
545 || system_state == SYSTEM_RESTART;
546 }
547
548 struct ext4_err_translation {
549 int code;
550 int errno;
551 };
552
553 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
554
555 static struct ext4_err_translation err_translation[] = {
556 EXT4_ERR_TRANSLATE(EIO),
557 EXT4_ERR_TRANSLATE(ENOMEM),
558 EXT4_ERR_TRANSLATE(EFSBADCRC),
559 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
560 EXT4_ERR_TRANSLATE(ENOSPC),
561 EXT4_ERR_TRANSLATE(ENOKEY),
562 EXT4_ERR_TRANSLATE(EROFS),
563 EXT4_ERR_TRANSLATE(EFBIG),
564 EXT4_ERR_TRANSLATE(EEXIST),
565 EXT4_ERR_TRANSLATE(ERANGE),
566 EXT4_ERR_TRANSLATE(EOVERFLOW),
567 EXT4_ERR_TRANSLATE(EBUSY),
568 EXT4_ERR_TRANSLATE(ENOTDIR),
569 EXT4_ERR_TRANSLATE(ENOTEMPTY),
570 EXT4_ERR_TRANSLATE(ESHUTDOWN),
571 EXT4_ERR_TRANSLATE(EFAULT),
572 };
573
ext4_errno_to_code(int errno)574 static int ext4_errno_to_code(int errno)
575 {
576 int i;
577
578 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
579 if (err_translation[i].errno == errno)
580 return err_translation[i].code;
581 return EXT4_ERR_UNKNOWN;
582 }
583
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)584 static void save_error_info(struct super_block *sb, int error,
585 __u32 ino, __u64 block,
586 const char *func, unsigned int line)
587 {
588 struct ext4_sb_info *sbi = EXT4_SB(sb);
589
590 /* We default to EFSCORRUPTED error... */
591 if (error == 0)
592 error = EFSCORRUPTED;
593
594 spin_lock(&sbi->s_error_lock);
595 sbi->s_add_error_count++;
596 sbi->s_last_error_code = error;
597 sbi->s_last_error_line = line;
598 sbi->s_last_error_ino = ino;
599 sbi->s_last_error_block = block;
600 sbi->s_last_error_func = func;
601 sbi->s_last_error_time = ktime_get_real_seconds();
602 if (!sbi->s_first_error_time) {
603 sbi->s_first_error_code = error;
604 sbi->s_first_error_line = line;
605 sbi->s_first_error_ino = ino;
606 sbi->s_first_error_block = block;
607 sbi->s_first_error_func = func;
608 sbi->s_first_error_time = sbi->s_last_error_time;
609 }
610 spin_unlock(&sbi->s_error_lock);
611 }
612
613 /* Deal with the reporting of failure conditions on a filesystem such as
614 * inconsistencies detected or read IO failures.
615 *
616 * On ext2, we can store the error state of the filesystem in the
617 * superblock. That is not possible on ext4, because we may have other
618 * write ordering constraints on the superblock which prevent us from
619 * writing it out straight away; and given that the journal is about to
620 * be aborted, we can't rely on the current, or future, transactions to
621 * write out the superblock safely.
622 *
623 * We'll just use the jbd2_journal_abort() error code to record an error in
624 * the journal instead. On recovery, the journal will complain about
625 * that error until we've noted it down and cleared it.
626 *
627 * If force_ro is set, we unconditionally force the filesystem into an
628 * ABORT|READONLY state, unless the error response on the fs has been set to
629 * panic in which case we take the easy way out and panic immediately. This is
630 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
631 * at a critical moment in log management.
632 */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)633 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
634 __u32 ino, __u64 block,
635 const char *func, unsigned int line)
636 {
637 journal_t *journal = EXT4_SB(sb)->s_journal;
638 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
639
640 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
641 if (test_opt(sb, WARN_ON_ERROR))
642 WARN_ON_ONCE(1);
643
644 if (!continue_fs && !sb_rdonly(sb)) {
645 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
646 if (journal)
647 jbd2_journal_abort(journal, -EIO);
648 }
649
650 if (!bdev_read_only(sb->s_bdev)) {
651 save_error_info(sb, error, ino, block, func, line);
652 /*
653 * In case the fs should keep running, we need to writeout
654 * superblock through the journal. Due to lock ordering
655 * constraints, it may not be safe to do it right here so we
656 * defer superblock flushing to a workqueue.
657 */
658 if (continue_fs && journal)
659 schedule_work(&EXT4_SB(sb)->s_error_work);
660 else
661 ext4_commit_super(sb);
662 }
663
664 /*
665 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
666 * could panic during 'reboot -f' as the underlying device got already
667 * disabled.
668 */
669 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
670 panic("EXT4-fs (device %s): panic forced after error\n",
671 sb->s_id);
672 }
673
674 if (sb_rdonly(sb) || continue_fs)
675 return;
676
677 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
678 /*
679 * Make sure updated value of ->s_mount_flags will be visible before
680 * ->s_flags update
681 */
682 smp_wmb();
683 sb->s_flags |= SB_RDONLY;
684 }
685
flush_stashed_error_work(struct work_struct * work)686 static void flush_stashed_error_work(struct work_struct *work)
687 {
688 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
689 s_error_work);
690 journal_t *journal = sbi->s_journal;
691 handle_t *handle;
692
693 /*
694 * If the journal is still running, we have to write out superblock
695 * through the journal to avoid collisions of other journalled sb
696 * updates.
697 *
698 * We use directly jbd2 functions here to avoid recursing back into
699 * ext4 error handling code during handling of previous errors.
700 */
701 if (!sb_rdonly(sbi->s_sb) && journal) {
702 struct buffer_head *sbh = sbi->s_sbh;
703 handle = jbd2_journal_start(journal, 1);
704 if (IS_ERR(handle))
705 goto write_directly;
706 if (jbd2_journal_get_write_access(handle, sbh)) {
707 jbd2_journal_stop(handle);
708 goto write_directly;
709 }
710 ext4_update_super(sbi->s_sb);
711 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
712 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
713 "superblock detected");
714 clear_buffer_write_io_error(sbh);
715 set_buffer_uptodate(sbh);
716 }
717
718 if (jbd2_journal_dirty_metadata(handle, sbh)) {
719 jbd2_journal_stop(handle);
720 goto write_directly;
721 }
722 jbd2_journal_stop(handle);
723 return;
724 }
725 write_directly:
726 /*
727 * Write through journal failed. Write sb directly to get error info
728 * out and hope for the best.
729 */
730 ext4_commit_super(sbi->s_sb);
731 }
732
733 #define ext4_error_ratelimit(sb) \
734 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
735 "EXT4-fs error")
736
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)737 void __ext4_error(struct super_block *sb, const char *function,
738 unsigned int line, bool force_ro, int error, __u64 block,
739 const char *fmt, ...)
740 {
741 struct va_format vaf;
742 va_list args;
743
744 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
745 return;
746
747 trace_ext4_error(sb, function, line);
748 if (ext4_error_ratelimit(sb)) {
749 va_start(args, fmt);
750 vaf.fmt = fmt;
751 vaf.va = &args;
752 printk(KERN_CRIT
753 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
754 sb->s_id, function, line, current->comm, &vaf);
755 va_end(args);
756 }
757 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
758 }
759
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)760 void __ext4_error_inode(struct inode *inode, const char *function,
761 unsigned int line, ext4_fsblk_t block, int error,
762 const char *fmt, ...)
763 {
764 va_list args;
765 struct va_format vaf;
766
767 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
768 return;
769
770 trace_ext4_error(inode->i_sb, function, line);
771 if (ext4_error_ratelimit(inode->i_sb)) {
772 va_start(args, fmt);
773 vaf.fmt = fmt;
774 vaf.va = &args;
775 if (block)
776 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
777 "inode #%lu: block %llu: comm %s: %pV\n",
778 inode->i_sb->s_id, function, line, inode->i_ino,
779 block, current->comm, &vaf);
780 else
781 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
782 "inode #%lu: comm %s: %pV\n",
783 inode->i_sb->s_id, function, line, inode->i_ino,
784 current->comm, &vaf);
785 va_end(args);
786 }
787 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
788 function, line);
789 }
790
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)791 void __ext4_error_file(struct file *file, const char *function,
792 unsigned int line, ext4_fsblk_t block,
793 const char *fmt, ...)
794 {
795 va_list args;
796 struct va_format vaf;
797 struct inode *inode = file_inode(file);
798 char pathname[80], *path;
799
800 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
801 return;
802
803 trace_ext4_error(inode->i_sb, function, line);
804 if (ext4_error_ratelimit(inode->i_sb)) {
805 path = file_path(file, pathname, sizeof(pathname));
806 if (IS_ERR(path))
807 path = "(unknown)";
808 va_start(args, fmt);
809 vaf.fmt = fmt;
810 vaf.va = &args;
811 if (block)
812 printk(KERN_CRIT
813 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
814 "block %llu: comm %s: path %s: %pV\n",
815 inode->i_sb->s_id, function, line, inode->i_ino,
816 block, current->comm, path, &vaf);
817 else
818 printk(KERN_CRIT
819 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
820 "comm %s: path %s: %pV\n",
821 inode->i_sb->s_id, function, line, inode->i_ino,
822 current->comm, path, &vaf);
823 va_end(args);
824 }
825 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
826 function, line);
827 }
828
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])829 const char *ext4_decode_error(struct super_block *sb, int errno,
830 char nbuf[16])
831 {
832 char *errstr = NULL;
833
834 switch (errno) {
835 case -EFSCORRUPTED:
836 errstr = "Corrupt filesystem";
837 break;
838 case -EFSBADCRC:
839 errstr = "Filesystem failed CRC";
840 break;
841 case -EIO:
842 errstr = "IO failure";
843 break;
844 case -ENOMEM:
845 errstr = "Out of memory";
846 break;
847 case -EROFS:
848 if (!sb || (EXT4_SB(sb)->s_journal &&
849 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
850 errstr = "Journal has aborted";
851 else
852 errstr = "Readonly filesystem";
853 break;
854 default:
855 /* If the caller passed in an extra buffer for unknown
856 * errors, textualise them now. Else we just return
857 * NULL. */
858 if (nbuf) {
859 /* Check for truncated error codes... */
860 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
861 errstr = nbuf;
862 }
863 break;
864 }
865
866 return errstr;
867 }
868
869 /* __ext4_std_error decodes expected errors from journaling functions
870 * automatically and invokes the appropriate error response. */
871
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)872 void __ext4_std_error(struct super_block *sb, const char *function,
873 unsigned int line, int errno)
874 {
875 char nbuf[16];
876 const char *errstr;
877
878 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
879 return;
880
881 /* Special case: if the error is EROFS, and we're not already
882 * inside a transaction, then there's really no point in logging
883 * an error. */
884 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
885 return;
886
887 if (ext4_error_ratelimit(sb)) {
888 errstr = ext4_decode_error(sb, errno, nbuf);
889 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
890 sb->s_id, function, line, errstr);
891 }
892
893 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
894 }
895
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)896 void __ext4_msg(struct super_block *sb,
897 const char *prefix, const char *fmt, ...)
898 {
899 struct va_format vaf;
900 va_list args;
901
902 atomic_inc(&EXT4_SB(sb)->s_msg_count);
903 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
904 return;
905
906 va_start(args, fmt);
907 vaf.fmt = fmt;
908 vaf.va = &args;
909 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
910 va_end(args);
911 }
912
ext4_warning_ratelimit(struct super_block * sb)913 static int ext4_warning_ratelimit(struct super_block *sb)
914 {
915 atomic_inc(&EXT4_SB(sb)->s_warning_count);
916 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
917 "EXT4-fs warning");
918 }
919
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)920 void __ext4_warning(struct super_block *sb, const char *function,
921 unsigned int line, const char *fmt, ...)
922 {
923 struct va_format vaf;
924 va_list args;
925
926 if (!ext4_warning_ratelimit(sb))
927 return;
928
929 va_start(args, fmt);
930 vaf.fmt = fmt;
931 vaf.va = &args;
932 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
933 sb->s_id, function, line, &vaf);
934 va_end(args);
935 }
936
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)937 void __ext4_warning_inode(const struct inode *inode, const char *function,
938 unsigned int line, const char *fmt, ...)
939 {
940 struct va_format vaf;
941 va_list args;
942
943 if (!ext4_warning_ratelimit(inode->i_sb))
944 return;
945
946 va_start(args, fmt);
947 vaf.fmt = fmt;
948 vaf.va = &args;
949 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
950 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
951 function, line, inode->i_ino, current->comm, &vaf);
952 va_end(args);
953 }
954
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)955 void __ext4_grp_locked_error(const char *function, unsigned int line,
956 struct super_block *sb, ext4_group_t grp,
957 unsigned long ino, ext4_fsblk_t block,
958 const char *fmt, ...)
959 __releases(bitlock)
960 __acquires(bitlock)
961 {
962 struct va_format vaf;
963 va_list args;
964
965 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
966 return;
967
968 trace_ext4_error(sb, function, line);
969 if (ext4_error_ratelimit(sb)) {
970 va_start(args, fmt);
971 vaf.fmt = fmt;
972 vaf.va = &args;
973 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
974 sb->s_id, function, line, grp);
975 if (ino)
976 printk(KERN_CONT "inode %lu: ", ino);
977 if (block)
978 printk(KERN_CONT "block %llu:",
979 (unsigned long long) block);
980 printk(KERN_CONT "%pV\n", &vaf);
981 va_end(args);
982 }
983
984 if (test_opt(sb, ERRORS_CONT)) {
985 if (test_opt(sb, WARN_ON_ERROR))
986 WARN_ON_ONCE(1);
987 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
988 if (!bdev_read_only(sb->s_bdev)) {
989 save_error_info(sb, EFSCORRUPTED, ino, block, function,
990 line);
991 schedule_work(&EXT4_SB(sb)->s_error_work);
992 }
993 return;
994 }
995 ext4_unlock_group(sb, grp);
996 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
997 /*
998 * We only get here in the ERRORS_RO case; relocking the group
999 * may be dangerous, but nothing bad will happen since the
1000 * filesystem will have already been marked read/only and the
1001 * journal has been aborted. We return 1 as a hint to callers
1002 * who might what to use the return value from
1003 * ext4_grp_locked_error() to distinguish between the
1004 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1005 * aggressively from the ext4 function in question, with a
1006 * more appropriate error code.
1007 */
1008 ext4_lock_group(sb, grp);
1009 return;
1010 }
1011
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1012 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1013 ext4_group_t group,
1014 unsigned int flags)
1015 {
1016 struct ext4_sb_info *sbi = EXT4_SB(sb);
1017 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1018 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1019 int ret;
1020
1021 if (!grp || !gdp)
1022 return;
1023 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1024 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1025 &grp->bb_state);
1026 if (!ret)
1027 percpu_counter_sub(&sbi->s_freeclusters_counter,
1028 grp->bb_free);
1029 }
1030
1031 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1032 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1033 &grp->bb_state);
1034 if (!ret && gdp) {
1035 int count;
1036
1037 count = ext4_free_inodes_count(sb, gdp);
1038 percpu_counter_sub(&sbi->s_freeinodes_counter,
1039 count);
1040 }
1041 }
1042 }
1043
ext4_update_dynamic_rev(struct super_block * sb)1044 void ext4_update_dynamic_rev(struct super_block *sb)
1045 {
1046 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1047
1048 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1049 return;
1050
1051 ext4_warning(sb,
1052 "updating to rev %d because of new feature flag, "
1053 "running e2fsck is recommended",
1054 EXT4_DYNAMIC_REV);
1055
1056 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1057 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1058 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1059 /* leave es->s_feature_*compat flags alone */
1060 /* es->s_uuid will be set by e2fsck if empty */
1061
1062 /*
1063 * The rest of the superblock fields should be zero, and if not it
1064 * means they are likely already in use, so leave them alone. We
1065 * can leave it up to e2fsck to clean up any inconsistencies there.
1066 */
1067 }
1068
1069 /*
1070 * Open the external journal device
1071 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)1072 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1073 {
1074 struct block_device *bdev;
1075
1076 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1077 if (IS_ERR(bdev))
1078 goto fail;
1079 return bdev;
1080
1081 fail:
1082 ext4_msg(sb, KERN_ERR,
1083 "failed to open journal device unknown-block(%u,%u) %ld",
1084 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1085 return NULL;
1086 }
1087
1088 /*
1089 * Release the journal device
1090 */
ext4_blkdev_put(struct block_device * bdev)1091 static void ext4_blkdev_put(struct block_device *bdev)
1092 {
1093 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1094 }
1095
ext4_blkdev_remove(struct ext4_sb_info * sbi)1096 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1097 {
1098 struct block_device *bdev;
1099 bdev = sbi->s_journal_bdev;
1100 if (bdev) {
1101 ext4_blkdev_put(bdev);
1102 sbi->s_journal_bdev = NULL;
1103 }
1104 }
1105
orphan_list_entry(struct list_head * l)1106 static inline struct inode *orphan_list_entry(struct list_head *l)
1107 {
1108 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1109 }
1110
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1111 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1112 {
1113 struct list_head *l;
1114
1115 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1116 le32_to_cpu(sbi->s_es->s_last_orphan));
1117
1118 printk(KERN_ERR "sb_info orphan list:\n");
1119 list_for_each(l, &sbi->s_orphan) {
1120 struct inode *inode = orphan_list_entry(l);
1121 printk(KERN_ERR " "
1122 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1123 inode->i_sb->s_id, inode->i_ino, inode,
1124 inode->i_mode, inode->i_nlink,
1125 NEXT_ORPHAN(inode));
1126 }
1127 }
1128
1129 #ifdef CONFIG_QUOTA
1130 static int ext4_quota_off(struct super_block *sb, int type);
1131
ext4_quota_off_umount(struct super_block * sb)1132 static inline void ext4_quota_off_umount(struct super_block *sb)
1133 {
1134 int type;
1135
1136 /* Use our quota_off function to clear inode flags etc. */
1137 for (type = 0; type < EXT4_MAXQUOTAS; type++)
1138 ext4_quota_off(sb, type);
1139 }
1140
1141 /*
1142 * This is a helper function which is used in the mount/remount
1143 * codepaths (which holds s_umount) to fetch the quota file name.
1144 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1145 static inline char *get_qf_name(struct super_block *sb,
1146 struct ext4_sb_info *sbi,
1147 int type)
1148 {
1149 return rcu_dereference_protected(sbi->s_qf_names[type],
1150 lockdep_is_held(&sb->s_umount));
1151 }
1152 #else
ext4_quota_off_umount(struct super_block * sb)1153 static inline void ext4_quota_off_umount(struct super_block *sb)
1154 {
1155 }
1156 #endif
1157
ext4_put_super(struct super_block * sb)1158 static void ext4_put_super(struct super_block *sb)
1159 {
1160 struct ext4_sb_info *sbi = EXT4_SB(sb);
1161 struct ext4_super_block *es = sbi->s_es;
1162 struct buffer_head **group_desc;
1163 struct flex_groups **flex_groups;
1164 int aborted = 0;
1165 int i, err;
1166
1167 /*
1168 * Unregister sysfs before destroying jbd2 journal.
1169 * Since we could still access attr_journal_task attribute via sysfs
1170 * path which could have sbi->s_journal->j_task as NULL
1171 * Unregister sysfs before flush sbi->s_error_work.
1172 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1173 * read metadata verify failed then will queue error work.
1174 * flush_stashed_error_work will call start_this_handle may trigger
1175 * BUG_ON.
1176 */
1177 ext4_unregister_sysfs(sb);
1178
1179 ext4_unregister_li_request(sb);
1180 ext4_quota_off_umount(sb);
1181 flush_work(&sbi->s_error_work);
1182 destroy_workqueue(sbi->rsv_conversion_wq);
1183
1184 if (sbi->s_journal) {
1185 aborted = is_journal_aborted(sbi->s_journal);
1186 err = jbd2_journal_destroy(sbi->s_journal);
1187 sbi->s_journal = NULL;
1188 if ((err < 0) && !aborted) {
1189 ext4_abort(sb, -err, "Couldn't clean up the journal");
1190 }
1191 }
1192
1193 ext4_es_unregister_shrinker(sbi);
1194 del_timer_sync(&sbi->s_err_report);
1195 ext4_release_system_zone(sb);
1196 ext4_mb_release(sb);
1197 ext4_ext_release(sb);
1198
1199 if (!sb_rdonly(sb) && !aborted) {
1200 ext4_clear_feature_journal_needs_recovery(sb);
1201 es->s_state = cpu_to_le16(sbi->s_mount_state);
1202 }
1203 if (!sb_rdonly(sb))
1204 ext4_commit_super(sb);
1205
1206 rcu_read_lock();
1207 group_desc = rcu_dereference(sbi->s_group_desc);
1208 for (i = 0; i < sbi->s_gdb_count; i++)
1209 brelse(group_desc[i]);
1210 kvfree(group_desc);
1211 flex_groups = rcu_dereference(sbi->s_flex_groups);
1212 if (flex_groups) {
1213 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1214 kvfree(flex_groups[i]);
1215 kvfree(flex_groups);
1216 }
1217 rcu_read_unlock();
1218 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1219 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1220 percpu_counter_destroy(&sbi->s_dirs_counter);
1221 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1222 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1223 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1224 #ifdef CONFIG_QUOTA
1225 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1226 kfree(get_qf_name(sb, sbi, i));
1227 #endif
1228
1229 /* Debugging code just in case the in-memory inode orphan list
1230 * isn't empty. The on-disk one can be non-empty if we've
1231 * detected an error and taken the fs readonly, but the
1232 * in-memory list had better be clean by this point. */
1233 if (!list_empty(&sbi->s_orphan))
1234 dump_orphan_list(sb, sbi);
1235 J_ASSERT(list_empty(&sbi->s_orphan));
1236
1237 sync_blockdev(sb->s_bdev);
1238 invalidate_bdev(sb->s_bdev);
1239 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1240 /*
1241 * Invalidate the journal device's buffers. We don't want them
1242 * floating about in memory - the physical journal device may
1243 * hotswapped, and it breaks the `ro-after' testing code.
1244 */
1245 sync_blockdev(sbi->s_journal_bdev);
1246 invalidate_bdev(sbi->s_journal_bdev);
1247 ext4_blkdev_remove(sbi);
1248 }
1249
1250 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1251 sbi->s_ea_inode_cache = NULL;
1252
1253 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1254 sbi->s_ea_block_cache = NULL;
1255
1256 ext4_stop_mmpd(sbi);
1257
1258 brelse(sbi->s_sbh);
1259 sb->s_fs_info = NULL;
1260 /*
1261 * Now that we are completely done shutting down the
1262 * superblock, we need to actually destroy the kobject.
1263 */
1264 kobject_put(&sbi->s_kobj);
1265 wait_for_completion(&sbi->s_kobj_unregister);
1266 if (sbi->s_chksum_driver)
1267 crypto_free_shash(sbi->s_chksum_driver);
1268 kfree(sbi->s_blockgroup_lock);
1269 fs_put_dax(sbi->s_daxdev);
1270 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1271 #ifdef CONFIG_UNICODE
1272 utf8_unload(sb->s_encoding);
1273 #endif
1274 kfree(sbi);
1275 }
1276
1277 static struct kmem_cache *ext4_inode_cachep;
1278
1279 /*
1280 * Called inside transaction, so use GFP_NOFS
1281 */
ext4_alloc_inode(struct super_block * sb)1282 static struct inode *ext4_alloc_inode(struct super_block *sb)
1283 {
1284 struct ext4_inode_info *ei;
1285
1286 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1287 if (!ei)
1288 return NULL;
1289
1290 inode_set_iversion(&ei->vfs_inode, 1);
1291 ei->i_flags = 0;
1292 spin_lock_init(&ei->i_raw_lock);
1293 INIT_LIST_HEAD(&ei->i_prealloc_list);
1294 atomic_set(&ei->i_prealloc_active, 0);
1295 spin_lock_init(&ei->i_prealloc_lock);
1296 ext4_es_init_tree(&ei->i_es_tree);
1297 rwlock_init(&ei->i_es_lock);
1298 INIT_LIST_HEAD(&ei->i_es_list);
1299 ei->i_es_all_nr = 0;
1300 ei->i_es_shk_nr = 0;
1301 ei->i_es_shrink_lblk = 0;
1302 ei->i_reserved_data_blocks = 0;
1303 spin_lock_init(&(ei->i_block_reservation_lock));
1304 ext4_init_pending_tree(&ei->i_pending_tree);
1305 #ifdef CONFIG_QUOTA
1306 ei->i_reserved_quota = 0;
1307 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1308 #endif
1309 ei->jinode = NULL;
1310 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1311 spin_lock_init(&ei->i_completed_io_lock);
1312 ei->i_sync_tid = 0;
1313 ei->i_datasync_tid = 0;
1314 atomic_set(&ei->i_unwritten, 0);
1315 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1316 ext4_fc_init_inode(&ei->vfs_inode);
1317 mutex_init(&ei->i_fc_lock);
1318 return &ei->vfs_inode;
1319 }
1320
ext4_drop_inode(struct inode * inode)1321 static int ext4_drop_inode(struct inode *inode)
1322 {
1323 int drop = generic_drop_inode(inode);
1324
1325 if (!drop)
1326 drop = fscrypt_drop_inode(inode);
1327
1328 trace_ext4_drop_inode(inode, drop);
1329 return drop;
1330 }
1331
ext4_free_in_core_inode(struct inode * inode)1332 static void ext4_free_in_core_inode(struct inode *inode)
1333 {
1334 fscrypt_free_inode(inode);
1335 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1336 pr_warn("%s: inode %ld still in fc list",
1337 __func__, inode->i_ino);
1338 }
1339 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1340 }
1341
ext4_destroy_inode(struct inode * inode)1342 static void ext4_destroy_inode(struct inode *inode)
1343 {
1344 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1345 ext4_msg(inode->i_sb, KERN_ERR,
1346 "Inode %lu (%p): orphan list check failed!",
1347 inode->i_ino, EXT4_I(inode));
1348 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1349 EXT4_I(inode), sizeof(struct ext4_inode_info),
1350 true);
1351 dump_stack();
1352 }
1353
1354 if (EXT4_I(inode)->i_reserved_data_blocks)
1355 ext4_msg(inode->i_sb, KERN_ERR,
1356 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1357 inode->i_ino, EXT4_I(inode),
1358 EXT4_I(inode)->i_reserved_data_blocks);
1359 }
1360
init_once(void * foo)1361 static void init_once(void *foo)
1362 {
1363 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1364
1365 INIT_LIST_HEAD(&ei->i_orphan);
1366 init_rwsem(&ei->xattr_sem);
1367 init_rwsem(&ei->i_data_sem);
1368 init_rwsem(&ei->i_mmap_sem);
1369 inode_init_once(&ei->vfs_inode);
1370 ext4_fc_init_inode(&ei->vfs_inode);
1371 }
1372
init_inodecache(void)1373 static int __init init_inodecache(void)
1374 {
1375 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1376 sizeof(struct ext4_inode_info), 0,
1377 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1378 SLAB_ACCOUNT),
1379 offsetof(struct ext4_inode_info, i_data),
1380 sizeof_field(struct ext4_inode_info, i_data),
1381 init_once);
1382 if (ext4_inode_cachep == NULL)
1383 return -ENOMEM;
1384 return 0;
1385 }
1386
destroy_inodecache(void)1387 static void destroy_inodecache(void)
1388 {
1389 /*
1390 * Make sure all delayed rcu free inodes are flushed before we
1391 * destroy cache.
1392 */
1393 rcu_barrier();
1394 kmem_cache_destroy(ext4_inode_cachep);
1395 }
1396
ext4_clear_inode(struct inode * inode)1397 void ext4_clear_inode(struct inode *inode)
1398 {
1399 ext4_fc_del(inode);
1400 invalidate_inode_buffers(inode);
1401 clear_inode(inode);
1402 ext4_discard_preallocations(inode, 0);
1403 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1404 dquot_drop(inode);
1405 if (EXT4_I(inode)->jinode) {
1406 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1407 EXT4_I(inode)->jinode);
1408 jbd2_free_inode(EXT4_I(inode)->jinode);
1409 EXT4_I(inode)->jinode = NULL;
1410 }
1411 fscrypt_put_encryption_info(inode);
1412 fsverity_cleanup_inode(inode);
1413 }
1414
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1415 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1416 u64 ino, u32 generation)
1417 {
1418 struct inode *inode;
1419
1420 /*
1421 * Currently we don't know the generation for parent directory, so
1422 * a generation of 0 means "accept any"
1423 */
1424 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1425 if (IS_ERR(inode))
1426 return ERR_CAST(inode);
1427 if (generation && inode->i_generation != generation) {
1428 iput(inode);
1429 return ERR_PTR(-ESTALE);
1430 }
1431
1432 return inode;
1433 }
1434
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1435 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1436 int fh_len, int fh_type)
1437 {
1438 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1439 ext4_nfs_get_inode);
1440 }
1441
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1442 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1443 int fh_len, int fh_type)
1444 {
1445 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1446 ext4_nfs_get_inode);
1447 }
1448
ext4_nfs_commit_metadata(struct inode * inode)1449 static int ext4_nfs_commit_metadata(struct inode *inode)
1450 {
1451 struct writeback_control wbc = {
1452 .sync_mode = WB_SYNC_ALL
1453 };
1454
1455 trace_ext4_nfs_commit_metadata(inode);
1456 return ext4_write_inode(inode, &wbc);
1457 }
1458
1459 #ifdef CONFIG_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1460 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1461 {
1462 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1463 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1464 }
1465
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1466 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1467 void *fs_data)
1468 {
1469 handle_t *handle = fs_data;
1470 int res, res2, credits, retries = 0;
1471
1472 /*
1473 * Encrypting the root directory is not allowed because e2fsck expects
1474 * lost+found to exist and be unencrypted, and encrypting the root
1475 * directory would imply encrypting the lost+found directory as well as
1476 * the filename "lost+found" itself.
1477 */
1478 if (inode->i_ino == EXT4_ROOT_INO)
1479 return -EPERM;
1480
1481 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1482 return -EINVAL;
1483
1484 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1485 return -EOPNOTSUPP;
1486
1487 res = ext4_convert_inline_data(inode);
1488 if (res)
1489 return res;
1490
1491 /*
1492 * If a journal handle was specified, then the encryption context is
1493 * being set on a new inode via inheritance and is part of a larger
1494 * transaction to create the inode. Otherwise the encryption context is
1495 * being set on an existing inode in its own transaction. Only in the
1496 * latter case should the "retry on ENOSPC" logic be used.
1497 */
1498
1499 if (handle) {
1500 res = ext4_xattr_set_handle(handle, inode,
1501 EXT4_XATTR_INDEX_ENCRYPTION,
1502 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1503 ctx, len, 0);
1504 if (!res) {
1505 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1506 ext4_clear_inode_state(inode,
1507 EXT4_STATE_MAY_INLINE_DATA);
1508 /*
1509 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1510 * S_DAX may be disabled
1511 */
1512 ext4_set_inode_flags(inode, false);
1513 }
1514 return res;
1515 }
1516
1517 res = dquot_initialize(inode);
1518 if (res)
1519 return res;
1520 retry:
1521 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1522 &credits);
1523 if (res)
1524 return res;
1525
1526 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1527 if (IS_ERR(handle))
1528 return PTR_ERR(handle);
1529
1530 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1531 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1532 ctx, len, 0);
1533 if (!res) {
1534 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1535 /*
1536 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1537 * S_DAX may be disabled
1538 */
1539 ext4_set_inode_flags(inode, false);
1540 res = ext4_mark_inode_dirty(handle, inode);
1541 if (res)
1542 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1543 }
1544 res2 = ext4_journal_stop(handle);
1545
1546 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1547 goto retry;
1548 if (!res)
1549 res = res2;
1550 return res;
1551 }
1552
ext4_get_dummy_policy(struct super_block * sb)1553 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1554 {
1555 return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1556 }
1557
ext4_has_stable_inodes(struct super_block * sb)1558 static bool ext4_has_stable_inodes(struct super_block *sb)
1559 {
1560 return ext4_has_feature_stable_inodes(sb);
1561 }
1562
ext4_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)1563 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1564 int *ino_bits_ret, int *lblk_bits_ret)
1565 {
1566 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1567 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1568 }
1569
1570 static const struct fscrypt_operations ext4_cryptops = {
1571 .key_prefix = "ext4:",
1572 .get_context = ext4_get_context,
1573 .set_context = ext4_set_context,
1574 .get_dummy_policy = ext4_get_dummy_policy,
1575 .empty_dir = ext4_empty_dir,
1576 .max_namelen = EXT4_NAME_LEN,
1577 .has_stable_inodes = ext4_has_stable_inodes,
1578 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1579 };
1580 #endif
1581
1582 #ifdef CONFIG_QUOTA
1583 static const char * const quotatypes[] = INITQFNAMES;
1584 #define QTYPE2NAME(t) (quotatypes[t])
1585
1586 static int ext4_write_dquot(struct dquot *dquot);
1587 static int ext4_acquire_dquot(struct dquot *dquot);
1588 static int ext4_release_dquot(struct dquot *dquot);
1589 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1590 static int ext4_write_info(struct super_block *sb, int type);
1591 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1592 const struct path *path);
1593 static int ext4_quota_on_mount(struct super_block *sb, int type);
1594 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1595 size_t len, loff_t off);
1596 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1597 const char *data, size_t len, loff_t off);
1598 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1599 unsigned int flags);
1600 static int ext4_enable_quotas(struct super_block *sb);
1601
ext4_get_dquots(struct inode * inode)1602 static struct dquot **ext4_get_dquots(struct inode *inode)
1603 {
1604 return EXT4_I(inode)->i_dquot;
1605 }
1606
1607 static const struct dquot_operations ext4_quota_operations = {
1608 .get_reserved_space = ext4_get_reserved_space,
1609 .write_dquot = ext4_write_dquot,
1610 .acquire_dquot = ext4_acquire_dquot,
1611 .release_dquot = ext4_release_dquot,
1612 .mark_dirty = ext4_mark_dquot_dirty,
1613 .write_info = ext4_write_info,
1614 .alloc_dquot = dquot_alloc,
1615 .destroy_dquot = dquot_destroy,
1616 .get_projid = ext4_get_projid,
1617 .get_inode_usage = ext4_get_inode_usage,
1618 .get_next_id = dquot_get_next_id,
1619 };
1620
1621 static const struct quotactl_ops ext4_qctl_operations = {
1622 .quota_on = ext4_quota_on,
1623 .quota_off = ext4_quota_off,
1624 .quota_sync = dquot_quota_sync,
1625 .get_state = dquot_get_state,
1626 .set_info = dquot_set_dqinfo,
1627 .get_dqblk = dquot_get_dqblk,
1628 .set_dqblk = dquot_set_dqblk,
1629 .get_nextdqblk = dquot_get_next_dqblk,
1630 };
1631 #endif
1632
1633 static const struct super_operations ext4_sops = {
1634 .alloc_inode = ext4_alloc_inode,
1635 .free_inode = ext4_free_in_core_inode,
1636 .destroy_inode = ext4_destroy_inode,
1637 .write_inode = ext4_write_inode,
1638 .dirty_inode = ext4_dirty_inode,
1639 .drop_inode = ext4_drop_inode,
1640 .evict_inode = ext4_evict_inode,
1641 .put_super = ext4_put_super,
1642 .sync_fs = ext4_sync_fs,
1643 .freeze_fs = ext4_freeze,
1644 .unfreeze_fs = ext4_unfreeze,
1645 .statfs = ext4_statfs,
1646 .remount_fs = ext4_remount,
1647 .show_options = ext4_show_options,
1648 #ifdef CONFIG_QUOTA
1649 .quota_read = ext4_quota_read,
1650 .quota_write = ext4_quota_write,
1651 .get_dquots = ext4_get_dquots,
1652 #endif
1653 };
1654
1655 static const struct export_operations ext4_export_ops = {
1656 .fh_to_dentry = ext4_fh_to_dentry,
1657 .fh_to_parent = ext4_fh_to_parent,
1658 .get_parent = ext4_get_parent,
1659 .commit_metadata = ext4_nfs_commit_metadata,
1660 };
1661
1662 enum {
1663 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1664 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1665 Opt_nouid32, Opt_debug, Opt_removed,
1666 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1667 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1668 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1669 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1670 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1671 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1672 Opt_inlinecrypt,
1673 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1674 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1675 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1676 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1677 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1678 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1679 Opt_nowarn_on_error, Opt_mblk_io_submit,
1680 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1681 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1682 Opt_inode_readahead_blks, Opt_journal_ioprio,
1683 Opt_dioread_nolock, Opt_dioread_lock,
1684 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1685 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1686 Opt_prefetch_block_bitmaps,
1687 #ifdef CONFIG_EXT4_DEBUG
1688 Opt_fc_debug_max_replay, Opt_fc_debug_force
1689 #endif
1690 };
1691
1692 static const match_table_t tokens = {
1693 {Opt_bsd_df, "bsddf"},
1694 {Opt_minix_df, "minixdf"},
1695 {Opt_grpid, "grpid"},
1696 {Opt_grpid, "bsdgroups"},
1697 {Opt_nogrpid, "nogrpid"},
1698 {Opt_nogrpid, "sysvgroups"},
1699 {Opt_resgid, "resgid=%u"},
1700 {Opt_resuid, "resuid=%u"},
1701 {Opt_sb, "sb=%u"},
1702 {Opt_err_cont, "errors=continue"},
1703 {Opt_err_panic, "errors=panic"},
1704 {Opt_err_ro, "errors=remount-ro"},
1705 {Opt_nouid32, "nouid32"},
1706 {Opt_debug, "debug"},
1707 {Opt_removed, "oldalloc"},
1708 {Opt_removed, "orlov"},
1709 {Opt_user_xattr, "user_xattr"},
1710 {Opt_nouser_xattr, "nouser_xattr"},
1711 {Opt_acl, "acl"},
1712 {Opt_noacl, "noacl"},
1713 {Opt_noload, "norecovery"},
1714 {Opt_noload, "noload"},
1715 {Opt_removed, "nobh"},
1716 {Opt_removed, "bh"},
1717 {Opt_commit, "commit=%u"},
1718 {Opt_min_batch_time, "min_batch_time=%u"},
1719 {Opt_max_batch_time, "max_batch_time=%u"},
1720 {Opt_journal_dev, "journal_dev=%u"},
1721 {Opt_journal_path, "journal_path=%s"},
1722 {Opt_journal_checksum, "journal_checksum"},
1723 {Opt_nojournal_checksum, "nojournal_checksum"},
1724 {Opt_journal_async_commit, "journal_async_commit"},
1725 {Opt_abort, "abort"},
1726 {Opt_data_journal, "data=journal"},
1727 {Opt_data_ordered, "data=ordered"},
1728 {Opt_data_writeback, "data=writeback"},
1729 {Opt_data_err_abort, "data_err=abort"},
1730 {Opt_data_err_ignore, "data_err=ignore"},
1731 {Opt_offusrjquota, "usrjquota="},
1732 {Opt_usrjquota, "usrjquota=%s"},
1733 {Opt_offgrpjquota, "grpjquota="},
1734 {Opt_grpjquota, "grpjquota=%s"},
1735 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1736 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1737 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1738 {Opt_grpquota, "grpquota"},
1739 {Opt_noquota, "noquota"},
1740 {Opt_quota, "quota"},
1741 {Opt_usrquota, "usrquota"},
1742 {Opt_prjquota, "prjquota"},
1743 {Opt_barrier, "barrier=%u"},
1744 {Opt_barrier, "barrier"},
1745 {Opt_nobarrier, "nobarrier"},
1746 {Opt_i_version, "i_version"},
1747 {Opt_dax, "dax"},
1748 {Opt_dax_always, "dax=always"},
1749 {Opt_dax_inode, "dax=inode"},
1750 {Opt_dax_never, "dax=never"},
1751 {Opt_stripe, "stripe=%u"},
1752 {Opt_delalloc, "delalloc"},
1753 {Opt_warn_on_error, "warn_on_error"},
1754 {Opt_nowarn_on_error, "nowarn_on_error"},
1755 {Opt_lazytime, "lazytime"},
1756 {Opt_nolazytime, "nolazytime"},
1757 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1758 {Opt_nodelalloc, "nodelalloc"},
1759 {Opt_removed, "mblk_io_submit"},
1760 {Opt_removed, "nomblk_io_submit"},
1761 {Opt_block_validity, "block_validity"},
1762 {Opt_noblock_validity, "noblock_validity"},
1763 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1764 {Opt_journal_ioprio, "journal_ioprio=%u"},
1765 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1766 {Opt_auto_da_alloc, "auto_da_alloc"},
1767 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1768 {Opt_dioread_nolock, "dioread_nolock"},
1769 {Opt_dioread_lock, "nodioread_nolock"},
1770 {Opt_dioread_lock, "dioread_lock"},
1771 {Opt_discard, "discard"},
1772 {Opt_nodiscard, "nodiscard"},
1773 {Opt_init_itable, "init_itable=%u"},
1774 {Opt_init_itable, "init_itable"},
1775 {Opt_noinit_itable, "noinit_itable"},
1776 #ifdef CONFIG_EXT4_DEBUG
1777 {Opt_fc_debug_force, "fc_debug_force"},
1778 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1779 #endif
1780 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1781 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1782 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1783 {Opt_inlinecrypt, "inlinecrypt"},
1784 {Opt_nombcache, "nombcache"},
1785 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1786 {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
1787 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1788 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1789 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1790 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1791 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1792 {Opt_err, NULL},
1793 };
1794
get_sb_block(void ** data)1795 static ext4_fsblk_t get_sb_block(void **data)
1796 {
1797 ext4_fsblk_t sb_block;
1798 char *options = (char *) *data;
1799
1800 if (!options || strncmp(options, "sb=", 3) != 0)
1801 return 1; /* Default location */
1802
1803 options += 3;
1804 /* TODO: use simple_strtoll with >32bit ext4 */
1805 sb_block = simple_strtoul(options, &options, 0);
1806 if (*options && *options != ',') {
1807 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1808 (char *) *data);
1809 return 1;
1810 }
1811 if (*options == ',')
1812 options++;
1813 *data = (void *) options;
1814
1815 return sb_block;
1816 }
1817
1818 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1819 static const char deprecated_msg[] =
1820 "Mount option \"%s\" will be removed by %s\n"
1821 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1822
1823 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1824 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1825 {
1826 struct ext4_sb_info *sbi = EXT4_SB(sb);
1827 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1828 int ret = -1;
1829
1830 if (sb_any_quota_loaded(sb) && !old_qname) {
1831 ext4_msg(sb, KERN_ERR,
1832 "Cannot change journaled "
1833 "quota options when quota turned on");
1834 return -1;
1835 }
1836 if (ext4_has_feature_quota(sb)) {
1837 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1838 "ignored when QUOTA feature is enabled");
1839 return 1;
1840 }
1841 qname = match_strdup(args);
1842 if (!qname) {
1843 ext4_msg(sb, KERN_ERR,
1844 "Not enough memory for storing quotafile name");
1845 return -1;
1846 }
1847 if (old_qname) {
1848 if (strcmp(old_qname, qname) == 0)
1849 ret = 1;
1850 else
1851 ext4_msg(sb, KERN_ERR,
1852 "%s quota file already specified",
1853 QTYPE2NAME(qtype));
1854 goto errout;
1855 }
1856 if (strchr(qname, '/')) {
1857 ext4_msg(sb, KERN_ERR,
1858 "quotafile must be on filesystem root");
1859 goto errout;
1860 }
1861 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1862 set_opt(sb, QUOTA);
1863 return 1;
1864 errout:
1865 kfree(qname);
1866 return ret;
1867 }
1868
clear_qf_name(struct super_block * sb,int qtype)1869 static int clear_qf_name(struct super_block *sb, int qtype)
1870 {
1871
1872 struct ext4_sb_info *sbi = EXT4_SB(sb);
1873 char *old_qname = get_qf_name(sb, sbi, qtype);
1874
1875 if (sb_any_quota_loaded(sb) && old_qname) {
1876 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1877 " when quota turned on");
1878 return -1;
1879 }
1880 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1881 synchronize_rcu();
1882 kfree(old_qname);
1883 return 1;
1884 }
1885 #endif
1886
1887 #define MOPT_SET 0x0001
1888 #define MOPT_CLEAR 0x0002
1889 #define MOPT_NOSUPPORT 0x0004
1890 #define MOPT_EXPLICIT 0x0008
1891 #define MOPT_CLEAR_ERR 0x0010
1892 #define MOPT_GTE0 0x0020
1893 #ifdef CONFIG_QUOTA
1894 #define MOPT_Q 0
1895 #define MOPT_QFMT 0x0040
1896 #else
1897 #define MOPT_Q MOPT_NOSUPPORT
1898 #define MOPT_QFMT MOPT_NOSUPPORT
1899 #endif
1900 #define MOPT_DATAJ 0x0080
1901 #define MOPT_NO_EXT2 0x0100
1902 #define MOPT_NO_EXT3 0x0200
1903 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1904 #define MOPT_STRING 0x0400
1905 #define MOPT_SKIP 0x0800
1906 #define MOPT_2 0x1000
1907
1908 static const struct mount_opts {
1909 int token;
1910 int mount_opt;
1911 int flags;
1912 } ext4_mount_opts[] = {
1913 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1914 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1915 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1916 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1917 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1918 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1919 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1920 MOPT_EXT4_ONLY | MOPT_SET},
1921 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1922 MOPT_EXT4_ONLY | MOPT_CLEAR},
1923 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1924 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1925 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1926 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1927 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1928 MOPT_EXT4_ONLY | MOPT_CLEAR},
1929 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1930 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1931 {Opt_commit, 0, MOPT_NO_EXT2},
1932 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1933 MOPT_EXT4_ONLY | MOPT_CLEAR},
1934 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1935 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1936 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1937 EXT4_MOUNT_JOURNAL_CHECKSUM),
1938 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1939 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1940 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1941 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1942 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1943 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1944 MOPT_NO_EXT2},
1945 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1946 MOPT_NO_EXT2},
1947 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1948 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1949 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1950 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1951 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1952 {Opt_commit, 0, MOPT_GTE0},
1953 {Opt_max_batch_time, 0, MOPT_GTE0},
1954 {Opt_min_batch_time, 0, MOPT_GTE0},
1955 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1956 {Opt_init_itable, 0, MOPT_GTE0},
1957 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1958 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1959 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1960 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1961 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1962 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1963 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1964 {Opt_stripe, 0, MOPT_GTE0},
1965 {Opt_resuid, 0, MOPT_GTE0},
1966 {Opt_resgid, 0, MOPT_GTE0},
1967 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1968 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1969 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1970 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1971 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1972 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1973 MOPT_NO_EXT2 | MOPT_DATAJ},
1974 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1975 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1976 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1977 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1978 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1979 #else
1980 {Opt_acl, 0, MOPT_NOSUPPORT},
1981 {Opt_noacl, 0, MOPT_NOSUPPORT},
1982 #endif
1983 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1984 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1985 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1986 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1987 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1988 MOPT_SET | MOPT_Q},
1989 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1990 MOPT_SET | MOPT_Q},
1991 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1992 MOPT_SET | MOPT_Q},
1993 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1994 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1995 MOPT_CLEAR | MOPT_Q},
1996 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
1997 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
1998 {Opt_offusrjquota, 0, MOPT_Q},
1999 {Opt_offgrpjquota, 0, MOPT_Q},
2000 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2001 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2002 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2003 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
2004 {Opt_test_dummy_encryption, 0, MOPT_STRING},
2005 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2006 {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
2007 MOPT_SET},
2008 #ifdef CONFIG_EXT4_DEBUG
2009 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2010 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2011 {Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2012 #endif
2013 {Opt_err, 0, 0}
2014 };
2015
2016 #ifdef CONFIG_UNICODE
2017 static const struct ext4_sb_encodings {
2018 __u16 magic;
2019 char *name;
2020 char *version;
2021 } ext4_sb_encoding_map[] = {
2022 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2023 };
2024
ext4_sb_read_encoding(const struct ext4_super_block * es,const struct ext4_sb_encodings ** encoding,__u16 * flags)2025 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2026 const struct ext4_sb_encodings **encoding,
2027 __u16 *flags)
2028 {
2029 __u16 magic = le16_to_cpu(es->s_encoding);
2030 int i;
2031
2032 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2033 if (magic == ext4_sb_encoding_map[i].magic)
2034 break;
2035
2036 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2037 return -EINVAL;
2038
2039 *encoding = &ext4_sb_encoding_map[i];
2040 *flags = le16_to_cpu(es->s_encoding_flags);
2041
2042 return 0;
2043 }
2044 #endif
2045
ext4_set_test_dummy_encryption(struct super_block * sb,const char * opt,const substring_t * arg,bool is_remount)2046 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2047 const char *opt,
2048 const substring_t *arg,
2049 bool is_remount)
2050 {
2051 #ifdef CONFIG_FS_ENCRYPTION
2052 struct ext4_sb_info *sbi = EXT4_SB(sb);
2053 int err;
2054
2055 if (!ext4_has_feature_encrypt(sb)) {
2056 ext4_msg(sb, KERN_WARNING,
2057 "test_dummy_encryption requires encrypt feature");
2058 return -1;
2059 }
2060
2061 /*
2062 * This mount option is just for testing, and it's not worthwhile to
2063 * implement the extra complexity (e.g. RCU protection) that would be
2064 * needed to allow it to be set or changed during remount. We do allow
2065 * it to be specified during remount, but only if there is no change.
2066 */
2067 if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2068 ext4_msg(sb, KERN_WARNING,
2069 "Can't set test_dummy_encryption on remount");
2070 return -1;
2071 }
2072 err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2073 &sbi->s_dummy_enc_policy);
2074 if (err) {
2075 if (err == -EEXIST)
2076 ext4_msg(sb, KERN_WARNING,
2077 "Can't change test_dummy_encryption on remount");
2078 else if (err == -EINVAL)
2079 ext4_msg(sb, KERN_WARNING,
2080 "Value of option \"%s\" is unrecognized", opt);
2081 else
2082 ext4_msg(sb, KERN_WARNING,
2083 "Error processing option \"%s\" [%d]",
2084 opt, err);
2085 return -1;
2086 }
2087 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2088 return 1;
2089 #else
2090 ext4_msg(sb, KERN_WARNING,
2091 "test_dummy_encryption option not supported");
2092 return -1;
2093
2094 #endif
2095 }
2096
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2097 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2098 substring_t *args, unsigned long *journal_devnum,
2099 unsigned int *journal_ioprio, int is_remount)
2100 {
2101 struct ext4_sb_info *sbi = EXT4_SB(sb);
2102 const struct mount_opts *m;
2103 kuid_t uid;
2104 kgid_t gid;
2105 int arg = 0;
2106
2107 #ifdef CONFIG_QUOTA
2108 if (token == Opt_usrjquota)
2109 return set_qf_name(sb, USRQUOTA, &args[0]);
2110 else if (token == Opt_grpjquota)
2111 return set_qf_name(sb, GRPQUOTA, &args[0]);
2112 else if (token == Opt_offusrjquota)
2113 return clear_qf_name(sb, USRQUOTA);
2114 else if (token == Opt_offgrpjquota)
2115 return clear_qf_name(sb, GRPQUOTA);
2116 #endif
2117 switch (token) {
2118 case Opt_noacl:
2119 case Opt_nouser_xattr:
2120 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2121 break;
2122 case Opt_sb:
2123 return 1; /* handled by get_sb_block() */
2124 case Opt_removed:
2125 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2126 return 1;
2127 case Opt_abort:
2128 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2129 return 1;
2130 case Opt_i_version:
2131 sb->s_flags |= SB_I_VERSION;
2132 return 1;
2133 case Opt_lazytime:
2134 sb->s_flags |= SB_LAZYTIME;
2135 return 1;
2136 case Opt_nolazytime:
2137 sb->s_flags &= ~SB_LAZYTIME;
2138 return 1;
2139 case Opt_inlinecrypt:
2140 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2141 sb->s_flags |= SB_INLINECRYPT;
2142 #else
2143 ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2144 #endif
2145 return 1;
2146 }
2147
2148 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2149 if (token == m->token)
2150 break;
2151
2152 if (m->token == Opt_err) {
2153 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2154 "or missing value", opt);
2155 return -1;
2156 }
2157
2158 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2159 ext4_msg(sb, KERN_ERR,
2160 "Mount option \"%s\" incompatible with ext2", opt);
2161 return -1;
2162 }
2163 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2164 ext4_msg(sb, KERN_ERR,
2165 "Mount option \"%s\" incompatible with ext3", opt);
2166 return -1;
2167 }
2168
2169 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2170 return -1;
2171 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2172 return -1;
2173 if (m->flags & MOPT_EXPLICIT) {
2174 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2175 set_opt2(sb, EXPLICIT_DELALLOC);
2176 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2177 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2178 } else
2179 return -1;
2180 }
2181 if (m->flags & MOPT_CLEAR_ERR)
2182 clear_opt(sb, ERRORS_MASK);
2183 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2184 ext4_msg(sb, KERN_ERR, "Cannot change quota "
2185 "options when quota turned on");
2186 return -1;
2187 }
2188
2189 if (m->flags & MOPT_NOSUPPORT) {
2190 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2191 } else if (token == Opt_commit) {
2192 if (arg == 0)
2193 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2194 else if (arg > INT_MAX / HZ) {
2195 ext4_msg(sb, KERN_ERR,
2196 "Invalid commit interval %d, "
2197 "must be smaller than %d",
2198 arg, INT_MAX / HZ);
2199 return -1;
2200 }
2201 sbi->s_commit_interval = HZ * arg;
2202 } else if (token == Opt_debug_want_extra_isize) {
2203 if ((arg & 1) ||
2204 (arg < 4) ||
2205 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2206 ext4_msg(sb, KERN_ERR,
2207 "Invalid want_extra_isize %d", arg);
2208 return -1;
2209 }
2210 sbi->s_want_extra_isize = arg;
2211 } else if (token == Opt_max_batch_time) {
2212 sbi->s_max_batch_time = arg;
2213 } else if (token == Opt_min_batch_time) {
2214 sbi->s_min_batch_time = arg;
2215 } else if (token == Opt_inode_readahead_blks) {
2216 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2217 ext4_msg(sb, KERN_ERR,
2218 "EXT4-fs: inode_readahead_blks must be "
2219 "0 or a power of 2 smaller than 2^31");
2220 return -1;
2221 }
2222 sbi->s_inode_readahead_blks = arg;
2223 } else if (token == Opt_init_itable) {
2224 set_opt(sb, INIT_INODE_TABLE);
2225 if (!args->from)
2226 arg = EXT4_DEF_LI_WAIT_MULT;
2227 sbi->s_li_wait_mult = arg;
2228 } else if (token == Opt_max_dir_size_kb) {
2229 sbi->s_max_dir_size_kb = arg;
2230 #ifdef CONFIG_EXT4_DEBUG
2231 } else if (token == Opt_fc_debug_max_replay) {
2232 sbi->s_fc_debug_max_replay = arg;
2233 #endif
2234 } else if (token == Opt_stripe) {
2235 sbi->s_stripe = arg;
2236 } else if (token == Opt_resuid) {
2237 uid = make_kuid(current_user_ns(), arg);
2238 if (!uid_valid(uid)) {
2239 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2240 return -1;
2241 }
2242 sbi->s_resuid = uid;
2243 } else if (token == Opt_resgid) {
2244 gid = make_kgid(current_user_ns(), arg);
2245 if (!gid_valid(gid)) {
2246 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2247 return -1;
2248 }
2249 sbi->s_resgid = gid;
2250 } else if (token == Opt_journal_dev) {
2251 if (is_remount) {
2252 ext4_msg(sb, KERN_ERR,
2253 "Cannot specify journal on remount");
2254 return -1;
2255 }
2256 *journal_devnum = arg;
2257 } else if (token == Opt_journal_path) {
2258 char *journal_path;
2259 struct inode *journal_inode;
2260 struct path path;
2261 int error;
2262
2263 if (is_remount) {
2264 ext4_msg(sb, KERN_ERR,
2265 "Cannot specify journal on remount");
2266 return -1;
2267 }
2268 journal_path = match_strdup(&args[0]);
2269 if (!journal_path) {
2270 ext4_msg(sb, KERN_ERR, "error: could not dup "
2271 "journal device string");
2272 return -1;
2273 }
2274
2275 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2276 if (error) {
2277 ext4_msg(sb, KERN_ERR, "error: could not find "
2278 "journal device path: error %d", error);
2279 kfree(journal_path);
2280 return -1;
2281 }
2282
2283 journal_inode = d_inode(path.dentry);
2284 if (!S_ISBLK(journal_inode->i_mode)) {
2285 ext4_msg(sb, KERN_ERR, "error: journal path %s "
2286 "is not a block device", journal_path);
2287 path_put(&path);
2288 kfree(journal_path);
2289 return -1;
2290 }
2291
2292 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
2293 path_put(&path);
2294 kfree(journal_path);
2295 } else if (token == Opt_journal_ioprio) {
2296 if (arg > 7) {
2297 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2298 " (must be 0-7)");
2299 return -1;
2300 }
2301 *journal_ioprio =
2302 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2303 } else if (token == Opt_test_dummy_encryption) {
2304 return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2305 is_remount);
2306 } else if (m->flags & MOPT_DATAJ) {
2307 if (is_remount) {
2308 if (!sbi->s_journal)
2309 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2310 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2311 ext4_msg(sb, KERN_ERR,
2312 "Cannot change data mode on remount");
2313 return -1;
2314 }
2315 } else {
2316 clear_opt(sb, DATA_FLAGS);
2317 sbi->s_mount_opt |= m->mount_opt;
2318 }
2319 #ifdef CONFIG_QUOTA
2320 } else if (m->flags & MOPT_QFMT) {
2321 if (sb_any_quota_loaded(sb) &&
2322 sbi->s_jquota_fmt != m->mount_opt) {
2323 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2324 "quota options when quota turned on");
2325 return -1;
2326 }
2327 if (ext4_has_feature_quota(sb)) {
2328 ext4_msg(sb, KERN_INFO,
2329 "Quota format mount options ignored "
2330 "when QUOTA feature is enabled");
2331 return 1;
2332 }
2333 sbi->s_jquota_fmt = m->mount_opt;
2334 #endif
2335 } else if (token == Opt_dax || token == Opt_dax_always ||
2336 token == Opt_dax_inode || token == Opt_dax_never) {
2337 #ifdef CONFIG_FS_DAX
2338 switch (token) {
2339 case Opt_dax:
2340 case Opt_dax_always:
2341 if (is_remount &&
2342 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2343 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2344 fail_dax_change_remount:
2345 ext4_msg(sb, KERN_ERR, "can't change "
2346 "dax mount option while remounting");
2347 return -1;
2348 }
2349 if (is_remount &&
2350 (test_opt(sb, DATA_FLAGS) ==
2351 EXT4_MOUNT_JOURNAL_DATA)) {
2352 ext4_msg(sb, KERN_ERR, "can't mount with "
2353 "both data=journal and dax");
2354 return -1;
2355 }
2356 ext4_msg(sb, KERN_WARNING,
2357 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2358 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2359 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2360 break;
2361 case Opt_dax_never:
2362 if (is_remount &&
2363 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2364 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2365 goto fail_dax_change_remount;
2366 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2367 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2368 break;
2369 case Opt_dax_inode:
2370 if (is_remount &&
2371 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2372 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2373 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2374 goto fail_dax_change_remount;
2375 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2376 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2377 /* Strictly for printing options */
2378 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2379 break;
2380 }
2381 #else
2382 ext4_msg(sb, KERN_INFO, "dax option not supported");
2383 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2384 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2385 return -1;
2386 #endif
2387 } else if (token == Opt_data_err_abort) {
2388 sbi->s_mount_opt |= m->mount_opt;
2389 } else if (token == Opt_data_err_ignore) {
2390 sbi->s_mount_opt &= ~m->mount_opt;
2391 } else {
2392 if (!args->from)
2393 arg = 1;
2394 if (m->flags & MOPT_CLEAR)
2395 arg = !arg;
2396 else if (unlikely(!(m->flags & MOPT_SET))) {
2397 ext4_msg(sb, KERN_WARNING,
2398 "buggy handling of option %s", opt);
2399 WARN_ON(1);
2400 return -1;
2401 }
2402 if (m->flags & MOPT_2) {
2403 if (arg != 0)
2404 sbi->s_mount_opt2 |= m->mount_opt;
2405 else
2406 sbi->s_mount_opt2 &= ~m->mount_opt;
2407 } else {
2408 if (arg != 0)
2409 sbi->s_mount_opt |= m->mount_opt;
2410 else
2411 sbi->s_mount_opt &= ~m->mount_opt;
2412 }
2413 }
2414 return 1;
2415 }
2416
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2417 static int parse_options(char *options, struct super_block *sb,
2418 unsigned long *journal_devnum,
2419 unsigned int *journal_ioprio,
2420 int is_remount)
2421 {
2422 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2423 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2424 substring_t args[MAX_OPT_ARGS];
2425 int token;
2426
2427 if (!options)
2428 return 1;
2429
2430 while ((p = strsep(&options, ",")) != NULL) {
2431 if (!*p)
2432 continue;
2433 /*
2434 * Initialize args struct so we know whether arg was
2435 * found; some options take optional arguments.
2436 */
2437 args[0].to = args[0].from = NULL;
2438 token = match_token(p, tokens, args);
2439 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2440 journal_ioprio, is_remount) < 0)
2441 return 0;
2442 }
2443 #ifdef CONFIG_QUOTA
2444 /*
2445 * We do the test below only for project quotas. 'usrquota' and
2446 * 'grpquota' mount options are allowed even without quota feature
2447 * to support legacy quotas in quota files.
2448 */
2449 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2450 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2451 "Cannot enable project quota enforcement.");
2452 return 0;
2453 }
2454 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2455 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2456 if (usr_qf_name || grp_qf_name) {
2457 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2458 clear_opt(sb, USRQUOTA);
2459
2460 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2461 clear_opt(sb, GRPQUOTA);
2462
2463 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2464 ext4_msg(sb, KERN_ERR, "old and new quota "
2465 "format mixing");
2466 return 0;
2467 }
2468
2469 if (!sbi->s_jquota_fmt) {
2470 ext4_msg(sb, KERN_ERR, "journaled quota format "
2471 "not specified");
2472 return 0;
2473 }
2474 }
2475 #endif
2476 if (test_opt(sb, DIOREAD_NOLOCK)) {
2477 int blocksize =
2478 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2479 if (blocksize < PAGE_SIZE)
2480 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2481 "experimental mount option 'dioread_nolock' "
2482 "for blocksize < PAGE_SIZE");
2483 }
2484 return 1;
2485 }
2486
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2487 static inline void ext4_show_quota_options(struct seq_file *seq,
2488 struct super_block *sb)
2489 {
2490 #if defined(CONFIG_QUOTA)
2491 struct ext4_sb_info *sbi = EXT4_SB(sb);
2492 char *usr_qf_name, *grp_qf_name;
2493
2494 if (sbi->s_jquota_fmt) {
2495 char *fmtname = "";
2496
2497 switch (sbi->s_jquota_fmt) {
2498 case QFMT_VFS_OLD:
2499 fmtname = "vfsold";
2500 break;
2501 case QFMT_VFS_V0:
2502 fmtname = "vfsv0";
2503 break;
2504 case QFMT_VFS_V1:
2505 fmtname = "vfsv1";
2506 break;
2507 }
2508 seq_printf(seq, ",jqfmt=%s", fmtname);
2509 }
2510
2511 rcu_read_lock();
2512 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2513 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2514 if (usr_qf_name)
2515 seq_show_option(seq, "usrjquota", usr_qf_name);
2516 if (grp_qf_name)
2517 seq_show_option(seq, "grpjquota", grp_qf_name);
2518 rcu_read_unlock();
2519 #endif
2520 }
2521
token2str(int token)2522 static const char *token2str(int token)
2523 {
2524 const struct match_token *t;
2525
2526 for (t = tokens; t->token != Opt_err; t++)
2527 if (t->token == token && !strchr(t->pattern, '='))
2528 break;
2529 return t->pattern;
2530 }
2531
2532 /*
2533 * Show an option if
2534 * - it's set to a non-default value OR
2535 * - if the per-sb default is different from the global default
2536 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2537 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2538 int nodefs)
2539 {
2540 struct ext4_sb_info *sbi = EXT4_SB(sb);
2541 struct ext4_super_block *es = sbi->s_es;
2542 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2543 const struct mount_opts *m;
2544 char sep = nodefs ? '\n' : ',';
2545
2546 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2547 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2548
2549 if (sbi->s_sb_block != 1)
2550 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2551
2552 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2553 int want_set = m->flags & MOPT_SET;
2554 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2555 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2556 continue;
2557 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2558 continue; /* skip if same as the default */
2559 if ((want_set &&
2560 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2561 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2562 continue; /* select Opt_noFoo vs Opt_Foo */
2563 SEQ_OPTS_PRINT("%s", token2str(m->token));
2564 }
2565
2566 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2567 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2568 SEQ_OPTS_PRINT("resuid=%u",
2569 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2570 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2571 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2572 SEQ_OPTS_PRINT("resgid=%u",
2573 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2574 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2575 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2576 SEQ_OPTS_PUTS("errors=remount-ro");
2577 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2578 SEQ_OPTS_PUTS("errors=continue");
2579 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2580 SEQ_OPTS_PUTS("errors=panic");
2581 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2582 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2583 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2584 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2585 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2586 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2587 if (sb->s_flags & SB_I_VERSION)
2588 SEQ_OPTS_PUTS("i_version");
2589 if (nodefs || sbi->s_stripe)
2590 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2591 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2592 (sbi->s_mount_opt ^ def_mount_opt)) {
2593 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2594 SEQ_OPTS_PUTS("data=journal");
2595 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2596 SEQ_OPTS_PUTS("data=ordered");
2597 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2598 SEQ_OPTS_PUTS("data=writeback");
2599 }
2600 if (nodefs ||
2601 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2602 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2603 sbi->s_inode_readahead_blks);
2604
2605 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2606 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2607 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2608 if (nodefs || sbi->s_max_dir_size_kb)
2609 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2610 if (test_opt(sb, DATA_ERR_ABORT))
2611 SEQ_OPTS_PUTS("data_err=abort");
2612
2613 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2614
2615 if (sb->s_flags & SB_INLINECRYPT)
2616 SEQ_OPTS_PUTS("inlinecrypt");
2617
2618 if (test_opt(sb, DAX_ALWAYS)) {
2619 if (IS_EXT2_SB(sb))
2620 SEQ_OPTS_PUTS("dax");
2621 else
2622 SEQ_OPTS_PUTS("dax=always");
2623 } else if (test_opt2(sb, DAX_NEVER)) {
2624 SEQ_OPTS_PUTS("dax=never");
2625 } else if (test_opt2(sb, DAX_INODE)) {
2626 SEQ_OPTS_PUTS("dax=inode");
2627 }
2628 ext4_show_quota_options(seq, sb);
2629 return 0;
2630 }
2631
ext4_show_options(struct seq_file * seq,struct dentry * root)2632 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2633 {
2634 return _ext4_show_options(seq, root->d_sb, 0);
2635 }
2636
ext4_seq_options_show(struct seq_file * seq,void * offset)2637 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2638 {
2639 struct super_block *sb = seq->private;
2640 int rc;
2641
2642 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2643 rc = _ext4_show_options(seq, sb, 1);
2644 seq_puts(seq, "\n");
2645 return rc;
2646 }
2647
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2648 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2649 int read_only)
2650 {
2651 struct ext4_sb_info *sbi = EXT4_SB(sb);
2652 int err = 0;
2653
2654 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2655 ext4_msg(sb, KERN_ERR, "revision level too high, "
2656 "forcing read-only mode");
2657 err = -EROFS;
2658 goto done;
2659 }
2660 if (read_only)
2661 goto done;
2662 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2663 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2664 "running e2fsck is recommended");
2665 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2666 ext4_msg(sb, KERN_WARNING,
2667 "warning: mounting fs with errors, "
2668 "running e2fsck is recommended");
2669 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2670 le16_to_cpu(es->s_mnt_count) >=
2671 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2672 ext4_msg(sb, KERN_WARNING,
2673 "warning: maximal mount count reached, "
2674 "running e2fsck is recommended");
2675 else if (le32_to_cpu(es->s_checkinterval) &&
2676 (ext4_get_tstamp(es, s_lastcheck) +
2677 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2678 ext4_msg(sb, KERN_WARNING,
2679 "warning: checktime reached, "
2680 "running e2fsck is recommended");
2681 if (!sbi->s_journal)
2682 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2683 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2684 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2685 le16_add_cpu(&es->s_mnt_count, 1);
2686 ext4_update_tstamp(es, s_mtime);
2687 if (sbi->s_journal)
2688 ext4_set_feature_journal_needs_recovery(sb);
2689
2690 err = ext4_commit_super(sb);
2691 done:
2692 if (test_opt(sb, DEBUG))
2693 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2694 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2695 sb->s_blocksize,
2696 sbi->s_groups_count,
2697 EXT4_BLOCKS_PER_GROUP(sb),
2698 EXT4_INODES_PER_GROUP(sb),
2699 sbi->s_mount_opt, sbi->s_mount_opt2);
2700
2701 cleancache_init_fs(sb);
2702 return err;
2703 }
2704
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2705 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2706 {
2707 struct ext4_sb_info *sbi = EXT4_SB(sb);
2708 struct flex_groups **old_groups, **new_groups;
2709 int size, i, j;
2710
2711 if (!sbi->s_log_groups_per_flex)
2712 return 0;
2713
2714 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2715 if (size <= sbi->s_flex_groups_allocated)
2716 return 0;
2717
2718 new_groups = kvzalloc(roundup_pow_of_two(size *
2719 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2720 if (!new_groups) {
2721 ext4_msg(sb, KERN_ERR,
2722 "not enough memory for %d flex group pointers", size);
2723 return -ENOMEM;
2724 }
2725 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2726 new_groups[i] = kvzalloc(roundup_pow_of_two(
2727 sizeof(struct flex_groups)),
2728 GFP_KERNEL);
2729 if (!new_groups[i]) {
2730 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2731 kvfree(new_groups[j]);
2732 kvfree(new_groups);
2733 ext4_msg(sb, KERN_ERR,
2734 "not enough memory for %d flex groups", size);
2735 return -ENOMEM;
2736 }
2737 }
2738 rcu_read_lock();
2739 old_groups = rcu_dereference(sbi->s_flex_groups);
2740 if (old_groups)
2741 memcpy(new_groups, old_groups,
2742 (sbi->s_flex_groups_allocated *
2743 sizeof(struct flex_groups *)));
2744 rcu_read_unlock();
2745 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2746 sbi->s_flex_groups_allocated = size;
2747 if (old_groups)
2748 ext4_kvfree_array_rcu(old_groups);
2749 return 0;
2750 }
2751
ext4_fill_flex_info(struct super_block * sb)2752 static int ext4_fill_flex_info(struct super_block *sb)
2753 {
2754 struct ext4_sb_info *sbi = EXT4_SB(sb);
2755 struct ext4_group_desc *gdp = NULL;
2756 struct flex_groups *fg;
2757 ext4_group_t flex_group;
2758 int i, err;
2759
2760 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2761 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2762 sbi->s_log_groups_per_flex = 0;
2763 return 1;
2764 }
2765
2766 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2767 if (err)
2768 goto failed;
2769
2770 for (i = 0; i < sbi->s_groups_count; i++) {
2771 gdp = ext4_get_group_desc(sb, i, NULL);
2772
2773 flex_group = ext4_flex_group(sbi, i);
2774 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2775 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2776 atomic64_add(ext4_free_group_clusters(sb, gdp),
2777 &fg->free_clusters);
2778 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2779 }
2780
2781 return 1;
2782 failed:
2783 return 0;
2784 }
2785
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2786 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2787 struct ext4_group_desc *gdp)
2788 {
2789 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2790 __u16 crc = 0;
2791 __le32 le_group = cpu_to_le32(block_group);
2792 struct ext4_sb_info *sbi = EXT4_SB(sb);
2793
2794 if (ext4_has_metadata_csum(sbi->s_sb)) {
2795 /* Use new metadata_csum algorithm */
2796 __u32 csum32;
2797 __u16 dummy_csum = 0;
2798
2799 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2800 sizeof(le_group));
2801 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2802 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2803 sizeof(dummy_csum));
2804 offset += sizeof(dummy_csum);
2805 if (offset < sbi->s_desc_size)
2806 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2807 sbi->s_desc_size - offset);
2808
2809 crc = csum32 & 0xFFFF;
2810 goto out;
2811 }
2812
2813 /* old crc16 code */
2814 if (!ext4_has_feature_gdt_csum(sb))
2815 return 0;
2816
2817 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2818 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2819 crc = crc16(crc, (__u8 *)gdp, offset);
2820 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2821 /* for checksum of struct ext4_group_desc do the rest...*/
2822 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
2823 crc = crc16(crc, (__u8 *)gdp + offset,
2824 sbi->s_desc_size - offset);
2825
2826 out:
2827 return cpu_to_le16(crc);
2828 }
2829
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2830 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2831 struct ext4_group_desc *gdp)
2832 {
2833 if (ext4_has_group_desc_csum(sb) &&
2834 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2835 return 0;
2836
2837 return 1;
2838 }
2839
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2840 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2841 struct ext4_group_desc *gdp)
2842 {
2843 if (!ext4_has_group_desc_csum(sb))
2844 return;
2845 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2846 }
2847
2848 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2849 static int ext4_check_descriptors(struct super_block *sb,
2850 ext4_fsblk_t sb_block,
2851 ext4_group_t *first_not_zeroed)
2852 {
2853 struct ext4_sb_info *sbi = EXT4_SB(sb);
2854 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2855 ext4_fsblk_t last_block;
2856 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2857 ext4_fsblk_t block_bitmap;
2858 ext4_fsblk_t inode_bitmap;
2859 ext4_fsblk_t inode_table;
2860 int flexbg_flag = 0;
2861 ext4_group_t i, grp = sbi->s_groups_count;
2862
2863 if (ext4_has_feature_flex_bg(sb))
2864 flexbg_flag = 1;
2865
2866 ext4_debug("Checking group descriptors");
2867
2868 for (i = 0; i < sbi->s_groups_count; i++) {
2869 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2870
2871 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2872 last_block = ext4_blocks_count(sbi->s_es) - 1;
2873 else
2874 last_block = first_block +
2875 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2876
2877 if ((grp == sbi->s_groups_count) &&
2878 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2879 grp = i;
2880
2881 block_bitmap = ext4_block_bitmap(sb, gdp);
2882 if (block_bitmap == sb_block) {
2883 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2884 "Block bitmap for group %u overlaps "
2885 "superblock", i);
2886 if (!sb_rdonly(sb))
2887 return 0;
2888 }
2889 if (block_bitmap >= sb_block + 1 &&
2890 block_bitmap <= last_bg_block) {
2891 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2892 "Block bitmap for group %u overlaps "
2893 "block group descriptors", i);
2894 if (!sb_rdonly(sb))
2895 return 0;
2896 }
2897 if (block_bitmap < first_block || block_bitmap > last_block) {
2898 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2899 "Block bitmap for group %u not in group "
2900 "(block %llu)!", i, block_bitmap);
2901 return 0;
2902 }
2903 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2904 if (inode_bitmap == sb_block) {
2905 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2906 "Inode bitmap for group %u overlaps "
2907 "superblock", i);
2908 if (!sb_rdonly(sb))
2909 return 0;
2910 }
2911 if (inode_bitmap >= sb_block + 1 &&
2912 inode_bitmap <= last_bg_block) {
2913 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2914 "Inode bitmap for group %u overlaps "
2915 "block group descriptors", i);
2916 if (!sb_rdonly(sb))
2917 return 0;
2918 }
2919 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2920 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2921 "Inode bitmap for group %u not in group "
2922 "(block %llu)!", i, inode_bitmap);
2923 return 0;
2924 }
2925 inode_table = ext4_inode_table(sb, gdp);
2926 if (inode_table == sb_block) {
2927 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2928 "Inode table for group %u overlaps "
2929 "superblock", i);
2930 if (!sb_rdonly(sb))
2931 return 0;
2932 }
2933 if (inode_table >= sb_block + 1 &&
2934 inode_table <= last_bg_block) {
2935 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2936 "Inode table for group %u overlaps "
2937 "block group descriptors", i);
2938 if (!sb_rdonly(sb))
2939 return 0;
2940 }
2941 if (inode_table < first_block ||
2942 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2943 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2944 "Inode table for group %u not in group "
2945 "(block %llu)!", i, inode_table);
2946 return 0;
2947 }
2948 ext4_lock_group(sb, i);
2949 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2950 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2951 "Checksum for group %u failed (%u!=%u)",
2952 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2953 gdp)), le16_to_cpu(gdp->bg_checksum));
2954 if (!sb_rdonly(sb)) {
2955 ext4_unlock_group(sb, i);
2956 return 0;
2957 }
2958 }
2959 ext4_unlock_group(sb, i);
2960 if (!flexbg_flag)
2961 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2962 }
2963 if (NULL != first_not_zeroed)
2964 *first_not_zeroed = grp;
2965 return 1;
2966 }
2967
2968 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2969 * the superblock) which were deleted from all directories, but held open by
2970 * a process at the time of a crash. We walk the list and try to delete these
2971 * inodes at recovery time (only with a read-write filesystem).
2972 *
2973 * In order to keep the orphan inode chain consistent during traversal (in
2974 * case of crash during recovery), we link each inode into the superblock
2975 * orphan list_head and handle it the same way as an inode deletion during
2976 * normal operation (which journals the operations for us).
2977 *
2978 * We only do an iget() and an iput() on each inode, which is very safe if we
2979 * accidentally point at an in-use or already deleted inode. The worst that
2980 * can happen in this case is that we get a "bit already cleared" message from
2981 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2982 * e2fsck was run on this filesystem, and it must have already done the orphan
2983 * inode cleanup for us, so we can safely abort without any further action.
2984 */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2985 static void ext4_orphan_cleanup(struct super_block *sb,
2986 struct ext4_super_block *es)
2987 {
2988 unsigned int s_flags = sb->s_flags;
2989 int ret, nr_orphans = 0, nr_truncates = 0;
2990 #ifdef CONFIG_QUOTA
2991 int quota_update = 0;
2992 int i;
2993 #endif
2994 if (!es->s_last_orphan) {
2995 jbd_debug(4, "no orphan inodes to clean up\n");
2996 return;
2997 }
2998
2999 if (bdev_read_only(sb->s_bdev)) {
3000 ext4_msg(sb, KERN_ERR, "write access "
3001 "unavailable, skipping orphan cleanup");
3002 return;
3003 }
3004
3005 /* Check if feature set would not allow a r/w mount */
3006 if (!ext4_feature_set_ok(sb, 0)) {
3007 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3008 "unknown ROCOMPAT features");
3009 return;
3010 }
3011
3012 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3013 /* don't clear list on RO mount w/ errors */
3014 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3015 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3016 "clearing orphan list.\n");
3017 es->s_last_orphan = 0;
3018 }
3019 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3020 return;
3021 }
3022
3023 if (s_flags & SB_RDONLY) {
3024 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3025 sb->s_flags &= ~SB_RDONLY;
3026 }
3027 #ifdef CONFIG_QUOTA
3028 /*
3029 * Turn on quotas which were not enabled for read-only mounts if
3030 * filesystem has quota feature, so that they are updated correctly.
3031 */
3032 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3033 int ret = ext4_enable_quotas(sb);
3034
3035 if (!ret)
3036 quota_update = 1;
3037 else
3038 ext4_msg(sb, KERN_ERR,
3039 "Cannot turn on quotas: error %d", ret);
3040 }
3041
3042 /* Turn on journaled quotas used for old sytle */
3043 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3044 if (EXT4_SB(sb)->s_qf_names[i]) {
3045 int ret = ext4_quota_on_mount(sb, i);
3046
3047 if (!ret)
3048 quota_update = 1;
3049 else
3050 ext4_msg(sb, KERN_ERR,
3051 "Cannot turn on journaled "
3052 "quota: type %d: error %d", i, ret);
3053 }
3054 }
3055 #endif
3056
3057 while (es->s_last_orphan) {
3058 struct inode *inode;
3059
3060 /*
3061 * We may have encountered an error during cleanup; if
3062 * so, skip the rest.
3063 */
3064 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3065 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3066 es->s_last_orphan = 0;
3067 break;
3068 }
3069
3070 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3071 if (IS_ERR(inode)) {
3072 es->s_last_orphan = 0;
3073 break;
3074 }
3075
3076 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3077 dquot_initialize(inode);
3078 if (inode->i_nlink) {
3079 if (test_opt(sb, DEBUG))
3080 ext4_msg(sb, KERN_DEBUG,
3081 "%s: truncating inode %lu to %lld bytes",
3082 __func__, inode->i_ino, inode->i_size);
3083 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3084 inode->i_ino, inode->i_size);
3085 inode_lock(inode);
3086 truncate_inode_pages(inode->i_mapping, inode->i_size);
3087 ret = ext4_truncate(inode);
3088 if (ret) {
3089 /*
3090 * We need to clean up the in-core orphan list
3091 * manually if ext4_truncate() failed to get a
3092 * transaction handle.
3093 */
3094 ext4_orphan_del(NULL, inode);
3095 ext4_std_error(inode->i_sb, ret);
3096 }
3097 inode_unlock(inode);
3098 nr_truncates++;
3099 } else {
3100 if (test_opt(sb, DEBUG))
3101 ext4_msg(sb, KERN_DEBUG,
3102 "%s: deleting unreferenced inode %lu",
3103 __func__, inode->i_ino);
3104 jbd_debug(2, "deleting unreferenced inode %lu\n",
3105 inode->i_ino);
3106 nr_orphans++;
3107 }
3108 iput(inode); /* The delete magic happens here! */
3109 }
3110
3111 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3112
3113 if (nr_orphans)
3114 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3115 PLURAL(nr_orphans));
3116 if (nr_truncates)
3117 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3118 PLURAL(nr_truncates));
3119 #ifdef CONFIG_QUOTA
3120 /* Turn off quotas if they were enabled for orphan cleanup */
3121 if (quota_update) {
3122 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3123 if (sb_dqopt(sb)->files[i])
3124 dquot_quota_off(sb, i);
3125 }
3126 }
3127 #endif
3128 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3129 }
3130
3131 /*
3132 * Maximal extent format file size.
3133 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3134 * extent format containers, within a sector_t, and within i_blocks
3135 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3136 * so that won't be a limiting factor.
3137 *
3138 * However there is other limiting factor. We do store extents in the form
3139 * of starting block and length, hence the resulting length of the extent
3140 * covering maximum file size must fit into on-disk format containers as
3141 * well. Given that length is always by 1 unit bigger than max unit (because
3142 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3143 *
3144 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3145 */
ext4_max_size(int blkbits,int has_huge_files)3146 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3147 {
3148 loff_t res;
3149 loff_t upper_limit = MAX_LFS_FILESIZE;
3150
3151 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3152
3153 if (!has_huge_files) {
3154 upper_limit = (1LL << 32) - 1;
3155
3156 /* total blocks in file system block size */
3157 upper_limit >>= (blkbits - 9);
3158 upper_limit <<= blkbits;
3159 }
3160
3161 /*
3162 * 32-bit extent-start container, ee_block. We lower the maxbytes
3163 * by one fs block, so ee_len can cover the extent of maximum file
3164 * size
3165 */
3166 res = (1LL << 32) - 1;
3167 res <<= blkbits;
3168
3169 /* Sanity check against vm- & vfs- imposed limits */
3170 if (res > upper_limit)
3171 res = upper_limit;
3172
3173 return res;
3174 }
3175
3176 /*
3177 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3178 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3179 * We need to be 1 filesystem block less than the 2^48 sector limit.
3180 */
ext4_max_bitmap_size(int bits,int has_huge_files)3181 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3182 {
3183 unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS;
3184 int meta_blocks;
3185
3186 /*
3187 * This is calculated to be the largest file size for a dense, block
3188 * mapped file such that the file's total number of 512-byte sectors,
3189 * including data and all indirect blocks, does not exceed (2^48 - 1).
3190 *
3191 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3192 * number of 512-byte sectors of the file.
3193 */
3194 if (!has_huge_files) {
3195 /*
3196 * !has_huge_files or implies that the inode i_block field
3197 * represents total file blocks in 2^32 512-byte sectors ==
3198 * size of vfs inode i_blocks * 8
3199 */
3200 upper_limit = (1LL << 32) - 1;
3201
3202 /* total blocks in file system block size */
3203 upper_limit >>= (bits - 9);
3204
3205 } else {
3206 /*
3207 * We use 48 bit ext4_inode i_blocks
3208 * With EXT4_HUGE_FILE_FL set the i_blocks
3209 * represent total number of blocks in
3210 * file system block size
3211 */
3212 upper_limit = (1LL << 48) - 1;
3213
3214 }
3215
3216 /* indirect blocks */
3217 meta_blocks = 1;
3218 /* double indirect blocks */
3219 meta_blocks += 1 + (1LL << (bits-2));
3220 /* tripple indirect blocks */
3221 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3222
3223 upper_limit -= meta_blocks;
3224 upper_limit <<= bits;
3225
3226 res += 1LL << (bits-2);
3227 res += 1LL << (2*(bits-2));
3228 res += 1LL << (3*(bits-2));
3229 res <<= bits;
3230 if (res > upper_limit)
3231 res = upper_limit;
3232
3233 if (res > MAX_LFS_FILESIZE)
3234 res = MAX_LFS_FILESIZE;
3235
3236 return (loff_t)res;
3237 }
3238
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3239 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3240 ext4_fsblk_t logical_sb_block, int nr)
3241 {
3242 struct ext4_sb_info *sbi = EXT4_SB(sb);
3243 ext4_group_t bg, first_meta_bg;
3244 int has_super = 0;
3245
3246 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3247
3248 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3249 return logical_sb_block + nr + 1;
3250 bg = sbi->s_desc_per_block * nr;
3251 if (ext4_bg_has_super(sb, bg))
3252 has_super = 1;
3253
3254 /*
3255 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3256 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3257 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3258 * compensate.
3259 */
3260 if (sb->s_blocksize == 1024 && nr == 0 &&
3261 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3262 has_super++;
3263
3264 return (has_super + ext4_group_first_block_no(sb, bg));
3265 }
3266
3267 /**
3268 * ext4_get_stripe_size: Get the stripe size.
3269 * @sbi: In memory super block info
3270 *
3271 * If we have specified it via mount option, then
3272 * use the mount option value. If the value specified at mount time is
3273 * greater than the blocks per group use the super block value.
3274 * If the super block value is greater than blocks per group return 0.
3275 * Allocator needs it be less than blocks per group.
3276 *
3277 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3278 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3279 {
3280 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3281 unsigned long stripe_width =
3282 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3283 int ret;
3284
3285 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3286 ret = sbi->s_stripe;
3287 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3288 ret = stripe_width;
3289 else if (stride && stride <= sbi->s_blocks_per_group)
3290 ret = stride;
3291 else
3292 ret = 0;
3293
3294 /*
3295 * If the stripe width is 1, this makes no sense and
3296 * we set it to 0 to turn off stripe handling code.
3297 */
3298 if (ret <= 1)
3299 ret = 0;
3300
3301 return ret;
3302 }
3303
3304 /*
3305 * Check whether this filesystem can be mounted based on
3306 * the features present and the RDONLY/RDWR mount requested.
3307 * Returns 1 if this filesystem can be mounted as requested,
3308 * 0 if it cannot be.
3309 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3310 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3311 {
3312 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3313 ext4_msg(sb, KERN_ERR,
3314 "Couldn't mount because of "
3315 "unsupported optional features (%x)",
3316 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3317 ~EXT4_FEATURE_INCOMPAT_SUPP));
3318 return 0;
3319 }
3320
3321 #ifndef CONFIG_UNICODE
3322 if (ext4_has_feature_casefold(sb)) {
3323 ext4_msg(sb, KERN_ERR,
3324 "Filesystem with casefold feature cannot be "
3325 "mounted without CONFIG_UNICODE");
3326 return 0;
3327 }
3328 #endif
3329
3330 if (readonly)
3331 return 1;
3332
3333 if (ext4_has_feature_readonly(sb)) {
3334 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3335 sb->s_flags |= SB_RDONLY;
3336 return 1;
3337 }
3338
3339 /* Check that feature set is OK for a read-write mount */
3340 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3341 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3342 "unsupported optional features (%x)",
3343 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3344 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3345 return 0;
3346 }
3347 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3348 ext4_msg(sb, KERN_ERR,
3349 "Can't support bigalloc feature without "
3350 "extents feature\n");
3351 return 0;
3352 }
3353
3354 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3355 if (!readonly && (ext4_has_feature_quota(sb) ||
3356 ext4_has_feature_project(sb))) {
3357 ext4_msg(sb, KERN_ERR,
3358 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3359 return 0;
3360 }
3361 #endif /* CONFIG_QUOTA */
3362 return 1;
3363 }
3364
3365 /*
3366 * This function is called once a day if we have errors logged
3367 * on the file system
3368 */
print_daily_error_info(struct timer_list * t)3369 static void print_daily_error_info(struct timer_list *t)
3370 {
3371 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3372 struct super_block *sb = sbi->s_sb;
3373 struct ext4_super_block *es = sbi->s_es;
3374
3375 if (es->s_error_count)
3376 /* fsck newer than v1.41.13 is needed to clean this condition. */
3377 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3378 le32_to_cpu(es->s_error_count));
3379 if (es->s_first_error_time) {
3380 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3381 sb->s_id,
3382 ext4_get_tstamp(es, s_first_error_time),
3383 (int) sizeof(es->s_first_error_func),
3384 es->s_first_error_func,
3385 le32_to_cpu(es->s_first_error_line));
3386 if (es->s_first_error_ino)
3387 printk(KERN_CONT ": inode %u",
3388 le32_to_cpu(es->s_first_error_ino));
3389 if (es->s_first_error_block)
3390 printk(KERN_CONT ": block %llu", (unsigned long long)
3391 le64_to_cpu(es->s_first_error_block));
3392 printk(KERN_CONT "\n");
3393 }
3394 if (es->s_last_error_time) {
3395 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3396 sb->s_id,
3397 ext4_get_tstamp(es, s_last_error_time),
3398 (int) sizeof(es->s_last_error_func),
3399 es->s_last_error_func,
3400 le32_to_cpu(es->s_last_error_line));
3401 if (es->s_last_error_ino)
3402 printk(KERN_CONT ": inode %u",
3403 le32_to_cpu(es->s_last_error_ino));
3404 if (es->s_last_error_block)
3405 printk(KERN_CONT ": block %llu", (unsigned long long)
3406 le64_to_cpu(es->s_last_error_block));
3407 printk(KERN_CONT "\n");
3408 }
3409 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3410 }
3411
3412 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3413 static int ext4_run_li_request(struct ext4_li_request *elr)
3414 {
3415 struct ext4_group_desc *gdp = NULL;
3416 struct super_block *sb = elr->lr_super;
3417 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3418 ext4_group_t group = elr->lr_next_group;
3419 unsigned int prefetch_ios = 0;
3420 int ret = 0;
3421 u64 start_time;
3422
3423 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3424 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3425 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3426 if (prefetch_ios)
3427 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3428 prefetch_ios);
3429 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3430 prefetch_ios);
3431 if (group >= elr->lr_next_group) {
3432 ret = 1;
3433 if (elr->lr_first_not_zeroed != ngroups &&
3434 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3435 elr->lr_next_group = elr->lr_first_not_zeroed;
3436 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3437 ret = 0;
3438 }
3439 }
3440 return ret;
3441 }
3442
3443 for (; group < ngroups; group++) {
3444 gdp = ext4_get_group_desc(sb, group, NULL);
3445 if (!gdp) {
3446 ret = 1;
3447 break;
3448 }
3449
3450 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3451 break;
3452 }
3453
3454 if (group >= ngroups)
3455 ret = 1;
3456
3457 if (!ret) {
3458 start_time = ktime_get_real_ns();
3459 ret = ext4_init_inode_table(sb, group,
3460 elr->lr_timeout ? 0 : 1);
3461 trace_ext4_lazy_itable_init(sb, group);
3462 if (elr->lr_timeout == 0) {
3463 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3464 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3465 }
3466 elr->lr_next_sched = jiffies + elr->lr_timeout;
3467 elr->lr_next_group = group + 1;
3468 }
3469 return ret;
3470 }
3471
3472 /*
3473 * Remove lr_request from the list_request and free the
3474 * request structure. Should be called with li_list_mtx held
3475 */
ext4_remove_li_request(struct ext4_li_request * elr)3476 static void ext4_remove_li_request(struct ext4_li_request *elr)
3477 {
3478 if (!elr)
3479 return;
3480
3481 list_del(&elr->lr_request);
3482 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3483 kfree(elr);
3484 }
3485
ext4_unregister_li_request(struct super_block * sb)3486 static void ext4_unregister_li_request(struct super_block *sb)
3487 {
3488 mutex_lock(&ext4_li_mtx);
3489 if (!ext4_li_info) {
3490 mutex_unlock(&ext4_li_mtx);
3491 return;
3492 }
3493
3494 mutex_lock(&ext4_li_info->li_list_mtx);
3495 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3496 mutex_unlock(&ext4_li_info->li_list_mtx);
3497 mutex_unlock(&ext4_li_mtx);
3498 }
3499
3500 static struct task_struct *ext4_lazyinit_task;
3501
3502 /*
3503 * This is the function where ext4lazyinit thread lives. It walks
3504 * through the request list searching for next scheduled filesystem.
3505 * When such a fs is found, run the lazy initialization request
3506 * (ext4_rn_li_request) and keep track of the time spend in this
3507 * function. Based on that time we compute next schedule time of
3508 * the request. When walking through the list is complete, compute
3509 * next waking time and put itself into sleep.
3510 */
ext4_lazyinit_thread(void * arg)3511 static int ext4_lazyinit_thread(void *arg)
3512 {
3513 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3514 struct list_head *pos, *n;
3515 struct ext4_li_request *elr;
3516 unsigned long next_wakeup, cur;
3517
3518 BUG_ON(NULL == eli);
3519 set_freezable();
3520
3521 cont_thread:
3522 while (true) {
3523 next_wakeup = MAX_JIFFY_OFFSET;
3524
3525 mutex_lock(&eli->li_list_mtx);
3526 if (list_empty(&eli->li_request_list)) {
3527 mutex_unlock(&eli->li_list_mtx);
3528 goto exit_thread;
3529 }
3530 list_for_each_safe(pos, n, &eli->li_request_list) {
3531 int err = 0;
3532 int progress = 0;
3533 elr = list_entry(pos, struct ext4_li_request,
3534 lr_request);
3535
3536 if (time_before(jiffies, elr->lr_next_sched)) {
3537 if (time_before(elr->lr_next_sched, next_wakeup))
3538 next_wakeup = elr->lr_next_sched;
3539 continue;
3540 }
3541 if (down_read_trylock(&elr->lr_super->s_umount)) {
3542 if (sb_start_write_trylock(elr->lr_super)) {
3543 progress = 1;
3544 /*
3545 * We hold sb->s_umount, sb can not
3546 * be removed from the list, it is
3547 * now safe to drop li_list_mtx
3548 */
3549 mutex_unlock(&eli->li_list_mtx);
3550 err = ext4_run_li_request(elr);
3551 sb_end_write(elr->lr_super);
3552 mutex_lock(&eli->li_list_mtx);
3553 n = pos->next;
3554 }
3555 up_read((&elr->lr_super->s_umount));
3556 }
3557 /* error, remove the lazy_init job */
3558 if (err) {
3559 ext4_remove_li_request(elr);
3560 continue;
3561 }
3562 if (!progress) {
3563 elr->lr_next_sched = jiffies +
3564 (prandom_u32()
3565 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3566 }
3567 if (time_before(elr->lr_next_sched, next_wakeup))
3568 next_wakeup = elr->lr_next_sched;
3569 }
3570 mutex_unlock(&eli->li_list_mtx);
3571
3572 try_to_freeze();
3573
3574 cur = jiffies;
3575 if ((time_after_eq(cur, next_wakeup)) ||
3576 (MAX_JIFFY_OFFSET == next_wakeup)) {
3577 cond_resched();
3578 continue;
3579 }
3580
3581 schedule_timeout_interruptible(next_wakeup - cur);
3582
3583 if (kthread_should_stop()) {
3584 ext4_clear_request_list();
3585 goto exit_thread;
3586 }
3587 }
3588
3589 exit_thread:
3590 /*
3591 * It looks like the request list is empty, but we need
3592 * to check it under the li_list_mtx lock, to prevent any
3593 * additions into it, and of course we should lock ext4_li_mtx
3594 * to atomically free the list and ext4_li_info, because at
3595 * this point another ext4 filesystem could be registering
3596 * new one.
3597 */
3598 mutex_lock(&ext4_li_mtx);
3599 mutex_lock(&eli->li_list_mtx);
3600 if (!list_empty(&eli->li_request_list)) {
3601 mutex_unlock(&eli->li_list_mtx);
3602 mutex_unlock(&ext4_li_mtx);
3603 goto cont_thread;
3604 }
3605 mutex_unlock(&eli->li_list_mtx);
3606 kfree(ext4_li_info);
3607 ext4_li_info = NULL;
3608 mutex_unlock(&ext4_li_mtx);
3609
3610 return 0;
3611 }
3612
ext4_clear_request_list(void)3613 static void ext4_clear_request_list(void)
3614 {
3615 struct list_head *pos, *n;
3616 struct ext4_li_request *elr;
3617
3618 mutex_lock(&ext4_li_info->li_list_mtx);
3619 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3620 elr = list_entry(pos, struct ext4_li_request,
3621 lr_request);
3622 ext4_remove_li_request(elr);
3623 }
3624 mutex_unlock(&ext4_li_info->li_list_mtx);
3625 }
3626
ext4_run_lazyinit_thread(void)3627 static int ext4_run_lazyinit_thread(void)
3628 {
3629 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3630 ext4_li_info, "ext4lazyinit");
3631 if (IS_ERR(ext4_lazyinit_task)) {
3632 int err = PTR_ERR(ext4_lazyinit_task);
3633 ext4_clear_request_list();
3634 kfree(ext4_li_info);
3635 ext4_li_info = NULL;
3636 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3637 "initialization thread\n",
3638 err);
3639 return err;
3640 }
3641 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3642 return 0;
3643 }
3644
3645 /*
3646 * Check whether it make sense to run itable init. thread or not.
3647 * If there is at least one uninitialized inode table, return
3648 * corresponding group number, else the loop goes through all
3649 * groups and return total number of groups.
3650 */
ext4_has_uninit_itable(struct super_block * sb)3651 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3652 {
3653 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3654 struct ext4_group_desc *gdp = NULL;
3655
3656 if (!ext4_has_group_desc_csum(sb))
3657 return ngroups;
3658
3659 for (group = 0; group < ngroups; group++) {
3660 gdp = ext4_get_group_desc(sb, group, NULL);
3661 if (!gdp)
3662 continue;
3663
3664 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3665 break;
3666 }
3667
3668 return group;
3669 }
3670
ext4_li_info_new(void)3671 static int ext4_li_info_new(void)
3672 {
3673 struct ext4_lazy_init *eli = NULL;
3674
3675 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3676 if (!eli)
3677 return -ENOMEM;
3678
3679 INIT_LIST_HEAD(&eli->li_request_list);
3680 mutex_init(&eli->li_list_mtx);
3681
3682 eli->li_state |= EXT4_LAZYINIT_QUIT;
3683
3684 ext4_li_info = eli;
3685
3686 return 0;
3687 }
3688
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3689 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3690 ext4_group_t start)
3691 {
3692 struct ext4_li_request *elr;
3693
3694 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3695 if (!elr)
3696 return NULL;
3697
3698 elr->lr_super = sb;
3699 elr->lr_first_not_zeroed = start;
3700 if (test_opt(sb, PREFETCH_BLOCK_BITMAPS))
3701 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3702 else {
3703 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3704 elr->lr_next_group = start;
3705 }
3706
3707 /*
3708 * Randomize first schedule time of the request to
3709 * spread the inode table initialization requests
3710 * better.
3711 */
3712 elr->lr_next_sched = jiffies + (prandom_u32() %
3713 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3714 return elr;
3715 }
3716
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3717 int ext4_register_li_request(struct super_block *sb,
3718 ext4_group_t first_not_zeroed)
3719 {
3720 struct ext4_sb_info *sbi = EXT4_SB(sb);
3721 struct ext4_li_request *elr = NULL;
3722 ext4_group_t ngroups = sbi->s_groups_count;
3723 int ret = 0;
3724
3725 mutex_lock(&ext4_li_mtx);
3726 if (sbi->s_li_request != NULL) {
3727 /*
3728 * Reset timeout so it can be computed again, because
3729 * s_li_wait_mult might have changed.
3730 */
3731 sbi->s_li_request->lr_timeout = 0;
3732 goto out;
3733 }
3734
3735 if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) &&
3736 (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3737 !test_opt(sb, INIT_INODE_TABLE)))
3738 goto out;
3739
3740 elr = ext4_li_request_new(sb, first_not_zeroed);
3741 if (!elr) {
3742 ret = -ENOMEM;
3743 goto out;
3744 }
3745
3746 if (NULL == ext4_li_info) {
3747 ret = ext4_li_info_new();
3748 if (ret)
3749 goto out;
3750 }
3751
3752 mutex_lock(&ext4_li_info->li_list_mtx);
3753 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3754 mutex_unlock(&ext4_li_info->li_list_mtx);
3755
3756 sbi->s_li_request = elr;
3757 /*
3758 * set elr to NULL here since it has been inserted to
3759 * the request_list and the removal and free of it is
3760 * handled by ext4_clear_request_list from now on.
3761 */
3762 elr = NULL;
3763
3764 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3765 ret = ext4_run_lazyinit_thread();
3766 if (ret)
3767 goto out;
3768 }
3769 out:
3770 mutex_unlock(&ext4_li_mtx);
3771 if (ret)
3772 kfree(elr);
3773 return ret;
3774 }
3775
3776 /*
3777 * We do not need to lock anything since this is called on
3778 * module unload.
3779 */
ext4_destroy_lazyinit_thread(void)3780 static void ext4_destroy_lazyinit_thread(void)
3781 {
3782 /*
3783 * If thread exited earlier
3784 * there's nothing to be done.
3785 */
3786 if (!ext4_li_info || !ext4_lazyinit_task)
3787 return;
3788
3789 kthread_stop(ext4_lazyinit_task);
3790 }
3791
set_journal_csum_feature_set(struct super_block * sb)3792 static int set_journal_csum_feature_set(struct super_block *sb)
3793 {
3794 int ret = 1;
3795 int compat, incompat;
3796 struct ext4_sb_info *sbi = EXT4_SB(sb);
3797
3798 if (ext4_has_metadata_csum(sb)) {
3799 /* journal checksum v3 */
3800 compat = 0;
3801 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3802 } else {
3803 /* journal checksum v1 */
3804 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3805 incompat = 0;
3806 }
3807
3808 jbd2_journal_clear_features(sbi->s_journal,
3809 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3810 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3811 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3812 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3813 ret = jbd2_journal_set_features(sbi->s_journal,
3814 compat, 0,
3815 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3816 incompat);
3817 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3818 ret = jbd2_journal_set_features(sbi->s_journal,
3819 compat, 0,
3820 incompat);
3821 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3822 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3823 } else {
3824 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3825 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3826 }
3827
3828 return ret;
3829 }
3830
3831 /*
3832 * Note: calculating the overhead so we can be compatible with
3833 * historical BSD practice is quite difficult in the face of
3834 * clusters/bigalloc. This is because multiple metadata blocks from
3835 * different block group can end up in the same allocation cluster.
3836 * Calculating the exact overhead in the face of clustered allocation
3837 * requires either O(all block bitmaps) in memory or O(number of block
3838 * groups**2) in time. We will still calculate the superblock for
3839 * older file systems --- and if we come across with a bigalloc file
3840 * system with zero in s_overhead_clusters the estimate will be close to
3841 * correct especially for very large cluster sizes --- but for newer
3842 * file systems, it's better to calculate this figure once at mkfs
3843 * time, and store it in the superblock. If the superblock value is
3844 * present (even for non-bigalloc file systems), we will use it.
3845 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3846 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3847 char *buf)
3848 {
3849 struct ext4_sb_info *sbi = EXT4_SB(sb);
3850 struct ext4_group_desc *gdp;
3851 ext4_fsblk_t first_block, last_block, b;
3852 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3853 int s, j, count = 0;
3854 int has_super = ext4_bg_has_super(sb, grp);
3855
3856 if (!ext4_has_feature_bigalloc(sb))
3857 return (has_super + ext4_bg_num_gdb(sb, grp) +
3858 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
3859 sbi->s_itb_per_group + 2);
3860
3861 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3862 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3863 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3864 for (i = 0; i < ngroups; i++) {
3865 gdp = ext4_get_group_desc(sb, i, NULL);
3866 b = ext4_block_bitmap(sb, gdp);
3867 if (b >= first_block && b <= last_block) {
3868 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3869 count++;
3870 }
3871 b = ext4_inode_bitmap(sb, gdp);
3872 if (b >= first_block && b <= last_block) {
3873 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3874 count++;
3875 }
3876 b = ext4_inode_table(sb, gdp);
3877 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3878 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3879 int c = EXT4_B2C(sbi, b - first_block);
3880 ext4_set_bit(c, buf);
3881 count++;
3882 }
3883 if (i != grp)
3884 continue;
3885 s = 0;
3886 if (ext4_bg_has_super(sb, grp)) {
3887 ext4_set_bit(s++, buf);
3888 count++;
3889 }
3890 j = ext4_bg_num_gdb(sb, grp);
3891 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3892 ext4_error(sb, "Invalid number of block group "
3893 "descriptor blocks: %d", j);
3894 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3895 }
3896 count += j;
3897 for (; j > 0; j--)
3898 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3899 }
3900 if (!count)
3901 return 0;
3902 return EXT4_CLUSTERS_PER_GROUP(sb) -
3903 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3904 }
3905
3906 /*
3907 * Compute the overhead and stash it in sbi->s_overhead
3908 */
ext4_calculate_overhead(struct super_block * sb)3909 int ext4_calculate_overhead(struct super_block *sb)
3910 {
3911 struct ext4_sb_info *sbi = EXT4_SB(sb);
3912 struct ext4_super_block *es = sbi->s_es;
3913 struct inode *j_inode;
3914 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3915 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3916 ext4_fsblk_t overhead = 0;
3917 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3918
3919 if (!buf)
3920 return -ENOMEM;
3921
3922 /*
3923 * Compute the overhead (FS structures). This is constant
3924 * for a given filesystem unless the number of block groups
3925 * changes so we cache the previous value until it does.
3926 */
3927
3928 /*
3929 * All of the blocks before first_data_block are overhead
3930 */
3931 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3932
3933 /*
3934 * Add the overhead found in each block group
3935 */
3936 for (i = 0; i < ngroups; i++) {
3937 int blks;
3938
3939 blks = count_overhead(sb, i, buf);
3940 overhead += blks;
3941 if (blks)
3942 memset(buf, 0, PAGE_SIZE);
3943 cond_resched();
3944 }
3945
3946 /*
3947 * Add the internal journal blocks whether the journal has been
3948 * loaded or not
3949 */
3950 if (sbi->s_journal && !sbi->s_journal_bdev)
3951 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3952 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3953 /* j_inum for internal journal is non-zero */
3954 j_inode = ext4_get_journal_inode(sb, j_inum);
3955 if (j_inode) {
3956 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3957 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3958 iput(j_inode);
3959 } else {
3960 ext4_msg(sb, KERN_ERR, "can't get journal size");
3961 }
3962 }
3963 sbi->s_overhead = overhead;
3964 smp_wmb();
3965 free_page((unsigned long) buf);
3966 return 0;
3967 }
3968
ext4_set_resv_clusters(struct super_block * sb)3969 static void ext4_set_resv_clusters(struct super_block *sb)
3970 {
3971 ext4_fsblk_t resv_clusters;
3972 struct ext4_sb_info *sbi = EXT4_SB(sb);
3973
3974 /*
3975 * There's no need to reserve anything when we aren't using extents.
3976 * The space estimates are exact, there are no unwritten extents,
3977 * hole punching doesn't need new metadata... This is needed especially
3978 * to keep ext2/3 backward compatibility.
3979 */
3980 if (!ext4_has_feature_extents(sb))
3981 return;
3982 /*
3983 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3984 * This should cover the situations where we can not afford to run
3985 * out of space like for example punch hole, or converting
3986 * unwritten extents in delalloc path. In most cases such
3987 * allocation would require 1, or 2 blocks, higher numbers are
3988 * very rare.
3989 */
3990 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3991 sbi->s_cluster_bits);
3992
3993 do_div(resv_clusters, 50);
3994 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3995
3996 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3997 }
3998
ext4_fill_super(struct super_block * sb,void * data,int silent)3999 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
4000 {
4001 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
4002 char *orig_data = kstrdup(data, GFP_KERNEL);
4003 struct buffer_head *bh, **group_desc;
4004 struct ext4_super_block *es = NULL;
4005 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4006 struct flex_groups **flex_groups;
4007 ext4_fsblk_t block;
4008 ext4_fsblk_t sb_block = get_sb_block(&data);
4009 ext4_fsblk_t logical_sb_block;
4010 unsigned long offset = 0;
4011 unsigned long journal_devnum = 0;
4012 unsigned long def_mount_opts;
4013 struct inode *root;
4014 const char *descr;
4015 int ret = -ENOMEM;
4016 int blocksize, clustersize;
4017 unsigned int db_count;
4018 unsigned int i;
4019 int needs_recovery, has_huge_files;
4020 __u64 blocks_count;
4021 int err = 0;
4022 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4023 ext4_group_t first_not_zeroed;
4024
4025 if ((data && !orig_data) || !sbi)
4026 goto out_free_base;
4027
4028 sbi->s_daxdev = dax_dev;
4029 sbi->s_blockgroup_lock =
4030 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4031 if (!sbi->s_blockgroup_lock)
4032 goto out_free_base;
4033
4034 sb->s_fs_info = sbi;
4035 sbi->s_sb = sb;
4036 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4037 sbi->s_sb_block = sb_block;
4038 if (sb->s_bdev->bd_part)
4039 sbi->s_sectors_written_start =
4040 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
4041
4042 /* Cleanup superblock name */
4043 strreplace(sb->s_id, '/', '!');
4044
4045 /* -EINVAL is default */
4046 ret = -EINVAL;
4047 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4048 if (!blocksize) {
4049 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4050 goto out_fail;
4051 }
4052
4053 /*
4054 * The ext4 superblock will not be buffer aligned for other than 1kB
4055 * block sizes. We need to calculate the offset from buffer start.
4056 */
4057 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4058 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4059 offset = do_div(logical_sb_block, blocksize);
4060 } else {
4061 logical_sb_block = sb_block;
4062 }
4063
4064 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4065 if (IS_ERR(bh)) {
4066 ext4_msg(sb, KERN_ERR, "unable to read superblock");
4067 ret = PTR_ERR(bh);
4068 bh = NULL;
4069 goto out_fail;
4070 }
4071 /*
4072 * Note: s_es must be initialized as soon as possible because
4073 * some ext4 macro-instructions depend on its value
4074 */
4075 es = (struct ext4_super_block *) (bh->b_data + offset);
4076 sbi->s_es = es;
4077 sb->s_magic = le16_to_cpu(es->s_magic);
4078 if (sb->s_magic != EXT4_SUPER_MAGIC)
4079 goto cantfind_ext4;
4080 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4081
4082 /* Warn if metadata_csum and gdt_csum are both set. */
4083 if (ext4_has_feature_metadata_csum(sb) &&
4084 ext4_has_feature_gdt_csum(sb))
4085 ext4_warning(sb, "metadata_csum and uninit_bg are "
4086 "redundant flags; please run fsck.");
4087
4088 /* Check for a known checksum algorithm */
4089 if (!ext4_verify_csum_type(sb, es)) {
4090 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4091 "unknown checksum algorithm.");
4092 silent = 1;
4093 goto cantfind_ext4;
4094 }
4095
4096 /* Load the checksum driver */
4097 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4098 if (IS_ERR(sbi->s_chksum_driver)) {
4099 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4100 ret = PTR_ERR(sbi->s_chksum_driver);
4101 sbi->s_chksum_driver = NULL;
4102 goto failed_mount;
4103 }
4104
4105 /* Check superblock checksum */
4106 if (!ext4_superblock_csum_verify(sb, es)) {
4107 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4108 "invalid superblock checksum. Run e2fsck?");
4109 silent = 1;
4110 ret = -EFSBADCRC;
4111 goto cantfind_ext4;
4112 }
4113
4114 /* Precompute checksum seed for all metadata */
4115 if (ext4_has_feature_csum_seed(sb))
4116 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4117 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4118 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4119 sizeof(es->s_uuid));
4120
4121 /* Set defaults before we parse the mount options */
4122 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4123 set_opt(sb, INIT_INODE_TABLE);
4124 if (def_mount_opts & EXT4_DEFM_DEBUG)
4125 set_opt(sb, DEBUG);
4126 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4127 set_opt(sb, GRPID);
4128 if (def_mount_opts & EXT4_DEFM_UID16)
4129 set_opt(sb, NO_UID32);
4130 /* xattr user namespace & acls are now defaulted on */
4131 set_opt(sb, XATTR_USER);
4132 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4133 set_opt(sb, POSIX_ACL);
4134 #endif
4135 if (ext4_has_feature_fast_commit(sb))
4136 set_opt2(sb, JOURNAL_FAST_COMMIT);
4137 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4138 if (ext4_has_metadata_csum(sb))
4139 set_opt(sb, JOURNAL_CHECKSUM);
4140
4141 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4142 set_opt(sb, JOURNAL_DATA);
4143 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4144 set_opt(sb, ORDERED_DATA);
4145 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4146 set_opt(sb, WRITEBACK_DATA);
4147
4148 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4149 set_opt(sb, ERRORS_PANIC);
4150 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4151 set_opt(sb, ERRORS_CONT);
4152 else
4153 set_opt(sb, ERRORS_RO);
4154 /* block_validity enabled by default; disable with noblock_validity */
4155 set_opt(sb, BLOCK_VALIDITY);
4156 if (def_mount_opts & EXT4_DEFM_DISCARD)
4157 set_opt(sb, DISCARD);
4158
4159 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4160 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4161 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4162 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4163 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4164
4165 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4166 set_opt(sb, BARRIER);
4167
4168 /*
4169 * enable delayed allocation by default
4170 * Use -o nodelalloc to turn it off
4171 */
4172 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4173 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4174 set_opt(sb, DELALLOC);
4175
4176 /*
4177 * set default s_li_wait_mult for lazyinit, for the case there is
4178 * no mount option specified.
4179 */
4180 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4181
4182 if (le32_to_cpu(es->s_log_block_size) >
4183 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4184 ext4_msg(sb, KERN_ERR,
4185 "Invalid log block size: %u",
4186 le32_to_cpu(es->s_log_block_size));
4187 goto failed_mount;
4188 }
4189 if (le32_to_cpu(es->s_log_cluster_size) >
4190 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4191 ext4_msg(sb, KERN_ERR,
4192 "Invalid log cluster size: %u",
4193 le32_to_cpu(es->s_log_cluster_size));
4194 goto failed_mount;
4195 }
4196
4197 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4198
4199 if (blocksize == PAGE_SIZE)
4200 set_opt(sb, DIOREAD_NOLOCK);
4201
4202 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4203 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4204 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4205 } else {
4206 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4207 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4208 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4209 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4210 sbi->s_first_ino);
4211 goto failed_mount;
4212 }
4213 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4214 (!is_power_of_2(sbi->s_inode_size)) ||
4215 (sbi->s_inode_size > blocksize)) {
4216 ext4_msg(sb, KERN_ERR,
4217 "unsupported inode size: %d",
4218 sbi->s_inode_size);
4219 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4220 goto failed_mount;
4221 }
4222 /*
4223 * i_atime_extra is the last extra field available for
4224 * [acm]times in struct ext4_inode. Checking for that
4225 * field should suffice to ensure we have extra space
4226 * for all three.
4227 */
4228 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4229 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4230 sb->s_time_gran = 1;
4231 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4232 } else {
4233 sb->s_time_gran = NSEC_PER_SEC;
4234 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4235 }
4236 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4237 }
4238 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4239 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4240 EXT4_GOOD_OLD_INODE_SIZE;
4241 if (ext4_has_feature_extra_isize(sb)) {
4242 unsigned v, max = (sbi->s_inode_size -
4243 EXT4_GOOD_OLD_INODE_SIZE);
4244
4245 v = le16_to_cpu(es->s_want_extra_isize);
4246 if (v > max) {
4247 ext4_msg(sb, KERN_ERR,
4248 "bad s_want_extra_isize: %d", v);
4249 goto failed_mount;
4250 }
4251 if (sbi->s_want_extra_isize < v)
4252 sbi->s_want_extra_isize = v;
4253
4254 v = le16_to_cpu(es->s_min_extra_isize);
4255 if (v > max) {
4256 ext4_msg(sb, KERN_ERR,
4257 "bad s_min_extra_isize: %d", v);
4258 goto failed_mount;
4259 }
4260 if (sbi->s_want_extra_isize < v)
4261 sbi->s_want_extra_isize = v;
4262 }
4263 }
4264
4265 if (sbi->s_es->s_mount_opts[0]) {
4266 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4267 sizeof(sbi->s_es->s_mount_opts),
4268 GFP_KERNEL);
4269 if (!s_mount_opts)
4270 goto failed_mount;
4271 if (!parse_options(s_mount_opts, sb, &journal_devnum,
4272 &journal_ioprio, 0)) {
4273 ext4_msg(sb, KERN_WARNING,
4274 "failed to parse options in superblock: %s",
4275 s_mount_opts);
4276 }
4277 kfree(s_mount_opts);
4278 }
4279 sbi->s_def_mount_opt = sbi->s_mount_opt;
4280 if (!parse_options((char *) data, sb, &journal_devnum,
4281 &journal_ioprio, 0))
4282 goto failed_mount;
4283
4284 #ifdef CONFIG_UNICODE
4285 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4286 const struct ext4_sb_encodings *encoding_info;
4287 struct unicode_map *encoding;
4288 __u16 encoding_flags;
4289
4290 if (ext4_has_feature_encrypt(sb)) {
4291 ext4_msg(sb, KERN_ERR,
4292 "Can't mount with encoding and encryption");
4293 goto failed_mount;
4294 }
4295
4296 if (ext4_sb_read_encoding(es, &encoding_info,
4297 &encoding_flags)) {
4298 ext4_msg(sb, KERN_ERR,
4299 "Encoding requested by superblock is unknown");
4300 goto failed_mount;
4301 }
4302
4303 encoding = utf8_load(encoding_info->version);
4304 if (IS_ERR(encoding)) {
4305 ext4_msg(sb, KERN_ERR,
4306 "can't mount with superblock charset: %s-%s "
4307 "not supported by the kernel. flags: 0x%x.",
4308 encoding_info->name, encoding_info->version,
4309 encoding_flags);
4310 goto failed_mount;
4311 }
4312 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4313 "%s-%s with flags 0x%hx", encoding_info->name,
4314 encoding_info->version?:"\b", encoding_flags);
4315
4316 sb->s_encoding = encoding;
4317 sb->s_encoding_flags = encoding_flags;
4318 }
4319 #endif
4320
4321 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4322 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4323 /* can't mount with both data=journal and dioread_nolock. */
4324 clear_opt(sb, DIOREAD_NOLOCK);
4325 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4326 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4327 ext4_msg(sb, KERN_ERR, "can't mount with "
4328 "both data=journal and delalloc");
4329 goto failed_mount;
4330 }
4331 if (test_opt(sb, DAX_ALWAYS)) {
4332 ext4_msg(sb, KERN_ERR, "can't mount with "
4333 "both data=journal and dax");
4334 goto failed_mount;
4335 }
4336 if (ext4_has_feature_encrypt(sb)) {
4337 ext4_msg(sb, KERN_WARNING,
4338 "encrypted files will use data=ordered "
4339 "instead of data journaling mode");
4340 }
4341 if (test_opt(sb, DELALLOC))
4342 clear_opt(sb, DELALLOC);
4343 } else {
4344 sb->s_iflags |= SB_I_CGROUPWB;
4345 }
4346
4347 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4348 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4349
4350 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4351 (ext4_has_compat_features(sb) ||
4352 ext4_has_ro_compat_features(sb) ||
4353 ext4_has_incompat_features(sb)))
4354 ext4_msg(sb, KERN_WARNING,
4355 "feature flags set on rev 0 fs, "
4356 "running e2fsck is recommended");
4357
4358 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4359 set_opt2(sb, HURD_COMPAT);
4360 if (ext4_has_feature_64bit(sb)) {
4361 ext4_msg(sb, KERN_ERR,
4362 "The Hurd can't support 64-bit file systems");
4363 goto failed_mount;
4364 }
4365
4366 /*
4367 * ea_inode feature uses l_i_version field which is not
4368 * available in HURD_COMPAT mode.
4369 */
4370 if (ext4_has_feature_ea_inode(sb)) {
4371 ext4_msg(sb, KERN_ERR,
4372 "ea_inode feature is not supported for Hurd");
4373 goto failed_mount;
4374 }
4375 }
4376
4377 if (IS_EXT2_SB(sb)) {
4378 if (ext2_feature_set_ok(sb))
4379 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4380 "using the ext4 subsystem");
4381 else {
4382 /*
4383 * If we're probing be silent, if this looks like
4384 * it's actually an ext[34] filesystem.
4385 */
4386 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4387 goto failed_mount;
4388 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4389 "to feature incompatibilities");
4390 goto failed_mount;
4391 }
4392 }
4393
4394 if (IS_EXT3_SB(sb)) {
4395 if (ext3_feature_set_ok(sb))
4396 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4397 "using the ext4 subsystem");
4398 else {
4399 /*
4400 * If we're probing be silent, if this looks like
4401 * it's actually an ext4 filesystem.
4402 */
4403 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4404 goto failed_mount;
4405 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4406 "to feature incompatibilities");
4407 goto failed_mount;
4408 }
4409 }
4410
4411 /*
4412 * Check feature flags regardless of the revision level, since we
4413 * previously didn't change the revision level when setting the flags,
4414 * so there is a chance incompat flags are set on a rev 0 filesystem.
4415 */
4416 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4417 goto failed_mount;
4418
4419 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4420 ext4_msg(sb, KERN_ERR,
4421 "Number of reserved GDT blocks insanely large: %d",
4422 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4423 goto failed_mount;
4424 }
4425
4426 if (bdev_dax_supported(sb->s_bdev, blocksize))
4427 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4428
4429 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4430 if (ext4_has_feature_inline_data(sb)) {
4431 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4432 " that may contain inline data");
4433 goto failed_mount;
4434 }
4435 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4436 ext4_msg(sb, KERN_ERR,
4437 "DAX unsupported by block device.");
4438 goto failed_mount;
4439 }
4440 }
4441
4442 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4443 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4444 es->s_encryption_level);
4445 goto failed_mount;
4446 }
4447
4448 if (sb->s_blocksize != blocksize) {
4449 /*
4450 * bh must be released before kill_bdev(), otherwise
4451 * it won't be freed and its page also. kill_bdev()
4452 * is called by sb_set_blocksize().
4453 */
4454 brelse(bh);
4455 /* Validate the filesystem blocksize */
4456 if (!sb_set_blocksize(sb, blocksize)) {
4457 ext4_msg(sb, KERN_ERR, "bad block size %d",
4458 blocksize);
4459 bh = NULL;
4460 goto failed_mount;
4461 }
4462
4463 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4464 offset = do_div(logical_sb_block, blocksize);
4465 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4466 if (IS_ERR(bh)) {
4467 ext4_msg(sb, KERN_ERR,
4468 "Can't read superblock on 2nd try");
4469 ret = PTR_ERR(bh);
4470 bh = NULL;
4471 goto failed_mount;
4472 }
4473 es = (struct ext4_super_block *)(bh->b_data + offset);
4474 sbi->s_es = es;
4475 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4476 ext4_msg(sb, KERN_ERR,
4477 "Magic mismatch, very weird!");
4478 goto failed_mount;
4479 }
4480 }
4481
4482 has_huge_files = ext4_has_feature_huge_file(sb);
4483 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4484 has_huge_files);
4485 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4486
4487 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4488 if (ext4_has_feature_64bit(sb)) {
4489 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4490 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4491 !is_power_of_2(sbi->s_desc_size)) {
4492 ext4_msg(sb, KERN_ERR,
4493 "unsupported descriptor size %lu",
4494 sbi->s_desc_size);
4495 goto failed_mount;
4496 }
4497 } else
4498 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4499
4500 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4501 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4502
4503 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4504 if (sbi->s_inodes_per_block == 0)
4505 goto cantfind_ext4;
4506 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4507 sbi->s_inodes_per_group > blocksize * 8) {
4508 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4509 sbi->s_inodes_per_group);
4510 goto failed_mount;
4511 }
4512 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4513 sbi->s_inodes_per_block;
4514 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4515 sbi->s_sbh = bh;
4516 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
4517 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4518 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4519
4520 for (i = 0; i < 4; i++)
4521 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4522 sbi->s_def_hash_version = es->s_def_hash_version;
4523 if (ext4_has_feature_dir_index(sb)) {
4524 i = le32_to_cpu(es->s_flags);
4525 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4526 sbi->s_hash_unsigned = 3;
4527 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4528 #ifdef __CHAR_UNSIGNED__
4529 if (!sb_rdonly(sb))
4530 es->s_flags |=
4531 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4532 sbi->s_hash_unsigned = 3;
4533 #else
4534 if (!sb_rdonly(sb))
4535 es->s_flags |=
4536 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4537 #endif
4538 }
4539 }
4540
4541 /* Handle clustersize */
4542 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4543 if (ext4_has_feature_bigalloc(sb)) {
4544 if (clustersize < blocksize) {
4545 ext4_msg(sb, KERN_ERR,
4546 "cluster size (%d) smaller than "
4547 "block size (%d)", clustersize, blocksize);
4548 goto failed_mount;
4549 }
4550 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4551 le32_to_cpu(es->s_log_block_size);
4552 sbi->s_clusters_per_group =
4553 le32_to_cpu(es->s_clusters_per_group);
4554 if (sbi->s_clusters_per_group > blocksize * 8) {
4555 ext4_msg(sb, KERN_ERR,
4556 "#clusters per group too big: %lu",
4557 sbi->s_clusters_per_group);
4558 goto failed_mount;
4559 }
4560 if (sbi->s_blocks_per_group !=
4561 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4562 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4563 "clusters per group (%lu) inconsistent",
4564 sbi->s_blocks_per_group,
4565 sbi->s_clusters_per_group);
4566 goto failed_mount;
4567 }
4568 } else {
4569 if (clustersize != blocksize) {
4570 ext4_msg(sb, KERN_ERR,
4571 "fragment/cluster size (%d) != "
4572 "block size (%d)", clustersize, blocksize);
4573 goto failed_mount;
4574 }
4575 if (sbi->s_blocks_per_group > blocksize * 8) {
4576 ext4_msg(sb, KERN_ERR,
4577 "#blocks per group too big: %lu",
4578 sbi->s_blocks_per_group);
4579 goto failed_mount;
4580 }
4581 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4582 sbi->s_cluster_bits = 0;
4583 }
4584 sbi->s_cluster_ratio = clustersize / blocksize;
4585
4586 /* Do we have standard group size of clustersize * 8 blocks ? */
4587 if (sbi->s_blocks_per_group == clustersize << 3)
4588 set_opt2(sb, STD_GROUP_SIZE);
4589
4590 /*
4591 * Test whether we have more sectors than will fit in sector_t,
4592 * and whether the max offset is addressable by the page cache.
4593 */
4594 err = generic_check_addressable(sb->s_blocksize_bits,
4595 ext4_blocks_count(es));
4596 if (err) {
4597 ext4_msg(sb, KERN_ERR, "filesystem"
4598 " too large to mount safely on this system");
4599 goto failed_mount;
4600 }
4601
4602 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4603 goto cantfind_ext4;
4604
4605 /* check blocks count against device size */
4606 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4607 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4608 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4609 "exceeds size of device (%llu blocks)",
4610 ext4_blocks_count(es), blocks_count);
4611 goto failed_mount;
4612 }
4613
4614 /*
4615 * It makes no sense for the first data block to be beyond the end
4616 * of the filesystem.
4617 */
4618 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4619 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4620 "block %u is beyond end of filesystem (%llu)",
4621 le32_to_cpu(es->s_first_data_block),
4622 ext4_blocks_count(es));
4623 goto failed_mount;
4624 }
4625 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4626 (sbi->s_cluster_ratio == 1)) {
4627 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4628 "block is 0 with a 1k block and cluster size");
4629 goto failed_mount;
4630 }
4631
4632 blocks_count = (ext4_blocks_count(es) -
4633 le32_to_cpu(es->s_first_data_block) +
4634 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4635 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4636 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4637 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4638 "(block count %llu, first data block %u, "
4639 "blocks per group %lu)", blocks_count,
4640 ext4_blocks_count(es),
4641 le32_to_cpu(es->s_first_data_block),
4642 EXT4_BLOCKS_PER_GROUP(sb));
4643 goto failed_mount;
4644 }
4645 sbi->s_groups_count = blocks_count;
4646 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4647 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4648 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4649 le32_to_cpu(es->s_inodes_count)) {
4650 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4651 le32_to_cpu(es->s_inodes_count),
4652 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4653 ret = -EINVAL;
4654 goto failed_mount;
4655 }
4656 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4657 EXT4_DESC_PER_BLOCK(sb);
4658 if (ext4_has_feature_meta_bg(sb)) {
4659 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4660 ext4_msg(sb, KERN_WARNING,
4661 "first meta block group too large: %u "
4662 "(group descriptor block count %u)",
4663 le32_to_cpu(es->s_first_meta_bg), db_count);
4664 goto failed_mount;
4665 }
4666 }
4667 rcu_assign_pointer(sbi->s_group_desc,
4668 kvmalloc_array(db_count,
4669 sizeof(struct buffer_head *),
4670 GFP_KERNEL));
4671 if (sbi->s_group_desc == NULL) {
4672 ext4_msg(sb, KERN_ERR, "not enough memory");
4673 ret = -ENOMEM;
4674 goto failed_mount;
4675 }
4676
4677 bgl_lock_init(sbi->s_blockgroup_lock);
4678
4679 /* Pre-read the descriptors into the buffer cache */
4680 for (i = 0; i < db_count; i++) {
4681 block = descriptor_loc(sb, logical_sb_block, i);
4682 ext4_sb_breadahead_unmovable(sb, block);
4683 }
4684
4685 for (i = 0; i < db_count; i++) {
4686 struct buffer_head *bh;
4687
4688 block = descriptor_loc(sb, logical_sb_block, i);
4689 bh = ext4_sb_bread_unmovable(sb, block);
4690 if (IS_ERR(bh)) {
4691 ext4_msg(sb, KERN_ERR,
4692 "can't read group descriptor %d", i);
4693 db_count = i;
4694 ret = PTR_ERR(bh);
4695 bh = NULL;
4696 goto failed_mount2;
4697 }
4698 rcu_read_lock();
4699 rcu_dereference(sbi->s_group_desc)[i] = bh;
4700 rcu_read_unlock();
4701 }
4702 sbi->s_gdb_count = db_count;
4703 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4704 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4705 ret = -EFSCORRUPTED;
4706 goto failed_mount2;
4707 }
4708
4709 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4710 spin_lock_init(&sbi->s_error_lock);
4711 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4712
4713 /* Register extent status tree shrinker */
4714 if (ext4_es_register_shrinker(sbi))
4715 goto failed_mount3;
4716
4717 sbi->s_stripe = ext4_get_stripe_size(sbi);
4718 sbi->s_extent_max_zeroout_kb = 32;
4719
4720 /*
4721 * set up enough so that it can read an inode
4722 */
4723 sb->s_op = &ext4_sops;
4724 sb->s_export_op = &ext4_export_ops;
4725 sb->s_xattr = ext4_xattr_handlers;
4726 #ifdef CONFIG_FS_ENCRYPTION
4727 sb->s_cop = &ext4_cryptops;
4728 #endif
4729 #ifdef CONFIG_FS_VERITY
4730 sb->s_vop = &ext4_verityops;
4731 #endif
4732 #ifdef CONFIG_QUOTA
4733 sb->dq_op = &ext4_quota_operations;
4734 if (ext4_has_feature_quota(sb))
4735 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4736 else
4737 sb->s_qcop = &ext4_qctl_operations;
4738 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4739 #endif
4740 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4741
4742 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4743 mutex_init(&sbi->s_orphan_lock);
4744
4745 /* Initialize fast commit stuff */
4746 atomic_set(&sbi->s_fc_subtid, 0);
4747 atomic_set(&sbi->s_fc_ineligible_updates, 0);
4748 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4749 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4750 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4751 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4752 sbi->s_fc_bytes = 0;
4753 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4754 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4755 spin_lock_init(&sbi->s_fc_lock);
4756 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4757 sbi->s_fc_replay_state.fc_regions = NULL;
4758 sbi->s_fc_replay_state.fc_regions_size = 0;
4759 sbi->s_fc_replay_state.fc_regions_used = 0;
4760 sbi->s_fc_replay_state.fc_regions_valid = 0;
4761 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4762 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4763 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4764
4765 sb->s_root = NULL;
4766
4767 needs_recovery = (es->s_last_orphan != 0 ||
4768 ext4_has_feature_journal_needs_recovery(sb));
4769
4770 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
4771 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
4772 if (err)
4773 goto failed_mount3a;
4774 }
4775
4776 /*
4777 * The first inode we look at is the journal inode. Don't try
4778 * root first: it may be modified in the journal!
4779 */
4780 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4781 err = ext4_load_journal(sb, es, journal_devnum);
4782 if (err)
4783 goto failed_mount3a;
4784 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4785 ext4_has_feature_journal_needs_recovery(sb)) {
4786 ext4_msg(sb, KERN_ERR, "required journal recovery "
4787 "suppressed and not mounted read-only");
4788 goto failed_mount3a;
4789 } else {
4790 /* Nojournal mode, all journal mount options are illegal */
4791 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4792 ext4_msg(sb, KERN_ERR, "can't mount with "
4793 "journal_async_commit, fs mounted w/o journal");
4794 goto failed_mount3a;
4795 }
4796
4797 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4798 ext4_msg(sb, KERN_ERR, "can't mount with "
4799 "journal_checksum, fs mounted w/o journal");
4800 goto failed_mount3a;
4801 }
4802 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4803 ext4_msg(sb, KERN_ERR, "can't mount with "
4804 "commit=%lu, fs mounted w/o journal",
4805 sbi->s_commit_interval / HZ);
4806 goto failed_mount3a;
4807 }
4808 if (EXT4_MOUNT_DATA_FLAGS &
4809 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4810 ext4_msg(sb, KERN_ERR, "can't mount with "
4811 "data=, fs mounted w/o journal");
4812 goto failed_mount3a;
4813 }
4814 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4815 clear_opt(sb, JOURNAL_CHECKSUM);
4816 clear_opt(sb, DATA_FLAGS);
4817 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4818 sbi->s_journal = NULL;
4819 needs_recovery = 0;
4820 goto no_journal;
4821 }
4822
4823 if (ext4_has_feature_64bit(sb) &&
4824 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4825 JBD2_FEATURE_INCOMPAT_64BIT)) {
4826 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4827 goto failed_mount_wq;
4828 }
4829
4830 if (!set_journal_csum_feature_set(sb)) {
4831 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4832 "feature set");
4833 goto failed_mount_wq;
4834 }
4835
4836 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4837 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4838 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4839 ext4_msg(sb, KERN_ERR,
4840 "Failed to set fast commit journal feature");
4841 goto failed_mount_wq;
4842 }
4843
4844 /* We have now updated the journal if required, so we can
4845 * validate the data journaling mode. */
4846 switch (test_opt(sb, DATA_FLAGS)) {
4847 case 0:
4848 /* No mode set, assume a default based on the journal
4849 * capabilities: ORDERED_DATA if the journal can
4850 * cope, else JOURNAL_DATA
4851 */
4852 if (jbd2_journal_check_available_features
4853 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4854 set_opt(sb, ORDERED_DATA);
4855 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4856 } else {
4857 set_opt(sb, JOURNAL_DATA);
4858 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4859 }
4860 break;
4861
4862 case EXT4_MOUNT_ORDERED_DATA:
4863 case EXT4_MOUNT_WRITEBACK_DATA:
4864 if (!jbd2_journal_check_available_features
4865 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4866 ext4_msg(sb, KERN_ERR, "Journal does not support "
4867 "requested data journaling mode");
4868 goto failed_mount_wq;
4869 }
4870 default:
4871 break;
4872 }
4873
4874 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4875 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4876 ext4_msg(sb, KERN_ERR, "can't mount with "
4877 "journal_async_commit in data=ordered mode");
4878 goto failed_mount_wq;
4879 }
4880
4881 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4882
4883 sbi->s_journal->j_submit_inode_data_buffers =
4884 ext4_journal_submit_inode_data_buffers;
4885 sbi->s_journal->j_finish_inode_data_buffers =
4886 ext4_journal_finish_inode_data_buffers;
4887
4888 no_journal:
4889 if (!test_opt(sb, NO_MBCACHE)) {
4890 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4891 if (!sbi->s_ea_block_cache) {
4892 ext4_msg(sb, KERN_ERR,
4893 "Failed to create ea_block_cache");
4894 goto failed_mount_wq;
4895 }
4896
4897 if (ext4_has_feature_ea_inode(sb)) {
4898 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4899 if (!sbi->s_ea_inode_cache) {
4900 ext4_msg(sb, KERN_ERR,
4901 "Failed to create ea_inode_cache");
4902 goto failed_mount_wq;
4903 }
4904 }
4905 }
4906
4907 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4908 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4909 goto failed_mount_wq;
4910 }
4911
4912 /*
4913 * Get the # of file system overhead blocks from the
4914 * superblock if present.
4915 */
4916 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4917 /* ignore the precalculated value if it is ridiculous */
4918 if (sbi->s_overhead > ext4_blocks_count(es))
4919 sbi->s_overhead = 0;
4920 /*
4921 * If the bigalloc feature is not enabled recalculating the
4922 * overhead doesn't take long, so we might as well just redo
4923 * it to make sure we are using the correct value.
4924 */
4925 if (!ext4_has_feature_bigalloc(sb))
4926 sbi->s_overhead = 0;
4927 if (sbi->s_overhead == 0) {
4928 err = ext4_calculate_overhead(sb);
4929 if (err)
4930 goto failed_mount_wq;
4931 }
4932
4933 /*
4934 * The maximum number of concurrent works can be high and
4935 * concurrency isn't really necessary. Limit it to 1.
4936 */
4937 EXT4_SB(sb)->rsv_conversion_wq =
4938 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4939 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4940 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4941 ret = -ENOMEM;
4942 goto failed_mount4;
4943 }
4944
4945 /*
4946 * The jbd2_journal_load will have done any necessary log recovery,
4947 * so we can safely mount the rest of the filesystem now.
4948 */
4949
4950 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4951 if (IS_ERR(root)) {
4952 ext4_msg(sb, KERN_ERR, "get root inode failed");
4953 ret = PTR_ERR(root);
4954 root = NULL;
4955 goto failed_mount4;
4956 }
4957 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4958 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4959 iput(root);
4960 goto failed_mount4;
4961 }
4962
4963 #ifdef CONFIG_UNICODE
4964 if (sb->s_encoding)
4965 sb->s_d_op = &ext4_dentry_ops;
4966 #endif
4967
4968 sb->s_root = d_make_root(root);
4969 if (!sb->s_root) {
4970 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4971 ret = -ENOMEM;
4972 goto failed_mount4;
4973 }
4974
4975 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4976 if (ret == -EROFS) {
4977 sb->s_flags |= SB_RDONLY;
4978 ret = 0;
4979 } else if (ret)
4980 goto failed_mount4a;
4981
4982 ext4_set_resv_clusters(sb);
4983
4984 if (test_opt(sb, BLOCK_VALIDITY)) {
4985 err = ext4_setup_system_zone(sb);
4986 if (err) {
4987 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4988 "zone (%d)", err);
4989 goto failed_mount4a;
4990 }
4991 }
4992 ext4_fc_replay_cleanup(sb);
4993
4994 ext4_ext_init(sb);
4995 err = ext4_mb_init(sb);
4996 if (err) {
4997 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4998 err);
4999 goto failed_mount5;
5000 }
5001
5002 /*
5003 * We can only set up the journal commit callback once
5004 * mballoc is initialized
5005 */
5006 if (sbi->s_journal)
5007 sbi->s_journal->j_commit_callback =
5008 ext4_journal_commit_callback;
5009
5010 block = ext4_count_free_clusters(sb);
5011 ext4_free_blocks_count_set(sbi->s_es,
5012 EXT4_C2B(sbi, block));
5013 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5014 GFP_KERNEL);
5015 if (!err) {
5016 unsigned long freei = ext4_count_free_inodes(sb);
5017 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5018 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5019 GFP_KERNEL);
5020 }
5021 /*
5022 * Update the checksum after updating free space/inode
5023 * counters. Otherwise the superblock can have an incorrect
5024 * checksum in the buffer cache until it is written out and
5025 * e2fsprogs programs trying to open a file system immediately
5026 * after it is mounted can fail.
5027 */
5028 ext4_superblock_csum_set(sb);
5029 if (!err)
5030 err = percpu_counter_init(&sbi->s_dirs_counter,
5031 ext4_count_dirs(sb), GFP_KERNEL);
5032 if (!err)
5033 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5034 GFP_KERNEL);
5035 if (!err)
5036 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5037 GFP_KERNEL);
5038 if (!err)
5039 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5040
5041 if (err) {
5042 ext4_msg(sb, KERN_ERR, "insufficient memory");
5043 goto failed_mount6;
5044 }
5045
5046 if (ext4_has_feature_flex_bg(sb))
5047 if (!ext4_fill_flex_info(sb)) {
5048 ext4_msg(sb, KERN_ERR,
5049 "unable to initialize "
5050 "flex_bg meta info!");
5051 ret = -ENOMEM;
5052 goto failed_mount6;
5053 }
5054
5055 err = ext4_register_li_request(sb, first_not_zeroed);
5056 if (err)
5057 goto failed_mount6;
5058
5059 err = ext4_register_sysfs(sb);
5060 if (err)
5061 goto failed_mount7;
5062
5063 #ifdef CONFIG_QUOTA
5064 /* Enable quota usage during mount. */
5065 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5066 err = ext4_enable_quotas(sb);
5067 if (err)
5068 goto failed_mount8;
5069 }
5070 #endif /* CONFIG_QUOTA */
5071
5072 /*
5073 * Save the original bdev mapping's wb_err value which could be
5074 * used to detect the metadata async write error.
5075 */
5076 spin_lock_init(&sbi->s_bdev_wb_lock);
5077 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5078 &sbi->s_bdev_wb_err);
5079 sb->s_bdev->bd_super = sb;
5080 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5081 ext4_orphan_cleanup(sb, es);
5082 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5083 if (needs_recovery) {
5084 ext4_msg(sb, KERN_INFO, "recovery complete");
5085 err = ext4_mark_recovery_complete(sb, es);
5086 if (err)
5087 goto failed_mount8;
5088 }
5089 if (EXT4_SB(sb)->s_journal) {
5090 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5091 descr = " journalled data mode";
5092 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5093 descr = " ordered data mode";
5094 else
5095 descr = " writeback data mode";
5096 } else
5097 descr = "out journal";
5098
5099 if (test_opt(sb, DISCARD)) {
5100 struct request_queue *q = bdev_get_queue(sb->s_bdev);
5101 if (!blk_queue_discard(q))
5102 ext4_msg(sb, KERN_WARNING,
5103 "mounting with \"discard\" option, but "
5104 "the device does not support discard");
5105 }
5106
5107 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5108 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5109 "Opts: %.*s%s%s", descr,
5110 (int) sizeof(sbi->s_es->s_mount_opts),
5111 sbi->s_es->s_mount_opts,
5112 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
5113
5114 if (es->s_error_count)
5115 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5116
5117 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5118 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5119 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5120 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5121 atomic_set(&sbi->s_warning_count, 0);
5122 atomic_set(&sbi->s_msg_count, 0);
5123
5124 kfree(orig_data);
5125 return 0;
5126
5127 cantfind_ext4:
5128 if (!silent)
5129 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5130 goto failed_mount;
5131
5132 failed_mount8:
5133 ext4_unregister_sysfs(sb);
5134 kobject_put(&sbi->s_kobj);
5135 failed_mount7:
5136 ext4_unregister_li_request(sb);
5137 failed_mount6:
5138 ext4_mb_release(sb);
5139 rcu_read_lock();
5140 flex_groups = rcu_dereference(sbi->s_flex_groups);
5141 if (flex_groups) {
5142 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5143 kvfree(flex_groups[i]);
5144 kvfree(flex_groups);
5145 }
5146 rcu_read_unlock();
5147 percpu_counter_destroy(&sbi->s_freeclusters_counter);
5148 percpu_counter_destroy(&sbi->s_freeinodes_counter);
5149 percpu_counter_destroy(&sbi->s_dirs_counter);
5150 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5151 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5152 percpu_free_rwsem(&sbi->s_writepages_rwsem);
5153 failed_mount5:
5154 ext4_ext_release(sb);
5155 ext4_release_system_zone(sb);
5156 failed_mount4a:
5157 dput(sb->s_root);
5158 sb->s_root = NULL;
5159 failed_mount4:
5160 ext4_msg(sb, KERN_ERR, "mount failed");
5161 if (EXT4_SB(sb)->rsv_conversion_wq)
5162 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5163 failed_mount_wq:
5164 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5165 sbi->s_ea_inode_cache = NULL;
5166
5167 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5168 sbi->s_ea_block_cache = NULL;
5169
5170 if (sbi->s_journal) {
5171 /* flush s_error_work before journal destroy. */
5172 flush_work(&sbi->s_error_work);
5173 jbd2_journal_destroy(sbi->s_journal);
5174 sbi->s_journal = NULL;
5175 }
5176 failed_mount3a:
5177 ext4_es_unregister_shrinker(sbi);
5178 failed_mount3:
5179 /* flush s_error_work before sbi destroy */
5180 flush_work(&sbi->s_error_work);
5181 del_timer_sync(&sbi->s_err_report);
5182 ext4_stop_mmpd(sbi);
5183 failed_mount2:
5184 rcu_read_lock();
5185 group_desc = rcu_dereference(sbi->s_group_desc);
5186 for (i = 0; i < db_count; i++)
5187 brelse(group_desc[i]);
5188 kvfree(group_desc);
5189 rcu_read_unlock();
5190 failed_mount:
5191 if (sbi->s_chksum_driver)
5192 crypto_free_shash(sbi->s_chksum_driver);
5193
5194 #ifdef CONFIG_UNICODE
5195 utf8_unload(sb->s_encoding);
5196 #endif
5197
5198 #ifdef CONFIG_QUOTA
5199 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5200 kfree(get_qf_name(sb, sbi, i));
5201 #endif
5202 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5203 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5204 brelse(bh);
5205 ext4_blkdev_remove(sbi);
5206 out_fail:
5207 sb->s_fs_info = NULL;
5208 kfree(sbi->s_blockgroup_lock);
5209 out_free_base:
5210 kfree(sbi);
5211 kfree(orig_data);
5212 fs_put_dax(dax_dev);
5213 return err ? err : ret;
5214 }
5215
5216 /*
5217 * Setup any per-fs journal parameters now. We'll do this both on
5218 * initial mount, once the journal has been initialised but before we've
5219 * done any recovery; and again on any subsequent remount.
5220 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5221 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5222 {
5223 struct ext4_sb_info *sbi = EXT4_SB(sb);
5224
5225 journal->j_commit_interval = sbi->s_commit_interval;
5226 journal->j_min_batch_time = sbi->s_min_batch_time;
5227 journal->j_max_batch_time = sbi->s_max_batch_time;
5228 ext4_fc_init(sb, journal);
5229
5230 write_lock(&journal->j_state_lock);
5231 if (test_opt(sb, BARRIER))
5232 journal->j_flags |= JBD2_BARRIER;
5233 else
5234 journal->j_flags &= ~JBD2_BARRIER;
5235 if (test_opt(sb, DATA_ERR_ABORT))
5236 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5237 else
5238 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5239 write_unlock(&journal->j_state_lock);
5240 }
5241
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5242 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5243 unsigned int journal_inum)
5244 {
5245 struct inode *journal_inode;
5246
5247 /*
5248 * Test for the existence of a valid inode on disk. Bad things
5249 * happen if we iget() an unused inode, as the subsequent iput()
5250 * will try to delete it.
5251 */
5252 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5253 if (IS_ERR(journal_inode)) {
5254 ext4_msg(sb, KERN_ERR, "no journal found");
5255 return NULL;
5256 }
5257 if (!journal_inode->i_nlink) {
5258 make_bad_inode(journal_inode);
5259 iput(journal_inode);
5260 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5261 return NULL;
5262 }
5263
5264 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5265 journal_inode, journal_inode->i_size);
5266 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5267 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5268 iput(journal_inode);
5269 return NULL;
5270 }
5271 return journal_inode;
5272 }
5273
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)5274 static journal_t *ext4_get_journal(struct super_block *sb,
5275 unsigned int journal_inum)
5276 {
5277 struct inode *journal_inode;
5278 journal_t *journal;
5279
5280 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5281 return NULL;
5282
5283 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5284 if (!journal_inode)
5285 return NULL;
5286
5287 journal = jbd2_journal_init_inode(journal_inode);
5288 if (!journal) {
5289 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5290 iput(journal_inode);
5291 return NULL;
5292 }
5293 journal->j_private = sb;
5294 ext4_init_journal_params(sb, journal);
5295 return journal;
5296 }
5297
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)5298 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5299 dev_t j_dev)
5300 {
5301 struct buffer_head *bh;
5302 journal_t *journal;
5303 ext4_fsblk_t start;
5304 ext4_fsblk_t len;
5305 int hblock, blocksize;
5306 ext4_fsblk_t sb_block;
5307 unsigned long offset;
5308 struct ext4_super_block *es;
5309 struct block_device *bdev;
5310
5311 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5312 return NULL;
5313
5314 bdev = ext4_blkdev_get(j_dev, sb);
5315 if (bdev == NULL)
5316 return NULL;
5317
5318 blocksize = sb->s_blocksize;
5319 hblock = bdev_logical_block_size(bdev);
5320 if (blocksize < hblock) {
5321 ext4_msg(sb, KERN_ERR,
5322 "blocksize too small for journal device");
5323 goto out_bdev;
5324 }
5325
5326 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5327 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5328 set_blocksize(bdev, blocksize);
5329 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5330 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5331 "external journal");
5332 goto out_bdev;
5333 }
5334
5335 es = (struct ext4_super_block *) (bh->b_data + offset);
5336 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5337 !(le32_to_cpu(es->s_feature_incompat) &
5338 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5339 ext4_msg(sb, KERN_ERR, "external journal has "
5340 "bad superblock");
5341 brelse(bh);
5342 goto out_bdev;
5343 }
5344
5345 if ((le32_to_cpu(es->s_feature_ro_compat) &
5346 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5347 es->s_checksum != ext4_superblock_csum(sb, es)) {
5348 ext4_msg(sb, KERN_ERR, "external journal has "
5349 "corrupt superblock");
5350 brelse(bh);
5351 goto out_bdev;
5352 }
5353
5354 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5355 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5356 brelse(bh);
5357 goto out_bdev;
5358 }
5359
5360 len = ext4_blocks_count(es);
5361 start = sb_block + 1;
5362 brelse(bh); /* we're done with the superblock */
5363
5364 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5365 start, len, blocksize);
5366 if (!journal) {
5367 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5368 goto out_bdev;
5369 }
5370 journal->j_private = sb;
5371 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5372 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5373 goto out_journal;
5374 }
5375 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5376 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5377 "user (unsupported) - %d",
5378 be32_to_cpu(journal->j_superblock->s_nr_users));
5379 goto out_journal;
5380 }
5381 EXT4_SB(sb)->s_journal_bdev = bdev;
5382 ext4_init_journal_params(sb, journal);
5383 return journal;
5384
5385 out_journal:
5386 jbd2_journal_destroy(journal);
5387 out_bdev:
5388 ext4_blkdev_put(bdev);
5389 return NULL;
5390 }
5391
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5392 static int ext4_load_journal(struct super_block *sb,
5393 struct ext4_super_block *es,
5394 unsigned long journal_devnum)
5395 {
5396 journal_t *journal;
5397 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5398 dev_t journal_dev;
5399 int err = 0;
5400 int really_read_only;
5401 int journal_dev_ro;
5402
5403 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5404 return -EFSCORRUPTED;
5405
5406 if (journal_devnum &&
5407 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5408 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5409 "numbers have changed");
5410 journal_dev = new_decode_dev(journal_devnum);
5411 } else
5412 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5413
5414 if (journal_inum && journal_dev) {
5415 ext4_msg(sb, KERN_ERR,
5416 "filesystem has both journal inode and journal device!");
5417 return -EINVAL;
5418 }
5419
5420 if (journal_inum) {
5421 journal = ext4_get_journal(sb, journal_inum);
5422 if (!journal)
5423 return -EINVAL;
5424 } else {
5425 journal = ext4_get_dev_journal(sb, journal_dev);
5426 if (!journal)
5427 return -EINVAL;
5428 }
5429
5430 journal_dev_ro = bdev_read_only(journal->j_dev);
5431 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5432
5433 if (journal_dev_ro && !sb_rdonly(sb)) {
5434 ext4_msg(sb, KERN_ERR,
5435 "journal device read-only, try mounting with '-o ro'");
5436 err = -EROFS;
5437 goto err_out;
5438 }
5439
5440 /*
5441 * Are we loading a blank journal or performing recovery after a
5442 * crash? For recovery, we need to check in advance whether we
5443 * can get read-write access to the device.
5444 */
5445 if (ext4_has_feature_journal_needs_recovery(sb)) {
5446 if (sb_rdonly(sb)) {
5447 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5448 "required on readonly filesystem");
5449 if (really_read_only) {
5450 ext4_msg(sb, KERN_ERR, "write access "
5451 "unavailable, cannot proceed "
5452 "(try mounting with noload)");
5453 err = -EROFS;
5454 goto err_out;
5455 }
5456 ext4_msg(sb, KERN_INFO, "write access will "
5457 "be enabled during recovery");
5458 }
5459 }
5460
5461 if (!(journal->j_flags & JBD2_BARRIER))
5462 ext4_msg(sb, KERN_INFO, "barriers disabled");
5463
5464 if (!ext4_has_feature_journal_needs_recovery(sb))
5465 err = jbd2_journal_wipe(journal, !really_read_only);
5466 if (!err) {
5467 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5468 if (save)
5469 memcpy(save, ((char *) es) +
5470 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5471 err = jbd2_journal_load(journal);
5472 if (save)
5473 memcpy(((char *) es) + EXT4_S_ERR_START,
5474 save, EXT4_S_ERR_LEN);
5475 kfree(save);
5476 }
5477
5478 if (err) {
5479 ext4_msg(sb, KERN_ERR, "error loading journal");
5480 goto err_out;
5481 }
5482
5483 EXT4_SB(sb)->s_journal = journal;
5484 err = ext4_clear_journal_err(sb, es);
5485 if (err) {
5486 EXT4_SB(sb)->s_journal = NULL;
5487 jbd2_journal_destroy(journal);
5488 return err;
5489 }
5490
5491 if (!really_read_only && journal_devnum &&
5492 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5493 es->s_journal_dev = cpu_to_le32(journal_devnum);
5494
5495 /* Make sure we flush the recovery flag to disk. */
5496 ext4_commit_super(sb);
5497 }
5498
5499 return 0;
5500
5501 err_out:
5502 jbd2_journal_destroy(journal);
5503 return err;
5504 }
5505
5506 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)5507 static void ext4_update_super(struct super_block *sb)
5508 {
5509 struct ext4_sb_info *sbi = EXT4_SB(sb);
5510 struct ext4_super_block *es = sbi->s_es;
5511 struct buffer_head *sbh = sbi->s_sbh;
5512
5513 lock_buffer(sbh);
5514 /*
5515 * If the file system is mounted read-only, don't update the
5516 * superblock write time. This avoids updating the superblock
5517 * write time when we are mounting the root file system
5518 * read/only but we need to replay the journal; at that point,
5519 * for people who are east of GMT and who make their clock
5520 * tick in localtime for Windows bug-for-bug compatibility,
5521 * the clock is set in the future, and this will cause e2fsck
5522 * to complain and force a full file system check.
5523 */
5524 if (!(sb->s_flags & SB_RDONLY))
5525 ext4_update_tstamp(es, s_wtime);
5526 if (sb->s_bdev->bd_part)
5527 es->s_kbytes_written =
5528 cpu_to_le64(sbi->s_kbytes_written +
5529 ((part_stat_read(sb->s_bdev->bd_part,
5530 sectors[STAT_WRITE]) -
5531 sbi->s_sectors_written_start) >> 1));
5532 else
5533 es->s_kbytes_written = cpu_to_le64(sbi->s_kbytes_written);
5534 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5535 ext4_free_blocks_count_set(es,
5536 EXT4_C2B(sbi, percpu_counter_sum_positive(
5537 &sbi->s_freeclusters_counter)));
5538 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5539 es->s_free_inodes_count =
5540 cpu_to_le32(percpu_counter_sum_positive(
5541 &sbi->s_freeinodes_counter));
5542 /* Copy error information to the on-disk superblock */
5543 spin_lock(&sbi->s_error_lock);
5544 if (sbi->s_add_error_count > 0) {
5545 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5546 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5547 __ext4_update_tstamp(&es->s_first_error_time,
5548 &es->s_first_error_time_hi,
5549 sbi->s_first_error_time);
5550 strncpy(es->s_first_error_func, sbi->s_first_error_func,
5551 sizeof(es->s_first_error_func));
5552 es->s_first_error_line =
5553 cpu_to_le32(sbi->s_first_error_line);
5554 es->s_first_error_ino =
5555 cpu_to_le32(sbi->s_first_error_ino);
5556 es->s_first_error_block =
5557 cpu_to_le64(sbi->s_first_error_block);
5558 es->s_first_error_errcode =
5559 ext4_errno_to_code(sbi->s_first_error_code);
5560 }
5561 __ext4_update_tstamp(&es->s_last_error_time,
5562 &es->s_last_error_time_hi,
5563 sbi->s_last_error_time);
5564 strncpy(es->s_last_error_func, sbi->s_last_error_func,
5565 sizeof(es->s_last_error_func));
5566 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5567 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5568 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5569 es->s_last_error_errcode =
5570 ext4_errno_to_code(sbi->s_last_error_code);
5571 /*
5572 * Start the daily error reporting function if it hasn't been
5573 * started already
5574 */
5575 if (!es->s_error_count)
5576 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5577 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5578 sbi->s_add_error_count = 0;
5579 }
5580 spin_unlock(&sbi->s_error_lock);
5581
5582 ext4_superblock_csum_set(sb);
5583 unlock_buffer(sbh);
5584 }
5585
ext4_commit_super(struct super_block * sb)5586 static int ext4_commit_super(struct super_block *sb)
5587 {
5588 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5589 int error = 0;
5590
5591 if (!sbh)
5592 return -EINVAL;
5593 if (block_device_ejected(sb))
5594 return -ENODEV;
5595
5596 ext4_update_super(sb);
5597
5598 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5599 /*
5600 * Oh, dear. A previous attempt to write the
5601 * superblock failed. This could happen because the
5602 * USB device was yanked out. Or it could happen to
5603 * be a transient write error and maybe the block will
5604 * be remapped. Nothing we can do but to retry the
5605 * write and hope for the best.
5606 */
5607 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5608 "superblock detected");
5609 clear_buffer_write_io_error(sbh);
5610 set_buffer_uptodate(sbh);
5611 }
5612 BUFFER_TRACE(sbh, "marking dirty");
5613 mark_buffer_dirty(sbh);
5614 error = __sync_dirty_buffer(sbh,
5615 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5616 if (buffer_write_io_error(sbh)) {
5617 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5618 "superblock");
5619 clear_buffer_write_io_error(sbh);
5620 set_buffer_uptodate(sbh);
5621 }
5622 return error;
5623 }
5624
5625 /*
5626 * Have we just finished recovery? If so, and if we are mounting (or
5627 * remounting) the filesystem readonly, then we will end up with a
5628 * consistent fs on disk. Record that fact.
5629 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)5630 static int ext4_mark_recovery_complete(struct super_block *sb,
5631 struct ext4_super_block *es)
5632 {
5633 int err;
5634 journal_t *journal = EXT4_SB(sb)->s_journal;
5635
5636 if (!ext4_has_feature_journal(sb)) {
5637 if (journal != NULL) {
5638 ext4_error(sb, "Journal got removed while the fs was "
5639 "mounted!");
5640 return -EFSCORRUPTED;
5641 }
5642 return 0;
5643 }
5644 jbd2_journal_lock_updates(journal);
5645 err = jbd2_journal_flush(journal);
5646 if (err < 0)
5647 goto out;
5648
5649 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5650 ext4_clear_feature_journal_needs_recovery(sb);
5651 ext4_commit_super(sb);
5652 }
5653 out:
5654 jbd2_journal_unlock_updates(journal);
5655 return err;
5656 }
5657
5658 /*
5659 * If we are mounting (or read-write remounting) a filesystem whose journal
5660 * has recorded an error from a previous lifetime, move that error to the
5661 * main filesystem now.
5662 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)5663 static int ext4_clear_journal_err(struct super_block *sb,
5664 struct ext4_super_block *es)
5665 {
5666 journal_t *journal;
5667 int j_errno;
5668 const char *errstr;
5669
5670 if (!ext4_has_feature_journal(sb)) {
5671 ext4_error(sb, "Journal got removed while the fs was mounted!");
5672 return -EFSCORRUPTED;
5673 }
5674
5675 journal = EXT4_SB(sb)->s_journal;
5676
5677 /*
5678 * Now check for any error status which may have been recorded in the
5679 * journal by a prior ext4_error() or ext4_abort()
5680 */
5681
5682 j_errno = jbd2_journal_errno(journal);
5683 if (j_errno) {
5684 char nbuf[16];
5685
5686 errstr = ext4_decode_error(sb, j_errno, nbuf);
5687 ext4_warning(sb, "Filesystem error recorded "
5688 "from previous mount: %s", errstr);
5689 ext4_warning(sb, "Marking fs in need of filesystem check.");
5690
5691 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5692 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5693 ext4_commit_super(sb);
5694
5695 jbd2_journal_clear_err(journal);
5696 jbd2_journal_update_sb_errno(journal);
5697 }
5698 return 0;
5699 }
5700
5701 /*
5702 * Force the running and committing transactions to commit,
5703 * and wait on the commit.
5704 */
ext4_force_commit(struct super_block * sb)5705 int ext4_force_commit(struct super_block *sb)
5706 {
5707 journal_t *journal;
5708
5709 if (sb_rdonly(sb))
5710 return 0;
5711
5712 journal = EXT4_SB(sb)->s_journal;
5713 return ext4_journal_force_commit(journal);
5714 }
5715
ext4_sync_fs(struct super_block * sb,int wait)5716 static int ext4_sync_fs(struct super_block *sb, int wait)
5717 {
5718 int ret = 0;
5719 tid_t target;
5720 bool needs_barrier = false;
5721 struct ext4_sb_info *sbi = EXT4_SB(sb);
5722
5723 if (unlikely(ext4_forced_shutdown(sbi)))
5724 return 0;
5725
5726 trace_ext4_sync_fs(sb, wait);
5727 flush_workqueue(sbi->rsv_conversion_wq);
5728 /*
5729 * Writeback quota in non-journalled quota case - journalled quota has
5730 * no dirty dquots
5731 */
5732 dquot_writeback_dquots(sb, -1);
5733 /*
5734 * Data writeback is possible w/o journal transaction, so barrier must
5735 * being sent at the end of the function. But we can skip it if
5736 * transaction_commit will do it for us.
5737 */
5738 if (sbi->s_journal) {
5739 target = jbd2_get_latest_transaction(sbi->s_journal);
5740 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5741 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5742 needs_barrier = true;
5743
5744 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5745 if (wait)
5746 ret = jbd2_log_wait_commit(sbi->s_journal,
5747 target);
5748 }
5749 } else if (wait && test_opt(sb, BARRIER))
5750 needs_barrier = true;
5751 if (needs_barrier) {
5752 int err;
5753 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
5754 if (!ret)
5755 ret = err;
5756 }
5757
5758 return ret;
5759 }
5760
5761 /*
5762 * LVM calls this function before a (read-only) snapshot is created. This
5763 * gives us a chance to flush the journal completely and mark the fs clean.
5764 *
5765 * Note that only this function cannot bring a filesystem to be in a clean
5766 * state independently. It relies on upper layer to stop all data & metadata
5767 * modifications.
5768 */
ext4_freeze(struct super_block * sb)5769 static int ext4_freeze(struct super_block *sb)
5770 {
5771 int error = 0;
5772 journal_t *journal;
5773
5774 if (sb_rdonly(sb))
5775 return 0;
5776
5777 journal = EXT4_SB(sb)->s_journal;
5778
5779 if (journal) {
5780 /* Now we set up the journal barrier. */
5781 jbd2_journal_lock_updates(journal);
5782
5783 /*
5784 * Don't clear the needs_recovery flag if we failed to
5785 * flush the journal.
5786 */
5787 error = jbd2_journal_flush(journal);
5788 if (error < 0)
5789 goto out;
5790
5791 /* Journal blocked and flushed, clear needs_recovery flag. */
5792 ext4_clear_feature_journal_needs_recovery(sb);
5793 }
5794
5795 error = ext4_commit_super(sb);
5796 out:
5797 if (journal)
5798 /* we rely on upper layer to stop further updates */
5799 jbd2_journal_unlock_updates(journal);
5800 return error;
5801 }
5802
5803 /*
5804 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5805 * flag here, even though the filesystem is not technically dirty yet.
5806 */
ext4_unfreeze(struct super_block * sb)5807 static int ext4_unfreeze(struct super_block *sb)
5808 {
5809 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5810 return 0;
5811
5812 if (EXT4_SB(sb)->s_journal) {
5813 /* Reset the needs_recovery flag before the fs is unlocked. */
5814 ext4_set_feature_journal_needs_recovery(sb);
5815 }
5816
5817 ext4_commit_super(sb);
5818 return 0;
5819 }
5820
5821 /*
5822 * Structure to save mount options for ext4_remount's benefit
5823 */
5824 struct ext4_mount_options {
5825 unsigned long s_mount_opt;
5826 unsigned long s_mount_opt2;
5827 kuid_t s_resuid;
5828 kgid_t s_resgid;
5829 unsigned long s_commit_interval;
5830 u32 s_min_batch_time, s_max_batch_time;
5831 #ifdef CONFIG_QUOTA
5832 int s_jquota_fmt;
5833 char *s_qf_names[EXT4_MAXQUOTAS];
5834 #endif
5835 };
5836
ext4_remount(struct super_block * sb,int * flags,char * data)5837 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5838 {
5839 struct ext4_super_block *es;
5840 struct ext4_sb_info *sbi = EXT4_SB(sb);
5841 unsigned long old_sb_flags, vfs_flags;
5842 struct ext4_mount_options old_opts;
5843 ext4_group_t g;
5844 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5845 int err = 0;
5846 #ifdef CONFIG_QUOTA
5847 int enable_quota = 0;
5848 int i, j;
5849 char *to_free[EXT4_MAXQUOTAS];
5850 #endif
5851 char *orig_data = kstrdup(data, GFP_KERNEL);
5852
5853 if (data && !orig_data)
5854 return -ENOMEM;
5855
5856 /* Store the original options */
5857 old_sb_flags = sb->s_flags;
5858 old_opts.s_mount_opt = sbi->s_mount_opt;
5859 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5860 old_opts.s_resuid = sbi->s_resuid;
5861 old_opts.s_resgid = sbi->s_resgid;
5862 old_opts.s_commit_interval = sbi->s_commit_interval;
5863 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5864 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5865 #ifdef CONFIG_QUOTA
5866 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5867 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5868 if (sbi->s_qf_names[i]) {
5869 char *qf_name = get_qf_name(sb, sbi, i);
5870
5871 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5872 if (!old_opts.s_qf_names[i]) {
5873 for (j = 0; j < i; j++)
5874 kfree(old_opts.s_qf_names[j]);
5875 kfree(orig_data);
5876 return -ENOMEM;
5877 }
5878 } else
5879 old_opts.s_qf_names[i] = NULL;
5880 #endif
5881 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5882 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5883
5884 /*
5885 * Some options can be enabled by ext4 and/or by VFS mount flag
5886 * either way we need to make sure it matches in both *flags and
5887 * s_flags. Copy those selected flags from *flags to s_flags
5888 */
5889 vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5890 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5891
5892 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5893 err = -EINVAL;
5894 goto restore_opts;
5895 }
5896
5897 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5898 test_opt(sb, JOURNAL_CHECKSUM)) {
5899 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5900 "during remount not supported; ignoring");
5901 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5902 }
5903
5904 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5905 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5906 ext4_msg(sb, KERN_ERR, "can't mount with "
5907 "both data=journal and delalloc");
5908 err = -EINVAL;
5909 goto restore_opts;
5910 }
5911 if (test_opt(sb, DIOREAD_NOLOCK)) {
5912 ext4_msg(sb, KERN_ERR, "can't mount with "
5913 "both data=journal and dioread_nolock");
5914 err = -EINVAL;
5915 goto restore_opts;
5916 }
5917 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5918 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5919 ext4_msg(sb, KERN_ERR, "can't mount with "
5920 "journal_async_commit in data=ordered mode");
5921 err = -EINVAL;
5922 goto restore_opts;
5923 }
5924 }
5925
5926 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5927 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5928 err = -EINVAL;
5929 goto restore_opts;
5930 }
5931
5932 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5933 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5934
5935 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5936 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5937
5938 es = sbi->s_es;
5939
5940 if (sbi->s_journal) {
5941 ext4_init_journal_params(sb, sbi->s_journal);
5942 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5943 }
5944
5945 /* Flush outstanding errors before changing fs state */
5946 flush_work(&sbi->s_error_work);
5947
5948 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5949 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5950 err = -EROFS;
5951 goto restore_opts;
5952 }
5953
5954 if (*flags & SB_RDONLY) {
5955 err = sync_filesystem(sb);
5956 if (err < 0)
5957 goto restore_opts;
5958 err = dquot_suspend(sb, -1);
5959 if (err < 0)
5960 goto restore_opts;
5961
5962 /*
5963 * First of all, the unconditional stuff we have to do
5964 * to disable replay of the journal when we next remount
5965 */
5966 sb->s_flags |= SB_RDONLY;
5967
5968 /*
5969 * OK, test if we are remounting a valid rw partition
5970 * readonly, and if so set the rdonly flag and then
5971 * mark the partition as valid again.
5972 */
5973 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5974 (sbi->s_mount_state & EXT4_VALID_FS))
5975 es->s_state = cpu_to_le16(sbi->s_mount_state);
5976
5977 if (sbi->s_journal) {
5978 /*
5979 * We let remount-ro finish even if marking fs
5980 * as clean failed...
5981 */
5982 ext4_mark_recovery_complete(sb, es);
5983 }
5984 } else {
5985 /* Make sure we can mount this feature set readwrite */
5986 if (ext4_has_feature_readonly(sb) ||
5987 !ext4_feature_set_ok(sb, 0)) {
5988 err = -EROFS;
5989 goto restore_opts;
5990 }
5991 /*
5992 * Make sure the group descriptor checksums
5993 * are sane. If they aren't, refuse to remount r/w.
5994 */
5995 for (g = 0; g < sbi->s_groups_count; g++) {
5996 struct ext4_group_desc *gdp =
5997 ext4_get_group_desc(sb, g, NULL);
5998
5999 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6000 ext4_msg(sb, KERN_ERR,
6001 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6002 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6003 le16_to_cpu(gdp->bg_checksum));
6004 err = -EFSBADCRC;
6005 goto restore_opts;
6006 }
6007 }
6008
6009 /*
6010 * If we have an unprocessed orphan list hanging
6011 * around from a previously readonly bdev mount,
6012 * require a full umount/remount for now.
6013 */
6014 if (es->s_last_orphan) {
6015 ext4_msg(sb, KERN_WARNING, "Couldn't "
6016 "remount RDWR because of unprocessed "
6017 "orphan inode list. Please "
6018 "umount/remount instead");
6019 err = -EINVAL;
6020 goto restore_opts;
6021 }
6022
6023 /*
6024 * Mounting a RDONLY partition read-write, so reread
6025 * and store the current valid flag. (It may have
6026 * been changed by e2fsck since we originally mounted
6027 * the partition.)
6028 */
6029 if (sbi->s_journal) {
6030 err = ext4_clear_journal_err(sb, es);
6031 if (err)
6032 goto restore_opts;
6033 }
6034 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6035 ~EXT4_FC_REPLAY);
6036
6037 err = ext4_setup_super(sb, es, 0);
6038 if (err)
6039 goto restore_opts;
6040
6041 sb->s_flags &= ~SB_RDONLY;
6042 if (ext4_has_feature_mmp(sb)) {
6043 err = ext4_multi_mount_protect(sb,
6044 le64_to_cpu(es->s_mmp_block));
6045 if (err)
6046 goto restore_opts;
6047 }
6048 #ifdef CONFIG_QUOTA
6049 enable_quota = 1;
6050 #endif
6051 }
6052 }
6053
6054 /*
6055 * Handle creation of system zone data early because it can fail.
6056 * Releasing of existing data is done when we are sure remount will
6057 * succeed.
6058 */
6059 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6060 err = ext4_setup_system_zone(sb);
6061 if (err)
6062 goto restore_opts;
6063 }
6064
6065 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6066 err = ext4_commit_super(sb);
6067 if (err)
6068 goto restore_opts;
6069 }
6070
6071 #ifdef CONFIG_QUOTA
6072 if (enable_quota) {
6073 if (sb_any_quota_suspended(sb))
6074 dquot_resume(sb, -1);
6075 else if (ext4_has_feature_quota(sb)) {
6076 err = ext4_enable_quotas(sb);
6077 if (err)
6078 goto restore_opts;
6079 }
6080 }
6081 /* Release old quota file names */
6082 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6083 kfree(old_opts.s_qf_names[i]);
6084 #endif
6085 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6086 ext4_release_system_zone(sb);
6087
6088 /*
6089 * Reinitialize lazy itable initialization thread based on
6090 * current settings
6091 */
6092 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6093 ext4_unregister_li_request(sb);
6094 else {
6095 ext4_group_t first_not_zeroed;
6096 first_not_zeroed = ext4_has_uninit_itable(sb);
6097 ext4_register_li_request(sb, first_not_zeroed);
6098 }
6099
6100 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6101 ext4_stop_mmpd(sbi);
6102
6103 /*
6104 * Some options can be enabled by ext4 and/or by VFS mount flag
6105 * either way we need to make sure it matches in both *flags and
6106 * s_flags. Copy those selected flags from s_flags to *flags
6107 */
6108 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6109
6110 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
6111 kfree(orig_data);
6112 return 0;
6113
6114 restore_opts:
6115 /*
6116 * If there was a failing r/w to ro transition, we may need to
6117 * re-enable quota
6118 */
6119 if ((sb->s_flags & SB_RDONLY) && !(old_sb_flags & SB_RDONLY) &&
6120 sb_any_quota_suspended(sb))
6121 dquot_resume(sb, -1);
6122 sb->s_flags = old_sb_flags;
6123 sbi->s_mount_opt = old_opts.s_mount_opt;
6124 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6125 sbi->s_resuid = old_opts.s_resuid;
6126 sbi->s_resgid = old_opts.s_resgid;
6127 sbi->s_commit_interval = old_opts.s_commit_interval;
6128 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6129 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6130 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6131 ext4_release_system_zone(sb);
6132 #ifdef CONFIG_QUOTA
6133 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6134 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6135 to_free[i] = get_qf_name(sb, sbi, i);
6136 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6137 }
6138 synchronize_rcu();
6139 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6140 kfree(to_free[i]);
6141 #endif
6142 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6143 ext4_stop_mmpd(sbi);
6144 kfree(orig_data);
6145 return err;
6146 }
6147
6148 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6149 static int ext4_statfs_project(struct super_block *sb,
6150 kprojid_t projid, struct kstatfs *buf)
6151 {
6152 struct kqid qid;
6153 struct dquot *dquot;
6154 u64 limit;
6155 u64 curblock;
6156
6157 qid = make_kqid_projid(projid);
6158 dquot = dqget(sb, qid);
6159 if (IS_ERR(dquot))
6160 return PTR_ERR(dquot);
6161 spin_lock(&dquot->dq_dqb_lock);
6162
6163 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6164 dquot->dq_dqb.dqb_bhardlimit);
6165 limit >>= sb->s_blocksize_bits;
6166
6167 if (limit && buf->f_blocks > limit) {
6168 curblock = (dquot->dq_dqb.dqb_curspace +
6169 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6170 buf->f_blocks = limit;
6171 buf->f_bfree = buf->f_bavail =
6172 (buf->f_blocks > curblock) ?
6173 (buf->f_blocks - curblock) : 0;
6174 }
6175
6176 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6177 dquot->dq_dqb.dqb_ihardlimit);
6178 if (limit && buf->f_files > limit) {
6179 buf->f_files = limit;
6180 buf->f_ffree =
6181 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6182 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6183 }
6184
6185 spin_unlock(&dquot->dq_dqb_lock);
6186 dqput(dquot);
6187 return 0;
6188 }
6189 #endif
6190
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6191 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6192 {
6193 struct super_block *sb = dentry->d_sb;
6194 struct ext4_sb_info *sbi = EXT4_SB(sb);
6195 struct ext4_super_block *es = sbi->s_es;
6196 ext4_fsblk_t overhead = 0, resv_blocks;
6197 u64 fsid;
6198 s64 bfree;
6199 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6200
6201 if (!test_opt(sb, MINIX_DF))
6202 overhead = sbi->s_overhead;
6203
6204 buf->f_type = EXT4_SUPER_MAGIC;
6205 buf->f_bsize = sb->s_blocksize;
6206 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6207 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6208 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6209 /* prevent underflow in case that few free space is available */
6210 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6211 buf->f_bavail = buf->f_bfree -
6212 (ext4_r_blocks_count(es) + resv_blocks);
6213 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6214 buf->f_bavail = 0;
6215 buf->f_files = le32_to_cpu(es->s_inodes_count);
6216 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6217 buf->f_namelen = EXT4_NAME_LEN;
6218 fsid = le64_to_cpup((void *)es->s_uuid) ^
6219 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
6220 buf->f_fsid = u64_to_fsid(fsid);
6221
6222 #ifdef CONFIG_QUOTA
6223 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6224 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6225 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6226 #endif
6227 return 0;
6228 }
6229
6230
6231 #ifdef CONFIG_QUOTA
6232
6233 /*
6234 * Helper functions so that transaction is started before we acquire dqio_sem
6235 * to keep correct lock ordering of transaction > dqio_sem
6236 */
dquot_to_inode(struct dquot * dquot)6237 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6238 {
6239 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6240 }
6241
ext4_write_dquot(struct dquot * dquot)6242 static int ext4_write_dquot(struct dquot *dquot)
6243 {
6244 int ret, err;
6245 handle_t *handle;
6246 struct inode *inode;
6247
6248 inode = dquot_to_inode(dquot);
6249 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6250 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6251 if (IS_ERR(handle))
6252 return PTR_ERR(handle);
6253 ret = dquot_commit(dquot);
6254 err = ext4_journal_stop(handle);
6255 if (!ret)
6256 ret = err;
6257 return ret;
6258 }
6259
ext4_acquire_dquot(struct dquot * dquot)6260 static int ext4_acquire_dquot(struct dquot *dquot)
6261 {
6262 int ret, err;
6263 handle_t *handle;
6264
6265 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6266 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6267 if (IS_ERR(handle))
6268 return PTR_ERR(handle);
6269 ret = dquot_acquire(dquot);
6270 err = ext4_journal_stop(handle);
6271 if (!ret)
6272 ret = err;
6273 return ret;
6274 }
6275
ext4_release_dquot(struct dquot * dquot)6276 static int ext4_release_dquot(struct dquot *dquot)
6277 {
6278 int ret, err;
6279 handle_t *handle;
6280
6281 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6282 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6283 if (IS_ERR(handle)) {
6284 /* Release dquot anyway to avoid endless cycle in dqput() */
6285 dquot_release(dquot);
6286 return PTR_ERR(handle);
6287 }
6288 ret = dquot_release(dquot);
6289 err = ext4_journal_stop(handle);
6290 if (!ret)
6291 ret = err;
6292 return ret;
6293 }
6294
ext4_mark_dquot_dirty(struct dquot * dquot)6295 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6296 {
6297 struct super_block *sb = dquot->dq_sb;
6298 struct ext4_sb_info *sbi = EXT4_SB(sb);
6299
6300 /* Are we journaling quotas? */
6301 if (ext4_has_feature_quota(sb) ||
6302 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
6303 dquot_mark_dquot_dirty(dquot);
6304 return ext4_write_dquot(dquot);
6305 } else {
6306 return dquot_mark_dquot_dirty(dquot);
6307 }
6308 }
6309
ext4_write_info(struct super_block * sb,int type)6310 static int ext4_write_info(struct super_block *sb, int type)
6311 {
6312 int ret, err;
6313 handle_t *handle;
6314
6315 /* Data block + inode block */
6316 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6317 if (IS_ERR(handle))
6318 return PTR_ERR(handle);
6319 ret = dquot_commit_info(sb, type);
6320 err = ext4_journal_stop(handle);
6321 if (!ret)
6322 ret = err;
6323 return ret;
6324 }
6325
6326 /*
6327 * Turn on quotas during mount time - we need to find
6328 * the quota file and such...
6329 */
ext4_quota_on_mount(struct super_block * sb,int type)6330 static int ext4_quota_on_mount(struct super_block *sb, int type)
6331 {
6332 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6333 EXT4_SB(sb)->s_jquota_fmt, type);
6334 }
6335
lockdep_set_quota_inode(struct inode * inode,int subclass)6336 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6337 {
6338 struct ext4_inode_info *ei = EXT4_I(inode);
6339
6340 /* The first argument of lockdep_set_subclass has to be
6341 * *exactly* the same as the argument to init_rwsem() --- in
6342 * this case, in init_once() --- or lockdep gets unhappy
6343 * because the name of the lock is set using the
6344 * stringification of the argument to init_rwsem().
6345 */
6346 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6347 lockdep_set_subclass(&ei->i_data_sem, subclass);
6348 }
6349
6350 /*
6351 * Standard function to be called on quota_on
6352 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6353 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6354 const struct path *path)
6355 {
6356 int err;
6357
6358 if (!test_opt(sb, QUOTA))
6359 return -EINVAL;
6360
6361 /* Quotafile not on the same filesystem? */
6362 if (path->dentry->d_sb != sb)
6363 return -EXDEV;
6364
6365 /* Quota already enabled for this file? */
6366 if (IS_NOQUOTA(d_inode(path->dentry)))
6367 return -EBUSY;
6368
6369 /* Journaling quota? */
6370 if (EXT4_SB(sb)->s_qf_names[type]) {
6371 /* Quotafile not in fs root? */
6372 if (path->dentry->d_parent != sb->s_root)
6373 ext4_msg(sb, KERN_WARNING,
6374 "Quota file not on filesystem root. "
6375 "Journaled quota will not work");
6376 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6377 } else {
6378 /*
6379 * Clear the flag just in case mount options changed since
6380 * last time.
6381 */
6382 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6383 }
6384
6385 /*
6386 * When we journal data on quota file, we have to flush journal to see
6387 * all updates to the file when we bypass pagecache...
6388 */
6389 if (EXT4_SB(sb)->s_journal &&
6390 ext4_should_journal_data(d_inode(path->dentry))) {
6391 /*
6392 * We don't need to lock updates but journal_flush() could
6393 * otherwise be livelocked...
6394 */
6395 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6396 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6397 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6398 if (err)
6399 return err;
6400 }
6401
6402 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6403 err = dquot_quota_on(sb, type, format_id, path);
6404 if (!err) {
6405 struct inode *inode = d_inode(path->dentry);
6406 handle_t *handle;
6407
6408 /*
6409 * Set inode flags to prevent userspace from messing with quota
6410 * files. If this fails, we return success anyway since quotas
6411 * are already enabled and this is not a hard failure.
6412 */
6413 inode_lock(inode);
6414 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6415 if (IS_ERR(handle))
6416 goto unlock_inode;
6417 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6418 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6419 S_NOATIME | S_IMMUTABLE);
6420 err = ext4_mark_inode_dirty(handle, inode);
6421 ext4_journal_stop(handle);
6422 unlock_inode:
6423 inode_unlock(inode);
6424 if (err)
6425 dquot_quota_off(sb, type);
6426 }
6427 if (err)
6428 lockdep_set_quota_inode(path->dentry->d_inode,
6429 I_DATA_SEM_NORMAL);
6430 return err;
6431 }
6432
ext4_check_quota_inum(int type,unsigned long qf_inum)6433 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6434 {
6435 switch (type) {
6436 case USRQUOTA:
6437 return qf_inum == EXT4_USR_QUOTA_INO;
6438 case GRPQUOTA:
6439 return qf_inum == EXT4_GRP_QUOTA_INO;
6440 case PRJQUOTA:
6441 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6442 default:
6443 BUG();
6444 }
6445 }
6446
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)6447 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6448 unsigned int flags)
6449 {
6450 int err;
6451 struct inode *qf_inode;
6452 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6453 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6454 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6455 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6456 };
6457
6458 BUG_ON(!ext4_has_feature_quota(sb));
6459
6460 if (!qf_inums[type])
6461 return -EPERM;
6462
6463 if (!ext4_check_quota_inum(type, qf_inums[type])) {
6464 ext4_error(sb, "Bad quota inum: %lu, type: %d",
6465 qf_inums[type], type);
6466 return -EUCLEAN;
6467 }
6468
6469 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6470 if (IS_ERR(qf_inode)) {
6471 ext4_error(sb, "Bad quota inode: %lu, type: %d",
6472 qf_inums[type], type);
6473 return PTR_ERR(qf_inode);
6474 }
6475
6476 /* Don't account quota for quota files to avoid recursion */
6477 qf_inode->i_flags |= S_NOQUOTA;
6478 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6479 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6480 if (err)
6481 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6482 iput(qf_inode);
6483
6484 return err;
6485 }
6486
6487 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)6488 static int ext4_enable_quotas(struct super_block *sb)
6489 {
6490 int type, err = 0;
6491 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6492 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6493 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6494 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6495 };
6496 bool quota_mopt[EXT4_MAXQUOTAS] = {
6497 test_opt(sb, USRQUOTA),
6498 test_opt(sb, GRPQUOTA),
6499 test_opt(sb, PRJQUOTA),
6500 };
6501
6502 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6503 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6504 if (qf_inums[type]) {
6505 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6506 DQUOT_USAGE_ENABLED |
6507 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6508 if (err) {
6509 ext4_warning(sb,
6510 "Failed to enable quota tracking "
6511 "(type=%d, err=%d, ino=%lu). "
6512 "Please run e2fsck to fix.", type,
6513 err, qf_inums[type]);
6514 for (type--; type >= 0; type--) {
6515 struct inode *inode;
6516
6517 inode = sb_dqopt(sb)->files[type];
6518 if (inode)
6519 inode = igrab(inode);
6520 dquot_quota_off(sb, type);
6521 if (inode) {
6522 lockdep_set_quota_inode(inode,
6523 I_DATA_SEM_NORMAL);
6524 iput(inode);
6525 }
6526 }
6527
6528 return err;
6529 }
6530 }
6531 }
6532 return 0;
6533 }
6534
ext4_quota_off(struct super_block * sb,int type)6535 static int ext4_quota_off(struct super_block *sb, int type)
6536 {
6537 struct inode *inode = sb_dqopt(sb)->files[type];
6538 handle_t *handle;
6539 int err;
6540
6541 /* Force all delayed allocation blocks to be allocated.
6542 * Caller already holds s_umount sem */
6543 if (test_opt(sb, DELALLOC))
6544 sync_filesystem(sb);
6545
6546 if (!inode || !igrab(inode))
6547 goto out;
6548
6549 err = dquot_quota_off(sb, type);
6550 if (err || ext4_has_feature_quota(sb))
6551 goto out_put;
6552
6553 inode_lock(inode);
6554 /*
6555 * Update modification times of quota files when userspace can
6556 * start looking at them. If we fail, we return success anyway since
6557 * this is not a hard failure and quotas are already disabled.
6558 */
6559 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6560 if (IS_ERR(handle)) {
6561 err = PTR_ERR(handle);
6562 goto out_unlock;
6563 }
6564 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6565 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6566 inode->i_mtime = inode->i_ctime = current_time(inode);
6567 err = ext4_mark_inode_dirty(handle, inode);
6568 ext4_journal_stop(handle);
6569 out_unlock:
6570 inode_unlock(inode);
6571 out_put:
6572 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6573 iput(inode);
6574 return err;
6575 out:
6576 return dquot_quota_off(sb, type);
6577 }
6578
6579 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6580 * acquiring the locks... As quota files are never truncated and quota code
6581 * itself serializes the operations (and no one else should touch the files)
6582 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)6583 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6584 size_t len, loff_t off)
6585 {
6586 struct inode *inode = sb_dqopt(sb)->files[type];
6587 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6588 int offset = off & (sb->s_blocksize - 1);
6589 int tocopy;
6590 size_t toread;
6591 struct buffer_head *bh;
6592 loff_t i_size = i_size_read(inode);
6593
6594 if (off > i_size)
6595 return 0;
6596 if (off+len > i_size)
6597 len = i_size-off;
6598 toread = len;
6599 while (toread > 0) {
6600 tocopy = sb->s_blocksize - offset < toread ?
6601 sb->s_blocksize - offset : toread;
6602 bh = ext4_bread(NULL, inode, blk, 0);
6603 if (IS_ERR(bh))
6604 return PTR_ERR(bh);
6605 if (!bh) /* A hole? */
6606 memset(data, 0, tocopy);
6607 else
6608 memcpy(data, bh->b_data+offset, tocopy);
6609 brelse(bh);
6610 offset = 0;
6611 toread -= tocopy;
6612 data += tocopy;
6613 blk++;
6614 }
6615 return len;
6616 }
6617
6618 /* Write to quotafile (we know the transaction is already started and has
6619 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)6620 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6621 const char *data, size_t len, loff_t off)
6622 {
6623 struct inode *inode = sb_dqopt(sb)->files[type];
6624 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6625 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6626 int retries = 0;
6627 struct buffer_head *bh;
6628 handle_t *handle = journal_current_handle();
6629
6630 if (!handle) {
6631 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6632 " cancelled because transaction is not started",
6633 (unsigned long long)off, (unsigned long long)len);
6634 return -EIO;
6635 }
6636 /*
6637 * Since we account only one data block in transaction credits,
6638 * then it is impossible to cross a block boundary.
6639 */
6640 if (sb->s_blocksize - offset < len) {
6641 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6642 " cancelled because not block aligned",
6643 (unsigned long long)off, (unsigned long long)len);
6644 return -EIO;
6645 }
6646
6647 do {
6648 bh = ext4_bread(handle, inode, blk,
6649 EXT4_GET_BLOCKS_CREATE |
6650 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6651 } while (PTR_ERR(bh) == -ENOSPC &&
6652 ext4_should_retry_alloc(inode->i_sb, &retries));
6653 if (IS_ERR(bh))
6654 return PTR_ERR(bh);
6655 if (!bh)
6656 goto out;
6657 BUFFER_TRACE(bh, "get write access");
6658 err = ext4_journal_get_write_access(handle, bh);
6659 if (err) {
6660 brelse(bh);
6661 return err;
6662 }
6663 lock_buffer(bh);
6664 memcpy(bh->b_data+offset, data, len);
6665 flush_dcache_page(bh->b_page);
6666 unlock_buffer(bh);
6667 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6668 brelse(bh);
6669 out:
6670 if (inode->i_size < off + len) {
6671 i_size_write(inode, off + len);
6672 EXT4_I(inode)->i_disksize = inode->i_size;
6673 err2 = ext4_mark_inode_dirty(handle, inode);
6674 if (unlikely(err2 && !err))
6675 err = err2;
6676 }
6677 return err ? err : len;
6678 }
6679 #endif
6680
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)6681 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6682 const char *dev_name, void *data)
6683 {
6684 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6685 }
6686
6687 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)6688 static inline void register_as_ext2(void)
6689 {
6690 int err = register_filesystem(&ext2_fs_type);
6691 if (err)
6692 printk(KERN_WARNING
6693 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6694 }
6695
unregister_as_ext2(void)6696 static inline void unregister_as_ext2(void)
6697 {
6698 unregister_filesystem(&ext2_fs_type);
6699 }
6700
ext2_feature_set_ok(struct super_block * sb)6701 static inline int ext2_feature_set_ok(struct super_block *sb)
6702 {
6703 if (ext4_has_unknown_ext2_incompat_features(sb))
6704 return 0;
6705 if (sb_rdonly(sb))
6706 return 1;
6707 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6708 return 0;
6709 return 1;
6710 }
6711 #else
register_as_ext2(void)6712 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)6713 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)6714 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6715 #endif
6716
register_as_ext3(void)6717 static inline void register_as_ext3(void)
6718 {
6719 int err = register_filesystem(&ext3_fs_type);
6720 if (err)
6721 printk(KERN_WARNING
6722 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6723 }
6724
unregister_as_ext3(void)6725 static inline void unregister_as_ext3(void)
6726 {
6727 unregister_filesystem(&ext3_fs_type);
6728 }
6729
ext3_feature_set_ok(struct super_block * sb)6730 static inline int ext3_feature_set_ok(struct super_block *sb)
6731 {
6732 if (ext4_has_unknown_ext3_incompat_features(sb))
6733 return 0;
6734 if (!ext4_has_feature_journal(sb))
6735 return 0;
6736 if (sb_rdonly(sb))
6737 return 1;
6738 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6739 return 0;
6740 return 1;
6741 }
6742
6743 static struct file_system_type ext4_fs_type = {
6744 .owner = THIS_MODULE,
6745 .name = "ext4",
6746 .mount = ext4_mount,
6747 .kill_sb = kill_block_super,
6748 .fs_flags = FS_REQUIRES_DEV,
6749 };
6750 MODULE_ALIAS_FS("ext4");
6751
6752 /* Shared across all ext4 file systems */
6753 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6754
ext4_init_fs(void)6755 static int __init ext4_init_fs(void)
6756 {
6757 int i, err;
6758
6759 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6760 ext4_li_info = NULL;
6761 mutex_init(&ext4_li_mtx);
6762
6763 /* Build-time check for flags consistency */
6764 ext4_check_flag_values();
6765
6766 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6767 init_waitqueue_head(&ext4__ioend_wq[i]);
6768
6769 err = ext4_init_es();
6770 if (err)
6771 return err;
6772
6773 err = ext4_init_pending();
6774 if (err)
6775 goto out7;
6776
6777 err = ext4_init_post_read_processing();
6778 if (err)
6779 goto out6;
6780
6781 err = ext4_init_pageio();
6782 if (err)
6783 goto out5;
6784
6785 err = ext4_init_system_zone();
6786 if (err)
6787 goto out4;
6788
6789 err = ext4_init_sysfs();
6790 if (err)
6791 goto out3;
6792
6793 err = ext4_init_mballoc();
6794 if (err)
6795 goto out2;
6796 err = init_inodecache();
6797 if (err)
6798 goto out1;
6799
6800 err = ext4_fc_init_dentry_cache();
6801 if (err)
6802 goto out05;
6803
6804 register_as_ext3();
6805 register_as_ext2();
6806 err = register_filesystem(&ext4_fs_type);
6807 if (err)
6808 goto out;
6809
6810 return 0;
6811 out:
6812 unregister_as_ext2();
6813 unregister_as_ext3();
6814 ext4_fc_destroy_dentry_cache();
6815 out05:
6816 destroy_inodecache();
6817 out1:
6818 ext4_exit_mballoc();
6819 out2:
6820 ext4_exit_sysfs();
6821 out3:
6822 ext4_exit_system_zone();
6823 out4:
6824 ext4_exit_pageio();
6825 out5:
6826 ext4_exit_post_read_processing();
6827 out6:
6828 ext4_exit_pending();
6829 out7:
6830 ext4_exit_es();
6831
6832 return err;
6833 }
6834
ext4_exit_fs(void)6835 static void __exit ext4_exit_fs(void)
6836 {
6837 ext4_destroy_lazyinit_thread();
6838 unregister_as_ext2();
6839 unregister_as_ext3();
6840 unregister_filesystem(&ext4_fs_type);
6841 ext4_fc_destroy_dentry_cache();
6842 destroy_inodecache();
6843 ext4_exit_mballoc();
6844 ext4_exit_sysfs();
6845 ext4_exit_system_zone();
6846 ext4_exit_pageio();
6847 ext4_exit_post_read_processing();
6848 ext4_exit_es();
6849 ext4_exit_pending();
6850 }
6851
6852 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6853 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6854 MODULE_LICENSE("GPL");
6855 MODULE_SOFTDEP("pre: crc32c");
6856 module_init(ext4_init_fs)
6857 module_exit(ext4_exit_fs)
6858