1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/ext4/extents_status.c
4 *
5 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6 * Modified by
7 * Allison Henderson <achender@linux.vnet.ibm.com>
8 * Hugh Dickins <hughd@google.com>
9 * Zheng Liu <wenqing.lz@taobao.com>
10 *
11 * Ext4 extents status tree core functions.
12 */
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17
18 #include <trace/events/ext4.h>
19
20 /*
21 * According to previous discussion in Ext4 Developer Workshop, we
22 * will introduce a new structure called io tree to track all extent
23 * status in order to solve some problems that we have met
24 * (e.g. Reservation space warning), and provide extent-level locking.
25 * Delay extent tree is the first step to achieve this goal. It is
26 * original built by Yongqiang Yang. At that time it is called delay
27 * extent tree, whose goal is only track delayed extents in memory to
28 * simplify the implementation of fiemap and bigalloc, and introduce
29 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
30 * delay extent tree at the first commit. But for better understand
31 * what it does, it has been rename to extent status tree.
32 *
33 * Step1:
34 * Currently the first step has been done. All delayed extents are
35 * tracked in the tree. It maintains the delayed extent when a delayed
36 * allocation is issued, and the delayed extent is written out or
37 * invalidated. Therefore the implementation of fiemap and bigalloc
38 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39 *
40 * The following comment describes the implemenmtation of extent
41 * status tree and future works.
42 *
43 * Step2:
44 * In this step all extent status are tracked by extent status tree.
45 * Thus, we can first try to lookup a block mapping in this tree before
46 * finding it in extent tree. Hence, single extent cache can be removed
47 * because extent status tree can do a better job. Extents in status
48 * tree are loaded on-demand. Therefore, the extent status tree may not
49 * contain all of the extents in a file. Meanwhile we define a shrinker
50 * to reclaim memory from extent status tree because fragmented extent
51 * tree will make status tree cost too much memory. written/unwritten/-
52 * hole extents in the tree will be reclaimed by this shrinker when we
53 * are under high memory pressure. Delayed extents will not be
54 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55 */
56
57 /*
58 * Extent status tree implementation for ext4.
59 *
60 *
61 * ==========================================================================
62 * Extent status tree tracks all extent status.
63 *
64 * 1. Why we need to implement extent status tree?
65 *
66 * Without extent status tree, ext4 identifies a delayed extent by looking
67 * up page cache, this has several deficiencies - complicated, buggy,
68 * and inefficient code.
69 *
70 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71 * block or a range of blocks are belonged to a delayed extent.
72 *
73 * Let us have a look at how they do without extent status tree.
74 * -- FIEMAP
75 * FIEMAP looks up page cache to identify delayed allocations from holes.
76 *
77 * -- SEEK_HOLE/DATA
78 * SEEK_HOLE/DATA has the same problem as FIEMAP.
79 *
80 * -- bigalloc
81 * bigalloc looks up page cache to figure out if a block is
82 * already under delayed allocation or not to determine whether
83 * quota reserving is needed for the cluster.
84 *
85 * -- writeout
86 * Writeout looks up whole page cache to see if a buffer is
87 * mapped, If there are not very many delayed buffers, then it is
88 * time consuming.
89 *
90 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91 * bigalloc and writeout can figure out if a block or a range of
92 * blocks is under delayed allocation(belonged to a delayed extent) or
93 * not by searching the extent tree.
94 *
95 *
96 * ==========================================================================
97 * 2. Ext4 extent status tree impelmentation
98 *
99 * -- extent
100 * A extent is a range of blocks which are contiguous logically and
101 * physically. Unlike extent in extent tree, this extent in ext4 is
102 * a in-memory struct, there is no corresponding on-disk data. There
103 * is no limit on length of extent, so an extent can contain as many
104 * blocks as they are contiguous logically and physically.
105 *
106 * -- extent status tree
107 * Every inode has an extent status tree and all allocation blocks
108 * are added to the tree with different status. The extent in the
109 * tree are ordered by logical block no.
110 *
111 * -- operations on a extent status tree
112 * There are three important operations on a delayed extent tree: find
113 * next extent, adding a extent(a range of blocks) and removing a extent.
114 *
115 * -- race on a extent status tree
116 * Extent status tree is protected by inode->i_es_lock.
117 *
118 * -- memory consumption
119 * Fragmented extent tree will make extent status tree cost too much
120 * memory. Hence, we will reclaim written/unwritten/hole extents from
121 * the tree under a heavy memory pressure.
122 *
123 *
124 * ==========================================================================
125 * 3. Performance analysis
126 *
127 * -- overhead
128 * 1. There is a cache extent for write access, so if writes are
129 * not very random, adding space operaions are in O(1) time.
130 *
131 * -- gain
132 * 2. Code is much simpler, more readable, more maintainable and
133 * more efficient.
134 *
135 *
136 * ==========================================================================
137 * 4. TODO list
138 *
139 * -- Refactor delayed space reservation
140 *
141 * -- Extent-level locking
142 */
143
144 static struct kmem_cache *ext4_es_cachep;
145 static struct kmem_cache *ext4_pending_cachep;
146
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
148 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
149 ext4_lblk_t end, int *reserved);
150 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
151 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
152 struct ext4_inode_info *locked_ei);
153 static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
154 ext4_lblk_t len);
155
ext4_init_es(void)156 int __init ext4_init_es(void)
157 {
158 ext4_es_cachep = kmem_cache_create("ext4_extent_status",
159 sizeof(struct extent_status),
160 0, (SLAB_RECLAIM_ACCOUNT), NULL);
161 if (ext4_es_cachep == NULL)
162 return -ENOMEM;
163 return 0;
164 }
165
ext4_exit_es(void)166 void ext4_exit_es(void)
167 {
168 kmem_cache_destroy(ext4_es_cachep);
169 }
170
ext4_es_init_tree(struct ext4_es_tree * tree)171 void ext4_es_init_tree(struct ext4_es_tree *tree)
172 {
173 tree->root = RB_ROOT;
174 tree->cache_es = NULL;
175 }
176
177 #ifdef ES_DEBUG__
ext4_es_print_tree(struct inode * inode)178 static void ext4_es_print_tree(struct inode *inode)
179 {
180 struct ext4_es_tree *tree;
181 struct rb_node *node;
182
183 printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
184 tree = &EXT4_I(inode)->i_es_tree;
185 node = rb_first(&tree->root);
186 while (node) {
187 struct extent_status *es;
188 es = rb_entry(node, struct extent_status, rb_node);
189 printk(KERN_DEBUG " [%u/%u) %llu %x",
190 es->es_lblk, es->es_len,
191 ext4_es_pblock(es), ext4_es_status(es));
192 node = rb_next(node);
193 }
194 printk(KERN_DEBUG "\n");
195 }
196 #else
197 #define ext4_es_print_tree(inode)
198 #endif
199
ext4_es_end(struct extent_status * es)200 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
201 {
202 BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
203 return es->es_lblk + es->es_len - 1;
204 }
205
206 /*
207 * search through the tree for an delayed extent with a given offset. If
208 * it can't be found, try to find next extent.
209 */
__es_tree_search(struct rb_root * root,ext4_lblk_t lblk)210 static struct extent_status *__es_tree_search(struct rb_root *root,
211 ext4_lblk_t lblk)
212 {
213 struct rb_node *node = root->rb_node;
214 struct extent_status *es = NULL;
215
216 while (node) {
217 es = rb_entry(node, struct extent_status, rb_node);
218 if (lblk < es->es_lblk)
219 node = node->rb_left;
220 else if (lblk > ext4_es_end(es))
221 node = node->rb_right;
222 else
223 return es;
224 }
225
226 if (es && lblk < es->es_lblk)
227 return es;
228
229 if (es && lblk > ext4_es_end(es)) {
230 node = rb_next(&es->rb_node);
231 return node ? rb_entry(node, struct extent_status, rb_node) :
232 NULL;
233 }
234
235 return NULL;
236 }
237
238 /*
239 * ext4_es_find_extent_range - find extent with specified status within block
240 * range or next extent following block range in
241 * extents status tree
242 *
243 * @inode - file containing the range
244 * @matching_fn - pointer to function that matches extents with desired status
245 * @lblk - logical block defining start of range
246 * @end - logical block defining end of range
247 * @es - extent found, if any
248 *
249 * Find the first extent within the block range specified by @lblk and @end
250 * in the extents status tree that satisfies @matching_fn. If a match
251 * is found, it's returned in @es. If not, and a matching extent is found
252 * beyond the block range, it's returned in @es. If no match is found, an
253 * extent is returned in @es whose es_lblk, es_len, and es_pblk components
254 * are 0.
255 */
__es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)256 static void __es_find_extent_range(struct inode *inode,
257 int (*matching_fn)(struct extent_status *es),
258 ext4_lblk_t lblk, ext4_lblk_t end,
259 struct extent_status *es)
260 {
261 struct ext4_es_tree *tree = NULL;
262 struct extent_status *es1 = NULL;
263 struct rb_node *node;
264
265 WARN_ON(es == NULL);
266 WARN_ON(end < lblk);
267
268 tree = &EXT4_I(inode)->i_es_tree;
269
270 /* see if the extent has been cached */
271 es->es_lblk = es->es_len = es->es_pblk = 0;
272 es1 = READ_ONCE(tree->cache_es);
273 if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
274 es_debug("%u cached by [%u/%u) %llu %x\n",
275 lblk, es1->es_lblk, es1->es_len,
276 ext4_es_pblock(es1), ext4_es_status(es1));
277 goto out;
278 }
279
280 es1 = __es_tree_search(&tree->root, lblk);
281
282 out:
283 if (es1 && !matching_fn(es1)) {
284 while ((node = rb_next(&es1->rb_node)) != NULL) {
285 es1 = rb_entry(node, struct extent_status, rb_node);
286 if (es1->es_lblk > end) {
287 es1 = NULL;
288 break;
289 }
290 if (matching_fn(es1))
291 break;
292 }
293 }
294
295 if (es1 && matching_fn(es1)) {
296 WRITE_ONCE(tree->cache_es, es1);
297 es->es_lblk = es1->es_lblk;
298 es->es_len = es1->es_len;
299 es->es_pblk = es1->es_pblk;
300 }
301
302 }
303
304 /*
305 * Locking for __es_find_extent_range() for external use
306 */
ext4_es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)307 void ext4_es_find_extent_range(struct inode *inode,
308 int (*matching_fn)(struct extent_status *es),
309 ext4_lblk_t lblk, ext4_lblk_t end,
310 struct extent_status *es)
311 {
312 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
313 return;
314
315 trace_ext4_es_find_extent_range_enter(inode, lblk);
316
317 read_lock(&EXT4_I(inode)->i_es_lock);
318 __es_find_extent_range(inode, matching_fn, lblk, end, es);
319 read_unlock(&EXT4_I(inode)->i_es_lock);
320
321 trace_ext4_es_find_extent_range_exit(inode, es);
322 }
323
324 /*
325 * __es_scan_range - search block range for block with specified status
326 * in extents status tree
327 *
328 * @inode - file containing the range
329 * @matching_fn - pointer to function that matches extents with desired status
330 * @lblk - logical block defining start of range
331 * @end - logical block defining end of range
332 *
333 * Returns true if at least one block in the specified block range satisfies
334 * the criterion specified by @matching_fn, and false if not. If at least
335 * one extent has the specified status, then there is at least one block
336 * in the cluster with that status. Should only be called by code that has
337 * taken i_es_lock.
338 */
__es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t start,ext4_lblk_t end)339 static bool __es_scan_range(struct inode *inode,
340 int (*matching_fn)(struct extent_status *es),
341 ext4_lblk_t start, ext4_lblk_t end)
342 {
343 struct extent_status es;
344
345 __es_find_extent_range(inode, matching_fn, start, end, &es);
346 if (es.es_len == 0)
347 return false; /* no matching extent in the tree */
348 else if (es.es_lblk <= start &&
349 start < es.es_lblk + es.es_len)
350 return true;
351 else if (start <= es.es_lblk && es.es_lblk <= end)
352 return true;
353 else
354 return false;
355 }
356 /*
357 * Locking for __es_scan_range() for external use
358 */
ext4_es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end)359 bool ext4_es_scan_range(struct inode *inode,
360 int (*matching_fn)(struct extent_status *es),
361 ext4_lblk_t lblk, ext4_lblk_t end)
362 {
363 bool ret;
364
365 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
366 return false;
367
368 read_lock(&EXT4_I(inode)->i_es_lock);
369 ret = __es_scan_range(inode, matching_fn, lblk, end);
370 read_unlock(&EXT4_I(inode)->i_es_lock);
371
372 return ret;
373 }
374
375 /*
376 * __es_scan_clu - search cluster for block with specified status in
377 * extents status tree
378 *
379 * @inode - file containing the cluster
380 * @matching_fn - pointer to function that matches extents with desired status
381 * @lblk - logical block in cluster to be searched
382 *
383 * Returns true if at least one extent in the cluster containing @lblk
384 * satisfies the criterion specified by @matching_fn, and false if not. If at
385 * least one extent has the specified status, then there is at least one block
386 * in the cluster with that status. Should only be called by code that has
387 * taken i_es_lock.
388 */
__es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)389 static bool __es_scan_clu(struct inode *inode,
390 int (*matching_fn)(struct extent_status *es),
391 ext4_lblk_t lblk)
392 {
393 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
394 ext4_lblk_t lblk_start, lblk_end;
395
396 lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
397 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
398
399 return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
400 }
401
402 /*
403 * Locking for __es_scan_clu() for external use
404 */
ext4_es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)405 bool ext4_es_scan_clu(struct inode *inode,
406 int (*matching_fn)(struct extent_status *es),
407 ext4_lblk_t lblk)
408 {
409 bool ret;
410
411 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
412 return false;
413
414 read_lock(&EXT4_I(inode)->i_es_lock);
415 ret = __es_scan_clu(inode, matching_fn, lblk);
416 read_unlock(&EXT4_I(inode)->i_es_lock);
417
418 return ret;
419 }
420
ext4_es_list_add(struct inode * inode)421 static void ext4_es_list_add(struct inode *inode)
422 {
423 struct ext4_inode_info *ei = EXT4_I(inode);
424 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
425
426 if (!list_empty(&ei->i_es_list))
427 return;
428
429 spin_lock(&sbi->s_es_lock);
430 if (list_empty(&ei->i_es_list)) {
431 list_add_tail(&ei->i_es_list, &sbi->s_es_list);
432 sbi->s_es_nr_inode++;
433 }
434 spin_unlock(&sbi->s_es_lock);
435 }
436
ext4_es_list_del(struct inode * inode)437 static void ext4_es_list_del(struct inode *inode)
438 {
439 struct ext4_inode_info *ei = EXT4_I(inode);
440 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
441
442 spin_lock(&sbi->s_es_lock);
443 if (!list_empty(&ei->i_es_list)) {
444 list_del_init(&ei->i_es_list);
445 sbi->s_es_nr_inode--;
446 WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
447 }
448 spin_unlock(&sbi->s_es_lock);
449 }
450
451 static struct extent_status *
ext4_es_alloc_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk)452 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
453 ext4_fsblk_t pblk)
454 {
455 struct extent_status *es;
456 es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
457 if (es == NULL)
458 return NULL;
459 es->es_lblk = lblk;
460 es->es_len = len;
461 es->es_pblk = pblk;
462
463 /*
464 * We don't count delayed extent because we never try to reclaim them
465 */
466 if (!ext4_es_is_delayed(es)) {
467 if (!EXT4_I(inode)->i_es_shk_nr++)
468 ext4_es_list_add(inode);
469 percpu_counter_inc(&EXT4_SB(inode->i_sb)->
470 s_es_stats.es_stats_shk_cnt);
471 }
472
473 EXT4_I(inode)->i_es_all_nr++;
474 percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
475
476 return es;
477 }
478
ext4_es_free_extent(struct inode * inode,struct extent_status * es)479 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
480 {
481 EXT4_I(inode)->i_es_all_nr--;
482 percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
483
484 /* Decrease the shrink counter when this es is not delayed */
485 if (!ext4_es_is_delayed(es)) {
486 BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
487 if (!--EXT4_I(inode)->i_es_shk_nr)
488 ext4_es_list_del(inode);
489 percpu_counter_dec(&EXT4_SB(inode->i_sb)->
490 s_es_stats.es_stats_shk_cnt);
491 }
492
493 kmem_cache_free(ext4_es_cachep, es);
494 }
495
496 /*
497 * Check whether or not two extents can be merged
498 * Condition:
499 * - logical block number is contiguous
500 * - physical block number is contiguous
501 * - status is equal
502 */
ext4_es_can_be_merged(struct extent_status * es1,struct extent_status * es2)503 static int ext4_es_can_be_merged(struct extent_status *es1,
504 struct extent_status *es2)
505 {
506 if (ext4_es_type(es1) != ext4_es_type(es2))
507 return 0;
508
509 if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
510 pr_warn("ES assertion failed when merging extents. "
511 "The sum of lengths of es1 (%d) and es2 (%d) "
512 "is bigger than allowed file size (%d)\n",
513 es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
514 WARN_ON(1);
515 return 0;
516 }
517
518 if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
519 return 0;
520
521 if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
522 (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
523 return 1;
524
525 if (ext4_es_is_hole(es1))
526 return 1;
527
528 /* we need to check delayed extent is without unwritten status */
529 if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
530 return 1;
531
532 return 0;
533 }
534
535 static struct extent_status *
ext4_es_try_to_merge_left(struct inode * inode,struct extent_status * es)536 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
537 {
538 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
539 struct extent_status *es1;
540 struct rb_node *node;
541
542 node = rb_prev(&es->rb_node);
543 if (!node)
544 return es;
545
546 es1 = rb_entry(node, struct extent_status, rb_node);
547 if (ext4_es_can_be_merged(es1, es)) {
548 es1->es_len += es->es_len;
549 if (ext4_es_is_referenced(es))
550 ext4_es_set_referenced(es1);
551 rb_erase(&es->rb_node, &tree->root);
552 ext4_es_free_extent(inode, es);
553 es = es1;
554 }
555
556 return es;
557 }
558
559 static struct extent_status *
ext4_es_try_to_merge_right(struct inode * inode,struct extent_status * es)560 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
561 {
562 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
563 struct extent_status *es1;
564 struct rb_node *node;
565
566 node = rb_next(&es->rb_node);
567 if (!node)
568 return es;
569
570 es1 = rb_entry(node, struct extent_status, rb_node);
571 if (ext4_es_can_be_merged(es, es1)) {
572 es->es_len += es1->es_len;
573 if (ext4_es_is_referenced(es1))
574 ext4_es_set_referenced(es);
575 rb_erase(node, &tree->root);
576 ext4_es_free_extent(inode, es1);
577 }
578
579 return es;
580 }
581
582 #ifdef ES_AGGRESSIVE_TEST
583 #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */
584
ext4_es_insert_extent_ext_check(struct inode * inode,struct extent_status * es)585 static void ext4_es_insert_extent_ext_check(struct inode *inode,
586 struct extent_status *es)
587 {
588 struct ext4_ext_path *path = NULL;
589 struct ext4_extent *ex;
590 ext4_lblk_t ee_block;
591 ext4_fsblk_t ee_start;
592 unsigned short ee_len;
593 int depth, ee_status, es_status;
594
595 path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
596 if (IS_ERR(path))
597 return;
598
599 depth = ext_depth(inode);
600 ex = path[depth].p_ext;
601
602 if (ex) {
603
604 ee_block = le32_to_cpu(ex->ee_block);
605 ee_start = ext4_ext_pblock(ex);
606 ee_len = ext4_ext_get_actual_len(ex);
607
608 ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
609 es_status = ext4_es_is_unwritten(es) ? 1 : 0;
610
611 /*
612 * Make sure ex and es are not overlap when we try to insert
613 * a delayed/hole extent.
614 */
615 if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
616 if (in_range(es->es_lblk, ee_block, ee_len)) {
617 pr_warn("ES insert assertion failed for "
618 "inode: %lu we can find an extent "
619 "at block [%d/%d/%llu/%c], but we "
620 "want to add a delayed/hole extent "
621 "[%d/%d/%llu/%x]\n",
622 inode->i_ino, ee_block, ee_len,
623 ee_start, ee_status ? 'u' : 'w',
624 es->es_lblk, es->es_len,
625 ext4_es_pblock(es), ext4_es_status(es));
626 }
627 goto out;
628 }
629
630 /*
631 * We don't check ee_block == es->es_lblk, etc. because es
632 * might be a part of whole extent, vice versa.
633 */
634 if (es->es_lblk < ee_block ||
635 ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
636 pr_warn("ES insert assertion failed for inode: %lu "
637 "ex_status [%d/%d/%llu/%c] != "
638 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
639 ee_block, ee_len, ee_start,
640 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
641 ext4_es_pblock(es), es_status ? 'u' : 'w');
642 goto out;
643 }
644
645 if (ee_status ^ es_status) {
646 pr_warn("ES insert assertion failed for inode: %lu "
647 "ex_status [%d/%d/%llu/%c] != "
648 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
649 ee_block, ee_len, ee_start,
650 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
651 ext4_es_pblock(es), es_status ? 'u' : 'w');
652 }
653 } else {
654 /*
655 * We can't find an extent on disk. So we need to make sure
656 * that we don't want to add an written/unwritten extent.
657 */
658 if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
659 pr_warn("ES insert assertion failed for inode: %lu "
660 "can't find an extent at block %d but we want "
661 "to add a written/unwritten extent "
662 "[%d/%d/%llu/%x]\n", inode->i_ino,
663 es->es_lblk, es->es_lblk, es->es_len,
664 ext4_es_pblock(es), ext4_es_status(es));
665 }
666 }
667 out:
668 ext4_ext_drop_refs(path);
669 kfree(path);
670 }
671
ext4_es_insert_extent_ind_check(struct inode * inode,struct extent_status * es)672 static void ext4_es_insert_extent_ind_check(struct inode *inode,
673 struct extent_status *es)
674 {
675 struct ext4_map_blocks map;
676 int retval;
677
678 /*
679 * Here we call ext4_ind_map_blocks to lookup a block mapping because
680 * 'Indirect' structure is defined in indirect.c. So we couldn't
681 * access direct/indirect tree from outside. It is too dirty to define
682 * this function in indirect.c file.
683 */
684
685 map.m_lblk = es->es_lblk;
686 map.m_len = es->es_len;
687
688 retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
689 if (retval > 0) {
690 if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
691 /*
692 * We want to add a delayed/hole extent but this
693 * block has been allocated.
694 */
695 pr_warn("ES insert assertion failed for inode: %lu "
696 "We can find blocks but we want to add a "
697 "delayed/hole extent [%d/%d/%llu/%x]\n",
698 inode->i_ino, es->es_lblk, es->es_len,
699 ext4_es_pblock(es), ext4_es_status(es));
700 return;
701 } else if (ext4_es_is_written(es)) {
702 if (retval != es->es_len) {
703 pr_warn("ES insert assertion failed for "
704 "inode: %lu retval %d != es_len %d\n",
705 inode->i_ino, retval, es->es_len);
706 return;
707 }
708 if (map.m_pblk != ext4_es_pblock(es)) {
709 pr_warn("ES insert assertion failed for "
710 "inode: %lu m_pblk %llu != "
711 "es_pblk %llu\n",
712 inode->i_ino, map.m_pblk,
713 ext4_es_pblock(es));
714 return;
715 }
716 } else {
717 /*
718 * We don't need to check unwritten extent because
719 * indirect-based file doesn't have it.
720 */
721 BUG();
722 }
723 } else if (retval == 0) {
724 if (ext4_es_is_written(es)) {
725 pr_warn("ES insert assertion failed for inode: %lu "
726 "We can't find the block but we want to add "
727 "a written extent [%d/%d/%llu/%x]\n",
728 inode->i_ino, es->es_lblk, es->es_len,
729 ext4_es_pblock(es), ext4_es_status(es));
730 return;
731 }
732 }
733 }
734
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)735 static inline void ext4_es_insert_extent_check(struct inode *inode,
736 struct extent_status *es)
737 {
738 /*
739 * We don't need to worry about the race condition because
740 * caller takes i_data_sem locking.
741 */
742 BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
743 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
744 ext4_es_insert_extent_ext_check(inode, es);
745 else
746 ext4_es_insert_extent_ind_check(inode, es);
747 }
748 #else
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)749 static inline void ext4_es_insert_extent_check(struct inode *inode,
750 struct extent_status *es)
751 {
752 }
753 #endif
754
__es_insert_extent(struct inode * inode,struct extent_status * newes)755 static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
756 {
757 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
758 struct rb_node **p = &tree->root.rb_node;
759 struct rb_node *parent = NULL;
760 struct extent_status *es;
761
762 while (*p) {
763 parent = *p;
764 es = rb_entry(parent, struct extent_status, rb_node);
765
766 if (newes->es_lblk < es->es_lblk) {
767 if (ext4_es_can_be_merged(newes, es)) {
768 /*
769 * Here we can modify es_lblk directly
770 * because it isn't overlapped.
771 */
772 es->es_lblk = newes->es_lblk;
773 es->es_len += newes->es_len;
774 if (ext4_es_is_written(es) ||
775 ext4_es_is_unwritten(es))
776 ext4_es_store_pblock(es,
777 newes->es_pblk);
778 es = ext4_es_try_to_merge_left(inode, es);
779 goto out;
780 }
781 p = &(*p)->rb_left;
782 } else if (newes->es_lblk > ext4_es_end(es)) {
783 if (ext4_es_can_be_merged(es, newes)) {
784 es->es_len += newes->es_len;
785 es = ext4_es_try_to_merge_right(inode, es);
786 goto out;
787 }
788 p = &(*p)->rb_right;
789 } else {
790 BUG();
791 return -EINVAL;
792 }
793 }
794
795 es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
796 newes->es_pblk);
797 if (!es)
798 return -ENOMEM;
799 rb_link_node(&es->rb_node, parent, p);
800 rb_insert_color(&es->rb_node, &tree->root);
801
802 out:
803 tree->cache_es = es;
804 return 0;
805 }
806
807 /*
808 * ext4_es_insert_extent() adds information to an inode's extent
809 * status tree.
810 *
811 * Return 0 on success, error code on failure.
812 */
ext4_es_insert_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)813 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
814 ext4_lblk_t len, ext4_fsblk_t pblk,
815 unsigned int status)
816 {
817 struct extent_status newes;
818 ext4_lblk_t end = lblk + len - 1;
819 int err = 0;
820 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
821
822 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
823 return 0;
824
825 es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
826 lblk, len, pblk, status, inode->i_ino);
827
828 if (!len)
829 return 0;
830
831 BUG_ON(end < lblk);
832
833 if ((status & EXTENT_STATUS_DELAYED) &&
834 (status & EXTENT_STATUS_WRITTEN)) {
835 ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
836 " delayed and written which can potentially "
837 " cause data loss.", lblk, len);
838 WARN_ON(1);
839 }
840
841 newes.es_lblk = lblk;
842 newes.es_len = len;
843 ext4_es_store_pblock_status(&newes, pblk, status);
844 trace_ext4_es_insert_extent(inode, &newes);
845
846 ext4_es_insert_extent_check(inode, &newes);
847
848 write_lock(&EXT4_I(inode)->i_es_lock);
849 err = __es_remove_extent(inode, lblk, end, NULL);
850 if (err != 0)
851 goto error;
852 retry:
853 err = __es_insert_extent(inode, &newes);
854 if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb),
855 128, EXT4_I(inode)))
856 goto retry;
857 if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
858 err = 0;
859
860 if (sbi->s_cluster_ratio > 1 && test_opt(inode->i_sb, DELALLOC) &&
861 (status & EXTENT_STATUS_WRITTEN ||
862 status & EXTENT_STATUS_UNWRITTEN))
863 __revise_pending(inode, lblk, len);
864
865 error:
866 write_unlock(&EXT4_I(inode)->i_es_lock);
867
868 ext4_es_print_tree(inode);
869
870 return err;
871 }
872
873 /*
874 * ext4_es_cache_extent() inserts information into the extent status
875 * tree if and only if there isn't information about the range in
876 * question already.
877 */
ext4_es_cache_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)878 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
879 ext4_lblk_t len, ext4_fsblk_t pblk,
880 unsigned int status)
881 {
882 struct extent_status *es;
883 struct extent_status newes;
884 ext4_lblk_t end = lblk + len - 1;
885
886 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
887 return;
888
889 newes.es_lblk = lblk;
890 newes.es_len = len;
891 ext4_es_store_pblock_status(&newes, pblk, status);
892 trace_ext4_es_cache_extent(inode, &newes);
893
894 if (!len)
895 return;
896
897 BUG_ON(end < lblk);
898
899 write_lock(&EXT4_I(inode)->i_es_lock);
900
901 es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
902 if (!es || es->es_lblk > end)
903 __es_insert_extent(inode, &newes);
904 write_unlock(&EXT4_I(inode)->i_es_lock);
905 }
906
907 /*
908 * ext4_es_lookup_extent() looks up an extent in extent status tree.
909 *
910 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
911 *
912 * Return: 1 on found, 0 on not
913 */
ext4_es_lookup_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t * next_lblk,struct extent_status * es)914 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
915 ext4_lblk_t *next_lblk,
916 struct extent_status *es)
917 {
918 struct ext4_es_tree *tree;
919 struct ext4_es_stats *stats;
920 struct extent_status *es1 = NULL;
921 struct rb_node *node;
922 int found = 0;
923
924 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
925 return 0;
926
927 trace_ext4_es_lookup_extent_enter(inode, lblk);
928 es_debug("lookup extent in block %u\n", lblk);
929
930 tree = &EXT4_I(inode)->i_es_tree;
931 read_lock(&EXT4_I(inode)->i_es_lock);
932
933 /* find extent in cache firstly */
934 es->es_lblk = es->es_len = es->es_pblk = 0;
935 es1 = READ_ONCE(tree->cache_es);
936 if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
937 es_debug("%u cached by [%u/%u)\n",
938 lblk, es1->es_lblk, es1->es_len);
939 found = 1;
940 goto out;
941 }
942
943 node = tree->root.rb_node;
944 while (node) {
945 es1 = rb_entry(node, struct extent_status, rb_node);
946 if (lblk < es1->es_lblk)
947 node = node->rb_left;
948 else if (lblk > ext4_es_end(es1))
949 node = node->rb_right;
950 else {
951 found = 1;
952 break;
953 }
954 }
955
956 out:
957 stats = &EXT4_SB(inode->i_sb)->s_es_stats;
958 if (found) {
959 BUG_ON(!es1);
960 es->es_lblk = es1->es_lblk;
961 es->es_len = es1->es_len;
962 es->es_pblk = es1->es_pblk;
963 if (!ext4_es_is_referenced(es1))
964 ext4_es_set_referenced(es1);
965 percpu_counter_inc(&stats->es_stats_cache_hits);
966 if (next_lblk) {
967 node = rb_next(&es1->rb_node);
968 if (node) {
969 es1 = rb_entry(node, struct extent_status,
970 rb_node);
971 *next_lblk = es1->es_lblk;
972 } else
973 *next_lblk = 0;
974 }
975 } else {
976 percpu_counter_inc(&stats->es_stats_cache_misses);
977 }
978
979 read_unlock(&EXT4_I(inode)->i_es_lock);
980
981 trace_ext4_es_lookup_extent_exit(inode, es, found);
982 return found;
983 }
984
985 struct rsvd_count {
986 int ndelonly;
987 bool first_do_lblk_found;
988 ext4_lblk_t first_do_lblk;
989 ext4_lblk_t last_do_lblk;
990 struct extent_status *left_es;
991 bool partial;
992 ext4_lblk_t lclu;
993 };
994
995 /*
996 * init_rsvd - initialize reserved count data before removing block range
997 * in file from extent status tree
998 *
999 * @inode - file containing range
1000 * @lblk - first block in range
1001 * @es - pointer to first extent in range
1002 * @rc - pointer to reserved count data
1003 *
1004 * Assumes es is not NULL
1005 */
init_rsvd(struct inode * inode,ext4_lblk_t lblk,struct extent_status * es,struct rsvd_count * rc)1006 static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1007 struct extent_status *es, struct rsvd_count *rc)
1008 {
1009 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1010 struct rb_node *node;
1011
1012 rc->ndelonly = 0;
1013
1014 /*
1015 * for bigalloc, note the first delonly block in the range has not
1016 * been found, record the extent containing the block to the left of
1017 * the region to be removed, if any, and note that there's no partial
1018 * cluster to track
1019 */
1020 if (sbi->s_cluster_ratio > 1) {
1021 rc->first_do_lblk_found = false;
1022 if (lblk > es->es_lblk) {
1023 rc->left_es = es;
1024 } else {
1025 node = rb_prev(&es->rb_node);
1026 rc->left_es = node ? rb_entry(node,
1027 struct extent_status,
1028 rb_node) : NULL;
1029 }
1030 rc->partial = false;
1031 }
1032 }
1033
1034 /*
1035 * count_rsvd - count the clusters containing delayed and not unwritten
1036 * (delonly) blocks in a range within an extent and add to
1037 * the running tally in rsvd_count
1038 *
1039 * @inode - file containing extent
1040 * @lblk - first block in range
1041 * @len - length of range in blocks
1042 * @es - pointer to extent containing clusters to be counted
1043 * @rc - pointer to reserved count data
1044 *
1045 * Tracks partial clusters found at the beginning and end of extents so
1046 * they aren't overcounted when they span adjacent extents
1047 */
count_rsvd(struct inode * inode,ext4_lblk_t lblk,long len,struct extent_status * es,struct rsvd_count * rc)1048 static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1049 struct extent_status *es, struct rsvd_count *rc)
1050 {
1051 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1052 ext4_lblk_t i, end, nclu;
1053
1054 if (!ext4_es_is_delonly(es))
1055 return;
1056
1057 WARN_ON(len <= 0);
1058
1059 if (sbi->s_cluster_ratio == 1) {
1060 rc->ndelonly += (int) len;
1061 return;
1062 }
1063
1064 /* bigalloc */
1065
1066 i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1067 end = lblk + (ext4_lblk_t) len - 1;
1068 end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1069
1070 /* record the first block of the first delonly extent seen */
1071 if (!rc->first_do_lblk_found) {
1072 rc->first_do_lblk = i;
1073 rc->first_do_lblk_found = true;
1074 }
1075
1076 /* update the last lblk in the region seen so far */
1077 rc->last_do_lblk = end;
1078
1079 /*
1080 * if we're tracking a partial cluster and the current extent
1081 * doesn't start with it, count it and stop tracking
1082 */
1083 if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1084 rc->ndelonly++;
1085 rc->partial = false;
1086 }
1087
1088 /*
1089 * if the first cluster doesn't start on a cluster boundary but
1090 * ends on one, count it
1091 */
1092 if (EXT4_LBLK_COFF(sbi, i) != 0) {
1093 if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1094 rc->ndelonly++;
1095 rc->partial = false;
1096 i = EXT4_LBLK_CFILL(sbi, i) + 1;
1097 }
1098 }
1099
1100 /*
1101 * if the current cluster starts on a cluster boundary, count the
1102 * number of whole delonly clusters in the extent
1103 */
1104 if ((i + sbi->s_cluster_ratio - 1) <= end) {
1105 nclu = (end - i + 1) >> sbi->s_cluster_bits;
1106 rc->ndelonly += nclu;
1107 i += nclu << sbi->s_cluster_bits;
1108 }
1109
1110 /*
1111 * start tracking a partial cluster if there's a partial at the end
1112 * of the current extent and we're not already tracking one
1113 */
1114 if (!rc->partial && i <= end) {
1115 rc->partial = true;
1116 rc->lclu = EXT4_B2C(sbi, i);
1117 }
1118 }
1119
1120 /*
1121 * __pr_tree_search - search for a pending cluster reservation
1122 *
1123 * @root - root of pending reservation tree
1124 * @lclu - logical cluster to search for
1125 *
1126 * Returns the pending reservation for the cluster identified by @lclu
1127 * if found. If not, returns a reservation for the next cluster if any,
1128 * and if not, returns NULL.
1129 */
__pr_tree_search(struct rb_root * root,ext4_lblk_t lclu)1130 static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1131 ext4_lblk_t lclu)
1132 {
1133 struct rb_node *node = root->rb_node;
1134 struct pending_reservation *pr = NULL;
1135
1136 while (node) {
1137 pr = rb_entry(node, struct pending_reservation, rb_node);
1138 if (lclu < pr->lclu)
1139 node = node->rb_left;
1140 else if (lclu > pr->lclu)
1141 node = node->rb_right;
1142 else
1143 return pr;
1144 }
1145 if (pr && lclu < pr->lclu)
1146 return pr;
1147 if (pr && lclu > pr->lclu) {
1148 node = rb_next(&pr->rb_node);
1149 return node ? rb_entry(node, struct pending_reservation,
1150 rb_node) : NULL;
1151 }
1152 return NULL;
1153 }
1154
1155 /*
1156 * get_rsvd - calculates and returns the number of cluster reservations to be
1157 * released when removing a block range from the extent status tree
1158 * and releases any pending reservations within the range
1159 *
1160 * @inode - file containing block range
1161 * @end - last block in range
1162 * @right_es - pointer to extent containing next block beyond end or NULL
1163 * @rc - pointer to reserved count data
1164 *
1165 * The number of reservations to be released is equal to the number of
1166 * clusters containing delayed and not unwritten (delonly) blocks within
1167 * the range, minus the number of clusters still containing delonly blocks
1168 * at the ends of the range, and minus the number of pending reservations
1169 * within the range.
1170 */
get_rsvd(struct inode * inode,ext4_lblk_t end,struct extent_status * right_es,struct rsvd_count * rc)1171 static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1172 struct extent_status *right_es,
1173 struct rsvd_count *rc)
1174 {
1175 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1176 struct pending_reservation *pr;
1177 struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1178 struct rb_node *node;
1179 ext4_lblk_t first_lclu, last_lclu;
1180 bool left_delonly, right_delonly, count_pending;
1181 struct extent_status *es;
1182
1183 if (sbi->s_cluster_ratio > 1) {
1184 /* count any remaining partial cluster */
1185 if (rc->partial)
1186 rc->ndelonly++;
1187
1188 if (rc->ndelonly == 0)
1189 return 0;
1190
1191 first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1192 last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1193
1194 /*
1195 * decrease the delonly count by the number of clusters at the
1196 * ends of the range that still contain delonly blocks -
1197 * these clusters still need to be reserved
1198 */
1199 left_delonly = right_delonly = false;
1200
1201 es = rc->left_es;
1202 while (es && ext4_es_end(es) >=
1203 EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1204 if (ext4_es_is_delonly(es)) {
1205 rc->ndelonly--;
1206 left_delonly = true;
1207 break;
1208 }
1209 node = rb_prev(&es->rb_node);
1210 if (!node)
1211 break;
1212 es = rb_entry(node, struct extent_status, rb_node);
1213 }
1214 if (right_es && (!left_delonly || first_lclu != last_lclu)) {
1215 if (end < ext4_es_end(right_es)) {
1216 es = right_es;
1217 } else {
1218 node = rb_next(&right_es->rb_node);
1219 es = node ? rb_entry(node, struct extent_status,
1220 rb_node) : NULL;
1221 }
1222 while (es && es->es_lblk <=
1223 EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1224 if (ext4_es_is_delonly(es)) {
1225 rc->ndelonly--;
1226 right_delonly = true;
1227 break;
1228 }
1229 node = rb_next(&es->rb_node);
1230 if (!node)
1231 break;
1232 es = rb_entry(node, struct extent_status,
1233 rb_node);
1234 }
1235 }
1236
1237 /*
1238 * Determine the block range that should be searched for
1239 * pending reservations, if any. Clusters on the ends of the
1240 * original removed range containing delonly blocks are
1241 * excluded. They've already been accounted for and it's not
1242 * possible to determine if an associated pending reservation
1243 * should be released with the information available in the
1244 * extents status tree.
1245 */
1246 if (first_lclu == last_lclu) {
1247 if (left_delonly | right_delonly)
1248 count_pending = false;
1249 else
1250 count_pending = true;
1251 } else {
1252 if (left_delonly)
1253 first_lclu++;
1254 if (right_delonly)
1255 last_lclu--;
1256 if (first_lclu <= last_lclu)
1257 count_pending = true;
1258 else
1259 count_pending = false;
1260 }
1261
1262 /*
1263 * a pending reservation found between first_lclu and last_lclu
1264 * represents an allocated cluster that contained at least one
1265 * delonly block, so the delonly total must be reduced by one
1266 * for each pending reservation found and released
1267 */
1268 if (count_pending) {
1269 pr = __pr_tree_search(&tree->root, first_lclu);
1270 while (pr && pr->lclu <= last_lclu) {
1271 rc->ndelonly--;
1272 node = rb_next(&pr->rb_node);
1273 rb_erase(&pr->rb_node, &tree->root);
1274 kmem_cache_free(ext4_pending_cachep, pr);
1275 if (!node)
1276 break;
1277 pr = rb_entry(node, struct pending_reservation,
1278 rb_node);
1279 }
1280 }
1281 }
1282 return rc->ndelonly;
1283 }
1284
1285
1286 /*
1287 * __es_remove_extent - removes block range from extent status tree
1288 *
1289 * @inode - file containing range
1290 * @lblk - first block in range
1291 * @end - last block in range
1292 * @reserved - number of cluster reservations released
1293 *
1294 * If @reserved is not NULL and delayed allocation is enabled, counts
1295 * block/cluster reservations freed by removing range and if bigalloc
1296 * enabled cancels pending reservations as needed. Returns 0 on success,
1297 * error code on failure.
1298 */
__es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t end,int * reserved)1299 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1300 ext4_lblk_t end, int *reserved)
1301 {
1302 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1303 struct rb_node *node;
1304 struct extent_status *es;
1305 struct extent_status orig_es;
1306 ext4_lblk_t len1, len2;
1307 ext4_fsblk_t block;
1308 int err;
1309 bool count_reserved = true;
1310 struct rsvd_count rc;
1311
1312 if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1313 count_reserved = false;
1314 retry:
1315 err = 0;
1316
1317 es = __es_tree_search(&tree->root, lblk);
1318 if (!es)
1319 goto out;
1320 if (es->es_lblk > end)
1321 goto out;
1322
1323 /* Simply invalidate cache_es. */
1324 tree->cache_es = NULL;
1325 if (count_reserved)
1326 init_rsvd(inode, lblk, es, &rc);
1327
1328 orig_es.es_lblk = es->es_lblk;
1329 orig_es.es_len = es->es_len;
1330 orig_es.es_pblk = es->es_pblk;
1331
1332 len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1333 len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1334 if (len1 > 0)
1335 es->es_len = len1;
1336 if (len2 > 0) {
1337 if (len1 > 0) {
1338 struct extent_status newes;
1339
1340 newes.es_lblk = end + 1;
1341 newes.es_len = len2;
1342 block = 0x7FDEADBEEFULL;
1343 if (ext4_es_is_written(&orig_es) ||
1344 ext4_es_is_unwritten(&orig_es))
1345 block = ext4_es_pblock(&orig_es) +
1346 orig_es.es_len - len2;
1347 ext4_es_store_pblock_status(&newes, block,
1348 ext4_es_status(&orig_es));
1349 err = __es_insert_extent(inode, &newes);
1350 if (err) {
1351 es->es_lblk = orig_es.es_lblk;
1352 es->es_len = orig_es.es_len;
1353 if ((err == -ENOMEM) &&
1354 __es_shrink(EXT4_SB(inode->i_sb),
1355 128, EXT4_I(inode)))
1356 goto retry;
1357 goto out;
1358 }
1359 } else {
1360 es->es_lblk = end + 1;
1361 es->es_len = len2;
1362 if (ext4_es_is_written(es) ||
1363 ext4_es_is_unwritten(es)) {
1364 block = orig_es.es_pblk + orig_es.es_len - len2;
1365 ext4_es_store_pblock(es, block);
1366 }
1367 }
1368 if (count_reserved)
1369 count_rsvd(inode, lblk, orig_es.es_len - len1 - len2,
1370 &orig_es, &rc);
1371 goto out_get_reserved;
1372 }
1373
1374 if (len1 > 0) {
1375 if (count_reserved)
1376 count_rsvd(inode, lblk, orig_es.es_len - len1,
1377 &orig_es, &rc);
1378 node = rb_next(&es->rb_node);
1379 if (node)
1380 es = rb_entry(node, struct extent_status, rb_node);
1381 else
1382 es = NULL;
1383 }
1384
1385 while (es && ext4_es_end(es) <= end) {
1386 if (count_reserved)
1387 count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1388 node = rb_next(&es->rb_node);
1389 rb_erase(&es->rb_node, &tree->root);
1390 ext4_es_free_extent(inode, es);
1391 if (!node) {
1392 es = NULL;
1393 break;
1394 }
1395 es = rb_entry(node, struct extent_status, rb_node);
1396 }
1397
1398 if (es && es->es_lblk < end + 1) {
1399 ext4_lblk_t orig_len = es->es_len;
1400
1401 len1 = ext4_es_end(es) - end;
1402 if (count_reserved)
1403 count_rsvd(inode, es->es_lblk, orig_len - len1,
1404 es, &rc);
1405 es->es_lblk = end + 1;
1406 es->es_len = len1;
1407 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1408 block = es->es_pblk + orig_len - len1;
1409 ext4_es_store_pblock(es, block);
1410 }
1411 }
1412
1413 out_get_reserved:
1414 if (count_reserved)
1415 *reserved = get_rsvd(inode, end, es, &rc);
1416 out:
1417 return err;
1418 }
1419
1420 /*
1421 * ext4_es_remove_extent - removes block range from extent status tree
1422 *
1423 * @inode - file containing range
1424 * @lblk - first block in range
1425 * @len - number of blocks to remove
1426 *
1427 * Reduces block/cluster reservation count and for bigalloc cancels pending
1428 * reservations as needed. Returns 0 on success, error code on failure.
1429 */
ext4_es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)1430 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1431 ext4_lblk_t len)
1432 {
1433 ext4_lblk_t end;
1434 int err = 0;
1435 int reserved = 0;
1436
1437 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1438 return 0;
1439
1440 trace_ext4_es_remove_extent(inode, lblk, len);
1441 es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1442 lblk, len, inode->i_ino);
1443
1444 if (!len)
1445 return err;
1446
1447 end = lblk + len - 1;
1448 BUG_ON(end < lblk);
1449
1450 /*
1451 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1452 * so that we are sure __es_shrink() is done with the inode before it
1453 * is reclaimed.
1454 */
1455 write_lock(&EXT4_I(inode)->i_es_lock);
1456 err = __es_remove_extent(inode, lblk, end, &reserved);
1457 write_unlock(&EXT4_I(inode)->i_es_lock);
1458 ext4_es_print_tree(inode);
1459 ext4_da_release_space(inode, reserved);
1460 return err;
1461 }
1462
__es_shrink(struct ext4_sb_info * sbi,int nr_to_scan,struct ext4_inode_info * locked_ei)1463 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1464 struct ext4_inode_info *locked_ei)
1465 {
1466 struct ext4_inode_info *ei;
1467 struct ext4_es_stats *es_stats;
1468 ktime_t start_time;
1469 u64 scan_time;
1470 int nr_to_walk;
1471 int nr_shrunk = 0;
1472 int retried = 0, nr_skipped = 0;
1473
1474 es_stats = &sbi->s_es_stats;
1475 start_time = ktime_get();
1476
1477 retry:
1478 spin_lock(&sbi->s_es_lock);
1479 nr_to_walk = sbi->s_es_nr_inode;
1480 while (nr_to_walk-- > 0) {
1481 if (list_empty(&sbi->s_es_list)) {
1482 spin_unlock(&sbi->s_es_lock);
1483 goto out;
1484 }
1485 ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1486 i_es_list);
1487 /* Move the inode to the tail */
1488 list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1489
1490 /*
1491 * Normally we try hard to avoid shrinking precached inodes,
1492 * but we will as a last resort.
1493 */
1494 if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1495 EXT4_STATE_EXT_PRECACHED)) {
1496 nr_skipped++;
1497 continue;
1498 }
1499
1500 if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1501 nr_skipped++;
1502 continue;
1503 }
1504 /*
1505 * Now we hold i_es_lock which protects us from inode reclaim
1506 * freeing inode under us
1507 */
1508 spin_unlock(&sbi->s_es_lock);
1509
1510 nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1511 write_unlock(&ei->i_es_lock);
1512
1513 if (nr_to_scan <= 0)
1514 goto out;
1515 spin_lock(&sbi->s_es_lock);
1516 }
1517 spin_unlock(&sbi->s_es_lock);
1518
1519 /*
1520 * If we skipped any inodes, and we weren't able to make any
1521 * forward progress, try again to scan precached inodes.
1522 */
1523 if ((nr_shrunk == 0) && nr_skipped && !retried) {
1524 retried++;
1525 goto retry;
1526 }
1527
1528 if (locked_ei && nr_shrunk == 0)
1529 nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1530
1531 out:
1532 scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1533 if (likely(es_stats->es_stats_scan_time))
1534 es_stats->es_stats_scan_time = (scan_time +
1535 es_stats->es_stats_scan_time*3) / 4;
1536 else
1537 es_stats->es_stats_scan_time = scan_time;
1538 if (scan_time > es_stats->es_stats_max_scan_time)
1539 es_stats->es_stats_max_scan_time = scan_time;
1540 if (likely(es_stats->es_stats_shrunk))
1541 es_stats->es_stats_shrunk = (nr_shrunk +
1542 es_stats->es_stats_shrunk*3) / 4;
1543 else
1544 es_stats->es_stats_shrunk = nr_shrunk;
1545
1546 trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1547 nr_skipped, retried);
1548 return nr_shrunk;
1549 }
1550
ext4_es_count(struct shrinker * shrink,struct shrink_control * sc)1551 static unsigned long ext4_es_count(struct shrinker *shrink,
1552 struct shrink_control *sc)
1553 {
1554 unsigned long nr;
1555 struct ext4_sb_info *sbi;
1556
1557 sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1558 nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1559 trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1560 return nr;
1561 }
1562
ext4_es_scan(struct shrinker * shrink,struct shrink_control * sc)1563 static unsigned long ext4_es_scan(struct shrinker *shrink,
1564 struct shrink_control *sc)
1565 {
1566 struct ext4_sb_info *sbi = container_of(shrink,
1567 struct ext4_sb_info, s_es_shrinker);
1568 int nr_to_scan = sc->nr_to_scan;
1569 int ret, nr_shrunk;
1570
1571 ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1572 trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1573
1574 nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1575
1576 ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1577 trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1578 return nr_shrunk;
1579 }
1580
ext4_seq_es_shrinker_info_show(struct seq_file * seq,void * v)1581 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1582 {
1583 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1584 struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1585 struct ext4_inode_info *ei, *max = NULL;
1586 unsigned int inode_cnt = 0;
1587
1588 if (v != SEQ_START_TOKEN)
1589 return 0;
1590
1591 /* here we just find an inode that has the max nr. of objects */
1592 spin_lock(&sbi->s_es_lock);
1593 list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1594 inode_cnt++;
1595 if (max && max->i_es_all_nr < ei->i_es_all_nr)
1596 max = ei;
1597 else if (!max)
1598 max = ei;
1599 }
1600 spin_unlock(&sbi->s_es_lock);
1601
1602 seq_printf(seq, "stats:\n %lld objects\n %lld reclaimable objects\n",
1603 percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1604 percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1605 seq_printf(seq, " %lld/%lld cache hits/misses\n",
1606 percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1607 percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1608 if (inode_cnt)
1609 seq_printf(seq, " %d inodes on list\n", inode_cnt);
1610
1611 seq_printf(seq, "average:\n %llu us scan time\n",
1612 div_u64(es_stats->es_stats_scan_time, 1000));
1613 seq_printf(seq, " %lu shrunk objects\n", es_stats->es_stats_shrunk);
1614 if (inode_cnt)
1615 seq_printf(seq,
1616 "maximum:\n %lu inode (%u objects, %u reclaimable)\n"
1617 " %llu us max scan time\n",
1618 max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1619 div_u64(es_stats->es_stats_max_scan_time, 1000));
1620
1621 return 0;
1622 }
1623
ext4_es_register_shrinker(struct ext4_sb_info * sbi)1624 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1625 {
1626 int err;
1627
1628 /* Make sure we have enough bits for physical block number */
1629 BUILD_BUG_ON(ES_SHIFT < 48);
1630 INIT_LIST_HEAD(&sbi->s_es_list);
1631 sbi->s_es_nr_inode = 0;
1632 spin_lock_init(&sbi->s_es_lock);
1633 sbi->s_es_stats.es_stats_shrunk = 0;
1634 err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1635 GFP_KERNEL);
1636 if (err)
1637 return err;
1638 err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1639 GFP_KERNEL);
1640 if (err)
1641 goto err1;
1642 sbi->s_es_stats.es_stats_scan_time = 0;
1643 sbi->s_es_stats.es_stats_max_scan_time = 0;
1644 err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1645 if (err)
1646 goto err2;
1647 err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1648 if (err)
1649 goto err3;
1650
1651 sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1652 sbi->s_es_shrinker.count_objects = ext4_es_count;
1653 sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1654 err = register_shrinker(&sbi->s_es_shrinker);
1655 if (err)
1656 goto err4;
1657
1658 return 0;
1659 err4:
1660 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1661 err3:
1662 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1663 err2:
1664 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1665 err1:
1666 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1667 return err;
1668 }
1669
ext4_es_unregister_shrinker(struct ext4_sb_info * sbi)1670 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1671 {
1672 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1673 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1674 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1675 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1676 unregister_shrinker(&sbi->s_es_shrinker);
1677 }
1678
1679 /*
1680 * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1681 * most *nr_to_scan extents, update *nr_to_scan accordingly.
1682 *
1683 * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1684 * Increment *nr_shrunk by the number of reclaimed extents. Also update
1685 * ei->i_es_shrink_lblk to where we should continue scanning.
1686 */
es_do_reclaim_extents(struct ext4_inode_info * ei,ext4_lblk_t end,int * nr_to_scan,int * nr_shrunk)1687 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1688 int *nr_to_scan, int *nr_shrunk)
1689 {
1690 struct inode *inode = &ei->vfs_inode;
1691 struct ext4_es_tree *tree = &ei->i_es_tree;
1692 struct extent_status *es;
1693 struct rb_node *node;
1694
1695 es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1696 if (!es)
1697 goto out_wrap;
1698
1699 while (*nr_to_scan > 0) {
1700 if (es->es_lblk > end) {
1701 ei->i_es_shrink_lblk = end + 1;
1702 return 0;
1703 }
1704
1705 (*nr_to_scan)--;
1706 node = rb_next(&es->rb_node);
1707 /*
1708 * We can't reclaim delayed extent from status tree because
1709 * fiemap, bigallic, and seek_data/hole need to use it.
1710 */
1711 if (ext4_es_is_delayed(es))
1712 goto next;
1713 if (ext4_es_is_referenced(es)) {
1714 ext4_es_clear_referenced(es);
1715 goto next;
1716 }
1717
1718 rb_erase(&es->rb_node, &tree->root);
1719 ext4_es_free_extent(inode, es);
1720 (*nr_shrunk)++;
1721 next:
1722 if (!node)
1723 goto out_wrap;
1724 es = rb_entry(node, struct extent_status, rb_node);
1725 }
1726 ei->i_es_shrink_lblk = es->es_lblk;
1727 return 1;
1728 out_wrap:
1729 ei->i_es_shrink_lblk = 0;
1730 return 0;
1731 }
1732
es_reclaim_extents(struct ext4_inode_info * ei,int * nr_to_scan)1733 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1734 {
1735 struct inode *inode = &ei->vfs_inode;
1736 int nr_shrunk = 0;
1737 ext4_lblk_t start = ei->i_es_shrink_lblk;
1738 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1739 DEFAULT_RATELIMIT_BURST);
1740
1741 if (ei->i_es_shk_nr == 0)
1742 return 0;
1743
1744 if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1745 __ratelimit(&_rs))
1746 ext4_warning(inode->i_sb, "forced shrink of precached extents");
1747
1748 if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1749 start != 0)
1750 es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1751
1752 ei->i_es_tree.cache_es = NULL;
1753 return nr_shrunk;
1754 }
1755
1756 /*
1757 * Called to support EXT4_IOC_CLEAR_ES_CACHE. We can only remove
1758 * discretionary entries from the extent status cache. (Some entries
1759 * must be present for proper operations.)
1760 */
ext4_clear_inode_es(struct inode * inode)1761 void ext4_clear_inode_es(struct inode *inode)
1762 {
1763 struct ext4_inode_info *ei = EXT4_I(inode);
1764 struct extent_status *es;
1765 struct ext4_es_tree *tree;
1766 struct rb_node *node;
1767
1768 write_lock(&ei->i_es_lock);
1769 tree = &EXT4_I(inode)->i_es_tree;
1770 tree->cache_es = NULL;
1771 node = rb_first(&tree->root);
1772 while (node) {
1773 es = rb_entry(node, struct extent_status, rb_node);
1774 node = rb_next(node);
1775 if (!ext4_es_is_delayed(es)) {
1776 rb_erase(&es->rb_node, &tree->root);
1777 ext4_es_free_extent(inode, es);
1778 }
1779 }
1780 ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1781 write_unlock(&ei->i_es_lock);
1782 }
1783
1784 #ifdef ES_DEBUG__
ext4_print_pending_tree(struct inode * inode)1785 static void ext4_print_pending_tree(struct inode *inode)
1786 {
1787 struct ext4_pending_tree *tree;
1788 struct rb_node *node;
1789 struct pending_reservation *pr;
1790
1791 printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1792 tree = &EXT4_I(inode)->i_pending_tree;
1793 node = rb_first(&tree->root);
1794 while (node) {
1795 pr = rb_entry(node, struct pending_reservation, rb_node);
1796 printk(KERN_DEBUG " %u", pr->lclu);
1797 node = rb_next(node);
1798 }
1799 printk(KERN_DEBUG "\n");
1800 }
1801 #else
1802 #define ext4_print_pending_tree(inode)
1803 #endif
1804
ext4_init_pending(void)1805 int __init ext4_init_pending(void)
1806 {
1807 ext4_pending_cachep = kmem_cache_create("ext4_pending_reservation",
1808 sizeof(struct pending_reservation),
1809 0, (SLAB_RECLAIM_ACCOUNT), NULL);
1810 if (ext4_pending_cachep == NULL)
1811 return -ENOMEM;
1812 return 0;
1813 }
1814
ext4_exit_pending(void)1815 void ext4_exit_pending(void)
1816 {
1817 kmem_cache_destroy(ext4_pending_cachep);
1818 }
1819
ext4_init_pending_tree(struct ext4_pending_tree * tree)1820 void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1821 {
1822 tree->root = RB_ROOT;
1823 }
1824
1825 /*
1826 * __get_pending - retrieve a pointer to a pending reservation
1827 *
1828 * @inode - file containing the pending cluster reservation
1829 * @lclu - logical cluster of interest
1830 *
1831 * Returns a pointer to a pending reservation if it's a member of
1832 * the set, and NULL if not. Must be called holding i_es_lock.
1833 */
__get_pending(struct inode * inode,ext4_lblk_t lclu)1834 static struct pending_reservation *__get_pending(struct inode *inode,
1835 ext4_lblk_t lclu)
1836 {
1837 struct ext4_pending_tree *tree;
1838 struct rb_node *node;
1839 struct pending_reservation *pr = NULL;
1840
1841 tree = &EXT4_I(inode)->i_pending_tree;
1842 node = (&tree->root)->rb_node;
1843
1844 while (node) {
1845 pr = rb_entry(node, struct pending_reservation, rb_node);
1846 if (lclu < pr->lclu)
1847 node = node->rb_left;
1848 else if (lclu > pr->lclu)
1849 node = node->rb_right;
1850 else if (lclu == pr->lclu)
1851 return pr;
1852 }
1853 return NULL;
1854 }
1855
1856 /*
1857 * __insert_pending - adds a pending cluster reservation to the set of
1858 * pending reservations
1859 *
1860 * @inode - file containing the cluster
1861 * @lblk - logical block in the cluster to be added
1862 *
1863 * Returns 0 on successful insertion and -ENOMEM on failure. If the
1864 * pending reservation is already in the set, returns successfully.
1865 */
__insert_pending(struct inode * inode,ext4_lblk_t lblk)1866 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk)
1867 {
1868 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1869 struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1870 struct rb_node **p = &tree->root.rb_node;
1871 struct rb_node *parent = NULL;
1872 struct pending_reservation *pr;
1873 ext4_lblk_t lclu;
1874 int ret = 0;
1875
1876 lclu = EXT4_B2C(sbi, lblk);
1877 /* search to find parent for insertion */
1878 while (*p) {
1879 parent = *p;
1880 pr = rb_entry(parent, struct pending_reservation, rb_node);
1881
1882 if (lclu < pr->lclu) {
1883 p = &(*p)->rb_left;
1884 } else if (lclu > pr->lclu) {
1885 p = &(*p)->rb_right;
1886 } else {
1887 /* pending reservation already inserted */
1888 goto out;
1889 }
1890 }
1891
1892 pr = kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
1893 if (pr == NULL) {
1894 ret = -ENOMEM;
1895 goto out;
1896 }
1897 pr->lclu = lclu;
1898
1899 rb_link_node(&pr->rb_node, parent, p);
1900 rb_insert_color(&pr->rb_node, &tree->root);
1901
1902 out:
1903 return ret;
1904 }
1905
1906 /*
1907 * __remove_pending - removes a pending cluster reservation from the set
1908 * of pending reservations
1909 *
1910 * @inode - file containing the cluster
1911 * @lblk - logical block in the pending cluster reservation to be removed
1912 *
1913 * Returns successfully if pending reservation is not a member of the set.
1914 */
__remove_pending(struct inode * inode,ext4_lblk_t lblk)1915 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
1916 {
1917 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1918 struct pending_reservation *pr;
1919 struct ext4_pending_tree *tree;
1920
1921 pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
1922 if (pr != NULL) {
1923 tree = &EXT4_I(inode)->i_pending_tree;
1924 rb_erase(&pr->rb_node, &tree->root);
1925 kmem_cache_free(ext4_pending_cachep, pr);
1926 }
1927 }
1928
1929 /*
1930 * ext4_remove_pending - removes a pending cluster reservation from the set
1931 * of pending reservations
1932 *
1933 * @inode - file containing the cluster
1934 * @lblk - logical block in the pending cluster reservation to be removed
1935 *
1936 * Locking for external use of __remove_pending.
1937 */
ext4_remove_pending(struct inode * inode,ext4_lblk_t lblk)1938 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
1939 {
1940 struct ext4_inode_info *ei = EXT4_I(inode);
1941
1942 write_lock(&ei->i_es_lock);
1943 __remove_pending(inode, lblk);
1944 write_unlock(&ei->i_es_lock);
1945 }
1946
1947 /*
1948 * ext4_is_pending - determine whether a cluster has a pending reservation
1949 * on it
1950 *
1951 * @inode - file containing the cluster
1952 * @lblk - logical block in the cluster
1953 *
1954 * Returns true if there's a pending reservation for the cluster in the
1955 * set of pending reservations, and false if not.
1956 */
ext4_is_pending(struct inode * inode,ext4_lblk_t lblk)1957 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
1958 {
1959 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1960 struct ext4_inode_info *ei = EXT4_I(inode);
1961 bool ret;
1962
1963 read_lock(&ei->i_es_lock);
1964 ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
1965 read_unlock(&ei->i_es_lock);
1966
1967 return ret;
1968 }
1969
1970 /*
1971 * ext4_es_insert_delayed_block - adds a delayed block to the extents status
1972 * tree, adding a pending reservation where
1973 * needed
1974 *
1975 * @inode - file containing the newly added block
1976 * @lblk - logical block to be added
1977 * @allocated - indicates whether a physical cluster has been allocated for
1978 * the logical cluster that contains the block
1979 *
1980 * Returns 0 on success, negative error code on failure.
1981 */
ext4_es_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk,bool allocated)1982 int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
1983 bool allocated)
1984 {
1985 struct extent_status newes;
1986 int err = 0;
1987
1988 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1989 return 0;
1990
1991 es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
1992 lblk, inode->i_ino);
1993
1994 newes.es_lblk = lblk;
1995 newes.es_len = 1;
1996 ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
1997 trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
1998
1999 ext4_es_insert_extent_check(inode, &newes);
2000
2001 write_lock(&EXT4_I(inode)->i_es_lock);
2002
2003 err = __es_remove_extent(inode, lblk, lblk, NULL);
2004 if (err != 0)
2005 goto error;
2006 retry:
2007 err = __es_insert_extent(inode, &newes);
2008 if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb),
2009 128, EXT4_I(inode)))
2010 goto retry;
2011 if (err != 0)
2012 goto error;
2013
2014 if (allocated)
2015 __insert_pending(inode, lblk);
2016
2017 error:
2018 write_unlock(&EXT4_I(inode)->i_es_lock);
2019
2020 ext4_es_print_tree(inode);
2021 ext4_print_pending_tree(inode);
2022
2023 return err;
2024 }
2025
2026 /*
2027 * __es_delayed_clu - count number of clusters containing blocks that
2028 * are delayed only
2029 *
2030 * @inode - file containing block range
2031 * @start - logical block defining start of range
2032 * @end - logical block defining end of range
2033 *
2034 * Returns the number of clusters containing only delayed (not delayed
2035 * and unwritten) blocks in the range specified by @start and @end. Any
2036 * cluster or part of a cluster within the range and containing a delayed
2037 * and not unwritten block within the range is counted as a whole cluster.
2038 */
__es_delayed_clu(struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)2039 static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
2040 ext4_lblk_t end)
2041 {
2042 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
2043 struct extent_status *es;
2044 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2045 struct rb_node *node;
2046 ext4_lblk_t first_lclu, last_lclu;
2047 unsigned long long last_counted_lclu;
2048 unsigned int n = 0;
2049
2050 /* guaranteed to be unequal to any ext4_lblk_t value */
2051 last_counted_lclu = ~0ULL;
2052
2053 es = __es_tree_search(&tree->root, start);
2054
2055 while (es && (es->es_lblk <= end)) {
2056 if (ext4_es_is_delonly(es)) {
2057 if (es->es_lblk <= start)
2058 first_lclu = EXT4_B2C(sbi, start);
2059 else
2060 first_lclu = EXT4_B2C(sbi, es->es_lblk);
2061
2062 if (ext4_es_end(es) >= end)
2063 last_lclu = EXT4_B2C(sbi, end);
2064 else
2065 last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
2066
2067 if (first_lclu == last_counted_lclu)
2068 n += last_lclu - first_lclu;
2069 else
2070 n += last_lclu - first_lclu + 1;
2071 last_counted_lclu = last_lclu;
2072 }
2073 node = rb_next(&es->rb_node);
2074 if (!node)
2075 break;
2076 es = rb_entry(node, struct extent_status, rb_node);
2077 }
2078
2079 return n;
2080 }
2081
2082 /*
2083 * ext4_es_delayed_clu - count number of clusters containing blocks that
2084 * are both delayed and unwritten
2085 *
2086 * @inode - file containing block range
2087 * @lblk - logical block defining start of range
2088 * @len - number of blocks in range
2089 *
2090 * Locking for external use of __es_delayed_clu().
2091 */
ext4_es_delayed_clu(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)2092 unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
2093 ext4_lblk_t len)
2094 {
2095 struct ext4_inode_info *ei = EXT4_I(inode);
2096 ext4_lblk_t end;
2097 unsigned int n;
2098
2099 if (len == 0)
2100 return 0;
2101
2102 end = lblk + len - 1;
2103 WARN_ON(end < lblk);
2104
2105 read_lock(&ei->i_es_lock);
2106
2107 n = __es_delayed_clu(inode, lblk, end);
2108
2109 read_unlock(&ei->i_es_lock);
2110
2111 return n;
2112 }
2113
2114 /*
2115 * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2116 * reservations for a specified block range depending
2117 * upon the presence or absence of delayed blocks
2118 * outside the range within clusters at the ends of the
2119 * range
2120 *
2121 * @inode - file containing the range
2122 * @lblk - logical block defining the start of range
2123 * @len - length of range in blocks
2124 *
2125 * Used after a newly allocated extent is added to the extents status tree.
2126 * Requires that the extents in the range have either written or unwritten
2127 * status. Must be called while holding i_es_lock.
2128 */
__revise_pending(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)2129 static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2130 ext4_lblk_t len)
2131 {
2132 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2133 ext4_lblk_t end = lblk + len - 1;
2134 ext4_lblk_t first, last;
2135 bool f_del = false, l_del = false;
2136
2137 if (len == 0)
2138 return;
2139
2140 /*
2141 * Two cases - block range within single cluster and block range
2142 * spanning two or more clusters. Note that a cluster belonging
2143 * to a range starting and/or ending on a cluster boundary is treated
2144 * as if it does not contain a delayed extent. The new range may
2145 * have allocated space for previously delayed blocks out to the
2146 * cluster boundary, requiring that any pre-existing pending
2147 * reservation be canceled. Because this code only looks at blocks
2148 * outside the range, it should revise pending reservations
2149 * correctly even if the extent represented by the range can't be
2150 * inserted in the extents status tree due to ENOSPC.
2151 */
2152
2153 if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2154 first = EXT4_LBLK_CMASK(sbi, lblk);
2155 if (first != lblk)
2156 f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2157 first, lblk - 1);
2158 if (f_del) {
2159 __insert_pending(inode, first);
2160 } else {
2161 last = EXT4_LBLK_CMASK(sbi, end) +
2162 sbi->s_cluster_ratio - 1;
2163 if (last != end)
2164 l_del = __es_scan_range(inode,
2165 &ext4_es_is_delonly,
2166 end + 1, last);
2167 if (l_del)
2168 __insert_pending(inode, last);
2169 else
2170 __remove_pending(inode, last);
2171 }
2172 } else {
2173 first = EXT4_LBLK_CMASK(sbi, lblk);
2174 if (first != lblk)
2175 f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2176 first, lblk - 1);
2177 if (f_del)
2178 __insert_pending(inode, first);
2179 else
2180 __remove_pending(inode, first);
2181
2182 last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2183 if (last != end)
2184 l_del = __es_scan_range(inode, &ext4_es_is_delonly,
2185 end + 1, last);
2186 if (l_del)
2187 __insert_pending(inode, last);
2188 else
2189 __remove_pending(inode, last);
2190 }
2191 }
2192