• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *	(jj@sunsite.ms.mff.cuni.cz)
20  */
21 
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38 
ext4_dio_supported(struct inode * inode)39 static bool ext4_dio_supported(struct inode *inode)
40 {
41 	if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode))
42 		return false;
43 	if (fsverity_active(inode))
44 		return false;
45 	if (ext4_should_journal_data(inode))
46 		return false;
47 	if (ext4_has_inline_data(inode))
48 		return false;
49 	return true;
50 }
51 
ext4_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)52 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
53 {
54 	ssize_t ret;
55 	struct inode *inode = file_inode(iocb->ki_filp);
56 
57 	if (iocb->ki_flags & IOCB_NOWAIT) {
58 		if (!inode_trylock_shared(inode))
59 			return -EAGAIN;
60 	} else {
61 		inode_lock_shared(inode);
62 	}
63 
64 	if (!ext4_dio_supported(inode)) {
65 		inode_unlock_shared(inode);
66 		/*
67 		 * Fallback to buffered I/O if the operation being performed on
68 		 * the inode is not supported by direct I/O. The IOCB_DIRECT
69 		 * flag needs to be cleared here in order to ensure that the
70 		 * direct I/O path within generic_file_read_iter() is not
71 		 * taken.
72 		 */
73 		iocb->ki_flags &= ~IOCB_DIRECT;
74 		return generic_file_read_iter(iocb, to);
75 	}
76 
77 	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL,
78 			   is_sync_kiocb(iocb));
79 	inode_unlock_shared(inode);
80 
81 	file_accessed(iocb->ki_filp);
82 	return ret;
83 }
84 
85 #ifdef CONFIG_FS_DAX
ext4_dax_read_iter(struct kiocb * iocb,struct iov_iter * to)86 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
87 {
88 	struct inode *inode = file_inode(iocb->ki_filp);
89 	ssize_t ret;
90 
91 	if (iocb->ki_flags & IOCB_NOWAIT) {
92 		if (!inode_trylock_shared(inode))
93 			return -EAGAIN;
94 	} else {
95 		inode_lock_shared(inode);
96 	}
97 	/*
98 	 * Recheck under inode lock - at this point we are sure it cannot
99 	 * change anymore
100 	 */
101 	if (!IS_DAX(inode)) {
102 		inode_unlock_shared(inode);
103 		/* Fallback to buffered IO in case we cannot support DAX */
104 		return generic_file_read_iter(iocb, to);
105 	}
106 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
107 	inode_unlock_shared(inode);
108 
109 	file_accessed(iocb->ki_filp);
110 	return ret;
111 }
112 #endif
113 
ext4_file_read_iter(struct kiocb * iocb,struct iov_iter * to)114 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
115 {
116 	struct inode *inode = file_inode(iocb->ki_filp);
117 
118 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
119 		return -EIO;
120 
121 	if (!iov_iter_count(to))
122 		return 0; /* skip atime */
123 
124 #ifdef CONFIG_FS_DAX
125 	if (IS_DAX(inode))
126 		return ext4_dax_read_iter(iocb, to);
127 #endif
128 	if (iocb->ki_flags & IOCB_DIRECT)
129 		return ext4_dio_read_iter(iocb, to);
130 
131 	return generic_file_read_iter(iocb, to);
132 }
133 
134 /*
135  * Called when an inode is released. Note that this is different
136  * from ext4_file_open: open gets called at every open, but release
137  * gets called only when /all/ the files are closed.
138  */
ext4_release_file(struct inode * inode,struct file * filp)139 static int ext4_release_file(struct inode *inode, struct file *filp)
140 {
141 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
142 		ext4_alloc_da_blocks(inode);
143 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
144 	}
145 	/* if we are the last writer on the inode, drop the block reservation */
146 	if ((filp->f_mode & FMODE_WRITE) &&
147 			(atomic_read(&inode->i_writecount) == 1) &&
148 			!EXT4_I(inode)->i_reserved_data_blocks) {
149 		down_write(&EXT4_I(inode)->i_data_sem);
150 		ext4_discard_preallocations(inode, 0);
151 		up_write(&EXT4_I(inode)->i_data_sem);
152 	}
153 	if (is_dx(inode) && filp->private_data)
154 		ext4_htree_free_dir_info(filp->private_data);
155 
156 	return 0;
157 }
158 
159 /*
160  * This tests whether the IO in question is block-aligned or not.
161  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
162  * are converted to written only after the IO is complete.  Until they are
163  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
164  * it needs to zero out portions of the start and/or end block.  If 2 AIO
165  * threads are at work on the same unwritten block, they must be synchronized
166  * or one thread will zero the other's data, causing corruption.
167  */
168 static bool
ext4_unaligned_io(struct inode * inode,struct iov_iter * from,loff_t pos)169 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
170 {
171 	struct super_block *sb = inode->i_sb;
172 	unsigned long blockmask = sb->s_blocksize - 1;
173 
174 	if ((pos | iov_iter_alignment(from)) & blockmask)
175 		return true;
176 
177 	return false;
178 }
179 
180 static bool
ext4_extending_io(struct inode * inode,loff_t offset,size_t len)181 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
182 {
183 	if (offset + len > i_size_read(inode) ||
184 	    offset + len > EXT4_I(inode)->i_disksize)
185 		return true;
186 	return false;
187 }
188 
189 /* Is IO overwriting allocated and initialized blocks? */
ext4_overwrite_io(struct inode * inode,loff_t pos,loff_t len)190 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
191 {
192 	struct ext4_map_blocks map;
193 	unsigned int blkbits = inode->i_blkbits;
194 	int err, blklen;
195 
196 	if (pos + len > i_size_read(inode))
197 		return false;
198 
199 	map.m_lblk = pos >> blkbits;
200 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
201 	blklen = map.m_len;
202 
203 	err = ext4_map_blocks(NULL, inode, &map, 0);
204 	/*
205 	 * 'err==len' means that all of the blocks have been preallocated,
206 	 * regardless of whether they have been initialized or not. To exclude
207 	 * unwritten extents, we need to check m_flags.
208 	 */
209 	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
210 }
211 
ext4_generic_write_checks(struct kiocb * iocb,struct iov_iter * from)212 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
213 					 struct iov_iter *from)
214 {
215 	struct inode *inode = file_inode(iocb->ki_filp);
216 	ssize_t ret;
217 
218 	if (unlikely(IS_IMMUTABLE(inode)))
219 		return -EPERM;
220 
221 	ret = generic_write_checks(iocb, from);
222 	if (ret <= 0)
223 		return ret;
224 
225 	/*
226 	 * If we have encountered a bitmap-format file, the size limit
227 	 * is smaller than s_maxbytes, which is for extent-mapped files.
228 	 */
229 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
230 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
231 
232 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
233 			return -EFBIG;
234 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
235 	}
236 
237 	return iov_iter_count(from);
238 }
239 
ext4_write_checks(struct kiocb * iocb,struct iov_iter * from)240 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
241 {
242 	ssize_t ret, count;
243 
244 	count = ext4_generic_write_checks(iocb, from);
245 	if (count <= 0)
246 		return count;
247 
248 	ret = file_modified(iocb->ki_filp);
249 	if (ret)
250 		return ret;
251 	return count;
252 }
253 
ext4_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)254 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
255 					struct iov_iter *from)
256 {
257 	ssize_t ret;
258 	struct inode *inode = file_inode(iocb->ki_filp);
259 
260 	if (iocb->ki_flags & IOCB_NOWAIT)
261 		return -EOPNOTSUPP;
262 
263 	inode_lock(inode);
264 	ret = ext4_write_checks(iocb, from);
265 	if (ret <= 0)
266 		goto out;
267 
268 	current->backing_dev_info = inode_to_bdi(inode);
269 	ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos);
270 	current->backing_dev_info = NULL;
271 
272 out:
273 	inode_unlock(inode);
274 	if (likely(ret > 0)) {
275 		iocb->ki_pos += ret;
276 		ret = generic_write_sync(iocb, ret);
277 	}
278 
279 	return ret;
280 }
281 
ext4_handle_inode_extension(struct inode * inode,loff_t offset,ssize_t written,size_t count)282 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
283 					   ssize_t written, size_t count)
284 {
285 	handle_t *handle;
286 	bool truncate = false;
287 	u8 blkbits = inode->i_blkbits;
288 	ext4_lblk_t written_blk, end_blk;
289 	int ret;
290 
291 	/*
292 	 * Note that EXT4_I(inode)->i_disksize can get extended up to
293 	 * inode->i_size while the I/O was running due to writeback of delalloc
294 	 * blocks. But, the code in ext4_iomap_alloc() is careful to use
295 	 * zeroed/unwritten extents if this is possible; thus we won't leave
296 	 * uninitialized blocks in a file even if we didn't succeed in writing
297 	 * as much as we intended.
298 	 */
299 	WARN_ON_ONCE(i_size_read(inode) < EXT4_I(inode)->i_disksize);
300 	if (offset + count <= EXT4_I(inode)->i_disksize) {
301 		/*
302 		 * We need to ensure that the inode is removed from the orphan
303 		 * list if it has been added prematurely, due to writeback of
304 		 * delalloc blocks.
305 		 */
306 		if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
307 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
308 
309 			if (IS_ERR(handle)) {
310 				ext4_orphan_del(NULL, inode);
311 				return PTR_ERR(handle);
312 			}
313 
314 			ext4_orphan_del(handle, inode);
315 			ext4_journal_stop(handle);
316 		}
317 
318 		return written;
319 	}
320 
321 	if (written < 0)
322 		goto truncate;
323 
324 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
325 	if (IS_ERR(handle)) {
326 		written = PTR_ERR(handle);
327 		goto truncate;
328 	}
329 
330 	if (ext4_update_inode_size(inode, offset + written)) {
331 		ret = ext4_mark_inode_dirty(handle, inode);
332 		if (unlikely(ret)) {
333 			written = ret;
334 			ext4_journal_stop(handle);
335 			goto truncate;
336 		}
337 	}
338 
339 	/*
340 	 * We may need to truncate allocated but not written blocks beyond EOF.
341 	 */
342 	written_blk = ALIGN(offset + written, 1 << blkbits);
343 	end_blk = ALIGN(offset + count, 1 << blkbits);
344 	if (written_blk < end_blk && ext4_can_truncate(inode))
345 		truncate = true;
346 
347 	/*
348 	 * Remove the inode from the orphan list if it has been extended and
349 	 * everything went OK.
350 	 */
351 	if (!truncate && inode->i_nlink)
352 		ext4_orphan_del(handle, inode);
353 	ext4_journal_stop(handle);
354 
355 	if (truncate) {
356 truncate:
357 		ext4_truncate_failed_write(inode);
358 		/*
359 		 * If the truncate operation failed early, then the inode may
360 		 * still be on the orphan list. In that case, we need to try
361 		 * remove the inode from the in-memory linked list.
362 		 */
363 		if (inode->i_nlink)
364 			ext4_orphan_del(NULL, inode);
365 	}
366 
367 	return written;
368 }
369 
ext4_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)370 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
371 				 int error, unsigned int flags)
372 {
373 	loff_t pos = iocb->ki_pos;
374 	struct inode *inode = file_inode(iocb->ki_filp);
375 
376 	if (error)
377 		return error;
378 
379 	if (size && flags & IOMAP_DIO_UNWRITTEN) {
380 		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
381 		if (error < 0)
382 			return error;
383 	}
384 	/*
385 	 * If we are extending the file, we have to update i_size here before
386 	 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
387 	 * buffered reads could zero out too much from page cache pages. Update
388 	 * of on-disk size will happen later in ext4_dio_write_iter() where
389 	 * we have enough information to also perform orphan list handling etc.
390 	 * Note that we perform all extending writes synchronously under
391 	 * i_rwsem held exclusively so i_size update is safe here in that case.
392 	 * If the write was not extending, we cannot see pos > i_size here
393 	 * because operations reducing i_size like truncate wait for all
394 	 * outstanding DIO before updating i_size.
395 	 */
396 	pos += size;
397 	if (pos > i_size_read(inode))
398 		i_size_write(inode, pos);
399 
400 	return 0;
401 }
402 
403 static const struct iomap_dio_ops ext4_dio_write_ops = {
404 	.end_io = ext4_dio_write_end_io,
405 };
406 
407 /*
408  * The intention here is to start with shared lock acquired then see if any
409  * condition requires an exclusive inode lock. If yes, then we restart the
410  * whole operation by releasing the shared lock and acquiring exclusive lock.
411  *
412  * - For unaligned_io we never take shared lock as it may cause data corruption
413  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
414  *
415  * - For extending writes case we don't take the shared lock, since it requires
416  *   updating inode i_disksize and/or orphan handling with exclusive lock.
417  *
418  * - shared locking will only be true mostly with overwrites. Otherwise we will
419  *   switch to exclusive i_rwsem lock.
420  */
ext4_dio_write_checks(struct kiocb * iocb,struct iov_iter * from,bool * ilock_shared,bool * extend)421 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
422 				     bool *ilock_shared, bool *extend)
423 {
424 	struct file *file = iocb->ki_filp;
425 	struct inode *inode = file_inode(file);
426 	loff_t offset;
427 	size_t count;
428 	ssize_t ret;
429 
430 restart:
431 	ret = ext4_generic_write_checks(iocb, from);
432 	if (ret <= 0)
433 		goto out;
434 
435 	offset = iocb->ki_pos;
436 	count = ret;
437 	if (ext4_extending_io(inode, offset, count))
438 		*extend = true;
439 	/*
440 	 * Determine whether the IO operation will overwrite allocated
441 	 * and initialized blocks.
442 	 * We need exclusive i_rwsem for changing security info
443 	 * in file_modified().
444 	 */
445 	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
446 	     !ext4_overwrite_io(inode, offset, count))) {
447 		if (iocb->ki_flags & IOCB_NOWAIT) {
448 			ret = -EAGAIN;
449 			goto out;
450 		}
451 		inode_unlock_shared(inode);
452 		*ilock_shared = false;
453 		inode_lock(inode);
454 		goto restart;
455 	}
456 
457 	ret = file_modified(file);
458 	if (ret < 0)
459 		goto out;
460 
461 	return count;
462 out:
463 	if (*ilock_shared)
464 		inode_unlock_shared(inode);
465 	else
466 		inode_unlock(inode);
467 	return ret;
468 }
469 
ext4_dio_write_iter(struct kiocb * iocb,struct iov_iter * from)470 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
471 {
472 	ssize_t ret;
473 	handle_t *handle;
474 	struct inode *inode = file_inode(iocb->ki_filp);
475 	loff_t offset = iocb->ki_pos;
476 	size_t count = iov_iter_count(from);
477 	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
478 	bool extend = false, unaligned_io = false;
479 	bool ilock_shared = true;
480 
481 	/*
482 	 * We initially start with shared inode lock unless it is
483 	 * unaligned IO which needs exclusive lock anyways.
484 	 */
485 	if (ext4_unaligned_io(inode, from, offset)) {
486 		unaligned_io = true;
487 		ilock_shared = false;
488 	}
489 	/*
490 	 * Quick check here without any i_rwsem lock to see if it is extending
491 	 * IO. A more reliable check is done in ext4_dio_write_checks() with
492 	 * proper locking in place.
493 	 */
494 	if (offset + count > i_size_read(inode))
495 		ilock_shared = false;
496 
497 	if (iocb->ki_flags & IOCB_NOWAIT) {
498 		if (ilock_shared) {
499 			if (!inode_trylock_shared(inode))
500 				return -EAGAIN;
501 		} else {
502 			if (!inode_trylock(inode))
503 				return -EAGAIN;
504 		}
505 	} else {
506 		if (ilock_shared)
507 			inode_lock_shared(inode);
508 		else
509 			inode_lock(inode);
510 	}
511 
512 	/* Fallback to buffered I/O if the inode does not support direct I/O. */
513 	if (!ext4_dio_supported(inode)) {
514 		if (ilock_shared)
515 			inode_unlock_shared(inode);
516 		else
517 			inode_unlock(inode);
518 		return ext4_buffered_write_iter(iocb, from);
519 	}
520 
521 	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
522 	if (ret <= 0)
523 		return ret;
524 
525 	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
526 	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
527 		ret = -EAGAIN;
528 		goto out;
529 	}
530 	/*
531 	 * Make sure inline data cannot be created anymore since we are going
532 	 * to allocate blocks for DIO. We know the inode does not have any
533 	 * inline data now because ext4_dio_supported() checked for that.
534 	 */
535 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
536 
537 	offset = iocb->ki_pos;
538 	count = ret;
539 
540 	/*
541 	 * Unaligned direct IO must be serialized among each other as zeroing
542 	 * of partial blocks of two competing unaligned IOs can result in data
543 	 * corruption.
544 	 *
545 	 * So we make sure we don't allow any unaligned IO in flight.
546 	 * For IOs where we need not wait (like unaligned non-AIO DIO),
547 	 * below inode_dio_wait() may anyway become a no-op, since we start
548 	 * with exclusive lock.
549 	 */
550 	if (unaligned_io)
551 		inode_dio_wait(inode);
552 
553 	if (extend) {
554 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
555 		if (IS_ERR(handle)) {
556 			ret = PTR_ERR(handle);
557 			goto out;
558 		}
559 
560 		ret = ext4_orphan_add(handle, inode);
561 		if (ret) {
562 			ext4_journal_stop(handle);
563 			goto out;
564 		}
565 
566 		ext4_journal_stop(handle);
567 	}
568 
569 	if (ilock_shared)
570 		iomap_ops = &ext4_iomap_overwrite_ops;
571 	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
572 			   is_sync_kiocb(iocb) || unaligned_io || extend);
573 	if (ret == -ENOTBLK)
574 		ret = 0;
575 
576 	if (extend)
577 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
578 
579 out:
580 	if (ilock_shared)
581 		inode_unlock_shared(inode);
582 	else
583 		inode_unlock(inode);
584 
585 	if (ret >= 0 && iov_iter_count(from)) {
586 		ssize_t err;
587 		loff_t endbyte;
588 
589 		offset = iocb->ki_pos;
590 		err = ext4_buffered_write_iter(iocb, from);
591 		if (err < 0)
592 			return err;
593 
594 		/*
595 		 * We need to ensure that the pages within the page cache for
596 		 * the range covered by this I/O are written to disk and
597 		 * invalidated. This is in attempt to preserve the expected
598 		 * direct I/O semantics in the case we fallback to buffered I/O
599 		 * to complete off the I/O request.
600 		 */
601 		ret += err;
602 		endbyte = offset + err - 1;
603 		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
604 						   offset, endbyte);
605 		if (!err)
606 			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
607 						 offset >> PAGE_SHIFT,
608 						 endbyte >> PAGE_SHIFT);
609 	}
610 
611 	return ret;
612 }
613 
614 #ifdef CONFIG_FS_DAX
615 static ssize_t
ext4_dax_write_iter(struct kiocb * iocb,struct iov_iter * from)616 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
617 {
618 	ssize_t ret;
619 	size_t count;
620 	loff_t offset;
621 	handle_t *handle;
622 	bool extend = false;
623 	struct inode *inode = file_inode(iocb->ki_filp);
624 
625 	if (iocb->ki_flags & IOCB_NOWAIT) {
626 		if (!inode_trylock(inode))
627 			return -EAGAIN;
628 	} else {
629 		inode_lock(inode);
630 	}
631 
632 	ret = ext4_write_checks(iocb, from);
633 	if (ret <= 0)
634 		goto out;
635 
636 	offset = iocb->ki_pos;
637 	count = iov_iter_count(from);
638 
639 	if (offset + count > EXT4_I(inode)->i_disksize) {
640 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
641 		if (IS_ERR(handle)) {
642 			ret = PTR_ERR(handle);
643 			goto out;
644 		}
645 
646 		ret = ext4_orphan_add(handle, inode);
647 		if (ret) {
648 			ext4_journal_stop(handle);
649 			goto out;
650 		}
651 
652 		extend = true;
653 		ext4_journal_stop(handle);
654 	}
655 
656 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
657 
658 	if (extend)
659 		ret = ext4_handle_inode_extension(inode, offset, ret, count);
660 out:
661 	inode_unlock(inode);
662 	if (ret > 0)
663 		ret = generic_write_sync(iocb, ret);
664 	return ret;
665 }
666 #endif
667 
668 static ssize_t
ext4_file_write_iter(struct kiocb * iocb,struct iov_iter * from)669 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
670 {
671 	struct inode *inode = file_inode(iocb->ki_filp);
672 
673 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
674 		return -EIO;
675 
676 #ifdef CONFIG_FS_DAX
677 	if (IS_DAX(inode))
678 		return ext4_dax_write_iter(iocb, from);
679 #endif
680 	if (iocb->ki_flags & IOCB_DIRECT)
681 		return ext4_dio_write_iter(iocb, from);
682 	else
683 		return ext4_buffered_write_iter(iocb, from);
684 }
685 
686 #ifdef CONFIG_FS_DAX
ext4_dax_huge_fault(struct vm_fault * vmf,enum page_entry_size pe_size)687 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
688 		enum page_entry_size pe_size)
689 {
690 	int error = 0;
691 	vm_fault_t result;
692 	int retries = 0;
693 	handle_t *handle = NULL;
694 	struct inode *inode = file_inode(vmf->vma->vm_file);
695 	struct super_block *sb = inode->i_sb;
696 
697 	/*
698 	 * We have to distinguish real writes from writes which will result in a
699 	 * COW page; COW writes should *not* poke the journal (the file will not
700 	 * be changed). Doing so would cause unintended failures when mounted
701 	 * read-only.
702 	 *
703 	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
704 	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
705 	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
706 	 * we eventually come back with a COW page.
707 	 */
708 	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
709 		(vmf->vma->vm_flags & VM_SHARED);
710 	pfn_t pfn;
711 
712 	if (write) {
713 		sb_start_pagefault(sb);
714 		file_update_time(vmf->vma->vm_file);
715 		down_read(&EXT4_I(inode)->i_mmap_sem);
716 retry:
717 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
718 					       EXT4_DATA_TRANS_BLOCKS(sb));
719 		if (IS_ERR(handle)) {
720 			up_read(&EXT4_I(inode)->i_mmap_sem);
721 			sb_end_pagefault(sb);
722 			return VM_FAULT_SIGBUS;
723 		}
724 	} else {
725 		down_read(&EXT4_I(inode)->i_mmap_sem);
726 	}
727 	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
728 	if (write) {
729 		ext4_journal_stop(handle);
730 
731 		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
732 		    ext4_should_retry_alloc(sb, &retries))
733 			goto retry;
734 		/* Handling synchronous page fault? */
735 		if (result & VM_FAULT_NEEDDSYNC)
736 			result = dax_finish_sync_fault(vmf, pe_size, pfn);
737 		up_read(&EXT4_I(inode)->i_mmap_sem);
738 		sb_end_pagefault(sb);
739 	} else {
740 		up_read(&EXT4_I(inode)->i_mmap_sem);
741 	}
742 
743 	return result;
744 }
745 
ext4_dax_fault(struct vm_fault * vmf)746 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
747 {
748 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
749 }
750 
751 static const struct vm_operations_struct ext4_dax_vm_ops = {
752 	.fault		= ext4_dax_fault,
753 	.huge_fault	= ext4_dax_huge_fault,
754 	.page_mkwrite	= ext4_dax_fault,
755 	.pfn_mkwrite	= ext4_dax_fault,
756 };
757 #else
758 #define ext4_dax_vm_ops	ext4_file_vm_ops
759 #endif
760 
761 static const struct vm_operations_struct ext4_file_vm_ops = {
762 	.fault		= ext4_filemap_fault,
763 	.map_pages	= filemap_map_pages,
764 	.page_mkwrite   = ext4_page_mkwrite,
765 };
766 
ext4_file_mmap(struct file * file,struct vm_area_struct * vma)767 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
768 {
769 	struct inode *inode = file->f_mapping->host;
770 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
771 	struct dax_device *dax_dev = sbi->s_daxdev;
772 
773 	if (unlikely(ext4_forced_shutdown(sbi)))
774 		return -EIO;
775 
776 	/*
777 	 * We don't support synchronous mappings for non-DAX files and
778 	 * for DAX files if underneath dax_device is not synchronous.
779 	 */
780 	if (!daxdev_mapping_supported(vma, dax_dev))
781 		return -EOPNOTSUPP;
782 
783 	file_accessed(file);
784 	if (IS_DAX(file_inode(file))) {
785 		vma->vm_ops = &ext4_dax_vm_ops;
786 		vma->vm_flags |= VM_HUGEPAGE;
787 	} else {
788 		vma->vm_ops = &ext4_file_vm_ops;
789 	}
790 	return 0;
791 }
792 
ext4_sample_last_mounted(struct super_block * sb,struct vfsmount * mnt)793 static int ext4_sample_last_mounted(struct super_block *sb,
794 				    struct vfsmount *mnt)
795 {
796 	struct ext4_sb_info *sbi = EXT4_SB(sb);
797 	struct path path;
798 	char buf[64], *cp;
799 	handle_t *handle;
800 	int err;
801 
802 	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
803 		return 0;
804 
805 	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
806 		return 0;
807 
808 	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
809 	/*
810 	 * Sample where the filesystem has been mounted and
811 	 * store it in the superblock for sysadmin convenience
812 	 * when trying to sort through large numbers of block
813 	 * devices or filesystem images.
814 	 */
815 	memset(buf, 0, sizeof(buf));
816 	path.mnt = mnt;
817 	path.dentry = mnt->mnt_root;
818 	cp = d_path(&path, buf, sizeof(buf));
819 	err = 0;
820 	if (IS_ERR(cp))
821 		goto out;
822 
823 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
824 	err = PTR_ERR(handle);
825 	if (IS_ERR(handle))
826 		goto out;
827 	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
828 	err = ext4_journal_get_write_access(handle, sbi->s_sbh);
829 	if (err)
830 		goto out_journal;
831 	lock_buffer(sbi->s_sbh);
832 	strncpy(sbi->s_es->s_last_mounted, cp,
833 		sizeof(sbi->s_es->s_last_mounted));
834 	ext4_superblock_csum_set(sb);
835 	unlock_buffer(sbi->s_sbh);
836 	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
837 out_journal:
838 	ext4_journal_stop(handle);
839 out:
840 	sb_end_intwrite(sb);
841 	return err;
842 }
843 
ext4_file_open(struct inode * inode,struct file * filp)844 static int ext4_file_open(struct inode *inode, struct file *filp)
845 {
846 	int ret;
847 
848 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
849 		return -EIO;
850 
851 	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
852 	if (ret)
853 		return ret;
854 
855 	ret = fscrypt_file_open(inode, filp);
856 	if (ret)
857 		return ret;
858 
859 	ret = fsverity_file_open(inode, filp);
860 	if (ret)
861 		return ret;
862 
863 	/*
864 	 * Set up the jbd2_inode if we are opening the inode for
865 	 * writing and the journal is present
866 	 */
867 	if (filp->f_mode & FMODE_WRITE) {
868 		ret = ext4_inode_attach_jinode(inode);
869 		if (ret < 0)
870 			return ret;
871 	}
872 
873 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
874 	return dquot_file_open(inode, filp);
875 }
876 
877 /*
878  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
879  * by calling generic_file_llseek_size() with the appropriate maxbytes
880  * value for each.
881  */
ext4_llseek(struct file * file,loff_t offset,int whence)882 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
883 {
884 	struct inode *inode = file->f_mapping->host;
885 	loff_t maxbytes;
886 
887 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
888 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
889 	else
890 		maxbytes = inode->i_sb->s_maxbytes;
891 
892 	switch (whence) {
893 	default:
894 		return generic_file_llseek_size(file, offset, whence,
895 						maxbytes, i_size_read(inode));
896 	case SEEK_HOLE:
897 		inode_lock_shared(inode);
898 		offset = iomap_seek_hole(inode, offset,
899 					 &ext4_iomap_report_ops);
900 		inode_unlock_shared(inode);
901 		break;
902 	case SEEK_DATA:
903 		inode_lock_shared(inode);
904 		offset = iomap_seek_data(inode, offset,
905 					 &ext4_iomap_report_ops);
906 		inode_unlock_shared(inode);
907 		break;
908 	}
909 
910 	if (offset < 0)
911 		return offset;
912 	return vfs_setpos(file, offset, maxbytes);
913 }
914 
915 const struct file_operations ext4_file_operations = {
916 	.llseek		= ext4_llseek,
917 	.read_iter	= ext4_file_read_iter,
918 	.write_iter	= ext4_file_write_iter,
919 	.iopoll		= iomap_dio_iopoll,
920 	.unlocked_ioctl = ext4_ioctl,
921 #ifdef CONFIG_COMPAT
922 	.compat_ioctl	= ext4_compat_ioctl,
923 #endif
924 	.mmap		= ext4_file_mmap,
925 	.mmap_supported_flags = MAP_SYNC,
926 	.open		= ext4_file_open,
927 	.release	= ext4_release_file,
928 	.fsync		= ext4_sync_file,
929 	.get_unmapped_area = thp_get_unmapped_area,
930 	.splice_read	= generic_file_splice_read,
931 	.splice_write	= iter_file_splice_write,
932 	.fallocate	= ext4_fallocate,
933 };
934 
935 const struct inode_operations ext4_file_inode_operations = {
936 	.setattr	= ext4_setattr,
937 	.getattr	= ext4_file_getattr,
938 	.listxattr	= ext4_listxattr,
939 	.get_acl	= ext4_get_acl,
940 	.set_acl	= ext4_set_acl,
941 	.fiemap		= ext4_fiemap,
942 };
943 
944