1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary. For example, it turns
11 // the left into the right code:
12 //
13 // for (...) for (...)
14 // if (c) if (c)
15 // X1 = ... X1 = ...
16 // else else
17 // X2 = ... X2 = ...
18 // X3 = phi(X1, X2) X3 = phi(X1, X2)
19 // ... = X3 + 4 X4 = phi(X3)
20 // ... = X4 + 4
21 //
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine. The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/MemorySSA.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/PredIteratorCache.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Transforms/Utils.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 #include "llvm/Transforms/Utils/LoopUtils.h"
52 #include "llvm/Transforms/Utils/SSAUpdater.h"
53 using namespace llvm;
54
55 #define DEBUG_TYPE "lcssa"
56
57 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
58
59 #ifdef EXPENSIVE_CHECKS
60 static bool VerifyLoopLCSSA = true;
61 #else
62 static bool VerifyLoopLCSSA = false;
63 #endif
64 static cl::opt<bool, true>
65 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
66 cl::Hidden,
67 cl::desc("Verify loop lcssa form (time consuming)"));
68
69 /// Return true if the specified block is in the list.
isExitBlock(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & ExitBlocks)70 static bool isExitBlock(BasicBlock *BB,
71 const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
72 return is_contained(ExitBlocks, BB);
73 }
74
75 /// For every instruction from the worklist, check to see if it has any uses
76 /// that are outside the current loop. If so, insert LCSSA PHI nodes and
77 /// rewrite the uses.
formLCSSAForInstructions(SmallVectorImpl<Instruction * > & Worklist,DominatorTree & DT,LoopInfo & LI,ScalarEvolution * SE)78 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
79 DominatorTree &DT, LoopInfo &LI,
80 ScalarEvolution *SE) {
81 SmallVector<Use *, 16> UsesToRewrite;
82 SmallSetVector<PHINode *, 16> PHIsToRemove;
83 PredIteratorCache PredCache;
84 bool Changed = false;
85
86 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of
87 // instructions within the same loops, computing the exit blocks is
88 // expensive, and we're not mutating the loop structure.
89 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
90
91 while (!Worklist.empty()) {
92 UsesToRewrite.clear();
93
94 Instruction *I = Worklist.pop_back_val();
95 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
96 BasicBlock *InstBB = I->getParent();
97 Loop *L = LI.getLoopFor(InstBB);
98 assert(L && "Instruction belongs to a BB that's not part of a loop");
99 if (!LoopExitBlocks.count(L))
100 L->getExitBlocks(LoopExitBlocks[L]);
101 assert(LoopExitBlocks.count(L));
102 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
103
104 if (ExitBlocks.empty())
105 continue;
106
107 for (Use &U : I->uses()) {
108 Instruction *User = cast<Instruction>(U.getUser());
109 BasicBlock *UserBB = User->getParent();
110 if (auto *PN = dyn_cast<PHINode>(User))
111 UserBB = PN->getIncomingBlock(U);
112
113 if (InstBB != UserBB && !L->contains(UserBB))
114 UsesToRewrite.push_back(&U);
115 }
116
117 // If there are no uses outside the loop, exit with no change.
118 if (UsesToRewrite.empty())
119 continue;
120
121 ++NumLCSSA; // We are applying the transformation
122
123 // Invoke instructions are special in that their result value is not
124 // available along their unwind edge. The code below tests to see whether
125 // DomBB dominates the value, so adjust DomBB to the normal destination
126 // block, which is effectively where the value is first usable.
127 BasicBlock *DomBB = InstBB;
128 if (auto *Inv = dyn_cast<InvokeInst>(I))
129 DomBB = Inv->getNormalDest();
130
131 DomTreeNode *DomNode = DT.getNode(DomBB);
132
133 SmallVector<PHINode *, 16> AddedPHIs;
134 SmallVector<PHINode *, 8> PostProcessPHIs;
135
136 SmallVector<PHINode *, 4> InsertedPHIs;
137 SSAUpdater SSAUpdate(&InsertedPHIs);
138 SSAUpdate.Initialize(I->getType(), I->getName());
139
140 // Force re-computation of I, as some users now need to use the new PHI
141 // node.
142 if (SE)
143 SE->forgetValue(I);
144
145 // Insert the LCSSA phi's into all of the exit blocks dominated by the
146 // value, and add them to the Phi's map.
147 for (BasicBlock *ExitBB : ExitBlocks) {
148 if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
149 continue;
150
151 // If we already inserted something for this BB, don't reprocess it.
152 if (SSAUpdate.HasValueForBlock(ExitBB))
153 continue;
154
155 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
156 I->getName() + ".lcssa", &ExitBB->front());
157 // Get the debug location from the original instruction.
158 PN->setDebugLoc(I->getDebugLoc());
159 // Add inputs from inside the loop for this PHI.
160 for (BasicBlock *Pred : PredCache.get(ExitBB)) {
161 PN->addIncoming(I, Pred);
162
163 // If the exit block has a predecessor not within the loop, arrange for
164 // the incoming value use corresponding to that predecessor to be
165 // rewritten in terms of a different LCSSA PHI.
166 if (!L->contains(Pred))
167 UsesToRewrite.push_back(
168 &PN->getOperandUse(PN->getOperandNumForIncomingValue(
169 PN->getNumIncomingValues() - 1)));
170 }
171
172 AddedPHIs.push_back(PN);
173
174 // Remember that this phi makes the value alive in this block.
175 SSAUpdate.AddAvailableValue(ExitBB, PN);
176
177 // LoopSimplify might fail to simplify some loops (e.g. when indirect
178 // branches are involved). In such situations, it might happen that an
179 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
180 // create PHIs in such an exit block, we are also inserting PHIs into L2's
181 // header. This could break LCSSA form for L2 because these inserted PHIs
182 // can also have uses outside of L2. Remember all PHIs in such situation
183 // as to revisit than later on. FIXME: Remove this if indirectbr support
184 // into LoopSimplify gets improved.
185 if (auto *OtherLoop = LI.getLoopFor(ExitBB))
186 if (!L->contains(OtherLoop))
187 PostProcessPHIs.push_back(PN);
188 }
189
190 // Rewrite all uses outside the loop in terms of the new PHIs we just
191 // inserted.
192 for (Use *UseToRewrite : UsesToRewrite) {
193 // If this use is in an exit block, rewrite to use the newly inserted PHI.
194 // This is required for correctness because SSAUpdate doesn't handle uses
195 // in the same block. It assumes the PHI we inserted is at the end of the
196 // block.
197 Instruction *User = cast<Instruction>(UseToRewrite->getUser());
198 BasicBlock *UserBB = User->getParent();
199 if (auto *PN = dyn_cast<PHINode>(User))
200 UserBB = PN->getIncomingBlock(*UseToRewrite);
201
202 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
203 UseToRewrite->set(&UserBB->front());
204 continue;
205 }
206
207 // If we added a single PHI, it must dominate all uses and we can directly
208 // rename it.
209 if (AddedPHIs.size() == 1) {
210 UseToRewrite->set(AddedPHIs[0]);
211 continue;
212 }
213
214 // Otherwise, do full PHI insertion.
215 SSAUpdate.RewriteUse(*UseToRewrite);
216 }
217
218 SmallVector<DbgValueInst *, 4> DbgValues;
219 llvm::findDbgValues(DbgValues, I);
220
221 // Update pre-existing debug value uses that reside outside the loop.
222 auto &Ctx = I->getContext();
223 for (auto DVI : DbgValues) {
224 BasicBlock *UserBB = DVI->getParent();
225 if (InstBB == UserBB || L->contains(UserBB))
226 continue;
227 // We currently only handle debug values residing in blocks that were
228 // traversed while rewriting the uses. If we inserted just a single PHI,
229 // we will handle all relevant debug values.
230 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
231 : SSAUpdate.FindValueForBlock(UserBB);
232 if (V)
233 DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V)));
234 }
235
236 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
237 // to post-process them to keep LCSSA form.
238 for (PHINode *InsertedPN : InsertedPHIs) {
239 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
240 if (!L->contains(OtherLoop))
241 PostProcessPHIs.push_back(InsertedPN);
242 }
243
244 // Post process PHI instructions that were inserted into another disjoint
245 // loop and update their exits properly.
246 for (auto *PostProcessPN : PostProcessPHIs)
247 if (!PostProcessPN->use_empty())
248 Worklist.push_back(PostProcessPN);
249
250 // Keep track of PHI nodes that we want to remove because they did not have
251 // any uses rewritten. If the new PHI is used, store it so that we can
252 // try to propagate dbg.value intrinsics to it.
253 SmallVector<PHINode *, 2> NeedDbgValues;
254 for (PHINode *PN : AddedPHIs)
255 if (PN->use_empty())
256 PHIsToRemove.insert(PN);
257 else
258 NeedDbgValues.push_back(PN);
259 insertDebugValuesForPHIs(InstBB, NeedDbgValues);
260 Changed = true;
261 }
262 // Remove PHI nodes that did not have any uses rewritten. We need to redo the
263 // use_empty() check here, because even if the PHI node wasn't used when added
264 // to PHIsToRemove, later added PHI nodes can be using it. This cleanup is
265 // not guaranteed to handle trees/cycles of PHI nodes that only are used by
266 // each other. Such situations has only been noticed when the input IR
267 // contains unreachable code, and leaving some extra redundant PHI nodes in
268 // such situations is considered a minor problem.
269 for (PHINode *PN : PHIsToRemove)
270 if (PN->use_empty())
271 PN->eraseFromParent();
272 return Changed;
273 }
274
275 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
computeBlocksDominatingExits(Loop & L,DominatorTree & DT,SmallVector<BasicBlock *,8> & ExitBlocks,SmallSetVector<BasicBlock *,8> & BlocksDominatingExits)276 static void computeBlocksDominatingExits(
277 Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
278 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
279 SmallVector<BasicBlock *, 8> BBWorklist;
280
281 // We start from the exit blocks, as every block trivially dominates itself
282 // (not strictly).
283 for (BasicBlock *BB : ExitBlocks)
284 BBWorklist.push_back(BB);
285
286 while (!BBWorklist.empty()) {
287 BasicBlock *BB = BBWorklist.pop_back_val();
288
289 // Check if this is a loop header. If this is the case, we're done.
290 if (L.getHeader() == BB)
291 continue;
292
293 // Otherwise, add its immediate predecessor in the dominator tree to the
294 // worklist, unless we visited it already.
295 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
296
297 // Exit blocks can have an immediate dominator not beloinging to the
298 // loop. For an exit block to be immediately dominated by another block
299 // outside the loop, it implies not all paths from that dominator, to the
300 // exit block, go through the loop.
301 // Example:
302 //
303 // |---- A
304 // | |
305 // | B<--
306 // | | |
307 // |---> C --
308 // |
309 // D
310 //
311 // C is the exit block of the loop and it's immediately dominated by A,
312 // which doesn't belong to the loop.
313 if (!L.contains(IDomBB))
314 continue;
315
316 if (BlocksDominatingExits.insert(IDomBB))
317 BBWorklist.push_back(IDomBB);
318 }
319 }
320
formLCSSA(Loop & L,DominatorTree & DT,LoopInfo * LI,ScalarEvolution * SE)321 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
322 ScalarEvolution *SE) {
323 bool Changed = false;
324
325 #ifdef EXPENSIVE_CHECKS
326 // Verify all sub-loops are in LCSSA form already.
327 for (Loop *SubLoop: L)
328 assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
329 #endif
330
331 SmallVector<BasicBlock *, 8> ExitBlocks;
332 L.getExitBlocks(ExitBlocks);
333 if (ExitBlocks.empty())
334 return false;
335
336 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
337
338 // We want to avoid use-scanning leveraging dominance informations.
339 // If a block doesn't dominate any of the loop exits, the none of the values
340 // defined in the loop can be used outside.
341 // We compute the set of blocks fullfilling the conditions in advance
342 // walking the dominator tree upwards until we hit a loop header.
343 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
344
345 SmallVector<Instruction *, 8> Worklist;
346
347 // Look at all the instructions in the loop, checking to see if they have uses
348 // outside the loop. If so, put them into the worklist to rewrite those uses.
349 for (BasicBlock *BB : BlocksDominatingExits) {
350 // Skip blocks that are part of any sub-loops, they must be in LCSSA
351 // already.
352 if (LI->getLoopFor(BB) != &L)
353 continue;
354 for (Instruction &I : *BB) {
355 // Reject two common cases fast: instructions with no uses (like stores)
356 // and instructions with one use that is in the same block as this.
357 if (I.use_empty() ||
358 (I.hasOneUse() && I.user_back()->getParent() == BB &&
359 !isa<PHINode>(I.user_back())))
360 continue;
361
362 // Tokens cannot be used in PHI nodes, so we skip over them.
363 // We can run into tokens which are live out of a loop with catchswitch
364 // instructions in Windows EH if the catchswitch has one catchpad which
365 // is inside the loop and another which is not.
366 if (I.getType()->isTokenTy())
367 continue;
368
369 Worklist.push_back(&I);
370 }
371 }
372 Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE);
373
374 // If we modified the code, remove any caches about the loop from SCEV to
375 // avoid dangling entries.
376 // FIXME: This is a big hammer, can we clear the cache more selectively?
377 if (SE && Changed)
378 SE->forgetLoop(&L);
379
380 assert(L.isLCSSAForm(DT));
381
382 return Changed;
383 }
384
385 /// Process a loop nest depth first.
formLCSSARecursively(Loop & L,DominatorTree & DT,LoopInfo * LI,ScalarEvolution * SE)386 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
387 ScalarEvolution *SE) {
388 bool Changed = false;
389
390 // Recurse depth-first through inner loops.
391 for (Loop *SubLoop : L.getSubLoops())
392 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
393
394 Changed |= formLCSSA(L, DT, LI, SE);
395 return Changed;
396 }
397
398 /// Process all loops in the function, inner-most out.
formLCSSAOnAllLoops(LoopInfo * LI,DominatorTree & DT,ScalarEvolution * SE)399 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT,
400 ScalarEvolution *SE) {
401 bool Changed = false;
402 for (auto &L : *LI)
403 Changed |= formLCSSARecursively(*L, DT, LI, SE);
404 return Changed;
405 }
406
407 namespace {
408 struct LCSSAWrapperPass : public FunctionPass {
409 static char ID; // Pass identification, replacement for typeid
LCSSAWrapperPass__anon6f8ce6cf0111::LCSSAWrapperPass410 LCSSAWrapperPass() : FunctionPass(ID) {
411 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
412 }
413
414 // Cached analysis information for the current function.
415 DominatorTree *DT;
416 LoopInfo *LI;
417 ScalarEvolution *SE;
418
419 bool runOnFunction(Function &F) override;
verifyAnalysis__anon6f8ce6cf0111::LCSSAWrapperPass420 void verifyAnalysis() const override {
421 // This check is very expensive. On the loop intensive compiles it may cause
422 // up to 10x slowdown. Currently it's disabled by default. LPPassManager
423 // always does limited form of the LCSSA verification. Similar reasoning
424 // was used for the LoopInfo verifier.
425 if (VerifyLoopLCSSA) {
426 assert(all_of(*LI,
427 [&](Loop *L) {
428 return L->isRecursivelyLCSSAForm(*DT, *LI);
429 }) &&
430 "LCSSA form is broken!");
431 }
432 };
433
434 /// This transformation requires natural loop information & requires that
435 /// loop preheaders be inserted into the CFG. It maintains both of these,
436 /// as well as the CFG. It also requires dominator information.
getAnalysisUsage__anon6f8ce6cf0111::LCSSAWrapperPass437 void getAnalysisUsage(AnalysisUsage &AU) const override {
438 AU.setPreservesCFG();
439
440 AU.addRequired<DominatorTreeWrapperPass>();
441 AU.addRequired<LoopInfoWrapperPass>();
442 AU.addPreservedID(LoopSimplifyID);
443 AU.addPreserved<AAResultsWrapperPass>();
444 AU.addPreserved<BasicAAWrapperPass>();
445 AU.addPreserved<GlobalsAAWrapperPass>();
446 AU.addPreserved<ScalarEvolutionWrapperPass>();
447 AU.addPreserved<SCEVAAWrapperPass>();
448 AU.addPreserved<BranchProbabilityInfoWrapperPass>();
449 AU.addPreserved<MemorySSAWrapperPass>();
450
451 // This is needed to perform LCSSA verification inside LPPassManager
452 AU.addRequired<LCSSAVerificationPass>();
453 AU.addPreserved<LCSSAVerificationPass>();
454 }
455 };
456 }
457
458 char LCSSAWrapperPass::ID = 0;
459 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
460 false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)461 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
462 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
463 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
464 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
465 false, false)
466
467 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
468 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
469
470 /// Transform \p F into loop-closed SSA form.
runOnFunction(Function & F)471 bool LCSSAWrapperPass::runOnFunction(Function &F) {
472 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
473 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
474 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
475 SE = SEWP ? &SEWP->getSE() : nullptr;
476
477 return formLCSSAOnAllLoops(LI, *DT, SE);
478 }
479
run(Function & F,FunctionAnalysisManager & AM)480 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
481 auto &LI = AM.getResult<LoopAnalysis>(F);
482 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
483 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
484 if (!formLCSSAOnAllLoops(&LI, DT, SE))
485 return PreservedAnalyses::all();
486
487 PreservedAnalyses PA;
488 PA.preserveSet<CFGAnalyses>();
489 PA.preserve<BasicAA>();
490 PA.preserve<GlobalsAA>();
491 PA.preserve<SCEVAA>();
492 PA.preserve<ScalarEvolutionAnalysis>();
493 // BPI maps terminators to probabilities, since we don't modify the CFG, no
494 // updates are needed to preserve it.
495 PA.preserve<BranchProbabilityAnalysis>();
496 PA.preserve<MemorySSAAnalysis>();
497 return PA;
498 }
499