• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	unsigned int		enable_count;
76 	unsigned int		prepare_count;
77 	unsigned int		protect_count;
78 	unsigned long		min_rate;
79 	unsigned long		max_rate;
80 	unsigned long		accuracy;
81 	int			phase;
82 	struct clk_duty		duty;
83 	struct hlist_head	children;
84 	struct hlist_node	child_node;
85 	struct hlist_head	clks;
86 	unsigned int		notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 	struct dentry		*dentry;
89 	struct hlist_node	debug_node;
90 #endif
91 	struct kref		ref;
92 };
93 
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96 
97 struct clk {
98 	struct clk_core	*core;
99 	struct device *dev;
100 	const char *dev_id;
101 	const char *con_id;
102 	unsigned long min_rate;
103 	unsigned long max_rate;
104 	unsigned int exclusive_count;
105 	struct hlist_node clks_node;
106 };
107 
108 /***           runtime pm          ***/
clk_pm_runtime_get(struct clk_core * core)109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 	int ret;
112 
113 	if (!core->rpm_enabled)
114 		return 0;
115 
116 	ret = pm_runtime_get_sync(core->dev);
117 	if (ret < 0) {
118 		pm_runtime_put_noidle(core->dev);
119 		return ret;
120 	}
121 	return 0;
122 }
123 
clk_pm_runtime_put(struct clk_core * core)124 static void clk_pm_runtime_put(struct clk_core *core)
125 {
126 	if (!core->rpm_enabled)
127 		return;
128 
129 	pm_runtime_put_sync(core->dev);
130 }
131 
132 /***           locking             ***/
clk_prepare_lock(void)133 static void clk_prepare_lock(void)
134 {
135 	if (!mutex_trylock(&prepare_lock)) {
136 		if (prepare_owner == current) {
137 			prepare_refcnt++;
138 			return;
139 		}
140 		mutex_lock(&prepare_lock);
141 	}
142 	WARN_ON_ONCE(prepare_owner != NULL);
143 	WARN_ON_ONCE(prepare_refcnt != 0);
144 	prepare_owner = current;
145 	prepare_refcnt = 1;
146 }
147 
clk_prepare_unlock(void)148 static void clk_prepare_unlock(void)
149 {
150 	WARN_ON_ONCE(prepare_owner != current);
151 	WARN_ON_ONCE(prepare_refcnt == 0);
152 
153 	if (--prepare_refcnt)
154 		return;
155 	prepare_owner = NULL;
156 	mutex_unlock(&prepare_lock);
157 }
158 
clk_enable_lock(void)159 static unsigned long clk_enable_lock(void)
160 	__acquires(enable_lock)
161 {
162 	unsigned long flags;
163 
164 	/*
165 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
166 	 * we already hold the lock. So, in that case, we rely only on
167 	 * reference counting.
168 	 */
169 	if (!IS_ENABLED(CONFIG_SMP) ||
170 	    !spin_trylock_irqsave(&enable_lock, flags)) {
171 		if (enable_owner == current) {
172 			enable_refcnt++;
173 			__acquire(enable_lock);
174 			if (!IS_ENABLED(CONFIG_SMP))
175 				local_save_flags(flags);
176 			return flags;
177 		}
178 		spin_lock_irqsave(&enable_lock, flags);
179 	}
180 	WARN_ON_ONCE(enable_owner != NULL);
181 	WARN_ON_ONCE(enable_refcnt != 0);
182 	enable_owner = current;
183 	enable_refcnt = 1;
184 	return flags;
185 }
186 
clk_enable_unlock(unsigned long flags)187 static void clk_enable_unlock(unsigned long flags)
188 	__releases(enable_lock)
189 {
190 	WARN_ON_ONCE(enable_owner != current);
191 	WARN_ON_ONCE(enable_refcnt == 0);
192 
193 	if (--enable_refcnt) {
194 		__release(enable_lock);
195 		return;
196 	}
197 	enable_owner = NULL;
198 	spin_unlock_irqrestore(&enable_lock, flags);
199 }
200 
clk_core_rate_is_protected(struct clk_core * core)201 static bool clk_core_rate_is_protected(struct clk_core *core)
202 {
203 	return core->protect_count;
204 }
205 
clk_core_is_prepared(struct clk_core * core)206 static bool clk_core_is_prepared(struct clk_core *core)
207 {
208 	bool ret = false;
209 
210 	/*
211 	 * .is_prepared is optional for clocks that can prepare
212 	 * fall back to software usage counter if it is missing
213 	 */
214 	if (!core->ops->is_prepared)
215 		return core->prepare_count;
216 
217 	if (!clk_pm_runtime_get(core)) {
218 		ret = core->ops->is_prepared(core->hw);
219 		clk_pm_runtime_put(core);
220 	}
221 
222 	return ret;
223 }
224 
clk_core_is_enabled(struct clk_core * core)225 static bool clk_core_is_enabled(struct clk_core *core)
226 {
227 	bool ret = false;
228 
229 	/*
230 	 * .is_enabled is only mandatory for clocks that gate
231 	 * fall back to software usage counter if .is_enabled is missing
232 	 */
233 	if (!core->ops->is_enabled)
234 		return core->enable_count;
235 
236 	/*
237 	 * Check if clock controller's device is runtime active before
238 	 * calling .is_enabled callback. If not, assume that clock is
239 	 * disabled, because we might be called from atomic context, from
240 	 * which pm_runtime_get() is not allowed.
241 	 * This function is called mainly from clk_disable_unused_subtree,
242 	 * which ensures proper runtime pm activation of controller before
243 	 * taking enable spinlock, but the below check is needed if one tries
244 	 * to call it from other places.
245 	 */
246 	if (core->rpm_enabled) {
247 		pm_runtime_get_noresume(core->dev);
248 		if (!pm_runtime_active(core->dev)) {
249 			ret = false;
250 			goto done;
251 		}
252 	}
253 
254 	/*
255 	 * This could be called with the enable lock held, or from atomic
256 	 * context. If the parent isn't enabled already, we can't do
257 	 * anything here. We can also assume this clock isn't enabled.
258 	 */
259 	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
260 		if (!clk_core_is_enabled(core->parent)) {
261 			ret = false;
262 			goto done;
263 		}
264 
265 	ret = core->ops->is_enabled(core->hw);
266 done:
267 	if (core->rpm_enabled)
268 		pm_runtime_put(core->dev);
269 
270 	return ret;
271 }
272 
273 /***    helper functions   ***/
274 
__clk_get_name(const struct clk * clk)275 const char *__clk_get_name(const struct clk *clk)
276 {
277 	return !clk ? NULL : clk->core->name;
278 }
279 EXPORT_SYMBOL_GPL(__clk_get_name);
280 
clk_hw_get_name(const struct clk_hw * hw)281 const char *clk_hw_get_name(const struct clk_hw *hw)
282 {
283 	return hw->core->name;
284 }
285 EXPORT_SYMBOL_GPL(clk_hw_get_name);
286 
__clk_get_hw(struct clk * clk)287 struct clk_hw *__clk_get_hw(struct clk *clk)
288 {
289 	return !clk ? NULL : clk->core->hw;
290 }
291 EXPORT_SYMBOL_GPL(__clk_get_hw);
292 
clk_hw_get_num_parents(const struct clk_hw * hw)293 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
294 {
295 	return hw->core->num_parents;
296 }
297 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
298 
clk_hw_get_parent(const struct clk_hw * hw)299 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
300 {
301 	return hw->core->parent ? hw->core->parent->hw : NULL;
302 }
303 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
304 
__clk_lookup_subtree(const char * name,struct clk_core * core)305 static struct clk_core *__clk_lookup_subtree(const char *name,
306 					     struct clk_core *core)
307 {
308 	struct clk_core *child;
309 	struct clk_core *ret;
310 
311 	if (!strcmp(core->name, name))
312 		return core;
313 
314 	hlist_for_each_entry(child, &core->children, child_node) {
315 		ret = __clk_lookup_subtree(name, child);
316 		if (ret)
317 			return ret;
318 	}
319 
320 	return NULL;
321 }
322 
clk_core_lookup(const char * name)323 static struct clk_core *clk_core_lookup(const char *name)
324 {
325 	struct clk_core *root_clk;
326 	struct clk_core *ret;
327 
328 	if (!name)
329 		return NULL;
330 
331 	/* search the 'proper' clk tree first */
332 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
333 		ret = __clk_lookup_subtree(name, root_clk);
334 		if (ret)
335 			return ret;
336 	}
337 
338 	/* if not found, then search the orphan tree */
339 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
340 		ret = __clk_lookup_subtree(name, root_clk);
341 		if (ret)
342 			return ret;
343 	}
344 
345 	return NULL;
346 }
347 
348 #ifdef CONFIG_OF
349 static int of_parse_clkspec(const struct device_node *np, int index,
350 			    const char *name, struct of_phandle_args *out_args);
351 static struct clk_hw *
352 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
353 #else
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)354 static inline int of_parse_clkspec(const struct device_node *np, int index,
355 				   const char *name,
356 				   struct of_phandle_args *out_args)
357 {
358 	return -ENOENT;
359 }
360 static inline struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)361 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
362 {
363 	return ERR_PTR(-ENOENT);
364 }
365 #endif
366 
367 /**
368  * clk_core_get - Find the clk_core parent of a clk
369  * @core: clk to find parent of
370  * @p_index: parent index to search for
371  *
372  * This is the preferred method for clk providers to find the parent of a
373  * clk when that parent is external to the clk controller. The parent_names
374  * array is indexed and treated as a local name matching a string in the device
375  * node's 'clock-names' property or as the 'con_id' matching the device's
376  * dev_name() in a clk_lookup. This allows clk providers to use their own
377  * namespace instead of looking for a globally unique parent string.
378  *
379  * For example the following DT snippet would allow a clock registered by the
380  * clock-controller@c001 that has a clk_init_data::parent_data array
381  * with 'xtal' in the 'name' member to find the clock provided by the
382  * clock-controller@f00abcd without needing to get the globally unique name of
383  * the xtal clk.
384  *
385  *      parent: clock-controller@f00abcd {
386  *              reg = <0xf00abcd 0xabcd>;
387  *              #clock-cells = <0>;
388  *      };
389  *
390  *      clock-controller@c001 {
391  *              reg = <0xc001 0xf00d>;
392  *              clocks = <&parent>;
393  *              clock-names = "xtal";
394  *              #clock-cells = <1>;
395  *      };
396  *
397  * Returns: -ENOENT when the provider can't be found or the clk doesn't
398  * exist in the provider or the name can't be found in the DT node or
399  * in a clkdev lookup. NULL when the provider knows about the clk but it
400  * isn't provided on this system.
401  * A valid clk_core pointer when the clk can be found in the provider.
402  */
clk_core_get(struct clk_core * core,u8 p_index)403 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
404 {
405 	const char *name = core->parents[p_index].fw_name;
406 	int index = core->parents[p_index].index;
407 	struct clk_hw *hw = ERR_PTR(-ENOENT);
408 	struct device *dev = core->dev;
409 	const char *dev_id = dev ? dev_name(dev) : NULL;
410 	struct device_node *np = core->of_node;
411 	struct of_phandle_args clkspec;
412 
413 	if (np && (name || index >= 0) &&
414 	    !of_parse_clkspec(np, index, name, &clkspec)) {
415 		hw = of_clk_get_hw_from_clkspec(&clkspec);
416 		of_node_put(clkspec.np);
417 	} else if (name) {
418 		/*
419 		 * If the DT search above couldn't find the provider fallback to
420 		 * looking up via clkdev based clk_lookups.
421 		 */
422 		hw = clk_find_hw(dev_id, name);
423 	}
424 
425 	if (IS_ERR(hw))
426 		return ERR_CAST(hw);
427 
428 	return hw->core;
429 }
430 
clk_core_fill_parent_index(struct clk_core * core,u8 index)431 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
432 {
433 	struct clk_parent_map *entry = &core->parents[index];
434 	struct clk_core *parent = ERR_PTR(-ENOENT);
435 
436 	if (entry->hw) {
437 		parent = entry->hw->core;
438 		/*
439 		 * We have a direct reference but it isn't registered yet?
440 		 * Orphan it and let clk_reparent() update the orphan status
441 		 * when the parent is registered.
442 		 */
443 		if (!parent)
444 			parent = ERR_PTR(-EPROBE_DEFER);
445 	} else {
446 		parent = clk_core_get(core, index);
447 		if (PTR_ERR(parent) == -ENOENT && entry->name)
448 			parent = clk_core_lookup(entry->name);
449 	}
450 
451 	/* Only cache it if it's not an error */
452 	if (!IS_ERR(parent))
453 		entry->core = parent;
454 }
455 
clk_core_get_parent_by_index(struct clk_core * core,u8 index)456 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
457 							 u8 index)
458 {
459 	if (!core || index >= core->num_parents || !core->parents)
460 		return NULL;
461 
462 	if (!core->parents[index].core)
463 		clk_core_fill_parent_index(core, index);
464 
465 	return core->parents[index].core;
466 }
467 
468 struct clk_hw *
clk_hw_get_parent_by_index(const struct clk_hw * hw,unsigned int index)469 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
470 {
471 	struct clk_core *parent;
472 
473 	parent = clk_core_get_parent_by_index(hw->core, index);
474 
475 	return !parent ? NULL : parent->hw;
476 }
477 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
478 
__clk_get_enable_count(struct clk * clk)479 unsigned int __clk_get_enable_count(struct clk *clk)
480 {
481 	return !clk ? 0 : clk->core->enable_count;
482 }
483 
clk_core_get_rate_nolock(struct clk_core * core)484 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
485 {
486 	if (!core)
487 		return 0;
488 
489 	if (!core->num_parents || core->parent)
490 		return core->rate;
491 
492 	/*
493 	 * Clk must have a parent because num_parents > 0 but the parent isn't
494 	 * known yet. Best to return 0 as the rate of this clk until we can
495 	 * properly recalc the rate based on the parent's rate.
496 	 */
497 	return 0;
498 }
499 
clk_hw_get_rate(const struct clk_hw * hw)500 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
501 {
502 	return clk_core_get_rate_nolock(hw->core);
503 }
504 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
505 
clk_core_get_accuracy_no_lock(struct clk_core * core)506 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
507 {
508 	if (!core)
509 		return 0;
510 
511 	return core->accuracy;
512 }
513 
clk_hw_get_flags(const struct clk_hw * hw)514 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
515 {
516 	return hw->core->flags;
517 }
518 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
519 
clk_hw_is_prepared(const struct clk_hw * hw)520 bool clk_hw_is_prepared(const struct clk_hw *hw)
521 {
522 	return clk_core_is_prepared(hw->core);
523 }
524 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
525 
clk_hw_rate_is_protected(const struct clk_hw * hw)526 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
527 {
528 	return clk_core_rate_is_protected(hw->core);
529 }
530 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
531 
clk_hw_is_enabled(const struct clk_hw * hw)532 bool clk_hw_is_enabled(const struct clk_hw *hw)
533 {
534 	return clk_core_is_enabled(hw->core);
535 }
536 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
537 
__clk_is_enabled(struct clk * clk)538 bool __clk_is_enabled(struct clk *clk)
539 {
540 	if (!clk)
541 		return false;
542 
543 	return clk_core_is_enabled(clk->core);
544 }
545 EXPORT_SYMBOL_GPL(__clk_is_enabled);
546 
mux_is_better_rate(unsigned long rate,unsigned long now,unsigned long best,unsigned long flags)547 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
548 			   unsigned long best, unsigned long flags)
549 {
550 	if (flags & CLK_MUX_ROUND_CLOSEST)
551 		return abs(now - rate) < abs(best - rate);
552 
553 	return now <= rate && now > best;
554 }
555 
clk_mux_determine_rate_flags(struct clk_hw * hw,struct clk_rate_request * req,unsigned long flags)556 int clk_mux_determine_rate_flags(struct clk_hw *hw,
557 				 struct clk_rate_request *req,
558 				 unsigned long flags)
559 {
560 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
561 	int i, num_parents, ret;
562 	unsigned long best = 0;
563 	struct clk_rate_request parent_req = *req;
564 
565 	/* if NO_REPARENT flag set, pass through to current parent */
566 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
567 		parent = core->parent;
568 		if (core->flags & CLK_SET_RATE_PARENT) {
569 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
570 						   &parent_req);
571 			if (ret)
572 				return ret;
573 
574 			best = parent_req.rate;
575 		} else if (parent) {
576 			best = clk_core_get_rate_nolock(parent);
577 		} else {
578 			best = clk_core_get_rate_nolock(core);
579 		}
580 
581 		goto out;
582 	}
583 
584 	/* find the parent that can provide the fastest rate <= rate */
585 	num_parents = core->num_parents;
586 	for (i = 0; i < num_parents; i++) {
587 		parent = clk_core_get_parent_by_index(core, i);
588 		if (!parent)
589 			continue;
590 
591 		if (core->flags & CLK_SET_RATE_PARENT) {
592 			parent_req = *req;
593 			ret = __clk_determine_rate(parent->hw, &parent_req);
594 			if (ret)
595 				continue;
596 		} else {
597 			parent_req.rate = clk_core_get_rate_nolock(parent);
598 		}
599 
600 		if (mux_is_better_rate(req->rate, parent_req.rate,
601 				       best, flags)) {
602 			best_parent = parent;
603 			best = parent_req.rate;
604 		}
605 	}
606 
607 	if (!best_parent)
608 		return -EINVAL;
609 
610 out:
611 	if (best_parent)
612 		req->best_parent_hw = best_parent->hw;
613 	req->best_parent_rate = best;
614 	req->rate = best;
615 
616 	return 0;
617 }
618 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
619 
__clk_lookup(const char * name)620 struct clk *__clk_lookup(const char *name)
621 {
622 	struct clk_core *core = clk_core_lookup(name);
623 
624 	return !core ? NULL : core->hw->clk;
625 }
626 
clk_core_get_boundaries(struct clk_core * core,unsigned long * min_rate,unsigned long * max_rate)627 static void clk_core_get_boundaries(struct clk_core *core,
628 				    unsigned long *min_rate,
629 				    unsigned long *max_rate)
630 {
631 	struct clk *clk_user;
632 
633 	lockdep_assert_held(&prepare_lock);
634 
635 	*min_rate = core->min_rate;
636 	*max_rate = core->max_rate;
637 
638 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
639 		*min_rate = max(*min_rate, clk_user->min_rate);
640 
641 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
642 		*max_rate = min(*max_rate, clk_user->max_rate);
643 }
644 
clk_core_check_boundaries(struct clk_core * core,unsigned long min_rate,unsigned long max_rate)645 static bool clk_core_check_boundaries(struct clk_core *core,
646 				      unsigned long min_rate,
647 				      unsigned long max_rate)
648 {
649 	struct clk *user;
650 
651 	lockdep_assert_held(&prepare_lock);
652 
653 	if (min_rate > core->max_rate || max_rate < core->min_rate)
654 		return false;
655 
656 	hlist_for_each_entry(user, &core->clks, clks_node)
657 		if (min_rate > user->max_rate || max_rate < user->min_rate)
658 			return false;
659 
660 	return true;
661 }
662 
clk_hw_set_rate_range(struct clk_hw * hw,unsigned long min_rate,unsigned long max_rate)663 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
664 			   unsigned long max_rate)
665 {
666 	hw->core->min_rate = min_rate;
667 	hw->core->max_rate = max_rate;
668 }
669 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
670 
671 /*
672  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
673  * @hw: mux type clk to determine rate on
674  * @req: rate request, also used to return preferred parent and frequencies
675  *
676  * Helper for finding best parent to provide a given frequency. This can be used
677  * directly as a determine_rate callback (e.g. for a mux), or from a more
678  * complex clock that may combine a mux with other operations.
679  *
680  * Returns: 0 on success, -EERROR value on error
681  */
__clk_mux_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)682 int __clk_mux_determine_rate(struct clk_hw *hw,
683 			     struct clk_rate_request *req)
684 {
685 	return clk_mux_determine_rate_flags(hw, req, 0);
686 }
687 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
688 
__clk_mux_determine_rate_closest(struct clk_hw * hw,struct clk_rate_request * req)689 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
690 				     struct clk_rate_request *req)
691 {
692 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
693 }
694 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
695 
696 /***        clk api        ***/
697 
clk_core_rate_unprotect(struct clk_core * core)698 static void clk_core_rate_unprotect(struct clk_core *core)
699 {
700 	lockdep_assert_held(&prepare_lock);
701 
702 	if (!core)
703 		return;
704 
705 	if (WARN(core->protect_count == 0,
706 	    "%s already unprotected\n", core->name))
707 		return;
708 
709 	if (--core->protect_count > 0)
710 		return;
711 
712 	clk_core_rate_unprotect(core->parent);
713 }
714 
clk_core_rate_nuke_protect(struct clk_core * core)715 static int clk_core_rate_nuke_protect(struct clk_core *core)
716 {
717 	int ret;
718 
719 	lockdep_assert_held(&prepare_lock);
720 
721 	if (!core)
722 		return -EINVAL;
723 
724 	if (core->protect_count == 0)
725 		return 0;
726 
727 	ret = core->protect_count;
728 	core->protect_count = 1;
729 	clk_core_rate_unprotect(core);
730 
731 	return ret;
732 }
733 
734 /**
735  * clk_rate_exclusive_put - release exclusivity over clock rate control
736  * @clk: the clk over which the exclusivity is released
737  *
738  * clk_rate_exclusive_put() completes a critical section during which a clock
739  * consumer cannot tolerate any other consumer making any operation on the
740  * clock which could result in a rate change or rate glitch. Exclusive clocks
741  * cannot have their rate changed, either directly or indirectly due to changes
742  * further up the parent chain of clocks. As a result, clocks up parent chain
743  * also get under exclusive control of the calling consumer.
744  *
745  * If exlusivity is claimed more than once on clock, even by the same consumer,
746  * the rate effectively gets locked as exclusivity can't be preempted.
747  *
748  * Calls to clk_rate_exclusive_put() must be balanced with calls to
749  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
750  * error status.
751  */
clk_rate_exclusive_put(struct clk * clk)752 void clk_rate_exclusive_put(struct clk *clk)
753 {
754 	if (!clk)
755 		return;
756 
757 	clk_prepare_lock();
758 
759 	/*
760 	 * if there is something wrong with this consumer protect count, stop
761 	 * here before messing with the provider
762 	 */
763 	if (WARN_ON(clk->exclusive_count <= 0))
764 		goto out;
765 
766 	clk_core_rate_unprotect(clk->core);
767 	clk->exclusive_count--;
768 out:
769 	clk_prepare_unlock();
770 }
771 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
772 
clk_core_rate_protect(struct clk_core * core)773 static void clk_core_rate_protect(struct clk_core *core)
774 {
775 	lockdep_assert_held(&prepare_lock);
776 
777 	if (!core)
778 		return;
779 
780 	if (core->protect_count == 0)
781 		clk_core_rate_protect(core->parent);
782 
783 	core->protect_count++;
784 }
785 
clk_core_rate_restore_protect(struct clk_core * core,int count)786 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
787 {
788 	lockdep_assert_held(&prepare_lock);
789 
790 	if (!core)
791 		return;
792 
793 	if (count == 0)
794 		return;
795 
796 	clk_core_rate_protect(core);
797 	core->protect_count = count;
798 }
799 
800 /**
801  * clk_rate_exclusive_get - get exclusivity over the clk rate control
802  * @clk: the clk over which the exclusity of rate control is requested
803  *
804  * clk_rate_exclusive_get() begins a critical section during which a clock
805  * consumer cannot tolerate any other consumer making any operation on the
806  * clock which could result in a rate change or rate glitch. Exclusive clocks
807  * cannot have their rate changed, either directly or indirectly due to changes
808  * further up the parent chain of clocks. As a result, clocks up parent chain
809  * also get under exclusive control of the calling consumer.
810  *
811  * If exlusivity is claimed more than once on clock, even by the same consumer,
812  * the rate effectively gets locked as exclusivity can't be preempted.
813  *
814  * Calls to clk_rate_exclusive_get() should be balanced with calls to
815  * clk_rate_exclusive_put(). Calls to this function may sleep.
816  * Returns 0 on success, -EERROR otherwise
817  */
clk_rate_exclusive_get(struct clk * clk)818 int clk_rate_exclusive_get(struct clk *clk)
819 {
820 	if (!clk)
821 		return 0;
822 
823 	clk_prepare_lock();
824 	clk_core_rate_protect(clk->core);
825 	clk->exclusive_count++;
826 	clk_prepare_unlock();
827 
828 	return 0;
829 }
830 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
831 
clk_core_unprepare(struct clk_core * core)832 static void clk_core_unprepare(struct clk_core *core)
833 {
834 	lockdep_assert_held(&prepare_lock);
835 
836 	if (!core)
837 		return;
838 
839 	if (WARN(core->prepare_count == 0,
840 	    "%s already unprepared\n", core->name))
841 		return;
842 
843 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
844 	    "Unpreparing critical %s\n", core->name))
845 		return;
846 
847 	if (core->flags & CLK_SET_RATE_GATE)
848 		clk_core_rate_unprotect(core);
849 
850 	if (--core->prepare_count > 0)
851 		return;
852 
853 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
854 
855 	trace_clk_unprepare(core);
856 
857 	if (core->ops->unprepare)
858 		core->ops->unprepare(core->hw);
859 
860 	trace_clk_unprepare_complete(core);
861 	clk_core_unprepare(core->parent);
862 	clk_pm_runtime_put(core);
863 }
864 
clk_core_unprepare_lock(struct clk_core * core)865 static void clk_core_unprepare_lock(struct clk_core *core)
866 {
867 	clk_prepare_lock();
868 	clk_core_unprepare(core);
869 	clk_prepare_unlock();
870 }
871 
872 /**
873  * clk_unprepare - undo preparation of a clock source
874  * @clk: the clk being unprepared
875  *
876  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
877  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
878  * if the operation may sleep.  One example is a clk which is accessed over
879  * I2c.  In the complex case a clk gate operation may require a fast and a slow
880  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
881  * exclusive.  In fact clk_disable must be called before clk_unprepare.
882  */
clk_unprepare(struct clk * clk)883 void clk_unprepare(struct clk *clk)
884 {
885 	if (IS_ERR_OR_NULL(clk))
886 		return;
887 
888 	clk_core_unprepare_lock(clk->core);
889 }
890 EXPORT_SYMBOL_GPL(clk_unprepare);
891 
clk_core_prepare(struct clk_core * core)892 static int clk_core_prepare(struct clk_core *core)
893 {
894 	int ret = 0;
895 
896 	lockdep_assert_held(&prepare_lock);
897 
898 	if (!core)
899 		return 0;
900 
901 	if (core->prepare_count == 0) {
902 		ret = clk_pm_runtime_get(core);
903 		if (ret)
904 			return ret;
905 
906 		ret = clk_core_prepare(core->parent);
907 		if (ret)
908 			goto runtime_put;
909 
910 		trace_clk_prepare(core);
911 
912 		if (core->ops->prepare)
913 			ret = core->ops->prepare(core->hw);
914 
915 		trace_clk_prepare_complete(core);
916 
917 		if (ret)
918 			goto unprepare;
919 	}
920 
921 	core->prepare_count++;
922 
923 	/*
924 	 * CLK_SET_RATE_GATE is a special case of clock protection
925 	 * Instead of a consumer claiming exclusive rate control, it is
926 	 * actually the provider which prevents any consumer from making any
927 	 * operation which could result in a rate change or rate glitch while
928 	 * the clock is prepared.
929 	 */
930 	if (core->flags & CLK_SET_RATE_GATE)
931 		clk_core_rate_protect(core);
932 
933 	return 0;
934 unprepare:
935 	clk_core_unprepare(core->parent);
936 runtime_put:
937 	clk_pm_runtime_put(core);
938 	return ret;
939 }
940 
clk_core_prepare_lock(struct clk_core * core)941 static int clk_core_prepare_lock(struct clk_core *core)
942 {
943 	int ret;
944 
945 	clk_prepare_lock();
946 	ret = clk_core_prepare(core);
947 	clk_prepare_unlock();
948 
949 	return ret;
950 }
951 
952 /**
953  * clk_prepare - prepare a clock source
954  * @clk: the clk being prepared
955  *
956  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
957  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
958  * operation may sleep.  One example is a clk which is accessed over I2c.  In
959  * the complex case a clk ungate operation may require a fast and a slow part.
960  * It is this reason that clk_prepare and clk_enable are not mutually
961  * exclusive.  In fact clk_prepare must be called before clk_enable.
962  * Returns 0 on success, -EERROR otherwise.
963  */
clk_prepare(struct clk * clk)964 int clk_prepare(struct clk *clk)
965 {
966 	if (!clk)
967 		return 0;
968 
969 	return clk_core_prepare_lock(clk->core);
970 }
971 EXPORT_SYMBOL_GPL(clk_prepare);
972 
clk_core_disable(struct clk_core * core)973 static void clk_core_disable(struct clk_core *core)
974 {
975 	lockdep_assert_held(&enable_lock);
976 
977 	if (!core)
978 		return;
979 
980 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
981 		return;
982 
983 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
984 	    "Disabling critical %s\n", core->name))
985 		return;
986 
987 	if (--core->enable_count > 0)
988 		return;
989 
990 	trace_clk_disable_rcuidle(core);
991 
992 	if (core->ops->disable)
993 		core->ops->disable(core->hw);
994 
995 	trace_clk_disable_complete_rcuidle(core);
996 
997 	clk_core_disable(core->parent);
998 }
999 
clk_core_disable_lock(struct clk_core * core)1000 static void clk_core_disable_lock(struct clk_core *core)
1001 {
1002 	unsigned long flags;
1003 
1004 	flags = clk_enable_lock();
1005 	clk_core_disable(core);
1006 	clk_enable_unlock(flags);
1007 }
1008 
1009 /**
1010  * clk_disable - gate a clock
1011  * @clk: the clk being gated
1012  *
1013  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1014  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1015  * clk if the operation is fast and will never sleep.  One example is a
1016  * SoC-internal clk which is controlled via simple register writes.  In the
1017  * complex case a clk gate operation may require a fast and a slow part.  It is
1018  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1019  * In fact clk_disable must be called before clk_unprepare.
1020  */
clk_disable(struct clk * clk)1021 void clk_disable(struct clk *clk)
1022 {
1023 	if (IS_ERR_OR_NULL(clk))
1024 		return;
1025 
1026 	clk_core_disable_lock(clk->core);
1027 }
1028 EXPORT_SYMBOL_GPL(clk_disable);
1029 
clk_core_enable(struct clk_core * core)1030 static int clk_core_enable(struct clk_core *core)
1031 {
1032 	int ret = 0;
1033 
1034 	lockdep_assert_held(&enable_lock);
1035 
1036 	if (!core)
1037 		return 0;
1038 
1039 	if (WARN(core->prepare_count == 0,
1040 	    "Enabling unprepared %s\n", core->name))
1041 		return -ESHUTDOWN;
1042 
1043 	if (core->enable_count == 0) {
1044 		ret = clk_core_enable(core->parent);
1045 
1046 		if (ret)
1047 			return ret;
1048 
1049 		trace_clk_enable_rcuidle(core);
1050 
1051 		if (core->ops->enable)
1052 			ret = core->ops->enable(core->hw);
1053 
1054 		trace_clk_enable_complete_rcuidle(core);
1055 
1056 		if (ret) {
1057 			clk_core_disable(core->parent);
1058 			return ret;
1059 		}
1060 	}
1061 
1062 	core->enable_count++;
1063 	return 0;
1064 }
1065 
clk_core_enable_lock(struct clk_core * core)1066 static int clk_core_enable_lock(struct clk_core *core)
1067 {
1068 	unsigned long flags;
1069 	int ret;
1070 
1071 	flags = clk_enable_lock();
1072 	ret = clk_core_enable(core);
1073 	clk_enable_unlock(flags);
1074 
1075 	return ret;
1076 }
1077 
1078 /**
1079  * clk_gate_restore_context - restore context for poweroff
1080  * @hw: the clk_hw pointer of clock whose state is to be restored
1081  *
1082  * The clock gate restore context function enables or disables
1083  * the gate clocks based on the enable_count. This is done in cases
1084  * where the clock context is lost and based on the enable_count
1085  * the clock either needs to be enabled/disabled. This
1086  * helps restore the state of gate clocks.
1087  */
clk_gate_restore_context(struct clk_hw * hw)1088 void clk_gate_restore_context(struct clk_hw *hw)
1089 {
1090 	struct clk_core *core = hw->core;
1091 
1092 	if (core->enable_count)
1093 		core->ops->enable(hw);
1094 	else
1095 		core->ops->disable(hw);
1096 }
1097 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1098 
clk_core_save_context(struct clk_core * core)1099 static int clk_core_save_context(struct clk_core *core)
1100 {
1101 	struct clk_core *child;
1102 	int ret = 0;
1103 
1104 	hlist_for_each_entry(child, &core->children, child_node) {
1105 		ret = clk_core_save_context(child);
1106 		if (ret < 0)
1107 			return ret;
1108 	}
1109 
1110 	if (core->ops && core->ops->save_context)
1111 		ret = core->ops->save_context(core->hw);
1112 
1113 	return ret;
1114 }
1115 
clk_core_restore_context(struct clk_core * core)1116 static void clk_core_restore_context(struct clk_core *core)
1117 {
1118 	struct clk_core *child;
1119 
1120 	if (core->ops && core->ops->restore_context)
1121 		core->ops->restore_context(core->hw);
1122 
1123 	hlist_for_each_entry(child, &core->children, child_node)
1124 		clk_core_restore_context(child);
1125 }
1126 
1127 /**
1128  * clk_save_context - save clock context for poweroff
1129  *
1130  * Saves the context of the clock register for powerstates in which the
1131  * contents of the registers will be lost. Occurs deep within the suspend
1132  * code.  Returns 0 on success.
1133  */
clk_save_context(void)1134 int clk_save_context(void)
1135 {
1136 	struct clk_core *clk;
1137 	int ret;
1138 
1139 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1140 		ret = clk_core_save_context(clk);
1141 		if (ret < 0)
1142 			return ret;
1143 	}
1144 
1145 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1146 		ret = clk_core_save_context(clk);
1147 		if (ret < 0)
1148 			return ret;
1149 	}
1150 
1151 	return 0;
1152 }
1153 EXPORT_SYMBOL_GPL(clk_save_context);
1154 
1155 /**
1156  * clk_restore_context - restore clock context after poweroff
1157  *
1158  * Restore the saved clock context upon resume.
1159  *
1160  */
clk_restore_context(void)1161 void clk_restore_context(void)
1162 {
1163 	struct clk_core *core;
1164 
1165 	hlist_for_each_entry(core, &clk_root_list, child_node)
1166 		clk_core_restore_context(core);
1167 
1168 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1169 		clk_core_restore_context(core);
1170 }
1171 EXPORT_SYMBOL_GPL(clk_restore_context);
1172 
1173 /**
1174  * clk_enable - ungate a clock
1175  * @clk: the clk being ungated
1176  *
1177  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1178  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1179  * if the operation will never sleep.  One example is a SoC-internal clk which
1180  * is controlled via simple register writes.  In the complex case a clk ungate
1181  * operation may require a fast and a slow part.  It is this reason that
1182  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1183  * must be called before clk_enable.  Returns 0 on success, -EERROR
1184  * otherwise.
1185  */
clk_enable(struct clk * clk)1186 int clk_enable(struct clk *clk)
1187 {
1188 	if (!clk)
1189 		return 0;
1190 
1191 	return clk_core_enable_lock(clk->core);
1192 }
1193 EXPORT_SYMBOL_GPL(clk_enable);
1194 
clk_core_prepare_enable(struct clk_core * core)1195 static int clk_core_prepare_enable(struct clk_core *core)
1196 {
1197 	int ret;
1198 
1199 	ret = clk_core_prepare_lock(core);
1200 	if (ret)
1201 		return ret;
1202 
1203 	ret = clk_core_enable_lock(core);
1204 	if (ret)
1205 		clk_core_unprepare_lock(core);
1206 
1207 	return ret;
1208 }
1209 
clk_core_disable_unprepare(struct clk_core * core)1210 static void clk_core_disable_unprepare(struct clk_core *core)
1211 {
1212 	clk_core_disable_lock(core);
1213 	clk_core_unprepare_lock(core);
1214 }
1215 
clk_unprepare_unused_subtree(struct clk_core * core)1216 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1217 {
1218 	struct clk_core *child;
1219 
1220 	lockdep_assert_held(&prepare_lock);
1221 
1222 	hlist_for_each_entry(child, &core->children, child_node)
1223 		clk_unprepare_unused_subtree(child);
1224 
1225 	if (core->prepare_count)
1226 		return;
1227 
1228 	if (core->flags & CLK_IGNORE_UNUSED)
1229 		return;
1230 
1231 	if (clk_pm_runtime_get(core))
1232 		return;
1233 
1234 	if (clk_core_is_prepared(core)) {
1235 		trace_clk_unprepare(core);
1236 		if (core->ops->unprepare_unused)
1237 			core->ops->unprepare_unused(core->hw);
1238 		else if (core->ops->unprepare)
1239 			core->ops->unprepare(core->hw);
1240 		trace_clk_unprepare_complete(core);
1241 	}
1242 
1243 	clk_pm_runtime_put(core);
1244 }
1245 
clk_disable_unused_subtree(struct clk_core * core)1246 static void __init clk_disable_unused_subtree(struct clk_core *core)
1247 {
1248 	struct clk_core *child;
1249 	unsigned long flags;
1250 
1251 	lockdep_assert_held(&prepare_lock);
1252 
1253 	hlist_for_each_entry(child, &core->children, child_node)
1254 		clk_disable_unused_subtree(child);
1255 
1256 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1257 		clk_core_prepare_enable(core->parent);
1258 
1259 	if (clk_pm_runtime_get(core))
1260 		goto unprepare_out;
1261 
1262 	flags = clk_enable_lock();
1263 
1264 	if (core->enable_count)
1265 		goto unlock_out;
1266 
1267 	if (core->flags & CLK_IGNORE_UNUSED)
1268 		goto unlock_out;
1269 
1270 	/*
1271 	 * some gate clocks have special needs during the disable-unused
1272 	 * sequence.  call .disable_unused if available, otherwise fall
1273 	 * back to .disable
1274 	 */
1275 	if (clk_core_is_enabled(core)) {
1276 		trace_clk_disable(core);
1277 		if (core->ops->disable_unused)
1278 			core->ops->disable_unused(core->hw);
1279 		else if (core->ops->disable)
1280 			core->ops->disable(core->hw);
1281 		trace_clk_disable_complete(core);
1282 	}
1283 
1284 unlock_out:
1285 	clk_enable_unlock(flags);
1286 	clk_pm_runtime_put(core);
1287 unprepare_out:
1288 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1289 		clk_core_disable_unprepare(core->parent);
1290 }
1291 
1292 static bool clk_ignore_unused __initdata;
clk_ignore_unused_setup(char * __unused)1293 static int __init clk_ignore_unused_setup(char *__unused)
1294 {
1295 	clk_ignore_unused = true;
1296 	return 1;
1297 }
1298 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1299 
clk_disable_unused(void)1300 static int __init clk_disable_unused(void)
1301 {
1302 	struct clk_core *core;
1303 
1304 	if (clk_ignore_unused) {
1305 		pr_warn("clk: Not disabling unused clocks\n");
1306 		return 0;
1307 	}
1308 
1309 	clk_prepare_lock();
1310 
1311 	hlist_for_each_entry(core, &clk_root_list, child_node)
1312 		clk_disable_unused_subtree(core);
1313 
1314 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1315 		clk_disable_unused_subtree(core);
1316 
1317 	hlist_for_each_entry(core, &clk_root_list, child_node)
1318 		clk_unprepare_unused_subtree(core);
1319 
1320 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1321 		clk_unprepare_unused_subtree(core);
1322 
1323 	clk_prepare_unlock();
1324 
1325 	return 0;
1326 }
1327 late_initcall_sync(clk_disable_unused);
1328 
clk_core_determine_round_nolock(struct clk_core * core,struct clk_rate_request * req)1329 static int clk_core_determine_round_nolock(struct clk_core *core,
1330 					   struct clk_rate_request *req)
1331 {
1332 	long rate;
1333 
1334 	lockdep_assert_held(&prepare_lock);
1335 
1336 	if (!core)
1337 		return 0;
1338 
1339 	/*
1340 	 * At this point, core protection will be disabled if
1341 	 * - if the provider is not protected at all
1342 	 * - if the calling consumer is the only one which has exclusivity
1343 	 *   over the provider
1344 	 */
1345 	if (clk_core_rate_is_protected(core)) {
1346 		req->rate = core->rate;
1347 	} else if (core->ops->determine_rate) {
1348 		return core->ops->determine_rate(core->hw, req);
1349 	} else if (core->ops->round_rate) {
1350 		rate = core->ops->round_rate(core->hw, req->rate,
1351 					     &req->best_parent_rate);
1352 		if (rate < 0)
1353 			return rate;
1354 
1355 		req->rate = rate;
1356 	} else {
1357 		return -EINVAL;
1358 	}
1359 
1360 	return 0;
1361 }
1362 
clk_core_init_rate_req(struct clk_core * const core,struct clk_rate_request * req)1363 static void clk_core_init_rate_req(struct clk_core * const core,
1364 				   struct clk_rate_request *req)
1365 {
1366 	struct clk_core *parent;
1367 
1368 	if (WARN_ON(!core || !req))
1369 		return;
1370 
1371 	parent = core->parent;
1372 	if (parent) {
1373 		req->best_parent_hw = parent->hw;
1374 		req->best_parent_rate = parent->rate;
1375 	} else {
1376 		req->best_parent_hw = NULL;
1377 		req->best_parent_rate = 0;
1378 	}
1379 }
1380 
clk_core_can_round(struct clk_core * const core)1381 static bool clk_core_can_round(struct clk_core * const core)
1382 {
1383 	return core->ops->determine_rate || core->ops->round_rate;
1384 }
1385 
clk_core_round_rate_nolock(struct clk_core * core,struct clk_rate_request * req)1386 static int clk_core_round_rate_nolock(struct clk_core *core,
1387 				      struct clk_rate_request *req)
1388 {
1389 	lockdep_assert_held(&prepare_lock);
1390 
1391 	if (!core) {
1392 		req->rate = 0;
1393 		return 0;
1394 	}
1395 
1396 	clk_core_init_rate_req(core, req);
1397 
1398 	if (clk_core_can_round(core))
1399 		return clk_core_determine_round_nolock(core, req);
1400 	else if (core->flags & CLK_SET_RATE_PARENT)
1401 		return clk_core_round_rate_nolock(core->parent, req);
1402 
1403 	req->rate = core->rate;
1404 	return 0;
1405 }
1406 
1407 /**
1408  * __clk_determine_rate - get the closest rate actually supported by a clock
1409  * @hw: determine the rate of this clock
1410  * @req: target rate request
1411  *
1412  * Useful for clk_ops such as .set_rate and .determine_rate.
1413  */
__clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)1414 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1415 {
1416 	if (!hw) {
1417 		req->rate = 0;
1418 		return 0;
1419 	}
1420 
1421 	return clk_core_round_rate_nolock(hw->core, req);
1422 }
1423 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1424 
1425 /**
1426  * clk_hw_round_rate() - round the given rate for a hw clk
1427  * @hw: the hw clk for which we are rounding a rate
1428  * @rate: the rate which is to be rounded
1429  *
1430  * Takes in a rate as input and rounds it to a rate that the clk can actually
1431  * use.
1432  *
1433  * Context: prepare_lock must be held.
1434  *          For clk providers to call from within clk_ops such as .round_rate,
1435  *          .determine_rate.
1436  *
1437  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1438  *         else returns the parent rate.
1439  */
clk_hw_round_rate(struct clk_hw * hw,unsigned long rate)1440 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1441 {
1442 	int ret;
1443 	struct clk_rate_request req;
1444 
1445 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1446 	req.rate = rate;
1447 
1448 	ret = clk_core_round_rate_nolock(hw->core, &req);
1449 	if (ret)
1450 		return 0;
1451 
1452 	return req.rate;
1453 }
1454 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1455 
1456 /**
1457  * clk_round_rate - round the given rate for a clk
1458  * @clk: the clk for which we are rounding a rate
1459  * @rate: the rate which is to be rounded
1460  *
1461  * Takes in a rate as input and rounds it to a rate that the clk can actually
1462  * use which is then returned.  If clk doesn't support round_rate operation
1463  * then the parent rate is returned.
1464  */
clk_round_rate(struct clk * clk,unsigned long rate)1465 long clk_round_rate(struct clk *clk, unsigned long rate)
1466 {
1467 	struct clk_rate_request req;
1468 	int ret;
1469 
1470 	if (!clk)
1471 		return 0;
1472 
1473 	clk_prepare_lock();
1474 
1475 	if (clk->exclusive_count)
1476 		clk_core_rate_unprotect(clk->core);
1477 
1478 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1479 	req.rate = rate;
1480 
1481 	ret = clk_core_round_rate_nolock(clk->core, &req);
1482 
1483 	if (clk->exclusive_count)
1484 		clk_core_rate_protect(clk->core);
1485 
1486 	clk_prepare_unlock();
1487 
1488 	if (ret)
1489 		return ret;
1490 
1491 	return req.rate;
1492 }
1493 EXPORT_SYMBOL_GPL(clk_round_rate);
1494 
1495 /**
1496  * __clk_notify - call clk notifier chain
1497  * @core: clk that is changing rate
1498  * @msg: clk notifier type (see include/linux/clk.h)
1499  * @old_rate: old clk rate
1500  * @new_rate: new clk rate
1501  *
1502  * Triggers a notifier call chain on the clk rate-change notification
1503  * for 'clk'.  Passes a pointer to the struct clk and the previous
1504  * and current rates to the notifier callback.  Intended to be called by
1505  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1506  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1507  * a driver returns that.
1508  */
__clk_notify(struct clk_core * core,unsigned long msg,unsigned long old_rate,unsigned long new_rate)1509 static int __clk_notify(struct clk_core *core, unsigned long msg,
1510 		unsigned long old_rate, unsigned long new_rate)
1511 {
1512 	struct clk_notifier *cn;
1513 	struct clk_notifier_data cnd;
1514 	int ret = NOTIFY_DONE;
1515 
1516 	cnd.old_rate = old_rate;
1517 	cnd.new_rate = new_rate;
1518 
1519 	list_for_each_entry(cn, &clk_notifier_list, node) {
1520 		if (cn->clk->core == core) {
1521 			cnd.clk = cn->clk;
1522 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1523 					&cnd);
1524 			if (ret & NOTIFY_STOP_MASK)
1525 				return ret;
1526 		}
1527 	}
1528 
1529 	return ret;
1530 }
1531 
1532 /**
1533  * __clk_recalc_accuracies
1534  * @core: first clk in the subtree
1535  *
1536  * Walks the subtree of clks starting with clk and recalculates accuracies as
1537  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1538  * callback then it is assumed that the clock will take on the accuracy of its
1539  * parent.
1540  */
__clk_recalc_accuracies(struct clk_core * core)1541 static void __clk_recalc_accuracies(struct clk_core *core)
1542 {
1543 	unsigned long parent_accuracy = 0;
1544 	struct clk_core *child;
1545 
1546 	lockdep_assert_held(&prepare_lock);
1547 
1548 	if (core->parent)
1549 		parent_accuracy = core->parent->accuracy;
1550 
1551 	if (core->ops->recalc_accuracy)
1552 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1553 							  parent_accuracy);
1554 	else
1555 		core->accuracy = parent_accuracy;
1556 
1557 	hlist_for_each_entry(child, &core->children, child_node)
1558 		__clk_recalc_accuracies(child);
1559 }
1560 
clk_core_get_accuracy_recalc(struct clk_core * core)1561 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1562 {
1563 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1564 		__clk_recalc_accuracies(core);
1565 
1566 	return clk_core_get_accuracy_no_lock(core);
1567 }
1568 
1569 /**
1570  * clk_get_accuracy - return the accuracy of clk
1571  * @clk: the clk whose accuracy is being returned
1572  *
1573  * Simply returns the cached accuracy of the clk, unless
1574  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1575  * issued.
1576  * If clk is NULL then returns 0.
1577  */
clk_get_accuracy(struct clk * clk)1578 long clk_get_accuracy(struct clk *clk)
1579 {
1580 	long accuracy;
1581 
1582 	if (!clk)
1583 		return 0;
1584 
1585 	clk_prepare_lock();
1586 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1587 	clk_prepare_unlock();
1588 
1589 	return accuracy;
1590 }
1591 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1592 
clk_recalc(struct clk_core * core,unsigned long parent_rate)1593 static unsigned long clk_recalc(struct clk_core *core,
1594 				unsigned long parent_rate)
1595 {
1596 	unsigned long rate = parent_rate;
1597 
1598 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1599 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1600 		clk_pm_runtime_put(core);
1601 	}
1602 	return rate;
1603 }
1604 
1605 /**
1606  * __clk_recalc_rates
1607  * @core: first clk in the subtree
1608  * @msg: notification type (see include/linux/clk.h)
1609  *
1610  * Walks the subtree of clks starting with clk and recalculates rates as it
1611  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1612  * it is assumed that the clock will take on the rate of its parent.
1613  *
1614  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1615  * if necessary.
1616  */
__clk_recalc_rates(struct clk_core * core,unsigned long msg)1617 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1618 {
1619 	unsigned long old_rate;
1620 	unsigned long parent_rate = 0;
1621 	struct clk_core *child;
1622 
1623 	lockdep_assert_held(&prepare_lock);
1624 
1625 	old_rate = core->rate;
1626 
1627 	if (core->parent)
1628 		parent_rate = core->parent->rate;
1629 
1630 	core->rate = clk_recalc(core, parent_rate);
1631 
1632 	/*
1633 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1634 	 * & ABORT_RATE_CHANGE notifiers
1635 	 */
1636 	if (core->notifier_count && msg)
1637 		__clk_notify(core, msg, old_rate, core->rate);
1638 
1639 	hlist_for_each_entry(child, &core->children, child_node)
1640 		__clk_recalc_rates(child, msg);
1641 }
1642 
clk_core_get_rate_recalc(struct clk_core * core)1643 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1644 {
1645 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1646 		__clk_recalc_rates(core, 0);
1647 
1648 	return clk_core_get_rate_nolock(core);
1649 }
1650 
1651 /**
1652  * clk_get_rate - return the rate of clk
1653  * @clk: the clk whose rate is being returned
1654  *
1655  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1656  * is set, which means a recalc_rate will be issued.
1657  * If clk is NULL then returns 0.
1658  */
clk_get_rate(struct clk * clk)1659 unsigned long clk_get_rate(struct clk *clk)
1660 {
1661 	unsigned long rate;
1662 
1663 	if (!clk)
1664 		return 0;
1665 
1666 	clk_prepare_lock();
1667 	rate = clk_core_get_rate_recalc(clk->core);
1668 	clk_prepare_unlock();
1669 
1670 	return rate;
1671 }
1672 EXPORT_SYMBOL_GPL(clk_get_rate);
1673 
clk_fetch_parent_index(struct clk_core * core,struct clk_core * parent)1674 static int clk_fetch_parent_index(struct clk_core *core,
1675 				  struct clk_core *parent)
1676 {
1677 	int i;
1678 
1679 	if (!parent)
1680 		return -EINVAL;
1681 
1682 	for (i = 0; i < core->num_parents; i++) {
1683 		/* Found it first try! */
1684 		if (core->parents[i].core == parent)
1685 			return i;
1686 
1687 		/* Something else is here, so keep looking */
1688 		if (core->parents[i].core)
1689 			continue;
1690 
1691 		/* Maybe core hasn't been cached but the hw is all we know? */
1692 		if (core->parents[i].hw) {
1693 			if (core->parents[i].hw == parent->hw)
1694 				break;
1695 
1696 			/* Didn't match, but we're expecting a clk_hw */
1697 			continue;
1698 		}
1699 
1700 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1701 		if (parent == clk_core_get(core, i))
1702 			break;
1703 
1704 		/* Fallback to comparing globally unique names */
1705 		if (core->parents[i].name &&
1706 		    !strcmp(parent->name, core->parents[i].name))
1707 			break;
1708 	}
1709 
1710 	if (i == core->num_parents)
1711 		return -EINVAL;
1712 
1713 	core->parents[i].core = parent;
1714 	return i;
1715 }
1716 
1717 /**
1718  * clk_hw_get_parent_index - return the index of the parent clock
1719  * @hw: clk_hw associated with the clk being consumed
1720  *
1721  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1722  * clock does not have a current parent.
1723  */
clk_hw_get_parent_index(struct clk_hw * hw)1724 int clk_hw_get_parent_index(struct clk_hw *hw)
1725 {
1726 	struct clk_hw *parent = clk_hw_get_parent(hw);
1727 
1728 	if (WARN_ON(parent == NULL))
1729 		return -EINVAL;
1730 
1731 	return clk_fetch_parent_index(hw->core, parent->core);
1732 }
1733 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1734 
1735 /*
1736  * Update the orphan status of @core and all its children.
1737  */
clk_core_update_orphan_status(struct clk_core * core,bool is_orphan)1738 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1739 {
1740 	struct clk_core *child;
1741 
1742 	core->orphan = is_orphan;
1743 
1744 	hlist_for_each_entry(child, &core->children, child_node)
1745 		clk_core_update_orphan_status(child, is_orphan);
1746 }
1747 
clk_reparent(struct clk_core * core,struct clk_core * new_parent)1748 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1749 {
1750 	bool was_orphan = core->orphan;
1751 
1752 	hlist_del(&core->child_node);
1753 
1754 	if (new_parent) {
1755 		bool becomes_orphan = new_parent->orphan;
1756 
1757 		/* avoid duplicate POST_RATE_CHANGE notifications */
1758 		if (new_parent->new_child == core)
1759 			new_parent->new_child = NULL;
1760 
1761 		hlist_add_head(&core->child_node, &new_parent->children);
1762 
1763 		if (was_orphan != becomes_orphan)
1764 			clk_core_update_orphan_status(core, becomes_orphan);
1765 	} else {
1766 		hlist_add_head(&core->child_node, &clk_orphan_list);
1767 		if (!was_orphan)
1768 			clk_core_update_orphan_status(core, true);
1769 	}
1770 
1771 	core->parent = new_parent;
1772 }
1773 
__clk_set_parent_before(struct clk_core * core,struct clk_core * parent)1774 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1775 					   struct clk_core *parent)
1776 {
1777 	unsigned long flags;
1778 	struct clk_core *old_parent = core->parent;
1779 
1780 	/*
1781 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1782 	 *
1783 	 * 2. Migrate prepare state between parents and prevent race with
1784 	 * clk_enable().
1785 	 *
1786 	 * If the clock is not prepared, then a race with
1787 	 * clk_enable/disable() is impossible since we already have the
1788 	 * prepare lock (future calls to clk_enable() need to be preceded by
1789 	 * a clk_prepare()).
1790 	 *
1791 	 * If the clock is prepared, migrate the prepared state to the new
1792 	 * parent and also protect against a race with clk_enable() by
1793 	 * forcing the clock and the new parent on.  This ensures that all
1794 	 * future calls to clk_enable() are practically NOPs with respect to
1795 	 * hardware and software states.
1796 	 *
1797 	 * See also: Comment for clk_set_parent() below.
1798 	 */
1799 
1800 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1801 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1802 		clk_core_prepare_enable(old_parent);
1803 		clk_core_prepare_enable(parent);
1804 	}
1805 
1806 	/* migrate prepare count if > 0 */
1807 	if (core->prepare_count) {
1808 		clk_core_prepare_enable(parent);
1809 		clk_core_enable_lock(core);
1810 	}
1811 
1812 	/* update the clk tree topology */
1813 	flags = clk_enable_lock();
1814 	clk_reparent(core, parent);
1815 	clk_enable_unlock(flags);
1816 
1817 	return old_parent;
1818 }
1819 
__clk_set_parent_after(struct clk_core * core,struct clk_core * parent,struct clk_core * old_parent)1820 static void __clk_set_parent_after(struct clk_core *core,
1821 				   struct clk_core *parent,
1822 				   struct clk_core *old_parent)
1823 {
1824 	/*
1825 	 * Finish the migration of prepare state and undo the changes done
1826 	 * for preventing a race with clk_enable().
1827 	 */
1828 	if (core->prepare_count) {
1829 		clk_core_disable_lock(core);
1830 		clk_core_disable_unprepare(old_parent);
1831 	}
1832 
1833 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1834 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1835 		clk_core_disable_unprepare(parent);
1836 		clk_core_disable_unprepare(old_parent);
1837 	}
1838 }
1839 
__clk_set_parent(struct clk_core * core,struct clk_core * parent,u8 p_index)1840 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1841 			    u8 p_index)
1842 {
1843 	unsigned long flags;
1844 	int ret = 0;
1845 	struct clk_core *old_parent;
1846 
1847 	old_parent = __clk_set_parent_before(core, parent);
1848 
1849 	trace_clk_set_parent(core, parent);
1850 
1851 	/* change clock input source */
1852 	if (parent && core->ops->set_parent)
1853 		ret = core->ops->set_parent(core->hw, p_index);
1854 
1855 	trace_clk_set_parent_complete(core, parent);
1856 
1857 	if (ret) {
1858 		flags = clk_enable_lock();
1859 		clk_reparent(core, old_parent);
1860 		clk_enable_unlock(flags);
1861 		__clk_set_parent_after(core, old_parent, parent);
1862 
1863 		return ret;
1864 	}
1865 
1866 	__clk_set_parent_after(core, parent, old_parent);
1867 
1868 	return 0;
1869 }
1870 
1871 /**
1872  * __clk_speculate_rates
1873  * @core: first clk in the subtree
1874  * @parent_rate: the "future" rate of clk's parent
1875  *
1876  * Walks the subtree of clks starting with clk, speculating rates as it
1877  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1878  *
1879  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1880  * pre-rate change notifications and returns early if no clks in the
1881  * subtree have subscribed to the notifications.  Note that if a clk does not
1882  * implement the .recalc_rate callback then it is assumed that the clock will
1883  * take on the rate of its parent.
1884  */
__clk_speculate_rates(struct clk_core * core,unsigned long parent_rate)1885 static int __clk_speculate_rates(struct clk_core *core,
1886 				 unsigned long parent_rate)
1887 {
1888 	struct clk_core *child;
1889 	unsigned long new_rate;
1890 	int ret = NOTIFY_DONE;
1891 
1892 	lockdep_assert_held(&prepare_lock);
1893 
1894 	new_rate = clk_recalc(core, parent_rate);
1895 
1896 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1897 	if (core->notifier_count)
1898 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1899 
1900 	if (ret & NOTIFY_STOP_MASK) {
1901 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1902 				__func__, core->name, ret);
1903 		goto out;
1904 	}
1905 
1906 	hlist_for_each_entry(child, &core->children, child_node) {
1907 		ret = __clk_speculate_rates(child, new_rate);
1908 		if (ret & NOTIFY_STOP_MASK)
1909 			break;
1910 	}
1911 
1912 out:
1913 	return ret;
1914 }
1915 
clk_calc_subtree(struct clk_core * core,unsigned long new_rate,struct clk_core * new_parent,u8 p_index)1916 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1917 			     struct clk_core *new_parent, u8 p_index)
1918 {
1919 	struct clk_core *child;
1920 
1921 	core->new_rate = new_rate;
1922 	core->new_parent = new_parent;
1923 	core->new_parent_index = p_index;
1924 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1925 	core->new_child = NULL;
1926 	if (new_parent && new_parent != core->parent)
1927 		new_parent->new_child = core;
1928 
1929 	hlist_for_each_entry(child, &core->children, child_node) {
1930 		child->new_rate = clk_recalc(child, new_rate);
1931 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1932 	}
1933 }
1934 
1935 /*
1936  * calculate the new rates returning the topmost clock that has to be
1937  * changed.
1938  */
clk_calc_new_rates(struct clk_core * core,unsigned long rate)1939 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1940 					   unsigned long rate)
1941 {
1942 	struct clk_core *top = core;
1943 	struct clk_core *old_parent, *parent;
1944 	unsigned long best_parent_rate = 0;
1945 	unsigned long new_rate;
1946 	unsigned long min_rate;
1947 	unsigned long max_rate;
1948 	int p_index = 0;
1949 	long ret;
1950 
1951 	/* sanity */
1952 	if (IS_ERR_OR_NULL(core))
1953 		return NULL;
1954 
1955 	/* save parent rate, if it exists */
1956 	parent = old_parent = core->parent;
1957 	if (parent)
1958 		best_parent_rate = parent->rate;
1959 
1960 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1961 
1962 	/* find the closest rate and parent clk/rate */
1963 	if (clk_core_can_round(core)) {
1964 		struct clk_rate_request req;
1965 
1966 		req.rate = rate;
1967 		req.min_rate = min_rate;
1968 		req.max_rate = max_rate;
1969 
1970 		clk_core_init_rate_req(core, &req);
1971 
1972 		ret = clk_core_determine_round_nolock(core, &req);
1973 		if (ret < 0)
1974 			return NULL;
1975 
1976 		best_parent_rate = req.best_parent_rate;
1977 		new_rate = req.rate;
1978 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1979 
1980 		if (new_rate < min_rate || new_rate > max_rate)
1981 			return NULL;
1982 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1983 		/* pass-through clock without adjustable parent */
1984 		core->new_rate = core->rate;
1985 		return NULL;
1986 	} else {
1987 		/* pass-through clock with adjustable parent */
1988 		top = clk_calc_new_rates(parent, rate);
1989 		new_rate = parent->new_rate;
1990 		goto out;
1991 	}
1992 
1993 	/* some clocks must be gated to change parent */
1994 	if (parent != old_parent &&
1995 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1996 		pr_debug("%s: %s not gated but wants to reparent\n",
1997 			 __func__, core->name);
1998 		return NULL;
1999 	}
2000 
2001 	/* try finding the new parent index */
2002 	if (parent && core->num_parents > 1) {
2003 		p_index = clk_fetch_parent_index(core, parent);
2004 		if (p_index < 0) {
2005 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2006 				 __func__, parent->name, core->name);
2007 			return NULL;
2008 		}
2009 	}
2010 
2011 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2012 	    best_parent_rate != parent->rate)
2013 		top = clk_calc_new_rates(parent, best_parent_rate);
2014 
2015 out:
2016 	clk_calc_subtree(core, new_rate, parent, p_index);
2017 
2018 	return top;
2019 }
2020 
2021 /*
2022  * Notify about rate changes in a subtree. Always walk down the whole tree
2023  * so that in case of an error we can walk down the whole tree again and
2024  * abort the change.
2025  */
clk_propagate_rate_change(struct clk_core * core,unsigned long event)2026 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2027 						  unsigned long event)
2028 {
2029 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2030 	int ret = NOTIFY_DONE;
2031 
2032 	if (core->rate == core->new_rate)
2033 		return NULL;
2034 
2035 	if (core->notifier_count) {
2036 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2037 		if (ret & NOTIFY_STOP_MASK)
2038 			fail_clk = core;
2039 	}
2040 
2041 	hlist_for_each_entry(child, &core->children, child_node) {
2042 		/* Skip children who will be reparented to another clock */
2043 		if (child->new_parent && child->new_parent != core)
2044 			continue;
2045 		tmp_clk = clk_propagate_rate_change(child, event);
2046 		if (tmp_clk)
2047 			fail_clk = tmp_clk;
2048 	}
2049 
2050 	/* handle the new child who might not be in core->children yet */
2051 	if (core->new_child) {
2052 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2053 		if (tmp_clk)
2054 			fail_clk = tmp_clk;
2055 	}
2056 
2057 	return fail_clk;
2058 }
2059 
2060 /*
2061  * walk down a subtree and set the new rates notifying the rate
2062  * change on the way
2063  */
clk_change_rate(struct clk_core * core)2064 static void clk_change_rate(struct clk_core *core)
2065 {
2066 	struct clk_core *child;
2067 	struct hlist_node *tmp;
2068 	unsigned long old_rate;
2069 	unsigned long best_parent_rate = 0;
2070 	bool skip_set_rate = false;
2071 	struct clk_core *old_parent;
2072 	struct clk_core *parent = NULL;
2073 
2074 	old_rate = core->rate;
2075 
2076 	if (core->new_parent) {
2077 		parent = core->new_parent;
2078 		best_parent_rate = core->new_parent->rate;
2079 	} else if (core->parent) {
2080 		parent = core->parent;
2081 		best_parent_rate = core->parent->rate;
2082 	}
2083 
2084 	if (clk_pm_runtime_get(core))
2085 		return;
2086 
2087 	if (core->flags & CLK_SET_RATE_UNGATE) {
2088 		unsigned long flags;
2089 
2090 		clk_core_prepare(core);
2091 		flags = clk_enable_lock();
2092 		clk_core_enable(core);
2093 		clk_enable_unlock(flags);
2094 	}
2095 
2096 	if (core->new_parent && core->new_parent != core->parent) {
2097 		old_parent = __clk_set_parent_before(core, core->new_parent);
2098 		trace_clk_set_parent(core, core->new_parent);
2099 
2100 		if (core->ops->set_rate_and_parent) {
2101 			skip_set_rate = true;
2102 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2103 					best_parent_rate,
2104 					core->new_parent_index);
2105 		} else if (core->ops->set_parent) {
2106 			core->ops->set_parent(core->hw, core->new_parent_index);
2107 		}
2108 
2109 		trace_clk_set_parent_complete(core, core->new_parent);
2110 		__clk_set_parent_after(core, core->new_parent, old_parent);
2111 	}
2112 
2113 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2114 		clk_core_prepare_enable(parent);
2115 
2116 	trace_clk_set_rate(core, core->new_rate);
2117 
2118 	if (!skip_set_rate && core->ops->set_rate)
2119 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2120 
2121 	trace_clk_set_rate_complete(core, core->new_rate);
2122 
2123 	core->rate = clk_recalc(core, best_parent_rate);
2124 
2125 	if (core->flags & CLK_SET_RATE_UNGATE) {
2126 		unsigned long flags;
2127 
2128 		flags = clk_enable_lock();
2129 		clk_core_disable(core);
2130 		clk_enable_unlock(flags);
2131 		clk_core_unprepare(core);
2132 	}
2133 
2134 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2135 		clk_core_disable_unprepare(parent);
2136 
2137 	if (core->notifier_count && old_rate != core->rate)
2138 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2139 
2140 	if (core->flags & CLK_RECALC_NEW_RATES)
2141 		(void)clk_calc_new_rates(core, core->new_rate);
2142 
2143 	/*
2144 	 * Use safe iteration, as change_rate can actually swap parents
2145 	 * for certain clock types.
2146 	 */
2147 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2148 		/* Skip children who will be reparented to another clock */
2149 		if (child->new_parent && child->new_parent != core)
2150 			continue;
2151 		clk_change_rate(child);
2152 	}
2153 
2154 	/* handle the new child who might not be in core->children yet */
2155 	if (core->new_child)
2156 		clk_change_rate(core->new_child);
2157 
2158 	clk_pm_runtime_put(core);
2159 }
2160 
clk_core_req_round_rate_nolock(struct clk_core * core,unsigned long req_rate)2161 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2162 						     unsigned long req_rate)
2163 {
2164 	int ret, cnt;
2165 	struct clk_rate_request req;
2166 
2167 	lockdep_assert_held(&prepare_lock);
2168 
2169 	if (!core)
2170 		return 0;
2171 
2172 	/* simulate what the rate would be if it could be freely set */
2173 	cnt = clk_core_rate_nuke_protect(core);
2174 	if (cnt < 0)
2175 		return cnt;
2176 
2177 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2178 	req.rate = req_rate;
2179 
2180 	ret = clk_core_round_rate_nolock(core, &req);
2181 
2182 	/* restore the protection */
2183 	clk_core_rate_restore_protect(core, cnt);
2184 
2185 	return ret ? 0 : req.rate;
2186 }
2187 
clk_core_set_rate_nolock(struct clk_core * core,unsigned long req_rate)2188 static int clk_core_set_rate_nolock(struct clk_core *core,
2189 				    unsigned long req_rate)
2190 {
2191 	struct clk_core *top, *fail_clk;
2192 	unsigned long rate;
2193 	int ret = 0;
2194 
2195 	if (!core)
2196 		return 0;
2197 
2198 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2199 
2200 	/* bail early if nothing to do */
2201 	if (rate == clk_core_get_rate_nolock(core))
2202 		return 0;
2203 
2204 	/* fail on a direct rate set of a protected provider */
2205 	if (clk_core_rate_is_protected(core))
2206 		return -EBUSY;
2207 
2208 	/* calculate new rates and get the topmost changed clock */
2209 	top = clk_calc_new_rates(core, req_rate);
2210 	if (!top)
2211 		return -EINVAL;
2212 
2213 	ret = clk_pm_runtime_get(core);
2214 	if (ret)
2215 		return ret;
2216 
2217 	/* notify that we are about to change rates */
2218 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2219 	if (fail_clk) {
2220 		pr_debug("%s: failed to set %s rate\n", __func__,
2221 				fail_clk->name);
2222 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2223 		ret = -EBUSY;
2224 		goto err;
2225 	}
2226 
2227 	/* change the rates */
2228 	clk_change_rate(top);
2229 
2230 	core->req_rate = req_rate;
2231 err:
2232 	clk_pm_runtime_put(core);
2233 
2234 	return ret;
2235 }
2236 
2237 /**
2238  * clk_set_rate - specify a new rate for clk
2239  * @clk: the clk whose rate is being changed
2240  * @rate: the new rate for clk
2241  *
2242  * In the simplest case clk_set_rate will only adjust the rate of clk.
2243  *
2244  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2245  * propagate up to clk's parent; whether or not this happens depends on the
2246  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2247  * after calling .round_rate then upstream parent propagation is ignored.  If
2248  * *parent_rate comes back with a new rate for clk's parent then we propagate
2249  * up to clk's parent and set its rate.  Upward propagation will continue
2250  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2251  * .round_rate stops requesting changes to clk's parent_rate.
2252  *
2253  * Rate changes are accomplished via tree traversal that also recalculates the
2254  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2255  *
2256  * Returns 0 on success, -EERROR otherwise.
2257  */
clk_set_rate(struct clk * clk,unsigned long rate)2258 int clk_set_rate(struct clk *clk, unsigned long rate)
2259 {
2260 	int ret;
2261 
2262 	if (!clk)
2263 		return 0;
2264 
2265 	/* prevent racing with updates to the clock topology */
2266 	clk_prepare_lock();
2267 
2268 	if (clk->exclusive_count)
2269 		clk_core_rate_unprotect(clk->core);
2270 
2271 	ret = clk_core_set_rate_nolock(clk->core, rate);
2272 
2273 	if (clk->exclusive_count)
2274 		clk_core_rate_protect(clk->core);
2275 
2276 	clk_prepare_unlock();
2277 
2278 	return ret;
2279 }
2280 EXPORT_SYMBOL_GPL(clk_set_rate);
2281 
2282 /**
2283  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2284  * @clk: the clk whose rate is being changed
2285  * @rate: the new rate for clk
2286  *
2287  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2288  * within a critical section
2289  *
2290  * This can be used initially to ensure that at least 1 consumer is
2291  * satisfied when several consumers are competing for exclusivity over the
2292  * same clock provider.
2293  *
2294  * The exclusivity is not applied if setting the rate failed.
2295  *
2296  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2297  * clk_rate_exclusive_put().
2298  *
2299  * Returns 0 on success, -EERROR otherwise.
2300  */
clk_set_rate_exclusive(struct clk * clk,unsigned long rate)2301 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2302 {
2303 	int ret;
2304 
2305 	if (!clk)
2306 		return 0;
2307 
2308 	/* prevent racing with updates to the clock topology */
2309 	clk_prepare_lock();
2310 
2311 	/*
2312 	 * The temporary protection removal is not here, on purpose
2313 	 * This function is meant to be used instead of clk_rate_protect,
2314 	 * so before the consumer code path protect the clock provider
2315 	 */
2316 
2317 	ret = clk_core_set_rate_nolock(clk->core, rate);
2318 	if (!ret) {
2319 		clk_core_rate_protect(clk->core);
2320 		clk->exclusive_count++;
2321 	}
2322 
2323 	clk_prepare_unlock();
2324 
2325 	return ret;
2326 }
2327 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2328 
2329 /**
2330  * clk_set_rate_range - set a rate range for a clock source
2331  * @clk: clock source
2332  * @min: desired minimum clock rate in Hz, inclusive
2333  * @max: desired maximum clock rate in Hz, inclusive
2334  *
2335  * Returns success (0) or negative errno.
2336  */
clk_set_rate_range(struct clk * clk,unsigned long min,unsigned long max)2337 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2338 {
2339 	int ret = 0;
2340 	unsigned long old_min, old_max, rate;
2341 
2342 	if (!clk)
2343 		return 0;
2344 
2345 	if (min > max) {
2346 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2347 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2348 		       min, max);
2349 		return -EINVAL;
2350 	}
2351 
2352 	clk_prepare_lock();
2353 
2354 	if (clk->exclusive_count)
2355 		clk_core_rate_unprotect(clk->core);
2356 
2357 	/* Save the current values in case we need to rollback the change */
2358 	old_min = clk->min_rate;
2359 	old_max = clk->max_rate;
2360 	clk->min_rate = min;
2361 	clk->max_rate = max;
2362 
2363 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2364 		ret = -EINVAL;
2365 		goto out;
2366 	}
2367 
2368 	rate = clk_core_get_rate_nolock(clk->core);
2369 	if (rate < min || rate > max) {
2370 		/*
2371 		 * FIXME:
2372 		 * We are in bit of trouble here, current rate is outside the
2373 		 * the requested range. We are going try to request appropriate
2374 		 * range boundary but there is a catch. It may fail for the
2375 		 * usual reason (clock broken, clock protected, etc) but also
2376 		 * because:
2377 		 * - round_rate() was not favorable and fell on the wrong
2378 		 *   side of the boundary
2379 		 * - the determine_rate() callback does not really check for
2380 		 *   this corner case when determining the rate
2381 		 */
2382 
2383 		if (rate < min)
2384 			rate = min;
2385 		else
2386 			rate = max;
2387 
2388 		ret = clk_core_set_rate_nolock(clk->core, rate);
2389 		if (ret) {
2390 			/* rollback the changes */
2391 			clk->min_rate = old_min;
2392 			clk->max_rate = old_max;
2393 		}
2394 	}
2395 
2396 out:
2397 	if (clk->exclusive_count)
2398 		clk_core_rate_protect(clk->core);
2399 
2400 	clk_prepare_unlock();
2401 
2402 	return ret;
2403 }
2404 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2405 
2406 /**
2407  * clk_set_min_rate - set a minimum clock rate for a clock source
2408  * @clk: clock source
2409  * @rate: desired minimum clock rate in Hz, inclusive
2410  *
2411  * Returns success (0) or negative errno.
2412  */
clk_set_min_rate(struct clk * clk,unsigned long rate)2413 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2414 {
2415 	if (!clk)
2416 		return 0;
2417 
2418 	return clk_set_rate_range(clk, rate, clk->max_rate);
2419 }
2420 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2421 
2422 /**
2423  * clk_set_max_rate - set a maximum clock rate for a clock source
2424  * @clk: clock source
2425  * @rate: desired maximum clock rate in Hz, inclusive
2426  *
2427  * Returns success (0) or negative errno.
2428  */
clk_set_max_rate(struct clk * clk,unsigned long rate)2429 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2430 {
2431 	if (!clk)
2432 		return 0;
2433 
2434 	return clk_set_rate_range(clk, clk->min_rate, rate);
2435 }
2436 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2437 
2438 /**
2439  * clk_get_parent - return the parent of a clk
2440  * @clk: the clk whose parent gets returned
2441  *
2442  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2443  */
clk_get_parent(struct clk * clk)2444 struct clk *clk_get_parent(struct clk *clk)
2445 {
2446 	struct clk *parent;
2447 
2448 	if (!clk)
2449 		return NULL;
2450 
2451 	clk_prepare_lock();
2452 	/* TODO: Create a per-user clk and change callers to call clk_put */
2453 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2454 	clk_prepare_unlock();
2455 
2456 	return parent;
2457 }
2458 EXPORT_SYMBOL_GPL(clk_get_parent);
2459 
__clk_init_parent(struct clk_core * core)2460 static struct clk_core *__clk_init_parent(struct clk_core *core)
2461 {
2462 	u8 index = 0;
2463 
2464 	if (core->num_parents > 1 && core->ops->get_parent)
2465 		index = core->ops->get_parent(core->hw);
2466 
2467 	return clk_core_get_parent_by_index(core, index);
2468 }
2469 
clk_core_reparent(struct clk_core * core,struct clk_core * new_parent)2470 static void clk_core_reparent(struct clk_core *core,
2471 				  struct clk_core *new_parent)
2472 {
2473 	clk_reparent(core, new_parent);
2474 	__clk_recalc_accuracies(core);
2475 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2476 }
2477 
clk_hw_reparent(struct clk_hw * hw,struct clk_hw * new_parent)2478 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2479 {
2480 	if (!hw)
2481 		return;
2482 
2483 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2484 }
2485 
2486 /**
2487  * clk_has_parent - check if a clock is a possible parent for another
2488  * @clk: clock source
2489  * @parent: parent clock source
2490  *
2491  * This function can be used in drivers that need to check that a clock can be
2492  * the parent of another without actually changing the parent.
2493  *
2494  * Returns true if @parent is a possible parent for @clk, false otherwise.
2495  */
clk_has_parent(struct clk * clk,struct clk * parent)2496 bool clk_has_parent(struct clk *clk, struct clk *parent)
2497 {
2498 	struct clk_core *core, *parent_core;
2499 	int i;
2500 
2501 	/* NULL clocks should be nops, so return success if either is NULL. */
2502 	if (!clk || !parent)
2503 		return true;
2504 
2505 	core = clk->core;
2506 	parent_core = parent->core;
2507 
2508 	/* Optimize for the case where the parent is already the parent. */
2509 	if (core->parent == parent_core)
2510 		return true;
2511 
2512 	for (i = 0; i < core->num_parents; i++)
2513 		if (!strcmp(core->parents[i].name, parent_core->name))
2514 			return true;
2515 
2516 	return false;
2517 }
2518 EXPORT_SYMBOL_GPL(clk_has_parent);
2519 
clk_core_set_parent_nolock(struct clk_core * core,struct clk_core * parent)2520 static int clk_core_set_parent_nolock(struct clk_core *core,
2521 				      struct clk_core *parent)
2522 {
2523 	int ret = 0;
2524 	int p_index = 0;
2525 	unsigned long p_rate = 0;
2526 
2527 	lockdep_assert_held(&prepare_lock);
2528 
2529 	if (!core)
2530 		return 0;
2531 
2532 	if (core->parent == parent)
2533 		return 0;
2534 
2535 	/* verify ops for multi-parent clks */
2536 	if (core->num_parents > 1 && !core->ops->set_parent)
2537 		return -EPERM;
2538 
2539 	/* check that we are allowed to re-parent if the clock is in use */
2540 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2541 		return -EBUSY;
2542 
2543 	if (clk_core_rate_is_protected(core))
2544 		return -EBUSY;
2545 
2546 	/* try finding the new parent index */
2547 	if (parent) {
2548 		p_index = clk_fetch_parent_index(core, parent);
2549 		if (p_index < 0) {
2550 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2551 					__func__, parent->name, core->name);
2552 			return p_index;
2553 		}
2554 		p_rate = parent->rate;
2555 	}
2556 
2557 	ret = clk_pm_runtime_get(core);
2558 	if (ret)
2559 		return ret;
2560 
2561 	/* propagate PRE_RATE_CHANGE notifications */
2562 	ret = __clk_speculate_rates(core, p_rate);
2563 
2564 	/* abort if a driver objects */
2565 	if (ret & NOTIFY_STOP_MASK)
2566 		goto runtime_put;
2567 
2568 	/* do the re-parent */
2569 	ret = __clk_set_parent(core, parent, p_index);
2570 
2571 	/* propagate rate an accuracy recalculation accordingly */
2572 	if (ret) {
2573 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2574 	} else {
2575 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2576 		__clk_recalc_accuracies(core);
2577 	}
2578 
2579 runtime_put:
2580 	clk_pm_runtime_put(core);
2581 
2582 	return ret;
2583 }
2584 
clk_hw_set_parent(struct clk_hw * hw,struct clk_hw * parent)2585 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2586 {
2587 	return clk_core_set_parent_nolock(hw->core, parent->core);
2588 }
2589 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2590 
2591 /**
2592  * clk_set_parent - switch the parent of a mux clk
2593  * @clk: the mux clk whose input we are switching
2594  * @parent: the new input to clk
2595  *
2596  * Re-parent clk to use parent as its new input source.  If clk is in
2597  * prepared state, the clk will get enabled for the duration of this call. If
2598  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2599  * that, the reparenting is glitchy in hardware, etc), use the
2600  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2601  *
2602  * After successfully changing clk's parent clk_set_parent will update the
2603  * clk topology, sysfs topology and propagate rate recalculation via
2604  * __clk_recalc_rates.
2605  *
2606  * Returns 0 on success, -EERROR otherwise.
2607  */
clk_set_parent(struct clk * clk,struct clk * parent)2608 int clk_set_parent(struct clk *clk, struct clk *parent)
2609 {
2610 	int ret;
2611 
2612 	if (!clk)
2613 		return 0;
2614 
2615 	clk_prepare_lock();
2616 
2617 	if (clk->exclusive_count)
2618 		clk_core_rate_unprotect(clk->core);
2619 
2620 	ret = clk_core_set_parent_nolock(clk->core,
2621 					 parent ? parent->core : NULL);
2622 
2623 	if (clk->exclusive_count)
2624 		clk_core_rate_protect(clk->core);
2625 
2626 	clk_prepare_unlock();
2627 
2628 	return ret;
2629 }
2630 EXPORT_SYMBOL_GPL(clk_set_parent);
2631 
clk_core_set_phase_nolock(struct clk_core * core,int degrees)2632 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2633 {
2634 	int ret = -EINVAL;
2635 
2636 	lockdep_assert_held(&prepare_lock);
2637 
2638 	if (!core)
2639 		return 0;
2640 
2641 	if (clk_core_rate_is_protected(core))
2642 		return -EBUSY;
2643 
2644 	trace_clk_set_phase(core, degrees);
2645 
2646 	if (core->ops->set_phase) {
2647 		ret = core->ops->set_phase(core->hw, degrees);
2648 		if (!ret)
2649 			core->phase = degrees;
2650 	}
2651 
2652 	trace_clk_set_phase_complete(core, degrees);
2653 
2654 	return ret;
2655 }
2656 
2657 /**
2658  * clk_set_phase - adjust the phase shift of a clock signal
2659  * @clk: clock signal source
2660  * @degrees: number of degrees the signal is shifted
2661  *
2662  * Shifts the phase of a clock signal by the specified
2663  * degrees. Returns 0 on success, -EERROR otherwise.
2664  *
2665  * This function makes no distinction about the input or reference
2666  * signal that we adjust the clock signal phase against. For example
2667  * phase locked-loop clock signal generators we may shift phase with
2668  * respect to feedback clock signal input, but for other cases the
2669  * clock phase may be shifted with respect to some other, unspecified
2670  * signal.
2671  *
2672  * Additionally the concept of phase shift does not propagate through
2673  * the clock tree hierarchy, which sets it apart from clock rates and
2674  * clock accuracy. A parent clock phase attribute does not have an
2675  * impact on the phase attribute of a child clock.
2676  */
clk_set_phase(struct clk * clk,int degrees)2677 int clk_set_phase(struct clk *clk, int degrees)
2678 {
2679 	int ret;
2680 
2681 	if (!clk)
2682 		return 0;
2683 
2684 	/* sanity check degrees */
2685 	degrees %= 360;
2686 	if (degrees < 0)
2687 		degrees += 360;
2688 
2689 	clk_prepare_lock();
2690 
2691 	if (clk->exclusive_count)
2692 		clk_core_rate_unprotect(clk->core);
2693 
2694 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2695 
2696 	if (clk->exclusive_count)
2697 		clk_core_rate_protect(clk->core);
2698 
2699 	clk_prepare_unlock();
2700 
2701 	return ret;
2702 }
2703 EXPORT_SYMBOL_GPL(clk_set_phase);
2704 
clk_core_get_phase(struct clk_core * core)2705 static int clk_core_get_phase(struct clk_core *core)
2706 {
2707 	int ret;
2708 
2709 	lockdep_assert_held(&prepare_lock);
2710 	if (!core->ops->get_phase)
2711 		return 0;
2712 
2713 	/* Always try to update cached phase if possible */
2714 	ret = core->ops->get_phase(core->hw);
2715 	if (ret >= 0)
2716 		core->phase = ret;
2717 
2718 	return ret;
2719 }
2720 
2721 /**
2722  * clk_get_phase - return the phase shift of a clock signal
2723  * @clk: clock signal source
2724  *
2725  * Returns the phase shift of a clock node in degrees, otherwise returns
2726  * -EERROR.
2727  */
clk_get_phase(struct clk * clk)2728 int clk_get_phase(struct clk *clk)
2729 {
2730 	int ret;
2731 
2732 	if (!clk)
2733 		return 0;
2734 
2735 	clk_prepare_lock();
2736 	ret = clk_core_get_phase(clk->core);
2737 	clk_prepare_unlock();
2738 
2739 	return ret;
2740 }
2741 EXPORT_SYMBOL_GPL(clk_get_phase);
2742 
clk_core_reset_duty_cycle_nolock(struct clk_core * core)2743 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2744 {
2745 	/* Assume a default value of 50% */
2746 	core->duty.num = 1;
2747 	core->duty.den = 2;
2748 }
2749 
2750 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2751 
clk_core_update_duty_cycle_nolock(struct clk_core * core)2752 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2753 {
2754 	struct clk_duty *duty = &core->duty;
2755 	int ret = 0;
2756 
2757 	if (!core->ops->get_duty_cycle)
2758 		return clk_core_update_duty_cycle_parent_nolock(core);
2759 
2760 	ret = core->ops->get_duty_cycle(core->hw, duty);
2761 	if (ret)
2762 		goto reset;
2763 
2764 	/* Don't trust the clock provider too much */
2765 	if (duty->den == 0 || duty->num > duty->den) {
2766 		ret = -EINVAL;
2767 		goto reset;
2768 	}
2769 
2770 	return 0;
2771 
2772 reset:
2773 	clk_core_reset_duty_cycle_nolock(core);
2774 	return ret;
2775 }
2776 
clk_core_update_duty_cycle_parent_nolock(struct clk_core * core)2777 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2778 {
2779 	int ret = 0;
2780 
2781 	if (core->parent &&
2782 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2783 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2784 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2785 	} else {
2786 		clk_core_reset_duty_cycle_nolock(core);
2787 	}
2788 
2789 	return ret;
2790 }
2791 
2792 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2793 						 struct clk_duty *duty);
2794 
clk_core_set_duty_cycle_nolock(struct clk_core * core,struct clk_duty * duty)2795 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2796 					  struct clk_duty *duty)
2797 {
2798 	int ret;
2799 
2800 	lockdep_assert_held(&prepare_lock);
2801 
2802 	if (clk_core_rate_is_protected(core))
2803 		return -EBUSY;
2804 
2805 	trace_clk_set_duty_cycle(core, duty);
2806 
2807 	if (!core->ops->set_duty_cycle)
2808 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2809 
2810 	ret = core->ops->set_duty_cycle(core->hw, duty);
2811 	if (!ret)
2812 		memcpy(&core->duty, duty, sizeof(*duty));
2813 
2814 	trace_clk_set_duty_cycle_complete(core, duty);
2815 
2816 	return ret;
2817 }
2818 
clk_core_set_duty_cycle_parent_nolock(struct clk_core * core,struct clk_duty * duty)2819 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2820 						 struct clk_duty *duty)
2821 {
2822 	int ret = 0;
2823 
2824 	if (core->parent &&
2825 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2826 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2827 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2828 	}
2829 
2830 	return ret;
2831 }
2832 
2833 /**
2834  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2835  * @clk: clock signal source
2836  * @num: numerator of the duty cycle ratio to be applied
2837  * @den: denominator of the duty cycle ratio to be applied
2838  *
2839  * Apply the duty cycle ratio if the ratio is valid and the clock can
2840  * perform this operation
2841  *
2842  * Returns (0) on success, a negative errno otherwise.
2843  */
clk_set_duty_cycle(struct clk * clk,unsigned int num,unsigned int den)2844 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2845 {
2846 	int ret;
2847 	struct clk_duty duty;
2848 
2849 	if (!clk)
2850 		return 0;
2851 
2852 	/* sanity check the ratio */
2853 	if (den == 0 || num > den)
2854 		return -EINVAL;
2855 
2856 	duty.num = num;
2857 	duty.den = den;
2858 
2859 	clk_prepare_lock();
2860 
2861 	if (clk->exclusive_count)
2862 		clk_core_rate_unprotect(clk->core);
2863 
2864 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2865 
2866 	if (clk->exclusive_count)
2867 		clk_core_rate_protect(clk->core);
2868 
2869 	clk_prepare_unlock();
2870 
2871 	return ret;
2872 }
2873 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2874 
clk_core_get_scaled_duty_cycle(struct clk_core * core,unsigned int scale)2875 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2876 					  unsigned int scale)
2877 {
2878 	struct clk_duty *duty = &core->duty;
2879 	int ret;
2880 
2881 	clk_prepare_lock();
2882 
2883 	ret = clk_core_update_duty_cycle_nolock(core);
2884 	if (!ret)
2885 		ret = mult_frac(scale, duty->num, duty->den);
2886 
2887 	clk_prepare_unlock();
2888 
2889 	return ret;
2890 }
2891 
2892 /**
2893  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2894  * @clk: clock signal source
2895  * @scale: scaling factor to be applied to represent the ratio as an integer
2896  *
2897  * Returns the duty cycle ratio of a clock node multiplied by the provided
2898  * scaling factor, or negative errno on error.
2899  */
clk_get_scaled_duty_cycle(struct clk * clk,unsigned int scale)2900 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2901 {
2902 	if (!clk)
2903 		return 0;
2904 
2905 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2906 }
2907 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2908 
2909 /**
2910  * clk_is_match - check if two clk's point to the same hardware clock
2911  * @p: clk compared against q
2912  * @q: clk compared against p
2913  *
2914  * Returns true if the two struct clk pointers both point to the same hardware
2915  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2916  * share the same struct clk_core object.
2917  *
2918  * Returns false otherwise. Note that two NULL clks are treated as matching.
2919  */
clk_is_match(const struct clk * p,const struct clk * q)2920 bool clk_is_match(const struct clk *p, const struct clk *q)
2921 {
2922 	/* trivial case: identical struct clk's or both NULL */
2923 	if (p == q)
2924 		return true;
2925 
2926 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2927 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2928 		if (p->core == q->core)
2929 			return true;
2930 
2931 	return false;
2932 }
2933 EXPORT_SYMBOL_GPL(clk_is_match);
2934 
2935 /***        debugfs support        ***/
2936 
2937 #ifdef CONFIG_DEBUG_FS
2938 #include <linux/debugfs.h>
2939 
2940 static struct dentry *rootdir;
2941 static int inited = 0;
2942 static DEFINE_MUTEX(clk_debug_lock);
2943 static HLIST_HEAD(clk_debug_list);
2944 
2945 static struct hlist_head *orphan_list[] = {
2946 	&clk_orphan_list,
2947 	NULL,
2948 };
2949 
clk_summary_show_one(struct seq_file * s,struct clk_core * c,int level)2950 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2951 				 int level)
2952 {
2953 	int phase;
2954 
2955 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
2956 		   level * 3 + 1, "",
2957 		   30 - level * 3, c->name,
2958 		   c->enable_count, c->prepare_count, c->protect_count,
2959 		   clk_core_get_rate_recalc(c),
2960 		   clk_core_get_accuracy_recalc(c));
2961 
2962 	phase = clk_core_get_phase(c);
2963 	if (phase >= 0)
2964 		seq_printf(s, "%5d", phase);
2965 	else
2966 		seq_puts(s, "-----");
2967 
2968 	seq_printf(s, " %6d\n", clk_core_get_scaled_duty_cycle(c, 100000));
2969 }
2970 
clk_summary_show_subtree(struct seq_file * s,struct clk_core * c,int level)2971 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2972 				     int level)
2973 {
2974 	struct clk_core *child;
2975 
2976 	clk_summary_show_one(s, c, level);
2977 
2978 	hlist_for_each_entry(child, &c->children, child_node)
2979 		clk_summary_show_subtree(s, child, level + 1);
2980 }
2981 
clk_summary_show(struct seq_file * s,void * data)2982 static int clk_summary_show(struct seq_file *s, void *data)
2983 {
2984 	struct clk_core *c;
2985 	struct hlist_head **lists = (struct hlist_head **)s->private;
2986 
2987 	seq_puts(s, "                                 enable  prepare  protect                                duty\n");
2988 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle\n");
2989 	seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2990 
2991 	clk_prepare_lock();
2992 
2993 	for (; *lists; lists++)
2994 		hlist_for_each_entry(c, *lists, child_node)
2995 			clk_summary_show_subtree(s, c, 0);
2996 
2997 	clk_prepare_unlock();
2998 
2999 	return 0;
3000 }
3001 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3002 
clk_dump_one(struct seq_file * s,struct clk_core * c,int level)3003 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3004 {
3005 	int phase;
3006 	unsigned long min_rate, max_rate;
3007 
3008 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3009 
3010 	/* This should be JSON format, i.e. elements separated with a comma */
3011 	seq_printf(s, "\"%s\": { ", c->name);
3012 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3013 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3014 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3015 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3016 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3017 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3018 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3019 	phase = clk_core_get_phase(c);
3020 	if (phase >= 0)
3021 		seq_printf(s, "\"phase\": %d,", phase);
3022 	seq_printf(s, "\"duty_cycle\": %u",
3023 		   clk_core_get_scaled_duty_cycle(c, 100000));
3024 }
3025 
clk_dump_subtree(struct seq_file * s,struct clk_core * c,int level)3026 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3027 {
3028 	struct clk_core *child;
3029 
3030 	clk_dump_one(s, c, level);
3031 
3032 	hlist_for_each_entry(child, &c->children, child_node) {
3033 		seq_putc(s, ',');
3034 		clk_dump_subtree(s, child, level + 1);
3035 	}
3036 
3037 	seq_putc(s, '}');
3038 }
3039 
clk_dump_show(struct seq_file * s,void * data)3040 static int clk_dump_show(struct seq_file *s, void *data)
3041 {
3042 	struct clk_core *c;
3043 	bool first_node = true;
3044 	struct hlist_head **lists = (struct hlist_head **)s->private;
3045 
3046 	seq_putc(s, '{');
3047 	clk_prepare_lock();
3048 
3049 	for (; *lists; lists++) {
3050 		hlist_for_each_entry(c, *lists, child_node) {
3051 			if (!first_node)
3052 				seq_putc(s, ',');
3053 			first_node = false;
3054 			clk_dump_subtree(s, c, 0);
3055 		}
3056 	}
3057 
3058 	clk_prepare_unlock();
3059 
3060 	seq_puts(s, "}\n");
3061 	return 0;
3062 }
3063 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3064 
3065 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3066 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3067 /*
3068  * This can be dangerous, therefore don't provide any real compile time
3069  * configuration option for this feature.
3070  * People who want to use this will need to modify the source code directly.
3071  */
clk_rate_set(void * data,u64 val)3072 static int clk_rate_set(void *data, u64 val)
3073 {
3074 	struct clk_core *core = data;
3075 	int ret;
3076 
3077 	clk_prepare_lock();
3078 	ret = clk_core_set_rate_nolock(core, val);
3079 	clk_prepare_unlock();
3080 
3081 	return ret;
3082 }
3083 
3084 #define clk_rate_mode	0644
3085 
clk_prepare_enable_set(void * data,u64 val)3086 static int clk_prepare_enable_set(void *data, u64 val)
3087 {
3088 	struct clk_core *core = data;
3089 	int ret = 0;
3090 
3091 	if (val)
3092 		ret = clk_prepare_enable(core->hw->clk);
3093 	else
3094 		clk_disable_unprepare(core->hw->clk);
3095 
3096 	return ret;
3097 }
3098 
clk_prepare_enable_get(void * data,u64 * val)3099 static int clk_prepare_enable_get(void *data, u64 *val)
3100 {
3101 	struct clk_core *core = data;
3102 
3103 	*val = core->enable_count && core->prepare_count;
3104 	return 0;
3105 }
3106 
3107 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3108 			 clk_prepare_enable_set, "%llu\n");
3109 
3110 #else
3111 #define clk_rate_set	NULL
3112 #define clk_rate_mode	0444
3113 #endif
3114 
clk_rate_get(void * data,u64 * val)3115 static int clk_rate_get(void *data, u64 *val)
3116 {
3117 	struct clk_core *core = data;
3118 
3119 	*val = core->rate;
3120 	return 0;
3121 }
3122 
3123 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3124 
3125 static const struct {
3126 	unsigned long flag;
3127 	const char *name;
3128 } clk_flags[] = {
3129 #define ENTRY(f) { f, #f }
3130 	ENTRY(CLK_SET_RATE_GATE),
3131 	ENTRY(CLK_SET_PARENT_GATE),
3132 	ENTRY(CLK_SET_RATE_PARENT),
3133 	ENTRY(CLK_IGNORE_UNUSED),
3134 	ENTRY(CLK_GET_RATE_NOCACHE),
3135 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3136 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3137 	ENTRY(CLK_RECALC_NEW_RATES),
3138 	ENTRY(CLK_SET_RATE_UNGATE),
3139 	ENTRY(CLK_IS_CRITICAL),
3140 	ENTRY(CLK_OPS_PARENT_ENABLE),
3141 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3142 #undef ENTRY
3143 };
3144 
clk_flags_show(struct seq_file * s,void * data)3145 static int clk_flags_show(struct seq_file *s, void *data)
3146 {
3147 	struct clk_core *core = s->private;
3148 	unsigned long flags = core->flags;
3149 	unsigned int i;
3150 
3151 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3152 		if (flags & clk_flags[i].flag) {
3153 			seq_printf(s, "%s\n", clk_flags[i].name);
3154 			flags &= ~clk_flags[i].flag;
3155 		}
3156 	}
3157 	if (flags) {
3158 		/* Unknown flags */
3159 		seq_printf(s, "0x%lx\n", flags);
3160 	}
3161 
3162 	return 0;
3163 }
3164 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3165 
possible_parent_show(struct seq_file * s,struct clk_core * core,unsigned int i,char terminator)3166 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3167 				 unsigned int i, char terminator)
3168 {
3169 	struct clk_core *parent;
3170 
3171 	/*
3172 	 * Go through the following options to fetch a parent's name.
3173 	 *
3174 	 * 1. Fetch the registered parent clock and use its name
3175 	 * 2. Use the global (fallback) name if specified
3176 	 * 3. Use the local fw_name if provided
3177 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3178 	 *
3179 	 * This may still fail in some cases, such as when the parent is
3180 	 * specified directly via a struct clk_hw pointer, but it isn't
3181 	 * registered (yet).
3182 	 */
3183 	parent = clk_core_get_parent_by_index(core, i);
3184 	if (parent)
3185 		seq_puts(s, parent->name);
3186 	else if (core->parents[i].name)
3187 		seq_puts(s, core->parents[i].name);
3188 	else if (core->parents[i].fw_name)
3189 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3190 	else if (core->parents[i].index >= 0)
3191 		seq_puts(s,
3192 			 of_clk_get_parent_name(core->of_node,
3193 						core->parents[i].index));
3194 	else
3195 		seq_puts(s, "(missing)");
3196 
3197 	seq_putc(s, terminator);
3198 }
3199 
possible_parents_show(struct seq_file * s,void * data)3200 static int possible_parents_show(struct seq_file *s, void *data)
3201 {
3202 	struct clk_core *core = s->private;
3203 	int i;
3204 
3205 	for (i = 0; i < core->num_parents - 1; i++)
3206 		possible_parent_show(s, core, i, ' ');
3207 
3208 	possible_parent_show(s, core, i, '\n');
3209 
3210 	return 0;
3211 }
3212 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3213 
current_parent_show(struct seq_file * s,void * data)3214 static int current_parent_show(struct seq_file *s, void *data)
3215 {
3216 	struct clk_core *core = s->private;
3217 
3218 	if (core->parent)
3219 		seq_printf(s, "%s\n", core->parent->name);
3220 
3221 	return 0;
3222 }
3223 DEFINE_SHOW_ATTRIBUTE(current_parent);
3224 
clk_duty_cycle_show(struct seq_file * s,void * data)3225 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3226 {
3227 	struct clk_core *core = s->private;
3228 	struct clk_duty *duty = &core->duty;
3229 
3230 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3231 
3232 	return 0;
3233 }
3234 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3235 
clk_min_rate_show(struct seq_file * s,void * data)3236 static int clk_min_rate_show(struct seq_file *s, void *data)
3237 {
3238 	struct clk_core *core = s->private;
3239 	unsigned long min_rate, max_rate;
3240 
3241 	clk_prepare_lock();
3242 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3243 	clk_prepare_unlock();
3244 	seq_printf(s, "%lu\n", min_rate);
3245 
3246 	return 0;
3247 }
3248 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3249 
clk_max_rate_show(struct seq_file * s,void * data)3250 static int clk_max_rate_show(struct seq_file *s, void *data)
3251 {
3252 	struct clk_core *core = s->private;
3253 	unsigned long min_rate, max_rate;
3254 
3255 	clk_prepare_lock();
3256 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3257 	clk_prepare_unlock();
3258 	seq_printf(s, "%lu\n", max_rate);
3259 
3260 	return 0;
3261 }
3262 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3263 
clk_debug_create_one(struct clk_core * core,struct dentry * pdentry)3264 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3265 {
3266 	struct dentry *root;
3267 
3268 	if (!core || !pdentry)
3269 		return;
3270 
3271 	root = debugfs_create_dir(core->name, pdentry);
3272 	core->dentry = root;
3273 
3274 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3275 			    &clk_rate_fops);
3276 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3277 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3278 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3279 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3280 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3281 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3282 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3283 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3284 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3285 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3286 			    &clk_duty_cycle_fops);
3287 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3288 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3289 			    &clk_prepare_enable_fops);
3290 #endif
3291 
3292 	if (core->num_parents > 0)
3293 		debugfs_create_file("clk_parent", 0444, root, core,
3294 				    &current_parent_fops);
3295 
3296 	if (core->num_parents > 1)
3297 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3298 				    &possible_parents_fops);
3299 
3300 	if (core->ops->debug_init)
3301 		core->ops->debug_init(core->hw, core->dentry);
3302 }
3303 
3304 /**
3305  * clk_debug_register - add a clk node to the debugfs clk directory
3306  * @core: the clk being added to the debugfs clk directory
3307  *
3308  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3309  * initialized.  Otherwise it bails out early since the debugfs clk directory
3310  * will be created lazily by clk_debug_init as part of a late_initcall.
3311  */
clk_debug_register(struct clk_core * core)3312 static void clk_debug_register(struct clk_core *core)
3313 {
3314 	mutex_lock(&clk_debug_lock);
3315 	hlist_add_head(&core->debug_node, &clk_debug_list);
3316 	if (inited)
3317 		clk_debug_create_one(core, rootdir);
3318 	mutex_unlock(&clk_debug_lock);
3319 }
3320 
3321  /**
3322  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3323  * @core: the clk being removed from the debugfs clk directory
3324  *
3325  * Dynamically removes a clk and all its child nodes from the
3326  * debugfs clk directory if clk->dentry points to debugfs created by
3327  * clk_debug_register in __clk_core_init.
3328  */
clk_debug_unregister(struct clk_core * core)3329 static void clk_debug_unregister(struct clk_core *core)
3330 {
3331 	mutex_lock(&clk_debug_lock);
3332 	hlist_del_init(&core->debug_node);
3333 	debugfs_remove_recursive(core->dentry);
3334 	core->dentry = NULL;
3335 	mutex_unlock(&clk_debug_lock);
3336 }
3337 
3338 /**
3339  * clk_debug_init - lazily populate the debugfs clk directory
3340  *
3341  * clks are often initialized very early during boot before memory can be
3342  * dynamically allocated and well before debugfs is setup. This function
3343  * populates the debugfs clk directory once at boot-time when we know that
3344  * debugfs is setup. It should only be called once at boot-time, all other clks
3345  * added dynamically will be done so with clk_debug_register.
3346  */
clk_debug_init(void)3347 static int __init clk_debug_init(void)
3348 {
3349 	struct clk_core *core;
3350 
3351 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3352 	pr_warn("\n");
3353 	pr_warn("********************************************************************\n");
3354 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3355 	pr_warn("**                                                                **\n");
3356 	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3357 	pr_warn("**                                                                **\n");
3358 	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3359 	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3360 	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3361 	pr_warn("**                                                                **\n");
3362 	pr_warn("** If you see this message and you are not debugging the          **\n");
3363 	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3364 	pr_warn("**                                                                **\n");
3365 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3366 	pr_warn("********************************************************************\n");
3367 #endif
3368 
3369 	rootdir = debugfs_create_dir("clk", NULL);
3370 
3371 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3372 			    &clk_summary_fops);
3373 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3374 			    &clk_dump_fops);
3375 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3376 			    &clk_summary_fops);
3377 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3378 			    &clk_dump_fops);
3379 
3380 	mutex_lock(&clk_debug_lock);
3381 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3382 		clk_debug_create_one(core, rootdir);
3383 
3384 	inited = 1;
3385 	mutex_unlock(&clk_debug_lock);
3386 
3387 	return 0;
3388 }
3389 late_initcall(clk_debug_init);
3390 #else
clk_debug_register(struct clk_core * core)3391 static inline void clk_debug_register(struct clk_core *core) { }
clk_debug_unregister(struct clk_core * core)3392 static inline void clk_debug_unregister(struct clk_core *core)
3393 {
3394 }
3395 #endif
3396 
clk_core_reparent_orphans_nolock(void)3397 static void clk_core_reparent_orphans_nolock(void)
3398 {
3399 	struct clk_core *orphan;
3400 	struct hlist_node *tmp2;
3401 
3402 	/*
3403 	 * walk the list of orphan clocks and reparent any that newly finds a
3404 	 * parent.
3405 	 */
3406 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3407 		struct clk_core *parent = __clk_init_parent(orphan);
3408 
3409 		/*
3410 		 * We need to use __clk_set_parent_before() and _after() to
3411 		 * to properly migrate any prepare/enable count of the orphan
3412 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3413 		 * are enabled during init but might not have a parent yet.
3414 		 */
3415 		if (parent) {
3416 			/* update the clk tree topology */
3417 			__clk_set_parent_before(orphan, parent);
3418 			__clk_set_parent_after(orphan, parent, NULL);
3419 			__clk_recalc_accuracies(orphan);
3420 			__clk_recalc_rates(orphan, 0);
3421 
3422 			/*
3423 			 * __clk_init_parent() will set the initial req_rate to
3424 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3425 			 * is an orphan when it's registered.
3426 			 *
3427 			 * 'req_rate' is used by clk_set_rate_range() and
3428 			 * clk_put() to trigger a clk_set_rate() call whenever
3429 			 * the boundaries are modified. Let's make sure
3430 			 * 'req_rate' is set to something non-zero so that
3431 			 * clk_set_rate_range() doesn't drop the frequency.
3432 			 */
3433 			orphan->req_rate = orphan->rate;
3434 		}
3435 	}
3436 }
3437 
3438 /**
3439  * __clk_core_init - initialize the data structures in a struct clk_core
3440  * @core:	clk_core being initialized
3441  *
3442  * Initializes the lists in struct clk_core, queries the hardware for the
3443  * parent and rate and sets them both.
3444  */
__clk_core_init(struct clk_core * core)3445 static int __clk_core_init(struct clk_core *core)
3446 {
3447 	int ret;
3448 	struct clk_core *parent;
3449 	unsigned long rate;
3450 	int phase;
3451 
3452 	if (!core)
3453 		return -EINVAL;
3454 
3455 	clk_prepare_lock();
3456 
3457 	/*
3458 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3459 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3460 	 * being NULL as the clk not being registered yet. This is crucial so
3461 	 * that clks aren't parented until their parent is fully registered.
3462 	 */
3463 	core->hw->core = core;
3464 
3465 	ret = clk_pm_runtime_get(core);
3466 	if (ret)
3467 		goto unlock;
3468 
3469 	/* check to see if a clock with this name is already registered */
3470 	if (clk_core_lookup(core->name)) {
3471 		pr_debug("%s: clk %s already initialized\n",
3472 				__func__, core->name);
3473 		ret = -EEXIST;
3474 		goto out;
3475 	}
3476 
3477 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3478 	if (core->ops->set_rate &&
3479 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3480 	      core->ops->recalc_rate)) {
3481 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3482 		       __func__, core->name);
3483 		ret = -EINVAL;
3484 		goto out;
3485 	}
3486 
3487 	if (core->ops->set_parent && !core->ops->get_parent) {
3488 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3489 		       __func__, core->name);
3490 		ret = -EINVAL;
3491 		goto out;
3492 	}
3493 
3494 	if (core->num_parents > 1 && !core->ops->get_parent) {
3495 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3496 		       __func__, core->name);
3497 		ret = -EINVAL;
3498 		goto out;
3499 	}
3500 
3501 	if (core->ops->set_rate_and_parent &&
3502 			!(core->ops->set_parent && core->ops->set_rate)) {
3503 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3504 				__func__, core->name);
3505 		ret = -EINVAL;
3506 		goto out;
3507 	}
3508 
3509 	/*
3510 	 * optional platform-specific magic
3511 	 *
3512 	 * The .init callback is not used by any of the basic clock types, but
3513 	 * exists for weird hardware that must perform initialization magic for
3514 	 * CCF to get an accurate view of clock for any other callbacks. It may
3515 	 * also be used needs to perform dynamic allocations. Such allocation
3516 	 * must be freed in the terminate() callback.
3517 	 * This callback shall not be used to initialize the parameters state,
3518 	 * such as rate, parent, etc ...
3519 	 *
3520 	 * If it exist, this callback should called before any other callback of
3521 	 * the clock
3522 	 */
3523 	if (core->ops->init) {
3524 		ret = core->ops->init(core->hw);
3525 		if (ret)
3526 			goto out;
3527 	}
3528 
3529 	parent = core->parent = __clk_init_parent(core);
3530 
3531 	/*
3532 	 * Populate core->parent if parent has already been clk_core_init'd. If
3533 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3534 	 * list.  If clk doesn't have any parents then place it in the root
3535 	 * clk list.
3536 	 *
3537 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3538 	 * clocks and re-parent any that are children of the clock currently
3539 	 * being clk_init'd.
3540 	 */
3541 	if (parent) {
3542 		hlist_add_head(&core->child_node, &parent->children);
3543 		core->orphan = parent->orphan;
3544 	} else if (!core->num_parents) {
3545 		hlist_add_head(&core->child_node, &clk_root_list);
3546 		core->orphan = false;
3547 	} else {
3548 		hlist_add_head(&core->child_node, &clk_orphan_list);
3549 		core->orphan = true;
3550 	}
3551 
3552 	/*
3553 	 * Set clk's accuracy.  The preferred method is to use
3554 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3555 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3556 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3557 	 * clock).
3558 	 */
3559 	if (core->ops->recalc_accuracy)
3560 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3561 					clk_core_get_accuracy_no_lock(parent));
3562 	else if (parent)
3563 		core->accuracy = parent->accuracy;
3564 	else
3565 		core->accuracy = 0;
3566 
3567 	/*
3568 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3569 	 * Since a phase is by definition relative to its parent, just
3570 	 * query the current clock phase, or just assume it's in phase.
3571 	 */
3572 	phase = clk_core_get_phase(core);
3573 	if (phase < 0) {
3574 		ret = phase;
3575 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3576 			core->name);
3577 		goto out;
3578 	}
3579 
3580 	/*
3581 	 * Set clk's duty cycle.
3582 	 */
3583 	clk_core_update_duty_cycle_nolock(core);
3584 
3585 	/*
3586 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3587 	 * simple clocks and lazy developers the default fallback is to use the
3588 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3589 	 * then rate is set to zero.
3590 	 */
3591 	if (core->ops->recalc_rate)
3592 		rate = core->ops->recalc_rate(core->hw,
3593 				clk_core_get_rate_nolock(parent));
3594 	else if (parent)
3595 		rate = parent->rate;
3596 	else
3597 		rate = 0;
3598 	core->rate = core->req_rate = rate;
3599 
3600 	/*
3601 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3602 	 * don't get accidentally disabled when walking the orphan tree and
3603 	 * reparenting clocks
3604 	 */
3605 	if (core->flags & CLK_IS_CRITICAL) {
3606 		unsigned long flags;
3607 
3608 		ret = clk_core_prepare(core);
3609 		if (ret) {
3610 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3611 			       __func__, core->name);
3612 			goto out;
3613 		}
3614 
3615 		flags = clk_enable_lock();
3616 		ret = clk_core_enable(core);
3617 		clk_enable_unlock(flags);
3618 		if (ret) {
3619 			pr_warn("%s: critical clk '%s' failed to enable\n",
3620 			       __func__, core->name);
3621 			clk_core_unprepare(core);
3622 			goto out;
3623 		}
3624 	}
3625 
3626 	clk_core_reparent_orphans_nolock();
3627 
3628 
3629 	kref_init(&core->ref);
3630 out:
3631 	clk_pm_runtime_put(core);
3632 unlock:
3633 	if (ret) {
3634 		hlist_del_init(&core->child_node);
3635 		core->hw->core = NULL;
3636 	}
3637 
3638 	clk_prepare_unlock();
3639 
3640 	if (!ret)
3641 		clk_debug_register(core);
3642 
3643 	return ret;
3644 }
3645 
3646 /**
3647  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3648  * @core: clk to add consumer to
3649  * @clk: consumer to link to a clk
3650  */
clk_core_link_consumer(struct clk_core * core,struct clk * clk)3651 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3652 {
3653 	clk_prepare_lock();
3654 	hlist_add_head(&clk->clks_node, &core->clks);
3655 	clk_prepare_unlock();
3656 }
3657 
3658 /**
3659  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3660  * @clk: consumer to unlink
3661  */
clk_core_unlink_consumer(struct clk * clk)3662 static void clk_core_unlink_consumer(struct clk *clk)
3663 {
3664 	lockdep_assert_held(&prepare_lock);
3665 	hlist_del(&clk->clks_node);
3666 }
3667 
3668 /**
3669  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3670  * @core: clk to allocate a consumer for
3671  * @dev_id: string describing device name
3672  * @con_id: connection ID string on device
3673  *
3674  * Returns: clk consumer left unlinked from the consumer list
3675  */
alloc_clk(struct clk_core * core,const char * dev_id,const char * con_id)3676 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3677 			     const char *con_id)
3678 {
3679 	struct clk *clk;
3680 
3681 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3682 	if (!clk)
3683 		return ERR_PTR(-ENOMEM);
3684 
3685 	clk->core = core;
3686 	clk->dev_id = dev_id;
3687 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3688 	clk->max_rate = ULONG_MAX;
3689 
3690 	return clk;
3691 }
3692 
3693 /**
3694  * free_clk - Free a clk consumer
3695  * @clk: clk consumer to free
3696  *
3697  * Note, this assumes the clk has been unlinked from the clk_core consumer
3698  * list.
3699  */
free_clk(struct clk * clk)3700 static void free_clk(struct clk *clk)
3701 {
3702 	kfree_const(clk->con_id);
3703 	kfree(clk);
3704 }
3705 
3706 /**
3707  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3708  * a clk_hw
3709  * @dev: clk consumer device
3710  * @hw: clk_hw associated with the clk being consumed
3711  * @dev_id: string describing device name
3712  * @con_id: connection ID string on device
3713  *
3714  * This is the main function used to create a clk pointer for use by clk
3715  * consumers. It connects a consumer to the clk_core and clk_hw structures
3716  * used by the framework and clk provider respectively.
3717  */
clk_hw_create_clk(struct device * dev,struct clk_hw * hw,const char * dev_id,const char * con_id)3718 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3719 			      const char *dev_id, const char *con_id)
3720 {
3721 	struct clk *clk;
3722 	struct clk_core *core;
3723 
3724 	/* This is to allow this function to be chained to others */
3725 	if (IS_ERR_OR_NULL(hw))
3726 		return ERR_CAST(hw);
3727 
3728 	core = hw->core;
3729 	clk = alloc_clk(core, dev_id, con_id);
3730 	if (IS_ERR(clk))
3731 		return clk;
3732 	clk->dev = dev;
3733 
3734 	if (!try_module_get(core->owner)) {
3735 		free_clk(clk);
3736 		return ERR_PTR(-ENOENT);
3737 	}
3738 
3739 	kref_get(&core->ref);
3740 	clk_core_link_consumer(core, clk);
3741 
3742 	return clk;
3743 }
3744 
clk_cpy_name(const char ** dst_p,const char * src,bool must_exist)3745 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3746 {
3747 	const char *dst;
3748 
3749 	if (!src) {
3750 		if (must_exist)
3751 			return -EINVAL;
3752 		return 0;
3753 	}
3754 
3755 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3756 	if (!dst)
3757 		return -ENOMEM;
3758 
3759 	return 0;
3760 }
3761 
clk_core_populate_parent_map(struct clk_core * core,const struct clk_init_data * init)3762 static int clk_core_populate_parent_map(struct clk_core *core,
3763 					const struct clk_init_data *init)
3764 {
3765 	u8 num_parents = init->num_parents;
3766 	const char * const *parent_names = init->parent_names;
3767 	const struct clk_hw **parent_hws = init->parent_hws;
3768 	const struct clk_parent_data *parent_data = init->parent_data;
3769 	int i, ret = 0;
3770 	struct clk_parent_map *parents, *parent;
3771 
3772 	if (!num_parents)
3773 		return 0;
3774 
3775 	/*
3776 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3777 	 * having a cache of names/clk_hw pointers to clk_core pointers.
3778 	 */
3779 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3780 	core->parents = parents;
3781 	if (!parents)
3782 		return -ENOMEM;
3783 
3784 	/* Copy everything over because it might be __initdata */
3785 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3786 		parent->index = -1;
3787 		if (parent_names) {
3788 			/* throw a WARN if any entries are NULL */
3789 			WARN(!parent_names[i],
3790 				"%s: invalid NULL in %s's .parent_names\n",
3791 				__func__, core->name);
3792 			ret = clk_cpy_name(&parent->name, parent_names[i],
3793 					   true);
3794 		} else if (parent_data) {
3795 			parent->hw = parent_data[i].hw;
3796 			parent->index = parent_data[i].index;
3797 			ret = clk_cpy_name(&parent->fw_name,
3798 					   parent_data[i].fw_name, false);
3799 			if (!ret)
3800 				ret = clk_cpy_name(&parent->name,
3801 						   parent_data[i].name,
3802 						   false);
3803 		} else if (parent_hws) {
3804 			parent->hw = parent_hws[i];
3805 		} else {
3806 			ret = -EINVAL;
3807 			WARN(1, "Must specify parents if num_parents > 0\n");
3808 		}
3809 
3810 		if (ret) {
3811 			do {
3812 				kfree_const(parents[i].name);
3813 				kfree_const(parents[i].fw_name);
3814 			} while (--i >= 0);
3815 			kfree(parents);
3816 
3817 			return ret;
3818 		}
3819 	}
3820 
3821 	return 0;
3822 }
3823 
clk_core_free_parent_map(struct clk_core * core)3824 static void clk_core_free_parent_map(struct clk_core *core)
3825 {
3826 	int i = core->num_parents;
3827 
3828 	if (!core->num_parents)
3829 		return;
3830 
3831 	while (--i >= 0) {
3832 		kfree_const(core->parents[i].name);
3833 		kfree_const(core->parents[i].fw_name);
3834 	}
3835 
3836 	kfree(core->parents);
3837 }
3838 
3839 static struct clk *
__clk_register(struct device * dev,struct device_node * np,struct clk_hw * hw)3840 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3841 {
3842 	int ret;
3843 	struct clk_core *core;
3844 	const struct clk_init_data *init = hw->init;
3845 
3846 	/*
3847 	 * The init data is not supposed to be used outside of registration path.
3848 	 * Set it to NULL so that provider drivers can't use it either and so that
3849 	 * we catch use of hw->init early on in the core.
3850 	 */
3851 	hw->init = NULL;
3852 
3853 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3854 	if (!core) {
3855 		ret = -ENOMEM;
3856 		goto fail_out;
3857 	}
3858 
3859 	core->name = kstrdup_const(init->name, GFP_KERNEL);
3860 	if (!core->name) {
3861 		ret = -ENOMEM;
3862 		goto fail_name;
3863 	}
3864 
3865 	if (WARN_ON(!init->ops)) {
3866 		ret = -EINVAL;
3867 		goto fail_ops;
3868 	}
3869 	core->ops = init->ops;
3870 
3871 	if (dev && pm_runtime_enabled(dev))
3872 		core->rpm_enabled = true;
3873 	core->dev = dev;
3874 	core->of_node = np;
3875 	if (dev && dev->driver)
3876 		core->owner = dev->driver->owner;
3877 	core->hw = hw;
3878 	core->flags = init->flags;
3879 	core->num_parents = init->num_parents;
3880 	core->min_rate = 0;
3881 	core->max_rate = ULONG_MAX;
3882 
3883 	ret = clk_core_populate_parent_map(core, init);
3884 	if (ret)
3885 		goto fail_parents;
3886 
3887 	INIT_HLIST_HEAD(&core->clks);
3888 
3889 	/*
3890 	 * Don't call clk_hw_create_clk() here because that would pin the
3891 	 * provider module to itself and prevent it from ever being removed.
3892 	 */
3893 	hw->clk = alloc_clk(core, NULL, NULL);
3894 	if (IS_ERR(hw->clk)) {
3895 		ret = PTR_ERR(hw->clk);
3896 		goto fail_create_clk;
3897 	}
3898 
3899 	clk_core_link_consumer(core, hw->clk);
3900 
3901 	ret = __clk_core_init(core);
3902 	if (!ret)
3903 		return hw->clk;
3904 
3905 	clk_prepare_lock();
3906 	clk_core_unlink_consumer(hw->clk);
3907 	clk_prepare_unlock();
3908 
3909 	free_clk(hw->clk);
3910 	hw->clk = NULL;
3911 
3912 fail_create_clk:
3913 	clk_core_free_parent_map(core);
3914 fail_parents:
3915 fail_ops:
3916 	kfree_const(core->name);
3917 fail_name:
3918 	kfree(core);
3919 fail_out:
3920 	return ERR_PTR(ret);
3921 }
3922 
3923 /**
3924  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
3925  * @dev: Device to get device node of
3926  *
3927  * Return: device node pointer of @dev, or the device node pointer of
3928  * @dev->parent if dev doesn't have a device node, or NULL if neither
3929  * @dev or @dev->parent have a device node.
3930  */
dev_or_parent_of_node(struct device * dev)3931 static struct device_node *dev_or_parent_of_node(struct device *dev)
3932 {
3933 	struct device_node *np;
3934 
3935 	if (!dev)
3936 		return NULL;
3937 
3938 	np = dev_of_node(dev);
3939 	if (!np)
3940 		np = dev_of_node(dev->parent);
3941 
3942 	return np;
3943 }
3944 
3945 /**
3946  * clk_register - allocate a new clock, register it and return an opaque cookie
3947  * @dev: device that is registering this clock
3948  * @hw: link to hardware-specific clock data
3949  *
3950  * clk_register is the *deprecated* interface for populating the clock tree with
3951  * new clock nodes. Use clk_hw_register() instead.
3952  *
3953  * Returns: a pointer to the newly allocated struct clk which
3954  * cannot be dereferenced by driver code but may be used in conjunction with the
3955  * rest of the clock API.  In the event of an error clk_register will return an
3956  * error code; drivers must test for an error code after calling clk_register.
3957  */
clk_register(struct device * dev,struct clk_hw * hw)3958 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3959 {
3960 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
3961 }
3962 EXPORT_SYMBOL_GPL(clk_register);
3963 
3964 /**
3965  * clk_hw_register - register a clk_hw and return an error code
3966  * @dev: device that is registering this clock
3967  * @hw: link to hardware-specific clock data
3968  *
3969  * clk_hw_register is the primary interface for populating the clock tree with
3970  * new clock nodes. It returns an integer equal to zero indicating success or
3971  * less than zero indicating failure. Drivers must test for an error code after
3972  * calling clk_hw_register().
3973  */
clk_hw_register(struct device * dev,struct clk_hw * hw)3974 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3975 {
3976 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
3977 			       hw));
3978 }
3979 EXPORT_SYMBOL_GPL(clk_hw_register);
3980 
3981 /*
3982  * of_clk_hw_register - register a clk_hw and return an error code
3983  * @node: device_node of device that is registering this clock
3984  * @hw: link to hardware-specific clock data
3985  *
3986  * of_clk_hw_register() is the primary interface for populating the clock tree
3987  * with new clock nodes when a struct device is not available, but a struct
3988  * device_node is. It returns an integer equal to zero indicating success or
3989  * less than zero indicating failure. Drivers must test for an error code after
3990  * calling of_clk_hw_register().
3991  */
of_clk_hw_register(struct device_node * node,struct clk_hw * hw)3992 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3993 {
3994 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3995 }
3996 EXPORT_SYMBOL_GPL(of_clk_hw_register);
3997 
3998 /* Free memory allocated for a clock. */
__clk_release(struct kref * ref)3999 static void __clk_release(struct kref *ref)
4000 {
4001 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4002 
4003 	lockdep_assert_held(&prepare_lock);
4004 
4005 	clk_core_free_parent_map(core);
4006 	kfree_const(core->name);
4007 	kfree(core);
4008 }
4009 
4010 /*
4011  * Empty clk_ops for unregistered clocks. These are used temporarily
4012  * after clk_unregister() was called on a clock and until last clock
4013  * consumer calls clk_put() and the struct clk object is freed.
4014  */
clk_nodrv_prepare_enable(struct clk_hw * hw)4015 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4016 {
4017 	return -ENXIO;
4018 }
4019 
clk_nodrv_disable_unprepare(struct clk_hw * hw)4020 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4021 {
4022 	WARN_ON_ONCE(1);
4023 }
4024 
clk_nodrv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)4025 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4026 					unsigned long parent_rate)
4027 {
4028 	return -ENXIO;
4029 }
4030 
clk_nodrv_set_parent(struct clk_hw * hw,u8 index)4031 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4032 {
4033 	return -ENXIO;
4034 }
4035 
4036 static const struct clk_ops clk_nodrv_ops = {
4037 	.enable		= clk_nodrv_prepare_enable,
4038 	.disable	= clk_nodrv_disable_unprepare,
4039 	.prepare	= clk_nodrv_prepare_enable,
4040 	.unprepare	= clk_nodrv_disable_unprepare,
4041 	.set_rate	= clk_nodrv_set_rate,
4042 	.set_parent	= clk_nodrv_set_parent,
4043 };
4044 
clk_core_evict_parent_cache_subtree(struct clk_core * root,struct clk_core * target)4045 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4046 						struct clk_core *target)
4047 {
4048 	int i;
4049 	struct clk_core *child;
4050 
4051 	for (i = 0; i < root->num_parents; i++)
4052 		if (root->parents[i].core == target)
4053 			root->parents[i].core = NULL;
4054 
4055 	hlist_for_each_entry(child, &root->children, child_node)
4056 		clk_core_evict_parent_cache_subtree(child, target);
4057 }
4058 
4059 /* Remove this clk from all parent caches */
clk_core_evict_parent_cache(struct clk_core * core)4060 static void clk_core_evict_parent_cache(struct clk_core *core)
4061 {
4062 	struct hlist_head **lists;
4063 	struct clk_core *root;
4064 
4065 	lockdep_assert_held(&prepare_lock);
4066 
4067 	for (lists = all_lists; *lists; lists++)
4068 		hlist_for_each_entry(root, *lists, child_node)
4069 			clk_core_evict_parent_cache_subtree(root, core);
4070 
4071 }
4072 
4073 /**
4074  * clk_unregister - unregister a currently registered clock
4075  * @clk: clock to unregister
4076  */
clk_unregister(struct clk * clk)4077 void clk_unregister(struct clk *clk)
4078 {
4079 	unsigned long flags;
4080 	const struct clk_ops *ops;
4081 
4082 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4083 		return;
4084 
4085 	clk_debug_unregister(clk->core);
4086 
4087 	clk_prepare_lock();
4088 
4089 	ops = clk->core->ops;
4090 	if (ops == &clk_nodrv_ops) {
4091 		pr_err("%s: unregistered clock: %s\n", __func__,
4092 		       clk->core->name);
4093 		goto unlock;
4094 	}
4095 	/*
4096 	 * Assign empty clock ops for consumers that might still hold
4097 	 * a reference to this clock.
4098 	 */
4099 	flags = clk_enable_lock();
4100 	clk->core->ops = &clk_nodrv_ops;
4101 	clk_enable_unlock(flags);
4102 
4103 	if (ops->terminate)
4104 		ops->terminate(clk->core->hw);
4105 
4106 	if (!hlist_empty(&clk->core->children)) {
4107 		struct clk_core *child;
4108 		struct hlist_node *t;
4109 
4110 		/* Reparent all children to the orphan list. */
4111 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4112 					  child_node)
4113 			clk_core_set_parent_nolock(child, NULL);
4114 	}
4115 
4116 	clk_core_evict_parent_cache(clk->core);
4117 
4118 	hlist_del_init(&clk->core->child_node);
4119 
4120 	if (clk->core->prepare_count)
4121 		pr_warn("%s: unregistering prepared clock: %s\n",
4122 					__func__, clk->core->name);
4123 
4124 	if (clk->core->protect_count)
4125 		pr_warn("%s: unregistering protected clock: %s\n",
4126 					__func__, clk->core->name);
4127 
4128 	kref_put(&clk->core->ref, __clk_release);
4129 	free_clk(clk);
4130 unlock:
4131 	clk_prepare_unlock();
4132 }
4133 EXPORT_SYMBOL_GPL(clk_unregister);
4134 
4135 /**
4136  * clk_hw_unregister - unregister a currently registered clk_hw
4137  * @hw: hardware-specific clock data to unregister
4138  */
clk_hw_unregister(struct clk_hw * hw)4139 void clk_hw_unregister(struct clk_hw *hw)
4140 {
4141 	clk_unregister(hw->clk);
4142 }
4143 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4144 
devm_clk_release(struct device * dev,void * res)4145 static void devm_clk_release(struct device *dev, void *res)
4146 {
4147 	clk_unregister(*(struct clk **)res);
4148 }
4149 
devm_clk_hw_release(struct device * dev,void * res)4150 static void devm_clk_hw_release(struct device *dev, void *res)
4151 {
4152 	clk_hw_unregister(*(struct clk_hw **)res);
4153 }
4154 
4155 /**
4156  * devm_clk_register - resource managed clk_register()
4157  * @dev: device that is registering this clock
4158  * @hw: link to hardware-specific clock data
4159  *
4160  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4161  *
4162  * Clocks returned from this function are automatically clk_unregister()ed on
4163  * driver detach. See clk_register() for more information.
4164  */
devm_clk_register(struct device * dev,struct clk_hw * hw)4165 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4166 {
4167 	struct clk *clk;
4168 	struct clk **clkp;
4169 
4170 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4171 	if (!clkp)
4172 		return ERR_PTR(-ENOMEM);
4173 
4174 	clk = clk_register(dev, hw);
4175 	if (!IS_ERR(clk)) {
4176 		*clkp = clk;
4177 		devres_add(dev, clkp);
4178 	} else {
4179 		devres_free(clkp);
4180 	}
4181 
4182 	return clk;
4183 }
4184 EXPORT_SYMBOL_GPL(devm_clk_register);
4185 
4186 /**
4187  * devm_clk_hw_register - resource managed clk_hw_register()
4188  * @dev: device that is registering this clock
4189  * @hw: link to hardware-specific clock data
4190  *
4191  * Managed clk_hw_register(). Clocks registered by this function are
4192  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4193  * for more information.
4194  */
devm_clk_hw_register(struct device * dev,struct clk_hw * hw)4195 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4196 {
4197 	struct clk_hw **hwp;
4198 	int ret;
4199 
4200 	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
4201 	if (!hwp)
4202 		return -ENOMEM;
4203 
4204 	ret = clk_hw_register(dev, hw);
4205 	if (!ret) {
4206 		*hwp = hw;
4207 		devres_add(dev, hwp);
4208 	} else {
4209 		devres_free(hwp);
4210 	}
4211 
4212 	return ret;
4213 }
4214 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4215 
devm_clk_match(struct device * dev,void * res,void * data)4216 static int devm_clk_match(struct device *dev, void *res, void *data)
4217 {
4218 	struct clk *c = res;
4219 	if (WARN_ON(!c))
4220 		return 0;
4221 	return c == data;
4222 }
4223 
devm_clk_hw_match(struct device * dev,void * res,void * data)4224 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4225 {
4226 	struct clk_hw *hw = res;
4227 
4228 	if (WARN_ON(!hw))
4229 		return 0;
4230 	return hw == data;
4231 }
4232 
4233 /**
4234  * devm_clk_unregister - resource managed clk_unregister()
4235  * @dev: device that is unregistering the clock data
4236  * @clk: clock to unregister
4237  *
4238  * Deallocate a clock allocated with devm_clk_register(). Normally
4239  * this function will not need to be called and the resource management
4240  * code will ensure that the resource is freed.
4241  */
devm_clk_unregister(struct device * dev,struct clk * clk)4242 void devm_clk_unregister(struct device *dev, struct clk *clk)
4243 {
4244 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
4245 }
4246 EXPORT_SYMBOL_GPL(devm_clk_unregister);
4247 
4248 /**
4249  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4250  * @dev: device that is unregistering the hardware-specific clock data
4251  * @hw: link to hardware-specific clock data
4252  *
4253  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4254  * this function will not need to be called and the resource management
4255  * code will ensure that the resource is freed.
4256  */
devm_clk_hw_unregister(struct device * dev,struct clk_hw * hw)4257 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4258 {
4259 	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
4260 				hw));
4261 }
4262 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4263 
4264 /*
4265  * clkdev helpers
4266  */
4267 
__clk_put(struct clk * clk)4268 void __clk_put(struct clk *clk)
4269 {
4270 	struct module *owner;
4271 
4272 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4273 		return;
4274 
4275 	clk_prepare_lock();
4276 
4277 	/*
4278 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4279 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4280 	 * and by that same consumer
4281 	 */
4282 	if (WARN_ON(clk->exclusive_count)) {
4283 		/* We voiced our concern, let's sanitize the situation */
4284 		clk->core->protect_count -= (clk->exclusive_count - 1);
4285 		clk_core_rate_unprotect(clk->core);
4286 		clk->exclusive_count = 0;
4287 	}
4288 
4289 	hlist_del(&clk->clks_node);
4290 	if (clk->min_rate > clk->core->req_rate ||
4291 	    clk->max_rate < clk->core->req_rate)
4292 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4293 
4294 	owner = clk->core->owner;
4295 	kref_put(&clk->core->ref, __clk_release);
4296 
4297 	clk_prepare_unlock();
4298 
4299 	module_put(owner);
4300 
4301 	free_clk(clk);
4302 }
4303 
4304 /***        clk rate change notifiers        ***/
4305 
4306 /**
4307  * clk_notifier_register - add a clk rate change notifier
4308  * @clk: struct clk * to watch
4309  * @nb: struct notifier_block * with callback info
4310  *
4311  * Request notification when clk's rate changes.  This uses an SRCU
4312  * notifier because we want it to block and notifier unregistrations are
4313  * uncommon.  The callbacks associated with the notifier must not
4314  * re-enter into the clk framework by calling any top-level clk APIs;
4315  * this will cause a nested prepare_lock mutex.
4316  *
4317  * In all notification cases (pre, post and abort rate change) the original
4318  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4319  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4320  *
4321  * clk_notifier_register() must be called from non-atomic context.
4322  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4323  * allocation failure; otherwise, passes along the return value of
4324  * srcu_notifier_chain_register().
4325  */
clk_notifier_register(struct clk * clk,struct notifier_block * nb)4326 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4327 {
4328 	struct clk_notifier *cn;
4329 	int ret = -ENOMEM;
4330 
4331 	if (!clk || !nb)
4332 		return -EINVAL;
4333 
4334 	clk_prepare_lock();
4335 
4336 	/* search the list of notifiers for this clk */
4337 	list_for_each_entry(cn, &clk_notifier_list, node)
4338 		if (cn->clk == clk)
4339 			goto found;
4340 
4341 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4342 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4343 	if (!cn)
4344 		goto out;
4345 
4346 	cn->clk = clk;
4347 	srcu_init_notifier_head(&cn->notifier_head);
4348 
4349 	list_add(&cn->node, &clk_notifier_list);
4350 
4351 found:
4352 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4353 
4354 	clk->core->notifier_count++;
4355 
4356 out:
4357 	clk_prepare_unlock();
4358 
4359 	return ret;
4360 }
4361 EXPORT_SYMBOL_GPL(clk_notifier_register);
4362 
4363 /**
4364  * clk_notifier_unregister - remove a clk rate change notifier
4365  * @clk: struct clk *
4366  * @nb: struct notifier_block * with callback info
4367  *
4368  * Request no further notification for changes to 'clk' and frees memory
4369  * allocated in clk_notifier_register.
4370  *
4371  * Returns -EINVAL if called with null arguments; otherwise, passes
4372  * along the return value of srcu_notifier_chain_unregister().
4373  */
clk_notifier_unregister(struct clk * clk,struct notifier_block * nb)4374 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4375 {
4376 	struct clk_notifier *cn;
4377 	int ret = -ENOENT;
4378 
4379 	if (!clk || !nb)
4380 		return -EINVAL;
4381 
4382 	clk_prepare_lock();
4383 
4384 	list_for_each_entry(cn, &clk_notifier_list, node) {
4385 		if (cn->clk == clk) {
4386 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4387 
4388 			clk->core->notifier_count--;
4389 
4390 			/* XXX the notifier code should handle this better */
4391 			if (!cn->notifier_head.head) {
4392 				srcu_cleanup_notifier_head(&cn->notifier_head);
4393 				list_del(&cn->node);
4394 				kfree(cn);
4395 			}
4396 			break;
4397 		}
4398 	}
4399 
4400 	clk_prepare_unlock();
4401 
4402 	return ret;
4403 }
4404 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4405 
4406 #ifdef CONFIG_OF
clk_core_reparent_orphans(void)4407 static void clk_core_reparent_orphans(void)
4408 {
4409 	clk_prepare_lock();
4410 	clk_core_reparent_orphans_nolock();
4411 	clk_prepare_unlock();
4412 }
4413 
4414 /**
4415  * struct of_clk_provider - Clock provider registration structure
4416  * @link: Entry in global list of clock providers
4417  * @node: Pointer to device tree node of clock provider
4418  * @get: Get clock callback.  Returns NULL or a struct clk for the
4419  *       given clock specifier
4420  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4421  *       struct clk_hw for the given clock specifier
4422  * @data: context pointer to be passed into @get callback
4423  */
4424 struct of_clk_provider {
4425 	struct list_head link;
4426 
4427 	struct device_node *node;
4428 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4429 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4430 	void *data;
4431 };
4432 
4433 extern struct of_device_id __clk_of_table;
4434 static const struct of_device_id __clk_of_table_sentinel
4435 	__used __section("__clk_of_table_end");
4436 
4437 static LIST_HEAD(of_clk_providers);
4438 static DEFINE_MUTEX(of_clk_mutex);
4439 
of_clk_src_simple_get(struct of_phandle_args * clkspec,void * data)4440 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4441 				     void *data)
4442 {
4443 	return data;
4444 }
4445 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4446 
of_clk_hw_simple_get(struct of_phandle_args * clkspec,void * data)4447 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4448 {
4449 	return data;
4450 }
4451 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4452 
of_clk_src_onecell_get(struct of_phandle_args * clkspec,void * data)4453 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4454 {
4455 	struct clk_onecell_data *clk_data = data;
4456 	unsigned int idx = clkspec->args[0];
4457 
4458 	if (idx >= clk_data->clk_num) {
4459 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4460 		return ERR_PTR(-EINVAL);
4461 	}
4462 
4463 	return clk_data->clks[idx];
4464 }
4465 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4466 
4467 struct clk_hw *
of_clk_hw_onecell_get(struct of_phandle_args * clkspec,void * data)4468 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4469 {
4470 	struct clk_hw_onecell_data *hw_data = data;
4471 	unsigned int idx = clkspec->args[0];
4472 
4473 	if (idx >= hw_data->num) {
4474 		pr_err("%s: invalid index %u\n", __func__, idx);
4475 		return ERR_PTR(-EINVAL);
4476 	}
4477 
4478 	return hw_data->hws[idx];
4479 }
4480 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4481 
4482 /**
4483  * of_clk_add_provider() - Register a clock provider for a node
4484  * @np: Device node pointer associated with clock provider
4485  * @clk_src_get: callback for decoding clock
4486  * @data: context pointer for @clk_src_get callback.
4487  *
4488  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4489  */
of_clk_add_provider(struct device_node * np,struct clk * (* clk_src_get)(struct of_phandle_args * clkspec,void * data),void * data)4490 int of_clk_add_provider(struct device_node *np,
4491 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4492 						   void *data),
4493 			void *data)
4494 {
4495 	struct of_clk_provider *cp;
4496 	int ret;
4497 
4498 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4499 	if (!cp)
4500 		return -ENOMEM;
4501 
4502 	cp->node = of_node_get(np);
4503 	cp->data = data;
4504 	cp->get = clk_src_get;
4505 
4506 	mutex_lock(&of_clk_mutex);
4507 	list_add(&cp->link, &of_clk_providers);
4508 	mutex_unlock(&of_clk_mutex);
4509 	pr_debug("Added clock from %pOF\n", np);
4510 
4511 	clk_core_reparent_orphans();
4512 
4513 	ret = of_clk_set_defaults(np, true);
4514 	if (ret < 0)
4515 		of_clk_del_provider(np);
4516 
4517 	return ret;
4518 }
4519 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4520 
4521 /**
4522  * of_clk_add_hw_provider() - Register a clock provider for a node
4523  * @np: Device node pointer associated with clock provider
4524  * @get: callback for decoding clk_hw
4525  * @data: context pointer for @get callback.
4526  */
of_clk_add_hw_provider(struct device_node * np,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)4527 int of_clk_add_hw_provider(struct device_node *np,
4528 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4529 						 void *data),
4530 			   void *data)
4531 {
4532 	struct of_clk_provider *cp;
4533 	int ret;
4534 
4535 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4536 	if (!cp)
4537 		return -ENOMEM;
4538 
4539 	cp->node = of_node_get(np);
4540 	cp->data = data;
4541 	cp->get_hw = get;
4542 
4543 	mutex_lock(&of_clk_mutex);
4544 	list_add(&cp->link, &of_clk_providers);
4545 	mutex_unlock(&of_clk_mutex);
4546 	pr_debug("Added clk_hw provider from %pOF\n", np);
4547 
4548 	clk_core_reparent_orphans();
4549 
4550 	ret = of_clk_set_defaults(np, true);
4551 	if (ret < 0)
4552 		of_clk_del_provider(np);
4553 
4554 	return ret;
4555 }
4556 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4557 
devm_of_clk_release_provider(struct device * dev,void * res)4558 static void devm_of_clk_release_provider(struct device *dev, void *res)
4559 {
4560 	of_clk_del_provider(*(struct device_node **)res);
4561 }
4562 
4563 /*
4564  * We allow a child device to use its parent device as the clock provider node
4565  * for cases like MFD sub-devices where the child device driver wants to use
4566  * devm_*() APIs but not list the device in DT as a sub-node.
4567  */
get_clk_provider_node(struct device * dev)4568 static struct device_node *get_clk_provider_node(struct device *dev)
4569 {
4570 	struct device_node *np, *parent_np;
4571 
4572 	np = dev->of_node;
4573 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4574 
4575 	if (!of_find_property(np, "#clock-cells", NULL))
4576 		if (of_find_property(parent_np, "#clock-cells", NULL))
4577 			np = parent_np;
4578 
4579 	return np;
4580 }
4581 
4582 /**
4583  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4584  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4585  * @get: callback for decoding clk_hw
4586  * @data: context pointer for @get callback
4587  *
4588  * Registers clock provider for given device's node. If the device has no DT
4589  * node or if the device node lacks of clock provider information (#clock-cells)
4590  * then the parent device's node is scanned for this information. If parent node
4591  * has the #clock-cells then it is used in registration. Provider is
4592  * automatically released at device exit.
4593  *
4594  * Return: 0 on success or an errno on failure.
4595  */
devm_of_clk_add_hw_provider(struct device * dev,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)4596 int devm_of_clk_add_hw_provider(struct device *dev,
4597 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4598 					      void *data),
4599 			void *data)
4600 {
4601 	struct device_node **ptr, *np;
4602 	int ret;
4603 
4604 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4605 			   GFP_KERNEL);
4606 	if (!ptr)
4607 		return -ENOMEM;
4608 
4609 	np = get_clk_provider_node(dev);
4610 	ret = of_clk_add_hw_provider(np, get, data);
4611 	if (!ret) {
4612 		*ptr = np;
4613 		devres_add(dev, ptr);
4614 	} else {
4615 		devres_free(ptr);
4616 	}
4617 
4618 	return ret;
4619 }
4620 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4621 
4622 /**
4623  * of_clk_del_provider() - Remove a previously registered clock provider
4624  * @np: Device node pointer associated with clock provider
4625  */
of_clk_del_provider(struct device_node * np)4626 void of_clk_del_provider(struct device_node *np)
4627 {
4628 	struct of_clk_provider *cp;
4629 
4630 	mutex_lock(&of_clk_mutex);
4631 	list_for_each_entry(cp, &of_clk_providers, link) {
4632 		if (cp->node == np) {
4633 			list_del(&cp->link);
4634 			of_node_put(cp->node);
4635 			kfree(cp);
4636 			break;
4637 		}
4638 	}
4639 	mutex_unlock(&of_clk_mutex);
4640 }
4641 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4642 
devm_clk_provider_match(struct device * dev,void * res,void * data)4643 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4644 {
4645 	struct device_node **np = res;
4646 
4647 	if (WARN_ON(!np || !*np))
4648 		return 0;
4649 
4650 	return *np == data;
4651 }
4652 
4653 /**
4654  * devm_of_clk_del_provider() - Remove clock provider registered using devm
4655  * @dev: Device to whose lifetime the clock provider was bound
4656  */
devm_of_clk_del_provider(struct device * dev)4657 void devm_of_clk_del_provider(struct device *dev)
4658 {
4659 	int ret;
4660 	struct device_node *np = get_clk_provider_node(dev);
4661 
4662 	ret = devres_release(dev, devm_of_clk_release_provider,
4663 			     devm_clk_provider_match, np);
4664 
4665 	WARN_ON(ret);
4666 }
4667 EXPORT_SYMBOL(devm_of_clk_del_provider);
4668 
4669 /**
4670  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4671  * @np: device node to parse clock specifier from
4672  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4673  * @name: clock name to find and parse. If name is NULL, the index is used
4674  * @out_args: Result of parsing the clock specifier
4675  *
4676  * Parses a device node's "clocks" and "clock-names" properties to find the
4677  * phandle and cells for the index or name that is desired. The resulting clock
4678  * specifier is placed into @out_args, or an errno is returned when there's a
4679  * parsing error. The @index argument is ignored if @name is non-NULL.
4680  *
4681  * Example:
4682  *
4683  * phandle1: clock-controller@1 {
4684  *	#clock-cells = <2>;
4685  * }
4686  *
4687  * phandle2: clock-controller@2 {
4688  *	#clock-cells = <1>;
4689  * }
4690  *
4691  * clock-consumer@3 {
4692  *	clocks = <&phandle1 1 2 &phandle2 3>;
4693  *	clock-names = "name1", "name2";
4694  * }
4695  *
4696  * To get a device_node for `clock-controller@2' node you may call this
4697  * function a few different ways:
4698  *
4699  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4700  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4701  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4702  *
4703  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4704  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4705  * the "clock-names" property of @np.
4706  */
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)4707 static int of_parse_clkspec(const struct device_node *np, int index,
4708 			    const char *name, struct of_phandle_args *out_args)
4709 {
4710 	int ret = -ENOENT;
4711 
4712 	/* Walk up the tree of devices looking for a clock property that matches */
4713 	while (np) {
4714 		/*
4715 		 * For named clocks, first look up the name in the
4716 		 * "clock-names" property.  If it cannot be found, then index
4717 		 * will be an error code and of_parse_phandle_with_args() will
4718 		 * return -EINVAL.
4719 		 */
4720 		if (name)
4721 			index = of_property_match_string(np, "clock-names", name);
4722 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4723 						 index, out_args);
4724 		if (!ret)
4725 			break;
4726 		if (name && index >= 0)
4727 			break;
4728 
4729 		/*
4730 		 * No matching clock found on this node.  If the parent node
4731 		 * has a "clock-ranges" property, then we can try one of its
4732 		 * clocks.
4733 		 */
4734 		np = np->parent;
4735 		if (np && !of_get_property(np, "clock-ranges", NULL))
4736 			break;
4737 		index = 0;
4738 	}
4739 
4740 	return ret;
4741 }
4742 
4743 static struct clk_hw *
__of_clk_get_hw_from_provider(struct of_clk_provider * provider,struct of_phandle_args * clkspec)4744 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4745 			      struct of_phandle_args *clkspec)
4746 {
4747 	struct clk *clk;
4748 
4749 	if (provider->get_hw)
4750 		return provider->get_hw(clkspec, provider->data);
4751 
4752 	clk = provider->get(clkspec, provider->data);
4753 	if (IS_ERR(clk))
4754 		return ERR_CAST(clk);
4755 	return __clk_get_hw(clk);
4756 }
4757 
4758 static struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)4759 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4760 {
4761 	struct of_clk_provider *provider;
4762 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4763 
4764 	if (!clkspec)
4765 		return ERR_PTR(-EINVAL);
4766 
4767 	mutex_lock(&of_clk_mutex);
4768 	list_for_each_entry(provider, &of_clk_providers, link) {
4769 		if (provider->node == clkspec->np) {
4770 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4771 			if (!IS_ERR(hw))
4772 				break;
4773 		}
4774 	}
4775 	mutex_unlock(&of_clk_mutex);
4776 
4777 	return hw;
4778 }
4779 
4780 /**
4781  * of_clk_get_from_provider() - Lookup a clock from a clock provider
4782  * @clkspec: pointer to a clock specifier data structure
4783  *
4784  * This function looks up a struct clk from the registered list of clock
4785  * providers, an input is a clock specifier data structure as returned
4786  * from the of_parse_phandle_with_args() function call.
4787  */
of_clk_get_from_provider(struct of_phandle_args * clkspec)4788 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4789 {
4790 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4791 
4792 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4793 }
4794 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4795 
of_clk_get_hw(struct device_node * np,int index,const char * con_id)4796 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4797 			     const char *con_id)
4798 {
4799 	int ret;
4800 	struct clk_hw *hw;
4801 	struct of_phandle_args clkspec;
4802 
4803 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4804 	if (ret)
4805 		return ERR_PTR(ret);
4806 
4807 	hw = of_clk_get_hw_from_clkspec(&clkspec);
4808 	of_node_put(clkspec.np);
4809 
4810 	return hw;
4811 }
4812 
__of_clk_get(struct device_node * np,int index,const char * dev_id,const char * con_id)4813 static struct clk *__of_clk_get(struct device_node *np,
4814 				int index, const char *dev_id,
4815 				const char *con_id)
4816 {
4817 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4818 
4819 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4820 }
4821 
of_clk_get(struct device_node * np,int index)4822 struct clk *of_clk_get(struct device_node *np, int index)
4823 {
4824 	return __of_clk_get(np, index, np->full_name, NULL);
4825 }
4826 EXPORT_SYMBOL(of_clk_get);
4827 
4828 /**
4829  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4830  * @np: pointer to clock consumer node
4831  * @name: name of consumer's clock input, or NULL for the first clock reference
4832  *
4833  * This function parses the clocks and clock-names properties,
4834  * and uses them to look up the struct clk from the registered list of clock
4835  * providers.
4836  */
of_clk_get_by_name(struct device_node * np,const char * name)4837 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4838 {
4839 	if (!np)
4840 		return ERR_PTR(-ENOENT);
4841 
4842 	return __of_clk_get(np, 0, np->full_name, name);
4843 }
4844 EXPORT_SYMBOL(of_clk_get_by_name);
4845 
4846 /**
4847  * of_clk_get_parent_count() - Count the number of clocks a device node has
4848  * @np: device node to count
4849  *
4850  * Returns: The number of clocks that are possible parents of this node
4851  */
of_clk_get_parent_count(const struct device_node * np)4852 unsigned int of_clk_get_parent_count(const struct device_node *np)
4853 {
4854 	int count;
4855 
4856 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4857 	if (count < 0)
4858 		return 0;
4859 
4860 	return count;
4861 }
4862 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4863 
of_clk_get_parent_name(const struct device_node * np,int index)4864 const char *of_clk_get_parent_name(const struct device_node *np, int index)
4865 {
4866 	struct of_phandle_args clkspec;
4867 	struct property *prop;
4868 	const char *clk_name;
4869 	const __be32 *vp;
4870 	u32 pv;
4871 	int rc;
4872 	int count;
4873 	struct clk *clk;
4874 
4875 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4876 					&clkspec);
4877 	if (rc)
4878 		return NULL;
4879 
4880 	index = clkspec.args_count ? clkspec.args[0] : 0;
4881 	count = 0;
4882 
4883 	/* if there is an indices property, use it to transfer the index
4884 	 * specified into an array offset for the clock-output-names property.
4885 	 */
4886 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4887 		if (index == pv) {
4888 			index = count;
4889 			break;
4890 		}
4891 		count++;
4892 	}
4893 	/* We went off the end of 'clock-indices' without finding it */
4894 	if (prop && !vp)
4895 		return NULL;
4896 
4897 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
4898 					  index,
4899 					  &clk_name) < 0) {
4900 		/*
4901 		 * Best effort to get the name if the clock has been
4902 		 * registered with the framework. If the clock isn't
4903 		 * registered, we return the node name as the name of
4904 		 * the clock as long as #clock-cells = 0.
4905 		 */
4906 		clk = of_clk_get_from_provider(&clkspec);
4907 		if (IS_ERR(clk)) {
4908 			if (clkspec.args_count == 0)
4909 				clk_name = clkspec.np->name;
4910 			else
4911 				clk_name = NULL;
4912 		} else {
4913 			clk_name = __clk_get_name(clk);
4914 			clk_put(clk);
4915 		}
4916 	}
4917 
4918 
4919 	of_node_put(clkspec.np);
4920 	return clk_name;
4921 }
4922 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4923 
4924 /**
4925  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4926  * number of parents
4927  * @np: Device node pointer associated with clock provider
4928  * @parents: pointer to char array that hold the parents' names
4929  * @size: size of the @parents array
4930  *
4931  * Return: number of parents for the clock node.
4932  */
of_clk_parent_fill(struct device_node * np,const char ** parents,unsigned int size)4933 int of_clk_parent_fill(struct device_node *np, const char **parents,
4934 		       unsigned int size)
4935 {
4936 	unsigned int i = 0;
4937 
4938 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4939 		i++;
4940 
4941 	return i;
4942 }
4943 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4944 
4945 struct clock_provider {
4946 	void (*clk_init_cb)(struct device_node *);
4947 	struct device_node *np;
4948 	struct list_head node;
4949 };
4950 
4951 /*
4952  * This function looks for a parent clock. If there is one, then it
4953  * checks that the provider for this parent clock was initialized, in
4954  * this case the parent clock will be ready.
4955  */
parent_ready(struct device_node * np)4956 static int parent_ready(struct device_node *np)
4957 {
4958 	int i = 0;
4959 
4960 	while (true) {
4961 		struct clk *clk = of_clk_get(np, i);
4962 
4963 		/* this parent is ready we can check the next one */
4964 		if (!IS_ERR(clk)) {
4965 			clk_put(clk);
4966 			i++;
4967 			continue;
4968 		}
4969 
4970 		/* at least one parent is not ready, we exit now */
4971 		if (PTR_ERR(clk) == -EPROBE_DEFER)
4972 			return 0;
4973 
4974 		/*
4975 		 * Here we make assumption that the device tree is
4976 		 * written correctly. So an error means that there is
4977 		 * no more parent. As we didn't exit yet, then the
4978 		 * previous parent are ready. If there is no clock
4979 		 * parent, no need to wait for them, then we can
4980 		 * consider their absence as being ready
4981 		 */
4982 		return 1;
4983 	}
4984 }
4985 
4986 /**
4987  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4988  * @np: Device node pointer associated with clock provider
4989  * @index: clock index
4990  * @flags: pointer to top-level framework flags
4991  *
4992  * Detects if the clock-critical property exists and, if so, sets the
4993  * corresponding CLK_IS_CRITICAL flag.
4994  *
4995  * Do not use this function. It exists only for legacy Device Tree
4996  * bindings, such as the one-clock-per-node style that are outdated.
4997  * Those bindings typically put all clock data into .dts and the Linux
4998  * driver has no clock data, thus making it impossible to set this flag
4999  * correctly from the driver. Only those drivers may call
5000  * of_clk_detect_critical from their setup functions.
5001  *
5002  * Return: error code or zero on success
5003  */
of_clk_detect_critical(struct device_node * np,int index,unsigned long * flags)5004 int of_clk_detect_critical(struct device_node *np, int index,
5005 			   unsigned long *flags)
5006 {
5007 	struct property *prop;
5008 	const __be32 *cur;
5009 	uint32_t idx;
5010 
5011 	if (!np || !flags)
5012 		return -EINVAL;
5013 
5014 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5015 		if (index == idx)
5016 			*flags |= CLK_IS_CRITICAL;
5017 
5018 	return 0;
5019 }
5020 
5021 /**
5022  * of_clk_init() - Scan and init clock providers from the DT
5023  * @matches: array of compatible values and init functions for providers.
5024  *
5025  * This function scans the device tree for matching clock providers
5026  * and calls their initialization functions. It also does it by trying
5027  * to follow the dependencies.
5028  */
of_clk_init(const struct of_device_id * matches)5029 void __init of_clk_init(const struct of_device_id *matches)
5030 {
5031 	const struct of_device_id *match;
5032 	struct device_node *np;
5033 	struct clock_provider *clk_provider, *next;
5034 	bool is_init_done;
5035 	bool force = false;
5036 	LIST_HEAD(clk_provider_list);
5037 
5038 	if (!matches)
5039 		matches = &__clk_of_table;
5040 
5041 	/* First prepare the list of the clocks providers */
5042 	for_each_matching_node_and_match(np, matches, &match) {
5043 		struct clock_provider *parent;
5044 
5045 		if (!of_device_is_available(np))
5046 			continue;
5047 
5048 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5049 		if (!parent) {
5050 			list_for_each_entry_safe(clk_provider, next,
5051 						 &clk_provider_list, node) {
5052 				list_del(&clk_provider->node);
5053 				of_node_put(clk_provider->np);
5054 				kfree(clk_provider);
5055 			}
5056 			of_node_put(np);
5057 			return;
5058 		}
5059 
5060 		parent->clk_init_cb = match->data;
5061 		parent->np = of_node_get(np);
5062 		list_add_tail(&parent->node, &clk_provider_list);
5063 	}
5064 
5065 	while (!list_empty(&clk_provider_list)) {
5066 		is_init_done = false;
5067 		list_for_each_entry_safe(clk_provider, next,
5068 					&clk_provider_list, node) {
5069 			if (force || parent_ready(clk_provider->np)) {
5070 
5071 				/* Don't populate platform devices */
5072 				of_node_set_flag(clk_provider->np,
5073 						 OF_POPULATED);
5074 
5075 				clk_provider->clk_init_cb(clk_provider->np);
5076 				of_clk_set_defaults(clk_provider->np, true);
5077 
5078 				list_del(&clk_provider->node);
5079 				of_node_put(clk_provider->np);
5080 				kfree(clk_provider);
5081 				is_init_done = true;
5082 			}
5083 		}
5084 
5085 		/*
5086 		 * We didn't manage to initialize any of the
5087 		 * remaining providers during the last loop, so now we
5088 		 * initialize all the remaining ones unconditionally
5089 		 * in case the clock parent was not mandatory
5090 		 */
5091 		if (!is_init_done)
5092 			force = true;
5093 	}
5094 }
5095 #endif
5096