• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 __read_mostly bool force_irqthreads;
29 EXPORT_SYMBOL_GPL(force_irqthreads);
30 
setup_forced_irqthreads(char * arg)31 static int __init setup_forced_irqthreads(char *arg)
32 {
33 	force_irqthreads = true;
34 	return 0;
35 }
36 early_param("threadirqs", setup_forced_irqthreads);
37 #endif
38 
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
40 {
41 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
42 	bool inprogress;
43 
44 	do {
45 		unsigned long flags;
46 
47 		/*
48 		 * Wait until we're out of the critical section.  This might
49 		 * give the wrong answer due to the lack of memory barriers.
50 		 */
51 		while (irqd_irq_inprogress(&desc->irq_data))
52 			cpu_relax();
53 
54 		/* Ok, that indicated we're done: double-check carefully. */
55 		raw_spin_lock_irqsave(&desc->lock, flags);
56 		inprogress = irqd_irq_inprogress(&desc->irq_data);
57 
58 		/*
59 		 * If requested and supported, check at the chip whether it
60 		 * is in flight at the hardware level, i.e. already pending
61 		 * in a CPU and waiting for service and acknowledge.
62 		 */
63 		if (!inprogress && sync_chip) {
64 			/*
65 			 * Ignore the return code. inprogress is only updated
66 			 * when the chip supports it.
67 			 */
68 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
69 						&inprogress);
70 		}
71 		raw_spin_unlock_irqrestore(&desc->lock, flags);
72 
73 		/* Oops, that failed? */
74 	} while (inprogress);
75 }
76 
77 /**
78  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
79  *	@irq: interrupt number to wait for
80  *
81  *	This function waits for any pending hard IRQ handlers for this
82  *	interrupt to complete before returning. If you use this
83  *	function while holding a resource the IRQ handler may need you
84  *	will deadlock. It does not take associated threaded handlers
85  *	into account.
86  *
87  *	Do not use this for shutdown scenarios where you must be sure
88  *	that all parts (hardirq and threaded handler) have completed.
89  *
90  *	Returns: false if a threaded handler is active.
91  *
92  *	This function may be called - with care - from IRQ context.
93  *
94  *	It does not check whether there is an interrupt in flight at the
95  *	hardware level, but not serviced yet, as this might deadlock when
96  *	called with interrupts disabled and the target CPU of the interrupt
97  *	is the current CPU.
98  */
synchronize_hardirq(unsigned int irq)99 bool synchronize_hardirq(unsigned int irq)
100 {
101 	struct irq_desc *desc = irq_to_desc(irq);
102 
103 	if (desc) {
104 		__synchronize_hardirq(desc, false);
105 		return !atomic_read(&desc->threads_active);
106 	}
107 
108 	return true;
109 }
110 EXPORT_SYMBOL(synchronize_hardirq);
111 
112 /**
113  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
114  *	@irq: interrupt number to wait for
115  *
116  *	This function waits for any pending IRQ handlers for this interrupt
117  *	to complete before returning. If you use this function while
118  *	holding a resource the IRQ handler may need you will deadlock.
119  *
120  *	Can only be called from preemptible code as it might sleep when
121  *	an interrupt thread is associated to @irq.
122  *
123  *	It optionally makes sure (when the irq chip supports that method)
124  *	that the interrupt is not pending in any CPU and waiting for
125  *	service.
126  */
synchronize_irq(unsigned int irq)127 void synchronize_irq(unsigned int irq)
128 {
129 	struct irq_desc *desc = irq_to_desc(irq);
130 
131 	if (desc) {
132 		__synchronize_hardirq(desc, true);
133 		/*
134 		 * We made sure that no hardirq handler is
135 		 * running. Now verify that no threaded handlers are
136 		 * active.
137 		 */
138 		wait_event(desc->wait_for_threads,
139 			   !atomic_read(&desc->threads_active));
140 	}
141 }
142 EXPORT_SYMBOL(synchronize_irq);
143 
144 #ifdef CONFIG_SMP
145 cpumask_var_t irq_default_affinity;
146 
__irq_can_set_affinity(struct irq_desc * desc)147 static bool __irq_can_set_affinity(struct irq_desc *desc)
148 {
149 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
150 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
151 		return false;
152 	return true;
153 }
154 
155 /**
156  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
157  *	@irq:		Interrupt to check
158  *
159  */
irq_can_set_affinity(unsigned int irq)160 int irq_can_set_affinity(unsigned int irq)
161 {
162 	return __irq_can_set_affinity(irq_to_desc(irq));
163 }
164 
165 /**
166  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
167  * @irq:	Interrupt to check
168  *
169  * Like irq_can_set_affinity() above, but additionally checks for the
170  * AFFINITY_MANAGED flag.
171  */
irq_can_set_affinity_usr(unsigned int irq)172 bool irq_can_set_affinity_usr(unsigned int irq)
173 {
174 	struct irq_desc *desc = irq_to_desc(irq);
175 
176 	return __irq_can_set_affinity(desc) &&
177 		!irqd_affinity_is_managed(&desc->irq_data);
178 }
179 
180 /**
181  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
182  *	@desc:		irq descriptor which has affitnity changed
183  *
184  *	We just set IRQTF_AFFINITY and delegate the affinity setting
185  *	to the interrupt thread itself. We can not call
186  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
187  *	code can be called from hard interrupt context.
188  */
irq_set_thread_affinity(struct irq_desc * desc)189 void irq_set_thread_affinity(struct irq_desc *desc)
190 {
191 	struct irqaction *action;
192 
193 	for_each_action_of_desc(desc, action)
194 		if (action->thread)
195 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
196 }
197 
198 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)199 static void irq_validate_effective_affinity(struct irq_data *data)
200 {
201 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
202 	struct irq_chip *chip = irq_data_get_irq_chip(data);
203 
204 	if (!cpumask_empty(m))
205 		return;
206 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
207 		     chip->name, data->irq);
208 }
209 
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)210 static inline void irq_init_effective_affinity(struct irq_data *data,
211 					       const struct cpumask *mask)
212 {
213 	cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
214 }
215 #else
irq_validate_effective_affinity(struct irq_data * data)216 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)217 static inline void irq_init_effective_affinity(struct irq_data *data,
218 					       const struct cpumask *mask) { }
219 #endif
220 
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)221 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
222 			bool force)
223 {
224 	struct irq_desc *desc = irq_data_to_desc(data);
225 	struct irq_chip *chip = irq_data_get_irq_chip(data);
226 	const struct cpumask  *prog_mask;
227 	int ret;
228 
229 	static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
230 	static struct cpumask tmp_mask;
231 
232 	if (!chip || !chip->irq_set_affinity)
233 		return -EINVAL;
234 
235 	raw_spin_lock(&tmp_mask_lock);
236 	/*
237 	 * If this is a managed interrupt and housekeeping is enabled on
238 	 * it check whether the requested affinity mask intersects with
239 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
240 	 * the mask and just keep the housekeeping CPU(s). This prevents
241 	 * the affinity setter from routing the interrupt to an isolated
242 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
243 	 * interrupts on an isolated one.
244 	 *
245 	 * If the masks do not intersect or include online CPU(s) then
246 	 * keep the requested mask. The isolated target CPUs are only
247 	 * receiving interrupts when the I/O operation was submitted
248 	 * directly from them.
249 	 *
250 	 * If all housekeeping CPUs in the affinity mask are offline, the
251 	 * interrupt will be migrated by the CPU hotplug code once a
252 	 * housekeeping CPU which belongs to the affinity mask comes
253 	 * online.
254 	 */
255 	if (irqd_affinity_is_managed(data) &&
256 	    housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
257 		const struct cpumask *hk_mask;
258 
259 		hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
260 
261 		cpumask_and(&tmp_mask, mask, hk_mask);
262 		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
263 			prog_mask = mask;
264 		else
265 			prog_mask = &tmp_mask;
266 	} else {
267 		prog_mask = mask;
268 	}
269 
270 	/*
271 	 * Make sure we only provide online CPUs to the irqchip,
272 	 * unless we are being asked to force the affinity (in which
273 	 * case we do as we are told).
274 	 */
275 	cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
276 	if (!force && !cpumask_empty(&tmp_mask))
277 		ret = chip->irq_set_affinity(data, &tmp_mask, force);
278 	else if (force)
279 		ret = chip->irq_set_affinity(data, mask, force);
280 	else
281 		ret = -EINVAL;
282 
283 	raw_spin_unlock(&tmp_mask_lock);
284 
285 	switch (ret) {
286 	case IRQ_SET_MASK_OK:
287 	case IRQ_SET_MASK_OK_DONE:
288 		cpumask_copy(desc->irq_common_data.affinity, mask);
289 		fallthrough;
290 	case IRQ_SET_MASK_OK_NOCOPY:
291 		irq_validate_effective_affinity(data);
292 		irq_set_thread_affinity(desc);
293 		ret = 0;
294 	}
295 
296 	return ret;
297 }
298 
299 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)300 static inline int irq_set_affinity_pending(struct irq_data *data,
301 					   const struct cpumask *dest)
302 {
303 	struct irq_desc *desc = irq_data_to_desc(data);
304 
305 	irqd_set_move_pending(data);
306 	irq_copy_pending(desc, dest);
307 	return 0;
308 }
309 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)310 static inline int irq_set_affinity_pending(struct irq_data *data,
311 					   const struct cpumask *dest)
312 {
313 	return -EBUSY;
314 }
315 #endif
316 
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)317 static int irq_try_set_affinity(struct irq_data *data,
318 				const struct cpumask *dest, bool force)
319 {
320 	int ret = irq_do_set_affinity(data, dest, force);
321 
322 	/*
323 	 * In case that the underlying vector management is busy and the
324 	 * architecture supports the generic pending mechanism then utilize
325 	 * this to avoid returning an error to user space.
326 	 */
327 	if (ret == -EBUSY && !force)
328 		ret = irq_set_affinity_pending(data, dest);
329 	return ret;
330 }
331 
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask,bool force)332 static bool irq_set_affinity_deactivated(struct irq_data *data,
333 					 const struct cpumask *mask, bool force)
334 {
335 	struct irq_desc *desc = irq_data_to_desc(data);
336 
337 	/*
338 	 * Handle irq chips which can handle affinity only in activated
339 	 * state correctly
340 	 *
341 	 * If the interrupt is not yet activated, just store the affinity
342 	 * mask and do not call the chip driver at all. On activation the
343 	 * driver has to make sure anyway that the interrupt is in a
344 	 * usable state so startup works.
345 	 */
346 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
347 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
348 		return false;
349 
350 	cpumask_copy(desc->irq_common_data.affinity, mask);
351 	irq_init_effective_affinity(data, mask);
352 	irqd_set(data, IRQD_AFFINITY_SET);
353 	return true;
354 }
355 
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)356 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
357 			    bool force)
358 {
359 	struct irq_chip *chip = irq_data_get_irq_chip(data);
360 	struct irq_desc *desc = irq_data_to_desc(data);
361 	int ret = 0;
362 
363 	if (!chip || !chip->irq_set_affinity)
364 		return -EINVAL;
365 
366 	if (irq_set_affinity_deactivated(data, mask, force))
367 		return 0;
368 
369 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
370 		ret = irq_try_set_affinity(data, mask, force);
371 	} else {
372 		irqd_set_move_pending(data);
373 		irq_copy_pending(desc, mask);
374 	}
375 
376 	if (desc->affinity_notify) {
377 		kref_get(&desc->affinity_notify->kref);
378 		if (!schedule_work(&desc->affinity_notify->work)) {
379 			/* Work was already scheduled, drop our extra ref */
380 			kref_put(&desc->affinity_notify->kref,
381 				 desc->affinity_notify->release);
382 		}
383 	}
384 	irqd_set(data, IRQD_AFFINITY_SET);
385 
386 	return ret;
387 }
388 
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)389 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
390 {
391 	struct irq_desc *desc = irq_to_desc(irq);
392 	unsigned long flags;
393 	int ret;
394 
395 	if (!desc)
396 		return -EINVAL;
397 
398 	raw_spin_lock_irqsave(&desc->lock, flags);
399 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
400 	raw_spin_unlock_irqrestore(&desc->lock, flags);
401 	return ret;
402 }
403 
irq_set_affinity_hint(unsigned int irq,const struct cpumask * m)404 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
405 {
406 	unsigned long flags;
407 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
408 
409 	if (!desc)
410 		return -EINVAL;
411 	desc->affinity_hint = m;
412 	irq_put_desc_unlock(desc, flags);
413 	/* set the initial affinity to prevent every interrupt being on CPU0 */
414 	if (m)
415 		__irq_set_affinity(irq, m, false);
416 	return 0;
417 }
418 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
419 
irq_affinity_notify(struct work_struct * work)420 static void irq_affinity_notify(struct work_struct *work)
421 {
422 	struct irq_affinity_notify *notify =
423 		container_of(work, struct irq_affinity_notify, work);
424 	struct irq_desc *desc = irq_to_desc(notify->irq);
425 	cpumask_var_t cpumask;
426 	unsigned long flags;
427 
428 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
429 		goto out;
430 
431 	raw_spin_lock_irqsave(&desc->lock, flags);
432 	if (irq_move_pending(&desc->irq_data))
433 		irq_get_pending(cpumask, desc);
434 	else
435 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
436 	raw_spin_unlock_irqrestore(&desc->lock, flags);
437 
438 	notify->notify(notify, cpumask);
439 
440 	free_cpumask_var(cpumask);
441 out:
442 	kref_put(&notify->kref, notify->release);
443 }
444 
445 /**
446  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
447  *	@irq:		Interrupt for which to enable/disable notification
448  *	@notify:	Context for notification, or %NULL to disable
449  *			notification.  Function pointers must be initialised;
450  *			the other fields will be initialised by this function.
451  *
452  *	Must be called in process context.  Notification may only be enabled
453  *	after the IRQ is allocated and must be disabled before the IRQ is
454  *	freed using free_irq().
455  */
456 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)457 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
458 {
459 	struct irq_desc *desc = irq_to_desc(irq);
460 	struct irq_affinity_notify *old_notify;
461 	unsigned long flags;
462 
463 	/* The release function is promised process context */
464 	might_sleep();
465 
466 	if (!desc || desc->istate & IRQS_NMI)
467 		return -EINVAL;
468 
469 	/* Complete initialisation of *notify */
470 	if (notify) {
471 		notify->irq = irq;
472 		kref_init(&notify->kref);
473 		INIT_WORK(&notify->work, irq_affinity_notify);
474 	}
475 
476 	raw_spin_lock_irqsave(&desc->lock, flags);
477 	old_notify = desc->affinity_notify;
478 	desc->affinity_notify = notify;
479 	raw_spin_unlock_irqrestore(&desc->lock, flags);
480 
481 	if (old_notify) {
482 		if (cancel_work_sync(&old_notify->work)) {
483 			/* Pending work had a ref, put that one too */
484 			kref_put(&old_notify->kref, old_notify->release);
485 		}
486 		kref_put(&old_notify->kref, old_notify->release);
487 	}
488 
489 	return 0;
490 }
491 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
492 
493 #ifndef CONFIG_AUTO_IRQ_AFFINITY
494 /*
495  * Generic version of the affinity autoselector.
496  */
irq_setup_affinity(struct irq_desc * desc)497 int irq_setup_affinity(struct irq_desc *desc)
498 {
499 	struct cpumask *set = irq_default_affinity;
500 	int ret, node = irq_desc_get_node(desc);
501 	static DEFINE_RAW_SPINLOCK(mask_lock);
502 	static struct cpumask mask;
503 
504 	/* Excludes PER_CPU and NO_BALANCE interrupts */
505 	if (!__irq_can_set_affinity(desc))
506 		return 0;
507 
508 	raw_spin_lock(&mask_lock);
509 	/*
510 	 * Preserve the managed affinity setting and a userspace affinity
511 	 * setup, but make sure that one of the targets is online.
512 	 */
513 	if (irqd_affinity_is_managed(&desc->irq_data) ||
514 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
515 		if (cpumask_intersects(desc->irq_common_data.affinity,
516 				       cpu_online_mask))
517 			set = desc->irq_common_data.affinity;
518 		else
519 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
520 	}
521 
522 	cpumask_and(&mask, cpu_online_mask, set);
523 	if (cpumask_empty(&mask))
524 		cpumask_copy(&mask, cpu_online_mask);
525 
526 	if (node != NUMA_NO_NODE) {
527 		const struct cpumask *nodemask = cpumask_of_node(node);
528 
529 		/* make sure at least one of the cpus in nodemask is online */
530 		if (cpumask_intersects(&mask, nodemask))
531 			cpumask_and(&mask, &mask, nodemask);
532 	}
533 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
534 	raw_spin_unlock(&mask_lock);
535 	return ret;
536 }
537 #else
538 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)539 int irq_setup_affinity(struct irq_desc *desc)
540 {
541 	return irq_select_affinity(irq_desc_get_irq(desc));
542 }
543 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
544 #endif /* CONFIG_SMP */
545 
546 
547 /**
548  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
549  *	@irq: interrupt number to set affinity
550  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
551  *	            specific data for percpu_devid interrupts
552  *
553  *	This function uses the vCPU specific data to set the vCPU
554  *	affinity for an irq. The vCPU specific data is passed from
555  *	outside, such as KVM. One example code path is as below:
556  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
557  */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)558 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
559 {
560 	unsigned long flags;
561 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
562 	struct irq_data *data;
563 	struct irq_chip *chip;
564 	int ret = -ENOSYS;
565 
566 	if (!desc)
567 		return -EINVAL;
568 
569 	data = irq_desc_get_irq_data(desc);
570 	do {
571 		chip = irq_data_get_irq_chip(data);
572 		if (chip && chip->irq_set_vcpu_affinity)
573 			break;
574 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
575 		data = data->parent_data;
576 #else
577 		data = NULL;
578 #endif
579 	} while (data);
580 
581 	if (data)
582 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
583 	irq_put_desc_unlock(desc, flags);
584 
585 	return ret;
586 }
587 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
588 
__disable_irq(struct irq_desc * desc)589 void __disable_irq(struct irq_desc *desc)
590 {
591 	if (!desc->depth++)
592 		irq_disable(desc);
593 }
594 
__disable_irq_nosync(unsigned int irq)595 static int __disable_irq_nosync(unsigned int irq)
596 {
597 	unsigned long flags;
598 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
599 
600 	if (!desc)
601 		return -EINVAL;
602 	__disable_irq(desc);
603 	irq_put_desc_busunlock(desc, flags);
604 	return 0;
605 }
606 
607 /**
608  *	disable_irq_nosync - disable an irq without waiting
609  *	@irq: Interrupt to disable
610  *
611  *	Disable the selected interrupt line.  Disables and Enables are
612  *	nested.
613  *	Unlike disable_irq(), this function does not ensure existing
614  *	instances of the IRQ handler have completed before returning.
615  *
616  *	This function may be called from IRQ context.
617  */
disable_irq_nosync(unsigned int irq)618 void disable_irq_nosync(unsigned int irq)
619 {
620 	__disable_irq_nosync(irq);
621 }
622 EXPORT_SYMBOL(disable_irq_nosync);
623 
624 /**
625  *	disable_irq - disable an irq and wait for completion
626  *	@irq: Interrupt to disable
627  *
628  *	Disable the selected interrupt line.  Enables and Disables are
629  *	nested.
630  *	This function waits for any pending IRQ handlers for this interrupt
631  *	to complete before returning. If you use this function while
632  *	holding a resource the IRQ handler may need you will deadlock.
633  *
634  *	This function may be called - with care - from IRQ context.
635  */
disable_irq(unsigned int irq)636 void disable_irq(unsigned int irq)
637 {
638 	if (!__disable_irq_nosync(irq))
639 		synchronize_irq(irq);
640 }
641 EXPORT_SYMBOL(disable_irq);
642 
643 /**
644  *	disable_hardirq - disables an irq and waits for hardirq completion
645  *	@irq: Interrupt to disable
646  *
647  *	Disable the selected interrupt line.  Enables and Disables are
648  *	nested.
649  *	This function waits for any pending hard IRQ handlers for this
650  *	interrupt to complete before returning. If you use this function while
651  *	holding a resource the hard IRQ handler may need you will deadlock.
652  *
653  *	When used to optimistically disable an interrupt from atomic context
654  *	the return value must be checked.
655  *
656  *	Returns: false if a threaded handler is active.
657  *
658  *	This function may be called - with care - from IRQ context.
659  */
disable_hardirq(unsigned int irq)660 bool disable_hardirq(unsigned int irq)
661 {
662 	if (!__disable_irq_nosync(irq))
663 		return synchronize_hardirq(irq);
664 
665 	return false;
666 }
667 EXPORT_SYMBOL_GPL(disable_hardirq);
668 
669 /**
670  *	disable_nmi_nosync - disable an nmi without waiting
671  *	@irq: Interrupt to disable
672  *
673  *	Disable the selected interrupt line. Disables and enables are
674  *	nested.
675  *	The interrupt to disable must have been requested through request_nmi.
676  *	Unlike disable_nmi(), this function does not ensure existing
677  *	instances of the IRQ handler have completed before returning.
678  */
disable_nmi_nosync(unsigned int irq)679 void disable_nmi_nosync(unsigned int irq)
680 {
681 	disable_irq_nosync(irq);
682 }
683 
__enable_irq(struct irq_desc * desc)684 void __enable_irq(struct irq_desc *desc)
685 {
686 	switch (desc->depth) {
687 	case 0:
688  err_out:
689 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
690 		     irq_desc_get_irq(desc));
691 		break;
692 	case 1: {
693 		if (desc->istate & IRQS_SUSPENDED)
694 			goto err_out;
695 		/* Prevent probing on this irq: */
696 		irq_settings_set_noprobe(desc);
697 		/*
698 		 * Call irq_startup() not irq_enable() here because the
699 		 * interrupt might be marked NOAUTOEN. So irq_startup()
700 		 * needs to be invoked when it gets enabled the first
701 		 * time. If it was already started up, then irq_startup()
702 		 * will invoke irq_enable() under the hood.
703 		 */
704 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
705 		break;
706 	}
707 	default:
708 		desc->depth--;
709 	}
710 }
711 
712 /**
713  *	enable_irq - enable handling of an irq
714  *	@irq: Interrupt to enable
715  *
716  *	Undoes the effect of one call to disable_irq().  If this
717  *	matches the last disable, processing of interrupts on this
718  *	IRQ line is re-enabled.
719  *
720  *	This function may be called from IRQ context only when
721  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
722  */
enable_irq(unsigned int irq)723 void enable_irq(unsigned int irq)
724 {
725 	unsigned long flags;
726 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
727 
728 	if (!desc)
729 		return;
730 	if (WARN(!desc->irq_data.chip,
731 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
732 		goto out;
733 
734 	__enable_irq(desc);
735 out:
736 	irq_put_desc_busunlock(desc, flags);
737 }
738 EXPORT_SYMBOL(enable_irq);
739 
740 /**
741  *	enable_nmi - enable handling of an nmi
742  *	@irq: Interrupt to enable
743  *
744  *	The interrupt to enable must have been requested through request_nmi.
745  *	Undoes the effect of one call to disable_nmi(). If this
746  *	matches the last disable, processing of interrupts on this
747  *	IRQ line is re-enabled.
748  */
enable_nmi(unsigned int irq)749 void enable_nmi(unsigned int irq)
750 {
751 	enable_irq(irq);
752 }
753 
set_irq_wake_real(unsigned int irq,unsigned int on)754 static int set_irq_wake_real(unsigned int irq, unsigned int on)
755 {
756 	struct irq_desc *desc = irq_to_desc(irq);
757 	int ret = -ENXIO;
758 
759 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
760 		return 0;
761 
762 	if (desc->irq_data.chip->irq_set_wake)
763 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
764 
765 	return ret;
766 }
767 
768 /**
769  *	irq_set_irq_wake - control irq power management wakeup
770  *	@irq:	interrupt to control
771  *	@on:	enable/disable power management wakeup
772  *
773  *	Enable/disable power management wakeup mode, which is
774  *	disabled by default.  Enables and disables must match,
775  *	just as they match for non-wakeup mode support.
776  *
777  *	Wakeup mode lets this IRQ wake the system from sleep
778  *	states like "suspend to RAM".
779  *
780  *	Note: irq enable/disable state is completely orthogonal
781  *	to the enable/disable state of irq wake. An irq can be
782  *	disabled with disable_irq() and still wake the system as
783  *	long as the irq has wake enabled. If this does not hold,
784  *	then the underlying irq chip and the related driver need
785  *	to be investigated.
786  */
irq_set_irq_wake(unsigned int irq,unsigned int on)787 int irq_set_irq_wake(unsigned int irq, unsigned int on)
788 {
789 	unsigned long flags;
790 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
791 	int ret = 0;
792 
793 	if (!desc)
794 		return -EINVAL;
795 
796 	/* Don't use NMIs as wake up interrupts please */
797 	if (desc->istate & IRQS_NMI) {
798 		ret = -EINVAL;
799 		goto out_unlock;
800 	}
801 
802 	/* wakeup-capable irqs can be shared between drivers that
803 	 * don't need to have the same sleep mode behaviors.
804 	 */
805 	if (on) {
806 		if (desc->wake_depth++ == 0) {
807 			ret = set_irq_wake_real(irq, on);
808 			if (ret)
809 				desc->wake_depth = 0;
810 			else
811 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
812 		}
813 	} else {
814 		if (desc->wake_depth == 0) {
815 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
816 		} else if (--desc->wake_depth == 0) {
817 			ret = set_irq_wake_real(irq, on);
818 			if (ret)
819 				desc->wake_depth = 1;
820 			else
821 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
822 		}
823 	}
824 
825 out_unlock:
826 	irq_put_desc_busunlock(desc, flags);
827 	return ret;
828 }
829 EXPORT_SYMBOL(irq_set_irq_wake);
830 
831 /*
832  * Internal function that tells the architecture code whether a
833  * particular irq has been exclusively allocated or is available
834  * for driver use.
835  */
can_request_irq(unsigned int irq,unsigned long irqflags)836 int can_request_irq(unsigned int irq, unsigned long irqflags)
837 {
838 	unsigned long flags;
839 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
840 	int canrequest = 0;
841 
842 	if (!desc)
843 		return 0;
844 
845 	if (irq_settings_can_request(desc)) {
846 		if (!desc->action ||
847 		    irqflags & desc->action->flags & IRQF_SHARED)
848 			canrequest = 1;
849 	}
850 	irq_put_desc_unlock(desc, flags);
851 	return canrequest;
852 }
853 
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)854 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
855 {
856 	struct irq_chip *chip = desc->irq_data.chip;
857 	int ret, unmask = 0;
858 
859 	if (!chip || !chip->irq_set_type) {
860 		/*
861 		 * IRQF_TRIGGER_* but the PIC does not support multiple
862 		 * flow-types?
863 		 */
864 		pr_debug("No set_type function for IRQ %d (%s)\n",
865 			 irq_desc_get_irq(desc),
866 			 chip ? (chip->name ? : "unknown") : "unknown");
867 		return 0;
868 	}
869 
870 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
871 		if (!irqd_irq_masked(&desc->irq_data))
872 			mask_irq(desc);
873 		if (!irqd_irq_disabled(&desc->irq_data))
874 			unmask = 1;
875 	}
876 
877 	/* Mask all flags except trigger mode */
878 	flags &= IRQ_TYPE_SENSE_MASK;
879 	ret = chip->irq_set_type(&desc->irq_data, flags);
880 
881 	switch (ret) {
882 	case IRQ_SET_MASK_OK:
883 	case IRQ_SET_MASK_OK_DONE:
884 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
885 		irqd_set(&desc->irq_data, flags);
886 		fallthrough;
887 
888 	case IRQ_SET_MASK_OK_NOCOPY:
889 		flags = irqd_get_trigger_type(&desc->irq_data);
890 		irq_settings_set_trigger_mask(desc, flags);
891 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
892 		irq_settings_clr_level(desc);
893 		if (flags & IRQ_TYPE_LEVEL_MASK) {
894 			irq_settings_set_level(desc);
895 			irqd_set(&desc->irq_data, IRQD_LEVEL);
896 		}
897 
898 		ret = 0;
899 		break;
900 	default:
901 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
902 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
903 	}
904 	if (unmask)
905 		unmask_irq(desc);
906 	return ret;
907 }
908 
909 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)910 int irq_set_parent(int irq, int parent_irq)
911 {
912 	unsigned long flags;
913 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
914 
915 	if (!desc)
916 		return -EINVAL;
917 
918 	desc->parent_irq = parent_irq;
919 
920 	irq_put_desc_unlock(desc, flags);
921 	return 0;
922 }
923 EXPORT_SYMBOL_GPL(irq_set_parent);
924 #endif
925 
926 /*
927  * Default primary interrupt handler for threaded interrupts. Is
928  * assigned as primary handler when request_threaded_irq is called
929  * with handler == NULL. Useful for oneshot interrupts.
930  */
irq_default_primary_handler(int irq,void * dev_id)931 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
932 {
933 	return IRQ_WAKE_THREAD;
934 }
935 
936 /*
937  * Primary handler for nested threaded interrupts. Should never be
938  * called.
939  */
irq_nested_primary_handler(int irq,void * dev_id)940 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
941 {
942 	WARN(1, "Primary handler called for nested irq %d\n", irq);
943 	return IRQ_NONE;
944 }
945 
irq_forced_secondary_handler(int irq,void * dev_id)946 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
947 {
948 	WARN(1, "Secondary action handler called for irq %d\n", irq);
949 	return IRQ_NONE;
950 }
951 
irq_wait_for_interrupt(struct irqaction * action)952 static int irq_wait_for_interrupt(struct irqaction *action)
953 {
954 	for (;;) {
955 		set_current_state(TASK_INTERRUPTIBLE);
956 
957 		if (kthread_should_stop()) {
958 			/* may need to run one last time */
959 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
960 					       &action->thread_flags)) {
961 				__set_current_state(TASK_RUNNING);
962 				return 0;
963 			}
964 			__set_current_state(TASK_RUNNING);
965 			return -1;
966 		}
967 
968 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
969 				       &action->thread_flags)) {
970 			__set_current_state(TASK_RUNNING);
971 			return 0;
972 		}
973 		schedule();
974 	}
975 }
976 
977 /*
978  * Oneshot interrupts keep the irq line masked until the threaded
979  * handler finished. unmask if the interrupt has not been disabled and
980  * is marked MASKED.
981  */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)982 static void irq_finalize_oneshot(struct irq_desc *desc,
983 				 struct irqaction *action)
984 {
985 	if (!(desc->istate & IRQS_ONESHOT) ||
986 	    action->handler == irq_forced_secondary_handler)
987 		return;
988 again:
989 	chip_bus_lock(desc);
990 	raw_spin_lock_irq(&desc->lock);
991 
992 	/*
993 	 * Implausible though it may be we need to protect us against
994 	 * the following scenario:
995 	 *
996 	 * The thread is faster done than the hard interrupt handler
997 	 * on the other CPU. If we unmask the irq line then the
998 	 * interrupt can come in again and masks the line, leaves due
999 	 * to IRQS_INPROGRESS and the irq line is masked forever.
1000 	 *
1001 	 * This also serializes the state of shared oneshot handlers
1002 	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1003 	 * irq_wake_thread(). See the comment there which explains the
1004 	 * serialization.
1005 	 */
1006 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1007 		raw_spin_unlock_irq(&desc->lock);
1008 		chip_bus_sync_unlock(desc);
1009 		cpu_relax();
1010 		goto again;
1011 	}
1012 
1013 	/*
1014 	 * Now check again, whether the thread should run. Otherwise
1015 	 * we would clear the threads_oneshot bit of this thread which
1016 	 * was just set.
1017 	 */
1018 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1019 		goto out_unlock;
1020 
1021 	desc->threads_oneshot &= ~action->thread_mask;
1022 
1023 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1024 	    irqd_irq_masked(&desc->irq_data))
1025 		unmask_threaded_irq(desc);
1026 
1027 out_unlock:
1028 	raw_spin_unlock_irq(&desc->lock);
1029 	chip_bus_sync_unlock(desc);
1030 }
1031 
1032 #ifdef CONFIG_SMP
1033 /*
1034  * Check whether we need to change the affinity of the interrupt thread.
1035  */
1036 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1037 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1038 {
1039 	cpumask_var_t mask;
1040 	bool valid = true;
1041 
1042 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1043 		return;
1044 
1045 	/*
1046 	 * In case we are out of memory we set IRQTF_AFFINITY again and
1047 	 * try again next time
1048 	 */
1049 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1050 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1051 		return;
1052 	}
1053 
1054 	raw_spin_lock_irq(&desc->lock);
1055 	/*
1056 	 * This code is triggered unconditionally. Check the affinity
1057 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1058 	 */
1059 	if (cpumask_available(desc->irq_common_data.affinity)) {
1060 		const struct cpumask *m;
1061 
1062 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1063 		cpumask_copy(mask, m);
1064 	} else {
1065 		valid = false;
1066 	}
1067 	raw_spin_unlock_irq(&desc->lock);
1068 
1069 	if (valid)
1070 		set_cpus_allowed_ptr(current, mask);
1071 	free_cpumask_var(mask);
1072 }
1073 #else
1074 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1075 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1076 #endif
1077 
1078 /*
1079  * Interrupts which are not explicitly requested as threaded
1080  * interrupts rely on the implicit bh/preempt disable of the hard irq
1081  * context. So we need to disable bh here to avoid deadlocks and other
1082  * side effects.
1083  */
1084 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1085 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1086 {
1087 	irqreturn_t ret;
1088 
1089 	local_bh_disable();
1090 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1091 		local_irq_disable();
1092 	ret = action->thread_fn(action->irq, action->dev_id);
1093 	if (ret == IRQ_HANDLED)
1094 		atomic_inc(&desc->threads_handled);
1095 
1096 	irq_finalize_oneshot(desc, action);
1097 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1098 		local_irq_enable();
1099 	local_bh_enable();
1100 	return ret;
1101 }
1102 
1103 /*
1104  * Interrupts explicitly requested as threaded interrupts want to be
1105  * preemtible - many of them need to sleep and wait for slow busses to
1106  * complete.
1107  */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1108 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1109 		struct irqaction *action)
1110 {
1111 	irqreturn_t ret;
1112 
1113 	ret = action->thread_fn(action->irq, action->dev_id);
1114 	if (ret == IRQ_HANDLED)
1115 		atomic_inc(&desc->threads_handled);
1116 
1117 	irq_finalize_oneshot(desc, action);
1118 	return ret;
1119 }
1120 
wake_threads_waitq(struct irq_desc * desc)1121 static void wake_threads_waitq(struct irq_desc *desc)
1122 {
1123 	if (atomic_dec_and_test(&desc->threads_active))
1124 		wake_up(&desc->wait_for_threads);
1125 }
1126 
irq_thread_dtor(struct callback_head * unused)1127 static void irq_thread_dtor(struct callback_head *unused)
1128 {
1129 	struct task_struct *tsk = current;
1130 	struct irq_desc *desc;
1131 	struct irqaction *action;
1132 
1133 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1134 		return;
1135 
1136 	action = kthread_data(tsk);
1137 
1138 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1139 	       tsk->comm, tsk->pid, action->irq);
1140 
1141 
1142 	desc = irq_to_desc(action->irq);
1143 	/*
1144 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1145 	 * desc->threads_active and wake possible waiters.
1146 	 */
1147 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1148 		wake_threads_waitq(desc);
1149 
1150 	/* Prevent a stale desc->threads_oneshot */
1151 	irq_finalize_oneshot(desc, action);
1152 }
1153 
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1154 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1155 {
1156 	struct irqaction *secondary = action->secondary;
1157 
1158 	if (WARN_ON_ONCE(!secondary))
1159 		return;
1160 
1161 	raw_spin_lock_irq(&desc->lock);
1162 	__irq_wake_thread(desc, secondary);
1163 	raw_spin_unlock_irq(&desc->lock);
1164 }
1165 
1166 /*
1167  * Internal function to notify that a interrupt thread is ready.
1168  */
irq_thread_set_ready(struct irq_desc * desc,struct irqaction * action)1169 static void irq_thread_set_ready(struct irq_desc *desc,
1170 				 struct irqaction *action)
1171 {
1172 	set_bit(IRQTF_READY, &action->thread_flags);
1173 	wake_up(&desc->wait_for_threads);
1174 }
1175 
1176 /*
1177  * Internal function to wake up a interrupt thread and wait until it is
1178  * ready.
1179  */
wake_up_and_wait_for_irq_thread_ready(struct irq_desc * desc,struct irqaction * action)1180 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1181 						  struct irqaction *action)
1182 {
1183 	if (!action || !action->thread)
1184 		return;
1185 
1186 	wake_up_process(action->thread);
1187 	wait_event(desc->wait_for_threads,
1188 		   test_bit(IRQTF_READY, &action->thread_flags));
1189 }
1190 
1191 /*
1192  * Interrupt handler thread
1193  */
irq_thread(void * data)1194 static int irq_thread(void *data)
1195 {
1196 	struct callback_head on_exit_work;
1197 	struct irqaction *action = data;
1198 	struct irq_desc *desc = irq_to_desc(action->irq);
1199 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1200 			struct irqaction *action);
1201 
1202 	irq_thread_set_ready(desc, action);
1203 
1204 	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1205 					&action->thread_flags))
1206 		handler_fn = irq_forced_thread_fn;
1207 	else
1208 		handler_fn = irq_thread_fn;
1209 
1210 	init_task_work(&on_exit_work, irq_thread_dtor);
1211 	task_work_add(current, &on_exit_work, TWA_NONE);
1212 
1213 	irq_thread_check_affinity(desc, action);
1214 
1215 	while (!irq_wait_for_interrupt(action)) {
1216 		irqreturn_t action_ret;
1217 
1218 		irq_thread_check_affinity(desc, action);
1219 
1220 		action_ret = handler_fn(desc, action);
1221 		if (action_ret == IRQ_WAKE_THREAD)
1222 			irq_wake_secondary(desc, action);
1223 
1224 		wake_threads_waitq(desc);
1225 	}
1226 
1227 	/*
1228 	 * This is the regular exit path. __free_irq() is stopping the
1229 	 * thread via kthread_stop() after calling
1230 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1231 	 * oneshot mask bit can be set.
1232 	 */
1233 	task_work_cancel(current, irq_thread_dtor);
1234 	return 0;
1235 }
1236 
1237 /**
1238  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1239  *	@irq:		Interrupt line
1240  *	@dev_id:	Device identity for which the thread should be woken
1241  *
1242  */
irq_wake_thread(unsigned int irq,void * dev_id)1243 void irq_wake_thread(unsigned int irq, void *dev_id)
1244 {
1245 	struct irq_desc *desc = irq_to_desc(irq);
1246 	struct irqaction *action;
1247 	unsigned long flags;
1248 
1249 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1250 		return;
1251 
1252 	raw_spin_lock_irqsave(&desc->lock, flags);
1253 	for_each_action_of_desc(desc, action) {
1254 		if (action->dev_id == dev_id) {
1255 			if (action->thread)
1256 				__irq_wake_thread(desc, action);
1257 			break;
1258 		}
1259 	}
1260 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1261 }
1262 EXPORT_SYMBOL_GPL(irq_wake_thread);
1263 
irq_setup_forced_threading(struct irqaction * new)1264 static int irq_setup_forced_threading(struct irqaction *new)
1265 {
1266 	if (!force_irqthreads)
1267 		return 0;
1268 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1269 		return 0;
1270 
1271 	/*
1272 	 * No further action required for interrupts which are requested as
1273 	 * threaded interrupts already
1274 	 */
1275 	if (new->handler == irq_default_primary_handler)
1276 		return 0;
1277 
1278 	new->flags |= IRQF_ONESHOT;
1279 
1280 	/*
1281 	 * Handle the case where we have a real primary handler and a
1282 	 * thread handler. We force thread them as well by creating a
1283 	 * secondary action.
1284 	 */
1285 	if (new->handler && new->thread_fn) {
1286 		/* Allocate the secondary action */
1287 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1288 		if (!new->secondary)
1289 			return -ENOMEM;
1290 		new->secondary->handler = irq_forced_secondary_handler;
1291 		new->secondary->thread_fn = new->thread_fn;
1292 		new->secondary->dev_id = new->dev_id;
1293 		new->secondary->irq = new->irq;
1294 		new->secondary->name = new->name;
1295 	}
1296 	/* Deal with the primary handler */
1297 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1298 	new->thread_fn = new->handler;
1299 	new->handler = irq_default_primary_handler;
1300 	return 0;
1301 }
1302 
irq_request_resources(struct irq_desc * desc)1303 static int irq_request_resources(struct irq_desc *desc)
1304 {
1305 	struct irq_data *d = &desc->irq_data;
1306 	struct irq_chip *c = d->chip;
1307 
1308 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1309 }
1310 
irq_release_resources(struct irq_desc * desc)1311 static void irq_release_resources(struct irq_desc *desc)
1312 {
1313 	struct irq_data *d = &desc->irq_data;
1314 	struct irq_chip *c = d->chip;
1315 
1316 	if (c->irq_release_resources)
1317 		c->irq_release_resources(d);
1318 }
1319 
irq_supports_nmi(struct irq_desc * desc)1320 static bool irq_supports_nmi(struct irq_desc *desc)
1321 {
1322 	struct irq_data *d = irq_desc_get_irq_data(desc);
1323 
1324 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1325 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1326 	if (d->parent_data)
1327 		return false;
1328 #endif
1329 	/* Don't support NMIs for chips behind a slow bus */
1330 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1331 		return false;
1332 
1333 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1334 }
1335 
irq_nmi_setup(struct irq_desc * desc)1336 static int irq_nmi_setup(struct irq_desc *desc)
1337 {
1338 	struct irq_data *d = irq_desc_get_irq_data(desc);
1339 	struct irq_chip *c = d->chip;
1340 
1341 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1342 }
1343 
irq_nmi_teardown(struct irq_desc * desc)1344 static void irq_nmi_teardown(struct irq_desc *desc)
1345 {
1346 	struct irq_data *d = irq_desc_get_irq_data(desc);
1347 	struct irq_chip *c = d->chip;
1348 
1349 	if (c->irq_nmi_teardown)
1350 		c->irq_nmi_teardown(d);
1351 }
1352 
1353 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1354 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1355 {
1356 	struct task_struct *t;
1357 
1358 	if (!secondary) {
1359 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1360 				   new->name);
1361 	} else {
1362 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1363 				   new->name);
1364 	}
1365 
1366 	if (IS_ERR(t))
1367 		return PTR_ERR(t);
1368 
1369 	sched_set_fifo(t);
1370 
1371 	/*
1372 	 * We keep the reference to the task struct even if
1373 	 * the thread dies to avoid that the interrupt code
1374 	 * references an already freed task_struct.
1375 	 */
1376 	new->thread = get_task_struct(t);
1377 	/*
1378 	 * Tell the thread to set its affinity. This is
1379 	 * important for shared interrupt handlers as we do
1380 	 * not invoke setup_affinity() for the secondary
1381 	 * handlers as everything is already set up. Even for
1382 	 * interrupts marked with IRQF_NO_BALANCE this is
1383 	 * correct as we want the thread to move to the cpu(s)
1384 	 * on which the requesting code placed the interrupt.
1385 	 */
1386 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1387 	return 0;
1388 }
1389 
1390 /*
1391  * Internal function to register an irqaction - typically used to
1392  * allocate special interrupts that are part of the architecture.
1393  *
1394  * Locking rules:
1395  *
1396  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1397  *   chip_bus_lock	Provides serialization for slow bus operations
1398  *     desc->lock	Provides serialization against hard interrupts
1399  *
1400  * chip_bus_lock and desc->lock are sufficient for all other management and
1401  * interrupt related functions. desc->request_mutex solely serializes
1402  * request/free_irq().
1403  */
1404 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1405 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1406 {
1407 	struct irqaction *old, **old_ptr;
1408 	unsigned long flags, thread_mask = 0;
1409 	int ret, nested, shared = 0;
1410 
1411 	if (!desc)
1412 		return -EINVAL;
1413 
1414 	if (desc->irq_data.chip == &no_irq_chip)
1415 		return -ENOSYS;
1416 	if (!try_module_get(desc->owner))
1417 		return -ENODEV;
1418 
1419 	new->irq = irq;
1420 
1421 	/*
1422 	 * If the trigger type is not specified by the caller,
1423 	 * then use the default for this interrupt.
1424 	 */
1425 	if (!(new->flags & IRQF_TRIGGER_MASK))
1426 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1427 
1428 	/*
1429 	 * Check whether the interrupt nests into another interrupt
1430 	 * thread.
1431 	 */
1432 	nested = irq_settings_is_nested_thread(desc);
1433 	if (nested) {
1434 		if (!new->thread_fn) {
1435 			ret = -EINVAL;
1436 			goto out_mput;
1437 		}
1438 		/*
1439 		 * Replace the primary handler which was provided from
1440 		 * the driver for non nested interrupt handling by the
1441 		 * dummy function which warns when called.
1442 		 */
1443 		new->handler = irq_nested_primary_handler;
1444 	} else {
1445 		if (irq_settings_can_thread(desc)) {
1446 			ret = irq_setup_forced_threading(new);
1447 			if (ret)
1448 				goto out_mput;
1449 		}
1450 	}
1451 
1452 	/*
1453 	 * Create a handler thread when a thread function is supplied
1454 	 * and the interrupt does not nest into another interrupt
1455 	 * thread.
1456 	 */
1457 	if (new->thread_fn && !nested) {
1458 		ret = setup_irq_thread(new, irq, false);
1459 		if (ret)
1460 			goto out_mput;
1461 		if (new->secondary) {
1462 			ret = setup_irq_thread(new->secondary, irq, true);
1463 			if (ret)
1464 				goto out_thread;
1465 		}
1466 	}
1467 
1468 	/*
1469 	 * Drivers are often written to work w/o knowledge about the
1470 	 * underlying irq chip implementation, so a request for a
1471 	 * threaded irq without a primary hard irq context handler
1472 	 * requires the ONESHOT flag to be set. Some irq chips like
1473 	 * MSI based interrupts are per se one shot safe. Check the
1474 	 * chip flags, so we can avoid the unmask dance at the end of
1475 	 * the threaded handler for those.
1476 	 */
1477 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1478 		new->flags &= ~IRQF_ONESHOT;
1479 
1480 	/*
1481 	 * Protects against a concurrent __free_irq() call which might wait
1482 	 * for synchronize_hardirq() to complete without holding the optional
1483 	 * chip bus lock and desc->lock. Also protects against handing out
1484 	 * a recycled oneshot thread_mask bit while it's still in use by
1485 	 * its previous owner.
1486 	 */
1487 	mutex_lock(&desc->request_mutex);
1488 
1489 	/*
1490 	 * Acquire bus lock as the irq_request_resources() callback below
1491 	 * might rely on the serialization or the magic power management
1492 	 * functions which are abusing the irq_bus_lock() callback,
1493 	 */
1494 	chip_bus_lock(desc);
1495 
1496 	/* First installed action requests resources. */
1497 	if (!desc->action) {
1498 		ret = irq_request_resources(desc);
1499 		if (ret) {
1500 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1501 			       new->name, irq, desc->irq_data.chip->name);
1502 			goto out_bus_unlock;
1503 		}
1504 	}
1505 
1506 	/*
1507 	 * The following block of code has to be executed atomically
1508 	 * protected against a concurrent interrupt and any of the other
1509 	 * management calls which are not serialized via
1510 	 * desc->request_mutex or the optional bus lock.
1511 	 */
1512 	raw_spin_lock_irqsave(&desc->lock, flags);
1513 	old_ptr = &desc->action;
1514 	old = *old_ptr;
1515 	if (old) {
1516 		/*
1517 		 * Can't share interrupts unless both agree to and are
1518 		 * the same type (level, edge, polarity). So both flag
1519 		 * fields must have IRQF_SHARED set and the bits which
1520 		 * set the trigger type must match. Also all must
1521 		 * agree on ONESHOT.
1522 		 * Interrupt lines used for NMIs cannot be shared.
1523 		 */
1524 		unsigned int oldtype;
1525 
1526 		if (desc->istate & IRQS_NMI) {
1527 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1528 				new->name, irq, desc->irq_data.chip->name);
1529 			ret = -EINVAL;
1530 			goto out_unlock;
1531 		}
1532 
1533 		/*
1534 		 * If nobody did set the configuration before, inherit
1535 		 * the one provided by the requester.
1536 		 */
1537 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1538 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1539 		} else {
1540 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1541 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1542 		}
1543 
1544 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1545 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1546 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1547 			goto mismatch;
1548 
1549 		/* All handlers must agree on per-cpuness */
1550 		if ((old->flags & IRQF_PERCPU) !=
1551 		    (new->flags & IRQF_PERCPU))
1552 			goto mismatch;
1553 
1554 		/* add new interrupt at end of irq queue */
1555 		do {
1556 			/*
1557 			 * Or all existing action->thread_mask bits,
1558 			 * so we can find the next zero bit for this
1559 			 * new action.
1560 			 */
1561 			thread_mask |= old->thread_mask;
1562 			old_ptr = &old->next;
1563 			old = *old_ptr;
1564 		} while (old);
1565 		shared = 1;
1566 	}
1567 
1568 	/*
1569 	 * Setup the thread mask for this irqaction for ONESHOT. For
1570 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1571 	 * conditional in irq_wake_thread().
1572 	 */
1573 	if (new->flags & IRQF_ONESHOT) {
1574 		/*
1575 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1576 		 * but who knows.
1577 		 */
1578 		if (thread_mask == ~0UL) {
1579 			ret = -EBUSY;
1580 			goto out_unlock;
1581 		}
1582 		/*
1583 		 * The thread_mask for the action is or'ed to
1584 		 * desc->thread_active to indicate that the
1585 		 * IRQF_ONESHOT thread handler has been woken, but not
1586 		 * yet finished. The bit is cleared when a thread
1587 		 * completes. When all threads of a shared interrupt
1588 		 * line have completed desc->threads_active becomes
1589 		 * zero and the interrupt line is unmasked. See
1590 		 * handle.c:irq_wake_thread() for further information.
1591 		 *
1592 		 * If no thread is woken by primary (hard irq context)
1593 		 * interrupt handlers, then desc->threads_active is
1594 		 * also checked for zero to unmask the irq line in the
1595 		 * affected hard irq flow handlers
1596 		 * (handle_[fasteoi|level]_irq).
1597 		 *
1598 		 * The new action gets the first zero bit of
1599 		 * thread_mask assigned. See the loop above which or's
1600 		 * all existing action->thread_mask bits.
1601 		 */
1602 		new->thread_mask = 1UL << ffz(thread_mask);
1603 
1604 	} else if (new->handler == irq_default_primary_handler &&
1605 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1606 		/*
1607 		 * The interrupt was requested with handler = NULL, so
1608 		 * we use the default primary handler for it. But it
1609 		 * does not have the oneshot flag set. In combination
1610 		 * with level interrupts this is deadly, because the
1611 		 * default primary handler just wakes the thread, then
1612 		 * the irq lines is reenabled, but the device still
1613 		 * has the level irq asserted. Rinse and repeat....
1614 		 *
1615 		 * While this works for edge type interrupts, we play
1616 		 * it safe and reject unconditionally because we can't
1617 		 * say for sure which type this interrupt really
1618 		 * has. The type flags are unreliable as the
1619 		 * underlying chip implementation can override them.
1620 		 */
1621 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1622 		       new->name, irq);
1623 		ret = -EINVAL;
1624 		goto out_unlock;
1625 	}
1626 
1627 	if (!shared) {
1628 		/* Setup the type (level, edge polarity) if configured: */
1629 		if (new->flags & IRQF_TRIGGER_MASK) {
1630 			ret = __irq_set_trigger(desc,
1631 						new->flags & IRQF_TRIGGER_MASK);
1632 
1633 			if (ret)
1634 				goto out_unlock;
1635 		}
1636 
1637 		/*
1638 		 * Activate the interrupt. That activation must happen
1639 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1640 		 * and the callers are supposed to handle
1641 		 * that. enable_irq() of an interrupt requested with
1642 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1643 		 * keeps it in shutdown mode, it merily associates
1644 		 * resources if necessary and if that's not possible it
1645 		 * fails. Interrupts which are in managed shutdown mode
1646 		 * will simply ignore that activation request.
1647 		 */
1648 		ret = irq_activate(desc);
1649 		if (ret)
1650 			goto out_unlock;
1651 
1652 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1653 				  IRQS_ONESHOT | IRQS_WAITING);
1654 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1655 
1656 		if (new->flags & IRQF_PERCPU) {
1657 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1658 			irq_settings_set_per_cpu(desc);
1659 		}
1660 
1661 		if (new->flags & IRQF_ONESHOT)
1662 			desc->istate |= IRQS_ONESHOT;
1663 
1664 		/* Exclude IRQ from balancing if requested */
1665 		if (new->flags & IRQF_NOBALANCING) {
1666 			irq_settings_set_no_balancing(desc);
1667 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1668 		}
1669 
1670 		if (!(new->flags & IRQF_NO_AUTOEN) &&
1671 		    irq_settings_can_autoenable(desc)) {
1672 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1673 		} else {
1674 			/*
1675 			 * Shared interrupts do not go well with disabling
1676 			 * auto enable. The sharing interrupt might request
1677 			 * it while it's still disabled and then wait for
1678 			 * interrupts forever.
1679 			 */
1680 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1681 			/* Undo nested disables: */
1682 			desc->depth = 1;
1683 		}
1684 
1685 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1686 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1687 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1688 
1689 		if (nmsk != omsk)
1690 			/* hope the handler works with current  trigger mode */
1691 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1692 				irq, omsk, nmsk);
1693 	}
1694 
1695 	*old_ptr = new;
1696 
1697 	irq_pm_install_action(desc, new);
1698 
1699 	/* Reset broken irq detection when installing new handler */
1700 	desc->irq_count = 0;
1701 	desc->irqs_unhandled = 0;
1702 
1703 	/*
1704 	 * Check whether we disabled the irq via the spurious handler
1705 	 * before. Reenable it and give it another chance.
1706 	 */
1707 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1708 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1709 		__enable_irq(desc);
1710 	}
1711 
1712 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1713 	chip_bus_sync_unlock(desc);
1714 	mutex_unlock(&desc->request_mutex);
1715 
1716 	irq_setup_timings(desc, new);
1717 
1718 	wake_up_and_wait_for_irq_thread_ready(desc, new);
1719 	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1720 
1721 	register_irq_proc(irq, desc);
1722 	new->dir = NULL;
1723 	register_handler_proc(irq, new);
1724 	return 0;
1725 
1726 mismatch:
1727 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1728 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1729 		       irq, new->flags, new->name, old->flags, old->name);
1730 #ifdef CONFIG_DEBUG_SHIRQ
1731 		dump_stack();
1732 #endif
1733 	}
1734 	ret = -EBUSY;
1735 
1736 out_unlock:
1737 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1738 
1739 	if (!desc->action)
1740 		irq_release_resources(desc);
1741 out_bus_unlock:
1742 	chip_bus_sync_unlock(desc);
1743 	mutex_unlock(&desc->request_mutex);
1744 
1745 out_thread:
1746 	if (new->thread) {
1747 		struct task_struct *t = new->thread;
1748 
1749 		new->thread = NULL;
1750 		kthread_stop(t);
1751 		put_task_struct(t);
1752 	}
1753 	if (new->secondary && new->secondary->thread) {
1754 		struct task_struct *t = new->secondary->thread;
1755 
1756 		new->secondary->thread = NULL;
1757 		kthread_stop(t);
1758 		put_task_struct(t);
1759 	}
1760 out_mput:
1761 	module_put(desc->owner);
1762 	return ret;
1763 }
1764 
1765 /*
1766  * Internal function to unregister an irqaction - used to free
1767  * regular and special interrupts that are part of the architecture.
1768  */
__free_irq(struct irq_desc * desc,void * dev_id)1769 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1770 {
1771 	unsigned irq = desc->irq_data.irq;
1772 	struct irqaction *action, **action_ptr;
1773 	unsigned long flags;
1774 
1775 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1776 
1777 	mutex_lock(&desc->request_mutex);
1778 	chip_bus_lock(desc);
1779 	raw_spin_lock_irqsave(&desc->lock, flags);
1780 
1781 	/*
1782 	 * There can be multiple actions per IRQ descriptor, find the right
1783 	 * one based on the dev_id:
1784 	 */
1785 	action_ptr = &desc->action;
1786 	for (;;) {
1787 		action = *action_ptr;
1788 
1789 		if (!action) {
1790 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1791 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1792 			chip_bus_sync_unlock(desc);
1793 			mutex_unlock(&desc->request_mutex);
1794 			return NULL;
1795 		}
1796 
1797 		if (action->dev_id == dev_id)
1798 			break;
1799 		action_ptr = &action->next;
1800 	}
1801 
1802 	/* Found it - now remove it from the list of entries: */
1803 	*action_ptr = action->next;
1804 
1805 	irq_pm_remove_action(desc, action);
1806 
1807 	/* If this was the last handler, shut down the IRQ line: */
1808 	if (!desc->action) {
1809 		irq_settings_clr_disable_unlazy(desc);
1810 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1811 		irq_shutdown(desc);
1812 	}
1813 
1814 #ifdef CONFIG_SMP
1815 	/* make sure affinity_hint is cleaned up */
1816 	if (WARN_ON_ONCE(desc->affinity_hint))
1817 		desc->affinity_hint = NULL;
1818 #endif
1819 
1820 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1821 	/*
1822 	 * Drop bus_lock here so the changes which were done in the chip
1823 	 * callbacks above are synced out to the irq chips which hang
1824 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1825 	 *
1826 	 * Aside of that the bus_lock can also be taken from the threaded
1827 	 * handler in irq_finalize_oneshot() which results in a deadlock
1828 	 * because kthread_stop() would wait forever for the thread to
1829 	 * complete, which is blocked on the bus lock.
1830 	 *
1831 	 * The still held desc->request_mutex() protects against a
1832 	 * concurrent request_irq() of this irq so the release of resources
1833 	 * and timing data is properly serialized.
1834 	 */
1835 	chip_bus_sync_unlock(desc);
1836 
1837 	unregister_handler_proc(irq, action);
1838 
1839 	/*
1840 	 * Make sure it's not being used on another CPU and if the chip
1841 	 * supports it also make sure that there is no (not yet serviced)
1842 	 * interrupt in flight at the hardware level.
1843 	 */
1844 	__synchronize_hardirq(desc, true);
1845 
1846 #ifdef CONFIG_DEBUG_SHIRQ
1847 	/*
1848 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1849 	 * event to happen even now it's being freed, so let's make sure that
1850 	 * is so by doing an extra call to the handler ....
1851 	 *
1852 	 * ( We do this after actually deregistering it, to make sure that a
1853 	 *   'real' IRQ doesn't run in parallel with our fake. )
1854 	 */
1855 	if (action->flags & IRQF_SHARED) {
1856 		local_irq_save(flags);
1857 		action->handler(irq, dev_id);
1858 		local_irq_restore(flags);
1859 	}
1860 #endif
1861 
1862 	/*
1863 	 * The action has already been removed above, but the thread writes
1864 	 * its oneshot mask bit when it completes. Though request_mutex is
1865 	 * held across this which prevents __setup_irq() from handing out
1866 	 * the same bit to a newly requested action.
1867 	 */
1868 	if (action->thread) {
1869 		kthread_stop(action->thread);
1870 		put_task_struct(action->thread);
1871 		if (action->secondary && action->secondary->thread) {
1872 			kthread_stop(action->secondary->thread);
1873 			put_task_struct(action->secondary->thread);
1874 		}
1875 	}
1876 
1877 	/* Last action releases resources */
1878 	if (!desc->action) {
1879 		/*
1880 		 * Reacquire bus lock as irq_release_resources() might
1881 		 * require it to deallocate resources over the slow bus.
1882 		 */
1883 		chip_bus_lock(desc);
1884 		/*
1885 		 * There is no interrupt on the fly anymore. Deactivate it
1886 		 * completely.
1887 		 */
1888 		raw_spin_lock_irqsave(&desc->lock, flags);
1889 		irq_domain_deactivate_irq(&desc->irq_data);
1890 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1891 
1892 		irq_release_resources(desc);
1893 		chip_bus_sync_unlock(desc);
1894 		irq_remove_timings(desc);
1895 	}
1896 
1897 	mutex_unlock(&desc->request_mutex);
1898 
1899 	irq_chip_pm_put(&desc->irq_data);
1900 	module_put(desc->owner);
1901 	kfree(action->secondary);
1902 	return action;
1903 }
1904 
1905 /**
1906  *	free_irq - free an interrupt allocated with request_irq
1907  *	@irq: Interrupt line to free
1908  *	@dev_id: Device identity to free
1909  *
1910  *	Remove an interrupt handler. The handler is removed and if the
1911  *	interrupt line is no longer in use by any driver it is disabled.
1912  *	On a shared IRQ the caller must ensure the interrupt is disabled
1913  *	on the card it drives before calling this function. The function
1914  *	does not return until any executing interrupts for this IRQ
1915  *	have completed.
1916  *
1917  *	This function must not be called from interrupt context.
1918  *
1919  *	Returns the devname argument passed to request_irq.
1920  */
free_irq(unsigned int irq,void * dev_id)1921 const void *free_irq(unsigned int irq, void *dev_id)
1922 {
1923 	struct irq_desc *desc = irq_to_desc(irq);
1924 	struct irqaction *action;
1925 	const char *devname;
1926 
1927 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1928 		return NULL;
1929 
1930 #ifdef CONFIG_SMP
1931 	if (WARN_ON(desc->affinity_notify))
1932 		desc->affinity_notify = NULL;
1933 #endif
1934 
1935 	action = __free_irq(desc, dev_id);
1936 
1937 	if (!action)
1938 		return NULL;
1939 
1940 	devname = action->name;
1941 	kfree(action);
1942 	return devname;
1943 }
1944 EXPORT_SYMBOL(free_irq);
1945 
1946 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)1947 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1948 {
1949 	const char *devname = NULL;
1950 
1951 	desc->istate &= ~IRQS_NMI;
1952 
1953 	if (!WARN_ON(desc->action == NULL)) {
1954 		irq_pm_remove_action(desc, desc->action);
1955 		devname = desc->action->name;
1956 		unregister_handler_proc(irq, desc->action);
1957 
1958 		kfree(desc->action);
1959 		desc->action = NULL;
1960 	}
1961 
1962 	irq_settings_clr_disable_unlazy(desc);
1963 	irq_shutdown_and_deactivate(desc);
1964 
1965 	irq_release_resources(desc);
1966 
1967 	irq_chip_pm_put(&desc->irq_data);
1968 	module_put(desc->owner);
1969 
1970 	return devname;
1971 }
1972 
free_nmi(unsigned int irq,void * dev_id)1973 const void *free_nmi(unsigned int irq, void *dev_id)
1974 {
1975 	struct irq_desc *desc = irq_to_desc(irq);
1976 	unsigned long flags;
1977 	const void *devname;
1978 
1979 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1980 		return NULL;
1981 
1982 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1983 		return NULL;
1984 
1985 	/* NMI still enabled */
1986 	if (WARN_ON(desc->depth == 0))
1987 		disable_nmi_nosync(irq);
1988 
1989 	raw_spin_lock_irqsave(&desc->lock, flags);
1990 
1991 	irq_nmi_teardown(desc);
1992 	devname = __cleanup_nmi(irq, desc);
1993 
1994 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1995 
1996 	return devname;
1997 }
1998 
1999 /**
2000  *	request_threaded_irq - allocate an interrupt line
2001  *	@irq: Interrupt line to allocate
2002  *	@handler: Function to be called when the IRQ occurs.
2003  *		  Primary handler for threaded interrupts
2004  *		  If NULL and thread_fn != NULL the default
2005  *		  primary handler is installed
2006  *	@thread_fn: Function called from the irq handler thread
2007  *		    If NULL, no irq thread is created
2008  *	@irqflags: Interrupt type flags
2009  *	@devname: An ascii name for the claiming device
2010  *	@dev_id: A cookie passed back to the handler function
2011  *
2012  *	This call allocates interrupt resources and enables the
2013  *	interrupt line and IRQ handling. From the point this
2014  *	call is made your handler function may be invoked. Since
2015  *	your handler function must clear any interrupt the board
2016  *	raises, you must take care both to initialise your hardware
2017  *	and to set up the interrupt handler in the right order.
2018  *
2019  *	If you want to set up a threaded irq handler for your device
2020  *	then you need to supply @handler and @thread_fn. @handler is
2021  *	still called in hard interrupt context and has to check
2022  *	whether the interrupt originates from the device. If yes it
2023  *	needs to disable the interrupt on the device and return
2024  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2025  *	@thread_fn. This split handler design is necessary to support
2026  *	shared interrupts.
2027  *
2028  *	Dev_id must be globally unique. Normally the address of the
2029  *	device data structure is used as the cookie. Since the handler
2030  *	receives this value it makes sense to use it.
2031  *
2032  *	If your interrupt is shared you must pass a non NULL dev_id
2033  *	as this is required when freeing the interrupt.
2034  *
2035  *	Flags:
2036  *
2037  *	IRQF_SHARED		Interrupt is shared
2038  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2039  *
2040  */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2041 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2042 			 irq_handler_t thread_fn, unsigned long irqflags,
2043 			 const char *devname, void *dev_id)
2044 {
2045 	struct irqaction *action;
2046 	struct irq_desc *desc;
2047 	int retval;
2048 
2049 	if (irq == IRQ_NOTCONNECTED)
2050 		return -ENOTCONN;
2051 
2052 	/*
2053 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2054 	 * otherwise we'll have trouble later trying to figure out
2055 	 * which interrupt is which (messes up the interrupt freeing
2056 	 * logic etc).
2057 	 *
2058 	 * Also shared interrupts do not go well with disabling auto enable.
2059 	 * The sharing interrupt might request it while it's still disabled
2060 	 * and then wait for interrupts forever.
2061 	 *
2062 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2063 	 * it cannot be set along with IRQF_NO_SUSPEND.
2064 	 */
2065 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2066 	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2067 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2068 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2069 		return -EINVAL;
2070 
2071 	desc = irq_to_desc(irq);
2072 	if (!desc)
2073 		return -EINVAL;
2074 
2075 	if (!irq_settings_can_request(desc) ||
2076 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2077 		return -EINVAL;
2078 
2079 	if (!handler) {
2080 		if (!thread_fn)
2081 			return -EINVAL;
2082 		handler = irq_default_primary_handler;
2083 	}
2084 
2085 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2086 	if (!action)
2087 		return -ENOMEM;
2088 
2089 	action->handler = handler;
2090 	action->thread_fn = thread_fn;
2091 	action->flags = irqflags;
2092 	action->name = devname;
2093 	action->dev_id = dev_id;
2094 
2095 	retval = irq_chip_pm_get(&desc->irq_data);
2096 	if (retval < 0) {
2097 		kfree(action);
2098 		return retval;
2099 	}
2100 
2101 	retval = __setup_irq(irq, desc, action);
2102 
2103 	if (retval) {
2104 		irq_chip_pm_put(&desc->irq_data);
2105 		kfree(action->secondary);
2106 		kfree(action);
2107 	}
2108 
2109 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2110 	if (!retval && (irqflags & IRQF_SHARED)) {
2111 		/*
2112 		 * It's a shared IRQ -- the driver ought to be prepared for it
2113 		 * to happen immediately, so let's make sure....
2114 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2115 		 * run in parallel with our fake.
2116 		 */
2117 		unsigned long flags;
2118 
2119 		disable_irq(irq);
2120 		local_irq_save(flags);
2121 
2122 		handler(irq, dev_id);
2123 
2124 		local_irq_restore(flags);
2125 		enable_irq(irq);
2126 	}
2127 #endif
2128 	return retval;
2129 }
2130 EXPORT_SYMBOL(request_threaded_irq);
2131 
2132 /**
2133  *	request_any_context_irq - allocate an interrupt line
2134  *	@irq: Interrupt line to allocate
2135  *	@handler: Function to be called when the IRQ occurs.
2136  *		  Threaded handler for threaded interrupts.
2137  *	@flags: Interrupt type flags
2138  *	@name: An ascii name for the claiming device
2139  *	@dev_id: A cookie passed back to the handler function
2140  *
2141  *	This call allocates interrupt resources and enables the
2142  *	interrupt line and IRQ handling. It selects either a
2143  *	hardirq or threaded handling method depending on the
2144  *	context.
2145  *
2146  *	On failure, it returns a negative value. On success,
2147  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2148  */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2149 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2150 			    unsigned long flags, const char *name, void *dev_id)
2151 {
2152 	struct irq_desc *desc;
2153 	int ret;
2154 
2155 	if (irq == IRQ_NOTCONNECTED)
2156 		return -ENOTCONN;
2157 
2158 	desc = irq_to_desc(irq);
2159 	if (!desc)
2160 		return -EINVAL;
2161 
2162 	if (irq_settings_is_nested_thread(desc)) {
2163 		ret = request_threaded_irq(irq, NULL, handler,
2164 					   flags, name, dev_id);
2165 		return !ret ? IRQC_IS_NESTED : ret;
2166 	}
2167 
2168 	ret = request_irq(irq, handler, flags, name, dev_id);
2169 	return !ret ? IRQC_IS_HARDIRQ : ret;
2170 }
2171 EXPORT_SYMBOL_GPL(request_any_context_irq);
2172 
2173 /**
2174  *	request_nmi - allocate an interrupt line for NMI delivery
2175  *	@irq: Interrupt line to allocate
2176  *	@handler: Function to be called when the IRQ occurs.
2177  *		  Threaded handler for threaded interrupts.
2178  *	@irqflags: Interrupt type flags
2179  *	@name: An ascii name for the claiming device
2180  *	@dev_id: A cookie passed back to the handler function
2181  *
2182  *	This call allocates interrupt resources and enables the
2183  *	interrupt line and IRQ handling. It sets up the IRQ line
2184  *	to be handled as an NMI.
2185  *
2186  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2187  *	cannot be threaded.
2188  *
2189  *	Interrupt lines requested for NMI delivering must produce per cpu
2190  *	interrupts and have auto enabling setting disabled.
2191  *
2192  *	Dev_id must be globally unique. Normally the address of the
2193  *	device data structure is used as the cookie. Since the handler
2194  *	receives this value it makes sense to use it.
2195  *
2196  *	If the interrupt line cannot be used to deliver NMIs, function
2197  *	will fail and return a negative value.
2198  */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2199 int request_nmi(unsigned int irq, irq_handler_t handler,
2200 		unsigned long irqflags, const char *name, void *dev_id)
2201 {
2202 	struct irqaction *action;
2203 	struct irq_desc *desc;
2204 	unsigned long flags;
2205 	int retval;
2206 
2207 	if (irq == IRQ_NOTCONNECTED)
2208 		return -ENOTCONN;
2209 
2210 	/* NMI cannot be shared, used for Polling */
2211 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2212 		return -EINVAL;
2213 
2214 	if (!(irqflags & IRQF_PERCPU))
2215 		return -EINVAL;
2216 
2217 	if (!handler)
2218 		return -EINVAL;
2219 
2220 	desc = irq_to_desc(irq);
2221 
2222 	if (!desc || (irq_settings_can_autoenable(desc) &&
2223 	    !(irqflags & IRQF_NO_AUTOEN)) ||
2224 	    !irq_settings_can_request(desc) ||
2225 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2226 	    !irq_supports_nmi(desc))
2227 		return -EINVAL;
2228 
2229 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2230 	if (!action)
2231 		return -ENOMEM;
2232 
2233 	action->handler = handler;
2234 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2235 	action->name = name;
2236 	action->dev_id = dev_id;
2237 
2238 	retval = irq_chip_pm_get(&desc->irq_data);
2239 	if (retval < 0)
2240 		goto err_out;
2241 
2242 	retval = __setup_irq(irq, desc, action);
2243 	if (retval)
2244 		goto err_irq_setup;
2245 
2246 	raw_spin_lock_irqsave(&desc->lock, flags);
2247 
2248 	/* Setup NMI state */
2249 	desc->istate |= IRQS_NMI;
2250 	retval = irq_nmi_setup(desc);
2251 	if (retval) {
2252 		__cleanup_nmi(irq, desc);
2253 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2254 		return -EINVAL;
2255 	}
2256 
2257 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2258 
2259 	return 0;
2260 
2261 err_irq_setup:
2262 	irq_chip_pm_put(&desc->irq_data);
2263 err_out:
2264 	kfree(action);
2265 
2266 	return retval;
2267 }
2268 
enable_percpu_irq(unsigned int irq,unsigned int type)2269 void enable_percpu_irq(unsigned int irq, unsigned int type)
2270 {
2271 	unsigned int cpu = smp_processor_id();
2272 	unsigned long flags;
2273 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2274 
2275 	if (!desc)
2276 		return;
2277 
2278 	/*
2279 	 * If the trigger type is not specified by the caller, then
2280 	 * use the default for this interrupt.
2281 	 */
2282 	type &= IRQ_TYPE_SENSE_MASK;
2283 	if (type == IRQ_TYPE_NONE)
2284 		type = irqd_get_trigger_type(&desc->irq_data);
2285 
2286 	if (type != IRQ_TYPE_NONE) {
2287 		int ret;
2288 
2289 		ret = __irq_set_trigger(desc, type);
2290 
2291 		if (ret) {
2292 			WARN(1, "failed to set type for IRQ%d\n", irq);
2293 			goto out;
2294 		}
2295 	}
2296 
2297 	irq_percpu_enable(desc, cpu);
2298 out:
2299 	irq_put_desc_unlock(desc, flags);
2300 }
2301 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2302 
enable_percpu_nmi(unsigned int irq,unsigned int type)2303 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2304 {
2305 	enable_percpu_irq(irq, type);
2306 }
2307 
2308 /**
2309  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2310  * @irq:	Linux irq number to check for
2311  *
2312  * Must be called from a non migratable context. Returns the enable
2313  * state of a per cpu interrupt on the current cpu.
2314  */
irq_percpu_is_enabled(unsigned int irq)2315 bool irq_percpu_is_enabled(unsigned int irq)
2316 {
2317 	unsigned int cpu = smp_processor_id();
2318 	struct irq_desc *desc;
2319 	unsigned long flags;
2320 	bool is_enabled;
2321 
2322 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2323 	if (!desc)
2324 		return false;
2325 
2326 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2327 	irq_put_desc_unlock(desc, flags);
2328 
2329 	return is_enabled;
2330 }
2331 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2332 
disable_percpu_irq(unsigned int irq)2333 void disable_percpu_irq(unsigned int irq)
2334 {
2335 	unsigned int cpu = smp_processor_id();
2336 	unsigned long flags;
2337 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2338 
2339 	if (!desc)
2340 		return;
2341 
2342 	irq_percpu_disable(desc, cpu);
2343 	irq_put_desc_unlock(desc, flags);
2344 }
2345 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2346 
disable_percpu_nmi(unsigned int irq)2347 void disable_percpu_nmi(unsigned int irq)
2348 {
2349 	disable_percpu_irq(irq);
2350 }
2351 
2352 /*
2353  * Internal function to unregister a percpu irqaction.
2354  */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2355 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2356 {
2357 	struct irq_desc *desc = irq_to_desc(irq);
2358 	struct irqaction *action;
2359 	unsigned long flags;
2360 
2361 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2362 
2363 	if (!desc)
2364 		return NULL;
2365 
2366 	raw_spin_lock_irqsave(&desc->lock, flags);
2367 
2368 	action = desc->action;
2369 	if (!action || action->percpu_dev_id != dev_id) {
2370 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2371 		goto bad;
2372 	}
2373 
2374 	if (!cpumask_empty(desc->percpu_enabled)) {
2375 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2376 		     irq, cpumask_first(desc->percpu_enabled));
2377 		goto bad;
2378 	}
2379 
2380 	/* Found it - now remove it from the list of entries: */
2381 	desc->action = NULL;
2382 
2383 	desc->istate &= ~IRQS_NMI;
2384 
2385 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2386 
2387 	unregister_handler_proc(irq, action);
2388 
2389 	irq_chip_pm_put(&desc->irq_data);
2390 	module_put(desc->owner);
2391 	return action;
2392 
2393 bad:
2394 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2395 	return NULL;
2396 }
2397 
2398 /**
2399  *	remove_percpu_irq - free a per-cpu interrupt
2400  *	@irq: Interrupt line to free
2401  *	@act: irqaction for the interrupt
2402  *
2403  * Used to remove interrupts statically setup by the early boot process.
2404  */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2405 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2406 {
2407 	struct irq_desc *desc = irq_to_desc(irq);
2408 
2409 	if (desc && irq_settings_is_per_cpu_devid(desc))
2410 	    __free_percpu_irq(irq, act->percpu_dev_id);
2411 }
2412 
2413 /**
2414  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2415  *	@irq: Interrupt line to free
2416  *	@dev_id: Device identity to free
2417  *
2418  *	Remove a percpu interrupt handler. The handler is removed, but
2419  *	the interrupt line is not disabled. This must be done on each
2420  *	CPU before calling this function. The function does not return
2421  *	until any executing interrupts for this IRQ have completed.
2422  *
2423  *	This function must not be called from interrupt context.
2424  */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2425 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2426 {
2427 	struct irq_desc *desc = irq_to_desc(irq);
2428 
2429 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2430 		return;
2431 
2432 	chip_bus_lock(desc);
2433 	kfree(__free_percpu_irq(irq, dev_id));
2434 	chip_bus_sync_unlock(desc);
2435 }
2436 EXPORT_SYMBOL_GPL(free_percpu_irq);
2437 
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2438 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2439 {
2440 	struct irq_desc *desc = irq_to_desc(irq);
2441 
2442 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2443 		return;
2444 
2445 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2446 		return;
2447 
2448 	kfree(__free_percpu_irq(irq, dev_id));
2449 }
2450 
2451 /**
2452  *	setup_percpu_irq - setup a per-cpu interrupt
2453  *	@irq: Interrupt line to setup
2454  *	@act: irqaction for the interrupt
2455  *
2456  * Used to statically setup per-cpu interrupts in the early boot process.
2457  */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2458 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2459 {
2460 	struct irq_desc *desc = irq_to_desc(irq);
2461 	int retval;
2462 
2463 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2464 		return -EINVAL;
2465 
2466 	retval = irq_chip_pm_get(&desc->irq_data);
2467 	if (retval < 0)
2468 		return retval;
2469 
2470 	retval = __setup_irq(irq, desc, act);
2471 
2472 	if (retval)
2473 		irq_chip_pm_put(&desc->irq_data);
2474 
2475 	return retval;
2476 }
2477 
2478 /**
2479  *	__request_percpu_irq - allocate a percpu interrupt line
2480  *	@irq: Interrupt line to allocate
2481  *	@handler: Function to be called when the IRQ occurs.
2482  *	@flags: Interrupt type flags (IRQF_TIMER only)
2483  *	@devname: An ascii name for the claiming device
2484  *	@dev_id: A percpu cookie passed back to the handler function
2485  *
2486  *	This call allocates interrupt resources and enables the
2487  *	interrupt on the local CPU. If the interrupt is supposed to be
2488  *	enabled on other CPUs, it has to be done on each CPU using
2489  *	enable_percpu_irq().
2490  *
2491  *	Dev_id must be globally unique. It is a per-cpu variable, and
2492  *	the handler gets called with the interrupted CPU's instance of
2493  *	that variable.
2494  */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2495 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2496 			 unsigned long flags, const char *devname,
2497 			 void __percpu *dev_id)
2498 {
2499 	struct irqaction *action;
2500 	struct irq_desc *desc;
2501 	int retval;
2502 
2503 	if (!dev_id)
2504 		return -EINVAL;
2505 
2506 	desc = irq_to_desc(irq);
2507 	if (!desc || !irq_settings_can_request(desc) ||
2508 	    !irq_settings_is_per_cpu_devid(desc))
2509 		return -EINVAL;
2510 
2511 	if (flags && flags != IRQF_TIMER)
2512 		return -EINVAL;
2513 
2514 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2515 	if (!action)
2516 		return -ENOMEM;
2517 
2518 	action->handler = handler;
2519 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2520 	action->name = devname;
2521 	action->percpu_dev_id = dev_id;
2522 
2523 	retval = irq_chip_pm_get(&desc->irq_data);
2524 	if (retval < 0) {
2525 		kfree(action);
2526 		return retval;
2527 	}
2528 
2529 	retval = __setup_irq(irq, desc, action);
2530 
2531 	if (retval) {
2532 		irq_chip_pm_put(&desc->irq_data);
2533 		kfree(action);
2534 	}
2535 
2536 	return retval;
2537 }
2538 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2539 
2540 /**
2541  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2542  *	@irq: Interrupt line to allocate
2543  *	@handler: Function to be called when the IRQ occurs.
2544  *	@name: An ascii name for the claiming device
2545  *	@dev_id: A percpu cookie passed back to the handler function
2546  *
2547  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2548  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2549  *	being enabled on the same CPU by using enable_percpu_nmi().
2550  *
2551  *	Dev_id must be globally unique. It is a per-cpu variable, and
2552  *	the handler gets called with the interrupted CPU's instance of
2553  *	that variable.
2554  *
2555  *	Interrupt lines requested for NMI delivering should have auto enabling
2556  *	setting disabled.
2557  *
2558  *	If the interrupt line cannot be used to deliver NMIs, function
2559  *	will fail returning a negative value.
2560  */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2561 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2562 		       const char *name, void __percpu *dev_id)
2563 {
2564 	struct irqaction *action;
2565 	struct irq_desc *desc;
2566 	unsigned long flags;
2567 	int retval;
2568 
2569 	if (!handler)
2570 		return -EINVAL;
2571 
2572 	desc = irq_to_desc(irq);
2573 
2574 	if (!desc || !irq_settings_can_request(desc) ||
2575 	    !irq_settings_is_per_cpu_devid(desc) ||
2576 	    irq_settings_can_autoenable(desc) ||
2577 	    !irq_supports_nmi(desc))
2578 		return -EINVAL;
2579 
2580 	/* The line cannot already be NMI */
2581 	if (desc->istate & IRQS_NMI)
2582 		return -EINVAL;
2583 
2584 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2585 	if (!action)
2586 		return -ENOMEM;
2587 
2588 	action->handler = handler;
2589 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2590 		| IRQF_NOBALANCING;
2591 	action->name = name;
2592 	action->percpu_dev_id = dev_id;
2593 
2594 	retval = irq_chip_pm_get(&desc->irq_data);
2595 	if (retval < 0)
2596 		goto err_out;
2597 
2598 	retval = __setup_irq(irq, desc, action);
2599 	if (retval)
2600 		goto err_irq_setup;
2601 
2602 	raw_spin_lock_irqsave(&desc->lock, flags);
2603 	desc->istate |= IRQS_NMI;
2604 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2605 
2606 	return 0;
2607 
2608 err_irq_setup:
2609 	irq_chip_pm_put(&desc->irq_data);
2610 err_out:
2611 	kfree(action);
2612 
2613 	return retval;
2614 }
2615 
2616 /**
2617  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2618  *	@irq: Interrupt line to prepare for NMI delivery
2619  *
2620  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2621  *	before that interrupt line gets enabled with enable_percpu_nmi().
2622  *
2623  *	As a CPU local operation, this should be called from non-preemptible
2624  *	context.
2625  *
2626  *	If the interrupt line cannot be used to deliver NMIs, function
2627  *	will fail returning a negative value.
2628  */
prepare_percpu_nmi(unsigned int irq)2629 int prepare_percpu_nmi(unsigned int irq)
2630 {
2631 	unsigned long flags;
2632 	struct irq_desc *desc;
2633 	int ret = 0;
2634 
2635 	WARN_ON(preemptible());
2636 
2637 	desc = irq_get_desc_lock(irq, &flags,
2638 				 IRQ_GET_DESC_CHECK_PERCPU);
2639 	if (!desc)
2640 		return -EINVAL;
2641 
2642 	if (WARN(!(desc->istate & IRQS_NMI),
2643 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2644 		 irq)) {
2645 		ret = -EINVAL;
2646 		goto out;
2647 	}
2648 
2649 	ret = irq_nmi_setup(desc);
2650 	if (ret) {
2651 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2652 		goto out;
2653 	}
2654 
2655 out:
2656 	irq_put_desc_unlock(desc, flags);
2657 	return ret;
2658 }
2659 
2660 /**
2661  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2662  *	@irq: Interrupt line from which CPU local NMI configuration should be
2663  *	      removed
2664  *
2665  *	This call undoes the setup done by prepare_percpu_nmi().
2666  *
2667  *	IRQ line should not be enabled for the current CPU.
2668  *
2669  *	As a CPU local operation, this should be called from non-preemptible
2670  *	context.
2671  */
teardown_percpu_nmi(unsigned int irq)2672 void teardown_percpu_nmi(unsigned int irq)
2673 {
2674 	unsigned long flags;
2675 	struct irq_desc *desc;
2676 
2677 	WARN_ON(preemptible());
2678 
2679 	desc = irq_get_desc_lock(irq, &flags,
2680 				 IRQ_GET_DESC_CHECK_PERCPU);
2681 	if (!desc)
2682 		return;
2683 
2684 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2685 		goto out;
2686 
2687 	irq_nmi_teardown(desc);
2688 out:
2689 	irq_put_desc_unlock(desc, flags);
2690 }
2691 
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2692 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2693 			    bool *state)
2694 {
2695 	struct irq_chip *chip;
2696 	int err = -EINVAL;
2697 
2698 	do {
2699 		chip = irq_data_get_irq_chip(data);
2700 		if (WARN_ON_ONCE(!chip))
2701 			return -ENODEV;
2702 		if (chip->irq_get_irqchip_state)
2703 			break;
2704 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2705 		data = data->parent_data;
2706 #else
2707 		data = NULL;
2708 #endif
2709 	} while (data);
2710 
2711 	if (data)
2712 		err = chip->irq_get_irqchip_state(data, which, state);
2713 	return err;
2714 }
2715 
2716 /**
2717  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2718  *	@irq: Interrupt line that is forwarded to a VM
2719  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2720  *	@state: a pointer to a boolean where the state is to be storeed
2721  *
2722  *	This call snapshots the internal irqchip state of an
2723  *	interrupt, returning into @state the bit corresponding to
2724  *	stage @which
2725  *
2726  *	This function should be called with preemption disabled if the
2727  *	interrupt controller has per-cpu registers.
2728  */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2729 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2730 			  bool *state)
2731 {
2732 	struct irq_desc *desc;
2733 	struct irq_data *data;
2734 	unsigned long flags;
2735 	int err = -EINVAL;
2736 
2737 	desc = irq_get_desc_buslock(irq, &flags, 0);
2738 	if (!desc)
2739 		return err;
2740 
2741 	data = irq_desc_get_irq_data(desc);
2742 
2743 	err = __irq_get_irqchip_state(data, which, state);
2744 
2745 	irq_put_desc_busunlock(desc, flags);
2746 	return err;
2747 }
2748 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2749 
2750 /**
2751  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2752  *	@irq: Interrupt line that is forwarded to a VM
2753  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2754  *	@val: Value corresponding to @which
2755  *
2756  *	This call sets the internal irqchip state of an interrupt,
2757  *	depending on the value of @which.
2758  *
2759  *	This function should be called with preemption disabled if the
2760  *	interrupt controller has per-cpu registers.
2761  */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2762 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2763 			  bool val)
2764 {
2765 	struct irq_desc *desc;
2766 	struct irq_data *data;
2767 	struct irq_chip *chip;
2768 	unsigned long flags;
2769 	int err = -EINVAL;
2770 
2771 	desc = irq_get_desc_buslock(irq, &flags, 0);
2772 	if (!desc)
2773 		return err;
2774 
2775 	data = irq_desc_get_irq_data(desc);
2776 
2777 	do {
2778 		chip = irq_data_get_irq_chip(data);
2779 		if (WARN_ON_ONCE(!chip)) {
2780 			err = -ENODEV;
2781 			goto out_unlock;
2782 		}
2783 		if (chip->irq_set_irqchip_state)
2784 			break;
2785 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2786 		data = data->parent_data;
2787 #else
2788 		data = NULL;
2789 #endif
2790 	} while (data);
2791 
2792 	if (data)
2793 		err = chip->irq_set_irqchip_state(data, which, val);
2794 
2795 out_unlock:
2796 	irq_put_desc_busunlock(desc, flags);
2797 	return err;
2798 }
2799 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2800