1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 __read_mostly bool force_irqthreads;
29 EXPORT_SYMBOL_GPL(force_irqthreads);
30
setup_forced_irqthreads(char * arg)31 static int __init setup_forced_irqthreads(char *arg)
32 {
33 force_irqthreads = true;
34 return 0;
35 }
36 early_param("threadirqs", setup_forced_irqthreads);
37 #endif
38
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)39 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
40 {
41 struct irq_data *irqd = irq_desc_get_irq_data(desc);
42 bool inprogress;
43
44 do {
45 unsigned long flags;
46
47 /*
48 * Wait until we're out of the critical section. This might
49 * give the wrong answer due to the lack of memory barriers.
50 */
51 while (irqd_irq_inprogress(&desc->irq_data))
52 cpu_relax();
53
54 /* Ok, that indicated we're done: double-check carefully. */
55 raw_spin_lock_irqsave(&desc->lock, flags);
56 inprogress = irqd_irq_inprogress(&desc->irq_data);
57
58 /*
59 * If requested and supported, check at the chip whether it
60 * is in flight at the hardware level, i.e. already pending
61 * in a CPU and waiting for service and acknowledge.
62 */
63 if (!inprogress && sync_chip) {
64 /*
65 * Ignore the return code. inprogress is only updated
66 * when the chip supports it.
67 */
68 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
69 &inprogress);
70 }
71 raw_spin_unlock_irqrestore(&desc->lock, flags);
72
73 /* Oops, that failed? */
74 } while (inprogress);
75 }
76
77 /**
78 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
79 * @irq: interrupt number to wait for
80 *
81 * This function waits for any pending hard IRQ handlers for this
82 * interrupt to complete before returning. If you use this
83 * function while holding a resource the IRQ handler may need you
84 * will deadlock. It does not take associated threaded handlers
85 * into account.
86 *
87 * Do not use this for shutdown scenarios where you must be sure
88 * that all parts (hardirq and threaded handler) have completed.
89 *
90 * Returns: false if a threaded handler is active.
91 *
92 * This function may be called - with care - from IRQ context.
93 *
94 * It does not check whether there is an interrupt in flight at the
95 * hardware level, but not serviced yet, as this might deadlock when
96 * called with interrupts disabled and the target CPU of the interrupt
97 * is the current CPU.
98 */
synchronize_hardirq(unsigned int irq)99 bool synchronize_hardirq(unsigned int irq)
100 {
101 struct irq_desc *desc = irq_to_desc(irq);
102
103 if (desc) {
104 __synchronize_hardirq(desc, false);
105 return !atomic_read(&desc->threads_active);
106 }
107
108 return true;
109 }
110 EXPORT_SYMBOL(synchronize_hardirq);
111
112 /**
113 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
114 * @irq: interrupt number to wait for
115 *
116 * This function waits for any pending IRQ handlers for this interrupt
117 * to complete before returning. If you use this function while
118 * holding a resource the IRQ handler may need you will deadlock.
119 *
120 * Can only be called from preemptible code as it might sleep when
121 * an interrupt thread is associated to @irq.
122 *
123 * It optionally makes sure (when the irq chip supports that method)
124 * that the interrupt is not pending in any CPU and waiting for
125 * service.
126 */
synchronize_irq(unsigned int irq)127 void synchronize_irq(unsigned int irq)
128 {
129 struct irq_desc *desc = irq_to_desc(irq);
130
131 if (desc) {
132 __synchronize_hardirq(desc, true);
133 /*
134 * We made sure that no hardirq handler is
135 * running. Now verify that no threaded handlers are
136 * active.
137 */
138 wait_event(desc->wait_for_threads,
139 !atomic_read(&desc->threads_active));
140 }
141 }
142 EXPORT_SYMBOL(synchronize_irq);
143
144 #ifdef CONFIG_SMP
145 cpumask_var_t irq_default_affinity;
146
__irq_can_set_affinity(struct irq_desc * desc)147 static bool __irq_can_set_affinity(struct irq_desc *desc)
148 {
149 if (!desc || !irqd_can_balance(&desc->irq_data) ||
150 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
151 return false;
152 return true;
153 }
154
155 /**
156 * irq_can_set_affinity - Check if the affinity of a given irq can be set
157 * @irq: Interrupt to check
158 *
159 */
irq_can_set_affinity(unsigned int irq)160 int irq_can_set_affinity(unsigned int irq)
161 {
162 return __irq_can_set_affinity(irq_to_desc(irq));
163 }
164
165 /**
166 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
167 * @irq: Interrupt to check
168 *
169 * Like irq_can_set_affinity() above, but additionally checks for the
170 * AFFINITY_MANAGED flag.
171 */
irq_can_set_affinity_usr(unsigned int irq)172 bool irq_can_set_affinity_usr(unsigned int irq)
173 {
174 struct irq_desc *desc = irq_to_desc(irq);
175
176 return __irq_can_set_affinity(desc) &&
177 !irqd_affinity_is_managed(&desc->irq_data);
178 }
179
180 /**
181 * irq_set_thread_affinity - Notify irq threads to adjust affinity
182 * @desc: irq descriptor which has affitnity changed
183 *
184 * We just set IRQTF_AFFINITY and delegate the affinity setting
185 * to the interrupt thread itself. We can not call
186 * set_cpus_allowed_ptr() here as we hold desc->lock and this
187 * code can be called from hard interrupt context.
188 */
irq_set_thread_affinity(struct irq_desc * desc)189 void irq_set_thread_affinity(struct irq_desc *desc)
190 {
191 struct irqaction *action;
192
193 for_each_action_of_desc(desc, action)
194 if (action->thread)
195 set_bit(IRQTF_AFFINITY, &action->thread_flags);
196 }
197
198 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)199 static void irq_validate_effective_affinity(struct irq_data *data)
200 {
201 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
202 struct irq_chip *chip = irq_data_get_irq_chip(data);
203
204 if (!cpumask_empty(m))
205 return;
206 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
207 chip->name, data->irq);
208 }
209
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)210 static inline void irq_init_effective_affinity(struct irq_data *data,
211 const struct cpumask *mask)
212 {
213 cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
214 }
215 #else
irq_validate_effective_affinity(struct irq_data * data)216 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)217 static inline void irq_init_effective_affinity(struct irq_data *data,
218 const struct cpumask *mask) { }
219 #endif
220
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)221 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
222 bool force)
223 {
224 struct irq_desc *desc = irq_data_to_desc(data);
225 struct irq_chip *chip = irq_data_get_irq_chip(data);
226 const struct cpumask *prog_mask;
227 int ret;
228
229 static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
230 static struct cpumask tmp_mask;
231
232 if (!chip || !chip->irq_set_affinity)
233 return -EINVAL;
234
235 raw_spin_lock(&tmp_mask_lock);
236 /*
237 * If this is a managed interrupt and housekeeping is enabled on
238 * it check whether the requested affinity mask intersects with
239 * a housekeeping CPU. If so, then remove the isolated CPUs from
240 * the mask and just keep the housekeeping CPU(s). This prevents
241 * the affinity setter from routing the interrupt to an isolated
242 * CPU to avoid that I/O submitted from a housekeeping CPU causes
243 * interrupts on an isolated one.
244 *
245 * If the masks do not intersect or include online CPU(s) then
246 * keep the requested mask. The isolated target CPUs are only
247 * receiving interrupts when the I/O operation was submitted
248 * directly from them.
249 *
250 * If all housekeeping CPUs in the affinity mask are offline, the
251 * interrupt will be migrated by the CPU hotplug code once a
252 * housekeeping CPU which belongs to the affinity mask comes
253 * online.
254 */
255 if (irqd_affinity_is_managed(data) &&
256 housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
257 const struct cpumask *hk_mask;
258
259 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
260
261 cpumask_and(&tmp_mask, mask, hk_mask);
262 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
263 prog_mask = mask;
264 else
265 prog_mask = &tmp_mask;
266 } else {
267 prog_mask = mask;
268 }
269
270 /*
271 * Make sure we only provide online CPUs to the irqchip,
272 * unless we are being asked to force the affinity (in which
273 * case we do as we are told).
274 */
275 cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
276 if (!force && !cpumask_empty(&tmp_mask))
277 ret = chip->irq_set_affinity(data, &tmp_mask, force);
278 else if (force)
279 ret = chip->irq_set_affinity(data, mask, force);
280 else
281 ret = -EINVAL;
282
283 raw_spin_unlock(&tmp_mask_lock);
284
285 switch (ret) {
286 case IRQ_SET_MASK_OK:
287 case IRQ_SET_MASK_OK_DONE:
288 cpumask_copy(desc->irq_common_data.affinity, mask);
289 fallthrough;
290 case IRQ_SET_MASK_OK_NOCOPY:
291 irq_validate_effective_affinity(data);
292 irq_set_thread_affinity(desc);
293 ret = 0;
294 }
295
296 return ret;
297 }
298
299 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)300 static inline int irq_set_affinity_pending(struct irq_data *data,
301 const struct cpumask *dest)
302 {
303 struct irq_desc *desc = irq_data_to_desc(data);
304
305 irqd_set_move_pending(data);
306 irq_copy_pending(desc, dest);
307 return 0;
308 }
309 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)310 static inline int irq_set_affinity_pending(struct irq_data *data,
311 const struct cpumask *dest)
312 {
313 return -EBUSY;
314 }
315 #endif
316
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)317 static int irq_try_set_affinity(struct irq_data *data,
318 const struct cpumask *dest, bool force)
319 {
320 int ret = irq_do_set_affinity(data, dest, force);
321
322 /*
323 * In case that the underlying vector management is busy and the
324 * architecture supports the generic pending mechanism then utilize
325 * this to avoid returning an error to user space.
326 */
327 if (ret == -EBUSY && !force)
328 ret = irq_set_affinity_pending(data, dest);
329 return ret;
330 }
331
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask,bool force)332 static bool irq_set_affinity_deactivated(struct irq_data *data,
333 const struct cpumask *mask, bool force)
334 {
335 struct irq_desc *desc = irq_data_to_desc(data);
336
337 /*
338 * Handle irq chips which can handle affinity only in activated
339 * state correctly
340 *
341 * If the interrupt is not yet activated, just store the affinity
342 * mask and do not call the chip driver at all. On activation the
343 * driver has to make sure anyway that the interrupt is in a
344 * usable state so startup works.
345 */
346 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
347 irqd_is_activated(data) || !irqd_affinity_on_activate(data))
348 return false;
349
350 cpumask_copy(desc->irq_common_data.affinity, mask);
351 irq_init_effective_affinity(data, mask);
352 irqd_set(data, IRQD_AFFINITY_SET);
353 return true;
354 }
355
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)356 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
357 bool force)
358 {
359 struct irq_chip *chip = irq_data_get_irq_chip(data);
360 struct irq_desc *desc = irq_data_to_desc(data);
361 int ret = 0;
362
363 if (!chip || !chip->irq_set_affinity)
364 return -EINVAL;
365
366 if (irq_set_affinity_deactivated(data, mask, force))
367 return 0;
368
369 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
370 ret = irq_try_set_affinity(data, mask, force);
371 } else {
372 irqd_set_move_pending(data);
373 irq_copy_pending(desc, mask);
374 }
375
376 if (desc->affinity_notify) {
377 kref_get(&desc->affinity_notify->kref);
378 if (!schedule_work(&desc->affinity_notify->work)) {
379 /* Work was already scheduled, drop our extra ref */
380 kref_put(&desc->affinity_notify->kref,
381 desc->affinity_notify->release);
382 }
383 }
384 irqd_set(data, IRQD_AFFINITY_SET);
385
386 return ret;
387 }
388
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)389 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
390 {
391 struct irq_desc *desc = irq_to_desc(irq);
392 unsigned long flags;
393 int ret;
394
395 if (!desc)
396 return -EINVAL;
397
398 raw_spin_lock_irqsave(&desc->lock, flags);
399 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
400 raw_spin_unlock_irqrestore(&desc->lock, flags);
401 return ret;
402 }
403
irq_set_affinity_hint(unsigned int irq,const struct cpumask * m)404 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
405 {
406 unsigned long flags;
407 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
408
409 if (!desc)
410 return -EINVAL;
411 desc->affinity_hint = m;
412 irq_put_desc_unlock(desc, flags);
413 /* set the initial affinity to prevent every interrupt being on CPU0 */
414 if (m)
415 __irq_set_affinity(irq, m, false);
416 return 0;
417 }
418 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
419
irq_affinity_notify(struct work_struct * work)420 static void irq_affinity_notify(struct work_struct *work)
421 {
422 struct irq_affinity_notify *notify =
423 container_of(work, struct irq_affinity_notify, work);
424 struct irq_desc *desc = irq_to_desc(notify->irq);
425 cpumask_var_t cpumask;
426 unsigned long flags;
427
428 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
429 goto out;
430
431 raw_spin_lock_irqsave(&desc->lock, flags);
432 if (irq_move_pending(&desc->irq_data))
433 irq_get_pending(cpumask, desc);
434 else
435 cpumask_copy(cpumask, desc->irq_common_data.affinity);
436 raw_spin_unlock_irqrestore(&desc->lock, flags);
437
438 notify->notify(notify, cpumask);
439
440 free_cpumask_var(cpumask);
441 out:
442 kref_put(¬ify->kref, notify->release);
443 }
444
445 /**
446 * irq_set_affinity_notifier - control notification of IRQ affinity changes
447 * @irq: Interrupt for which to enable/disable notification
448 * @notify: Context for notification, or %NULL to disable
449 * notification. Function pointers must be initialised;
450 * the other fields will be initialised by this function.
451 *
452 * Must be called in process context. Notification may only be enabled
453 * after the IRQ is allocated and must be disabled before the IRQ is
454 * freed using free_irq().
455 */
456 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)457 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
458 {
459 struct irq_desc *desc = irq_to_desc(irq);
460 struct irq_affinity_notify *old_notify;
461 unsigned long flags;
462
463 /* The release function is promised process context */
464 might_sleep();
465
466 if (!desc || desc->istate & IRQS_NMI)
467 return -EINVAL;
468
469 /* Complete initialisation of *notify */
470 if (notify) {
471 notify->irq = irq;
472 kref_init(¬ify->kref);
473 INIT_WORK(¬ify->work, irq_affinity_notify);
474 }
475
476 raw_spin_lock_irqsave(&desc->lock, flags);
477 old_notify = desc->affinity_notify;
478 desc->affinity_notify = notify;
479 raw_spin_unlock_irqrestore(&desc->lock, flags);
480
481 if (old_notify) {
482 if (cancel_work_sync(&old_notify->work)) {
483 /* Pending work had a ref, put that one too */
484 kref_put(&old_notify->kref, old_notify->release);
485 }
486 kref_put(&old_notify->kref, old_notify->release);
487 }
488
489 return 0;
490 }
491 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
492
493 #ifndef CONFIG_AUTO_IRQ_AFFINITY
494 /*
495 * Generic version of the affinity autoselector.
496 */
irq_setup_affinity(struct irq_desc * desc)497 int irq_setup_affinity(struct irq_desc *desc)
498 {
499 struct cpumask *set = irq_default_affinity;
500 int ret, node = irq_desc_get_node(desc);
501 static DEFINE_RAW_SPINLOCK(mask_lock);
502 static struct cpumask mask;
503
504 /* Excludes PER_CPU and NO_BALANCE interrupts */
505 if (!__irq_can_set_affinity(desc))
506 return 0;
507
508 raw_spin_lock(&mask_lock);
509 /*
510 * Preserve the managed affinity setting and a userspace affinity
511 * setup, but make sure that one of the targets is online.
512 */
513 if (irqd_affinity_is_managed(&desc->irq_data) ||
514 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
515 if (cpumask_intersects(desc->irq_common_data.affinity,
516 cpu_online_mask))
517 set = desc->irq_common_data.affinity;
518 else
519 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
520 }
521
522 cpumask_and(&mask, cpu_online_mask, set);
523 if (cpumask_empty(&mask))
524 cpumask_copy(&mask, cpu_online_mask);
525
526 if (node != NUMA_NO_NODE) {
527 const struct cpumask *nodemask = cpumask_of_node(node);
528
529 /* make sure at least one of the cpus in nodemask is online */
530 if (cpumask_intersects(&mask, nodemask))
531 cpumask_and(&mask, &mask, nodemask);
532 }
533 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
534 raw_spin_unlock(&mask_lock);
535 return ret;
536 }
537 #else
538 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)539 int irq_setup_affinity(struct irq_desc *desc)
540 {
541 return irq_select_affinity(irq_desc_get_irq(desc));
542 }
543 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
544 #endif /* CONFIG_SMP */
545
546
547 /**
548 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
549 * @irq: interrupt number to set affinity
550 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
551 * specific data for percpu_devid interrupts
552 *
553 * This function uses the vCPU specific data to set the vCPU
554 * affinity for an irq. The vCPU specific data is passed from
555 * outside, such as KVM. One example code path is as below:
556 * KVM -> IOMMU -> irq_set_vcpu_affinity().
557 */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)558 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
559 {
560 unsigned long flags;
561 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
562 struct irq_data *data;
563 struct irq_chip *chip;
564 int ret = -ENOSYS;
565
566 if (!desc)
567 return -EINVAL;
568
569 data = irq_desc_get_irq_data(desc);
570 do {
571 chip = irq_data_get_irq_chip(data);
572 if (chip && chip->irq_set_vcpu_affinity)
573 break;
574 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
575 data = data->parent_data;
576 #else
577 data = NULL;
578 #endif
579 } while (data);
580
581 if (data)
582 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
583 irq_put_desc_unlock(desc, flags);
584
585 return ret;
586 }
587 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
588
__disable_irq(struct irq_desc * desc)589 void __disable_irq(struct irq_desc *desc)
590 {
591 if (!desc->depth++)
592 irq_disable(desc);
593 }
594
__disable_irq_nosync(unsigned int irq)595 static int __disable_irq_nosync(unsigned int irq)
596 {
597 unsigned long flags;
598 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
599
600 if (!desc)
601 return -EINVAL;
602 __disable_irq(desc);
603 irq_put_desc_busunlock(desc, flags);
604 return 0;
605 }
606
607 /**
608 * disable_irq_nosync - disable an irq without waiting
609 * @irq: Interrupt to disable
610 *
611 * Disable the selected interrupt line. Disables and Enables are
612 * nested.
613 * Unlike disable_irq(), this function does not ensure existing
614 * instances of the IRQ handler have completed before returning.
615 *
616 * This function may be called from IRQ context.
617 */
disable_irq_nosync(unsigned int irq)618 void disable_irq_nosync(unsigned int irq)
619 {
620 __disable_irq_nosync(irq);
621 }
622 EXPORT_SYMBOL(disable_irq_nosync);
623
624 /**
625 * disable_irq - disable an irq and wait for completion
626 * @irq: Interrupt to disable
627 *
628 * Disable the selected interrupt line. Enables and Disables are
629 * nested.
630 * This function waits for any pending IRQ handlers for this interrupt
631 * to complete before returning. If you use this function while
632 * holding a resource the IRQ handler may need you will deadlock.
633 *
634 * This function may be called - with care - from IRQ context.
635 */
disable_irq(unsigned int irq)636 void disable_irq(unsigned int irq)
637 {
638 if (!__disable_irq_nosync(irq))
639 synchronize_irq(irq);
640 }
641 EXPORT_SYMBOL(disable_irq);
642
643 /**
644 * disable_hardirq - disables an irq and waits for hardirq completion
645 * @irq: Interrupt to disable
646 *
647 * Disable the selected interrupt line. Enables and Disables are
648 * nested.
649 * This function waits for any pending hard IRQ handlers for this
650 * interrupt to complete before returning. If you use this function while
651 * holding a resource the hard IRQ handler may need you will deadlock.
652 *
653 * When used to optimistically disable an interrupt from atomic context
654 * the return value must be checked.
655 *
656 * Returns: false if a threaded handler is active.
657 *
658 * This function may be called - with care - from IRQ context.
659 */
disable_hardirq(unsigned int irq)660 bool disable_hardirq(unsigned int irq)
661 {
662 if (!__disable_irq_nosync(irq))
663 return synchronize_hardirq(irq);
664
665 return false;
666 }
667 EXPORT_SYMBOL_GPL(disable_hardirq);
668
669 /**
670 * disable_nmi_nosync - disable an nmi without waiting
671 * @irq: Interrupt to disable
672 *
673 * Disable the selected interrupt line. Disables and enables are
674 * nested.
675 * The interrupt to disable must have been requested through request_nmi.
676 * Unlike disable_nmi(), this function does not ensure existing
677 * instances of the IRQ handler have completed before returning.
678 */
disable_nmi_nosync(unsigned int irq)679 void disable_nmi_nosync(unsigned int irq)
680 {
681 disable_irq_nosync(irq);
682 }
683
__enable_irq(struct irq_desc * desc)684 void __enable_irq(struct irq_desc *desc)
685 {
686 switch (desc->depth) {
687 case 0:
688 err_out:
689 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
690 irq_desc_get_irq(desc));
691 break;
692 case 1: {
693 if (desc->istate & IRQS_SUSPENDED)
694 goto err_out;
695 /* Prevent probing on this irq: */
696 irq_settings_set_noprobe(desc);
697 /*
698 * Call irq_startup() not irq_enable() here because the
699 * interrupt might be marked NOAUTOEN. So irq_startup()
700 * needs to be invoked when it gets enabled the first
701 * time. If it was already started up, then irq_startup()
702 * will invoke irq_enable() under the hood.
703 */
704 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
705 break;
706 }
707 default:
708 desc->depth--;
709 }
710 }
711
712 /**
713 * enable_irq - enable handling of an irq
714 * @irq: Interrupt to enable
715 *
716 * Undoes the effect of one call to disable_irq(). If this
717 * matches the last disable, processing of interrupts on this
718 * IRQ line is re-enabled.
719 *
720 * This function may be called from IRQ context only when
721 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
722 */
enable_irq(unsigned int irq)723 void enable_irq(unsigned int irq)
724 {
725 unsigned long flags;
726 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
727
728 if (!desc)
729 return;
730 if (WARN(!desc->irq_data.chip,
731 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
732 goto out;
733
734 __enable_irq(desc);
735 out:
736 irq_put_desc_busunlock(desc, flags);
737 }
738 EXPORT_SYMBOL(enable_irq);
739
740 /**
741 * enable_nmi - enable handling of an nmi
742 * @irq: Interrupt to enable
743 *
744 * The interrupt to enable must have been requested through request_nmi.
745 * Undoes the effect of one call to disable_nmi(). If this
746 * matches the last disable, processing of interrupts on this
747 * IRQ line is re-enabled.
748 */
enable_nmi(unsigned int irq)749 void enable_nmi(unsigned int irq)
750 {
751 enable_irq(irq);
752 }
753
set_irq_wake_real(unsigned int irq,unsigned int on)754 static int set_irq_wake_real(unsigned int irq, unsigned int on)
755 {
756 struct irq_desc *desc = irq_to_desc(irq);
757 int ret = -ENXIO;
758
759 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
760 return 0;
761
762 if (desc->irq_data.chip->irq_set_wake)
763 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
764
765 return ret;
766 }
767
768 /**
769 * irq_set_irq_wake - control irq power management wakeup
770 * @irq: interrupt to control
771 * @on: enable/disable power management wakeup
772 *
773 * Enable/disable power management wakeup mode, which is
774 * disabled by default. Enables and disables must match,
775 * just as they match for non-wakeup mode support.
776 *
777 * Wakeup mode lets this IRQ wake the system from sleep
778 * states like "suspend to RAM".
779 *
780 * Note: irq enable/disable state is completely orthogonal
781 * to the enable/disable state of irq wake. An irq can be
782 * disabled with disable_irq() and still wake the system as
783 * long as the irq has wake enabled. If this does not hold,
784 * then the underlying irq chip and the related driver need
785 * to be investigated.
786 */
irq_set_irq_wake(unsigned int irq,unsigned int on)787 int irq_set_irq_wake(unsigned int irq, unsigned int on)
788 {
789 unsigned long flags;
790 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
791 int ret = 0;
792
793 if (!desc)
794 return -EINVAL;
795
796 /* Don't use NMIs as wake up interrupts please */
797 if (desc->istate & IRQS_NMI) {
798 ret = -EINVAL;
799 goto out_unlock;
800 }
801
802 /* wakeup-capable irqs can be shared between drivers that
803 * don't need to have the same sleep mode behaviors.
804 */
805 if (on) {
806 if (desc->wake_depth++ == 0) {
807 ret = set_irq_wake_real(irq, on);
808 if (ret)
809 desc->wake_depth = 0;
810 else
811 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
812 }
813 } else {
814 if (desc->wake_depth == 0) {
815 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
816 } else if (--desc->wake_depth == 0) {
817 ret = set_irq_wake_real(irq, on);
818 if (ret)
819 desc->wake_depth = 1;
820 else
821 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
822 }
823 }
824
825 out_unlock:
826 irq_put_desc_busunlock(desc, flags);
827 return ret;
828 }
829 EXPORT_SYMBOL(irq_set_irq_wake);
830
831 /*
832 * Internal function that tells the architecture code whether a
833 * particular irq has been exclusively allocated or is available
834 * for driver use.
835 */
can_request_irq(unsigned int irq,unsigned long irqflags)836 int can_request_irq(unsigned int irq, unsigned long irqflags)
837 {
838 unsigned long flags;
839 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
840 int canrequest = 0;
841
842 if (!desc)
843 return 0;
844
845 if (irq_settings_can_request(desc)) {
846 if (!desc->action ||
847 irqflags & desc->action->flags & IRQF_SHARED)
848 canrequest = 1;
849 }
850 irq_put_desc_unlock(desc, flags);
851 return canrequest;
852 }
853
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)854 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
855 {
856 struct irq_chip *chip = desc->irq_data.chip;
857 int ret, unmask = 0;
858
859 if (!chip || !chip->irq_set_type) {
860 /*
861 * IRQF_TRIGGER_* but the PIC does not support multiple
862 * flow-types?
863 */
864 pr_debug("No set_type function for IRQ %d (%s)\n",
865 irq_desc_get_irq(desc),
866 chip ? (chip->name ? : "unknown") : "unknown");
867 return 0;
868 }
869
870 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
871 if (!irqd_irq_masked(&desc->irq_data))
872 mask_irq(desc);
873 if (!irqd_irq_disabled(&desc->irq_data))
874 unmask = 1;
875 }
876
877 /* Mask all flags except trigger mode */
878 flags &= IRQ_TYPE_SENSE_MASK;
879 ret = chip->irq_set_type(&desc->irq_data, flags);
880
881 switch (ret) {
882 case IRQ_SET_MASK_OK:
883 case IRQ_SET_MASK_OK_DONE:
884 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
885 irqd_set(&desc->irq_data, flags);
886 fallthrough;
887
888 case IRQ_SET_MASK_OK_NOCOPY:
889 flags = irqd_get_trigger_type(&desc->irq_data);
890 irq_settings_set_trigger_mask(desc, flags);
891 irqd_clear(&desc->irq_data, IRQD_LEVEL);
892 irq_settings_clr_level(desc);
893 if (flags & IRQ_TYPE_LEVEL_MASK) {
894 irq_settings_set_level(desc);
895 irqd_set(&desc->irq_data, IRQD_LEVEL);
896 }
897
898 ret = 0;
899 break;
900 default:
901 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
902 flags, irq_desc_get_irq(desc), chip->irq_set_type);
903 }
904 if (unmask)
905 unmask_irq(desc);
906 return ret;
907 }
908
909 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)910 int irq_set_parent(int irq, int parent_irq)
911 {
912 unsigned long flags;
913 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
914
915 if (!desc)
916 return -EINVAL;
917
918 desc->parent_irq = parent_irq;
919
920 irq_put_desc_unlock(desc, flags);
921 return 0;
922 }
923 EXPORT_SYMBOL_GPL(irq_set_parent);
924 #endif
925
926 /*
927 * Default primary interrupt handler for threaded interrupts. Is
928 * assigned as primary handler when request_threaded_irq is called
929 * with handler == NULL. Useful for oneshot interrupts.
930 */
irq_default_primary_handler(int irq,void * dev_id)931 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
932 {
933 return IRQ_WAKE_THREAD;
934 }
935
936 /*
937 * Primary handler for nested threaded interrupts. Should never be
938 * called.
939 */
irq_nested_primary_handler(int irq,void * dev_id)940 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
941 {
942 WARN(1, "Primary handler called for nested irq %d\n", irq);
943 return IRQ_NONE;
944 }
945
irq_forced_secondary_handler(int irq,void * dev_id)946 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
947 {
948 WARN(1, "Secondary action handler called for irq %d\n", irq);
949 return IRQ_NONE;
950 }
951
irq_wait_for_interrupt(struct irqaction * action)952 static int irq_wait_for_interrupt(struct irqaction *action)
953 {
954 for (;;) {
955 set_current_state(TASK_INTERRUPTIBLE);
956
957 if (kthread_should_stop()) {
958 /* may need to run one last time */
959 if (test_and_clear_bit(IRQTF_RUNTHREAD,
960 &action->thread_flags)) {
961 __set_current_state(TASK_RUNNING);
962 return 0;
963 }
964 __set_current_state(TASK_RUNNING);
965 return -1;
966 }
967
968 if (test_and_clear_bit(IRQTF_RUNTHREAD,
969 &action->thread_flags)) {
970 __set_current_state(TASK_RUNNING);
971 return 0;
972 }
973 schedule();
974 }
975 }
976
977 /*
978 * Oneshot interrupts keep the irq line masked until the threaded
979 * handler finished. unmask if the interrupt has not been disabled and
980 * is marked MASKED.
981 */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)982 static void irq_finalize_oneshot(struct irq_desc *desc,
983 struct irqaction *action)
984 {
985 if (!(desc->istate & IRQS_ONESHOT) ||
986 action->handler == irq_forced_secondary_handler)
987 return;
988 again:
989 chip_bus_lock(desc);
990 raw_spin_lock_irq(&desc->lock);
991
992 /*
993 * Implausible though it may be we need to protect us against
994 * the following scenario:
995 *
996 * The thread is faster done than the hard interrupt handler
997 * on the other CPU. If we unmask the irq line then the
998 * interrupt can come in again and masks the line, leaves due
999 * to IRQS_INPROGRESS and the irq line is masked forever.
1000 *
1001 * This also serializes the state of shared oneshot handlers
1002 * versus "desc->threads_oneshot |= action->thread_mask;" in
1003 * irq_wake_thread(). See the comment there which explains the
1004 * serialization.
1005 */
1006 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1007 raw_spin_unlock_irq(&desc->lock);
1008 chip_bus_sync_unlock(desc);
1009 cpu_relax();
1010 goto again;
1011 }
1012
1013 /*
1014 * Now check again, whether the thread should run. Otherwise
1015 * we would clear the threads_oneshot bit of this thread which
1016 * was just set.
1017 */
1018 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1019 goto out_unlock;
1020
1021 desc->threads_oneshot &= ~action->thread_mask;
1022
1023 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1024 irqd_irq_masked(&desc->irq_data))
1025 unmask_threaded_irq(desc);
1026
1027 out_unlock:
1028 raw_spin_unlock_irq(&desc->lock);
1029 chip_bus_sync_unlock(desc);
1030 }
1031
1032 #ifdef CONFIG_SMP
1033 /*
1034 * Check whether we need to change the affinity of the interrupt thread.
1035 */
1036 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1037 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1038 {
1039 cpumask_var_t mask;
1040 bool valid = true;
1041
1042 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1043 return;
1044
1045 /*
1046 * In case we are out of memory we set IRQTF_AFFINITY again and
1047 * try again next time
1048 */
1049 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1050 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1051 return;
1052 }
1053
1054 raw_spin_lock_irq(&desc->lock);
1055 /*
1056 * This code is triggered unconditionally. Check the affinity
1057 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1058 */
1059 if (cpumask_available(desc->irq_common_data.affinity)) {
1060 const struct cpumask *m;
1061
1062 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1063 cpumask_copy(mask, m);
1064 } else {
1065 valid = false;
1066 }
1067 raw_spin_unlock_irq(&desc->lock);
1068
1069 if (valid)
1070 set_cpus_allowed_ptr(current, mask);
1071 free_cpumask_var(mask);
1072 }
1073 #else
1074 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1075 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1076 #endif
1077
1078 /*
1079 * Interrupts which are not explicitly requested as threaded
1080 * interrupts rely on the implicit bh/preempt disable of the hard irq
1081 * context. So we need to disable bh here to avoid deadlocks and other
1082 * side effects.
1083 */
1084 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1085 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1086 {
1087 irqreturn_t ret;
1088
1089 local_bh_disable();
1090 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1091 local_irq_disable();
1092 ret = action->thread_fn(action->irq, action->dev_id);
1093 if (ret == IRQ_HANDLED)
1094 atomic_inc(&desc->threads_handled);
1095
1096 irq_finalize_oneshot(desc, action);
1097 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1098 local_irq_enable();
1099 local_bh_enable();
1100 return ret;
1101 }
1102
1103 /*
1104 * Interrupts explicitly requested as threaded interrupts want to be
1105 * preemtible - many of them need to sleep and wait for slow busses to
1106 * complete.
1107 */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1108 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1109 struct irqaction *action)
1110 {
1111 irqreturn_t ret;
1112
1113 ret = action->thread_fn(action->irq, action->dev_id);
1114 if (ret == IRQ_HANDLED)
1115 atomic_inc(&desc->threads_handled);
1116
1117 irq_finalize_oneshot(desc, action);
1118 return ret;
1119 }
1120
wake_threads_waitq(struct irq_desc * desc)1121 static void wake_threads_waitq(struct irq_desc *desc)
1122 {
1123 if (atomic_dec_and_test(&desc->threads_active))
1124 wake_up(&desc->wait_for_threads);
1125 }
1126
irq_thread_dtor(struct callback_head * unused)1127 static void irq_thread_dtor(struct callback_head *unused)
1128 {
1129 struct task_struct *tsk = current;
1130 struct irq_desc *desc;
1131 struct irqaction *action;
1132
1133 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1134 return;
1135
1136 action = kthread_data(tsk);
1137
1138 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1139 tsk->comm, tsk->pid, action->irq);
1140
1141
1142 desc = irq_to_desc(action->irq);
1143 /*
1144 * If IRQTF_RUNTHREAD is set, we need to decrement
1145 * desc->threads_active and wake possible waiters.
1146 */
1147 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1148 wake_threads_waitq(desc);
1149
1150 /* Prevent a stale desc->threads_oneshot */
1151 irq_finalize_oneshot(desc, action);
1152 }
1153
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1154 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1155 {
1156 struct irqaction *secondary = action->secondary;
1157
1158 if (WARN_ON_ONCE(!secondary))
1159 return;
1160
1161 raw_spin_lock_irq(&desc->lock);
1162 __irq_wake_thread(desc, secondary);
1163 raw_spin_unlock_irq(&desc->lock);
1164 }
1165
1166 /*
1167 * Internal function to notify that a interrupt thread is ready.
1168 */
irq_thread_set_ready(struct irq_desc * desc,struct irqaction * action)1169 static void irq_thread_set_ready(struct irq_desc *desc,
1170 struct irqaction *action)
1171 {
1172 set_bit(IRQTF_READY, &action->thread_flags);
1173 wake_up(&desc->wait_for_threads);
1174 }
1175
1176 /*
1177 * Internal function to wake up a interrupt thread and wait until it is
1178 * ready.
1179 */
wake_up_and_wait_for_irq_thread_ready(struct irq_desc * desc,struct irqaction * action)1180 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1181 struct irqaction *action)
1182 {
1183 if (!action || !action->thread)
1184 return;
1185
1186 wake_up_process(action->thread);
1187 wait_event(desc->wait_for_threads,
1188 test_bit(IRQTF_READY, &action->thread_flags));
1189 }
1190
1191 /*
1192 * Interrupt handler thread
1193 */
irq_thread(void * data)1194 static int irq_thread(void *data)
1195 {
1196 struct callback_head on_exit_work;
1197 struct irqaction *action = data;
1198 struct irq_desc *desc = irq_to_desc(action->irq);
1199 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1200 struct irqaction *action);
1201
1202 irq_thread_set_ready(desc, action);
1203
1204 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1205 &action->thread_flags))
1206 handler_fn = irq_forced_thread_fn;
1207 else
1208 handler_fn = irq_thread_fn;
1209
1210 init_task_work(&on_exit_work, irq_thread_dtor);
1211 task_work_add(current, &on_exit_work, TWA_NONE);
1212
1213 irq_thread_check_affinity(desc, action);
1214
1215 while (!irq_wait_for_interrupt(action)) {
1216 irqreturn_t action_ret;
1217
1218 irq_thread_check_affinity(desc, action);
1219
1220 action_ret = handler_fn(desc, action);
1221 if (action_ret == IRQ_WAKE_THREAD)
1222 irq_wake_secondary(desc, action);
1223
1224 wake_threads_waitq(desc);
1225 }
1226
1227 /*
1228 * This is the regular exit path. __free_irq() is stopping the
1229 * thread via kthread_stop() after calling
1230 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1231 * oneshot mask bit can be set.
1232 */
1233 task_work_cancel(current, irq_thread_dtor);
1234 return 0;
1235 }
1236
1237 /**
1238 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1239 * @irq: Interrupt line
1240 * @dev_id: Device identity for which the thread should be woken
1241 *
1242 */
irq_wake_thread(unsigned int irq,void * dev_id)1243 void irq_wake_thread(unsigned int irq, void *dev_id)
1244 {
1245 struct irq_desc *desc = irq_to_desc(irq);
1246 struct irqaction *action;
1247 unsigned long flags;
1248
1249 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1250 return;
1251
1252 raw_spin_lock_irqsave(&desc->lock, flags);
1253 for_each_action_of_desc(desc, action) {
1254 if (action->dev_id == dev_id) {
1255 if (action->thread)
1256 __irq_wake_thread(desc, action);
1257 break;
1258 }
1259 }
1260 raw_spin_unlock_irqrestore(&desc->lock, flags);
1261 }
1262 EXPORT_SYMBOL_GPL(irq_wake_thread);
1263
irq_setup_forced_threading(struct irqaction * new)1264 static int irq_setup_forced_threading(struct irqaction *new)
1265 {
1266 if (!force_irqthreads)
1267 return 0;
1268 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1269 return 0;
1270
1271 /*
1272 * No further action required for interrupts which are requested as
1273 * threaded interrupts already
1274 */
1275 if (new->handler == irq_default_primary_handler)
1276 return 0;
1277
1278 new->flags |= IRQF_ONESHOT;
1279
1280 /*
1281 * Handle the case where we have a real primary handler and a
1282 * thread handler. We force thread them as well by creating a
1283 * secondary action.
1284 */
1285 if (new->handler && new->thread_fn) {
1286 /* Allocate the secondary action */
1287 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1288 if (!new->secondary)
1289 return -ENOMEM;
1290 new->secondary->handler = irq_forced_secondary_handler;
1291 new->secondary->thread_fn = new->thread_fn;
1292 new->secondary->dev_id = new->dev_id;
1293 new->secondary->irq = new->irq;
1294 new->secondary->name = new->name;
1295 }
1296 /* Deal with the primary handler */
1297 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1298 new->thread_fn = new->handler;
1299 new->handler = irq_default_primary_handler;
1300 return 0;
1301 }
1302
irq_request_resources(struct irq_desc * desc)1303 static int irq_request_resources(struct irq_desc *desc)
1304 {
1305 struct irq_data *d = &desc->irq_data;
1306 struct irq_chip *c = d->chip;
1307
1308 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1309 }
1310
irq_release_resources(struct irq_desc * desc)1311 static void irq_release_resources(struct irq_desc *desc)
1312 {
1313 struct irq_data *d = &desc->irq_data;
1314 struct irq_chip *c = d->chip;
1315
1316 if (c->irq_release_resources)
1317 c->irq_release_resources(d);
1318 }
1319
irq_supports_nmi(struct irq_desc * desc)1320 static bool irq_supports_nmi(struct irq_desc *desc)
1321 {
1322 struct irq_data *d = irq_desc_get_irq_data(desc);
1323
1324 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1325 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1326 if (d->parent_data)
1327 return false;
1328 #endif
1329 /* Don't support NMIs for chips behind a slow bus */
1330 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1331 return false;
1332
1333 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1334 }
1335
irq_nmi_setup(struct irq_desc * desc)1336 static int irq_nmi_setup(struct irq_desc *desc)
1337 {
1338 struct irq_data *d = irq_desc_get_irq_data(desc);
1339 struct irq_chip *c = d->chip;
1340
1341 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1342 }
1343
irq_nmi_teardown(struct irq_desc * desc)1344 static void irq_nmi_teardown(struct irq_desc *desc)
1345 {
1346 struct irq_data *d = irq_desc_get_irq_data(desc);
1347 struct irq_chip *c = d->chip;
1348
1349 if (c->irq_nmi_teardown)
1350 c->irq_nmi_teardown(d);
1351 }
1352
1353 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1354 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1355 {
1356 struct task_struct *t;
1357
1358 if (!secondary) {
1359 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1360 new->name);
1361 } else {
1362 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1363 new->name);
1364 }
1365
1366 if (IS_ERR(t))
1367 return PTR_ERR(t);
1368
1369 sched_set_fifo(t);
1370
1371 /*
1372 * We keep the reference to the task struct even if
1373 * the thread dies to avoid that the interrupt code
1374 * references an already freed task_struct.
1375 */
1376 new->thread = get_task_struct(t);
1377 /*
1378 * Tell the thread to set its affinity. This is
1379 * important for shared interrupt handlers as we do
1380 * not invoke setup_affinity() for the secondary
1381 * handlers as everything is already set up. Even for
1382 * interrupts marked with IRQF_NO_BALANCE this is
1383 * correct as we want the thread to move to the cpu(s)
1384 * on which the requesting code placed the interrupt.
1385 */
1386 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1387 return 0;
1388 }
1389
1390 /*
1391 * Internal function to register an irqaction - typically used to
1392 * allocate special interrupts that are part of the architecture.
1393 *
1394 * Locking rules:
1395 *
1396 * desc->request_mutex Provides serialization against a concurrent free_irq()
1397 * chip_bus_lock Provides serialization for slow bus operations
1398 * desc->lock Provides serialization against hard interrupts
1399 *
1400 * chip_bus_lock and desc->lock are sufficient for all other management and
1401 * interrupt related functions. desc->request_mutex solely serializes
1402 * request/free_irq().
1403 */
1404 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1405 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1406 {
1407 struct irqaction *old, **old_ptr;
1408 unsigned long flags, thread_mask = 0;
1409 int ret, nested, shared = 0;
1410
1411 if (!desc)
1412 return -EINVAL;
1413
1414 if (desc->irq_data.chip == &no_irq_chip)
1415 return -ENOSYS;
1416 if (!try_module_get(desc->owner))
1417 return -ENODEV;
1418
1419 new->irq = irq;
1420
1421 /*
1422 * If the trigger type is not specified by the caller,
1423 * then use the default for this interrupt.
1424 */
1425 if (!(new->flags & IRQF_TRIGGER_MASK))
1426 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1427
1428 /*
1429 * Check whether the interrupt nests into another interrupt
1430 * thread.
1431 */
1432 nested = irq_settings_is_nested_thread(desc);
1433 if (nested) {
1434 if (!new->thread_fn) {
1435 ret = -EINVAL;
1436 goto out_mput;
1437 }
1438 /*
1439 * Replace the primary handler which was provided from
1440 * the driver for non nested interrupt handling by the
1441 * dummy function which warns when called.
1442 */
1443 new->handler = irq_nested_primary_handler;
1444 } else {
1445 if (irq_settings_can_thread(desc)) {
1446 ret = irq_setup_forced_threading(new);
1447 if (ret)
1448 goto out_mput;
1449 }
1450 }
1451
1452 /*
1453 * Create a handler thread when a thread function is supplied
1454 * and the interrupt does not nest into another interrupt
1455 * thread.
1456 */
1457 if (new->thread_fn && !nested) {
1458 ret = setup_irq_thread(new, irq, false);
1459 if (ret)
1460 goto out_mput;
1461 if (new->secondary) {
1462 ret = setup_irq_thread(new->secondary, irq, true);
1463 if (ret)
1464 goto out_thread;
1465 }
1466 }
1467
1468 /*
1469 * Drivers are often written to work w/o knowledge about the
1470 * underlying irq chip implementation, so a request for a
1471 * threaded irq without a primary hard irq context handler
1472 * requires the ONESHOT flag to be set. Some irq chips like
1473 * MSI based interrupts are per se one shot safe. Check the
1474 * chip flags, so we can avoid the unmask dance at the end of
1475 * the threaded handler for those.
1476 */
1477 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1478 new->flags &= ~IRQF_ONESHOT;
1479
1480 /*
1481 * Protects against a concurrent __free_irq() call which might wait
1482 * for synchronize_hardirq() to complete without holding the optional
1483 * chip bus lock and desc->lock. Also protects against handing out
1484 * a recycled oneshot thread_mask bit while it's still in use by
1485 * its previous owner.
1486 */
1487 mutex_lock(&desc->request_mutex);
1488
1489 /*
1490 * Acquire bus lock as the irq_request_resources() callback below
1491 * might rely on the serialization or the magic power management
1492 * functions which are abusing the irq_bus_lock() callback,
1493 */
1494 chip_bus_lock(desc);
1495
1496 /* First installed action requests resources. */
1497 if (!desc->action) {
1498 ret = irq_request_resources(desc);
1499 if (ret) {
1500 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1501 new->name, irq, desc->irq_data.chip->name);
1502 goto out_bus_unlock;
1503 }
1504 }
1505
1506 /*
1507 * The following block of code has to be executed atomically
1508 * protected against a concurrent interrupt and any of the other
1509 * management calls which are not serialized via
1510 * desc->request_mutex or the optional bus lock.
1511 */
1512 raw_spin_lock_irqsave(&desc->lock, flags);
1513 old_ptr = &desc->action;
1514 old = *old_ptr;
1515 if (old) {
1516 /*
1517 * Can't share interrupts unless both agree to and are
1518 * the same type (level, edge, polarity). So both flag
1519 * fields must have IRQF_SHARED set and the bits which
1520 * set the trigger type must match. Also all must
1521 * agree on ONESHOT.
1522 * Interrupt lines used for NMIs cannot be shared.
1523 */
1524 unsigned int oldtype;
1525
1526 if (desc->istate & IRQS_NMI) {
1527 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1528 new->name, irq, desc->irq_data.chip->name);
1529 ret = -EINVAL;
1530 goto out_unlock;
1531 }
1532
1533 /*
1534 * If nobody did set the configuration before, inherit
1535 * the one provided by the requester.
1536 */
1537 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1538 oldtype = irqd_get_trigger_type(&desc->irq_data);
1539 } else {
1540 oldtype = new->flags & IRQF_TRIGGER_MASK;
1541 irqd_set_trigger_type(&desc->irq_data, oldtype);
1542 }
1543
1544 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1545 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1546 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1547 goto mismatch;
1548
1549 /* All handlers must agree on per-cpuness */
1550 if ((old->flags & IRQF_PERCPU) !=
1551 (new->flags & IRQF_PERCPU))
1552 goto mismatch;
1553
1554 /* add new interrupt at end of irq queue */
1555 do {
1556 /*
1557 * Or all existing action->thread_mask bits,
1558 * so we can find the next zero bit for this
1559 * new action.
1560 */
1561 thread_mask |= old->thread_mask;
1562 old_ptr = &old->next;
1563 old = *old_ptr;
1564 } while (old);
1565 shared = 1;
1566 }
1567
1568 /*
1569 * Setup the thread mask for this irqaction for ONESHOT. For
1570 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1571 * conditional in irq_wake_thread().
1572 */
1573 if (new->flags & IRQF_ONESHOT) {
1574 /*
1575 * Unlikely to have 32 resp 64 irqs sharing one line,
1576 * but who knows.
1577 */
1578 if (thread_mask == ~0UL) {
1579 ret = -EBUSY;
1580 goto out_unlock;
1581 }
1582 /*
1583 * The thread_mask for the action is or'ed to
1584 * desc->thread_active to indicate that the
1585 * IRQF_ONESHOT thread handler has been woken, but not
1586 * yet finished. The bit is cleared when a thread
1587 * completes. When all threads of a shared interrupt
1588 * line have completed desc->threads_active becomes
1589 * zero and the interrupt line is unmasked. See
1590 * handle.c:irq_wake_thread() for further information.
1591 *
1592 * If no thread is woken by primary (hard irq context)
1593 * interrupt handlers, then desc->threads_active is
1594 * also checked for zero to unmask the irq line in the
1595 * affected hard irq flow handlers
1596 * (handle_[fasteoi|level]_irq).
1597 *
1598 * The new action gets the first zero bit of
1599 * thread_mask assigned. See the loop above which or's
1600 * all existing action->thread_mask bits.
1601 */
1602 new->thread_mask = 1UL << ffz(thread_mask);
1603
1604 } else if (new->handler == irq_default_primary_handler &&
1605 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1606 /*
1607 * The interrupt was requested with handler = NULL, so
1608 * we use the default primary handler for it. But it
1609 * does not have the oneshot flag set. In combination
1610 * with level interrupts this is deadly, because the
1611 * default primary handler just wakes the thread, then
1612 * the irq lines is reenabled, but the device still
1613 * has the level irq asserted. Rinse and repeat....
1614 *
1615 * While this works for edge type interrupts, we play
1616 * it safe and reject unconditionally because we can't
1617 * say for sure which type this interrupt really
1618 * has. The type flags are unreliable as the
1619 * underlying chip implementation can override them.
1620 */
1621 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1622 new->name, irq);
1623 ret = -EINVAL;
1624 goto out_unlock;
1625 }
1626
1627 if (!shared) {
1628 /* Setup the type (level, edge polarity) if configured: */
1629 if (new->flags & IRQF_TRIGGER_MASK) {
1630 ret = __irq_set_trigger(desc,
1631 new->flags & IRQF_TRIGGER_MASK);
1632
1633 if (ret)
1634 goto out_unlock;
1635 }
1636
1637 /*
1638 * Activate the interrupt. That activation must happen
1639 * independently of IRQ_NOAUTOEN. request_irq() can fail
1640 * and the callers are supposed to handle
1641 * that. enable_irq() of an interrupt requested with
1642 * IRQ_NOAUTOEN is not supposed to fail. The activation
1643 * keeps it in shutdown mode, it merily associates
1644 * resources if necessary and if that's not possible it
1645 * fails. Interrupts which are in managed shutdown mode
1646 * will simply ignore that activation request.
1647 */
1648 ret = irq_activate(desc);
1649 if (ret)
1650 goto out_unlock;
1651
1652 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1653 IRQS_ONESHOT | IRQS_WAITING);
1654 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1655
1656 if (new->flags & IRQF_PERCPU) {
1657 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1658 irq_settings_set_per_cpu(desc);
1659 }
1660
1661 if (new->flags & IRQF_ONESHOT)
1662 desc->istate |= IRQS_ONESHOT;
1663
1664 /* Exclude IRQ from balancing if requested */
1665 if (new->flags & IRQF_NOBALANCING) {
1666 irq_settings_set_no_balancing(desc);
1667 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1668 }
1669
1670 if (!(new->flags & IRQF_NO_AUTOEN) &&
1671 irq_settings_can_autoenable(desc)) {
1672 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1673 } else {
1674 /*
1675 * Shared interrupts do not go well with disabling
1676 * auto enable. The sharing interrupt might request
1677 * it while it's still disabled and then wait for
1678 * interrupts forever.
1679 */
1680 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1681 /* Undo nested disables: */
1682 desc->depth = 1;
1683 }
1684
1685 } else if (new->flags & IRQF_TRIGGER_MASK) {
1686 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1687 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1688
1689 if (nmsk != omsk)
1690 /* hope the handler works with current trigger mode */
1691 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1692 irq, omsk, nmsk);
1693 }
1694
1695 *old_ptr = new;
1696
1697 irq_pm_install_action(desc, new);
1698
1699 /* Reset broken irq detection when installing new handler */
1700 desc->irq_count = 0;
1701 desc->irqs_unhandled = 0;
1702
1703 /*
1704 * Check whether we disabled the irq via the spurious handler
1705 * before. Reenable it and give it another chance.
1706 */
1707 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1708 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1709 __enable_irq(desc);
1710 }
1711
1712 raw_spin_unlock_irqrestore(&desc->lock, flags);
1713 chip_bus_sync_unlock(desc);
1714 mutex_unlock(&desc->request_mutex);
1715
1716 irq_setup_timings(desc, new);
1717
1718 wake_up_and_wait_for_irq_thread_ready(desc, new);
1719 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1720
1721 register_irq_proc(irq, desc);
1722 new->dir = NULL;
1723 register_handler_proc(irq, new);
1724 return 0;
1725
1726 mismatch:
1727 if (!(new->flags & IRQF_PROBE_SHARED)) {
1728 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1729 irq, new->flags, new->name, old->flags, old->name);
1730 #ifdef CONFIG_DEBUG_SHIRQ
1731 dump_stack();
1732 #endif
1733 }
1734 ret = -EBUSY;
1735
1736 out_unlock:
1737 raw_spin_unlock_irqrestore(&desc->lock, flags);
1738
1739 if (!desc->action)
1740 irq_release_resources(desc);
1741 out_bus_unlock:
1742 chip_bus_sync_unlock(desc);
1743 mutex_unlock(&desc->request_mutex);
1744
1745 out_thread:
1746 if (new->thread) {
1747 struct task_struct *t = new->thread;
1748
1749 new->thread = NULL;
1750 kthread_stop(t);
1751 put_task_struct(t);
1752 }
1753 if (new->secondary && new->secondary->thread) {
1754 struct task_struct *t = new->secondary->thread;
1755
1756 new->secondary->thread = NULL;
1757 kthread_stop(t);
1758 put_task_struct(t);
1759 }
1760 out_mput:
1761 module_put(desc->owner);
1762 return ret;
1763 }
1764
1765 /*
1766 * Internal function to unregister an irqaction - used to free
1767 * regular and special interrupts that are part of the architecture.
1768 */
__free_irq(struct irq_desc * desc,void * dev_id)1769 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1770 {
1771 unsigned irq = desc->irq_data.irq;
1772 struct irqaction *action, **action_ptr;
1773 unsigned long flags;
1774
1775 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1776
1777 mutex_lock(&desc->request_mutex);
1778 chip_bus_lock(desc);
1779 raw_spin_lock_irqsave(&desc->lock, flags);
1780
1781 /*
1782 * There can be multiple actions per IRQ descriptor, find the right
1783 * one based on the dev_id:
1784 */
1785 action_ptr = &desc->action;
1786 for (;;) {
1787 action = *action_ptr;
1788
1789 if (!action) {
1790 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1791 raw_spin_unlock_irqrestore(&desc->lock, flags);
1792 chip_bus_sync_unlock(desc);
1793 mutex_unlock(&desc->request_mutex);
1794 return NULL;
1795 }
1796
1797 if (action->dev_id == dev_id)
1798 break;
1799 action_ptr = &action->next;
1800 }
1801
1802 /* Found it - now remove it from the list of entries: */
1803 *action_ptr = action->next;
1804
1805 irq_pm_remove_action(desc, action);
1806
1807 /* If this was the last handler, shut down the IRQ line: */
1808 if (!desc->action) {
1809 irq_settings_clr_disable_unlazy(desc);
1810 /* Only shutdown. Deactivate after synchronize_hardirq() */
1811 irq_shutdown(desc);
1812 }
1813
1814 #ifdef CONFIG_SMP
1815 /* make sure affinity_hint is cleaned up */
1816 if (WARN_ON_ONCE(desc->affinity_hint))
1817 desc->affinity_hint = NULL;
1818 #endif
1819
1820 raw_spin_unlock_irqrestore(&desc->lock, flags);
1821 /*
1822 * Drop bus_lock here so the changes which were done in the chip
1823 * callbacks above are synced out to the irq chips which hang
1824 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1825 *
1826 * Aside of that the bus_lock can also be taken from the threaded
1827 * handler in irq_finalize_oneshot() which results in a deadlock
1828 * because kthread_stop() would wait forever for the thread to
1829 * complete, which is blocked on the bus lock.
1830 *
1831 * The still held desc->request_mutex() protects against a
1832 * concurrent request_irq() of this irq so the release of resources
1833 * and timing data is properly serialized.
1834 */
1835 chip_bus_sync_unlock(desc);
1836
1837 unregister_handler_proc(irq, action);
1838
1839 /*
1840 * Make sure it's not being used on another CPU and if the chip
1841 * supports it also make sure that there is no (not yet serviced)
1842 * interrupt in flight at the hardware level.
1843 */
1844 __synchronize_hardirq(desc, true);
1845
1846 #ifdef CONFIG_DEBUG_SHIRQ
1847 /*
1848 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1849 * event to happen even now it's being freed, so let's make sure that
1850 * is so by doing an extra call to the handler ....
1851 *
1852 * ( We do this after actually deregistering it, to make sure that a
1853 * 'real' IRQ doesn't run in parallel with our fake. )
1854 */
1855 if (action->flags & IRQF_SHARED) {
1856 local_irq_save(flags);
1857 action->handler(irq, dev_id);
1858 local_irq_restore(flags);
1859 }
1860 #endif
1861
1862 /*
1863 * The action has already been removed above, but the thread writes
1864 * its oneshot mask bit when it completes. Though request_mutex is
1865 * held across this which prevents __setup_irq() from handing out
1866 * the same bit to a newly requested action.
1867 */
1868 if (action->thread) {
1869 kthread_stop(action->thread);
1870 put_task_struct(action->thread);
1871 if (action->secondary && action->secondary->thread) {
1872 kthread_stop(action->secondary->thread);
1873 put_task_struct(action->secondary->thread);
1874 }
1875 }
1876
1877 /* Last action releases resources */
1878 if (!desc->action) {
1879 /*
1880 * Reacquire bus lock as irq_release_resources() might
1881 * require it to deallocate resources over the slow bus.
1882 */
1883 chip_bus_lock(desc);
1884 /*
1885 * There is no interrupt on the fly anymore. Deactivate it
1886 * completely.
1887 */
1888 raw_spin_lock_irqsave(&desc->lock, flags);
1889 irq_domain_deactivate_irq(&desc->irq_data);
1890 raw_spin_unlock_irqrestore(&desc->lock, flags);
1891
1892 irq_release_resources(desc);
1893 chip_bus_sync_unlock(desc);
1894 irq_remove_timings(desc);
1895 }
1896
1897 mutex_unlock(&desc->request_mutex);
1898
1899 irq_chip_pm_put(&desc->irq_data);
1900 module_put(desc->owner);
1901 kfree(action->secondary);
1902 return action;
1903 }
1904
1905 /**
1906 * free_irq - free an interrupt allocated with request_irq
1907 * @irq: Interrupt line to free
1908 * @dev_id: Device identity to free
1909 *
1910 * Remove an interrupt handler. The handler is removed and if the
1911 * interrupt line is no longer in use by any driver it is disabled.
1912 * On a shared IRQ the caller must ensure the interrupt is disabled
1913 * on the card it drives before calling this function. The function
1914 * does not return until any executing interrupts for this IRQ
1915 * have completed.
1916 *
1917 * This function must not be called from interrupt context.
1918 *
1919 * Returns the devname argument passed to request_irq.
1920 */
free_irq(unsigned int irq,void * dev_id)1921 const void *free_irq(unsigned int irq, void *dev_id)
1922 {
1923 struct irq_desc *desc = irq_to_desc(irq);
1924 struct irqaction *action;
1925 const char *devname;
1926
1927 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1928 return NULL;
1929
1930 #ifdef CONFIG_SMP
1931 if (WARN_ON(desc->affinity_notify))
1932 desc->affinity_notify = NULL;
1933 #endif
1934
1935 action = __free_irq(desc, dev_id);
1936
1937 if (!action)
1938 return NULL;
1939
1940 devname = action->name;
1941 kfree(action);
1942 return devname;
1943 }
1944 EXPORT_SYMBOL(free_irq);
1945
1946 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)1947 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1948 {
1949 const char *devname = NULL;
1950
1951 desc->istate &= ~IRQS_NMI;
1952
1953 if (!WARN_ON(desc->action == NULL)) {
1954 irq_pm_remove_action(desc, desc->action);
1955 devname = desc->action->name;
1956 unregister_handler_proc(irq, desc->action);
1957
1958 kfree(desc->action);
1959 desc->action = NULL;
1960 }
1961
1962 irq_settings_clr_disable_unlazy(desc);
1963 irq_shutdown_and_deactivate(desc);
1964
1965 irq_release_resources(desc);
1966
1967 irq_chip_pm_put(&desc->irq_data);
1968 module_put(desc->owner);
1969
1970 return devname;
1971 }
1972
free_nmi(unsigned int irq,void * dev_id)1973 const void *free_nmi(unsigned int irq, void *dev_id)
1974 {
1975 struct irq_desc *desc = irq_to_desc(irq);
1976 unsigned long flags;
1977 const void *devname;
1978
1979 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1980 return NULL;
1981
1982 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1983 return NULL;
1984
1985 /* NMI still enabled */
1986 if (WARN_ON(desc->depth == 0))
1987 disable_nmi_nosync(irq);
1988
1989 raw_spin_lock_irqsave(&desc->lock, flags);
1990
1991 irq_nmi_teardown(desc);
1992 devname = __cleanup_nmi(irq, desc);
1993
1994 raw_spin_unlock_irqrestore(&desc->lock, flags);
1995
1996 return devname;
1997 }
1998
1999 /**
2000 * request_threaded_irq - allocate an interrupt line
2001 * @irq: Interrupt line to allocate
2002 * @handler: Function to be called when the IRQ occurs.
2003 * Primary handler for threaded interrupts
2004 * If NULL and thread_fn != NULL the default
2005 * primary handler is installed
2006 * @thread_fn: Function called from the irq handler thread
2007 * If NULL, no irq thread is created
2008 * @irqflags: Interrupt type flags
2009 * @devname: An ascii name for the claiming device
2010 * @dev_id: A cookie passed back to the handler function
2011 *
2012 * This call allocates interrupt resources and enables the
2013 * interrupt line and IRQ handling. From the point this
2014 * call is made your handler function may be invoked. Since
2015 * your handler function must clear any interrupt the board
2016 * raises, you must take care both to initialise your hardware
2017 * and to set up the interrupt handler in the right order.
2018 *
2019 * If you want to set up a threaded irq handler for your device
2020 * then you need to supply @handler and @thread_fn. @handler is
2021 * still called in hard interrupt context and has to check
2022 * whether the interrupt originates from the device. If yes it
2023 * needs to disable the interrupt on the device and return
2024 * IRQ_WAKE_THREAD which will wake up the handler thread and run
2025 * @thread_fn. This split handler design is necessary to support
2026 * shared interrupts.
2027 *
2028 * Dev_id must be globally unique. Normally the address of the
2029 * device data structure is used as the cookie. Since the handler
2030 * receives this value it makes sense to use it.
2031 *
2032 * If your interrupt is shared you must pass a non NULL dev_id
2033 * as this is required when freeing the interrupt.
2034 *
2035 * Flags:
2036 *
2037 * IRQF_SHARED Interrupt is shared
2038 * IRQF_TRIGGER_* Specify active edge(s) or level
2039 *
2040 */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2041 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2042 irq_handler_t thread_fn, unsigned long irqflags,
2043 const char *devname, void *dev_id)
2044 {
2045 struct irqaction *action;
2046 struct irq_desc *desc;
2047 int retval;
2048
2049 if (irq == IRQ_NOTCONNECTED)
2050 return -ENOTCONN;
2051
2052 /*
2053 * Sanity-check: shared interrupts must pass in a real dev-ID,
2054 * otherwise we'll have trouble later trying to figure out
2055 * which interrupt is which (messes up the interrupt freeing
2056 * logic etc).
2057 *
2058 * Also shared interrupts do not go well with disabling auto enable.
2059 * The sharing interrupt might request it while it's still disabled
2060 * and then wait for interrupts forever.
2061 *
2062 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2063 * it cannot be set along with IRQF_NO_SUSPEND.
2064 */
2065 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2066 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2067 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2068 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2069 return -EINVAL;
2070
2071 desc = irq_to_desc(irq);
2072 if (!desc)
2073 return -EINVAL;
2074
2075 if (!irq_settings_can_request(desc) ||
2076 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2077 return -EINVAL;
2078
2079 if (!handler) {
2080 if (!thread_fn)
2081 return -EINVAL;
2082 handler = irq_default_primary_handler;
2083 }
2084
2085 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2086 if (!action)
2087 return -ENOMEM;
2088
2089 action->handler = handler;
2090 action->thread_fn = thread_fn;
2091 action->flags = irqflags;
2092 action->name = devname;
2093 action->dev_id = dev_id;
2094
2095 retval = irq_chip_pm_get(&desc->irq_data);
2096 if (retval < 0) {
2097 kfree(action);
2098 return retval;
2099 }
2100
2101 retval = __setup_irq(irq, desc, action);
2102
2103 if (retval) {
2104 irq_chip_pm_put(&desc->irq_data);
2105 kfree(action->secondary);
2106 kfree(action);
2107 }
2108
2109 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2110 if (!retval && (irqflags & IRQF_SHARED)) {
2111 /*
2112 * It's a shared IRQ -- the driver ought to be prepared for it
2113 * to happen immediately, so let's make sure....
2114 * We disable the irq to make sure that a 'real' IRQ doesn't
2115 * run in parallel with our fake.
2116 */
2117 unsigned long flags;
2118
2119 disable_irq(irq);
2120 local_irq_save(flags);
2121
2122 handler(irq, dev_id);
2123
2124 local_irq_restore(flags);
2125 enable_irq(irq);
2126 }
2127 #endif
2128 return retval;
2129 }
2130 EXPORT_SYMBOL(request_threaded_irq);
2131
2132 /**
2133 * request_any_context_irq - allocate an interrupt line
2134 * @irq: Interrupt line to allocate
2135 * @handler: Function to be called when the IRQ occurs.
2136 * Threaded handler for threaded interrupts.
2137 * @flags: Interrupt type flags
2138 * @name: An ascii name for the claiming device
2139 * @dev_id: A cookie passed back to the handler function
2140 *
2141 * This call allocates interrupt resources and enables the
2142 * interrupt line and IRQ handling. It selects either a
2143 * hardirq or threaded handling method depending on the
2144 * context.
2145 *
2146 * On failure, it returns a negative value. On success,
2147 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2148 */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2149 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2150 unsigned long flags, const char *name, void *dev_id)
2151 {
2152 struct irq_desc *desc;
2153 int ret;
2154
2155 if (irq == IRQ_NOTCONNECTED)
2156 return -ENOTCONN;
2157
2158 desc = irq_to_desc(irq);
2159 if (!desc)
2160 return -EINVAL;
2161
2162 if (irq_settings_is_nested_thread(desc)) {
2163 ret = request_threaded_irq(irq, NULL, handler,
2164 flags, name, dev_id);
2165 return !ret ? IRQC_IS_NESTED : ret;
2166 }
2167
2168 ret = request_irq(irq, handler, flags, name, dev_id);
2169 return !ret ? IRQC_IS_HARDIRQ : ret;
2170 }
2171 EXPORT_SYMBOL_GPL(request_any_context_irq);
2172
2173 /**
2174 * request_nmi - allocate an interrupt line for NMI delivery
2175 * @irq: Interrupt line to allocate
2176 * @handler: Function to be called when the IRQ occurs.
2177 * Threaded handler for threaded interrupts.
2178 * @irqflags: Interrupt type flags
2179 * @name: An ascii name for the claiming device
2180 * @dev_id: A cookie passed back to the handler function
2181 *
2182 * This call allocates interrupt resources and enables the
2183 * interrupt line and IRQ handling. It sets up the IRQ line
2184 * to be handled as an NMI.
2185 *
2186 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2187 * cannot be threaded.
2188 *
2189 * Interrupt lines requested for NMI delivering must produce per cpu
2190 * interrupts and have auto enabling setting disabled.
2191 *
2192 * Dev_id must be globally unique. Normally the address of the
2193 * device data structure is used as the cookie. Since the handler
2194 * receives this value it makes sense to use it.
2195 *
2196 * If the interrupt line cannot be used to deliver NMIs, function
2197 * will fail and return a negative value.
2198 */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2199 int request_nmi(unsigned int irq, irq_handler_t handler,
2200 unsigned long irqflags, const char *name, void *dev_id)
2201 {
2202 struct irqaction *action;
2203 struct irq_desc *desc;
2204 unsigned long flags;
2205 int retval;
2206
2207 if (irq == IRQ_NOTCONNECTED)
2208 return -ENOTCONN;
2209
2210 /* NMI cannot be shared, used for Polling */
2211 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2212 return -EINVAL;
2213
2214 if (!(irqflags & IRQF_PERCPU))
2215 return -EINVAL;
2216
2217 if (!handler)
2218 return -EINVAL;
2219
2220 desc = irq_to_desc(irq);
2221
2222 if (!desc || (irq_settings_can_autoenable(desc) &&
2223 !(irqflags & IRQF_NO_AUTOEN)) ||
2224 !irq_settings_can_request(desc) ||
2225 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2226 !irq_supports_nmi(desc))
2227 return -EINVAL;
2228
2229 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2230 if (!action)
2231 return -ENOMEM;
2232
2233 action->handler = handler;
2234 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2235 action->name = name;
2236 action->dev_id = dev_id;
2237
2238 retval = irq_chip_pm_get(&desc->irq_data);
2239 if (retval < 0)
2240 goto err_out;
2241
2242 retval = __setup_irq(irq, desc, action);
2243 if (retval)
2244 goto err_irq_setup;
2245
2246 raw_spin_lock_irqsave(&desc->lock, flags);
2247
2248 /* Setup NMI state */
2249 desc->istate |= IRQS_NMI;
2250 retval = irq_nmi_setup(desc);
2251 if (retval) {
2252 __cleanup_nmi(irq, desc);
2253 raw_spin_unlock_irqrestore(&desc->lock, flags);
2254 return -EINVAL;
2255 }
2256
2257 raw_spin_unlock_irqrestore(&desc->lock, flags);
2258
2259 return 0;
2260
2261 err_irq_setup:
2262 irq_chip_pm_put(&desc->irq_data);
2263 err_out:
2264 kfree(action);
2265
2266 return retval;
2267 }
2268
enable_percpu_irq(unsigned int irq,unsigned int type)2269 void enable_percpu_irq(unsigned int irq, unsigned int type)
2270 {
2271 unsigned int cpu = smp_processor_id();
2272 unsigned long flags;
2273 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2274
2275 if (!desc)
2276 return;
2277
2278 /*
2279 * If the trigger type is not specified by the caller, then
2280 * use the default for this interrupt.
2281 */
2282 type &= IRQ_TYPE_SENSE_MASK;
2283 if (type == IRQ_TYPE_NONE)
2284 type = irqd_get_trigger_type(&desc->irq_data);
2285
2286 if (type != IRQ_TYPE_NONE) {
2287 int ret;
2288
2289 ret = __irq_set_trigger(desc, type);
2290
2291 if (ret) {
2292 WARN(1, "failed to set type for IRQ%d\n", irq);
2293 goto out;
2294 }
2295 }
2296
2297 irq_percpu_enable(desc, cpu);
2298 out:
2299 irq_put_desc_unlock(desc, flags);
2300 }
2301 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2302
enable_percpu_nmi(unsigned int irq,unsigned int type)2303 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2304 {
2305 enable_percpu_irq(irq, type);
2306 }
2307
2308 /**
2309 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2310 * @irq: Linux irq number to check for
2311 *
2312 * Must be called from a non migratable context. Returns the enable
2313 * state of a per cpu interrupt on the current cpu.
2314 */
irq_percpu_is_enabled(unsigned int irq)2315 bool irq_percpu_is_enabled(unsigned int irq)
2316 {
2317 unsigned int cpu = smp_processor_id();
2318 struct irq_desc *desc;
2319 unsigned long flags;
2320 bool is_enabled;
2321
2322 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2323 if (!desc)
2324 return false;
2325
2326 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2327 irq_put_desc_unlock(desc, flags);
2328
2329 return is_enabled;
2330 }
2331 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2332
disable_percpu_irq(unsigned int irq)2333 void disable_percpu_irq(unsigned int irq)
2334 {
2335 unsigned int cpu = smp_processor_id();
2336 unsigned long flags;
2337 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2338
2339 if (!desc)
2340 return;
2341
2342 irq_percpu_disable(desc, cpu);
2343 irq_put_desc_unlock(desc, flags);
2344 }
2345 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2346
disable_percpu_nmi(unsigned int irq)2347 void disable_percpu_nmi(unsigned int irq)
2348 {
2349 disable_percpu_irq(irq);
2350 }
2351
2352 /*
2353 * Internal function to unregister a percpu irqaction.
2354 */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2355 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2356 {
2357 struct irq_desc *desc = irq_to_desc(irq);
2358 struct irqaction *action;
2359 unsigned long flags;
2360
2361 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2362
2363 if (!desc)
2364 return NULL;
2365
2366 raw_spin_lock_irqsave(&desc->lock, flags);
2367
2368 action = desc->action;
2369 if (!action || action->percpu_dev_id != dev_id) {
2370 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2371 goto bad;
2372 }
2373
2374 if (!cpumask_empty(desc->percpu_enabled)) {
2375 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2376 irq, cpumask_first(desc->percpu_enabled));
2377 goto bad;
2378 }
2379
2380 /* Found it - now remove it from the list of entries: */
2381 desc->action = NULL;
2382
2383 desc->istate &= ~IRQS_NMI;
2384
2385 raw_spin_unlock_irqrestore(&desc->lock, flags);
2386
2387 unregister_handler_proc(irq, action);
2388
2389 irq_chip_pm_put(&desc->irq_data);
2390 module_put(desc->owner);
2391 return action;
2392
2393 bad:
2394 raw_spin_unlock_irqrestore(&desc->lock, flags);
2395 return NULL;
2396 }
2397
2398 /**
2399 * remove_percpu_irq - free a per-cpu interrupt
2400 * @irq: Interrupt line to free
2401 * @act: irqaction for the interrupt
2402 *
2403 * Used to remove interrupts statically setup by the early boot process.
2404 */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2405 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2406 {
2407 struct irq_desc *desc = irq_to_desc(irq);
2408
2409 if (desc && irq_settings_is_per_cpu_devid(desc))
2410 __free_percpu_irq(irq, act->percpu_dev_id);
2411 }
2412
2413 /**
2414 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2415 * @irq: Interrupt line to free
2416 * @dev_id: Device identity to free
2417 *
2418 * Remove a percpu interrupt handler. The handler is removed, but
2419 * the interrupt line is not disabled. This must be done on each
2420 * CPU before calling this function. The function does not return
2421 * until any executing interrupts for this IRQ have completed.
2422 *
2423 * This function must not be called from interrupt context.
2424 */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2425 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2426 {
2427 struct irq_desc *desc = irq_to_desc(irq);
2428
2429 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2430 return;
2431
2432 chip_bus_lock(desc);
2433 kfree(__free_percpu_irq(irq, dev_id));
2434 chip_bus_sync_unlock(desc);
2435 }
2436 EXPORT_SYMBOL_GPL(free_percpu_irq);
2437
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2438 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2439 {
2440 struct irq_desc *desc = irq_to_desc(irq);
2441
2442 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2443 return;
2444
2445 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2446 return;
2447
2448 kfree(__free_percpu_irq(irq, dev_id));
2449 }
2450
2451 /**
2452 * setup_percpu_irq - setup a per-cpu interrupt
2453 * @irq: Interrupt line to setup
2454 * @act: irqaction for the interrupt
2455 *
2456 * Used to statically setup per-cpu interrupts in the early boot process.
2457 */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2458 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2459 {
2460 struct irq_desc *desc = irq_to_desc(irq);
2461 int retval;
2462
2463 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2464 return -EINVAL;
2465
2466 retval = irq_chip_pm_get(&desc->irq_data);
2467 if (retval < 0)
2468 return retval;
2469
2470 retval = __setup_irq(irq, desc, act);
2471
2472 if (retval)
2473 irq_chip_pm_put(&desc->irq_data);
2474
2475 return retval;
2476 }
2477
2478 /**
2479 * __request_percpu_irq - allocate a percpu interrupt line
2480 * @irq: Interrupt line to allocate
2481 * @handler: Function to be called when the IRQ occurs.
2482 * @flags: Interrupt type flags (IRQF_TIMER only)
2483 * @devname: An ascii name for the claiming device
2484 * @dev_id: A percpu cookie passed back to the handler function
2485 *
2486 * This call allocates interrupt resources and enables the
2487 * interrupt on the local CPU. If the interrupt is supposed to be
2488 * enabled on other CPUs, it has to be done on each CPU using
2489 * enable_percpu_irq().
2490 *
2491 * Dev_id must be globally unique. It is a per-cpu variable, and
2492 * the handler gets called with the interrupted CPU's instance of
2493 * that variable.
2494 */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2495 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2496 unsigned long flags, const char *devname,
2497 void __percpu *dev_id)
2498 {
2499 struct irqaction *action;
2500 struct irq_desc *desc;
2501 int retval;
2502
2503 if (!dev_id)
2504 return -EINVAL;
2505
2506 desc = irq_to_desc(irq);
2507 if (!desc || !irq_settings_can_request(desc) ||
2508 !irq_settings_is_per_cpu_devid(desc))
2509 return -EINVAL;
2510
2511 if (flags && flags != IRQF_TIMER)
2512 return -EINVAL;
2513
2514 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2515 if (!action)
2516 return -ENOMEM;
2517
2518 action->handler = handler;
2519 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2520 action->name = devname;
2521 action->percpu_dev_id = dev_id;
2522
2523 retval = irq_chip_pm_get(&desc->irq_data);
2524 if (retval < 0) {
2525 kfree(action);
2526 return retval;
2527 }
2528
2529 retval = __setup_irq(irq, desc, action);
2530
2531 if (retval) {
2532 irq_chip_pm_put(&desc->irq_data);
2533 kfree(action);
2534 }
2535
2536 return retval;
2537 }
2538 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2539
2540 /**
2541 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2542 * @irq: Interrupt line to allocate
2543 * @handler: Function to be called when the IRQ occurs.
2544 * @name: An ascii name for the claiming device
2545 * @dev_id: A percpu cookie passed back to the handler function
2546 *
2547 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2548 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2549 * being enabled on the same CPU by using enable_percpu_nmi().
2550 *
2551 * Dev_id must be globally unique. It is a per-cpu variable, and
2552 * the handler gets called with the interrupted CPU's instance of
2553 * that variable.
2554 *
2555 * Interrupt lines requested for NMI delivering should have auto enabling
2556 * setting disabled.
2557 *
2558 * If the interrupt line cannot be used to deliver NMIs, function
2559 * will fail returning a negative value.
2560 */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2561 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2562 const char *name, void __percpu *dev_id)
2563 {
2564 struct irqaction *action;
2565 struct irq_desc *desc;
2566 unsigned long flags;
2567 int retval;
2568
2569 if (!handler)
2570 return -EINVAL;
2571
2572 desc = irq_to_desc(irq);
2573
2574 if (!desc || !irq_settings_can_request(desc) ||
2575 !irq_settings_is_per_cpu_devid(desc) ||
2576 irq_settings_can_autoenable(desc) ||
2577 !irq_supports_nmi(desc))
2578 return -EINVAL;
2579
2580 /* The line cannot already be NMI */
2581 if (desc->istate & IRQS_NMI)
2582 return -EINVAL;
2583
2584 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2585 if (!action)
2586 return -ENOMEM;
2587
2588 action->handler = handler;
2589 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2590 | IRQF_NOBALANCING;
2591 action->name = name;
2592 action->percpu_dev_id = dev_id;
2593
2594 retval = irq_chip_pm_get(&desc->irq_data);
2595 if (retval < 0)
2596 goto err_out;
2597
2598 retval = __setup_irq(irq, desc, action);
2599 if (retval)
2600 goto err_irq_setup;
2601
2602 raw_spin_lock_irqsave(&desc->lock, flags);
2603 desc->istate |= IRQS_NMI;
2604 raw_spin_unlock_irqrestore(&desc->lock, flags);
2605
2606 return 0;
2607
2608 err_irq_setup:
2609 irq_chip_pm_put(&desc->irq_data);
2610 err_out:
2611 kfree(action);
2612
2613 return retval;
2614 }
2615
2616 /**
2617 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2618 * @irq: Interrupt line to prepare for NMI delivery
2619 *
2620 * This call prepares an interrupt line to deliver NMI on the current CPU,
2621 * before that interrupt line gets enabled with enable_percpu_nmi().
2622 *
2623 * As a CPU local operation, this should be called from non-preemptible
2624 * context.
2625 *
2626 * If the interrupt line cannot be used to deliver NMIs, function
2627 * will fail returning a negative value.
2628 */
prepare_percpu_nmi(unsigned int irq)2629 int prepare_percpu_nmi(unsigned int irq)
2630 {
2631 unsigned long flags;
2632 struct irq_desc *desc;
2633 int ret = 0;
2634
2635 WARN_ON(preemptible());
2636
2637 desc = irq_get_desc_lock(irq, &flags,
2638 IRQ_GET_DESC_CHECK_PERCPU);
2639 if (!desc)
2640 return -EINVAL;
2641
2642 if (WARN(!(desc->istate & IRQS_NMI),
2643 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2644 irq)) {
2645 ret = -EINVAL;
2646 goto out;
2647 }
2648
2649 ret = irq_nmi_setup(desc);
2650 if (ret) {
2651 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2652 goto out;
2653 }
2654
2655 out:
2656 irq_put_desc_unlock(desc, flags);
2657 return ret;
2658 }
2659
2660 /**
2661 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2662 * @irq: Interrupt line from which CPU local NMI configuration should be
2663 * removed
2664 *
2665 * This call undoes the setup done by prepare_percpu_nmi().
2666 *
2667 * IRQ line should not be enabled for the current CPU.
2668 *
2669 * As a CPU local operation, this should be called from non-preemptible
2670 * context.
2671 */
teardown_percpu_nmi(unsigned int irq)2672 void teardown_percpu_nmi(unsigned int irq)
2673 {
2674 unsigned long flags;
2675 struct irq_desc *desc;
2676
2677 WARN_ON(preemptible());
2678
2679 desc = irq_get_desc_lock(irq, &flags,
2680 IRQ_GET_DESC_CHECK_PERCPU);
2681 if (!desc)
2682 return;
2683
2684 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2685 goto out;
2686
2687 irq_nmi_teardown(desc);
2688 out:
2689 irq_put_desc_unlock(desc, flags);
2690 }
2691
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2692 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2693 bool *state)
2694 {
2695 struct irq_chip *chip;
2696 int err = -EINVAL;
2697
2698 do {
2699 chip = irq_data_get_irq_chip(data);
2700 if (WARN_ON_ONCE(!chip))
2701 return -ENODEV;
2702 if (chip->irq_get_irqchip_state)
2703 break;
2704 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2705 data = data->parent_data;
2706 #else
2707 data = NULL;
2708 #endif
2709 } while (data);
2710
2711 if (data)
2712 err = chip->irq_get_irqchip_state(data, which, state);
2713 return err;
2714 }
2715
2716 /**
2717 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2718 * @irq: Interrupt line that is forwarded to a VM
2719 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2720 * @state: a pointer to a boolean where the state is to be storeed
2721 *
2722 * This call snapshots the internal irqchip state of an
2723 * interrupt, returning into @state the bit corresponding to
2724 * stage @which
2725 *
2726 * This function should be called with preemption disabled if the
2727 * interrupt controller has per-cpu registers.
2728 */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2729 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2730 bool *state)
2731 {
2732 struct irq_desc *desc;
2733 struct irq_data *data;
2734 unsigned long flags;
2735 int err = -EINVAL;
2736
2737 desc = irq_get_desc_buslock(irq, &flags, 0);
2738 if (!desc)
2739 return err;
2740
2741 data = irq_desc_get_irq_data(desc);
2742
2743 err = __irq_get_irqchip_state(data, which, state);
2744
2745 irq_put_desc_busunlock(desc, flags);
2746 return err;
2747 }
2748 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2749
2750 /**
2751 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2752 * @irq: Interrupt line that is forwarded to a VM
2753 * @which: State to be restored (one of IRQCHIP_STATE_*)
2754 * @val: Value corresponding to @which
2755 *
2756 * This call sets the internal irqchip state of an interrupt,
2757 * depending on the value of @which.
2758 *
2759 * This function should be called with preemption disabled if the
2760 * interrupt controller has per-cpu registers.
2761 */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2762 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2763 bool val)
2764 {
2765 struct irq_desc *desc;
2766 struct irq_data *data;
2767 struct irq_chip *chip;
2768 unsigned long flags;
2769 int err = -EINVAL;
2770
2771 desc = irq_get_desc_buslock(irq, &flags, 0);
2772 if (!desc)
2773 return err;
2774
2775 data = irq_desc_get_irq_data(desc);
2776
2777 do {
2778 chip = irq_data_get_irq_chip(data);
2779 if (WARN_ON_ONCE(!chip)) {
2780 err = -ENODEV;
2781 goto out_unlock;
2782 }
2783 if (chip->irq_set_irqchip_state)
2784 break;
2785 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2786 data = data->parent_data;
2787 #else
2788 data = NULL;
2789 #endif
2790 } while (data);
2791
2792 if (data)
2793 err = chip->irq_set_irqchip_state(data, which, val);
2794
2795 out_unlock:
2796 irq_put_desc_busunlock(desc, flags);
2797 return err;
2798 }
2799 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2800