1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Key setup facility for FS encryption support.
4 *
5 * Copyright (C) 2015, Google, Inc.
6 *
7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8 * Heavily modified since then.
9 */
10
11 #include <crypto/skcipher.h>
12 #include <linux/random.h>
13
14 #include "fscrypt_private.h"
15
16 struct fscrypt_mode fscrypt_modes[] = {
17 [FSCRYPT_MODE_AES_256_XTS] = {
18 .friendly_name = "AES-256-XTS",
19 .cipher_str = "xts(aes)",
20 .keysize = 64,
21 .security_strength = 32,
22 .ivsize = 16,
23 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS,
24 },
25 [FSCRYPT_MODE_AES_256_CTS] = {
26 .friendly_name = "AES-256-CTS-CBC",
27 .cipher_str = "cts(cbc(aes))",
28 .keysize = 32,
29 .security_strength = 32,
30 .ivsize = 16,
31 },
32 [FSCRYPT_MODE_AES_128_CBC] = {
33 .friendly_name = "AES-128-CBC-ESSIV",
34 .cipher_str = "essiv(cbc(aes),sha256)",
35 .keysize = 16,
36 .security_strength = 16,
37 .ivsize = 16,
38 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
39 },
40 [FSCRYPT_MODE_AES_128_CTS] = {
41 .friendly_name = "AES-128-CTS-CBC",
42 .cipher_str = "cts(cbc(aes))",
43 .keysize = 16,
44 .security_strength = 16,
45 .ivsize = 16,
46 },
47 [FSCRYPT_MODE_ADIANTUM] = {
48 .friendly_name = "Adiantum",
49 .cipher_str = "adiantum(xchacha12,aes)",
50 .keysize = 32,
51 .security_strength = 32,
52 .ivsize = 32,
53 .blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM,
54 },
55 };
56
57 static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex);
58
59 static struct fscrypt_mode *
select_encryption_mode(const union fscrypt_policy * policy,const struct inode * inode)60 select_encryption_mode(const union fscrypt_policy *policy,
61 const struct inode *inode)
62 {
63 BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1);
64
65 if (S_ISREG(inode->i_mode))
66 return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];
67
68 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
69 return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];
70
71 WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
72 inode->i_ino, (inode->i_mode & S_IFMT));
73 return ERR_PTR(-EINVAL);
74 }
75
76 /* Create a symmetric cipher object for the given encryption mode and key */
77 static struct crypto_skcipher *
fscrypt_allocate_skcipher(struct fscrypt_mode * mode,const u8 * raw_key,const struct inode * inode)78 fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
79 const struct inode *inode)
80 {
81 struct crypto_skcipher *tfm;
82 int err;
83
84 tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
85 if (IS_ERR(tfm)) {
86 if (PTR_ERR(tfm) == -ENOENT) {
87 fscrypt_warn(inode,
88 "Missing crypto API support for %s (API name: \"%s\")",
89 mode->friendly_name, mode->cipher_str);
90 return ERR_PTR(-ENOPKG);
91 }
92 fscrypt_err(inode, "Error allocating '%s' transform: %ld",
93 mode->cipher_str, PTR_ERR(tfm));
94 return tfm;
95 }
96 if (!xchg(&mode->logged_impl_name, 1)) {
97 /*
98 * fscrypt performance can vary greatly depending on which
99 * crypto algorithm implementation is used. Help people debug
100 * performance problems by logging the ->cra_driver_name the
101 * first time a mode is used.
102 */
103 pr_info("fscrypt: %s using implementation \"%s\"\n",
104 mode->friendly_name, crypto_skcipher_driver_name(tfm));
105 }
106 if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) {
107 err = -EINVAL;
108 goto err_free_tfm;
109 }
110 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
111 err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
112 if (err)
113 goto err_free_tfm;
114
115 return tfm;
116
117 err_free_tfm:
118 crypto_free_skcipher(tfm);
119 return ERR_PTR(err);
120 }
121
122 /*
123 * Prepare the crypto transform object or blk-crypto key in @prep_key, given the
124 * raw key, encryption mode, and flag indicating which encryption implementation
125 * (fs-layer or blk-crypto) will be used.
126 */
fscrypt_prepare_key(struct fscrypt_prepared_key * prep_key,const u8 * raw_key,const struct fscrypt_info * ci)127 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
128 const u8 *raw_key, const struct fscrypt_info *ci)
129 {
130 struct crypto_skcipher *tfm;
131
132 if (fscrypt_using_inline_encryption(ci))
133 return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci);
134
135 tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
136 if (IS_ERR(tfm))
137 return PTR_ERR(tfm);
138 /*
139 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
140 * I.e., here we publish ->tfm with a RELEASE barrier so that
141 * concurrent tasks can ACQUIRE it. Note that this concurrency is only
142 * possible for per-mode keys, not for per-file keys.
143 */
144 smp_store_release(&prep_key->tfm, tfm);
145 return 0;
146 }
147
148 /* Destroy a crypto transform object and/or blk-crypto key. */
fscrypt_destroy_prepared_key(struct fscrypt_prepared_key * prep_key)149 void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key)
150 {
151 crypto_free_skcipher(prep_key->tfm);
152 fscrypt_destroy_inline_crypt_key(prep_key);
153 memzero_explicit(prep_key, sizeof(*prep_key));
154 }
155
156 /* Given a per-file encryption key, set up the file's crypto transform object */
fscrypt_set_per_file_enc_key(struct fscrypt_info * ci,const u8 * raw_key)157 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key)
158 {
159 ci->ci_owns_key = true;
160 return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci);
161 }
162
setup_per_mode_enc_key(struct fscrypt_info * ci,struct fscrypt_master_key * mk,struct fscrypt_prepared_key * keys,u8 hkdf_context,bool include_fs_uuid)163 static int setup_per_mode_enc_key(struct fscrypt_info *ci,
164 struct fscrypt_master_key *mk,
165 struct fscrypt_prepared_key *keys,
166 u8 hkdf_context, bool include_fs_uuid)
167 {
168 const struct inode *inode = ci->ci_inode;
169 const struct super_block *sb = inode->i_sb;
170 struct fscrypt_mode *mode = ci->ci_mode;
171 const u8 mode_num = mode - fscrypt_modes;
172 struct fscrypt_prepared_key *prep_key;
173 u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
174 u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
175 unsigned int hkdf_infolen = 0;
176 int err;
177
178 if (WARN_ON(mode_num > FSCRYPT_MODE_MAX))
179 return -EINVAL;
180
181 prep_key = &keys[mode_num];
182 if (fscrypt_is_key_prepared(prep_key, ci)) {
183 ci->ci_enc_key = *prep_key;
184 return 0;
185 }
186
187 mutex_lock(&fscrypt_mode_key_setup_mutex);
188
189 if (fscrypt_is_key_prepared(prep_key, ci))
190 goto done_unlock;
191
192 BUILD_BUG_ON(sizeof(mode_num) != 1);
193 BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
194 BUILD_BUG_ON(sizeof(hkdf_info) != 17);
195 hkdf_info[hkdf_infolen++] = mode_num;
196 if (include_fs_uuid) {
197 memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid,
198 sizeof(sb->s_uuid));
199 hkdf_infolen += sizeof(sb->s_uuid);
200 }
201 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
202 hkdf_context, hkdf_info, hkdf_infolen,
203 mode_key, mode->keysize);
204 if (err)
205 goto out_unlock;
206 err = fscrypt_prepare_key(prep_key, mode_key, ci);
207 memzero_explicit(mode_key, mode->keysize);
208 if (err)
209 goto out_unlock;
210 done_unlock:
211 ci->ci_enc_key = *prep_key;
212 err = 0;
213 out_unlock:
214 mutex_unlock(&fscrypt_mode_key_setup_mutex);
215 return err;
216 }
217
218 /*
219 * Derive a SipHash key from the given fscrypt master key and the given
220 * application-specific information string.
221 *
222 * Note that the KDF produces a byte array, but the SipHash APIs expect the key
223 * as a pair of 64-bit words. Therefore, on big endian CPUs we have to do an
224 * endianness swap in order to get the same results as on little endian CPUs.
225 */
fscrypt_derive_siphash_key(const struct fscrypt_master_key * mk,u8 context,const u8 * info,unsigned int infolen,siphash_key_t * key)226 static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk,
227 u8 context, const u8 *info,
228 unsigned int infolen, siphash_key_t *key)
229 {
230 int err;
231
232 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen,
233 (u8 *)key, sizeof(*key));
234 if (err)
235 return err;
236
237 BUILD_BUG_ON(sizeof(*key) != 16);
238 BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2);
239 le64_to_cpus(&key->key[0]);
240 le64_to_cpus(&key->key[1]);
241 return 0;
242 }
243
fscrypt_derive_dirhash_key(struct fscrypt_info * ci,const struct fscrypt_master_key * mk)244 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
245 const struct fscrypt_master_key *mk)
246 {
247 int err;
248
249 err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY,
250 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
251 &ci->ci_dirhash_key);
252 if (err)
253 return err;
254 ci->ci_dirhash_key_initialized = true;
255 return 0;
256 }
257
fscrypt_hash_inode_number(struct fscrypt_info * ci,const struct fscrypt_master_key * mk)258 void fscrypt_hash_inode_number(struct fscrypt_info *ci,
259 const struct fscrypt_master_key *mk)
260 {
261 WARN_ON(ci->ci_inode->i_ino == 0);
262 WARN_ON(!mk->mk_ino_hash_key_initialized);
263
264 ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
265 &mk->mk_ino_hash_key);
266 }
267
fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info * ci,struct fscrypt_master_key * mk)268 static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci,
269 struct fscrypt_master_key *mk)
270 {
271 int err;
272
273 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys,
274 HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true);
275 if (err)
276 return err;
277
278 /* pairs with smp_store_release() below */
279 if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) {
280
281 mutex_lock(&fscrypt_mode_key_setup_mutex);
282
283 if (mk->mk_ino_hash_key_initialized)
284 goto unlock;
285
286 err = fscrypt_derive_siphash_key(mk,
287 HKDF_CONTEXT_INODE_HASH_KEY,
288 NULL, 0, &mk->mk_ino_hash_key);
289 if (err)
290 goto unlock;
291 /* pairs with smp_load_acquire() above */
292 smp_store_release(&mk->mk_ino_hash_key_initialized, true);
293 unlock:
294 mutex_unlock(&fscrypt_mode_key_setup_mutex);
295 if (err)
296 return err;
297 }
298
299 /*
300 * New inodes may not have an inode number assigned yet.
301 * Hashing their inode number is delayed until later.
302 */
303 if (ci->ci_inode->i_ino)
304 fscrypt_hash_inode_number(ci, mk);
305 return 0;
306 }
307
fscrypt_setup_v2_file_key(struct fscrypt_info * ci,struct fscrypt_master_key * mk,bool need_dirhash_key)308 static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
309 struct fscrypt_master_key *mk,
310 bool need_dirhash_key)
311 {
312 int err;
313
314 if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
315 /*
316 * DIRECT_KEY: instead of deriving per-file encryption keys, the
317 * per-file nonce will be included in all the IVs. But unlike
318 * v1 policies, for v2 policies in this case we don't encrypt
319 * with the master key directly but rather derive a per-mode
320 * encryption key. This ensures that the master key is
321 * consistently used only for HKDF, avoiding key reuse issues.
322 */
323 err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys,
324 HKDF_CONTEXT_DIRECT_KEY, false);
325 } else if (ci->ci_policy.v2.flags &
326 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
327 /*
328 * IV_INO_LBLK_64: encryption keys are derived from (master_key,
329 * mode_num, filesystem_uuid), and inode number is included in
330 * the IVs. This format is optimized for use with inline
331 * encryption hardware compliant with the UFS standard.
332 */
333 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys,
334 HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
335 true);
336 } else if (ci->ci_policy.v2.flags &
337 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
338 err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
339 } else {
340 u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
341
342 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
343 HKDF_CONTEXT_PER_FILE_ENC_KEY,
344 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
345 derived_key, ci->ci_mode->keysize);
346 if (err)
347 return err;
348
349 err = fscrypt_set_per_file_enc_key(ci, derived_key);
350 memzero_explicit(derived_key, ci->ci_mode->keysize);
351 }
352 if (err)
353 return err;
354
355 /* Derive a secret dirhash key for directories that need it. */
356 if (need_dirhash_key) {
357 err = fscrypt_derive_dirhash_key(ci, mk);
358 if (err)
359 return err;
360 }
361
362 return 0;
363 }
364
365 /*
366 * Check whether the size of the given master key (@mk) is appropriate for the
367 * encryption settings which a particular file will use (@ci).
368 *
369 * If the file uses a v1 encryption policy, then the master key must be at least
370 * as long as the derived key, as this is a requirement of the v1 KDF.
371 *
372 * Otherwise, the KDF can accept any size key, so we enforce a slightly looser
373 * requirement: we require that the size of the master key be at least the
374 * maximum security strength of any algorithm whose key will be derived from it
375 * (but in practice we only need to consider @ci->ci_mode, since any other
376 * possible subkeys such as DIRHASH and INODE_HASH will never increase the
377 * required key size over @ci->ci_mode). This allows AES-256-XTS keys to be
378 * derived from a 256-bit master key, which is cryptographically sufficient,
379 * rather than requiring a 512-bit master key which is unnecessarily long. (We
380 * still allow 512-bit master keys if the user chooses to use them, though.)
381 */
fscrypt_valid_master_key_size(const struct fscrypt_master_key * mk,const struct fscrypt_info * ci)382 static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk,
383 const struct fscrypt_info *ci)
384 {
385 unsigned int min_keysize;
386
387 if (ci->ci_policy.version == FSCRYPT_POLICY_V1)
388 min_keysize = ci->ci_mode->keysize;
389 else
390 min_keysize = ci->ci_mode->security_strength;
391
392 if (mk->mk_secret.size < min_keysize) {
393 fscrypt_warn(NULL,
394 "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
395 master_key_spec_type(&mk->mk_spec),
396 master_key_spec_len(&mk->mk_spec),
397 (u8 *)&mk->mk_spec.u,
398 mk->mk_secret.size, min_keysize);
399 return false;
400 }
401 return true;
402 }
403
404 /*
405 * Find the master key, then set up the inode's actual encryption key.
406 *
407 * If the master key is found in the filesystem-level keyring, then it is
408 * returned in *mk_ret with its semaphore read-locked. This is needed to ensure
409 * that only one task links the fscrypt_info into ->mk_decrypted_inodes (as
410 * multiple tasks may race to create an fscrypt_info for the same inode), and to
411 * synchronize the master key being removed with a new inode starting to use it.
412 */
setup_file_encryption_key(struct fscrypt_info * ci,bool need_dirhash_key,struct fscrypt_master_key ** mk_ret)413 static int setup_file_encryption_key(struct fscrypt_info *ci,
414 bool need_dirhash_key,
415 struct fscrypt_master_key **mk_ret)
416 {
417 struct fscrypt_key_specifier mk_spec;
418 struct fscrypt_master_key *mk;
419 int err;
420
421 err = fscrypt_select_encryption_impl(ci);
422 if (err)
423 return err;
424
425 switch (ci->ci_policy.version) {
426 case FSCRYPT_POLICY_V1:
427 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
428 memcpy(mk_spec.u.descriptor,
429 ci->ci_policy.v1.master_key_descriptor,
430 FSCRYPT_KEY_DESCRIPTOR_SIZE);
431 break;
432 case FSCRYPT_POLICY_V2:
433 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
434 memcpy(mk_spec.u.identifier,
435 ci->ci_policy.v2.master_key_identifier,
436 FSCRYPT_KEY_IDENTIFIER_SIZE);
437 break;
438 default:
439 WARN_ON(1);
440 return -EINVAL;
441 }
442
443 mk = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
444 if (!mk) {
445 if (ci->ci_policy.version != FSCRYPT_POLICY_V1)
446 return -ENOKEY;
447
448 /*
449 * As a legacy fallback for v1 policies, search for the key in
450 * the current task's subscribed keyrings too. Don't move this
451 * to before the search of ->s_master_keys, since users
452 * shouldn't be able to override filesystem-level keys.
453 */
454 return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
455 }
456 down_read(&mk->mk_sem);
457
458 /* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
459 if (!is_master_key_secret_present(&mk->mk_secret)) {
460 err = -ENOKEY;
461 goto out_release_key;
462 }
463
464 if (!fscrypt_valid_master_key_size(mk, ci)) {
465 err = -ENOKEY;
466 goto out_release_key;
467 }
468
469 switch (ci->ci_policy.version) {
470 case FSCRYPT_POLICY_V1:
471 err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
472 break;
473 case FSCRYPT_POLICY_V2:
474 err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key);
475 break;
476 default:
477 WARN_ON(1);
478 err = -EINVAL;
479 break;
480 }
481 if (err)
482 goto out_release_key;
483
484 *mk_ret = mk;
485 return 0;
486
487 out_release_key:
488 up_read(&mk->mk_sem);
489 fscrypt_put_master_key(mk);
490 return err;
491 }
492
put_crypt_info(struct fscrypt_info * ci)493 static void put_crypt_info(struct fscrypt_info *ci)
494 {
495 struct fscrypt_master_key *mk;
496
497 if (!ci)
498 return;
499
500 if (ci->ci_direct_key)
501 fscrypt_put_direct_key(ci->ci_direct_key);
502 else if (ci->ci_owns_key)
503 fscrypt_destroy_prepared_key(&ci->ci_enc_key);
504
505 mk = ci->ci_master_key;
506 if (mk) {
507 /*
508 * Remove this inode from the list of inodes that were unlocked
509 * with the master key. In addition, if we're removing the last
510 * inode from a master key struct that already had its secret
511 * removed, then complete the full removal of the struct.
512 */
513 spin_lock(&mk->mk_decrypted_inodes_lock);
514 list_del(&ci->ci_master_key_link);
515 spin_unlock(&mk->mk_decrypted_inodes_lock);
516 fscrypt_put_master_key_activeref(mk);
517 }
518 memzero_explicit(ci, sizeof(*ci));
519 kmem_cache_free(fscrypt_info_cachep, ci);
520 }
521
522 static int
fscrypt_setup_encryption_info(struct inode * inode,const union fscrypt_policy * policy,const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],bool need_dirhash_key)523 fscrypt_setup_encryption_info(struct inode *inode,
524 const union fscrypt_policy *policy,
525 const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],
526 bool need_dirhash_key)
527 {
528 struct fscrypt_info *crypt_info;
529 struct fscrypt_mode *mode;
530 struct fscrypt_master_key *mk = NULL;
531 int res;
532
533 res = fscrypt_initialize(inode->i_sb->s_cop->flags);
534 if (res)
535 return res;
536
537 crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL);
538 if (!crypt_info)
539 return -ENOMEM;
540
541 crypt_info->ci_inode = inode;
542 crypt_info->ci_policy = *policy;
543 memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE);
544
545 mode = select_encryption_mode(&crypt_info->ci_policy, inode);
546 if (IS_ERR(mode)) {
547 res = PTR_ERR(mode);
548 goto out;
549 }
550 WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
551 crypt_info->ci_mode = mode;
552
553 res = setup_file_encryption_key(crypt_info, need_dirhash_key, &mk);
554 if (res)
555 goto out;
556
557 /*
558 * For existing inodes, multiple tasks may race to set ->i_crypt_info.
559 * So use cmpxchg_release(). This pairs with the smp_load_acquire() in
560 * fscrypt_get_info(). I.e., here we publish ->i_crypt_info with a
561 * RELEASE barrier so that other tasks can ACQUIRE it.
562 */
563 if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
564 /*
565 * We won the race and set ->i_crypt_info to our crypt_info.
566 * Now link it into the master key's inode list.
567 */
568 if (mk) {
569 crypt_info->ci_master_key = mk;
570 refcount_inc(&mk->mk_active_refs);
571 spin_lock(&mk->mk_decrypted_inodes_lock);
572 list_add(&crypt_info->ci_master_key_link,
573 &mk->mk_decrypted_inodes);
574 spin_unlock(&mk->mk_decrypted_inodes_lock);
575 }
576 crypt_info = NULL;
577 }
578 res = 0;
579 out:
580 if (mk) {
581 up_read(&mk->mk_sem);
582 fscrypt_put_master_key(mk);
583 }
584 put_crypt_info(crypt_info);
585 return res;
586 }
587
588 /**
589 * fscrypt_get_encryption_info() - set up an inode's encryption key
590 * @inode: the inode to set up the key for. Must be encrypted.
591 *
592 * Set up ->i_crypt_info, if it hasn't already been done.
593 *
594 * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe. So
595 * generally this shouldn't be called from within a filesystem transaction.
596 *
597 * Return: 0 if ->i_crypt_info was set or was already set, *or* if the
598 * encryption key is unavailable. (Use fscrypt_has_encryption_key() to
599 * distinguish these cases.) Also can return another -errno code.
600 */
fscrypt_get_encryption_info(struct inode * inode)601 int fscrypt_get_encryption_info(struct inode *inode)
602 {
603 int res;
604 union fscrypt_context ctx;
605 union fscrypt_policy policy;
606
607 if (fscrypt_has_encryption_key(inode))
608 return 0;
609
610 res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
611 if (res < 0) {
612 fscrypt_warn(inode, "Error %d getting encryption context", res);
613 return res;
614 }
615
616 res = fscrypt_policy_from_context(&policy, &ctx, res);
617 if (res) {
618 fscrypt_warn(inode,
619 "Unrecognized or corrupt encryption context");
620 return res;
621 }
622
623 if (!fscrypt_supported_policy(&policy, inode))
624 return -EINVAL;
625
626 res = fscrypt_setup_encryption_info(inode, &policy,
627 fscrypt_context_nonce(&ctx),
628 IS_CASEFOLDED(inode) &&
629 S_ISDIR(inode->i_mode));
630 if (res == -ENOKEY)
631 res = 0;
632 return res;
633 }
634 EXPORT_SYMBOL(fscrypt_get_encryption_info);
635
636 /**
637 * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory
638 * @dir: a possibly-encrypted directory
639 * @inode: the new inode. ->i_mode must be set already.
640 * ->i_ino doesn't need to be set yet.
641 * @encrypt_ret: (output) set to %true if the new inode will be encrypted
642 *
643 * If the directory is encrypted, set up its ->i_crypt_info in preparation for
644 * encrypting the name of the new file. Also, if the new inode will be
645 * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true.
646 *
647 * This isn't %GFP_NOFS-safe, and therefore it should be called before starting
648 * any filesystem transaction to create the inode. For this reason, ->i_ino
649 * isn't required to be set yet, as the filesystem may not have set it yet.
650 *
651 * This doesn't persist the new inode's encryption context. That still needs to
652 * be done later by calling fscrypt_set_context().
653 *
654 * Return: 0 on success, -ENOKEY if the encryption key is missing, or another
655 * -errno code
656 */
fscrypt_prepare_new_inode(struct inode * dir,struct inode * inode,bool * encrypt_ret)657 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
658 bool *encrypt_ret)
659 {
660 const union fscrypt_policy *policy;
661 u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
662
663 policy = fscrypt_policy_to_inherit(dir);
664 if (policy == NULL)
665 return 0;
666 if (IS_ERR(policy))
667 return PTR_ERR(policy);
668
669 if (WARN_ON_ONCE(inode->i_mode == 0))
670 return -EINVAL;
671
672 /*
673 * Only regular files, directories, and symlinks are encrypted.
674 * Special files like device nodes and named pipes aren't.
675 */
676 if (!S_ISREG(inode->i_mode) &&
677 !S_ISDIR(inode->i_mode) &&
678 !S_ISLNK(inode->i_mode))
679 return 0;
680
681 *encrypt_ret = true;
682
683 get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE);
684 return fscrypt_setup_encryption_info(inode, policy, nonce,
685 IS_CASEFOLDED(dir) &&
686 S_ISDIR(inode->i_mode));
687 }
688 EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode);
689
690 /**
691 * fscrypt_put_encryption_info() - free most of an inode's fscrypt data
692 * @inode: an inode being evicted
693 *
694 * Free the inode's fscrypt_info. Filesystems must call this when the inode is
695 * being evicted. An RCU grace period need not have elapsed yet.
696 */
fscrypt_put_encryption_info(struct inode * inode)697 void fscrypt_put_encryption_info(struct inode *inode)
698 {
699 put_crypt_info(inode->i_crypt_info);
700 inode->i_crypt_info = NULL;
701 }
702 EXPORT_SYMBOL(fscrypt_put_encryption_info);
703
704 /**
705 * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
706 * @inode: an inode being freed
707 *
708 * Free the inode's cached decrypted symlink target, if any. Filesystems must
709 * call this after an RCU grace period, just before they free the inode.
710 */
fscrypt_free_inode(struct inode * inode)711 void fscrypt_free_inode(struct inode *inode)
712 {
713 if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
714 kfree(inode->i_link);
715 inode->i_link = NULL;
716 }
717 }
718 EXPORT_SYMBOL(fscrypt_free_inode);
719
720 /**
721 * fscrypt_drop_inode() - check whether the inode's master key has been removed
722 * @inode: an inode being considered for eviction
723 *
724 * Filesystems supporting fscrypt must call this from their ->drop_inode()
725 * method so that encrypted inodes are evicted as soon as they're no longer in
726 * use and their master key has been removed.
727 *
728 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
729 */
fscrypt_drop_inode(struct inode * inode)730 int fscrypt_drop_inode(struct inode *inode)
731 {
732 const struct fscrypt_info *ci = fscrypt_get_info(inode);
733
734 /*
735 * If ci is NULL, then the inode doesn't have an encryption key set up
736 * so it's irrelevant. If ci_master_key is NULL, then the master key
737 * was provided via the legacy mechanism of the process-subscribed
738 * keyrings, so we don't know whether it's been removed or not.
739 */
740 if (!ci || !ci->ci_master_key)
741 return 0;
742
743 /*
744 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
745 * protected by the key were cleaned by sync_filesystem(). But if
746 * userspace is still using the files, inodes can be dirtied between
747 * then and now. We mustn't lose any writes, so skip dirty inodes here.
748 */
749 if (inode->i_state & I_DIRTY_ALL)
750 return 0;
751
752 /*
753 * Note: since we aren't holding the key semaphore, the result here can
754 * immediately become outdated. But there's no correctness problem with
755 * unnecessarily evicting. Nor is there a correctness problem with not
756 * evicting while iput() is racing with the key being removed, since
757 * then the thread removing the key will either evict the inode itself
758 * or will correctly detect that it wasn't evicted due to the race.
759 */
760 return !is_master_key_secret_present(&ci->ci_master_key->mk_secret);
761 }
762 EXPORT_SYMBOL_GPL(fscrypt_drop_inode);
763