• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/geometry/GrPathUtils.h"
9 
10 #include "include/gpu/GrTypes.h"
11 #include "src/core/SkMathPriv.h"
12 #include "src/core/SkPointPriv.h"
13 #include "src/core/SkUtils.h"
14 #include "src/gpu/tessellate/WangsFormula.h"
15 
16 static const SkScalar kMinCurveTol = 0.0001f;
17 
tolerance_to_wangs_precision(float srcTol)18 static float tolerance_to_wangs_precision(float srcTol) {
19     // You should have called scaleToleranceToSrc, which guarantees this
20     SkASSERT(srcTol >= kMinCurveTol);
21 
22     // The GrPathUtil API defines tolerance as the max distance the linear segment can be from
23     // the real curve. Wang's formula guarantees the linear segments will be within 1/precision
24     // of the true curve, so precision = 1/srcTol
25     return 1.f / srcTol;
26 }
27 
max_bezier_vertices(uint32_t chopCount)28 uint32_t max_bezier_vertices(uint32_t chopCount) {
29     static constexpr uint32_t kMaxChopsPerCurve = 10;
30     static_assert((1 << kMaxChopsPerCurve) == GrPathUtils::kMaxPointsPerCurve);
31     return 1 << std::min(chopCount, kMaxChopsPerCurve);
32 }
33 
scaleToleranceToSrc(SkScalar devTol,const SkMatrix & viewM,const SkRect & pathBounds)34 SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
35                                           const SkMatrix& viewM,
36                                           const SkRect& pathBounds) {
37     // In order to tesselate the path we get a bound on how much the matrix can
38     // scale when mapping to screen coordinates.
39     SkScalar stretch = viewM.getMaxScale();
40 
41     if (stretch < 0) {
42         // take worst case mapRadius amoung four corners.
43         // (less than perfect)
44         for (int i = 0; i < 4; ++i) {
45             SkMatrix mat;
46             mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
47                              (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
48             mat.postConcat(viewM);
49             stretch = std::max(stretch, mat.mapRadius(SK_Scalar1));
50         }
51     }
52     SkScalar srcTol = 0;
53     if (stretch <= 0) {
54         // We have degenerate bounds or some degenerate matrix. Thus we set the tolerance to be the
55         // max of the path pathBounds width and height.
56         srcTol = std::max(pathBounds.width(), pathBounds.height());
57     } else {
58         srcTol = devTol / stretch;
59     }
60     if (srcTol < kMinCurveTol) {
61         srcTol = kMinCurveTol;
62     }
63     return srcTol;
64 }
65 
quadraticPointCount(const SkPoint points[],SkScalar tol)66 uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[], SkScalar tol) {
67     return max_bezier_vertices(skgpu::wangs_formula::quadratic_log2(
68             tolerance_to_wangs_precision(tol), points));
69 }
70 
generateQuadraticPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,SkScalar tolSqd,SkPoint ** points,uint32_t pointsLeft)71 uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
72                                               const SkPoint& p1,
73                                               const SkPoint& p2,
74                                               SkScalar tolSqd,
75                                               SkPoint** points,
76                                               uint32_t pointsLeft) {
77     if (pointsLeft < 2 ||
78         (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p2)) < tolSqd) {
79         (*points)[0] = p2;
80         *points += 1;
81         return 1;
82     }
83 
84     SkPoint q[] = {
85         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
86         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
87     };
88     SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
89 
90     pointsLeft >>= 1;
91     uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
92     uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
93     return a + b;
94 }
95 
cubicPointCount(const SkPoint points[],SkScalar tol)96 uint32_t GrPathUtils::cubicPointCount(const SkPoint points[], SkScalar tol) {
97     return max_bezier_vertices(skgpu::wangs_formula::cubic_log2(
98             tolerance_to_wangs_precision(tol), points));
99 }
100 
generateCubicPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,SkPoint ** points,uint32_t pointsLeft)101 uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
102                                           const SkPoint& p1,
103                                           const SkPoint& p2,
104                                           const SkPoint& p3,
105                                           SkScalar tolSqd,
106                                           SkPoint** points,
107                                           uint32_t pointsLeft) {
108     if (pointsLeft < 2 ||
109         (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3) < tolSqd &&
110          SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3) < tolSqd)) {
111         (*points)[0] = p3;
112         *points += 1;
113         return 1;
114     }
115     SkPoint q[] = {
116         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
117         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
118         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
119     };
120     SkPoint r[] = {
121         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
122         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
123     };
124     SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
125     pointsLeft >>= 1;
126     uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
127     uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
128     return a + b;
129 }
130 
set(const SkPoint qPts[3])131 void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
132     SkMatrix m;
133     // We want M such that M * xy_pt = uv_pt
134     // We know M * control_pts = [0  1/2 1]
135     //                           [0  0   1]
136     //                           [1  1   1]
137     // And control_pts = [x0 x1 x2]
138     //                   [y0 y1 y2]
139     //                   [1  1  1 ]
140     // We invert the control pt matrix and post concat to both sides to get M.
141     // Using the known form of the control point matrix and the result, we can
142     // optimize and improve precision.
143 
144     double x0 = qPts[0].fX;
145     double y0 = qPts[0].fY;
146     double x1 = qPts[1].fX;
147     double y1 = qPts[1].fY;
148     double x2 = qPts[2].fX;
149     double y2 = qPts[2].fY;
150     double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
151 
152     if (!sk_float_isfinite(det)
153         || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
154         // The quad is degenerate. Hopefully this is rare. Find the pts that are
155         // farthest apart to compute a line (unless it is really a pt).
156         SkScalar maxD = SkPointPriv::DistanceToSqd(qPts[0], qPts[1]);
157         int maxEdge = 0;
158         SkScalar d = SkPointPriv::DistanceToSqd(qPts[1], qPts[2]);
159         if (d > maxD) {
160             maxD = d;
161             maxEdge = 1;
162         }
163         d = SkPointPriv::DistanceToSqd(qPts[2], qPts[0]);
164         if (d > maxD) {
165             maxD = d;
166             maxEdge = 2;
167         }
168         // We could have a tolerance here, not sure if it would improve anything
169         if (maxD > 0) {
170             // Set the matrix to give (u = 0, v = distance_to_line)
171             SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
172             // when looking from the point 0 down the line we want positive
173             // distances to be to the left. This matches the non-degenerate
174             // case.
175             lineVec = SkPointPriv::MakeOrthog(lineVec, SkPointPriv::kLeft_Side);
176             // first row
177             fM[0] = 0;
178             fM[1] = 0;
179             fM[2] = 0;
180             // second row
181             fM[3] = lineVec.fX;
182             fM[4] = lineVec.fY;
183             fM[5] = -lineVec.dot(qPts[maxEdge]);
184         } else {
185             // It's a point. It should cover zero area. Just set the matrix such
186             // that (u, v) will always be far away from the quad.
187             fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
188             fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
189         }
190     } else {
191         double scale = 1.0/det;
192 
193         // compute adjugate matrix
194         double a2, a3, a4, a5, a6, a7, a8;
195         a2 = x1*y2-x2*y1;
196 
197         a3 = y2-y0;
198         a4 = x0-x2;
199         a5 = x2*y0-x0*y2;
200 
201         a6 = y0-y1;
202         a7 = x1-x0;
203         a8 = x0*y1-x1*y0;
204 
205         // this performs the uv_pts*adjugate(control_pts) multiply,
206         // then does the scale by 1/det afterwards to improve precision
207         m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
208         m[SkMatrix::kMSkewX]  = (float)((0.5*a4 + a7)*scale);
209         m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
210 
211         m[SkMatrix::kMSkewY]  = (float)(a6*scale);
212         m[SkMatrix::kMScaleY] = (float)(a7*scale);
213         m[SkMatrix::kMTransY] = (float)(a8*scale);
214 
215         // kMPersp0 & kMPersp1 should algebraically be zero
216         m[SkMatrix::kMPersp0] = 0.0f;
217         m[SkMatrix::kMPersp1] = 0.0f;
218         m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
219 
220         // It may not be normalized to have 1.0 in the bottom right
221         float m33 = m.get(SkMatrix::kMPersp2);
222         if (1.f != m33) {
223             m33 = 1.f / m33;
224             fM[0] = m33 * m.get(SkMatrix::kMScaleX);
225             fM[1] = m33 * m.get(SkMatrix::kMSkewX);
226             fM[2] = m33 * m.get(SkMatrix::kMTransX);
227             fM[3] = m33 * m.get(SkMatrix::kMSkewY);
228             fM[4] = m33 * m.get(SkMatrix::kMScaleY);
229             fM[5] = m33 * m.get(SkMatrix::kMTransY);
230         } else {
231             fM[0] = m.get(SkMatrix::kMScaleX);
232             fM[1] = m.get(SkMatrix::kMSkewX);
233             fM[2] = m.get(SkMatrix::kMTransX);
234             fM[3] = m.get(SkMatrix::kMSkewY);
235             fM[4] = m.get(SkMatrix::kMScaleY);
236             fM[5] = m.get(SkMatrix::kMTransY);
237         }
238     }
239 }
240 
241 ////////////////////////////////////////////////////////////////////////////////
242 
243 // k = (y2 - y0, x0 - x2, x2*y0 - x0*y2)
244 // l = (y1 - y0, x0 - x1, x1*y0 - x0*y1) * 2*w
245 // m = (y2 - y1, x1 - x2, x2*y1 - x1*y2) * 2*w
getConicKLM(const SkPoint p[3],const SkScalar weight,SkMatrix * out)246 void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* out) {
247     SkMatrix& klm = *out;
248     const SkScalar w2 = 2.f * weight;
249     klm[0] = p[2].fY - p[0].fY;
250     klm[1] = p[0].fX - p[2].fX;
251     klm[2] = p[2].fX * p[0].fY - p[0].fX * p[2].fY;
252 
253     klm[3] = w2 * (p[1].fY - p[0].fY);
254     klm[4] = w2 * (p[0].fX - p[1].fX);
255     klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
256 
257     klm[6] = w2 * (p[2].fY - p[1].fY);
258     klm[7] = w2 * (p[1].fX - p[2].fX);
259     klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
260 
261     // scale the max absolute value of coeffs to 10
262     SkScalar scale = 0.f;
263     for (int i = 0; i < 9; ++i) {
264        scale = std::max(scale, SkScalarAbs(klm[i]));
265     }
266     SkASSERT(scale > 0.f);
267     scale = 10.f / scale;
268     for (int i = 0; i < 9; ++i) {
269         klm[i] *= scale;
270     }
271 }
272 
273 ////////////////////////////////////////////////////////////////////////////////
274 
275 namespace {
276 
277 // a is the first control point of the cubic.
278 // ab is the vector from a to the second control point.
279 // dc is the vector from the fourth to the third control point.
280 // d is the fourth control point.
281 // p is the candidate quadratic control point.
282 // this assumes that the cubic doesn't inflect and is simple
is_point_within_cubic_tangents(const SkPoint & a,const SkVector & ab,const SkVector & dc,const SkPoint & d,SkPathFirstDirection dir,const SkPoint p)283 bool is_point_within_cubic_tangents(const SkPoint& a,
284                                     const SkVector& ab,
285                                     const SkVector& dc,
286                                     const SkPoint& d,
287                                     SkPathFirstDirection dir,
288                                     const SkPoint p) {
289     SkVector ap = p - a;
290     SkScalar apXab = ap.cross(ab);
291     if (SkPathFirstDirection::kCW == dir) {
292         if (apXab > 0) {
293             return false;
294         }
295     } else {
296         SkASSERT(SkPathFirstDirection::kCCW == dir);
297         if (apXab < 0) {
298             return false;
299         }
300     }
301 
302     SkVector dp = p - d;
303     SkScalar dpXdc = dp.cross(dc);
304     if (SkPathFirstDirection::kCW == dir) {
305         if (dpXdc < 0) {
306             return false;
307         }
308     } else {
309         SkASSERT(SkPathFirstDirection::kCCW == dir);
310         if (dpXdc > 0) {
311             return false;
312         }
313     }
314     return true;
315 }
316 
convert_noninflect_cubic_to_quads(const SkPoint p[4],SkScalar toleranceSqd,SkTArray<SkPoint,true> * quads,int sublevel=0,bool preserveFirstTangent=true,bool preserveLastTangent=true)317 void convert_noninflect_cubic_to_quads(const SkPoint p[4],
318                                        SkScalar toleranceSqd,
319                                        SkTArray<SkPoint, true>* quads,
320                                        int sublevel = 0,
321                                        bool preserveFirstTangent = true,
322                                        bool preserveLastTangent = true) {
323     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
324     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
325     SkVector ab = p[1] - p[0];
326     SkVector dc = p[2] - p[3];
327 
328     if (SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero) {
329         if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
330             SkPoint* degQuad = quads->push_back_n(3);
331             degQuad[0] = p[0];
332             degQuad[1] = p[0];
333             degQuad[2] = p[3];
334             return;
335         }
336         ab = p[2] - p[0];
337     }
338     if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
339         dc = p[1] - p[3];
340     }
341 
342     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
343     static const int kMaxSubdivs = 10;
344 
345     ab.scale(kLengthScale);
346     dc.scale(kLengthScale);
347 
348     // c0 and c1 are extrapolations along vectors ab and dc.
349     SkPoint c0 = p[0] + ab;
350     SkPoint c1 = p[3] + dc;
351 
352     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : SkPointPriv::DistanceToSqd(c0, c1);
353     if (dSqd < toleranceSqd) {
354         SkPoint newC;
355         if (preserveFirstTangent == preserveLastTangent) {
356             // We used to force a split when both tangents need to be preserved and c0 != c1.
357             // This introduced a large performance regression for tiny paths for no noticeable
358             // quality improvement. However, we aren't quite fulfilling our contract of guaranteeing
359             // the two tangent vectors and this could introduce a missed pixel in
360             // AAHairlinePathRenderer.
361             newC = (c0 + c1) * 0.5f;
362         } else if (preserveFirstTangent) {
363             newC = c0;
364         } else {
365             newC = c1;
366         }
367 
368         SkPoint* pts = quads->push_back_n(3);
369         pts[0] = p[0];
370         pts[1] = newC;
371         pts[2] = p[3];
372         return;
373     }
374     SkPoint choppedPts[7];
375     SkChopCubicAtHalf(p, choppedPts);
376     convert_noninflect_cubic_to_quads(
377             choppedPts + 0, toleranceSqd, quads, sublevel + 1, preserveFirstTangent, false);
378     convert_noninflect_cubic_to_quads(
379             choppedPts + 3, toleranceSqd, quads, sublevel + 1, false, preserveLastTangent);
380 }
381 
convert_noninflect_cubic_to_quads_with_constraint(const SkPoint p[4],SkScalar toleranceSqd,SkPathFirstDirection dir,SkTArray<SkPoint,true> * quads,int sublevel=0)382 void convert_noninflect_cubic_to_quads_with_constraint(const SkPoint p[4],
383                                                        SkScalar toleranceSqd,
384                                                        SkPathFirstDirection dir,
385                                                        SkTArray<SkPoint, true>* quads,
386                                                        int sublevel = 0) {
387     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
388     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
389 
390     SkVector ab = p[1] - p[0];
391     SkVector dc = p[2] - p[3];
392 
393     if (SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero) {
394         if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
395             SkPoint* degQuad = quads->push_back_n(3);
396             degQuad[0] = p[0];
397             degQuad[1] = p[0];
398             degQuad[2] = p[3];
399             return;
400         }
401         ab = p[2] - p[0];
402     }
403     if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
404         dc = p[1] - p[3];
405     }
406 
407     // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
408     // constraint that the quad point falls between the tangents becomes hard to enforce and we are
409     // likely to hit the max subdivision count. However, in this case the cubic is approaching a
410     // line and the accuracy of the quad point isn't so important. We check if the two middle cubic
411     // control points are very close to the baseline vector. If so then we just pick quadratic
412     // points on the control polygon.
413 
414     SkVector da = p[0] - p[3];
415     bool doQuads = SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero ||
416                    SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero;
417     if (!doQuads) {
418         SkScalar invDALengthSqd = SkPointPriv::LengthSqd(da);
419         if (invDALengthSqd > SK_ScalarNearlyZero) {
420             invDALengthSqd = SkScalarInvert(invDALengthSqd);
421             // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
422             // same goes for point c using vector cd.
423             SkScalar detABSqd = ab.cross(da);
424             detABSqd = SkScalarSquare(detABSqd);
425             SkScalar detDCSqd = dc.cross(da);
426             detDCSqd = SkScalarSquare(detDCSqd);
427             if (detABSqd * invDALengthSqd < toleranceSqd &&
428                 detDCSqd * invDALengthSqd < toleranceSqd) {
429                 doQuads = true;
430             }
431         }
432     }
433     if (doQuads) {
434         SkPoint b = p[0] + ab;
435         SkPoint c = p[3] + dc;
436         SkPoint mid = b + c;
437         mid.scale(SK_ScalarHalf);
438         // Insert two quadratics to cover the case when ab points away from d and/or dc
439         // points away from a.
440         if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab, da) > 0) {
441             SkPoint* qpts = quads->push_back_n(6);
442             qpts[0] = p[0];
443             qpts[1] = b;
444             qpts[2] = mid;
445             qpts[3] = mid;
446             qpts[4] = c;
447             qpts[5] = p[3];
448         } else {
449             SkPoint* qpts = quads->push_back_n(3);
450             qpts[0] = p[0];
451             qpts[1] = mid;
452             qpts[2] = p[3];
453         }
454         return;
455     }
456 
457     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
458     static const int kMaxSubdivs = 10;
459 
460     ab.scale(kLengthScale);
461     dc.scale(kLengthScale);
462 
463     // c0 and c1 are extrapolations along vectors ab and dc.
464     SkVector c0 = p[0] + ab;
465     SkVector c1 = p[3] + dc;
466 
467     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : SkPointPriv::DistanceToSqd(c0, c1);
468     if (dSqd < toleranceSqd) {
469         SkPoint cAvg = (c0 + c1) * 0.5f;
470         bool subdivide = false;
471 
472         if (!is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
473             // choose a new cAvg that is the intersection of the two tangent lines.
474             ab = SkPointPriv::MakeOrthog(ab);
475             SkScalar z0 = -ab.dot(p[0]);
476             dc = SkPointPriv::MakeOrthog(dc);
477             SkScalar z1 = -dc.dot(p[3]);
478             cAvg.fX = ab.fY * z1 - z0 * dc.fY;
479             cAvg.fY = z0 * dc.fX - ab.fX * z1;
480             SkScalar z = ab.fX * dc.fY - ab.fY * dc.fX;
481             z = SkScalarInvert(z);
482             cAvg.fX *= z;
483             cAvg.fY *= z;
484             if (sublevel <= kMaxSubdivs) {
485                 SkScalar d0Sqd = SkPointPriv::DistanceToSqd(c0, cAvg);
486                 SkScalar d1Sqd = SkPointPriv::DistanceToSqd(c1, cAvg);
487                 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
488                 // the distances and tolerance can't be negative.
489                 // (d0 + d1)^2 > toleranceSqd
490                 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
491                 SkScalar d0d1 = SkScalarSqrt(d0Sqd * d1Sqd);
492                 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
493             }
494         }
495         if (!subdivide) {
496             SkPoint* pts = quads->push_back_n(3);
497             pts[0] = p[0];
498             pts[1] = cAvg;
499             pts[2] = p[3];
500             return;
501         }
502     }
503     SkPoint choppedPts[7];
504     SkChopCubicAtHalf(p, choppedPts);
505     convert_noninflect_cubic_to_quads_with_constraint(
506             choppedPts + 0, toleranceSqd, dir, quads, sublevel + 1);
507     convert_noninflect_cubic_to_quads_with_constraint(
508             choppedPts + 3, toleranceSqd, dir, quads, sublevel + 1);
509 }
510 }  // namespace
511 
convertCubicToQuads(const SkPoint p[4],SkScalar tolScale,SkTArray<SkPoint,true> * quads)512 void GrPathUtils::convertCubicToQuads(const SkPoint p[4],
513                                       SkScalar tolScale,
514                                       SkTArray<SkPoint, true>* quads) {
515     if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
516         return;
517     }
518     if (!SkScalarIsFinite(tolScale)) {
519         return;
520     }
521     SkPoint chopped[10];
522     int count = SkChopCubicAtInflections(p, chopped);
523 
524     const SkScalar tolSqd = SkScalarSquare(tolScale);
525 
526     for (int i = 0; i < count; ++i) {
527         SkPoint* cubic = chopped + 3*i;
528         convert_noninflect_cubic_to_quads(cubic, tolSqd, quads);
529     }
530 }
531 
convertCubicToQuadsConstrainToTangents(const SkPoint p[4],SkScalar tolScale,SkPathFirstDirection dir,SkTArray<SkPoint,true> * quads)532 void GrPathUtils::convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
533                                                          SkScalar tolScale,
534                                                          SkPathFirstDirection dir,
535                                                          SkTArray<SkPoint, true>* quads) {
536     if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
537         return;
538     }
539     if (!SkScalarIsFinite(tolScale)) {
540         return;
541     }
542     SkPoint chopped[10];
543     int count = SkChopCubicAtInflections(p, chopped);
544 
545     const SkScalar tolSqd = SkScalarSquare(tolScale);
546 
547     for (int i = 0; i < count; ++i) {
548         SkPoint* cubic = chopped + 3*i;
549         convert_noninflect_cubic_to_quads_with_constraint(cubic, tolSqd, dir, quads);
550     }
551 }
552 
findCubicConvex180Chops(const SkPoint pts[],float T[2],bool * areCusps)553 int GrPathUtils::findCubicConvex180Chops(const SkPoint pts[], float T[2], bool* areCusps) {
554     using grvx::float2;
555     SkASSERT(pts);
556     SkASSERT(T);
557     SkASSERT(areCusps);
558 
559     // If a chop falls within a distance of "kEpsilon" from 0 or 1, throw it out. Tangents become
560     // unstable when we chop too close to the boundary. This works out because the tessellation
561     // shaders don't allow more than 2^10 parametric segments, and they snap the beginning and
562     // ending edges at 0 and 1. So if we overstep an inflection or point of 180-degree rotation by a
563     // fraction of a tessellation segment, it just gets snapped.
564     constexpr static float kEpsilon = 1.f / (1 << 11);
565     // Floating-point representation of "1 - 2*kEpsilon".
566     constexpr static uint32_t kIEEE_one_minus_2_epsilon = (127 << 23) - 2 * (1 << (24 - 11));
567     // Unfortunately we don't have a way to static_assert this, but we can runtime assert that the
568     // kIEEE_one_minus_2_epsilon bits are correct.
569     SkASSERT(sk_bit_cast<float>(kIEEE_one_minus_2_epsilon) == 1 - 2*kEpsilon);
570 
571     float2 p0 = skvx::bit_pun<float2>(pts[0]);
572     float2 p1 = skvx::bit_pun<float2>(pts[1]);
573     float2 p2 = skvx::bit_pun<float2>(pts[2]);
574     float2 p3 = skvx::bit_pun<float2>(pts[3]);
575 
576     // Find the cubic's power basis coefficients. These define the bezier curve as:
577     //
578     //                                    |T^3|
579     //     Cubic(T) = x,y = |A  3B  3C| * |T^2| + P0
580     //                      |.   .   .|   |T  |
581     //
582     // And the tangent direction (scaled by a uniform 1/3) will be:
583     //
584     //                                                 |T^2|
585     //     Tangent_Direction(T) = dx,dy = |A  2B  C| * |T  |
586     //                                    |.   .  .|   |1  |
587     //
588     float2 C = p1 - p0;
589     float2 D = p2 - p1;
590     float2 E = p3 - p0;
591     float2 B = D - C;
592     float2 A = -3*D + E;
593 
594     // Now find the cubic's inflection function. There are inflections where F' x F'' == 0.
595     // We formulate this as a quadratic equation:  F' x F'' == aT^2 + bT + c == 0.
596     // See: https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
597     // NOTE: We only need the roots, so a uniform scale factor does not affect the solution.
598     float a = grvx::cross(A,B);
599     float b = grvx::cross(A,C);
600     float c = grvx::cross(B,C);
601     float b_over_minus_2 = -.5f * b;
602     float discr_over_4 = b_over_minus_2*b_over_minus_2 - a*c;
603 
604     // If -cuspThreshold <= discr_over_4 <= cuspThreshold, it means the two roots are within
605     // kEpsilon of one another (in parametric space). This is close enough for our purposes to
606     // consider them a single cusp.
607     float cuspThreshold = a * (kEpsilon/2);
608     cuspThreshold *= cuspThreshold;
609 
610     if (discr_over_4 < -cuspThreshold) {
611         // The curve does not inflect or cusp. This means it might rotate more than 180 degrees
612         // instead. Chop were rotation == 180 deg. (This is the 2nd root where the tangent is
613         // parallel to tan0.)
614         //
615         //      Tangent_Direction(T) x tan0 == 0
616         //      (AT^2 x tan0) + (2BT x tan0) + (C x tan0) == 0
617         //      (A x C)T^2 + (2B x C)T + (C x C) == 0  [[because tan0 == P1 - P0 == C]]
618         //      bT^2 + 2cT + 0 == 0  [[because A x C == b, B x C == c]]
619         //      T = [0, -2c/b]
620         //
621         // NOTE: if C == 0, then C != tan0. But this is fine because the curve is definitely
622         // convex-180 if any points are colocated, and T[0] will equal NaN which returns 0 chops.
623         *areCusps = false;
624         float root = sk_ieee_float_divide(c, b_over_minus_2);
625         // Is "root" inside the range [kEpsilon, 1 - kEpsilon)?
626         if (sk_bit_cast<uint32_t>(root - kEpsilon) < kIEEE_one_minus_2_epsilon) {
627             T[0] = root;
628             return 1;
629         }
630         return 0;
631     }
632 
633     *areCusps = (discr_over_4 <= cuspThreshold);
634     if (*areCusps) {
635         // The two roots are close enough that we can consider them a single cusp.
636         if (a != 0 || b_over_minus_2 != 0 || c != 0) {
637             // Pick the average of both roots.
638             float root = sk_ieee_float_divide(b_over_minus_2, a);
639             // Is "root" inside the range [kEpsilon, 1 - kEpsilon)?
640             if (sk_bit_cast<uint32_t>(root - kEpsilon) < kIEEE_one_minus_2_epsilon) {
641                 T[0] = root;
642                 return 1;
643             }
644             return 0;
645         }
646 
647         // The curve is a flat line. The standard inflection function doesn't detect cusps from flat
648         // lines. Find cusps by searching instead for points where the tangent is perpendicular to
649         // tan0. This will find any cusp point.
650         //
651         //     dot(tan0, Tangent_Direction(T)) == 0
652         //
653         //                         |T^2|
654         //     tan0 * |A  2B  C| * |T  | == 0
655         //            |.   .  .|   |1  |
656         //
657         float2 tan0 = skvx::if_then_else(C != 0, C, p2 - p0);
658         a = grvx::dot(tan0, A);
659         b_over_minus_2 = -grvx::dot(tan0, B);
660         c = grvx::dot(tan0, C);
661         discr_over_4 = std::max(b_over_minus_2*b_over_minus_2 - a*c, 0.f);
662     }
663 
664     // Solve our quadratic equation to find where to chop. See the quadratic formula from
665     // Numerical Recipes in C.
666     float q = sqrtf(discr_over_4);
667     q = copysignf(q, b_over_minus_2);
668     q = q + b_over_minus_2;
669     float2 roots = float2{q,c} / float2{a,q};
670 
671     auto inside = (roots > kEpsilon) & (roots < (1 - kEpsilon));
672     if (inside[0]) {
673         if (inside[1] && roots[0] != roots[1]) {
674             if (roots[0] > roots[1]) {
675                 roots = skvx::shuffle<1,0>(roots);  // Sort.
676             }
677             roots.store(T);
678             return 2;
679         }
680         T[0] = roots[0];
681         return 1;
682     }
683     if (inside[1]) {
684         T[0] = roots[1];
685         return 1;
686     }
687     return 0;
688 }
689