• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/CodeGen/TargetSchedule.h - Sched Machine Model ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a wrapper around MCSchedModel that allows the interface to
10 // benefit from information currently only available in TargetInstrInfo.
11 // Ideally, the scheduling interface would be fully defined in the MC layer.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_TARGETSCHEDULE_H
16 #define LLVM_CODEGEN_TARGETSCHEDULE_H
17 
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/TargetSubtargetInfo.h"
21 #include "llvm/Config/llvm-config.h"
22 #include "llvm/MC/MCInstrItineraries.h"
23 #include "llvm/MC/MCSchedule.h"
24 
25 namespace llvm {
26 
27 class MachineInstr;
28 class TargetInstrInfo;
29 
30 /// Provide an instruction scheduling machine model to CodeGen passes.
31 class TargetSchedModel {
32   // For efficiency, hold a copy of the statically defined MCSchedModel for this
33   // processor.
34   MCSchedModel SchedModel;
35   InstrItineraryData InstrItins;
36   const TargetSubtargetInfo *STI = nullptr;
37   const TargetInstrInfo *TII = nullptr;
38 
39   SmallVector<unsigned, 16> ResourceFactors;
40 
41   // Multiply to normalize microops to resource units.
42   unsigned MicroOpFactor = 0;
43 
44   // Resource units per cycle. Latency normalization factor.
45   unsigned ResourceLCM = 0;
46 
47   unsigned computeInstrLatency(const MCSchedClassDesc &SCDesc) const;
48 
49 public:
TargetSchedModel()50   TargetSchedModel() : SchedModel(MCSchedModel::GetDefaultSchedModel()) {}
51 
52   /// Initialize the machine model for instruction scheduling.
53   ///
54   /// The machine model API keeps a copy of the top-level MCSchedModel table
55   /// indices and may query TargetSubtargetInfo and TargetInstrInfo to resolve
56   /// dynamic properties.
57   void init(const TargetSubtargetInfo *TSInfo);
58 
59   /// Return the MCSchedClassDesc for this instruction.
60   const MCSchedClassDesc *resolveSchedClass(const MachineInstr *MI) const;
61 
62   /// TargetSubtargetInfo getter.
getSubtargetInfo()63   const TargetSubtargetInfo *getSubtargetInfo() const { return STI; }
64 
65   /// TargetInstrInfo getter.
getInstrInfo()66   const TargetInstrInfo *getInstrInfo() const { return TII; }
67 
68   /// Return true if this machine model includes an instruction-level
69   /// scheduling model.
70   ///
71   /// This is more detailed than the course grain IssueWidth and default
72   /// latency properties, but separate from the per-cycle itinerary data.
73   bool hasInstrSchedModel() const;
74 
getMCSchedModel()75   const MCSchedModel *getMCSchedModel() const { return &SchedModel; }
76 
77   /// Return true if this machine model includes cycle-to-cycle itinerary
78   /// data.
79   ///
80   /// This models scheduling at each stage in the processor pipeline.
81   bool hasInstrItineraries() const;
82 
getInstrItineraries()83   const InstrItineraryData *getInstrItineraries() const {
84     if (hasInstrItineraries())
85       return &InstrItins;
86     return nullptr;
87   }
88 
89   /// Return true if this machine model includes an instruction-level
90   /// scheduling model or cycle-to-cycle itinerary data.
hasInstrSchedModelOrItineraries()91   bool hasInstrSchedModelOrItineraries() const {
92     return hasInstrSchedModel() || hasInstrItineraries();
93   }
94 
95   /// Identify the processor corresponding to the current subtarget.
getProcessorID()96   unsigned getProcessorID() const { return SchedModel.getProcessorID(); }
97 
98   /// Maximum number of micro-ops that may be scheduled per cycle.
getIssueWidth()99   unsigned getIssueWidth() const { return SchedModel.IssueWidth; }
100 
101   /// Return true if new group must begin.
102   bool mustBeginGroup(const MachineInstr *MI,
103                           const MCSchedClassDesc *SC = nullptr) const;
104   /// Return true if current group must end.
105   bool mustEndGroup(const MachineInstr *MI,
106                           const MCSchedClassDesc *SC = nullptr) const;
107 
108   /// Return the number of issue slots required for this MI.
109   unsigned getNumMicroOps(const MachineInstr *MI,
110                           const MCSchedClassDesc *SC = nullptr) const;
111 
112   /// Get the number of kinds of resources for this target.
getNumProcResourceKinds()113   unsigned getNumProcResourceKinds() const {
114     return SchedModel.getNumProcResourceKinds();
115   }
116 
117   /// Get a processor resource by ID for convenience.
getProcResource(unsigned PIdx)118   const MCProcResourceDesc *getProcResource(unsigned PIdx) const {
119     return SchedModel.getProcResource(PIdx);
120   }
121 
122 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
getResourceName(unsigned PIdx)123   const char *getResourceName(unsigned PIdx) const {
124     if (!PIdx)
125       return "MOps";
126     return SchedModel.getProcResource(PIdx)->Name;
127   }
128 #endif
129 
130   using ProcResIter = const MCWriteProcResEntry *;
131 
132   // Get an iterator into the processor resources consumed by this
133   // scheduling class.
getWriteProcResBegin(const MCSchedClassDesc * SC)134   ProcResIter getWriteProcResBegin(const MCSchedClassDesc *SC) const {
135     // The subtarget holds a single resource table for all processors.
136     return STI->getWriteProcResBegin(SC);
137   }
getWriteProcResEnd(const MCSchedClassDesc * SC)138   ProcResIter getWriteProcResEnd(const MCSchedClassDesc *SC) const {
139     return STI->getWriteProcResEnd(SC);
140   }
141 
142   /// Multiply the number of units consumed for a resource by this factor
143   /// to normalize it relative to other resources.
getResourceFactor(unsigned ResIdx)144   unsigned getResourceFactor(unsigned ResIdx) const {
145     return ResourceFactors[ResIdx];
146   }
147 
148   /// Multiply number of micro-ops by this factor to normalize it
149   /// relative to other resources.
getMicroOpFactor()150   unsigned getMicroOpFactor() const {
151     return MicroOpFactor;
152   }
153 
154   /// Multiply cycle count by this factor to normalize it relative to
155   /// other resources. This is the number of resource units per cycle.
getLatencyFactor()156   unsigned getLatencyFactor() const {
157     return ResourceLCM;
158   }
159 
160   /// Number of micro-ops that may be buffered for OOO execution.
getMicroOpBufferSize()161   unsigned getMicroOpBufferSize() const { return SchedModel.MicroOpBufferSize; }
162 
163   /// Number of resource units that may be buffered for OOO execution.
164   /// \return The buffer size in resource units or -1 for unlimited.
getResourceBufferSize(unsigned PIdx)165   int getResourceBufferSize(unsigned PIdx) const {
166     return SchedModel.getProcResource(PIdx)->BufferSize;
167   }
168 
169   /// Compute operand latency based on the available machine model.
170   ///
171   /// Compute and return the latency of the given data dependent def and use
172   /// when the operand indices are already known. UseMI may be NULL for an
173   /// unknown user.
174   unsigned computeOperandLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
175                                  const MachineInstr *UseMI, unsigned UseOperIdx)
176     const;
177 
178   /// Compute the instruction latency based on the available machine
179   /// model.
180   ///
181   /// Compute and return the expected latency of this instruction independent of
182   /// a particular use. computeOperandLatency is the preferred API, but this is
183   /// occasionally useful to help estimate instruction cost.
184   ///
185   /// If UseDefaultDefLatency is false and no new machine sched model is
186   /// present this method falls back to TII->getInstrLatency with an empty
187   /// instruction itinerary (this is so we preserve the previous behavior of the
188   /// if converter after moving it to TargetSchedModel).
189   unsigned computeInstrLatency(const MachineInstr *MI,
190                                bool UseDefaultDefLatency = true) const;
191   unsigned computeInstrLatency(const MCInst &Inst) const;
192   unsigned computeInstrLatency(unsigned Opcode) const;
193 
194 
195   /// Output dependency latency of a pair of defs of the same register.
196   ///
197   /// This is typically one cycle.
198   unsigned computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
199                                 const MachineInstr *DepMI) const;
200 
201   /// Compute the reciprocal throughput of the given instruction.
202   double computeReciprocalThroughput(const MachineInstr *MI) const;
203   double computeReciprocalThroughput(const MCInst &MI) const;
204   double computeReciprocalThroughput(unsigned Opcode) const;
205 };
206 
207 } // end namespace llvm
208 
209 #endif // LLVM_CODEGEN_TARGETSCHEDULE_H
210