• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76 
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81 
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86 
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91 
92 /*
93  * Ordering of locks:
94  *
95  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97 
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101 
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105 
106 static struct kmem_cache *kvm_vcpu_cache;
107 
108 static __read_mostly struct preempt_ops kvm_preempt_ops;
109 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
110 
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113 
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations stat_fops_per_vm;
116 
117 static struct file_operations kvm_chardev_ops;
118 
119 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
120 			   unsigned long arg);
121 #ifdef CONFIG_KVM_COMPAT
122 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
123 				  unsigned long arg);
124 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
125 #else
126 /*
127  * For architectures that don't implement a compat infrastructure,
128  * adopt a double line of defense:
129  * - Prevent a compat task from opening /dev/kvm
130  * - If the open has been done by a 64bit task, and the KVM fd
131  *   passed to a compat task, let the ioctls fail.
132  */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)133 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
134 				unsigned long arg) { return -EINVAL; }
135 
kvm_no_compat_open(struct inode * inode,struct file * file)136 static int kvm_no_compat_open(struct inode *inode, struct file *file)
137 {
138 	return is_compat_task() ? -ENODEV : 0;
139 }
140 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
141 			.open		= kvm_no_compat_open
142 #endif
143 static int hardware_enable_all(void);
144 static void hardware_disable_all(void);
145 
146 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
147 
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
150 
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
156 
157 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
158 
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)159 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
160 						   unsigned long start, unsigned long end)
161 {
162 }
163 
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)164 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
165 {
166 }
167 
kvm_is_zone_device_pfn(kvm_pfn_t pfn)168 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
169 {
170 	/*
171 	 * The metadata used by is_zone_device_page() to determine whether or
172 	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
173 	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
174 	 * page_count() is zero to help detect bad usage of this helper.
175 	 */
176 	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
177 		return false;
178 
179 	return is_zone_device_page(pfn_to_page(pfn));
180 }
181 
kvm_is_reserved_pfn(kvm_pfn_t pfn)182 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
183 {
184 	/*
185 	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
186 	 * perspective they are "normal" pages, albeit with slightly different
187 	 * usage rules.
188 	 */
189 	if (pfn_valid(pfn))
190 		return PageReserved(pfn_to_page(pfn)) &&
191 		       !is_zero_pfn(pfn) &&
192 		       !kvm_is_zone_device_pfn(pfn);
193 
194 	return true;
195 }
196 
kvm_is_transparent_hugepage(kvm_pfn_t pfn)197 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
198 {
199 	struct page *page = pfn_to_page(pfn);
200 
201 	if (!PageTransCompoundMap(page))
202 		return false;
203 
204 	return is_transparent_hugepage(compound_head(page));
205 }
206 
207 /*
208  * Switches to specified vcpu, until a matching vcpu_put()
209  */
vcpu_load(struct kvm_vcpu * vcpu)210 void vcpu_load(struct kvm_vcpu *vcpu)
211 {
212 	int cpu = get_cpu();
213 
214 	__this_cpu_write(kvm_running_vcpu, vcpu);
215 	preempt_notifier_register(&vcpu->preempt_notifier);
216 	kvm_arch_vcpu_load(vcpu, cpu);
217 	put_cpu();
218 }
219 EXPORT_SYMBOL_GPL(vcpu_load);
220 
vcpu_put(struct kvm_vcpu * vcpu)221 void vcpu_put(struct kvm_vcpu *vcpu)
222 {
223 	preempt_disable();
224 	kvm_arch_vcpu_put(vcpu);
225 	preempt_notifier_unregister(&vcpu->preempt_notifier);
226 	__this_cpu_write(kvm_running_vcpu, NULL);
227 	preempt_enable();
228 }
229 EXPORT_SYMBOL_GPL(vcpu_put);
230 
231 /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)232 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
233 {
234 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
235 
236 	/*
237 	 * We need to wait for the VCPU to reenable interrupts and get out of
238 	 * READING_SHADOW_PAGE_TABLES mode.
239 	 */
240 	if (req & KVM_REQUEST_WAIT)
241 		return mode != OUTSIDE_GUEST_MODE;
242 
243 	/*
244 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
245 	 */
246 	return mode == IN_GUEST_MODE;
247 }
248 
ack_flush(void * _completed)249 static void ack_flush(void *_completed)
250 {
251 }
252 
kvm_kick_many_cpus(cpumask_var_t tmp,bool wait)253 static inline bool kvm_kick_many_cpus(cpumask_var_t tmp, bool wait)
254 {
255 	const struct cpumask *cpus;
256 
257 	if (likely(cpumask_available(tmp)))
258 		cpus = tmp;
259 	else
260 		cpus = cpu_online_mask;
261 
262 	if (cpumask_empty(cpus))
263 		return false;
264 
265 	smp_call_function_many(cpus, ack_flush, NULL, wait);
266 	return true;
267 }
268 
kvm_make_vcpu_request(struct kvm * kvm,struct kvm_vcpu * vcpu,unsigned int req,cpumask_var_t tmp,int current_cpu)269 static void kvm_make_vcpu_request(struct kvm *kvm, struct kvm_vcpu *vcpu,
270 				  unsigned int req, cpumask_var_t tmp,
271 				  int current_cpu)
272 {
273 	int cpu;
274 
275 	kvm_make_request(req, vcpu);
276 
277 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
278 		return;
279 
280 	/*
281 	 * tmp can be "unavailable" if cpumasks are allocated off stack as
282 	 * allocation of the mask is deliberately not fatal and is handled by
283 	 * falling back to kicking all online CPUs.
284 	 */
285 	if (!cpumask_available(tmp))
286 		return;
287 
288 	/*
289 	 * Note, the vCPU could get migrated to a different pCPU at any point
290 	 * after kvm_request_needs_ipi(), which could result in sending an IPI
291 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
292 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
293 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
294 	 * after this point is also OK, as the requirement is only that KVM wait
295 	 * for vCPUs that were reading SPTEs _before_ any changes were
296 	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
297 	 */
298 	if (kvm_request_needs_ipi(vcpu, req)) {
299 		cpu = READ_ONCE(vcpu->cpu);
300 		if (cpu != -1 && cpu != current_cpu)
301 			__cpumask_set_cpu(cpu, tmp);
302 	}
303 }
304 
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,struct kvm_vcpu * except,unsigned long * vcpu_bitmap,cpumask_var_t tmp)305 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
306 				 struct kvm_vcpu *except,
307 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
308 {
309 	struct kvm_vcpu *vcpu;
310 	int i, me;
311 	bool called;
312 
313 	me = get_cpu();
314 
315 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
316 		vcpu = kvm_get_vcpu(kvm, i);
317 		if (!vcpu || vcpu == except)
318 			continue;
319 		kvm_make_vcpu_request(kvm, vcpu, req, tmp, me);
320 	}
321 
322 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
323 	put_cpu();
324 
325 	return called;
326 }
327 
kvm_make_all_cpus_request_except(struct kvm * kvm,unsigned int req,struct kvm_vcpu * except)328 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
329 				      struct kvm_vcpu *except)
330 {
331 	struct kvm_vcpu *vcpu;
332 	struct cpumask *cpus;
333 	bool called;
334 	int i, me;
335 
336 	me = get_cpu();
337 
338 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
339 	cpumask_clear(cpus);
340 
341 	kvm_for_each_vcpu(i, vcpu, kvm) {
342 		if (vcpu == except)
343 			continue;
344 		kvm_make_vcpu_request(kvm, vcpu, req, cpus, me);
345 	}
346 
347 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
348 	put_cpu();
349 
350 	return called;
351 }
352 
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)353 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
354 {
355 	return kvm_make_all_cpus_request_except(kvm, req, NULL);
356 }
357 
358 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
kvm_flush_remote_tlbs(struct kvm * kvm)359 void kvm_flush_remote_tlbs(struct kvm *kvm)
360 {
361 	/*
362 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
363 	 * kvm_make_all_cpus_request.
364 	 */
365 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
366 
367 	/*
368 	 * We want to publish modifications to the page tables before reading
369 	 * mode. Pairs with a memory barrier in arch-specific code.
370 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
371 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
372 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
373 	 *
374 	 * There is already an smp_mb__after_atomic() before
375 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
376 	 * barrier here.
377 	 */
378 	if (!kvm_arch_flush_remote_tlb(kvm)
379 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
380 		++kvm->stat.remote_tlb_flush;
381 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
382 }
383 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
384 #endif
385 
kvm_reload_remote_mmus(struct kvm * kvm)386 void kvm_reload_remote_mmus(struct kvm *kvm)
387 {
388 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
389 }
390 
kvm_flush_shadow_all(struct kvm * kvm)391 static void kvm_flush_shadow_all(struct kvm *kvm)
392 {
393 	kvm_arch_flush_shadow_all(kvm);
394 	kvm_arch_guest_memory_reclaimed(kvm);
395 }
396 
397 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache * mc,gfp_t gfp_flags)398 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
399 					       gfp_t gfp_flags)
400 {
401 	gfp_flags |= mc->gfp_zero;
402 
403 	if (mc->kmem_cache)
404 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
405 	else
406 		return (void *)__get_free_page(gfp_flags);
407 }
408 
kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int min)409 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
410 {
411 	void *obj;
412 
413 	if (mc->nobjs >= min)
414 		return 0;
415 	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
416 		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
417 		if (!obj)
418 			return mc->nobjs >= min ? 0 : -ENOMEM;
419 		mc->objects[mc->nobjs++] = obj;
420 	}
421 	return 0;
422 }
423 
kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache * mc)424 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
425 {
426 	return mc->nobjs;
427 }
428 
kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)429 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
430 {
431 	while (mc->nobjs) {
432 		if (mc->kmem_cache)
433 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
434 		else
435 			free_page((unsigned long)mc->objects[--mc->nobjs]);
436 	}
437 }
438 
kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)439 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
440 {
441 	void *p;
442 
443 	if (WARN_ON(!mc->nobjs))
444 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
445 	else
446 		p = mc->objects[--mc->nobjs];
447 	BUG_ON(!p);
448 	return p;
449 }
450 #endif
451 
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)452 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
453 {
454 	mutex_init(&vcpu->mutex);
455 	vcpu->cpu = -1;
456 	vcpu->kvm = kvm;
457 	vcpu->vcpu_id = id;
458 	vcpu->pid = NULL;
459 	rcuwait_init(&vcpu->wait);
460 	kvm_async_pf_vcpu_init(vcpu);
461 
462 	vcpu->pre_pcpu = -1;
463 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
464 
465 	kvm_vcpu_set_in_spin_loop(vcpu, false);
466 	kvm_vcpu_set_dy_eligible(vcpu, false);
467 	vcpu->preempted = false;
468 	vcpu->ready = false;
469 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
470 }
471 
kvm_vcpu_destroy(struct kvm_vcpu * vcpu)472 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
473 {
474 	kvm_arch_vcpu_destroy(vcpu);
475 
476 	/*
477 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
478 	 * the vcpu->pid pointer, and at destruction time all file descriptors
479 	 * are already gone.
480 	 */
481 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
482 
483 	free_page((unsigned long)vcpu->run);
484 	kmem_cache_free(kvm_vcpu_cache, vcpu);
485 }
486 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
487 
488 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)489 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
490 {
491 	return container_of(mn, struct kvm, mmu_notifier);
492 }
493 
kvm_mmu_notifier_invalidate_range(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)494 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
495 					      struct mm_struct *mm,
496 					      unsigned long start, unsigned long end)
497 {
498 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
499 	int idx;
500 
501 	idx = srcu_read_lock(&kvm->srcu);
502 	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
503 	srcu_read_unlock(&kvm->srcu, idx);
504 }
505 
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)506 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
507 					struct mm_struct *mm,
508 					unsigned long address,
509 					pte_t pte)
510 {
511 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
512 	int idx;
513 
514 	idx = srcu_read_lock(&kvm->srcu);
515 	spin_lock(&kvm->mmu_lock);
516 	kvm->mmu_notifier_seq++;
517 
518 	if (kvm_set_spte_hva(kvm, address, pte))
519 		kvm_flush_remote_tlbs(kvm);
520 
521 	spin_unlock(&kvm->mmu_lock);
522 	srcu_read_unlock(&kvm->srcu, idx);
523 }
524 
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)525 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
526 					const struct mmu_notifier_range *range)
527 {
528 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
529 	int need_tlb_flush = 0, idx;
530 
531 	idx = srcu_read_lock(&kvm->srcu);
532 	spin_lock(&kvm->mmu_lock);
533 	/*
534 	 * The count increase must become visible at unlock time as no
535 	 * spte can be established without taking the mmu_lock and
536 	 * count is also read inside the mmu_lock critical section.
537 	 */
538 	kvm->mmu_notifier_count++;
539 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
540 					     range->flags);
541 	/* we've to flush the tlb before the pages can be freed */
542 	if (need_tlb_flush || kvm->tlbs_dirty)
543 		kvm_flush_remote_tlbs(kvm);
544 
545 	spin_unlock(&kvm->mmu_lock);
546 	kvm_arch_guest_memory_reclaimed(kvm);
547 	srcu_read_unlock(&kvm->srcu, idx);
548 
549 	return 0;
550 }
551 
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)552 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
553 					const struct mmu_notifier_range *range)
554 {
555 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
556 
557 	spin_lock(&kvm->mmu_lock);
558 	/*
559 	 * This sequence increase will notify the kvm page fault that
560 	 * the page that is going to be mapped in the spte could have
561 	 * been freed.
562 	 */
563 	kvm->mmu_notifier_seq++;
564 	smp_wmb();
565 	/*
566 	 * The above sequence increase must be visible before the
567 	 * below count decrease, which is ensured by the smp_wmb above
568 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
569 	 */
570 	kvm->mmu_notifier_count--;
571 	spin_unlock(&kvm->mmu_lock);
572 
573 	BUG_ON(kvm->mmu_notifier_count < 0);
574 }
575 
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)576 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
577 					      struct mm_struct *mm,
578 					      unsigned long start,
579 					      unsigned long end)
580 {
581 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
582 	int young, idx;
583 
584 	idx = srcu_read_lock(&kvm->srcu);
585 	spin_lock(&kvm->mmu_lock);
586 
587 	young = kvm_age_hva(kvm, start, end);
588 	if (young)
589 		kvm_flush_remote_tlbs(kvm);
590 
591 	spin_unlock(&kvm->mmu_lock);
592 	srcu_read_unlock(&kvm->srcu, idx);
593 
594 	return young;
595 }
596 
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)597 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
598 					struct mm_struct *mm,
599 					unsigned long start,
600 					unsigned long end)
601 {
602 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
603 	int young, idx;
604 
605 	idx = srcu_read_lock(&kvm->srcu);
606 	spin_lock(&kvm->mmu_lock);
607 	/*
608 	 * Even though we do not flush TLB, this will still adversely
609 	 * affect performance on pre-Haswell Intel EPT, where there is
610 	 * no EPT Access Bit to clear so that we have to tear down EPT
611 	 * tables instead. If we find this unacceptable, we can always
612 	 * add a parameter to kvm_age_hva so that it effectively doesn't
613 	 * do anything on clear_young.
614 	 *
615 	 * Also note that currently we never issue secondary TLB flushes
616 	 * from clear_young, leaving this job up to the regular system
617 	 * cadence. If we find this inaccurate, we might come up with a
618 	 * more sophisticated heuristic later.
619 	 */
620 	young = kvm_age_hva(kvm, start, end);
621 	spin_unlock(&kvm->mmu_lock);
622 	srcu_read_unlock(&kvm->srcu, idx);
623 
624 	return young;
625 }
626 
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)627 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
628 				       struct mm_struct *mm,
629 				       unsigned long address)
630 {
631 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
632 	int young, idx;
633 
634 	idx = srcu_read_lock(&kvm->srcu);
635 	spin_lock(&kvm->mmu_lock);
636 	young = kvm_test_age_hva(kvm, address);
637 	spin_unlock(&kvm->mmu_lock);
638 	srcu_read_unlock(&kvm->srcu, idx);
639 
640 	return young;
641 }
642 
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)643 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
644 				     struct mm_struct *mm)
645 {
646 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
647 	int idx;
648 
649 	idx = srcu_read_lock(&kvm->srcu);
650 	kvm_flush_shadow_all(kvm);
651 	srcu_read_unlock(&kvm->srcu, idx);
652 }
653 
654 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
655 	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
656 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
657 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
658 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
659 	.clear_young		= kvm_mmu_notifier_clear_young,
660 	.test_young		= kvm_mmu_notifier_test_young,
661 	.change_pte		= kvm_mmu_notifier_change_pte,
662 	.release		= kvm_mmu_notifier_release,
663 };
664 
kvm_init_mmu_notifier(struct kvm * kvm)665 static int kvm_init_mmu_notifier(struct kvm *kvm)
666 {
667 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
668 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
669 }
670 
671 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
672 
kvm_init_mmu_notifier(struct kvm * kvm)673 static int kvm_init_mmu_notifier(struct kvm *kvm)
674 {
675 	return 0;
676 }
677 
678 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
679 
kvm_alloc_memslots(void)680 static struct kvm_memslots *kvm_alloc_memslots(void)
681 {
682 	int i;
683 	struct kvm_memslots *slots;
684 
685 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
686 	if (!slots)
687 		return NULL;
688 
689 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
690 		slots->id_to_index[i] = -1;
691 
692 	return slots;
693 }
694 
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)695 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
696 {
697 	if (!memslot->dirty_bitmap)
698 		return;
699 
700 	kvfree(memslot->dirty_bitmap);
701 	memslot->dirty_bitmap = NULL;
702 }
703 
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)704 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
705 {
706 	kvm_destroy_dirty_bitmap(slot);
707 
708 	kvm_arch_free_memslot(kvm, slot);
709 
710 	slot->flags = 0;
711 	slot->npages = 0;
712 }
713 
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)714 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
715 {
716 	struct kvm_memory_slot *memslot;
717 
718 	if (!slots)
719 		return;
720 
721 	kvm_for_each_memslot(memslot, slots)
722 		kvm_free_memslot(kvm, memslot);
723 
724 	kvfree(slots);
725 }
726 
kvm_destroy_vm_debugfs(struct kvm * kvm)727 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
728 {
729 	int i;
730 
731 	if (!kvm->debugfs_dentry)
732 		return;
733 
734 	debugfs_remove_recursive(kvm->debugfs_dentry);
735 
736 	if (kvm->debugfs_stat_data) {
737 		for (i = 0; i < kvm_debugfs_num_entries; i++)
738 			kfree(kvm->debugfs_stat_data[i]);
739 		kfree(kvm->debugfs_stat_data);
740 	}
741 }
742 
kvm_create_vm_debugfs(struct kvm * kvm,int fd)743 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
744 {
745 	static DEFINE_MUTEX(kvm_debugfs_lock);
746 	struct dentry *dent;
747 	char dir_name[ITOA_MAX_LEN * 2];
748 	struct kvm_stat_data *stat_data;
749 	struct kvm_stats_debugfs_item *p;
750 
751 	if (!debugfs_initialized())
752 		return 0;
753 
754 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
755 	mutex_lock(&kvm_debugfs_lock);
756 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
757 	if (dent) {
758 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
759 		dput(dent);
760 		mutex_unlock(&kvm_debugfs_lock);
761 		return 0;
762 	}
763 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
764 	mutex_unlock(&kvm_debugfs_lock);
765 	if (IS_ERR(dent))
766 		return 0;
767 
768 	kvm->debugfs_dentry = dent;
769 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
770 					 sizeof(*kvm->debugfs_stat_data),
771 					 GFP_KERNEL_ACCOUNT);
772 	if (!kvm->debugfs_stat_data)
773 		return -ENOMEM;
774 
775 	for (p = debugfs_entries; p->name; p++) {
776 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
777 		if (!stat_data)
778 			return -ENOMEM;
779 
780 		stat_data->kvm = kvm;
781 		stat_data->dbgfs_item = p;
782 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
783 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
784 				    kvm->debugfs_dentry, stat_data,
785 				    &stat_fops_per_vm);
786 	}
787 	return 0;
788 }
789 
790 /*
791  * Called after the VM is otherwise initialized, but just before adding it to
792  * the vm_list.
793  */
kvm_arch_post_init_vm(struct kvm * kvm)794 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
795 {
796 	return 0;
797 }
798 
799 /*
800  * Called just after removing the VM from the vm_list, but before doing any
801  * other destruction.
802  */
kvm_arch_pre_destroy_vm(struct kvm * kvm)803 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
804 {
805 }
806 
kvm_create_vm(unsigned long type)807 static struct kvm *kvm_create_vm(unsigned long type)
808 {
809 	struct kvm *kvm = kvm_arch_alloc_vm();
810 	int r = -ENOMEM;
811 	int i;
812 
813 	if (!kvm)
814 		return ERR_PTR(-ENOMEM);
815 
816 	spin_lock_init(&kvm->mmu_lock);
817 	mmgrab(current->mm);
818 	kvm->mm = current->mm;
819 	kvm_eventfd_init(kvm);
820 	mutex_init(&kvm->lock);
821 	mutex_init(&kvm->irq_lock);
822 	mutex_init(&kvm->slots_lock);
823 	INIT_LIST_HEAD(&kvm->devices);
824 
825 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
826 
827 	if (init_srcu_struct(&kvm->srcu))
828 		goto out_err_no_srcu;
829 	if (init_srcu_struct(&kvm->irq_srcu))
830 		goto out_err_no_irq_srcu;
831 
832 	refcount_set(&kvm->users_count, 1);
833 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
834 		struct kvm_memslots *slots = kvm_alloc_memslots();
835 
836 		if (!slots)
837 			goto out_err_no_arch_destroy_vm;
838 		/* Generations must be different for each address space. */
839 		slots->generation = i;
840 		rcu_assign_pointer(kvm->memslots[i], slots);
841 	}
842 
843 	for (i = 0; i < KVM_NR_BUSES; i++) {
844 		rcu_assign_pointer(kvm->buses[i],
845 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
846 		if (!kvm->buses[i])
847 			goto out_err_no_arch_destroy_vm;
848 	}
849 
850 	kvm->max_halt_poll_ns = halt_poll_ns;
851 
852 	r = kvm_arch_init_vm(kvm, type);
853 	if (r)
854 		goto out_err_no_arch_destroy_vm;
855 
856 	r = hardware_enable_all();
857 	if (r)
858 		goto out_err_no_disable;
859 
860 #ifdef CONFIG_HAVE_KVM_IRQFD
861 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
862 #endif
863 
864 	r = kvm_init_mmu_notifier(kvm);
865 	if (r)
866 		goto out_err_no_mmu_notifier;
867 
868 	r = kvm_arch_post_init_vm(kvm);
869 	if (r)
870 		goto out_err;
871 
872 	mutex_lock(&kvm_lock);
873 	list_add(&kvm->vm_list, &vm_list);
874 	mutex_unlock(&kvm_lock);
875 
876 	preempt_notifier_inc();
877 
878 	/*
879 	 * When the fd passed to this ioctl() is opened it pins the module,
880 	 * but try_module_get() also prevents getting a reference if the module
881 	 * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait").
882 	 */
883 	if (!try_module_get(kvm_chardev_ops.owner)) {
884 		r = -ENODEV;
885 		goto out_err;
886 	}
887 
888 	return kvm;
889 
890 out_err:
891 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
892 	if (kvm->mmu_notifier.ops)
893 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
894 #endif
895 out_err_no_mmu_notifier:
896 	hardware_disable_all();
897 out_err_no_disable:
898 	kvm_arch_destroy_vm(kvm);
899 out_err_no_arch_destroy_vm:
900 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
901 	for (i = 0; i < KVM_NR_BUSES; i++)
902 		kfree(kvm_get_bus(kvm, i));
903 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
904 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
905 	cleanup_srcu_struct(&kvm->irq_srcu);
906 out_err_no_irq_srcu:
907 	cleanup_srcu_struct(&kvm->srcu);
908 out_err_no_srcu:
909 	kvm_arch_free_vm(kvm);
910 	mmdrop(current->mm);
911 	return ERR_PTR(r);
912 }
913 
kvm_destroy_devices(struct kvm * kvm)914 static void kvm_destroy_devices(struct kvm *kvm)
915 {
916 	struct kvm_device *dev, *tmp;
917 
918 	/*
919 	 * We do not need to take the kvm->lock here, because nobody else
920 	 * has a reference to the struct kvm at this point and therefore
921 	 * cannot access the devices list anyhow.
922 	 */
923 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
924 		list_del(&dev->vm_node);
925 		dev->ops->destroy(dev);
926 	}
927 }
928 
kvm_destroy_vm(struct kvm * kvm)929 static void kvm_destroy_vm(struct kvm *kvm)
930 {
931 	int i;
932 	struct mm_struct *mm = kvm->mm;
933 
934 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
935 	kvm_destroy_vm_debugfs(kvm);
936 	kvm_arch_sync_events(kvm);
937 	mutex_lock(&kvm_lock);
938 	list_del(&kvm->vm_list);
939 	mutex_unlock(&kvm_lock);
940 	kvm_arch_pre_destroy_vm(kvm);
941 
942 	kvm_free_irq_routing(kvm);
943 	for (i = 0; i < KVM_NR_BUSES; i++) {
944 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
945 
946 		if (bus)
947 			kvm_io_bus_destroy(bus);
948 		kvm->buses[i] = NULL;
949 	}
950 	kvm_coalesced_mmio_free(kvm);
951 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
952 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
953 #else
954 	kvm_flush_shadow_all(kvm);
955 #endif
956 	kvm_arch_destroy_vm(kvm);
957 	kvm_destroy_devices(kvm);
958 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
959 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
960 	cleanup_srcu_struct(&kvm->irq_srcu);
961 	cleanup_srcu_struct(&kvm->srcu);
962 	kvm_arch_free_vm(kvm);
963 	preempt_notifier_dec();
964 	hardware_disable_all();
965 	mmdrop(mm);
966 	module_put(kvm_chardev_ops.owner);
967 }
968 
kvm_get_kvm(struct kvm * kvm)969 void kvm_get_kvm(struct kvm *kvm)
970 {
971 	refcount_inc(&kvm->users_count);
972 }
973 EXPORT_SYMBOL_GPL(kvm_get_kvm);
974 
kvm_put_kvm(struct kvm * kvm)975 void kvm_put_kvm(struct kvm *kvm)
976 {
977 	if (refcount_dec_and_test(&kvm->users_count))
978 		kvm_destroy_vm(kvm);
979 }
980 EXPORT_SYMBOL_GPL(kvm_put_kvm);
981 
982 /*
983  * Used to put a reference that was taken on behalf of an object associated
984  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
985  * of the new file descriptor fails and the reference cannot be transferred to
986  * its final owner.  In such cases, the caller is still actively using @kvm and
987  * will fail miserably if the refcount unexpectedly hits zero.
988  */
kvm_put_kvm_no_destroy(struct kvm * kvm)989 void kvm_put_kvm_no_destroy(struct kvm *kvm)
990 {
991 	WARN_ON(refcount_dec_and_test(&kvm->users_count));
992 }
993 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
994 
kvm_vm_release(struct inode * inode,struct file * filp)995 static int kvm_vm_release(struct inode *inode, struct file *filp)
996 {
997 	struct kvm *kvm = filp->private_data;
998 
999 	kvm_irqfd_release(kvm);
1000 
1001 	kvm_put_kvm(kvm);
1002 	return 0;
1003 }
1004 
1005 /*
1006  * Allocation size is twice as large as the actual dirty bitmap size.
1007  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1008  */
kvm_alloc_dirty_bitmap(struct kvm_memory_slot * memslot)1009 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1010 {
1011 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1012 
1013 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1014 	if (!memslot->dirty_bitmap)
1015 		return -ENOMEM;
1016 
1017 	return 0;
1018 }
1019 
1020 /*
1021  * Delete a memslot by decrementing the number of used slots and shifting all
1022  * other entries in the array forward one spot.
1023  */
kvm_memslot_delete(struct kvm_memslots * slots,struct kvm_memory_slot * memslot)1024 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1025 				      struct kvm_memory_slot *memslot)
1026 {
1027 	struct kvm_memory_slot *mslots = slots->memslots;
1028 	int i;
1029 
1030 	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1031 		return;
1032 
1033 	slots->used_slots--;
1034 
1035 	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
1036 		atomic_set(&slots->lru_slot, 0);
1037 
1038 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1039 		mslots[i] = mslots[i + 1];
1040 		slots->id_to_index[mslots[i].id] = i;
1041 	}
1042 	mslots[i] = *memslot;
1043 	slots->id_to_index[memslot->id] = -1;
1044 }
1045 
1046 /*
1047  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1048  * the new slot's initial index into the memslots array.
1049  */
kvm_memslot_insert_back(struct kvm_memslots * slots)1050 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1051 {
1052 	return slots->used_slots++;
1053 }
1054 
1055 /*
1056  * Move a changed memslot backwards in the array by shifting existing slots
1057  * with a higher GFN toward the front of the array.  Note, the changed memslot
1058  * itself is not preserved in the array, i.e. not swapped at this time, only
1059  * its new index into the array is tracked.  Returns the changed memslot's
1060  * current index into the memslots array.
1061  */
kvm_memslot_move_backward(struct kvm_memslots * slots,struct kvm_memory_slot * memslot)1062 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1063 					    struct kvm_memory_slot *memslot)
1064 {
1065 	struct kvm_memory_slot *mslots = slots->memslots;
1066 	int i;
1067 
1068 	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1069 	    WARN_ON_ONCE(!slots->used_slots))
1070 		return -1;
1071 
1072 	/*
1073 	 * Move the target memslot backward in the array by shifting existing
1074 	 * memslots with a higher GFN (than the target memslot) towards the
1075 	 * front of the array.
1076 	 */
1077 	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1078 		if (memslot->base_gfn > mslots[i + 1].base_gfn)
1079 			break;
1080 
1081 		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1082 
1083 		/* Shift the next memslot forward one and update its index. */
1084 		mslots[i] = mslots[i + 1];
1085 		slots->id_to_index[mslots[i].id] = i;
1086 	}
1087 	return i;
1088 }
1089 
1090 /*
1091  * Move a changed memslot forwards in the array by shifting existing slots with
1092  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1093  * is not preserved in the array, i.e. not swapped at this time, only its new
1094  * index into the array is tracked.  Returns the changed memslot's final index
1095  * into the memslots array.
1096  */
kvm_memslot_move_forward(struct kvm_memslots * slots,struct kvm_memory_slot * memslot,int start)1097 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1098 					   struct kvm_memory_slot *memslot,
1099 					   int start)
1100 {
1101 	struct kvm_memory_slot *mslots = slots->memslots;
1102 	int i;
1103 
1104 	for (i = start; i > 0; i--) {
1105 		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1106 			break;
1107 
1108 		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1109 
1110 		/* Shift the next memslot back one and update its index. */
1111 		mslots[i] = mslots[i - 1];
1112 		slots->id_to_index[mslots[i].id] = i;
1113 	}
1114 	return i;
1115 }
1116 
1117 /*
1118  * Re-sort memslots based on their GFN to account for an added, deleted, or
1119  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1120  * memslot lookup.
1121  *
1122  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1123  * at memslots[0] has the highest GFN.
1124  *
1125  * The sorting algorithm takes advantage of having initially sorted memslots
1126  * and knowing the position of the changed memslot.  Sorting is also optimized
1127  * by not swapping the updated memslot and instead only shifting other memslots
1128  * and tracking the new index for the update memslot.  Only once its final
1129  * index is known is the updated memslot copied into its position in the array.
1130  *
1131  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1132  *    the end of the array.
1133  *
1134  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1135  *    end of the array and then it forward to its correct location.
1136  *
1137  *  - When moving a memslot, the algorithm first moves the updated memslot
1138  *    backward to handle the scenario where the memslot's GFN was changed to a
1139  *    lower value.  update_memslots() then falls through and runs the same flow
1140  *    as creating a memslot to move the memslot forward to handle the scenario
1141  *    where its GFN was changed to a higher value.
1142  *
1143  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1144  * historical reasons.  Originally, invalid memslots where denoted by having
1145  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1146  * to the end of the array.  The current algorithm uses dedicated logic to
1147  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1148  *
1149  * The other historical motiviation for highest->lowest was to improve the
1150  * performance of memslot lookup.  KVM originally used a linear search starting
1151  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1152  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1153  * single memslot above the 4gb boundary.  As the largest memslot is also the
1154  * most likely to be referenced, sorting it to the front of the array was
1155  * advantageous.  The current binary search starts from the middle of the array
1156  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1157  */
update_memslots(struct kvm_memslots * slots,struct kvm_memory_slot * memslot,enum kvm_mr_change change)1158 static void update_memslots(struct kvm_memslots *slots,
1159 			    struct kvm_memory_slot *memslot,
1160 			    enum kvm_mr_change change)
1161 {
1162 	int i;
1163 
1164 	if (change == KVM_MR_DELETE) {
1165 		kvm_memslot_delete(slots, memslot);
1166 	} else {
1167 		if (change == KVM_MR_CREATE)
1168 			i = kvm_memslot_insert_back(slots);
1169 		else
1170 			i = kvm_memslot_move_backward(slots, memslot);
1171 		i = kvm_memslot_move_forward(slots, memslot, i);
1172 
1173 		/*
1174 		 * Copy the memslot to its new position in memslots and update
1175 		 * its index accordingly.
1176 		 */
1177 		slots->memslots[i] = *memslot;
1178 		slots->id_to_index[memslot->id] = i;
1179 	}
1180 }
1181 
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)1182 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1183 {
1184 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1185 
1186 #ifdef __KVM_HAVE_READONLY_MEM
1187 	valid_flags |= KVM_MEM_READONLY;
1188 #endif
1189 
1190 	if (mem->flags & ~valid_flags)
1191 		return -EINVAL;
1192 
1193 	return 0;
1194 }
1195 
install_new_memslots(struct kvm * kvm,int as_id,struct kvm_memslots * slots)1196 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1197 		int as_id, struct kvm_memslots *slots)
1198 {
1199 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1200 	u64 gen = old_memslots->generation;
1201 
1202 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1203 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1204 
1205 	rcu_assign_pointer(kvm->memslots[as_id], slots);
1206 	synchronize_srcu_expedited(&kvm->srcu);
1207 
1208 	/*
1209 	 * Increment the new memslot generation a second time, dropping the
1210 	 * update in-progress flag and incrementing the generation based on
1211 	 * the number of address spaces.  This provides a unique and easily
1212 	 * identifiable generation number while the memslots are in flux.
1213 	 */
1214 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1215 
1216 	/*
1217 	 * Generations must be unique even across address spaces.  We do not need
1218 	 * a global counter for that, instead the generation space is evenly split
1219 	 * across address spaces.  For example, with two address spaces, address
1220 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1221 	 * use generations 1, 3, 5, ...
1222 	 */
1223 	gen += KVM_ADDRESS_SPACE_NUM;
1224 
1225 	kvm_arch_memslots_updated(kvm, gen);
1226 
1227 	slots->generation = gen;
1228 
1229 	return old_memslots;
1230 }
1231 
1232 /*
1233  * Note, at a minimum, the current number of used slots must be allocated, even
1234  * when deleting a memslot, as we need a complete duplicate of the memslots for
1235  * use when invalidating a memslot prior to deleting/moving the memslot.
1236  */
kvm_dup_memslots(struct kvm_memslots * old,enum kvm_mr_change change)1237 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1238 					     enum kvm_mr_change change)
1239 {
1240 	struct kvm_memslots *slots;
1241 	size_t old_size, new_size;
1242 
1243 	old_size = sizeof(struct kvm_memslots) +
1244 		   (sizeof(struct kvm_memory_slot) * old->used_slots);
1245 
1246 	if (change == KVM_MR_CREATE)
1247 		new_size = old_size + sizeof(struct kvm_memory_slot);
1248 	else
1249 		new_size = old_size;
1250 
1251 	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1252 	if (likely(slots))
1253 		memcpy(slots, old, old_size);
1254 
1255 	return slots;
1256 }
1257 
kvm_set_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,struct kvm_memory_slot * new,int as_id,enum kvm_mr_change change)1258 static int kvm_set_memslot(struct kvm *kvm,
1259 			   const struct kvm_userspace_memory_region *mem,
1260 			   struct kvm_memory_slot *old,
1261 			   struct kvm_memory_slot *new, int as_id,
1262 			   enum kvm_mr_change change)
1263 {
1264 	struct kvm_memory_slot *slot;
1265 	struct kvm_memslots *slots;
1266 	int r;
1267 
1268 	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1269 	if (!slots)
1270 		return -ENOMEM;
1271 
1272 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1273 		/*
1274 		 * Note, the INVALID flag needs to be in the appropriate entry
1275 		 * in the freshly allocated memslots, not in @old or @new.
1276 		 */
1277 		slot = id_to_memslot(slots, old->id);
1278 		slot->flags |= KVM_MEMSLOT_INVALID;
1279 
1280 		/*
1281 		 * We can re-use the old memslots, the only difference from the
1282 		 * newly installed memslots is the invalid flag, which will get
1283 		 * dropped by update_memslots anyway.  We'll also revert to the
1284 		 * old memslots if preparing the new memory region fails.
1285 		 */
1286 		slots = install_new_memslots(kvm, as_id, slots);
1287 
1288 		/* From this point no new shadow pages pointing to a deleted,
1289 		 * or moved, memslot will be created.
1290 		 *
1291 		 * validation of sp->gfn happens in:
1292 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1293 		 *	- kvm_is_visible_gfn (mmu_check_root)
1294 		 */
1295 		kvm_arch_flush_shadow_memslot(kvm, slot);
1296 		kvm_arch_guest_memory_reclaimed(kvm);
1297 	}
1298 
1299 	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1300 	if (r)
1301 		goto out_slots;
1302 
1303 	update_memslots(slots, new, change);
1304 	slots = install_new_memslots(kvm, as_id, slots);
1305 
1306 	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1307 
1308 	kvfree(slots);
1309 	return 0;
1310 
1311 out_slots:
1312 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1313 		slots = install_new_memslots(kvm, as_id, slots);
1314 	kvfree(slots);
1315 	return r;
1316 }
1317 
kvm_delete_memslot(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,int as_id)1318 static int kvm_delete_memslot(struct kvm *kvm,
1319 			      const struct kvm_userspace_memory_region *mem,
1320 			      struct kvm_memory_slot *old, int as_id)
1321 {
1322 	struct kvm_memory_slot new;
1323 	int r;
1324 
1325 	if (!old->npages)
1326 		return -EINVAL;
1327 
1328 	memset(&new, 0, sizeof(new));
1329 	new.id = old->id;
1330 	/*
1331 	 * This is only for debugging purpose; it should never be referenced
1332 	 * for a removed memslot.
1333 	 */
1334 	new.as_id = as_id;
1335 
1336 	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1337 	if (r)
1338 		return r;
1339 
1340 	kvm_free_memslot(kvm, old);
1341 	return 0;
1342 }
1343 
1344 /*
1345  * Allocate some memory and give it an address in the guest physical address
1346  * space.
1347  *
1348  * Discontiguous memory is allowed, mostly for framebuffers.
1349  *
1350  * Must be called holding kvm->slots_lock for write.
1351  */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1352 int __kvm_set_memory_region(struct kvm *kvm,
1353 			    const struct kvm_userspace_memory_region *mem)
1354 {
1355 	struct kvm_memory_slot old, new;
1356 	struct kvm_memory_slot *tmp;
1357 	enum kvm_mr_change change;
1358 	int as_id, id;
1359 	int r;
1360 
1361 	r = check_memory_region_flags(mem);
1362 	if (r)
1363 		return r;
1364 
1365 	as_id = mem->slot >> 16;
1366 	id = (u16)mem->slot;
1367 
1368 	/* General sanity checks */
1369 	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1370 	    (mem->memory_size != (unsigned long)mem->memory_size))
1371 		return -EINVAL;
1372 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1373 		return -EINVAL;
1374 	/* We can read the guest memory with __xxx_user() later on. */
1375 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1376 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1377 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1378 			mem->memory_size))
1379 		return -EINVAL;
1380 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1381 		return -EINVAL;
1382 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1383 		return -EINVAL;
1384 
1385 	/*
1386 	 * Make a full copy of the old memslot, the pointer will become stale
1387 	 * when the memslots are re-sorted by update_memslots(), and the old
1388 	 * memslot needs to be referenced after calling update_memslots(), e.g.
1389 	 * to free its resources and for arch specific behavior.
1390 	 */
1391 	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1392 	if (tmp) {
1393 		old = *tmp;
1394 		tmp = NULL;
1395 	} else {
1396 		memset(&old, 0, sizeof(old));
1397 		old.id = id;
1398 	}
1399 
1400 	if (!mem->memory_size)
1401 		return kvm_delete_memslot(kvm, mem, &old, as_id);
1402 
1403 	new.as_id = as_id;
1404 	new.id = id;
1405 	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1406 	new.npages = mem->memory_size >> PAGE_SHIFT;
1407 	new.flags = mem->flags;
1408 	new.userspace_addr = mem->userspace_addr;
1409 
1410 	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1411 		return -EINVAL;
1412 
1413 	if (!old.npages) {
1414 		change = KVM_MR_CREATE;
1415 		new.dirty_bitmap = NULL;
1416 		memset(&new.arch, 0, sizeof(new.arch));
1417 	} else { /* Modify an existing slot. */
1418 		if ((new.userspace_addr != old.userspace_addr) ||
1419 		    (new.npages != old.npages) ||
1420 		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1421 			return -EINVAL;
1422 
1423 		if (new.base_gfn != old.base_gfn)
1424 			change = KVM_MR_MOVE;
1425 		else if (new.flags != old.flags)
1426 			change = KVM_MR_FLAGS_ONLY;
1427 		else /* Nothing to change. */
1428 			return 0;
1429 
1430 		/* Copy dirty_bitmap and arch from the current memslot. */
1431 		new.dirty_bitmap = old.dirty_bitmap;
1432 		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1433 	}
1434 
1435 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1436 		/* Check for overlaps */
1437 		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1438 			if (tmp->id == id)
1439 				continue;
1440 			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1441 			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1442 				return -EEXIST;
1443 		}
1444 	}
1445 
1446 	/* Allocate/free page dirty bitmap as needed */
1447 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1448 		new.dirty_bitmap = NULL;
1449 	else if (!new.dirty_bitmap) {
1450 		r = kvm_alloc_dirty_bitmap(&new);
1451 		if (r)
1452 			return r;
1453 
1454 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1455 			bitmap_set(new.dirty_bitmap, 0, new.npages);
1456 	}
1457 
1458 	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1459 	if (r)
1460 		goto out_bitmap;
1461 
1462 	if (old.dirty_bitmap && !new.dirty_bitmap)
1463 		kvm_destroy_dirty_bitmap(&old);
1464 	return 0;
1465 
1466 out_bitmap:
1467 	if (new.dirty_bitmap && !old.dirty_bitmap)
1468 		kvm_destroy_dirty_bitmap(&new);
1469 	return r;
1470 }
1471 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1472 
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1473 int kvm_set_memory_region(struct kvm *kvm,
1474 			  const struct kvm_userspace_memory_region *mem)
1475 {
1476 	int r;
1477 
1478 	mutex_lock(&kvm->slots_lock);
1479 	r = __kvm_set_memory_region(kvm, mem);
1480 	mutex_unlock(&kvm->slots_lock);
1481 	return r;
1482 }
1483 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1484 
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)1485 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1486 					  struct kvm_userspace_memory_region *mem)
1487 {
1488 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1489 		return -EINVAL;
1490 
1491 	return kvm_set_memory_region(kvm, mem);
1492 }
1493 
1494 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1495 /**
1496  * kvm_get_dirty_log - get a snapshot of dirty pages
1497  * @kvm:	pointer to kvm instance
1498  * @log:	slot id and address to which we copy the log
1499  * @is_dirty:	set to '1' if any dirty pages were found
1500  * @memslot:	set to the associated memslot, always valid on success
1501  */
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty,struct kvm_memory_slot ** memslot)1502 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1503 		      int *is_dirty, struct kvm_memory_slot **memslot)
1504 {
1505 	struct kvm_memslots *slots;
1506 	int i, as_id, id;
1507 	unsigned long n;
1508 	unsigned long any = 0;
1509 
1510 	*memslot = NULL;
1511 	*is_dirty = 0;
1512 
1513 	as_id = log->slot >> 16;
1514 	id = (u16)log->slot;
1515 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1516 		return -EINVAL;
1517 
1518 	slots = __kvm_memslots(kvm, as_id);
1519 	*memslot = id_to_memslot(slots, id);
1520 	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1521 		return -ENOENT;
1522 
1523 	kvm_arch_sync_dirty_log(kvm, *memslot);
1524 
1525 	n = kvm_dirty_bitmap_bytes(*memslot);
1526 
1527 	for (i = 0; !any && i < n/sizeof(long); ++i)
1528 		any = (*memslot)->dirty_bitmap[i];
1529 
1530 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1531 		return -EFAULT;
1532 
1533 	if (any)
1534 		*is_dirty = 1;
1535 	return 0;
1536 }
1537 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1538 
1539 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1540 /**
1541  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1542  *	and reenable dirty page tracking for the corresponding pages.
1543  * @kvm:	pointer to kvm instance
1544  * @log:	slot id and address to which we copy the log
1545  *
1546  * We need to keep it in mind that VCPU threads can write to the bitmap
1547  * concurrently. So, to avoid losing track of dirty pages we keep the
1548  * following order:
1549  *
1550  *    1. Take a snapshot of the bit and clear it if needed.
1551  *    2. Write protect the corresponding page.
1552  *    3. Copy the snapshot to the userspace.
1553  *    4. Upon return caller flushes TLB's if needed.
1554  *
1555  * Between 2 and 4, the guest may write to the page using the remaining TLB
1556  * entry.  This is not a problem because the page is reported dirty using
1557  * the snapshot taken before and step 4 ensures that writes done after
1558  * exiting to userspace will be logged for the next call.
1559  *
1560  */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log)1561 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1562 {
1563 	struct kvm_memslots *slots;
1564 	struct kvm_memory_slot *memslot;
1565 	int i, as_id, id;
1566 	unsigned long n;
1567 	unsigned long *dirty_bitmap;
1568 	unsigned long *dirty_bitmap_buffer;
1569 	bool flush;
1570 
1571 	as_id = log->slot >> 16;
1572 	id = (u16)log->slot;
1573 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1574 		return -EINVAL;
1575 
1576 	slots = __kvm_memslots(kvm, as_id);
1577 	memslot = id_to_memslot(slots, id);
1578 	if (!memslot || !memslot->dirty_bitmap)
1579 		return -ENOENT;
1580 
1581 	dirty_bitmap = memslot->dirty_bitmap;
1582 
1583 	kvm_arch_sync_dirty_log(kvm, memslot);
1584 
1585 	n = kvm_dirty_bitmap_bytes(memslot);
1586 	flush = false;
1587 	if (kvm->manual_dirty_log_protect) {
1588 		/*
1589 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1590 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1591 		 * is some code duplication between this function and
1592 		 * kvm_get_dirty_log, but hopefully all architecture
1593 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1594 		 * can be eliminated.
1595 		 */
1596 		dirty_bitmap_buffer = dirty_bitmap;
1597 	} else {
1598 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1599 		memset(dirty_bitmap_buffer, 0, n);
1600 
1601 		spin_lock(&kvm->mmu_lock);
1602 		for (i = 0; i < n / sizeof(long); i++) {
1603 			unsigned long mask;
1604 			gfn_t offset;
1605 
1606 			if (!dirty_bitmap[i])
1607 				continue;
1608 
1609 			flush = true;
1610 			mask = xchg(&dirty_bitmap[i], 0);
1611 			dirty_bitmap_buffer[i] = mask;
1612 
1613 			offset = i * BITS_PER_LONG;
1614 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1615 								offset, mask);
1616 		}
1617 		spin_unlock(&kvm->mmu_lock);
1618 	}
1619 
1620 	if (flush)
1621 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1622 
1623 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1624 		return -EFAULT;
1625 	return 0;
1626 }
1627 
1628 
1629 /**
1630  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1631  * @kvm: kvm instance
1632  * @log: slot id and address to which we copy the log
1633  *
1634  * Steps 1-4 below provide general overview of dirty page logging. See
1635  * kvm_get_dirty_log_protect() function description for additional details.
1636  *
1637  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1638  * always flush the TLB (step 4) even if previous step failed  and the dirty
1639  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1640  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1641  * writes will be marked dirty for next log read.
1642  *
1643  *   1. Take a snapshot of the bit and clear it if needed.
1644  *   2. Write protect the corresponding page.
1645  *   3. Copy the snapshot to the userspace.
1646  *   4. Flush TLB's if needed.
1647  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)1648 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1649 				      struct kvm_dirty_log *log)
1650 {
1651 	int r;
1652 
1653 	mutex_lock(&kvm->slots_lock);
1654 
1655 	r = kvm_get_dirty_log_protect(kvm, log);
1656 
1657 	mutex_unlock(&kvm->slots_lock);
1658 	return r;
1659 }
1660 
1661 /**
1662  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1663  *	and reenable dirty page tracking for the corresponding pages.
1664  * @kvm:	pointer to kvm instance
1665  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1666  */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log)1667 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1668 				       struct kvm_clear_dirty_log *log)
1669 {
1670 	struct kvm_memslots *slots;
1671 	struct kvm_memory_slot *memslot;
1672 	int as_id, id;
1673 	gfn_t offset;
1674 	unsigned long i, n;
1675 	unsigned long *dirty_bitmap;
1676 	unsigned long *dirty_bitmap_buffer;
1677 	bool flush;
1678 
1679 	as_id = log->slot >> 16;
1680 	id = (u16)log->slot;
1681 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1682 		return -EINVAL;
1683 
1684 	if (log->first_page & 63)
1685 		return -EINVAL;
1686 
1687 	slots = __kvm_memslots(kvm, as_id);
1688 	memslot = id_to_memslot(slots, id);
1689 	if (!memslot || !memslot->dirty_bitmap)
1690 		return -ENOENT;
1691 
1692 	dirty_bitmap = memslot->dirty_bitmap;
1693 
1694 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1695 
1696 	if (log->first_page > memslot->npages ||
1697 	    log->num_pages > memslot->npages - log->first_page ||
1698 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1699 	    return -EINVAL;
1700 
1701 	kvm_arch_sync_dirty_log(kvm, memslot);
1702 
1703 	flush = false;
1704 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1705 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1706 		return -EFAULT;
1707 
1708 	spin_lock(&kvm->mmu_lock);
1709 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1710 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1711 	     i++, offset += BITS_PER_LONG) {
1712 		unsigned long mask = *dirty_bitmap_buffer++;
1713 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1714 		if (!mask)
1715 			continue;
1716 
1717 		mask &= atomic_long_fetch_andnot(mask, p);
1718 
1719 		/*
1720 		 * mask contains the bits that really have been cleared.  This
1721 		 * never includes any bits beyond the length of the memslot (if
1722 		 * the length is not aligned to 64 pages), therefore it is not
1723 		 * a problem if userspace sets them in log->dirty_bitmap.
1724 		*/
1725 		if (mask) {
1726 			flush = true;
1727 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1728 								offset, mask);
1729 		}
1730 	}
1731 	spin_unlock(&kvm->mmu_lock);
1732 
1733 	if (flush)
1734 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1735 
1736 	return 0;
1737 }
1738 
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)1739 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1740 					struct kvm_clear_dirty_log *log)
1741 {
1742 	int r;
1743 
1744 	mutex_lock(&kvm->slots_lock);
1745 
1746 	r = kvm_clear_dirty_log_protect(kvm, log);
1747 
1748 	mutex_unlock(&kvm->slots_lock);
1749 	return r;
1750 }
1751 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1752 
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)1753 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1754 {
1755 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1756 }
1757 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1758 
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)1759 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1760 {
1761 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1762 }
1763 
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)1764 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1765 {
1766 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1767 
1768 	return kvm_is_visible_memslot(memslot);
1769 }
1770 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1771 
kvm_vcpu_is_visible_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)1772 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1773 {
1774 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1775 
1776 	return kvm_is_visible_memslot(memslot);
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1779 
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)1780 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1781 {
1782 	struct vm_area_struct *vma;
1783 	unsigned long addr, size;
1784 
1785 	size = PAGE_SIZE;
1786 
1787 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1788 	if (kvm_is_error_hva(addr))
1789 		return PAGE_SIZE;
1790 
1791 	mmap_read_lock(current->mm);
1792 	vma = find_vma(current->mm, addr);
1793 	if (!vma)
1794 		goto out;
1795 
1796 	size = vma_kernel_pagesize(vma);
1797 
1798 out:
1799 	mmap_read_unlock(current->mm);
1800 
1801 	return size;
1802 }
1803 
memslot_is_readonly(struct kvm_memory_slot * slot)1804 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1805 {
1806 	return slot->flags & KVM_MEM_READONLY;
1807 }
1808 
__gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)1809 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1810 				       gfn_t *nr_pages, bool write)
1811 {
1812 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1813 		return KVM_HVA_ERR_BAD;
1814 
1815 	if (memslot_is_readonly(slot) && write)
1816 		return KVM_HVA_ERR_RO_BAD;
1817 
1818 	if (nr_pages)
1819 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1820 
1821 	return __gfn_to_hva_memslot(slot, gfn);
1822 }
1823 
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)1824 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1825 				     gfn_t *nr_pages)
1826 {
1827 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1828 }
1829 
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1830 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1831 					gfn_t gfn)
1832 {
1833 	return gfn_to_hva_many(slot, gfn, NULL);
1834 }
1835 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1836 
gfn_to_hva(struct kvm * kvm,gfn_t gfn)1837 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1838 {
1839 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1840 }
1841 EXPORT_SYMBOL_GPL(gfn_to_hva);
1842 
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)1843 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1844 {
1845 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1846 }
1847 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1848 
1849 /*
1850  * Return the hva of a @gfn and the R/W attribute if possible.
1851  *
1852  * @slot: the kvm_memory_slot which contains @gfn
1853  * @gfn: the gfn to be translated
1854  * @writable: used to return the read/write attribute of the @slot if the hva
1855  * is valid and @writable is not NULL
1856  */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)1857 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1858 				      gfn_t gfn, bool *writable)
1859 {
1860 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1861 
1862 	if (!kvm_is_error_hva(hva) && writable)
1863 		*writable = !memslot_is_readonly(slot);
1864 
1865 	return hva;
1866 }
1867 
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)1868 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1869 {
1870 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1871 
1872 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1873 }
1874 
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)1875 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1876 {
1877 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1878 
1879 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1880 }
1881 
check_user_page_hwpoison(unsigned long addr)1882 static inline int check_user_page_hwpoison(unsigned long addr)
1883 {
1884 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1885 
1886 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1887 	return rc == -EHWPOISON;
1888 }
1889 
1890 /*
1891  * The fast path to get the writable pfn which will be stored in @pfn,
1892  * true indicates success, otherwise false is returned.  It's also the
1893  * only part that runs if we can in atomic context.
1894  */
hva_to_pfn_fast(unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * pfn)1895 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1896 			    bool *writable, kvm_pfn_t *pfn)
1897 {
1898 	struct page *page[1];
1899 
1900 	/*
1901 	 * Fast pin a writable pfn only if it is a write fault request
1902 	 * or the caller allows to map a writable pfn for a read fault
1903 	 * request.
1904 	 */
1905 	if (!(write_fault || writable))
1906 		return false;
1907 
1908 	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1909 		*pfn = page_to_pfn(page[0]);
1910 
1911 		if (writable)
1912 			*writable = true;
1913 		return true;
1914 	}
1915 
1916 	return false;
1917 }
1918 
1919 /*
1920  * The slow path to get the pfn of the specified host virtual address,
1921  * 1 indicates success, -errno is returned if error is detected.
1922  */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * pfn)1923 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1924 			   bool *writable, kvm_pfn_t *pfn)
1925 {
1926 	unsigned int flags = FOLL_HWPOISON;
1927 	struct page *page;
1928 	int npages = 0;
1929 
1930 	might_sleep();
1931 
1932 	if (writable)
1933 		*writable = write_fault;
1934 
1935 	if (write_fault)
1936 		flags |= FOLL_WRITE;
1937 	if (async)
1938 		flags |= FOLL_NOWAIT;
1939 
1940 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1941 	if (npages != 1)
1942 		return npages;
1943 
1944 	/* map read fault as writable if possible */
1945 	if (unlikely(!write_fault) && writable) {
1946 		struct page *wpage;
1947 
1948 		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1949 			*writable = true;
1950 			put_page(page);
1951 			page = wpage;
1952 		}
1953 	}
1954 	*pfn = page_to_pfn(page);
1955 	return npages;
1956 }
1957 
vma_is_valid(struct vm_area_struct * vma,bool write_fault)1958 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1959 {
1960 	if (unlikely(!(vma->vm_flags & VM_READ)))
1961 		return false;
1962 
1963 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1964 		return false;
1965 
1966 	return true;
1967 }
1968 
kvm_try_get_pfn(kvm_pfn_t pfn)1969 static int kvm_try_get_pfn(kvm_pfn_t pfn)
1970 {
1971 	if (kvm_is_reserved_pfn(pfn))
1972 		return 1;
1973 	return get_page_unless_zero(pfn_to_page(pfn));
1974 }
1975 
hva_to_pfn_remapped(struct vm_area_struct * vma,unsigned long addr,bool * async,bool write_fault,bool * writable,kvm_pfn_t * p_pfn)1976 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1977 			       unsigned long addr, bool *async,
1978 			       bool write_fault, bool *writable,
1979 			       kvm_pfn_t *p_pfn)
1980 {
1981 	kvm_pfn_t pfn;
1982 	pte_t *ptep;
1983 	spinlock_t *ptl;
1984 	int r;
1985 
1986 	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
1987 	if (r) {
1988 		/*
1989 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1990 		 * not call the fault handler, so do it here.
1991 		 */
1992 		bool unlocked = false;
1993 		r = fixup_user_fault(current->mm, addr,
1994 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1995 				     &unlocked);
1996 		if (unlocked)
1997 			return -EAGAIN;
1998 		if (r)
1999 			return r;
2000 
2001 		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2002 		if (r)
2003 			return r;
2004 	}
2005 
2006 	if (write_fault && !pte_write(*ptep)) {
2007 		pfn = KVM_PFN_ERR_RO_FAULT;
2008 		goto out;
2009 	}
2010 
2011 	if (writable)
2012 		*writable = pte_write(*ptep);
2013 	pfn = pte_pfn(*ptep);
2014 
2015 	/*
2016 	 * Get a reference here because callers of *hva_to_pfn* and
2017 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2018 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2019 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2020 	 * simply do nothing for reserved pfns.
2021 	 *
2022 	 * Whoever called remap_pfn_range is also going to call e.g.
2023 	 * unmap_mapping_range before the underlying pages are freed,
2024 	 * causing a call to our MMU notifier.
2025 	 *
2026 	 * Certain IO or PFNMAP mappings can be backed with valid
2027 	 * struct pages, but be allocated without refcounting e.g.,
2028 	 * tail pages of non-compound higher order allocations, which
2029 	 * would then underflow the refcount when the caller does the
2030 	 * required put_page. Don't allow those pages here.
2031 	 */
2032 	if (!kvm_try_get_pfn(pfn))
2033 		r = -EFAULT;
2034 
2035 out:
2036 	pte_unmap_unlock(ptep, ptl);
2037 	*p_pfn = pfn;
2038 
2039 	return r;
2040 }
2041 
2042 /*
2043  * Pin guest page in memory and return its pfn.
2044  * @addr: host virtual address which maps memory to the guest
2045  * @atomic: whether this function can sleep
2046  * @async: whether this function need to wait IO complete if the
2047  *         host page is not in the memory
2048  * @write_fault: whether we should get a writable host page
2049  * @writable: whether it allows to map a writable host page for !@write_fault
2050  *
2051  * The function will map a writable host page for these two cases:
2052  * 1): @write_fault = true
2053  * 2): @write_fault = false && @writable, @writable will tell the caller
2054  *     whether the mapping is writable.
2055  */
hva_to_pfn(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)2056 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2057 			bool write_fault, bool *writable)
2058 {
2059 	struct vm_area_struct *vma;
2060 	kvm_pfn_t pfn = 0;
2061 	int npages, r;
2062 
2063 	/* we can do it either atomically or asynchronously, not both */
2064 	BUG_ON(atomic && async);
2065 
2066 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2067 		return pfn;
2068 
2069 	if (atomic)
2070 		return KVM_PFN_ERR_FAULT;
2071 
2072 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2073 	if (npages == 1)
2074 		return pfn;
2075 
2076 	mmap_read_lock(current->mm);
2077 	if (npages == -EHWPOISON ||
2078 	      (!async && check_user_page_hwpoison(addr))) {
2079 		pfn = KVM_PFN_ERR_HWPOISON;
2080 		goto exit;
2081 	}
2082 
2083 retry:
2084 	vma = find_vma_intersection(current->mm, addr, addr + 1);
2085 
2086 	if (vma == NULL)
2087 		pfn = KVM_PFN_ERR_FAULT;
2088 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2089 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2090 		if (r == -EAGAIN)
2091 			goto retry;
2092 		if (r < 0)
2093 			pfn = KVM_PFN_ERR_FAULT;
2094 	} else {
2095 		if (async && vma_is_valid(vma, write_fault))
2096 			*async = true;
2097 		pfn = KVM_PFN_ERR_FAULT;
2098 	}
2099 exit:
2100 	mmap_read_unlock(current->mm);
2101 	return pfn;
2102 }
2103 
__gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable)2104 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2105 			       bool atomic, bool *async, bool write_fault,
2106 			       bool *writable)
2107 {
2108 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2109 
2110 	if (addr == KVM_HVA_ERR_RO_BAD) {
2111 		if (writable)
2112 			*writable = false;
2113 		return KVM_PFN_ERR_RO_FAULT;
2114 	}
2115 
2116 	if (kvm_is_error_hva(addr)) {
2117 		if (writable)
2118 			*writable = false;
2119 		return KVM_PFN_NOSLOT;
2120 	}
2121 
2122 	/* Do not map writable pfn in the readonly memslot. */
2123 	if (writable && memslot_is_readonly(slot)) {
2124 		*writable = false;
2125 		writable = NULL;
2126 	}
2127 
2128 	return hva_to_pfn(addr, atomic, async, write_fault,
2129 			  writable);
2130 }
2131 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2132 
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)2133 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2134 		      bool *writable)
2135 {
2136 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2137 				    write_fault, writable);
2138 }
2139 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2140 
gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2141 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2142 {
2143 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2144 }
2145 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2146 
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot * slot,gfn_t gfn)2147 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2148 {
2149 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2150 }
2151 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2152 
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)2153 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2154 {
2155 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2156 }
2157 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2158 
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)2159 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2160 {
2161 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2162 }
2163 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2164 
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)2165 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2166 {
2167 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2168 }
2169 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2170 
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)2171 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2172 			    struct page **pages, int nr_pages)
2173 {
2174 	unsigned long addr;
2175 	gfn_t entry = 0;
2176 
2177 	addr = gfn_to_hva_many(slot, gfn, &entry);
2178 	if (kvm_is_error_hva(addr))
2179 		return -1;
2180 
2181 	if (entry < nr_pages)
2182 		return 0;
2183 
2184 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2185 }
2186 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2187 
kvm_pfn_to_page(kvm_pfn_t pfn)2188 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2189 {
2190 	if (is_error_noslot_pfn(pfn))
2191 		return KVM_ERR_PTR_BAD_PAGE;
2192 
2193 	if (kvm_is_reserved_pfn(pfn)) {
2194 		WARN_ON(1);
2195 		return KVM_ERR_PTR_BAD_PAGE;
2196 	}
2197 
2198 	return pfn_to_page(pfn);
2199 }
2200 
gfn_to_page(struct kvm * kvm,gfn_t gfn)2201 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2202 {
2203 	kvm_pfn_t pfn;
2204 
2205 	pfn = gfn_to_pfn(kvm, gfn);
2206 
2207 	return kvm_pfn_to_page(pfn);
2208 }
2209 EXPORT_SYMBOL_GPL(gfn_to_page);
2210 
kvm_release_pfn(kvm_pfn_t pfn,bool dirty,struct gfn_to_pfn_cache * cache)2211 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2212 {
2213 	if (pfn == 0)
2214 		return;
2215 
2216 	if (cache)
2217 		cache->pfn = cache->gfn = 0;
2218 
2219 	if (dirty)
2220 		kvm_release_pfn_dirty(pfn);
2221 	else
2222 		kvm_release_pfn_clean(pfn);
2223 }
2224 
kvm_cache_gfn_to_pfn(struct kvm_memory_slot * slot,gfn_t gfn,struct gfn_to_pfn_cache * cache,u64 gen)2225 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2226 				 struct gfn_to_pfn_cache *cache, u64 gen)
2227 {
2228 	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2229 
2230 	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2231 	cache->gfn = gfn;
2232 	cache->dirty = false;
2233 	cache->generation = gen;
2234 }
2235 
__kvm_map_gfn(struct kvm_memslots * slots,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)2236 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2237 			 struct kvm_host_map *map,
2238 			 struct gfn_to_pfn_cache *cache,
2239 			 bool atomic)
2240 {
2241 	kvm_pfn_t pfn;
2242 	void *hva = NULL;
2243 	struct page *page = KVM_UNMAPPED_PAGE;
2244 	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2245 	u64 gen = slots->generation;
2246 
2247 	if (!map)
2248 		return -EINVAL;
2249 
2250 	if (cache) {
2251 		if (!cache->pfn || cache->gfn != gfn ||
2252 			cache->generation != gen) {
2253 			if (atomic)
2254 				return -EAGAIN;
2255 			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2256 		}
2257 		pfn = cache->pfn;
2258 	} else {
2259 		if (atomic)
2260 			return -EAGAIN;
2261 		pfn = gfn_to_pfn_memslot(slot, gfn);
2262 	}
2263 	if (is_error_noslot_pfn(pfn))
2264 		return -EINVAL;
2265 
2266 	if (pfn_valid(pfn)) {
2267 		page = pfn_to_page(pfn);
2268 		if (atomic)
2269 			hva = kmap_atomic(page);
2270 		else
2271 			hva = kmap(page);
2272 #ifdef CONFIG_HAS_IOMEM
2273 	} else if (!atomic) {
2274 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2275 	} else {
2276 		return -EINVAL;
2277 #endif
2278 	}
2279 
2280 	if (!hva)
2281 		return -EFAULT;
2282 
2283 	map->page = page;
2284 	map->hva = hva;
2285 	map->pfn = pfn;
2286 	map->gfn = gfn;
2287 
2288 	return 0;
2289 }
2290 
kvm_map_gfn(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool atomic)2291 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2292 		struct gfn_to_pfn_cache *cache, bool atomic)
2293 {
2294 	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2295 			cache, atomic);
2296 }
2297 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2298 
kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map)2299 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2300 {
2301 	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2302 		NULL, false);
2303 }
2304 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2305 
__kvm_unmap_gfn(struct kvm_memory_slot * memslot,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)2306 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2307 			struct kvm_host_map *map,
2308 			struct gfn_to_pfn_cache *cache,
2309 			bool dirty, bool atomic)
2310 {
2311 	if (!map)
2312 		return;
2313 
2314 	if (!map->hva)
2315 		return;
2316 
2317 	if (map->page != KVM_UNMAPPED_PAGE) {
2318 		if (atomic)
2319 			kunmap_atomic(map->hva);
2320 		else
2321 			kunmap(map->page);
2322 	}
2323 #ifdef CONFIG_HAS_IOMEM
2324 	else if (!atomic)
2325 		memunmap(map->hva);
2326 	else
2327 		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2328 #endif
2329 
2330 	if (dirty)
2331 		mark_page_dirty_in_slot(memslot, map->gfn);
2332 
2333 	if (cache)
2334 		cache->dirty |= dirty;
2335 	else
2336 		kvm_release_pfn(map->pfn, dirty, NULL);
2337 
2338 	map->hva = NULL;
2339 	map->page = NULL;
2340 }
2341 
kvm_unmap_gfn(struct kvm_vcpu * vcpu,struct kvm_host_map * map,struct gfn_to_pfn_cache * cache,bool dirty,bool atomic)2342 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
2343 		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2344 {
2345 	__kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2346 			cache, dirty, atomic);
2347 	return 0;
2348 }
2349 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2350 
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map,bool dirty)2351 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2352 {
2353 	__kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2354 			dirty, false);
2355 }
2356 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2357 
kvm_vcpu_gfn_to_page(struct kvm_vcpu * vcpu,gfn_t gfn)2358 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2359 {
2360 	kvm_pfn_t pfn;
2361 
2362 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2363 
2364 	return kvm_pfn_to_page(pfn);
2365 }
2366 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2367 
kvm_release_page_clean(struct page * page)2368 void kvm_release_page_clean(struct page *page)
2369 {
2370 	WARN_ON(is_error_page(page));
2371 
2372 	kvm_release_pfn_clean(page_to_pfn(page));
2373 }
2374 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2375 
kvm_release_pfn_clean(kvm_pfn_t pfn)2376 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2377 {
2378 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2379 		put_page(pfn_to_page(pfn));
2380 }
2381 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2382 
kvm_release_page_dirty(struct page * page)2383 void kvm_release_page_dirty(struct page *page)
2384 {
2385 	WARN_ON(is_error_page(page));
2386 
2387 	kvm_release_pfn_dirty(page_to_pfn(page));
2388 }
2389 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2390 
kvm_release_pfn_dirty(kvm_pfn_t pfn)2391 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2392 {
2393 	kvm_set_pfn_dirty(pfn);
2394 	kvm_release_pfn_clean(pfn);
2395 }
2396 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2397 
kvm_is_ad_tracked_pfn(kvm_pfn_t pfn)2398 static bool kvm_is_ad_tracked_pfn(kvm_pfn_t pfn)
2399 {
2400 	if (!pfn_valid(pfn))
2401 		return false;
2402 
2403 	/*
2404 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2405 	 * touched (e.g. set dirty) except by its owner".
2406 	 */
2407 	return !PageReserved(pfn_to_page(pfn));
2408 }
2409 
kvm_set_pfn_dirty(kvm_pfn_t pfn)2410 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2411 {
2412 	if (kvm_is_ad_tracked_pfn(pfn))
2413 		SetPageDirty(pfn_to_page(pfn));
2414 }
2415 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2416 
kvm_set_pfn_accessed(kvm_pfn_t pfn)2417 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2418 {
2419 	if (kvm_is_ad_tracked_pfn(pfn))
2420 		mark_page_accessed(pfn_to_page(pfn));
2421 }
2422 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2423 
kvm_get_pfn(kvm_pfn_t pfn)2424 void kvm_get_pfn(kvm_pfn_t pfn)
2425 {
2426 	if (!kvm_is_reserved_pfn(pfn))
2427 		get_page(pfn_to_page(pfn));
2428 }
2429 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2430 
next_segment(unsigned long len,int offset)2431 static int next_segment(unsigned long len, int offset)
2432 {
2433 	if (len > PAGE_SIZE - offset)
2434 		return PAGE_SIZE - offset;
2435 	else
2436 		return len;
2437 }
2438 
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)2439 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2440 				 void *data, int offset, int len)
2441 {
2442 	int r;
2443 	unsigned long addr;
2444 
2445 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2446 	if (kvm_is_error_hva(addr))
2447 		return -EFAULT;
2448 	r = __copy_from_user(data, (void __user *)addr + offset, len);
2449 	if (r)
2450 		return -EFAULT;
2451 	return 0;
2452 }
2453 
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)2454 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2455 			int len)
2456 {
2457 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2458 
2459 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2460 }
2461 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2462 
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)2463 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2464 			     int offset, int len)
2465 {
2466 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2467 
2468 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2469 }
2470 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2471 
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)2472 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2473 {
2474 	gfn_t gfn = gpa >> PAGE_SHIFT;
2475 	int seg;
2476 	int offset = offset_in_page(gpa);
2477 	int ret;
2478 
2479 	while ((seg = next_segment(len, offset)) != 0) {
2480 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2481 		if (ret < 0)
2482 			return ret;
2483 		offset = 0;
2484 		len -= seg;
2485 		data += seg;
2486 		++gfn;
2487 	}
2488 	return 0;
2489 }
2490 EXPORT_SYMBOL_GPL(kvm_read_guest);
2491 
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2492 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2493 {
2494 	gfn_t gfn = gpa >> PAGE_SHIFT;
2495 	int seg;
2496 	int offset = offset_in_page(gpa);
2497 	int ret;
2498 
2499 	while ((seg = next_segment(len, offset)) != 0) {
2500 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2501 		if (ret < 0)
2502 			return ret;
2503 		offset = 0;
2504 		len -= seg;
2505 		data += seg;
2506 		++gfn;
2507 	}
2508 	return 0;
2509 }
2510 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2511 
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)2512 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2513 			           void *data, int offset, unsigned long len)
2514 {
2515 	int r;
2516 	unsigned long addr;
2517 
2518 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2519 	if (kvm_is_error_hva(addr))
2520 		return -EFAULT;
2521 	pagefault_disable();
2522 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2523 	pagefault_enable();
2524 	if (r)
2525 		return -EFAULT;
2526 	return 0;
2527 }
2528 
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)2529 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2530 			       void *data, unsigned long len)
2531 {
2532 	gfn_t gfn = gpa >> PAGE_SHIFT;
2533 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2534 	int offset = offset_in_page(gpa);
2535 
2536 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2537 }
2538 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2539 
__kvm_write_guest_page(struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)2540 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2541 			          const void *data, int offset, int len)
2542 {
2543 	int r;
2544 	unsigned long addr;
2545 
2546 	addr = gfn_to_hva_memslot(memslot, gfn);
2547 	if (kvm_is_error_hva(addr))
2548 		return -EFAULT;
2549 	r = __copy_to_user((void __user *)addr + offset, data, len);
2550 	if (r)
2551 		return -EFAULT;
2552 	mark_page_dirty_in_slot(memslot, gfn);
2553 	return 0;
2554 }
2555 
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)2556 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2557 			 const void *data, int offset, int len)
2558 {
2559 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2560 
2561 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2562 }
2563 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2564 
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)2565 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2566 			      const void *data, int offset, int len)
2567 {
2568 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2569 
2570 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2571 }
2572 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2573 
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)2574 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2575 		    unsigned long len)
2576 {
2577 	gfn_t gfn = gpa >> PAGE_SHIFT;
2578 	int seg;
2579 	int offset = offset_in_page(gpa);
2580 	int ret;
2581 
2582 	while ((seg = next_segment(len, offset)) != 0) {
2583 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2584 		if (ret < 0)
2585 			return ret;
2586 		offset = 0;
2587 		len -= seg;
2588 		data += seg;
2589 		++gfn;
2590 	}
2591 	return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(kvm_write_guest);
2594 
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)2595 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2596 		         unsigned long len)
2597 {
2598 	gfn_t gfn = gpa >> PAGE_SHIFT;
2599 	int seg;
2600 	int offset = offset_in_page(gpa);
2601 	int ret;
2602 
2603 	while ((seg = next_segment(len, offset)) != 0) {
2604 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2605 		if (ret < 0)
2606 			return ret;
2607 		offset = 0;
2608 		len -= seg;
2609 		data += seg;
2610 		++gfn;
2611 	}
2612 	return 0;
2613 }
2614 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2615 
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)2616 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2617 				       struct gfn_to_hva_cache *ghc,
2618 				       gpa_t gpa, unsigned long len)
2619 {
2620 	int offset = offset_in_page(gpa);
2621 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2622 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2623 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2624 	gfn_t nr_pages_avail;
2625 
2626 	/* Update ghc->generation before performing any error checks. */
2627 	ghc->generation = slots->generation;
2628 
2629 	if (start_gfn > end_gfn) {
2630 		ghc->hva = KVM_HVA_ERR_BAD;
2631 		return -EINVAL;
2632 	}
2633 
2634 	/*
2635 	 * If the requested region crosses two memslots, we still
2636 	 * verify that the entire region is valid here.
2637 	 */
2638 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2639 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2640 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2641 					   &nr_pages_avail);
2642 		if (kvm_is_error_hva(ghc->hva))
2643 			return -EFAULT;
2644 	}
2645 
2646 	/* Use the slow path for cross page reads and writes. */
2647 	if (nr_pages_needed == 1)
2648 		ghc->hva += offset;
2649 	else
2650 		ghc->memslot = NULL;
2651 
2652 	ghc->gpa = gpa;
2653 	ghc->len = len;
2654 	return 0;
2655 }
2656 
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)2657 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2658 			      gpa_t gpa, unsigned long len)
2659 {
2660 	struct kvm_memslots *slots = kvm_memslots(kvm);
2661 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2662 }
2663 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2664 
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)2665 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2666 				  void *data, unsigned int offset,
2667 				  unsigned long len)
2668 {
2669 	struct kvm_memslots *slots = kvm_memslots(kvm);
2670 	int r;
2671 	gpa_t gpa = ghc->gpa + offset;
2672 
2673 	if (WARN_ON_ONCE(len + offset > ghc->len))
2674 		return -EINVAL;
2675 
2676 	if (slots->generation != ghc->generation) {
2677 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2678 			return -EFAULT;
2679 	}
2680 
2681 	if (kvm_is_error_hva(ghc->hva))
2682 		return -EFAULT;
2683 
2684 	if (unlikely(!ghc->memslot))
2685 		return kvm_write_guest(kvm, gpa, data, len);
2686 
2687 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2688 	if (r)
2689 		return -EFAULT;
2690 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2691 
2692 	return 0;
2693 }
2694 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2695 
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)2696 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2697 			   void *data, unsigned long len)
2698 {
2699 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2700 }
2701 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2702 
kvm_read_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)2703 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2704 				 void *data, unsigned int offset,
2705 				 unsigned long len)
2706 {
2707 	struct kvm_memslots *slots = kvm_memslots(kvm);
2708 	int r;
2709 	gpa_t gpa = ghc->gpa + offset;
2710 
2711 	if (WARN_ON_ONCE(len + offset > ghc->len))
2712 		return -EINVAL;
2713 
2714 	if (slots->generation != ghc->generation) {
2715 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2716 			return -EFAULT;
2717 	}
2718 
2719 	if (kvm_is_error_hva(ghc->hva))
2720 		return -EFAULT;
2721 
2722 	if (unlikely(!ghc->memslot))
2723 		return kvm_read_guest(kvm, gpa, data, len);
2724 
2725 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2726 	if (r)
2727 		return -EFAULT;
2728 
2729 	return 0;
2730 }
2731 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2732 
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)2733 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2734 			  void *data, unsigned long len)
2735 {
2736 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2737 }
2738 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2739 
kvm_clear_guest_page(struct kvm * kvm,gfn_t gfn,int offset,int len)2740 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2741 {
2742 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2743 
2744 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2745 }
2746 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2747 
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)2748 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2749 {
2750 	gfn_t gfn = gpa >> PAGE_SHIFT;
2751 	int seg;
2752 	int offset = offset_in_page(gpa);
2753 	int ret;
2754 
2755 	while ((seg = next_segment(len, offset)) != 0) {
2756 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2757 		if (ret < 0)
2758 			return ret;
2759 		offset = 0;
2760 		len -= seg;
2761 		++gfn;
2762 	}
2763 	return 0;
2764 }
2765 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2766 
mark_page_dirty_in_slot(struct kvm_memory_slot * memslot,gfn_t gfn)2767 void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn)
2768 {
2769 	if (memslot && memslot->dirty_bitmap) {
2770 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2771 
2772 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2773 	}
2774 }
2775 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2776 
mark_page_dirty(struct kvm * kvm,gfn_t gfn)2777 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2778 {
2779 	struct kvm_memory_slot *memslot;
2780 
2781 	memslot = gfn_to_memslot(kvm, gfn);
2782 	mark_page_dirty_in_slot(memslot, gfn);
2783 }
2784 EXPORT_SYMBOL_GPL(mark_page_dirty);
2785 
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)2786 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2787 {
2788 	struct kvm_memory_slot *memslot;
2789 
2790 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2791 	mark_page_dirty_in_slot(memslot, gfn);
2792 }
2793 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2794 
kvm_sigset_activate(struct kvm_vcpu * vcpu)2795 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2796 {
2797 	if (!vcpu->sigset_active)
2798 		return;
2799 
2800 	/*
2801 	 * This does a lockless modification of ->real_blocked, which is fine
2802 	 * because, only current can change ->real_blocked and all readers of
2803 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2804 	 * of ->blocked.
2805 	 */
2806 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2807 }
2808 
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)2809 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2810 {
2811 	if (!vcpu->sigset_active)
2812 		return;
2813 
2814 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2815 	sigemptyset(&current->real_blocked);
2816 }
2817 
grow_halt_poll_ns(struct kvm_vcpu * vcpu)2818 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2819 {
2820 	unsigned int old, val, grow, grow_start;
2821 
2822 	old = val = vcpu->halt_poll_ns;
2823 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2824 	grow = READ_ONCE(halt_poll_ns_grow);
2825 	if (!grow)
2826 		goto out;
2827 
2828 	val *= grow;
2829 	if (val < grow_start)
2830 		val = grow_start;
2831 
2832 	if (val > vcpu->kvm->max_halt_poll_ns)
2833 		val = vcpu->kvm->max_halt_poll_ns;
2834 
2835 	vcpu->halt_poll_ns = val;
2836 out:
2837 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2838 }
2839 
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)2840 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2841 {
2842 	unsigned int old, val, shrink, grow_start;
2843 
2844 	old = val = vcpu->halt_poll_ns;
2845 	shrink = READ_ONCE(halt_poll_ns_shrink);
2846 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2847 	if (shrink == 0)
2848 		val = 0;
2849 	else
2850 		val /= shrink;
2851 
2852 	if (val < grow_start)
2853 		val = 0;
2854 
2855 	vcpu->halt_poll_ns = val;
2856 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2857 }
2858 
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)2859 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2860 {
2861 	int ret = -EINTR;
2862 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2863 
2864 	if (kvm_arch_vcpu_runnable(vcpu)) {
2865 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2866 		goto out;
2867 	}
2868 	if (kvm_cpu_has_pending_timer(vcpu))
2869 		goto out;
2870 	if (signal_pending(current))
2871 		goto out;
2872 
2873 	ret = 0;
2874 out:
2875 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2876 	return ret;
2877 }
2878 
2879 static inline void
update_halt_poll_stats(struct kvm_vcpu * vcpu,u64 poll_ns,bool waited)2880 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2881 {
2882 	if (waited)
2883 		vcpu->stat.halt_poll_fail_ns += poll_ns;
2884 	else
2885 		vcpu->stat.halt_poll_success_ns += poll_ns;
2886 }
2887 
2888 /*
2889  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2890  */
kvm_vcpu_block(struct kvm_vcpu * vcpu)2891 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2892 {
2893 	ktime_t start, cur, poll_end;
2894 	bool waited = false;
2895 	u64 block_ns;
2896 
2897 	kvm_arch_vcpu_blocking(vcpu);
2898 
2899 	start = cur = poll_end = ktime_get();
2900 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2901 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2902 
2903 		++vcpu->stat.halt_attempted_poll;
2904 		do {
2905 			/*
2906 			 * This sets KVM_REQ_UNHALT if an interrupt
2907 			 * arrives.
2908 			 */
2909 			if (kvm_vcpu_check_block(vcpu) < 0) {
2910 				++vcpu->stat.halt_successful_poll;
2911 				if (!vcpu_valid_wakeup(vcpu))
2912 					++vcpu->stat.halt_poll_invalid;
2913 				goto out;
2914 			}
2915 			poll_end = cur = ktime_get();
2916 		} while (single_task_running() && !need_resched() &&
2917 			 ktime_before(cur, stop));
2918 	}
2919 
2920 	prepare_to_rcuwait(&vcpu->wait);
2921 	for (;;) {
2922 		set_current_state(TASK_INTERRUPTIBLE);
2923 
2924 		if (kvm_vcpu_check_block(vcpu) < 0)
2925 			break;
2926 
2927 		waited = true;
2928 		schedule();
2929 	}
2930 	finish_rcuwait(&vcpu->wait);
2931 	cur = ktime_get();
2932 out:
2933 	kvm_arch_vcpu_unblocking(vcpu);
2934 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2935 
2936 	update_halt_poll_stats(
2937 		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2938 
2939 	if (!kvm_arch_no_poll(vcpu)) {
2940 		if (!vcpu_valid_wakeup(vcpu)) {
2941 			shrink_halt_poll_ns(vcpu);
2942 		} else if (vcpu->kvm->max_halt_poll_ns) {
2943 			if (block_ns <= vcpu->halt_poll_ns)
2944 				;
2945 			/* we had a long block, shrink polling */
2946 			else if (vcpu->halt_poll_ns &&
2947 					block_ns > vcpu->kvm->max_halt_poll_ns)
2948 				shrink_halt_poll_ns(vcpu);
2949 			/* we had a short halt and our poll time is too small */
2950 			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2951 					block_ns < vcpu->kvm->max_halt_poll_ns)
2952 				grow_halt_poll_ns(vcpu);
2953 		} else {
2954 			vcpu->halt_poll_ns = 0;
2955 		}
2956 	}
2957 
2958 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2959 	kvm_arch_vcpu_block_finish(vcpu);
2960 }
2961 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2962 
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)2963 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2964 {
2965 	struct rcuwait *waitp;
2966 
2967 	waitp = kvm_arch_vcpu_get_wait(vcpu);
2968 	if (rcuwait_wake_up(waitp)) {
2969 		WRITE_ONCE(vcpu->ready, true);
2970 		++vcpu->stat.halt_wakeup;
2971 		return true;
2972 	}
2973 
2974 	return false;
2975 }
2976 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2977 
2978 #ifndef CONFIG_S390
2979 /*
2980  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2981  */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)2982 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2983 {
2984 	int me, cpu;
2985 
2986 	if (kvm_vcpu_wake_up(vcpu))
2987 		return;
2988 
2989 	/*
2990 	 * Note, the vCPU could get migrated to a different pCPU at any point
2991 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
2992 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
2993 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
2994 	 * vCPU also requires it to leave IN_GUEST_MODE.
2995 	 */
2996 	me = get_cpu();
2997 	if (kvm_arch_vcpu_should_kick(vcpu)) {
2998 		cpu = READ_ONCE(vcpu->cpu);
2999 		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3000 			smp_send_reschedule(cpu);
3001 	}
3002 	put_cpu();
3003 }
3004 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3005 #endif /* !CONFIG_S390 */
3006 
kvm_vcpu_yield_to(struct kvm_vcpu * target)3007 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3008 {
3009 	struct pid *pid;
3010 	struct task_struct *task = NULL;
3011 	int ret = 0;
3012 
3013 	rcu_read_lock();
3014 	pid = rcu_dereference(target->pid);
3015 	if (pid)
3016 		task = get_pid_task(pid, PIDTYPE_PID);
3017 	rcu_read_unlock();
3018 	if (!task)
3019 		return ret;
3020 	ret = yield_to(task, 1);
3021 	put_task_struct(task);
3022 
3023 	return ret;
3024 }
3025 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3026 
3027 /*
3028  * Helper that checks whether a VCPU is eligible for directed yield.
3029  * Most eligible candidate to yield is decided by following heuristics:
3030  *
3031  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3032  *  (preempted lock holder), indicated by @in_spin_loop.
3033  *  Set at the beginning and cleared at the end of interception/PLE handler.
3034  *
3035  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3036  *  chance last time (mostly it has become eligible now since we have probably
3037  *  yielded to lockholder in last iteration. This is done by toggling
3038  *  @dy_eligible each time a VCPU checked for eligibility.)
3039  *
3040  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3041  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3042  *  burning. Giving priority for a potential lock-holder increases lock
3043  *  progress.
3044  *
3045  *  Since algorithm is based on heuristics, accessing another VCPU data without
3046  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3047  *  and continue with next VCPU and so on.
3048  */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)3049 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3050 {
3051 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3052 	bool eligible;
3053 
3054 	eligible = !vcpu->spin_loop.in_spin_loop ||
3055 		    vcpu->spin_loop.dy_eligible;
3056 
3057 	if (vcpu->spin_loop.in_spin_loop)
3058 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3059 
3060 	return eligible;
3061 #else
3062 	return true;
3063 #endif
3064 }
3065 
3066 /*
3067  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3068  * a vcpu_load/vcpu_put pair.  However, for most architectures
3069  * kvm_arch_vcpu_runnable does not require vcpu_load.
3070  */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)3071 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3072 {
3073 	return kvm_arch_vcpu_runnable(vcpu);
3074 }
3075 
vcpu_dy_runnable(struct kvm_vcpu * vcpu)3076 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3077 {
3078 	if (kvm_arch_dy_runnable(vcpu))
3079 		return true;
3080 
3081 #ifdef CONFIG_KVM_ASYNC_PF
3082 	if (!list_empty_careful(&vcpu->async_pf.done))
3083 		return true;
3084 #endif
3085 
3086 	return false;
3087 }
3088 
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)3089 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3090 {
3091 	struct kvm *kvm = me->kvm;
3092 	struct kvm_vcpu *vcpu;
3093 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3094 	int yielded = 0;
3095 	int try = 3;
3096 	int pass;
3097 	int i;
3098 
3099 	kvm_vcpu_set_in_spin_loop(me, true);
3100 	/*
3101 	 * We boost the priority of a VCPU that is runnable but not
3102 	 * currently running, because it got preempted by something
3103 	 * else and called schedule in __vcpu_run.  Hopefully that
3104 	 * VCPU is holding the lock that we need and will release it.
3105 	 * We approximate round-robin by starting at the last boosted VCPU.
3106 	 */
3107 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3108 		kvm_for_each_vcpu(i, vcpu, kvm) {
3109 			if (!pass && i <= last_boosted_vcpu) {
3110 				i = last_boosted_vcpu;
3111 				continue;
3112 			} else if (pass && i > last_boosted_vcpu)
3113 				break;
3114 			if (!READ_ONCE(vcpu->ready))
3115 				continue;
3116 			if (vcpu == me)
3117 				continue;
3118 			if (rcuwait_active(&vcpu->wait) &&
3119 			    !vcpu_dy_runnable(vcpu))
3120 				continue;
3121 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3122 				!kvm_arch_vcpu_in_kernel(vcpu))
3123 				continue;
3124 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3125 				continue;
3126 
3127 			yielded = kvm_vcpu_yield_to(vcpu);
3128 			if (yielded > 0) {
3129 				kvm->last_boosted_vcpu = i;
3130 				break;
3131 			} else if (yielded < 0) {
3132 				try--;
3133 				if (!try)
3134 					break;
3135 			}
3136 		}
3137 	}
3138 	kvm_vcpu_set_in_spin_loop(me, false);
3139 
3140 	/* Ensure vcpu is not eligible during next spinloop */
3141 	kvm_vcpu_set_dy_eligible(me, false);
3142 }
3143 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3144 
kvm_vcpu_fault(struct vm_fault * vmf)3145 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3146 {
3147 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3148 	struct page *page;
3149 
3150 	if (vmf->pgoff == 0)
3151 		page = virt_to_page(vcpu->run);
3152 #ifdef CONFIG_X86
3153 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3154 		page = virt_to_page(vcpu->arch.pio_data);
3155 #endif
3156 #ifdef CONFIG_KVM_MMIO
3157 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3158 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3159 #endif
3160 	else
3161 		return kvm_arch_vcpu_fault(vcpu, vmf);
3162 	get_page(page);
3163 	vmf->page = page;
3164 	return 0;
3165 }
3166 
3167 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3168 	.fault = kvm_vcpu_fault,
3169 };
3170 
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)3171 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3172 {
3173 	vma->vm_ops = &kvm_vcpu_vm_ops;
3174 	return 0;
3175 }
3176 
kvm_vcpu_release(struct inode * inode,struct file * filp)3177 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3178 {
3179 	struct kvm_vcpu *vcpu = filp->private_data;
3180 
3181 	kvm_put_kvm(vcpu->kvm);
3182 	return 0;
3183 }
3184 
3185 static struct file_operations kvm_vcpu_fops = {
3186 	.release        = kvm_vcpu_release,
3187 	.unlocked_ioctl = kvm_vcpu_ioctl,
3188 	.mmap           = kvm_vcpu_mmap,
3189 	.llseek		= noop_llseek,
3190 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3191 };
3192 
3193 /*
3194  * Allocates an inode for the vcpu.
3195  */
create_vcpu_fd(struct kvm_vcpu * vcpu)3196 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3197 {
3198 	char name[8 + 1 + ITOA_MAX_LEN + 1];
3199 
3200 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3201 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3202 }
3203 
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)3204 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3205 {
3206 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3207 	struct dentry *debugfs_dentry;
3208 	char dir_name[ITOA_MAX_LEN * 2];
3209 
3210 	if (!debugfs_initialized())
3211 		return;
3212 
3213 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3214 	debugfs_dentry = debugfs_create_dir(dir_name,
3215 					    vcpu->kvm->debugfs_dentry);
3216 
3217 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3218 #endif
3219 }
3220 
3221 /*
3222  * Creates some virtual cpus.  Good luck creating more than one.
3223  */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)3224 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3225 {
3226 	int r;
3227 	struct kvm_vcpu *vcpu;
3228 	struct page *page;
3229 
3230 	if (id >= KVM_MAX_VCPU_ID)
3231 		return -EINVAL;
3232 
3233 	mutex_lock(&kvm->lock);
3234 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3235 		mutex_unlock(&kvm->lock);
3236 		return -EINVAL;
3237 	}
3238 
3239 	kvm->created_vcpus++;
3240 	mutex_unlock(&kvm->lock);
3241 
3242 	r = kvm_arch_vcpu_precreate(kvm, id);
3243 	if (r)
3244 		goto vcpu_decrement;
3245 
3246 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3247 	if (!vcpu) {
3248 		r = -ENOMEM;
3249 		goto vcpu_decrement;
3250 	}
3251 
3252 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3253 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3254 	if (!page) {
3255 		r = -ENOMEM;
3256 		goto vcpu_free;
3257 	}
3258 	vcpu->run = page_address(page);
3259 
3260 	kvm_vcpu_init(vcpu, kvm, id);
3261 
3262 	r = kvm_arch_vcpu_create(vcpu);
3263 	if (r)
3264 		goto vcpu_free_run_page;
3265 
3266 	mutex_lock(&kvm->lock);
3267 	if (kvm_get_vcpu_by_id(kvm, id)) {
3268 		r = -EEXIST;
3269 		goto unlock_vcpu_destroy;
3270 	}
3271 
3272 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3273 	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3274 
3275 	/* Now it's all set up, let userspace reach it */
3276 	kvm_get_kvm(kvm);
3277 	r = create_vcpu_fd(vcpu);
3278 	if (r < 0) {
3279 		kvm_put_kvm_no_destroy(kvm);
3280 		goto unlock_vcpu_destroy;
3281 	}
3282 
3283 	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3284 
3285 	/*
3286 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3287 	 * before kvm->online_vcpu's incremented value.
3288 	 */
3289 	smp_wmb();
3290 	atomic_inc(&kvm->online_vcpus);
3291 
3292 	mutex_unlock(&kvm->lock);
3293 	kvm_arch_vcpu_postcreate(vcpu);
3294 	kvm_create_vcpu_debugfs(vcpu);
3295 	return r;
3296 
3297 unlock_vcpu_destroy:
3298 	mutex_unlock(&kvm->lock);
3299 	kvm_arch_vcpu_destroy(vcpu);
3300 vcpu_free_run_page:
3301 	free_page((unsigned long)vcpu->run);
3302 vcpu_free:
3303 	kmem_cache_free(kvm_vcpu_cache, vcpu);
3304 vcpu_decrement:
3305 	mutex_lock(&kvm->lock);
3306 	kvm->created_vcpus--;
3307 	mutex_unlock(&kvm->lock);
3308 	return r;
3309 }
3310 
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)3311 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3312 {
3313 	if (sigset) {
3314 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3315 		vcpu->sigset_active = 1;
3316 		vcpu->sigset = *sigset;
3317 	} else
3318 		vcpu->sigset_active = 0;
3319 	return 0;
3320 }
3321 
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3322 static long kvm_vcpu_ioctl(struct file *filp,
3323 			   unsigned int ioctl, unsigned long arg)
3324 {
3325 	struct kvm_vcpu *vcpu = filp->private_data;
3326 	void __user *argp = (void __user *)arg;
3327 	int r;
3328 	struct kvm_fpu *fpu = NULL;
3329 	struct kvm_sregs *kvm_sregs = NULL;
3330 
3331 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3332 		return -EIO;
3333 
3334 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3335 		return -EINVAL;
3336 
3337 	/*
3338 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3339 	 * execution; mutex_lock() would break them.
3340 	 */
3341 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3342 	if (r != -ENOIOCTLCMD)
3343 		return r;
3344 
3345 	if (mutex_lock_killable(&vcpu->mutex))
3346 		return -EINTR;
3347 	switch (ioctl) {
3348 	case KVM_RUN: {
3349 		struct pid *oldpid;
3350 		r = -EINVAL;
3351 		if (arg)
3352 			goto out;
3353 		oldpid = rcu_access_pointer(vcpu->pid);
3354 		if (unlikely(oldpid != task_pid(current))) {
3355 			/* The thread running this VCPU changed. */
3356 			struct pid *newpid;
3357 
3358 			r = kvm_arch_vcpu_run_pid_change(vcpu);
3359 			if (r)
3360 				break;
3361 
3362 			newpid = get_task_pid(current, PIDTYPE_PID);
3363 			rcu_assign_pointer(vcpu->pid, newpid);
3364 			if (oldpid)
3365 				synchronize_rcu();
3366 			put_pid(oldpid);
3367 		}
3368 		r = kvm_arch_vcpu_ioctl_run(vcpu);
3369 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3370 		break;
3371 	}
3372 	case KVM_GET_REGS: {
3373 		struct kvm_regs *kvm_regs;
3374 
3375 		r = -ENOMEM;
3376 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3377 		if (!kvm_regs)
3378 			goto out;
3379 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3380 		if (r)
3381 			goto out_free1;
3382 		r = -EFAULT;
3383 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3384 			goto out_free1;
3385 		r = 0;
3386 out_free1:
3387 		kfree(kvm_regs);
3388 		break;
3389 	}
3390 	case KVM_SET_REGS: {
3391 		struct kvm_regs *kvm_regs;
3392 
3393 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3394 		if (IS_ERR(kvm_regs)) {
3395 			r = PTR_ERR(kvm_regs);
3396 			goto out;
3397 		}
3398 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3399 		kfree(kvm_regs);
3400 		break;
3401 	}
3402 	case KVM_GET_SREGS: {
3403 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3404 				    GFP_KERNEL_ACCOUNT);
3405 		r = -ENOMEM;
3406 		if (!kvm_sregs)
3407 			goto out;
3408 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3409 		if (r)
3410 			goto out;
3411 		r = -EFAULT;
3412 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3413 			goto out;
3414 		r = 0;
3415 		break;
3416 	}
3417 	case KVM_SET_SREGS: {
3418 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3419 		if (IS_ERR(kvm_sregs)) {
3420 			r = PTR_ERR(kvm_sregs);
3421 			kvm_sregs = NULL;
3422 			goto out;
3423 		}
3424 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3425 		break;
3426 	}
3427 	case KVM_GET_MP_STATE: {
3428 		struct kvm_mp_state mp_state;
3429 
3430 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3431 		if (r)
3432 			goto out;
3433 		r = -EFAULT;
3434 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3435 			goto out;
3436 		r = 0;
3437 		break;
3438 	}
3439 	case KVM_SET_MP_STATE: {
3440 		struct kvm_mp_state mp_state;
3441 
3442 		r = -EFAULT;
3443 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3444 			goto out;
3445 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3446 		break;
3447 	}
3448 	case KVM_TRANSLATE: {
3449 		struct kvm_translation tr;
3450 
3451 		r = -EFAULT;
3452 		if (copy_from_user(&tr, argp, sizeof(tr)))
3453 			goto out;
3454 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3455 		if (r)
3456 			goto out;
3457 		r = -EFAULT;
3458 		if (copy_to_user(argp, &tr, sizeof(tr)))
3459 			goto out;
3460 		r = 0;
3461 		break;
3462 	}
3463 	case KVM_SET_GUEST_DEBUG: {
3464 		struct kvm_guest_debug dbg;
3465 
3466 		r = -EFAULT;
3467 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3468 			goto out;
3469 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3470 		break;
3471 	}
3472 	case KVM_SET_SIGNAL_MASK: {
3473 		struct kvm_signal_mask __user *sigmask_arg = argp;
3474 		struct kvm_signal_mask kvm_sigmask;
3475 		sigset_t sigset, *p;
3476 
3477 		p = NULL;
3478 		if (argp) {
3479 			r = -EFAULT;
3480 			if (copy_from_user(&kvm_sigmask, argp,
3481 					   sizeof(kvm_sigmask)))
3482 				goto out;
3483 			r = -EINVAL;
3484 			if (kvm_sigmask.len != sizeof(sigset))
3485 				goto out;
3486 			r = -EFAULT;
3487 			if (copy_from_user(&sigset, sigmask_arg->sigset,
3488 					   sizeof(sigset)))
3489 				goto out;
3490 			p = &sigset;
3491 		}
3492 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3493 		break;
3494 	}
3495 	case KVM_GET_FPU: {
3496 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3497 		r = -ENOMEM;
3498 		if (!fpu)
3499 			goto out;
3500 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3501 		if (r)
3502 			goto out;
3503 		r = -EFAULT;
3504 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3505 			goto out;
3506 		r = 0;
3507 		break;
3508 	}
3509 	case KVM_SET_FPU: {
3510 		fpu = memdup_user(argp, sizeof(*fpu));
3511 		if (IS_ERR(fpu)) {
3512 			r = PTR_ERR(fpu);
3513 			fpu = NULL;
3514 			goto out;
3515 		}
3516 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3517 		break;
3518 	}
3519 	default:
3520 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3521 	}
3522 out:
3523 	mutex_unlock(&vcpu->mutex);
3524 	kfree(fpu);
3525 	kfree(kvm_sregs);
3526 	return r;
3527 }
3528 
3529 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3530 static long kvm_vcpu_compat_ioctl(struct file *filp,
3531 				  unsigned int ioctl, unsigned long arg)
3532 {
3533 	struct kvm_vcpu *vcpu = filp->private_data;
3534 	void __user *argp = compat_ptr(arg);
3535 	int r;
3536 
3537 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3538 		return -EIO;
3539 
3540 	switch (ioctl) {
3541 	case KVM_SET_SIGNAL_MASK: {
3542 		struct kvm_signal_mask __user *sigmask_arg = argp;
3543 		struct kvm_signal_mask kvm_sigmask;
3544 		sigset_t sigset;
3545 
3546 		if (argp) {
3547 			r = -EFAULT;
3548 			if (copy_from_user(&kvm_sigmask, argp,
3549 					   sizeof(kvm_sigmask)))
3550 				goto out;
3551 			r = -EINVAL;
3552 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3553 				goto out;
3554 			r = -EFAULT;
3555 			if (get_compat_sigset(&sigset,
3556 					      (compat_sigset_t __user *)sigmask_arg->sigset))
3557 				goto out;
3558 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3559 		} else
3560 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3561 		break;
3562 	}
3563 	default:
3564 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3565 	}
3566 
3567 out:
3568 	return r;
3569 }
3570 #endif
3571 
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)3572 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3573 {
3574 	struct kvm_device *dev = filp->private_data;
3575 
3576 	if (dev->ops->mmap)
3577 		return dev->ops->mmap(dev, vma);
3578 
3579 	return -ENODEV;
3580 }
3581 
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)3582 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3583 				 int (*accessor)(struct kvm_device *dev,
3584 						 struct kvm_device_attr *attr),
3585 				 unsigned long arg)
3586 {
3587 	struct kvm_device_attr attr;
3588 
3589 	if (!accessor)
3590 		return -EPERM;
3591 
3592 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3593 		return -EFAULT;
3594 
3595 	return accessor(dev, &attr);
3596 }
3597 
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3598 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3599 			     unsigned long arg)
3600 {
3601 	struct kvm_device *dev = filp->private_data;
3602 
3603 	if (dev->kvm->mm != current->mm || dev->kvm->vm_bugged)
3604 		return -EIO;
3605 
3606 	switch (ioctl) {
3607 	case KVM_SET_DEVICE_ATTR:
3608 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3609 	case KVM_GET_DEVICE_ATTR:
3610 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3611 	case KVM_HAS_DEVICE_ATTR:
3612 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3613 	default:
3614 		if (dev->ops->ioctl)
3615 			return dev->ops->ioctl(dev, ioctl, arg);
3616 
3617 		return -ENOTTY;
3618 	}
3619 }
3620 
kvm_device_release(struct inode * inode,struct file * filp)3621 static int kvm_device_release(struct inode *inode, struct file *filp)
3622 {
3623 	struct kvm_device *dev = filp->private_data;
3624 	struct kvm *kvm = dev->kvm;
3625 
3626 	if (dev->ops->release) {
3627 		mutex_lock(&kvm->lock);
3628 		list_del(&dev->vm_node);
3629 		dev->ops->release(dev);
3630 		mutex_unlock(&kvm->lock);
3631 	}
3632 
3633 	kvm_put_kvm(kvm);
3634 	return 0;
3635 }
3636 
3637 static const struct file_operations kvm_device_fops = {
3638 	.unlocked_ioctl = kvm_device_ioctl,
3639 	.release = kvm_device_release,
3640 	KVM_COMPAT(kvm_device_ioctl),
3641 	.mmap = kvm_device_mmap,
3642 };
3643 
kvm_device_from_filp(struct file * filp)3644 struct kvm_device *kvm_device_from_filp(struct file *filp)
3645 {
3646 	if (filp->f_op != &kvm_device_fops)
3647 		return NULL;
3648 
3649 	return filp->private_data;
3650 }
3651 
3652 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3653 #ifdef CONFIG_KVM_MPIC
3654 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3655 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3656 #endif
3657 };
3658 
kvm_register_device_ops(const struct kvm_device_ops * ops,u32 type)3659 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3660 {
3661 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3662 		return -ENOSPC;
3663 
3664 	if (kvm_device_ops_table[type] != NULL)
3665 		return -EEXIST;
3666 
3667 	kvm_device_ops_table[type] = ops;
3668 	return 0;
3669 }
3670 
kvm_unregister_device_ops(u32 type)3671 void kvm_unregister_device_ops(u32 type)
3672 {
3673 	if (kvm_device_ops_table[type] != NULL)
3674 		kvm_device_ops_table[type] = NULL;
3675 }
3676 
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)3677 static int kvm_ioctl_create_device(struct kvm *kvm,
3678 				   struct kvm_create_device *cd)
3679 {
3680 	const struct kvm_device_ops *ops = NULL;
3681 	struct kvm_device *dev;
3682 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3683 	int type;
3684 	int ret;
3685 
3686 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3687 		return -ENODEV;
3688 
3689 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3690 	ops = kvm_device_ops_table[type];
3691 	if (ops == NULL)
3692 		return -ENODEV;
3693 
3694 	if (test)
3695 		return 0;
3696 
3697 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3698 	if (!dev)
3699 		return -ENOMEM;
3700 
3701 	dev->ops = ops;
3702 	dev->kvm = kvm;
3703 
3704 	mutex_lock(&kvm->lock);
3705 	ret = ops->create(dev, type);
3706 	if (ret < 0) {
3707 		mutex_unlock(&kvm->lock);
3708 		kfree(dev);
3709 		return ret;
3710 	}
3711 	list_add(&dev->vm_node, &kvm->devices);
3712 	mutex_unlock(&kvm->lock);
3713 
3714 	if (ops->init)
3715 		ops->init(dev);
3716 
3717 	kvm_get_kvm(kvm);
3718 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3719 	if (ret < 0) {
3720 		kvm_put_kvm_no_destroy(kvm);
3721 		mutex_lock(&kvm->lock);
3722 		list_del(&dev->vm_node);
3723 		if (ops->release)
3724 			ops->release(dev);
3725 		mutex_unlock(&kvm->lock);
3726 		if (ops->destroy)
3727 			ops->destroy(dev);
3728 		return ret;
3729 	}
3730 
3731 	cd->fd = ret;
3732 	return 0;
3733 }
3734 
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)3735 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3736 {
3737 	switch (arg) {
3738 	case KVM_CAP_USER_MEMORY:
3739 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3740 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3741 	case KVM_CAP_INTERNAL_ERROR_DATA:
3742 #ifdef CONFIG_HAVE_KVM_MSI
3743 	case KVM_CAP_SIGNAL_MSI:
3744 #endif
3745 #ifdef CONFIG_HAVE_KVM_IRQFD
3746 	case KVM_CAP_IRQFD:
3747 	case KVM_CAP_IRQFD_RESAMPLE:
3748 #endif
3749 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3750 	case KVM_CAP_CHECK_EXTENSION_VM:
3751 	case KVM_CAP_ENABLE_CAP_VM:
3752 	case KVM_CAP_HALT_POLL:
3753 		return 1;
3754 #ifdef CONFIG_KVM_MMIO
3755 	case KVM_CAP_COALESCED_MMIO:
3756 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3757 	case KVM_CAP_COALESCED_PIO:
3758 		return 1;
3759 #endif
3760 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3761 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3762 		return KVM_DIRTY_LOG_MANUAL_CAPS;
3763 #endif
3764 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3765 	case KVM_CAP_IRQ_ROUTING:
3766 		return KVM_MAX_IRQ_ROUTES;
3767 #endif
3768 #if KVM_ADDRESS_SPACE_NUM > 1
3769 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3770 		return KVM_ADDRESS_SPACE_NUM;
3771 #endif
3772 	case KVM_CAP_NR_MEMSLOTS:
3773 		return KVM_USER_MEM_SLOTS;
3774 	default:
3775 		break;
3776 	}
3777 	return kvm_vm_ioctl_check_extension(kvm, arg);
3778 }
3779 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)3780 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3781 						  struct kvm_enable_cap *cap)
3782 {
3783 	return -EINVAL;
3784 }
3785 
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)3786 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3787 					   struct kvm_enable_cap *cap)
3788 {
3789 	switch (cap->cap) {
3790 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3791 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3792 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3793 
3794 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3795 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3796 
3797 		if (cap->flags || (cap->args[0] & ~allowed_options))
3798 			return -EINVAL;
3799 		kvm->manual_dirty_log_protect = cap->args[0];
3800 		return 0;
3801 	}
3802 #endif
3803 	case KVM_CAP_HALT_POLL: {
3804 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3805 			return -EINVAL;
3806 
3807 		kvm->max_halt_poll_ns = cap->args[0];
3808 		return 0;
3809 	}
3810 	default:
3811 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3812 	}
3813 }
3814 
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3815 static long kvm_vm_ioctl(struct file *filp,
3816 			   unsigned int ioctl, unsigned long arg)
3817 {
3818 	struct kvm *kvm = filp->private_data;
3819 	void __user *argp = (void __user *)arg;
3820 	int r;
3821 
3822 	if (kvm->mm != current->mm || kvm->vm_bugged)
3823 		return -EIO;
3824 	switch (ioctl) {
3825 	case KVM_CREATE_VCPU:
3826 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3827 		break;
3828 	case KVM_ENABLE_CAP: {
3829 		struct kvm_enable_cap cap;
3830 
3831 		r = -EFAULT;
3832 		if (copy_from_user(&cap, argp, sizeof(cap)))
3833 			goto out;
3834 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3835 		break;
3836 	}
3837 	case KVM_SET_USER_MEMORY_REGION: {
3838 		struct kvm_userspace_memory_region kvm_userspace_mem;
3839 
3840 		r = -EFAULT;
3841 		if (copy_from_user(&kvm_userspace_mem, argp,
3842 						sizeof(kvm_userspace_mem)))
3843 			goto out;
3844 
3845 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3846 		break;
3847 	}
3848 	case KVM_GET_DIRTY_LOG: {
3849 		struct kvm_dirty_log log;
3850 
3851 		r = -EFAULT;
3852 		if (copy_from_user(&log, argp, sizeof(log)))
3853 			goto out;
3854 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3855 		break;
3856 	}
3857 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3858 	case KVM_CLEAR_DIRTY_LOG: {
3859 		struct kvm_clear_dirty_log log;
3860 
3861 		r = -EFAULT;
3862 		if (copy_from_user(&log, argp, sizeof(log)))
3863 			goto out;
3864 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3865 		break;
3866 	}
3867 #endif
3868 #ifdef CONFIG_KVM_MMIO
3869 	case KVM_REGISTER_COALESCED_MMIO: {
3870 		struct kvm_coalesced_mmio_zone zone;
3871 
3872 		r = -EFAULT;
3873 		if (copy_from_user(&zone, argp, sizeof(zone)))
3874 			goto out;
3875 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3876 		break;
3877 	}
3878 	case KVM_UNREGISTER_COALESCED_MMIO: {
3879 		struct kvm_coalesced_mmio_zone zone;
3880 
3881 		r = -EFAULT;
3882 		if (copy_from_user(&zone, argp, sizeof(zone)))
3883 			goto out;
3884 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3885 		break;
3886 	}
3887 #endif
3888 	case KVM_IRQFD: {
3889 		struct kvm_irqfd data;
3890 
3891 		r = -EFAULT;
3892 		if (copy_from_user(&data, argp, sizeof(data)))
3893 			goto out;
3894 		r = kvm_irqfd(kvm, &data);
3895 		break;
3896 	}
3897 	case KVM_IOEVENTFD: {
3898 		struct kvm_ioeventfd data;
3899 
3900 		r = -EFAULT;
3901 		if (copy_from_user(&data, argp, sizeof(data)))
3902 			goto out;
3903 		r = kvm_ioeventfd(kvm, &data);
3904 		break;
3905 	}
3906 #ifdef CONFIG_HAVE_KVM_MSI
3907 	case KVM_SIGNAL_MSI: {
3908 		struct kvm_msi msi;
3909 
3910 		r = -EFAULT;
3911 		if (copy_from_user(&msi, argp, sizeof(msi)))
3912 			goto out;
3913 		r = kvm_send_userspace_msi(kvm, &msi);
3914 		break;
3915 	}
3916 #endif
3917 #ifdef __KVM_HAVE_IRQ_LINE
3918 	case KVM_IRQ_LINE_STATUS:
3919 	case KVM_IRQ_LINE: {
3920 		struct kvm_irq_level irq_event;
3921 
3922 		r = -EFAULT;
3923 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3924 			goto out;
3925 
3926 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3927 					ioctl == KVM_IRQ_LINE_STATUS);
3928 		if (r)
3929 			goto out;
3930 
3931 		r = -EFAULT;
3932 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3933 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3934 				goto out;
3935 		}
3936 
3937 		r = 0;
3938 		break;
3939 	}
3940 #endif
3941 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3942 	case KVM_SET_GSI_ROUTING: {
3943 		struct kvm_irq_routing routing;
3944 		struct kvm_irq_routing __user *urouting;
3945 		struct kvm_irq_routing_entry *entries = NULL;
3946 
3947 		r = -EFAULT;
3948 		if (copy_from_user(&routing, argp, sizeof(routing)))
3949 			goto out;
3950 		r = -EINVAL;
3951 		if (!kvm_arch_can_set_irq_routing(kvm))
3952 			goto out;
3953 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3954 			goto out;
3955 		if (routing.flags)
3956 			goto out;
3957 		if (routing.nr) {
3958 			urouting = argp;
3959 			entries = vmemdup_user(urouting->entries,
3960 					       array_size(sizeof(*entries),
3961 							  routing.nr));
3962 			if (IS_ERR(entries)) {
3963 				r = PTR_ERR(entries);
3964 				goto out;
3965 			}
3966 		}
3967 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3968 					routing.flags);
3969 		kvfree(entries);
3970 		break;
3971 	}
3972 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3973 	case KVM_CREATE_DEVICE: {
3974 		struct kvm_create_device cd;
3975 
3976 		r = -EFAULT;
3977 		if (copy_from_user(&cd, argp, sizeof(cd)))
3978 			goto out;
3979 
3980 		r = kvm_ioctl_create_device(kvm, &cd);
3981 		if (r)
3982 			goto out;
3983 
3984 		r = -EFAULT;
3985 		if (copy_to_user(argp, &cd, sizeof(cd)))
3986 			goto out;
3987 
3988 		r = 0;
3989 		break;
3990 	}
3991 	case KVM_CHECK_EXTENSION:
3992 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3993 		break;
3994 	default:
3995 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3996 	}
3997 out:
3998 	return r;
3999 }
4000 
4001 #ifdef CONFIG_KVM_COMPAT
4002 struct compat_kvm_dirty_log {
4003 	__u32 slot;
4004 	__u32 padding1;
4005 	union {
4006 		compat_uptr_t dirty_bitmap; /* one bit per page */
4007 		__u64 padding2;
4008 	};
4009 };
4010 
4011 struct compat_kvm_clear_dirty_log {
4012 	__u32 slot;
4013 	__u32 num_pages;
4014 	__u64 first_page;
4015 	union {
4016 		compat_uptr_t dirty_bitmap; /* one bit per page */
4017 		__u64 padding2;
4018 	};
4019 };
4020 
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4021 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4022 				     unsigned long arg)
4023 {
4024 	return -ENOTTY;
4025 }
4026 
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4027 static long kvm_vm_compat_ioctl(struct file *filp,
4028 			   unsigned int ioctl, unsigned long arg)
4029 {
4030 	struct kvm *kvm = filp->private_data;
4031 	int r;
4032 
4033 	if (kvm->mm != current->mm || kvm->vm_bugged)
4034 		return -EIO;
4035 
4036 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4037 	if (r != -ENOTTY)
4038 		return r;
4039 
4040 	switch (ioctl) {
4041 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4042 	case KVM_CLEAR_DIRTY_LOG: {
4043 		struct compat_kvm_clear_dirty_log compat_log;
4044 		struct kvm_clear_dirty_log log;
4045 
4046 		if (copy_from_user(&compat_log, (void __user *)arg,
4047 				   sizeof(compat_log)))
4048 			return -EFAULT;
4049 		log.slot	 = compat_log.slot;
4050 		log.num_pages	 = compat_log.num_pages;
4051 		log.first_page	 = compat_log.first_page;
4052 		log.padding2	 = compat_log.padding2;
4053 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4054 
4055 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4056 		break;
4057 	}
4058 #endif
4059 	case KVM_GET_DIRTY_LOG: {
4060 		struct compat_kvm_dirty_log compat_log;
4061 		struct kvm_dirty_log log;
4062 
4063 		if (copy_from_user(&compat_log, (void __user *)arg,
4064 				   sizeof(compat_log)))
4065 			return -EFAULT;
4066 		log.slot	 = compat_log.slot;
4067 		log.padding1	 = compat_log.padding1;
4068 		log.padding2	 = compat_log.padding2;
4069 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4070 
4071 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4072 		break;
4073 	}
4074 	default:
4075 		r = kvm_vm_ioctl(filp, ioctl, arg);
4076 	}
4077 	return r;
4078 }
4079 #endif
4080 
4081 static struct file_operations kvm_vm_fops = {
4082 	.release        = kvm_vm_release,
4083 	.unlocked_ioctl = kvm_vm_ioctl,
4084 	.llseek		= noop_llseek,
4085 	KVM_COMPAT(kvm_vm_compat_ioctl),
4086 };
4087 
kvm_dev_ioctl_create_vm(unsigned long type)4088 static int kvm_dev_ioctl_create_vm(unsigned long type)
4089 {
4090 	int r;
4091 	struct kvm *kvm;
4092 	struct file *file;
4093 
4094 	kvm = kvm_create_vm(type);
4095 	if (IS_ERR(kvm))
4096 		return PTR_ERR(kvm);
4097 #ifdef CONFIG_KVM_MMIO
4098 	r = kvm_coalesced_mmio_init(kvm);
4099 	if (r < 0)
4100 		goto put_kvm;
4101 #endif
4102 	r = get_unused_fd_flags(O_CLOEXEC);
4103 	if (r < 0)
4104 		goto put_kvm;
4105 
4106 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4107 	if (IS_ERR(file)) {
4108 		put_unused_fd(r);
4109 		r = PTR_ERR(file);
4110 		goto put_kvm;
4111 	}
4112 
4113 	/*
4114 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
4115 	 * already set, with ->release() being kvm_vm_release().  In error
4116 	 * cases it will be called by the final fput(file) and will take
4117 	 * care of doing kvm_put_kvm(kvm).
4118 	 */
4119 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
4120 		put_unused_fd(r);
4121 		fput(file);
4122 		return -ENOMEM;
4123 	}
4124 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4125 
4126 	fd_install(r, file);
4127 	return r;
4128 
4129 put_kvm:
4130 	kvm_put_kvm(kvm);
4131 	return r;
4132 }
4133 
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4134 static long kvm_dev_ioctl(struct file *filp,
4135 			  unsigned int ioctl, unsigned long arg)
4136 {
4137 	long r = -EINVAL;
4138 
4139 	switch (ioctl) {
4140 	case KVM_GET_API_VERSION:
4141 		if (arg)
4142 			goto out;
4143 		r = KVM_API_VERSION;
4144 		break;
4145 	case KVM_CREATE_VM:
4146 		r = kvm_dev_ioctl_create_vm(arg);
4147 		break;
4148 	case KVM_CHECK_EXTENSION:
4149 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4150 		break;
4151 	case KVM_GET_VCPU_MMAP_SIZE:
4152 		if (arg)
4153 			goto out;
4154 		r = PAGE_SIZE;     /* struct kvm_run */
4155 #ifdef CONFIG_X86
4156 		r += PAGE_SIZE;    /* pio data page */
4157 #endif
4158 #ifdef CONFIG_KVM_MMIO
4159 		r += PAGE_SIZE;    /* coalesced mmio ring page */
4160 #endif
4161 		break;
4162 	case KVM_TRACE_ENABLE:
4163 	case KVM_TRACE_PAUSE:
4164 	case KVM_TRACE_DISABLE:
4165 		r = -EOPNOTSUPP;
4166 		break;
4167 	default:
4168 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
4169 	}
4170 out:
4171 	return r;
4172 }
4173 
4174 static struct file_operations kvm_chardev_ops = {
4175 	.unlocked_ioctl = kvm_dev_ioctl,
4176 	.llseek		= noop_llseek,
4177 	KVM_COMPAT(kvm_dev_ioctl),
4178 };
4179 
4180 static struct miscdevice kvm_dev = {
4181 	KVM_MINOR,
4182 	"kvm",
4183 	&kvm_chardev_ops,
4184 };
4185 
hardware_enable_nolock(void * junk)4186 static void hardware_enable_nolock(void *junk)
4187 {
4188 	int cpu = raw_smp_processor_id();
4189 	int r;
4190 
4191 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4192 		return;
4193 
4194 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4195 
4196 	r = kvm_arch_hardware_enable();
4197 
4198 	if (r) {
4199 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4200 		atomic_inc(&hardware_enable_failed);
4201 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4202 	}
4203 }
4204 
kvm_starting_cpu(unsigned int cpu)4205 static int kvm_starting_cpu(unsigned int cpu)
4206 {
4207 	raw_spin_lock(&kvm_count_lock);
4208 	if (kvm_usage_count)
4209 		hardware_enable_nolock(NULL);
4210 	raw_spin_unlock(&kvm_count_lock);
4211 	return 0;
4212 }
4213 
hardware_disable_nolock(void * junk)4214 static void hardware_disable_nolock(void *junk)
4215 {
4216 	int cpu = raw_smp_processor_id();
4217 
4218 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4219 		return;
4220 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4221 	kvm_arch_hardware_disable();
4222 }
4223 
kvm_dying_cpu(unsigned int cpu)4224 static int kvm_dying_cpu(unsigned int cpu)
4225 {
4226 	raw_spin_lock(&kvm_count_lock);
4227 	if (kvm_usage_count)
4228 		hardware_disable_nolock(NULL);
4229 	raw_spin_unlock(&kvm_count_lock);
4230 	return 0;
4231 }
4232 
hardware_disable_all_nolock(void)4233 static void hardware_disable_all_nolock(void)
4234 {
4235 	BUG_ON(!kvm_usage_count);
4236 
4237 	kvm_usage_count--;
4238 	if (!kvm_usage_count)
4239 		on_each_cpu(hardware_disable_nolock, NULL, 1);
4240 }
4241 
hardware_disable_all(void)4242 static void hardware_disable_all(void)
4243 {
4244 	raw_spin_lock(&kvm_count_lock);
4245 	hardware_disable_all_nolock();
4246 	raw_spin_unlock(&kvm_count_lock);
4247 }
4248 
hardware_enable_all(void)4249 static int hardware_enable_all(void)
4250 {
4251 	int r = 0;
4252 
4253 	raw_spin_lock(&kvm_count_lock);
4254 
4255 	kvm_usage_count++;
4256 	if (kvm_usage_count == 1) {
4257 		atomic_set(&hardware_enable_failed, 0);
4258 		on_each_cpu(hardware_enable_nolock, NULL, 1);
4259 
4260 		if (atomic_read(&hardware_enable_failed)) {
4261 			hardware_disable_all_nolock();
4262 			r = -EBUSY;
4263 		}
4264 	}
4265 
4266 	raw_spin_unlock(&kvm_count_lock);
4267 
4268 	return r;
4269 }
4270 
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)4271 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4272 		      void *v)
4273 {
4274 	/*
4275 	 * Some (well, at least mine) BIOSes hang on reboot if
4276 	 * in vmx root mode.
4277 	 *
4278 	 * And Intel TXT required VMX off for all cpu when system shutdown.
4279 	 */
4280 	pr_info("kvm: exiting hardware virtualization\n");
4281 	kvm_rebooting = true;
4282 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4283 	return NOTIFY_OK;
4284 }
4285 
4286 static struct notifier_block kvm_reboot_notifier = {
4287 	.notifier_call = kvm_reboot,
4288 	.priority = 0,
4289 };
4290 
kvm_io_bus_destroy(struct kvm_io_bus * bus)4291 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4292 {
4293 	int i;
4294 
4295 	for (i = 0; i < bus->dev_count; i++) {
4296 		struct kvm_io_device *pos = bus->range[i].dev;
4297 
4298 		kvm_iodevice_destructor(pos);
4299 	}
4300 	kfree(bus);
4301 }
4302 
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)4303 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4304 				 const struct kvm_io_range *r2)
4305 {
4306 	gpa_t addr1 = r1->addr;
4307 	gpa_t addr2 = r2->addr;
4308 
4309 	if (addr1 < addr2)
4310 		return -1;
4311 
4312 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4313 	 * accept any overlapping write.  Any order is acceptable for
4314 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4315 	 * we process all of them.
4316 	 */
4317 	if (r2->len) {
4318 		addr1 += r1->len;
4319 		addr2 += r2->len;
4320 	}
4321 
4322 	if (addr1 > addr2)
4323 		return 1;
4324 
4325 	return 0;
4326 }
4327 
kvm_io_bus_sort_cmp(const void * p1,const void * p2)4328 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4329 {
4330 	return kvm_io_bus_cmp(p1, p2);
4331 }
4332 
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)4333 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4334 			     gpa_t addr, int len)
4335 {
4336 	struct kvm_io_range *range, key;
4337 	int off;
4338 
4339 	key = (struct kvm_io_range) {
4340 		.addr = addr,
4341 		.len = len,
4342 	};
4343 
4344 	range = bsearch(&key, bus->range, bus->dev_count,
4345 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4346 	if (range == NULL)
4347 		return -ENOENT;
4348 
4349 	off = range - bus->range;
4350 
4351 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4352 		off--;
4353 
4354 	return off;
4355 }
4356 
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)4357 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4358 			      struct kvm_io_range *range, const void *val)
4359 {
4360 	int idx;
4361 
4362 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4363 	if (idx < 0)
4364 		return -EOPNOTSUPP;
4365 
4366 	while (idx < bus->dev_count &&
4367 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4368 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4369 					range->len, val))
4370 			return idx;
4371 		idx++;
4372 	}
4373 
4374 	return -EOPNOTSUPP;
4375 }
4376 
4377 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)4378 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4379 		     int len, const void *val)
4380 {
4381 	struct kvm_io_bus *bus;
4382 	struct kvm_io_range range;
4383 	int r;
4384 
4385 	range = (struct kvm_io_range) {
4386 		.addr = addr,
4387 		.len = len,
4388 	};
4389 
4390 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4391 	if (!bus)
4392 		return -ENOMEM;
4393 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4394 	return r < 0 ? r : 0;
4395 }
4396 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4397 
4398 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)4399 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4400 			    gpa_t addr, int len, const void *val, long cookie)
4401 {
4402 	struct kvm_io_bus *bus;
4403 	struct kvm_io_range range;
4404 
4405 	range = (struct kvm_io_range) {
4406 		.addr = addr,
4407 		.len = len,
4408 	};
4409 
4410 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4411 	if (!bus)
4412 		return -ENOMEM;
4413 
4414 	/* First try the device referenced by cookie. */
4415 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4416 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4417 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4418 					val))
4419 			return cookie;
4420 
4421 	/*
4422 	 * cookie contained garbage; fall back to search and return the
4423 	 * correct cookie value.
4424 	 */
4425 	return __kvm_io_bus_write(vcpu, bus, &range, val);
4426 }
4427 
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)4428 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4429 			     struct kvm_io_range *range, void *val)
4430 {
4431 	int idx;
4432 
4433 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4434 	if (idx < 0)
4435 		return -EOPNOTSUPP;
4436 
4437 	while (idx < bus->dev_count &&
4438 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4439 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4440 				       range->len, val))
4441 			return idx;
4442 		idx++;
4443 	}
4444 
4445 	return -EOPNOTSUPP;
4446 }
4447 
4448 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)4449 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4450 		    int len, void *val)
4451 {
4452 	struct kvm_io_bus *bus;
4453 	struct kvm_io_range range;
4454 	int r;
4455 
4456 	range = (struct kvm_io_range) {
4457 		.addr = addr,
4458 		.len = len,
4459 	};
4460 
4461 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4462 	if (!bus)
4463 		return -ENOMEM;
4464 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4465 	return r < 0 ? r : 0;
4466 }
4467 
4468 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)4469 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4470 			    int len, struct kvm_io_device *dev)
4471 {
4472 	int i;
4473 	struct kvm_io_bus *new_bus, *bus;
4474 	struct kvm_io_range range;
4475 
4476 	bus = kvm_get_bus(kvm, bus_idx);
4477 	if (!bus)
4478 		return -ENOMEM;
4479 
4480 	/* exclude ioeventfd which is limited by maximum fd */
4481 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4482 		return -ENOSPC;
4483 
4484 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4485 			  GFP_KERNEL_ACCOUNT);
4486 	if (!new_bus)
4487 		return -ENOMEM;
4488 
4489 	range = (struct kvm_io_range) {
4490 		.addr = addr,
4491 		.len = len,
4492 		.dev = dev,
4493 	};
4494 
4495 	for (i = 0; i < bus->dev_count; i++)
4496 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4497 			break;
4498 
4499 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4500 	new_bus->dev_count++;
4501 	new_bus->range[i] = range;
4502 	memcpy(new_bus->range + i + 1, bus->range + i,
4503 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4504 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4505 	synchronize_srcu_expedited(&kvm->srcu);
4506 	kfree(bus);
4507 
4508 	return 0;
4509 }
4510 
4511 /* Caller must hold slots_lock. */
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)4512 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4513 			      struct kvm_io_device *dev)
4514 {
4515 	int i, j;
4516 	struct kvm_io_bus *new_bus, *bus;
4517 
4518 	bus = kvm_get_bus(kvm, bus_idx);
4519 	if (!bus)
4520 		return 0;
4521 
4522 	for (i = 0; i < bus->dev_count; i++)
4523 		if (bus->range[i].dev == dev) {
4524 			break;
4525 		}
4526 
4527 	if (i == bus->dev_count)
4528 		return 0;
4529 
4530 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4531 			  GFP_KERNEL_ACCOUNT);
4532 	if (new_bus) {
4533 		memcpy(new_bus, bus, struct_size(bus, range, i));
4534 		new_bus->dev_count--;
4535 		memcpy(new_bus->range + i, bus->range + i + 1,
4536 				flex_array_size(new_bus, range, new_bus->dev_count - i));
4537 	}
4538 
4539 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4540 	synchronize_srcu_expedited(&kvm->srcu);
4541 
4542 	/* Destroy the old bus _after_ installing the (null) bus. */
4543 	if (!new_bus) {
4544 		pr_err("kvm: failed to shrink bus, removing it completely\n");
4545 		for (j = 0; j < bus->dev_count; j++) {
4546 			if (j == i)
4547 				continue;
4548 			kvm_iodevice_destructor(bus->range[j].dev);
4549 		}
4550 	}
4551 
4552 	kfree(bus);
4553 	return new_bus ? 0 : -ENOMEM;
4554 }
4555 
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)4556 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4557 					 gpa_t addr)
4558 {
4559 	struct kvm_io_bus *bus;
4560 	int dev_idx, srcu_idx;
4561 	struct kvm_io_device *iodev = NULL;
4562 
4563 	srcu_idx = srcu_read_lock(&kvm->srcu);
4564 
4565 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4566 	if (!bus)
4567 		goto out_unlock;
4568 
4569 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4570 	if (dev_idx < 0)
4571 		goto out_unlock;
4572 
4573 	iodev = bus->range[dev_idx].dev;
4574 
4575 out_unlock:
4576 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4577 
4578 	return iodev;
4579 }
4580 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4581 
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)4582 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4583 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4584 			   const char *fmt)
4585 {
4586 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4587 					  inode->i_private;
4588 
4589 	/* The debugfs files are a reference to the kvm struct which
4590 	 * is still valid when kvm_destroy_vm is called.
4591 	 * To avoid the race between open and the removal of the debugfs
4592 	 * directory we test against the users count.
4593 	 */
4594 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4595 		return -ENOENT;
4596 
4597 	if (simple_attr_open(inode, file, get,
4598 		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4599 		    ? set : NULL,
4600 		    fmt)) {
4601 		kvm_put_kvm(stat_data->kvm);
4602 		return -ENOMEM;
4603 	}
4604 
4605 	return 0;
4606 }
4607 
kvm_debugfs_release(struct inode * inode,struct file * file)4608 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4609 {
4610 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4611 					  inode->i_private;
4612 
4613 	simple_attr_release(inode, file);
4614 	kvm_put_kvm(stat_data->kvm);
4615 
4616 	return 0;
4617 }
4618 
kvm_get_stat_per_vm(struct kvm * kvm,size_t offset,u64 * val)4619 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4620 {
4621 	*val = *(ulong *)((void *)kvm + offset);
4622 
4623 	return 0;
4624 }
4625 
kvm_clear_stat_per_vm(struct kvm * kvm,size_t offset)4626 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4627 {
4628 	*(ulong *)((void *)kvm + offset) = 0;
4629 
4630 	return 0;
4631 }
4632 
kvm_get_stat_per_vcpu(struct kvm * kvm,size_t offset,u64 * val)4633 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4634 {
4635 	int i;
4636 	struct kvm_vcpu *vcpu;
4637 
4638 	*val = 0;
4639 
4640 	kvm_for_each_vcpu(i, vcpu, kvm)
4641 		*val += *(u64 *)((void *)vcpu + offset);
4642 
4643 	return 0;
4644 }
4645 
kvm_clear_stat_per_vcpu(struct kvm * kvm,size_t offset)4646 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4647 {
4648 	int i;
4649 	struct kvm_vcpu *vcpu;
4650 
4651 	kvm_for_each_vcpu(i, vcpu, kvm)
4652 		*(u64 *)((void *)vcpu + offset) = 0;
4653 
4654 	return 0;
4655 }
4656 
kvm_stat_data_get(void * data,u64 * val)4657 static int kvm_stat_data_get(void *data, u64 *val)
4658 {
4659 	int r = -EFAULT;
4660 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4661 
4662 	switch (stat_data->dbgfs_item->kind) {
4663 	case KVM_STAT_VM:
4664 		r = kvm_get_stat_per_vm(stat_data->kvm,
4665 					stat_data->dbgfs_item->offset, val);
4666 		break;
4667 	case KVM_STAT_VCPU:
4668 		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4669 					  stat_data->dbgfs_item->offset, val);
4670 		break;
4671 	}
4672 
4673 	return r;
4674 }
4675 
kvm_stat_data_clear(void * data,u64 val)4676 static int kvm_stat_data_clear(void *data, u64 val)
4677 {
4678 	int r = -EFAULT;
4679 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4680 
4681 	if (val)
4682 		return -EINVAL;
4683 
4684 	switch (stat_data->dbgfs_item->kind) {
4685 	case KVM_STAT_VM:
4686 		r = kvm_clear_stat_per_vm(stat_data->kvm,
4687 					  stat_data->dbgfs_item->offset);
4688 		break;
4689 	case KVM_STAT_VCPU:
4690 		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4691 					    stat_data->dbgfs_item->offset);
4692 		break;
4693 	}
4694 
4695 	return r;
4696 }
4697 
kvm_stat_data_open(struct inode * inode,struct file * file)4698 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4699 {
4700 	__simple_attr_check_format("%llu\n", 0ull);
4701 	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4702 				kvm_stat_data_clear, "%llu\n");
4703 }
4704 
4705 static const struct file_operations stat_fops_per_vm = {
4706 	.owner = THIS_MODULE,
4707 	.open = kvm_stat_data_open,
4708 	.release = kvm_debugfs_release,
4709 	.read = simple_attr_read,
4710 	.write = simple_attr_write,
4711 	.llseek = no_llseek,
4712 };
4713 
vm_stat_get(void * _offset,u64 * val)4714 static int vm_stat_get(void *_offset, u64 *val)
4715 {
4716 	unsigned offset = (long)_offset;
4717 	struct kvm *kvm;
4718 	u64 tmp_val;
4719 
4720 	*val = 0;
4721 	mutex_lock(&kvm_lock);
4722 	list_for_each_entry(kvm, &vm_list, vm_list) {
4723 		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4724 		*val += tmp_val;
4725 	}
4726 	mutex_unlock(&kvm_lock);
4727 	return 0;
4728 }
4729 
vm_stat_clear(void * _offset,u64 val)4730 static int vm_stat_clear(void *_offset, u64 val)
4731 {
4732 	unsigned offset = (long)_offset;
4733 	struct kvm *kvm;
4734 
4735 	if (val)
4736 		return -EINVAL;
4737 
4738 	mutex_lock(&kvm_lock);
4739 	list_for_each_entry(kvm, &vm_list, vm_list) {
4740 		kvm_clear_stat_per_vm(kvm, offset);
4741 	}
4742 	mutex_unlock(&kvm_lock);
4743 
4744 	return 0;
4745 }
4746 
4747 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4748 
vcpu_stat_get(void * _offset,u64 * val)4749 static int vcpu_stat_get(void *_offset, u64 *val)
4750 {
4751 	unsigned offset = (long)_offset;
4752 	struct kvm *kvm;
4753 	u64 tmp_val;
4754 
4755 	*val = 0;
4756 	mutex_lock(&kvm_lock);
4757 	list_for_each_entry(kvm, &vm_list, vm_list) {
4758 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4759 		*val += tmp_val;
4760 	}
4761 	mutex_unlock(&kvm_lock);
4762 	return 0;
4763 }
4764 
vcpu_stat_clear(void * _offset,u64 val)4765 static int vcpu_stat_clear(void *_offset, u64 val)
4766 {
4767 	unsigned offset = (long)_offset;
4768 	struct kvm *kvm;
4769 
4770 	if (val)
4771 		return -EINVAL;
4772 
4773 	mutex_lock(&kvm_lock);
4774 	list_for_each_entry(kvm, &vm_list, vm_list) {
4775 		kvm_clear_stat_per_vcpu(kvm, offset);
4776 	}
4777 	mutex_unlock(&kvm_lock);
4778 
4779 	return 0;
4780 }
4781 
4782 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4783 			"%llu\n");
4784 
4785 static const struct file_operations *stat_fops[] = {
4786 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4787 	[KVM_STAT_VM]   = &vm_stat_fops,
4788 };
4789 
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)4790 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4791 {
4792 	struct kobj_uevent_env *env;
4793 	unsigned long long created, active;
4794 
4795 	if (!kvm_dev.this_device || !kvm)
4796 		return;
4797 
4798 	mutex_lock(&kvm_lock);
4799 	if (type == KVM_EVENT_CREATE_VM) {
4800 		kvm_createvm_count++;
4801 		kvm_active_vms++;
4802 	} else if (type == KVM_EVENT_DESTROY_VM) {
4803 		kvm_active_vms--;
4804 	}
4805 	created = kvm_createvm_count;
4806 	active = kvm_active_vms;
4807 	mutex_unlock(&kvm_lock);
4808 
4809 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4810 	if (!env)
4811 		return;
4812 
4813 	add_uevent_var(env, "CREATED=%llu", created);
4814 	add_uevent_var(env, "COUNT=%llu", active);
4815 
4816 	if (type == KVM_EVENT_CREATE_VM) {
4817 		add_uevent_var(env, "EVENT=create");
4818 		kvm->userspace_pid = task_pid_nr(current);
4819 	} else if (type == KVM_EVENT_DESTROY_VM) {
4820 		add_uevent_var(env, "EVENT=destroy");
4821 	}
4822 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4823 
4824 	if (kvm->debugfs_dentry) {
4825 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4826 
4827 		if (p) {
4828 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4829 			if (!IS_ERR(tmp))
4830 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4831 			kfree(p);
4832 		}
4833 	}
4834 	/* no need for checks, since we are adding at most only 5 keys */
4835 	env->envp[env->envp_idx++] = NULL;
4836 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4837 	kfree(env);
4838 }
4839 
kvm_init_debug(void)4840 static void kvm_init_debug(void)
4841 {
4842 	struct kvm_stats_debugfs_item *p;
4843 
4844 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4845 
4846 	kvm_debugfs_num_entries = 0;
4847 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4848 		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4849 				    kvm_debugfs_dir, (void *)(long)p->offset,
4850 				    stat_fops[p->kind]);
4851 	}
4852 }
4853 
kvm_suspend(void)4854 static int kvm_suspend(void)
4855 {
4856 	if (kvm_usage_count)
4857 		hardware_disable_nolock(NULL);
4858 	return 0;
4859 }
4860 
kvm_resume(void)4861 static void kvm_resume(void)
4862 {
4863 	if (kvm_usage_count) {
4864 #ifdef CONFIG_LOCKDEP
4865 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4866 #endif
4867 		hardware_enable_nolock(NULL);
4868 	}
4869 }
4870 
4871 static struct syscore_ops kvm_syscore_ops = {
4872 	.suspend = kvm_suspend,
4873 	.resume = kvm_resume,
4874 };
4875 
4876 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)4877 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4878 {
4879 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4880 }
4881 
kvm_sched_in(struct preempt_notifier * pn,int cpu)4882 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4883 {
4884 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4885 
4886 	WRITE_ONCE(vcpu->preempted, false);
4887 	WRITE_ONCE(vcpu->ready, false);
4888 
4889 	__this_cpu_write(kvm_running_vcpu, vcpu);
4890 	kvm_arch_sched_in(vcpu, cpu);
4891 	kvm_arch_vcpu_load(vcpu, cpu);
4892 }
4893 
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)4894 static void kvm_sched_out(struct preempt_notifier *pn,
4895 			  struct task_struct *next)
4896 {
4897 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4898 
4899 	if (current->state == TASK_RUNNING) {
4900 		WRITE_ONCE(vcpu->preempted, true);
4901 		WRITE_ONCE(vcpu->ready, true);
4902 	}
4903 	kvm_arch_vcpu_put(vcpu);
4904 	__this_cpu_write(kvm_running_vcpu, NULL);
4905 }
4906 
4907 /**
4908  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4909  *
4910  * We can disable preemption locally around accessing the per-CPU variable,
4911  * and use the resolved vcpu pointer after enabling preemption again,
4912  * because even if the current thread is migrated to another CPU, reading
4913  * the per-CPU value later will give us the same value as we update the
4914  * per-CPU variable in the preempt notifier handlers.
4915  */
kvm_get_running_vcpu(void)4916 struct kvm_vcpu *kvm_get_running_vcpu(void)
4917 {
4918 	struct kvm_vcpu *vcpu;
4919 
4920 	preempt_disable();
4921 	vcpu = __this_cpu_read(kvm_running_vcpu);
4922 	preempt_enable();
4923 
4924 	return vcpu;
4925 }
4926 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4927 
4928 /**
4929  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4930  */
kvm_get_running_vcpus(void)4931 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4932 {
4933         return &kvm_running_vcpu;
4934 }
4935 
4936 struct kvm_cpu_compat_check {
4937 	void *opaque;
4938 	int *ret;
4939 };
4940 
check_processor_compat(void * data)4941 static void check_processor_compat(void *data)
4942 {
4943 	struct kvm_cpu_compat_check *c = data;
4944 
4945 	*c->ret = kvm_arch_check_processor_compat(c->opaque);
4946 }
4947 
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)4948 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4949 		  struct module *module)
4950 {
4951 	struct kvm_cpu_compat_check c;
4952 	int r;
4953 	int cpu;
4954 
4955 	r = kvm_arch_init(opaque);
4956 	if (r)
4957 		goto out_fail;
4958 
4959 	/*
4960 	 * kvm_arch_init makes sure there's at most one caller
4961 	 * for architectures that support multiple implementations,
4962 	 * like intel and amd on x86.
4963 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4964 	 * conflicts in case kvm is already setup for another implementation.
4965 	 */
4966 	r = kvm_irqfd_init();
4967 	if (r)
4968 		goto out_irqfd;
4969 
4970 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4971 		r = -ENOMEM;
4972 		goto out_free_0;
4973 	}
4974 
4975 	r = kvm_arch_hardware_setup(opaque);
4976 	if (r < 0)
4977 		goto out_free_1;
4978 
4979 	c.ret = &r;
4980 	c.opaque = opaque;
4981 	for_each_online_cpu(cpu) {
4982 		smp_call_function_single(cpu, check_processor_compat, &c, 1);
4983 		if (r < 0)
4984 			goto out_free_2;
4985 	}
4986 
4987 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4988 				      kvm_starting_cpu, kvm_dying_cpu);
4989 	if (r)
4990 		goto out_free_2;
4991 	register_reboot_notifier(&kvm_reboot_notifier);
4992 
4993 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4994 	if (!vcpu_align)
4995 		vcpu_align = __alignof__(struct kvm_vcpu);
4996 	kvm_vcpu_cache =
4997 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4998 					   SLAB_ACCOUNT,
4999 					   offsetof(struct kvm_vcpu, arch),
5000 					   sizeof_field(struct kvm_vcpu, arch),
5001 					   NULL);
5002 	if (!kvm_vcpu_cache) {
5003 		r = -ENOMEM;
5004 		goto out_free_3;
5005 	}
5006 
5007 	for_each_possible_cpu(cpu) {
5008 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5009 					    GFP_KERNEL, cpu_to_node(cpu))) {
5010 			r = -ENOMEM;
5011 			goto out_free_4;
5012 		}
5013 	}
5014 
5015 	r = kvm_async_pf_init();
5016 	if (r)
5017 		goto out_free_4;
5018 
5019 	kvm_chardev_ops.owner = module;
5020 	kvm_vm_fops.owner = module;
5021 	kvm_vcpu_fops.owner = module;
5022 
5023 	register_syscore_ops(&kvm_syscore_ops);
5024 
5025 	kvm_preempt_ops.sched_in = kvm_sched_in;
5026 	kvm_preempt_ops.sched_out = kvm_sched_out;
5027 
5028 	kvm_init_debug();
5029 
5030 	r = kvm_vfio_ops_init();
5031 	if (WARN_ON_ONCE(r))
5032 		goto err_vfio;
5033 
5034 	/*
5035 	 * Registration _must_ be the very last thing done, as this exposes
5036 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
5037 	 */
5038 	r = misc_register(&kvm_dev);
5039 	if (r) {
5040 		pr_err("kvm: misc device register failed\n");
5041 		goto err_register;
5042 	}
5043 
5044 	return 0;
5045 
5046 err_register:
5047 	kvm_vfio_ops_exit();
5048 err_vfio:
5049 	kvm_async_pf_deinit();
5050 out_free_4:
5051 	for_each_possible_cpu(cpu)
5052 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5053 	kmem_cache_destroy(kvm_vcpu_cache);
5054 out_free_3:
5055 	unregister_reboot_notifier(&kvm_reboot_notifier);
5056 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5057 out_free_2:
5058 	kvm_arch_hardware_unsetup();
5059 out_free_1:
5060 	free_cpumask_var(cpus_hardware_enabled);
5061 out_free_0:
5062 	kvm_irqfd_exit();
5063 out_irqfd:
5064 	kvm_arch_exit();
5065 out_fail:
5066 	return r;
5067 }
5068 EXPORT_SYMBOL_GPL(kvm_init);
5069 
kvm_exit(void)5070 void kvm_exit(void)
5071 {
5072 	int cpu;
5073 
5074 	/*
5075 	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
5076 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
5077 	 * to KVM while the module is being stopped.
5078 	 */
5079 	misc_deregister(&kvm_dev);
5080 
5081 	debugfs_remove_recursive(kvm_debugfs_dir);
5082 	for_each_possible_cpu(cpu)
5083 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5084 	kmem_cache_destroy(kvm_vcpu_cache);
5085 	kvm_async_pf_deinit();
5086 	unregister_syscore_ops(&kvm_syscore_ops);
5087 	unregister_reboot_notifier(&kvm_reboot_notifier);
5088 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5089 	on_each_cpu(hardware_disable_nolock, NULL, 1);
5090 	kvm_arch_hardware_unsetup();
5091 	kvm_arch_exit();
5092 	kvm_irqfd_exit();
5093 	free_cpumask_var(cpus_hardware_enabled);
5094 	kvm_vfio_ops_exit();
5095 }
5096 EXPORT_SYMBOL_GPL(kvm_exit);
5097 
5098 struct kvm_vm_worker_thread_context {
5099 	struct kvm *kvm;
5100 	struct task_struct *parent;
5101 	struct completion init_done;
5102 	kvm_vm_thread_fn_t thread_fn;
5103 	uintptr_t data;
5104 	int err;
5105 };
5106 
kvm_vm_worker_thread(void * context)5107 static int kvm_vm_worker_thread(void *context)
5108 {
5109 	/*
5110 	 * The init_context is allocated on the stack of the parent thread, so
5111 	 * we have to locally copy anything that is needed beyond initialization
5112 	 */
5113 	struct kvm_vm_worker_thread_context *init_context = context;
5114 	struct kvm *kvm = init_context->kvm;
5115 	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5116 	uintptr_t data = init_context->data;
5117 	int err;
5118 
5119 	err = kthread_park(current);
5120 	/* kthread_park(current) is never supposed to return an error */
5121 	WARN_ON(err != 0);
5122 	if (err)
5123 		goto init_complete;
5124 
5125 	err = cgroup_attach_task_all(init_context->parent, current);
5126 	if (err) {
5127 		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5128 			__func__, err);
5129 		goto init_complete;
5130 	}
5131 
5132 	set_user_nice(current, task_nice(init_context->parent));
5133 
5134 init_complete:
5135 	init_context->err = err;
5136 	complete(&init_context->init_done);
5137 	init_context = NULL;
5138 
5139 	if (err)
5140 		return err;
5141 
5142 	/* Wait to be woken up by the spawner before proceeding. */
5143 	kthread_parkme();
5144 
5145 	if (!kthread_should_stop())
5146 		err = thread_fn(kvm, data);
5147 
5148 	return err;
5149 }
5150 
kvm_vm_create_worker_thread(struct kvm * kvm,kvm_vm_thread_fn_t thread_fn,uintptr_t data,const char * name,struct task_struct ** thread_ptr)5151 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5152 				uintptr_t data, const char *name,
5153 				struct task_struct **thread_ptr)
5154 {
5155 	struct kvm_vm_worker_thread_context init_context = {};
5156 	struct task_struct *thread;
5157 
5158 	*thread_ptr = NULL;
5159 	init_context.kvm = kvm;
5160 	init_context.parent = current;
5161 	init_context.thread_fn = thread_fn;
5162 	init_context.data = data;
5163 	init_completion(&init_context.init_done);
5164 
5165 	thread = kthread_run(kvm_vm_worker_thread, &init_context,
5166 			     "%s-%d", name, task_pid_nr(current));
5167 	if (IS_ERR(thread))
5168 		return PTR_ERR(thread);
5169 
5170 	/* kthread_run is never supposed to return NULL */
5171 	WARN_ON(thread == NULL);
5172 
5173 	wait_for_completion(&init_context.init_done);
5174 
5175 	if (!init_context.err)
5176 		*thread_ptr = thread;
5177 
5178 	return init_context.err;
5179 }
5180