• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Insert wait instructions for memory reads and writes.
11 ///
12 /// Memory reads and writes are issued asynchronously, so we need to insert
13 /// S_WAITCNT instructions when we want to access any of their results or
14 /// overwrite any register that's used asynchronously.
15 ///
16 /// TODO: This pass currently keeps one timeline per hardware counter. A more
17 /// finely-grained approach that keeps one timeline per event type could
18 /// sometimes get away with generating weaker s_waitcnt instructions. For
19 /// example, when both SMEM and LDS are in flight and we need to wait for
20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient,
21 /// but the pass will currently generate a conservative lgkmcnt(0) because
22 /// multiple event types are in flight.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "AMDGPU.h"
27 #include "AMDGPUSubtarget.h"
28 #include "SIDefines.h"
29 #include "SIInstrInfo.h"
30 #include "SIMachineFunctionInfo.h"
31 #include "SIRegisterInfo.h"
32 #include "Utils/AMDGPUBaseInfo.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/PostOrderIterator.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachinePostDominators.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/DebugCounter.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstdint>
57 #include <cstring>
58 #include <memory>
59 #include <utility>
60 #include <vector>
61 
62 using namespace llvm;
63 
64 #define DEBUG_TYPE "si-insert-waitcnts"
65 
66 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp",
67               "Force emit s_waitcnt expcnt(0) instrs");
68 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm",
69               "Force emit s_waitcnt lgkmcnt(0) instrs");
70 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm",
71               "Force emit s_waitcnt vmcnt(0) instrs");
72 
73 static cl::opt<bool> ForceEmitZeroFlag(
74   "amdgpu-waitcnt-forcezero",
75   cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"),
76   cl::init(false), cl::Hidden);
77 
78 namespace {
79 
80 template <typename EnumT>
81 class enum_iterator
82     : public iterator_facade_base<enum_iterator<EnumT>,
83                                   std::forward_iterator_tag, const EnumT> {
84   EnumT Value;
85 public:
86   enum_iterator() = default;
enum_iterator(EnumT Value)87   enum_iterator(EnumT Value) : Value(Value) {}
88 
operator ++()89   enum_iterator &operator++() {
90     Value = static_cast<EnumT>(Value + 1);
91     return *this;
92   }
93 
operator ==(const enum_iterator & RHS) const94   bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; }
95 
operator *() const96   EnumT operator*() const { return Value; }
97 };
98 
99 // Class of object that encapsulates latest instruction counter score
100 // associated with the operand.  Used for determining whether
101 // s_waitcnt instruction needs to be emited.
102 
103 #define CNT_MASK(t) (1u << (t))
104 
105 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS };
106 
inst_counter_types()107 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() {
108   return make_range(enum_iterator<InstCounterType>(VM_CNT),
109                     enum_iterator<InstCounterType>(NUM_INST_CNTS));
110 }
111 
112 using RegInterval = std::pair<signed, signed>;
113 
114 struct {
115   uint32_t VmcntMax;
116   uint32_t ExpcntMax;
117   uint32_t LgkmcntMax;
118   uint32_t VscntMax;
119   int32_t NumVGPRsMax;
120   int32_t NumSGPRsMax;
121 } HardwareLimits;
122 
123 struct {
124   unsigned VGPR0;
125   unsigned VGPRL;
126   unsigned SGPR0;
127   unsigned SGPRL;
128 } RegisterEncoding;
129 
130 enum WaitEventType {
131   VMEM_ACCESS,      // vector-memory read & write
132   VMEM_READ_ACCESS, // vector-memory read
133   VMEM_WRITE_ACCESS,// vector-memory write
134   LDS_ACCESS,       // lds read & write
135   GDS_ACCESS,       // gds read & write
136   SQ_MESSAGE,       // send message
137   SMEM_ACCESS,      // scalar-memory read & write
138   EXP_GPR_LOCK,     // export holding on its data src
139   GDS_GPR_LOCK,     // GDS holding on its data and addr src
140   EXP_POS_ACCESS,   // write to export position
141   EXP_PARAM_ACCESS, // write to export parameter
142   VMW_GPR_LOCK,     // vector-memory write holding on its data src
143   NUM_WAIT_EVENTS,
144 };
145 
146 static const uint32_t WaitEventMaskForInst[NUM_INST_CNTS] = {
147   (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS),
148   (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) |
149       (1 << SQ_MESSAGE),
150   (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) |
151       (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS),
152   (1 << VMEM_WRITE_ACCESS)
153 };
154 
155 // The mapping is:
156 //  0                .. SQ_MAX_PGM_VGPRS-1               real VGPRs
157 //  SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1                  extra VGPR-like slots
158 //  NUM_ALL_VGPRS    .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
159 // We reserve a fixed number of VGPR slots in the scoring tables for
160 // special tokens like SCMEM_LDS (needed for buffer load to LDS).
161 enum RegisterMapping {
162   SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets.
163   SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
164   NUM_EXTRA_VGPRS = 1,    // A reserved slot for DS.
165   EXTRA_VGPR_LDS = 0,     // This is a placeholder the Shader algorithm uses.
166   NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
167 };
168 
addWait(AMDGPU::Waitcnt & Wait,InstCounterType T,unsigned Count)169 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) {
170   switch (T) {
171   case VM_CNT:
172     Wait.VmCnt = std::min(Wait.VmCnt, Count);
173     break;
174   case EXP_CNT:
175     Wait.ExpCnt = std::min(Wait.ExpCnt, Count);
176     break;
177   case LGKM_CNT:
178     Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count);
179     break;
180   case VS_CNT:
181     Wait.VsCnt = std::min(Wait.VsCnt, Count);
182     break;
183   default:
184     llvm_unreachable("bad InstCounterType");
185   }
186 }
187 
188 // This objects maintains the current score brackets of each wait counter, and
189 // a per-register scoreboard for each wait counter.
190 //
191 // We also maintain the latest score for every event type that can change the
192 // waitcnt in order to know if there are multiple types of events within
193 // the brackets. When multiple types of event happen in the bracket,
194 // wait count may get decreased out of order, therefore we need to put in
195 // "s_waitcnt 0" before use.
196 class WaitcntBrackets {
197 public:
WaitcntBrackets(const GCNSubtarget * SubTarget)198   WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) {
199     for (auto T : inst_counter_types())
200       memset(VgprScores[T], 0, sizeof(VgprScores[T]));
201   }
202 
getWaitCountMax(InstCounterType T)203   static uint32_t getWaitCountMax(InstCounterType T) {
204     switch (T) {
205     case VM_CNT:
206       return HardwareLimits.VmcntMax;
207     case LGKM_CNT:
208       return HardwareLimits.LgkmcntMax;
209     case EXP_CNT:
210       return HardwareLimits.ExpcntMax;
211     case VS_CNT:
212       return HardwareLimits.VscntMax;
213     default:
214       break;
215     }
216     return 0;
217   }
218 
getScoreLB(InstCounterType T) const219   uint32_t getScoreLB(InstCounterType T) const {
220     assert(T < NUM_INST_CNTS);
221     if (T >= NUM_INST_CNTS)
222       return 0;
223     return ScoreLBs[T];
224   }
225 
getScoreUB(InstCounterType T) const226   uint32_t getScoreUB(InstCounterType T) const {
227     assert(T < NUM_INST_CNTS);
228     if (T >= NUM_INST_CNTS)
229       return 0;
230     return ScoreUBs[T];
231   }
232 
233   // Mapping from event to counter.
eventCounter(WaitEventType E)234   InstCounterType eventCounter(WaitEventType E) {
235     if (WaitEventMaskForInst[VM_CNT] & (1 << E))
236       return VM_CNT;
237     if (WaitEventMaskForInst[LGKM_CNT] & (1 << E))
238       return LGKM_CNT;
239     if (WaitEventMaskForInst[VS_CNT] & (1 << E))
240       return VS_CNT;
241     assert(WaitEventMaskForInst[EXP_CNT] & (1 << E));
242     return EXP_CNT;
243   }
244 
getRegScore(int GprNo,InstCounterType T)245   uint32_t getRegScore(int GprNo, InstCounterType T) {
246     if (GprNo < NUM_ALL_VGPRS) {
247       return VgprScores[T][GprNo];
248     }
249     assert(T == LGKM_CNT);
250     return SgprScores[GprNo - NUM_ALL_VGPRS];
251   }
252 
clear()253   void clear() {
254     memset(ScoreLBs, 0, sizeof(ScoreLBs));
255     memset(ScoreUBs, 0, sizeof(ScoreUBs));
256     PendingEvents = 0;
257     memset(MixedPendingEvents, 0, sizeof(MixedPendingEvents));
258     for (auto T : inst_counter_types())
259       memset(VgprScores[T], 0, sizeof(VgprScores[T]));
260     memset(SgprScores, 0, sizeof(SgprScores));
261   }
262 
263   bool merge(const WaitcntBrackets &Other);
264 
265   RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
266                              const MachineRegisterInfo *MRI,
267                              const SIRegisterInfo *TRI, unsigned OpNo,
268                              bool Def) const;
269 
getMaxVGPR() const270   int32_t getMaxVGPR() const { return VgprUB; }
getMaxSGPR() const271   int32_t getMaxSGPR() const { return SgprUB; }
272 
273   bool counterOutOfOrder(InstCounterType T) const;
274   bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const;
275   bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const;
276   void determineWait(InstCounterType T, uint32_t ScoreToWait,
277                      AMDGPU::Waitcnt &Wait) const;
278   void applyWaitcnt(const AMDGPU::Waitcnt &Wait);
279   void applyWaitcnt(InstCounterType T, unsigned Count);
280   void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
281                      const MachineRegisterInfo *MRI, WaitEventType E,
282                      MachineInstr &MI);
283 
hasPending() const284   bool hasPending() const { return PendingEvents != 0; }
hasPendingEvent(WaitEventType E) const285   bool hasPendingEvent(WaitEventType E) const {
286     return PendingEvents & (1 << E);
287   }
288 
hasPendingFlat() const289   bool hasPendingFlat() const {
290     return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
291              LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
292             (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
293              LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
294   }
295 
setPendingFlat()296   void setPendingFlat() {
297     LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
298     LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
299   }
300 
301   void print(raw_ostream &);
dump()302   void dump() { print(dbgs()); }
303 
304 private:
305   struct MergeInfo {
306     uint32_t OldLB;
307     uint32_t OtherLB;
308     uint32_t MyShift;
309     uint32_t OtherShift;
310   };
311   static bool mergeScore(const MergeInfo &M, uint32_t &Score,
312                          uint32_t OtherScore);
313 
setScoreLB(InstCounterType T,uint32_t Val)314   void setScoreLB(InstCounterType T, uint32_t Val) {
315     assert(T < NUM_INST_CNTS);
316     if (T >= NUM_INST_CNTS)
317       return;
318     ScoreLBs[T] = Val;
319   }
320 
setScoreUB(InstCounterType T,uint32_t Val)321   void setScoreUB(InstCounterType T, uint32_t Val) {
322     assert(T < NUM_INST_CNTS);
323     if (T >= NUM_INST_CNTS)
324       return;
325     ScoreUBs[T] = Val;
326     if (T == EXP_CNT) {
327       uint32_t UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT);
328       if (ScoreLBs[T] < UB && UB < ScoreUBs[T])
329         ScoreLBs[T] = UB;
330     }
331   }
332 
setRegScore(int GprNo,InstCounterType T,uint32_t Val)333   void setRegScore(int GprNo, InstCounterType T, uint32_t Val) {
334     if (GprNo < NUM_ALL_VGPRS) {
335       if (GprNo > VgprUB) {
336         VgprUB = GprNo;
337       }
338       VgprScores[T][GprNo] = Val;
339     } else {
340       assert(T == LGKM_CNT);
341       if (GprNo - NUM_ALL_VGPRS > SgprUB) {
342         SgprUB = GprNo - NUM_ALL_VGPRS;
343       }
344       SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
345     }
346   }
347 
348   void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
349                    const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
350                    unsigned OpNo, uint32_t Val);
351 
352   const GCNSubtarget *ST = nullptr;
353   uint32_t ScoreLBs[NUM_INST_CNTS] = {0};
354   uint32_t ScoreUBs[NUM_INST_CNTS] = {0};
355   uint32_t PendingEvents = 0;
356   bool MixedPendingEvents[NUM_INST_CNTS] = {false};
357   // Remember the last flat memory operation.
358   uint32_t LastFlat[NUM_INST_CNTS] = {0};
359   // wait_cnt scores for every vgpr.
360   // Keep track of the VgprUB and SgprUB to make merge at join efficient.
361   int32_t VgprUB = 0;
362   int32_t SgprUB = 0;
363   uint32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS];
364   // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
365   uint32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0};
366 };
367 
368 class SIInsertWaitcnts : public MachineFunctionPass {
369 private:
370   const GCNSubtarget *ST = nullptr;
371   const SIInstrInfo *TII = nullptr;
372   const SIRegisterInfo *TRI = nullptr;
373   const MachineRegisterInfo *MRI = nullptr;
374   AMDGPU::IsaVersion IV;
375 
376   DenseSet<MachineInstr *> TrackedWaitcntSet;
377   DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses;
378   MachinePostDominatorTree *PDT;
379 
380   struct BlockInfo {
381     MachineBasicBlock *MBB;
382     std::unique_ptr<WaitcntBrackets> Incoming;
383     bool Dirty = true;
384 
BlockInfo__anon6c0a05fc0111::SIInsertWaitcnts::BlockInfo385     explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {}
386   };
387 
388   std::vector<BlockInfo> BlockInfos; // by reverse post-order traversal index
389   DenseMap<MachineBasicBlock *, unsigned> RpotIdxMap;
390 
391   // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0
392   // because of amdgpu-waitcnt-forcezero flag
393   bool ForceEmitZeroWaitcnts;
394   bool ForceEmitWaitcnt[NUM_INST_CNTS];
395 
396 public:
397   static char ID;
398 
SIInsertWaitcnts()399   SIInsertWaitcnts() : MachineFunctionPass(ID) {
400     (void)ForceExpCounter;
401     (void)ForceLgkmCounter;
402     (void)ForceVMCounter;
403   }
404 
405   bool runOnMachineFunction(MachineFunction &MF) override;
406 
getPassName() const407   StringRef getPassName() const override {
408     return "SI insert wait instructions";
409   }
410 
getAnalysisUsage(AnalysisUsage & AU) const411   void getAnalysisUsage(AnalysisUsage &AU) const override {
412     AU.setPreservesCFG();
413     AU.addRequired<MachinePostDominatorTree>();
414     MachineFunctionPass::getAnalysisUsage(AU);
415   }
416 
isForceEmitWaitcnt() const417   bool isForceEmitWaitcnt() const {
418     for (auto T : inst_counter_types())
419       if (ForceEmitWaitcnt[T])
420         return true;
421     return false;
422   }
423 
setForceEmitWaitcnt()424   void setForceEmitWaitcnt() {
425 // For non-debug builds, ForceEmitWaitcnt has been initialized to false;
426 // For debug builds, get the debug counter info and adjust if need be
427 #ifndef NDEBUG
428     if (DebugCounter::isCounterSet(ForceExpCounter) &&
429         DebugCounter::shouldExecute(ForceExpCounter)) {
430       ForceEmitWaitcnt[EXP_CNT] = true;
431     } else {
432       ForceEmitWaitcnt[EXP_CNT] = false;
433     }
434 
435     if (DebugCounter::isCounterSet(ForceLgkmCounter) &&
436          DebugCounter::shouldExecute(ForceLgkmCounter)) {
437       ForceEmitWaitcnt[LGKM_CNT] = true;
438     } else {
439       ForceEmitWaitcnt[LGKM_CNT] = false;
440     }
441 
442     if (DebugCounter::isCounterSet(ForceVMCounter) &&
443         DebugCounter::shouldExecute(ForceVMCounter)) {
444       ForceEmitWaitcnt[VM_CNT] = true;
445     } else {
446       ForceEmitWaitcnt[VM_CNT] = false;
447     }
448 #endif // NDEBUG
449   }
450 
451   bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
452   bool generateWaitcntInstBefore(MachineInstr &MI,
453                                  WaitcntBrackets &ScoreBrackets,
454                                  MachineInstr *OldWaitcntInstr);
455   void updateEventWaitcntAfter(MachineInstr &Inst,
456                                WaitcntBrackets *ScoreBrackets);
457   bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block,
458                             WaitcntBrackets &ScoreBrackets);
459 };
460 
461 } // end anonymous namespace
462 
getRegInterval(const MachineInstr * MI,const SIInstrInfo * TII,const MachineRegisterInfo * MRI,const SIRegisterInfo * TRI,unsigned OpNo,bool Def) const463 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI,
464                                             const SIInstrInfo *TII,
465                                             const MachineRegisterInfo *MRI,
466                                             const SIRegisterInfo *TRI,
467                                             unsigned OpNo, bool Def) const {
468   const MachineOperand &Op = MI->getOperand(OpNo);
469   if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) ||
470       (Def && !Op.isDef()) || TRI->isAGPR(*MRI, Op.getReg()))
471     return {-1, -1};
472 
473   // A use via a PW operand does not need a waitcnt.
474   // A partial write is not a WAW.
475   assert(!Op.getSubReg() || !Op.isUndef());
476 
477   RegInterval Result;
478   const MachineRegisterInfo &MRIA = *MRI;
479 
480   unsigned Reg = TRI->getEncodingValue(Op.getReg());
481 
482   if (TRI->isVGPR(MRIA, Op.getReg())) {
483     assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL);
484     Result.first = Reg - RegisterEncoding.VGPR0;
485     assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
486   } else if (TRI->isSGPRReg(MRIA, Op.getReg())) {
487     assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
488     Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS;
489     assert(Result.first >= NUM_ALL_VGPRS &&
490            Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
491   }
492   // TODO: Handle TTMP
493   // else if (TRI->isTTMP(MRIA, Reg.getReg())) ...
494   else
495     return {-1, -1};
496 
497   const MachineInstr &MIA = *MI;
498   const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo);
499   unsigned Size = TRI->getRegSizeInBits(*RC);
500   Result.second = Result.first + (Size / 32);
501 
502   return Result;
503 }
504 
setExpScore(const MachineInstr * MI,const SIInstrInfo * TII,const SIRegisterInfo * TRI,const MachineRegisterInfo * MRI,unsigned OpNo,uint32_t Val)505 void WaitcntBrackets::setExpScore(const MachineInstr *MI,
506                                   const SIInstrInfo *TII,
507                                   const SIRegisterInfo *TRI,
508                                   const MachineRegisterInfo *MRI, unsigned OpNo,
509                                   uint32_t Val) {
510   RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false);
511   LLVM_DEBUG({
512     const MachineOperand &Opnd = MI->getOperand(OpNo);
513     assert(TRI->isVGPR(*MRI, Opnd.getReg()));
514   });
515   for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
516     setRegScore(RegNo, EXP_CNT, Val);
517   }
518 }
519 
updateByEvent(const SIInstrInfo * TII,const SIRegisterInfo * TRI,const MachineRegisterInfo * MRI,WaitEventType E,MachineInstr & Inst)520 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
521                                     const SIRegisterInfo *TRI,
522                                     const MachineRegisterInfo *MRI,
523                                     WaitEventType E, MachineInstr &Inst) {
524   const MachineRegisterInfo &MRIA = *MRI;
525   InstCounterType T = eventCounter(E);
526   uint32_t CurrScore = getScoreUB(T) + 1;
527   if (CurrScore == 0)
528     report_fatal_error("InsertWaitcnt score wraparound");
529   // PendingEvents and ScoreUB need to be update regardless if this event
530   // changes the score of a register or not.
531   // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
532   if (!hasPendingEvent(E)) {
533     if (PendingEvents & WaitEventMaskForInst[T])
534       MixedPendingEvents[T] = true;
535     PendingEvents |= 1 << E;
536   }
537   setScoreUB(T, CurrScore);
538 
539   if (T == EXP_CNT) {
540     // Put score on the source vgprs. If this is a store, just use those
541     // specific register(s).
542     if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
543       int AddrOpIdx =
544           AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr);
545       // All GDS operations must protect their address register (same as
546       // export.)
547       if (AddrOpIdx != -1) {
548         setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore);
549       }
550 
551       if (Inst.mayStore()) {
552         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
553                                        AMDGPU::OpName::data0) != -1) {
554           setExpScore(
555               &Inst, TII, TRI, MRI,
556               AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
557               CurrScore);
558         }
559         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
560                                        AMDGPU::OpName::data1) != -1) {
561           setExpScore(&Inst, TII, TRI, MRI,
562                       AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
563                                                  AMDGPU::OpName::data1),
564                       CurrScore);
565         }
566       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 &&
567                  Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
568                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
569                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
570                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
571                  Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
572                  Inst.getOpcode() != AMDGPU::DS_APPEND &&
573                  Inst.getOpcode() != AMDGPU::DS_CONSUME &&
574                  Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
575         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
576           const MachineOperand &Op = Inst.getOperand(I);
577           if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) {
578             setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
579           }
580         }
581       }
582     } else if (TII->isFLAT(Inst)) {
583       if (Inst.mayStore()) {
584         setExpScore(
585             &Inst, TII, TRI, MRI,
586             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
587             CurrScore);
588       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
589         setExpScore(
590             &Inst, TII, TRI, MRI,
591             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
592             CurrScore);
593       }
594     } else if (TII->isMIMG(Inst)) {
595       if (Inst.mayStore()) {
596         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
597       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
598         setExpScore(
599             &Inst, TII, TRI, MRI,
600             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
601             CurrScore);
602       }
603     } else if (TII->isMTBUF(Inst)) {
604       if (Inst.mayStore()) {
605         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
606       }
607     } else if (TII->isMUBUF(Inst)) {
608       if (Inst.mayStore()) {
609         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
610       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
611         setExpScore(
612             &Inst, TII, TRI, MRI,
613             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
614             CurrScore);
615       }
616     } else {
617       if (TII->isEXP(Inst)) {
618         // For export the destination registers are really temps that
619         // can be used as the actual source after export patching, so
620         // we need to treat them like sources and set the EXP_CNT
621         // score.
622         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
623           MachineOperand &DefMO = Inst.getOperand(I);
624           if (DefMO.isReg() && DefMO.isDef() &&
625               TRI->isVGPR(MRIA, DefMO.getReg())) {
626             setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT,
627                         CurrScore);
628           }
629         }
630       }
631       for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
632         MachineOperand &MO = Inst.getOperand(I);
633         if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) {
634           setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
635         }
636       }
637     }
638 #if 0 // TODO: check if this is handled by MUBUF code above.
639   } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
640        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
641        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
642     MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
643     unsigned OpNo;//TODO: find the OpNo for this operand;
644     RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false);
645     for (signed RegNo = Interval.first; RegNo < Interval.second;
646     ++RegNo) {
647       setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
648     }
649 #endif
650   } else {
651     // Match the score to the destination registers.
652     for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
653       RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true);
654       if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS)
655         continue;
656       for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
657         setRegScore(RegNo, T, CurrScore);
658       }
659     }
660     if (TII->isDS(Inst) && Inst.mayStore()) {
661       setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
662     }
663   }
664 }
665 
print(raw_ostream & OS)666 void WaitcntBrackets::print(raw_ostream &OS) {
667   OS << '\n';
668   for (auto T : inst_counter_types()) {
669     uint32_t LB = getScoreLB(T);
670     uint32_t UB = getScoreUB(T);
671 
672     switch (T) {
673     case VM_CNT:
674       OS << "    VM_CNT(" << UB - LB << "): ";
675       break;
676     case LGKM_CNT:
677       OS << "    LGKM_CNT(" << UB - LB << "): ";
678       break;
679     case EXP_CNT:
680       OS << "    EXP_CNT(" << UB - LB << "): ";
681       break;
682     case VS_CNT:
683       OS << "    VS_CNT(" << UB - LB << "): ";
684       break;
685     default:
686       OS << "    UNKNOWN(" << UB - LB << "): ";
687       break;
688     }
689 
690     if (LB < UB) {
691       // Print vgpr scores.
692       for (int J = 0; J <= getMaxVGPR(); J++) {
693         uint32_t RegScore = getRegScore(J, T);
694         if (RegScore <= LB)
695           continue;
696         uint32_t RelScore = RegScore - LB - 1;
697         if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
698           OS << RelScore << ":v" << J << " ";
699         } else {
700           OS << RelScore << ":ds ";
701         }
702       }
703       // Also need to print sgpr scores for lgkm_cnt.
704       if (T == LGKM_CNT) {
705         for (int J = 0; J <= getMaxSGPR(); J++) {
706           uint32_t RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
707           if (RegScore <= LB)
708             continue;
709           uint32_t RelScore = RegScore - LB - 1;
710           OS << RelScore << ":s" << J << " ";
711         }
712       }
713     }
714     OS << '\n';
715   }
716   OS << '\n';
717 }
718 
719 /// Simplify the waitcnt, in the sense of removing redundant counts, and return
720 /// whether a waitcnt instruction is needed at all.
simplifyWaitcnt(AMDGPU::Waitcnt & Wait) const721 bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const {
722   return simplifyWaitcnt(VM_CNT, Wait.VmCnt) |
723          simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) |
724          simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt) |
725          simplifyWaitcnt(VS_CNT, Wait.VsCnt);
726 }
727 
simplifyWaitcnt(InstCounterType T,unsigned & Count) const728 bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T,
729                                       unsigned &Count) const {
730   const uint32_t LB = getScoreLB(T);
731   const uint32_t UB = getScoreUB(T);
732   if (Count < UB && UB - Count > LB)
733     return true;
734 
735   Count = ~0u;
736   return false;
737 }
738 
determineWait(InstCounterType T,uint32_t ScoreToWait,AMDGPU::Waitcnt & Wait) const739 void WaitcntBrackets::determineWait(InstCounterType T, uint32_t ScoreToWait,
740                                     AMDGPU::Waitcnt &Wait) const {
741   // If the score of src_operand falls within the bracket, we need an
742   // s_waitcnt instruction.
743   const uint32_t LB = getScoreLB(T);
744   const uint32_t UB = getScoreUB(T);
745   if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
746     if ((T == VM_CNT || T == LGKM_CNT) &&
747         hasPendingFlat() &&
748         !ST->hasFlatLgkmVMemCountInOrder()) {
749       // If there is a pending FLAT operation, and this is a VMem or LGKM
750       // waitcnt and the target can report early completion, then we need
751       // to force a waitcnt 0.
752       addWait(Wait, T, 0);
753     } else if (counterOutOfOrder(T)) {
754       // Counter can get decremented out-of-order when there
755       // are multiple types event in the bracket. Also emit an s_wait counter
756       // with a conservative value of 0 for the counter.
757       addWait(Wait, T, 0);
758     } else {
759       // If a counter has been maxed out avoid overflow by waiting for
760       // MAX(CounterType) - 1 instead.
761       uint32_t NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1);
762       addWait(Wait, T, NeededWait);
763     }
764   }
765 }
766 
applyWaitcnt(const AMDGPU::Waitcnt & Wait)767 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) {
768   applyWaitcnt(VM_CNT, Wait.VmCnt);
769   applyWaitcnt(EXP_CNT, Wait.ExpCnt);
770   applyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
771   applyWaitcnt(VS_CNT, Wait.VsCnt);
772 }
773 
applyWaitcnt(InstCounterType T,unsigned Count)774 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) {
775   const uint32_t UB = getScoreUB(T);
776   if (Count >= UB)
777     return;
778   if (Count != 0) {
779     if (counterOutOfOrder(T))
780       return;
781     setScoreLB(T, std::max(getScoreLB(T), UB - Count));
782   } else {
783     setScoreLB(T, UB);
784     MixedPendingEvents[T] = false;
785     PendingEvents &= ~WaitEventMaskForInst[T];
786   }
787 }
788 
789 // Where there are multiple types of event in the bracket of a counter,
790 // the decrement may go out of order.
counterOutOfOrder(InstCounterType T) const791 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const {
792   // Scalar memory read always can go out of order.
793   if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS))
794     return true;
795   return MixedPendingEvents[T];
796 }
797 
798 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
799                       false)
800 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
801 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
802                     false)
803 
804 char SIInsertWaitcnts::ID = 0;
805 
806 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;
807 
createSIInsertWaitcntsPass()808 FunctionPass *llvm::createSIInsertWaitcntsPass() {
809   return new SIInsertWaitcnts();
810 }
811 
readsVCCZ(const MachineInstr & MI)812 static bool readsVCCZ(const MachineInstr &MI) {
813   unsigned Opc = MI.getOpcode();
814   return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
815          !MI.getOperand(1).isUndef();
816 }
817 
818 /// \returns true if the callee inserts an s_waitcnt 0 on function entry.
callWaitsOnFunctionEntry(const MachineInstr & MI)819 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) {
820   // Currently all conventions wait, but this may not always be the case.
821   //
822   // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make
823   // senses to omit the wait and do it in the caller.
824   return true;
825 }
826 
827 /// \returns true if the callee is expected to wait for any outstanding waits
828 /// before returning.
callWaitsOnFunctionReturn(const MachineInstr & MI)829 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) {
830   return true;
831 }
832 
833 ///  Generate s_waitcnt instruction to be placed before cur_Inst.
834 ///  Instructions of a given type are returned in order,
835 ///  but instructions of different types can complete out of order.
836 ///  We rely on this in-order completion
837 ///  and simply assign a score to the memory access instructions.
838 ///  We keep track of the active "score bracket" to determine
839 ///  if an access of a memory read requires an s_waitcnt
840 ///  and if so what the value of each counter is.
841 ///  The "score bracket" is bound by the lower bound and upper bound
842 ///  scores (*_score_LB and *_score_ub respectively).
generateWaitcntInstBefore(MachineInstr & MI,WaitcntBrackets & ScoreBrackets,MachineInstr * OldWaitcntInstr)843 bool SIInsertWaitcnts::generateWaitcntInstBefore(
844     MachineInstr &MI, WaitcntBrackets &ScoreBrackets,
845     MachineInstr *OldWaitcntInstr) {
846   setForceEmitWaitcnt();
847   bool IsForceEmitWaitcnt = isForceEmitWaitcnt();
848 
849   if (MI.isDebugInstr())
850     return false;
851 
852   AMDGPU::Waitcnt Wait;
853 
854   // See if this instruction has a forced S_WAITCNT VM.
855   // TODO: Handle other cases of NeedsWaitcntVmBefore()
856   if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
857       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
858       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL ||
859       MI.getOpcode() == AMDGPU::BUFFER_GL0_INV ||
860       MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) {
861     Wait.VmCnt = 0;
862   }
863 
864   // All waits must be resolved at call return.
865   // NOTE: this could be improved with knowledge of all call sites or
866   //   with knowledge of the called routines.
867   if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
868       MI.getOpcode() == AMDGPU::S_SETPC_B64_return ||
869       (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) {
870     Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV));
871   }
872   // Resolve vm waits before gs-done.
873   else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
874             MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
875            ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) ==
876             AMDGPU::SendMsg::ID_GS_DONE)) {
877     Wait.VmCnt = 0;
878   }
879 #if 0 // TODO: the following blocks of logic when we have fence.
880   else if (MI.getOpcode() == SC_FENCE) {
881     const unsigned int group_size =
882       context->shader_info->GetMaxThreadGroupSize();
883     // group_size == 0 means thread group size is unknown at compile time
884     const bool group_is_multi_wave =
885       (group_size == 0 || group_size > target_info->GetWaveFrontSize());
886     const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();
887 
888     for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
889       SCRegType src_type = Inst->GetSrcType(i);
890       switch (src_type) {
891         case SCMEM_LDS:
892           if (group_is_multi_wave ||
893             context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
894             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
895                                ScoreBrackets->getScoreUB(LGKM_CNT));
896             // LDS may have to wait for VM_CNT after buffer load to LDS
897             if (target_info->HasBufferLoadToLDS()) {
898               EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
899                                  ScoreBrackets->getScoreUB(VM_CNT));
900             }
901           }
902           break;
903 
904         case SCMEM_GDS:
905           if (group_is_multi_wave || fence_is_global) {
906             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
907               ScoreBrackets->getScoreUB(EXP_CNT));
908             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
909               ScoreBrackets->getScoreUB(LGKM_CNT));
910           }
911           break;
912 
913         case SCMEM_UAV:
914         case SCMEM_TFBUF:
915         case SCMEM_RING:
916         case SCMEM_SCATTER:
917           if (group_is_multi_wave || fence_is_global) {
918             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
919               ScoreBrackets->getScoreUB(EXP_CNT));
920             EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
921               ScoreBrackets->getScoreUB(VM_CNT));
922           }
923           break;
924 
925         case SCMEM_SCRATCH:
926         default:
927           break;
928       }
929     }
930   }
931 #endif
932 
933   // Export & GDS instructions do not read the EXEC mask until after the export
934   // is granted (which can occur well after the instruction is issued).
935   // The shader program must flush all EXP operations on the export-count
936   // before overwriting the EXEC mask.
937   else {
938     if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
939       // Export and GDS are tracked individually, either may trigger a waitcnt
940       // for EXEC.
941       if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) ||
942           ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) ||
943           ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) ||
944           ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) {
945         Wait.ExpCnt = 0;
946       }
947     }
948 
949     if (MI.isCall() && callWaitsOnFunctionEntry(MI)) {
950       // The function is going to insert a wait on everything in its prolog.
951       // This still needs to be careful if the call target is a load (e.g. a GOT
952       // load). We also need to check WAW depenancy with saved PC.
953       Wait = AMDGPU::Waitcnt();
954 
955       int CallAddrOpIdx =
956           AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
957       RegInterval CallAddrOpInterval = ScoreBrackets.getRegInterval(
958           &MI, TII, MRI, TRI, CallAddrOpIdx, false);
959 
960       for (signed RegNo = CallAddrOpInterval.first;
961            RegNo < CallAddrOpInterval.second; ++RegNo)
962         ScoreBrackets.determineWait(
963             LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
964 
965       int RtnAddrOpIdx =
966             AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst);
967       if (RtnAddrOpIdx != -1) {
968         RegInterval RtnAddrOpInterval = ScoreBrackets.getRegInterval(
969             &MI, TII, MRI, TRI, RtnAddrOpIdx, false);
970 
971         for (signed RegNo = RtnAddrOpInterval.first;
972              RegNo < RtnAddrOpInterval.second; ++RegNo)
973           ScoreBrackets.determineWait(
974               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
975       }
976 
977     } else {
978       // FIXME: Should not be relying on memoperands.
979       // Look at the source operands of every instruction to see if
980       // any of them results from a previous memory operation that affects
981       // its current usage. If so, an s_waitcnt instruction needs to be
982       // emitted.
983       // If the source operand was defined by a load, add the s_waitcnt
984       // instruction.
985       for (const MachineMemOperand *Memop : MI.memoperands()) {
986         unsigned AS = Memop->getAddrSpace();
987         if (AS != AMDGPUAS::LOCAL_ADDRESS)
988           continue;
989         unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
990         // VM_CNT is only relevant to vgpr or LDS.
991         ScoreBrackets.determineWait(
992             VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
993       }
994 
995       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
996         const MachineOperand &Op = MI.getOperand(I);
997         const MachineRegisterInfo &MRIA = *MRI;
998         RegInterval Interval =
999             ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, false);
1000         for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
1001           if (TRI->isVGPR(MRIA, Op.getReg())) {
1002             // VM_CNT is only relevant to vgpr or LDS.
1003             ScoreBrackets.determineWait(
1004                 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1005           }
1006           ScoreBrackets.determineWait(
1007               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
1008         }
1009       }
1010       // End of for loop that looks at all source operands to decide vm_wait_cnt
1011       // and lgk_wait_cnt.
1012 
1013       // Two cases are handled for destination operands:
1014       // 1) If the destination operand was defined by a load, add the s_waitcnt
1015       // instruction to guarantee the right WAW order.
1016       // 2) If a destination operand that was used by a recent export/store ins,
1017       // add s_waitcnt on exp_cnt to guarantee the WAR order.
1018       if (MI.mayStore()) {
1019         // FIXME: Should not be relying on memoperands.
1020         for (const MachineMemOperand *Memop : MI.memoperands()) {
1021           const Value *Ptr = Memop->getValue();
1022           if (SLoadAddresses.count(Ptr)) {
1023             addWait(Wait, LGKM_CNT, 0);
1024             if (PDT->dominates(MI.getParent(),
1025                                SLoadAddresses.find(Ptr)->second))
1026               SLoadAddresses.erase(Ptr);
1027           }
1028           unsigned AS = Memop->getAddrSpace();
1029           if (AS != AMDGPUAS::LOCAL_ADDRESS)
1030             continue;
1031           unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
1032           ScoreBrackets.determineWait(
1033               VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1034           ScoreBrackets.determineWait(
1035               EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
1036         }
1037       }
1038       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1039         MachineOperand &Def = MI.getOperand(I);
1040         const MachineRegisterInfo &MRIA = *MRI;
1041         RegInterval Interval =
1042             ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, true);
1043         for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
1044           if (TRI->isVGPR(MRIA, Def.getReg())) {
1045             ScoreBrackets.determineWait(
1046                 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1047             ScoreBrackets.determineWait(
1048                 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
1049           }
1050           ScoreBrackets.determineWait(
1051               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
1052         }
1053       } // End of for loop that looks at all dest operands.
1054     }
1055   }
1056 
1057   // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0
1058   // occurs before the instruction. Doing it here prevents any additional
1059   // S_WAITCNTs from being emitted if the instruction was marked as
1060   // requiring a WAITCNT beforehand.
1061   if (MI.getOpcode() == AMDGPU::S_BARRIER &&
1062       !ST->hasAutoWaitcntBeforeBarrier()) {
1063     Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV));
1064   }
1065 
1066   // TODO: Remove this work-around, enable the assert for Bug 457939
1067   //       after fixing the scheduler. Also, the Shader Compiler code is
1068   //       independent of target.
1069   if (readsVCCZ(MI) && ST->hasReadVCCZBug()) {
1070     if (ScoreBrackets.getScoreLB(LGKM_CNT) <
1071             ScoreBrackets.getScoreUB(LGKM_CNT) &&
1072         ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1073       Wait.LgkmCnt = 0;
1074     }
1075   }
1076 
1077   // Early-out if no wait is indicated.
1078   if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) {
1079     bool Modified = false;
1080     if (OldWaitcntInstr) {
1081       for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
1082            &*II != &MI; II = NextI, ++NextI) {
1083         if (II->isDebugInstr())
1084           continue;
1085 
1086         if (TrackedWaitcntSet.count(&*II)) {
1087           TrackedWaitcntSet.erase(&*II);
1088           II->eraseFromParent();
1089           Modified = true;
1090         } else if (II->getOpcode() == AMDGPU::S_WAITCNT) {
1091           int64_t Imm = II->getOperand(0).getImm();
1092           ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm));
1093         } else {
1094           assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
1095           assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1096           ScoreBrackets.applyWaitcnt(
1097               AMDGPU::Waitcnt(~0u, ~0u, ~0u, II->getOperand(1).getImm()));
1098         }
1099       }
1100     }
1101     return Modified;
1102   }
1103 
1104   if (ForceEmitZeroWaitcnts)
1105     Wait = AMDGPU::Waitcnt::allZero(IV);
1106 
1107   if (ForceEmitWaitcnt[VM_CNT])
1108     Wait.VmCnt = 0;
1109   if (ForceEmitWaitcnt[EXP_CNT])
1110     Wait.ExpCnt = 0;
1111   if (ForceEmitWaitcnt[LGKM_CNT])
1112     Wait.LgkmCnt = 0;
1113   if (ForceEmitWaitcnt[VS_CNT])
1114     Wait.VsCnt = 0;
1115 
1116   ScoreBrackets.applyWaitcnt(Wait);
1117 
1118   AMDGPU::Waitcnt OldWait;
1119   bool Modified = false;
1120 
1121   if (OldWaitcntInstr) {
1122     for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
1123          &*II != &MI; II = NextI, NextI++) {
1124       if (II->isDebugInstr())
1125         continue;
1126 
1127       if (II->getOpcode() == AMDGPU::S_WAITCNT) {
1128         unsigned IEnc = II->getOperand(0).getImm();
1129         AMDGPU::Waitcnt IWait = AMDGPU::decodeWaitcnt(IV, IEnc);
1130         OldWait = OldWait.combined(IWait);
1131         if (!TrackedWaitcntSet.count(&*II))
1132           Wait = Wait.combined(IWait);
1133         unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait);
1134         if (IEnc != NewEnc) {
1135           II->getOperand(0).setImm(NewEnc);
1136           Modified = true;
1137         }
1138         Wait.VmCnt = ~0u;
1139         Wait.LgkmCnt = ~0u;
1140         Wait.ExpCnt = ~0u;
1141       } else {
1142         assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
1143         assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1144 
1145         unsigned ICnt = II->getOperand(1).getImm();
1146         OldWait.VsCnt = std::min(OldWait.VsCnt, ICnt);
1147         if (!TrackedWaitcntSet.count(&*II))
1148           Wait.VsCnt = std::min(Wait.VsCnt, ICnt);
1149         if (Wait.VsCnt != ICnt) {
1150           II->getOperand(1).setImm(Wait.VsCnt);
1151           Modified = true;
1152         }
1153         Wait.VsCnt = ~0u;
1154       }
1155 
1156       LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1157                         << "Old Instr: " << MI << '\n'
1158                         << "New Instr: " << *II << '\n');
1159 
1160       if (!Wait.hasWait())
1161         return Modified;
1162     }
1163   }
1164 
1165   if (Wait.VmCnt != ~0u || Wait.LgkmCnt != ~0u || Wait.ExpCnt != ~0u) {
1166     unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait);
1167     auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(),
1168                              MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1169                          .addImm(Enc);
1170     TrackedWaitcntSet.insert(SWaitInst);
1171     Modified = true;
1172 
1173     LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1174                       << "Old Instr: " << MI << '\n'
1175                       << "New Instr: " << *SWaitInst << '\n');
1176   }
1177 
1178   if (Wait.VsCnt != ~0u) {
1179     assert(ST->hasVscnt());
1180 
1181     auto SWaitInst =
1182         BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(),
1183                 TII->get(AMDGPU::S_WAITCNT_VSCNT))
1184             .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1185             .addImm(Wait.VsCnt);
1186     TrackedWaitcntSet.insert(SWaitInst);
1187     Modified = true;
1188 
1189     LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1190                       << "Old Instr: " << MI << '\n'
1191                       << "New Instr: " << *SWaitInst << '\n');
1192   }
1193 
1194   return Modified;
1195 }
1196 
1197 // This is a flat memory operation. Check to see if it has memory
1198 // tokens for both LDS and Memory, and if so mark it as a flat.
mayAccessLDSThroughFlat(const MachineInstr & MI) const1199 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
1200   if (MI.memoperands_empty())
1201     return true;
1202 
1203   for (const MachineMemOperand *Memop : MI.memoperands()) {
1204     unsigned AS = Memop->getAddrSpace();
1205     if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS)
1206       return true;
1207   }
1208 
1209   return false;
1210 }
1211 
updateEventWaitcntAfter(MachineInstr & Inst,WaitcntBrackets * ScoreBrackets)1212 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst,
1213                                                WaitcntBrackets *ScoreBrackets) {
1214   // Now look at the instruction opcode. If it is a memory access
1215   // instruction, update the upper-bound of the appropriate counter's
1216   // bracket and the destination operand scores.
1217   // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
1218   if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
1219     if (TII->isAlwaysGDS(Inst.getOpcode()) ||
1220         TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
1221       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
1222       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
1223     } else {
1224       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1225     }
1226   } else if (TII->isFLAT(Inst)) {
1227     assert(Inst.mayLoadOrStore());
1228 
1229     if (TII->usesVM_CNT(Inst)) {
1230       if (!ST->hasVscnt())
1231         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1232       else if (Inst.mayLoad() &&
1233                AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1)
1234         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1235       else
1236         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1237     }
1238 
1239     if (TII->usesLGKM_CNT(Inst)) {
1240       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1241 
1242       // This is a flat memory operation, so note it - it will require
1243       // that both the VM and LGKM be flushed to zero if it is pending when
1244       // a VM or LGKM dependency occurs.
1245       if (mayAccessLDSThroughFlat(Inst))
1246         ScoreBrackets->setPendingFlat();
1247     }
1248   } else if (SIInstrInfo::isVMEM(Inst) &&
1249              // TODO: get a better carve out.
1250              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 &&
1251              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC &&
1252              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL &&
1253              Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV &&
1254              Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) {
1255     if (!ST->hasVscnt())
1256       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1257     else if ((Inst.mayLoad() &&
1258               AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) ||
1259              /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */
1260              (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore()))
1261       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1262     else if (Inst.mayStore())
1263       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1264 
1265     if (ST->vmemWriteNeedsExpWaitcnt() &&
1266         (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) {
1267       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
1268     }
1269   } else if (TII->isSMRD(Inst)) {
1270     ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1271   } else if (Inst.isCall()) {
1272     if (callWaitsOnFunctionReturn(Inst)) {
1273       // Act as a wait on everything
1274       ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(IV));
1275     } else {
1276       // May need to way wait for anything.
1277       ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt());
1278     }
1279   } else {
1280     switch (Inst.getOpcode()) {
1281     case AMDGPU::S_SENDMSG:
1282     case AMDGPU::S_SENDMSGHALT:
1283       ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
1284       break;
1285     case AMDGPU::EXP:
1286     case AMDGPU::EXP_DONE: {
1287       int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
1288       if (Imm >= 32 && Imm <= 63)
1289         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
1290       else if (Imm >= 12 && Imm <= 15)
1291         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
1292       else
1293         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
1294       break;
1295     }
1296     case AMDGPU::S_MEMTIME:
1297     case AMDGPU::S_MEMREALTIME:
1298       ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1299       break;
1300     default:
1301       break;
1302     }
1303   }
1304 }
1305 
mergeScore(const MergeInfo & M,uint32_t & Score,uint32_t OtherScore)1306 bool WaitcntBrackets::mergeScore(const MergeInfo &M, uint32_t &Score,
1307                                  uint32_t OtherScore) {
1308   uint32_t MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift;
1309   uint32_t OtherShifted =
1310       OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift;
1311   Score = std::max(MyShifted, OtherShifted);
1312   return OtherShifted > MyShifted;
1313 }
1314 
1315 /// Merge the pending events and associater score brackets of \p Other into
1316 /// this brackets status.
1317 ///
1318 /// Returns whether the merge resulted in a change that requires tighter waits
1319 /// (i.e. the merged brackets strictly dominate the original brackets).
merge(const WaitcntBrackets & Other)1320 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) {
1321   bool StrictDom = false;
1322 
1323   for (auto T : inst_counter_types()) {
1324     // Merge event flags for this counter
1325     const bool OldOutOfOrder = counterOutOfOrder(T);
1326     const uint32_t OldEvents = PendingEvents & WaitEventMaskForInst[T];
1327     const uint32_t OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T];
1328     if (OtherEvents & ~OldEvents)
1329       StrictDom = true;
1330     if (Other.MixedPendingEvents[T] ||
1331         (OldEvents && OtherEvents && OldEvents != OtherEvents))
1332       MixedPendingEvents[T] = true;
1333     PendingEvents |= OtherEvents;
1334 
1335     // Merge scores for this counter
1336     const uint32_t MyPending = ScoreUBs[T] - ScoreLBs[T];
1337     const uint32_t OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T];
1338     MergeInfo M;
1339     M.OldLB = ScoreLBs[T];
1340     M.OtherLB = Other.ScoreLBs[T];
1341     M.MyShift = OtherPending > MyPending ? OtherPending - MyPending : 0;
1342     M.OtherShift = ScoreUBs[T] - Other.ScoreUBs[T] + M.MyShift;
1343 
1344     const uint32_t NewUB = ScoreUBs[T] + M.MyShift;
1345     if (NewUB < ScoreUBs[T])
1346       report_fatal_error("waitcnt score overflow");
1347     ScoreUBs[T] = NewUB;
1348     ScoreLBs[T] = std::min(M.OldLB + M.MyShift, M.OtherLB + M.OtherShift);
1349 
1350     StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]);
1351 
1352     bool RegStrictDom = false;
1353     for (int J = 0, E = std::max(getMaxVGPR(), Other.getMaxVGPR()) + 1; J != E;
1354          J++) {
1355       RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]);
1356     }
1357 
1358     if (T == LGKM_CNT) {
1359       for (int J = 0, E = std::max(getMaxSGPR(), Other.getMaxSGPR()) + 1;
1360            J != E; J++) {
1361         RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]);
1362       }
1363     }
1364 
1365     if (RegStrictDom && !OldOutOfOrder)
1366       StrictDom = true;
1367   }
1368 
1369   VgprUB = std::max(getMaxVGPR(), Other.getMaxVGPR());
1370   SgprUB = std::max(getMaxSGPR(), Other.getMaxSGPR());
1371 
1372   return StrictDom;
1373 }
1374 
1375 // Generate s_waitcnt instructions where needed.
insertWaitcntInBlock(MachineFunction & MF,MachineBasicBlock & Block,WaitcntBrackets & ScoreBrackets)1376 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
1377                                             MachineBasicBlock &Block,
1378                                             WaitcntBrackets &ScoreBrackets) {
1379   bool Modified = false;
1380 
1381   LLVM_DEBUG({
1382     dbgs() << "*** Block" << Block.getNumber() << " ***";
1383     ScoreBrackets.dump();
1384   });
1385 
1386   // Walk over the instructions.
1387   MachineInstr *OldWaitcntInstr = nullptr;
1388 
1389   for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(),
1390                                          E = Block.instr_end();
1391        Iter != E;) {
1392     MachineInstr &Inst = *Iter;
1393 
1394     // Track pre-existing waitcnts from earlier iterations.
1395     if (Inst.getOpcode() == AMDGPU::S_WAITCNT ||
1396         (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1397          Inst.getOperand(0).isReg() &&
1398          Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) {
1399       if (!OldWaitcntInstr)
1400         OldWaitcntInstr = &Inst;
1401       ++Iter;
1402       continue;
1403     }
1404 
1405     bool VCCZBugWorkAround = false;
1406     if (readsVCCZ(Inst)) {
1407       if (ScoreBrackets.getScoreLB(LGKM_CNT) <
1408               ScoreBrackets.getScoreUB(LGKM_CNT) &&
1409           ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1410         if (ST->hasReadVCCZBug())
1411           VCCZBugWorkAround = true;
1412       }
1413     }
1414 
1415     if (TII->isSMRD(Inst)) {
1416       for (const MachineMemOperand *Memop : Inst.memoperands()) {
1417         const Value *Ptr = Memop->getValue();
1418         SLoadAddresses.insert(std::make_pair(Ptr, Inst.getParent()));
1419       }
1420     }
1421 
1422     // Generate an s_waitcnt instruction to be placed before
1423     // cur_Inst, if needed.
1424     Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr);
1425     OldWaitcntInstr = nullptr;
1426 
1427     updateEventWaitcntAfter(Inst, &ScoreBrackets);
1428 
1429 #if 0 // TODO: implement resource type check controlled by options with ub = LB.
1430     // If this instruction generates a S_SETVSKIP because it is an
1431     // indexed resource, and we are on Tahiti, then it will also force
1432     // an S_WAITCNT vmcnt(0)
1433     if (RequireCheckResourceType(Inst, context)) {
1434       // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
1435       ScoreBrackets->setScoreLB(VM_CNT,
1436       ScoreBrackets->getScoreUB(VM_CNT));
1437     }
1438 #endif
1439 
1440     LLVM_DEBUG({
1441       Inst.print(dbgs());
1442       ScoreBrackets.dump();
1443     });
1444 
1445     // TODO: Remove this work-around after fixing the scheduler and enable the
1446     // assert above.
1447     if (VCCZBugWorkAround) {
1448       // Restore the vccz bit.  Any time a value is written to vcc, the vcc
1449       // bit is updated, so we can restore the bit by reading the value of
1450       // vcc and then writing it back to the register.
1451       BuildMI(Block, Inst, Inst.getDebugLoc(),
1452               TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64),
1453               TRI->getVCC())
1454           .addReg(TRI->getVCC());
1455       Modified = true;
1456     }
1457 
1458     ++Iter;
1459   }
1460 
1461   return Modified;
1462 }
1463 
runOnMachineFunction(MachineFunction & MF)1464 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
1465   ST = &MF.getSubtarget<GCNSubtarget>();
1466   TII = ST->getInstrInfo();
1467   TRI = &TII->getRegisterInfo();
1468   MRI = &MF.getRegInfo();
1469   IV = AMDGPU::getIsaVersion(ST->getCPU());
1470   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1471   PDT = &getAnalysis<MachinePostDominatorTree>();
1472 
1473   ForceEmitZeroWaitcnts = ForceEmitZeroFlag;
1474   for (auto T : inst_counter_types())
1475     ForceEmitWaitcnt[T] = false;
1476 
1477   HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
1478   HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
1479   HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
1480   HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0;
1481 
1482   HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs();
1483   HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs();
1484   assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
1485   assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS);
1486 
1487   RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
1488   RegisterEncoding.VGPRL =
1489       RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1;
1490   RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
1491   RegisterEncoding.SGPRL =
1492       RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1;
1493 
1494   TrackedWaitcntSet.clear();
1495   RpotIdxMap.clear();
1496   BlockInfos.clear();
1497 
1498   // Keep iterating over the blocks in reverse post order, inserting and
1499   // updating s_waitcnt where needed, until a fix point is reached.
1500   for (MachineBasicBlock *MBB :
1501        ReversePostOrderTraversal<MachineFunction *>(&MF)) {
1502     RpotIdxMap[MBB] = BlockInfos.size();
1503     BlockInfos.emplace_back(MBB);
1504   }
1505 
1506   std::unique_ptr<WaitcntBrackets> Brackets;
1507   bool Modified = false;
1508   bool Repeat;
1509   do {
1510     Repeat = false;
1511 
1512     for (BlockInfo &BI : BlockInfos) {
1513       if (!BI.Dirty)
1514         continue;
1515 
1516       unsigned Idx = std::distance(&*BlockInfos.begin(), &BI);
1517 
1518       if (BI.Incoming) {
1519         if (!Brackets)
1520           Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming);
1521         else
1522           *Brackets = *BI.Incoming;
1523       } else {
1524         if (!Brackets)
1525           Brackets = std::make_unique<WaitcntBrackets>(ST);
1526         else
1527           Brackets->clear();
1528       }
1529 
1530       Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets);
1531       BI.Dirty = false;
1532 
1533       if (Brackets->hasPending()) {
1534         BlockInfo *MoveBracketsToSucc = nullptr;
1535         for (MachineBasicBlock *Succ : BI.MBB->successors()) {
1536           unsigned SuccIdx = RpotIdxMap[Succ];
1537           BlockInfo &SuccBI = BlockInfos[SuccIdx];
1538           if (!SuccBI.Incoming) {
1539             SuccBI.Dirty = true;
1540             if (SuccIdx <= Idx)
1541               Repeat = true;
1542             if (!MoveBracketsToSucc) {
1543               MoveBracketsToSucc = &SuccBI;
1544             } else {
1545               SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets);
1546             }
1547           } else if (SuccBI.Incoming->merge(*Brackets)) {
1548             SuccBI.Dirty = true;
1549             if (SuccIdx <= Idx)
1550               Repeat = true;
1551           }
1552         }
1553         if (MoveBracketsToSucc)
1554           MoveBracketsToSucc->Incoming = std::move(Brackets);
1555       }
1556     }
1557   } while (Repeat);
1558 
1559   SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
1560 
1561   bool HaveScalarStores = false;
1562 
1563   for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
1564        ++BI) {
1565     MachineBasicBlock &MBB = *BI;
1566 
1567     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
1568          ++I) {
1569       if (!HaveScalarStores && TII->isScalarStore(*I))
1570         HaveScalarStores = true;
1571 
1572       if (I->getOpcode() == AMDGPU::S_ENDPGM ||
1573           I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
1574         EndPgmBlocks.push_back(&MBB);
1575     }
1576   }
1577 
1578   if (HaveScalarStores) {
1579     // If scalar writes are used, the cache must be flushed or else the next
1580     // wave to reuse the same scratch memory can be clobbered.
1581     //
1582     // Insert s_dcache_wb at wave termination points if there were any scalar
1583     // stores, and only if the cache hasn't already been flushed. This could be
1584     // improved by looking across blocks for flushes in postdominating blocks
1585     // from the stores but an explicitly requested flush is probably very rare.
1586     for (MachineBasicBlock *MBB : EndPgmBlocks) {
1587       bool SeenDCacheWB = false;
1588 
1589       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
1590            ++I) {
1591         if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
1592           SeenDCacheWB = true;
1593         else if (TII->isScalarStore(*I))
1594           SeenDCacheWB = false;
1595 
1596         // FIXME: It would be better to insert this before a waitcnt if any.
1597         if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
1598              I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
1599             !SeenDCacheWB) {
1600           Modified = true;
1601           BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
1602         }
1603       }
1604     }
1605   }
1606 
1607   if (!MFI->isEntryFunction()) {
1608     // Wait for any outstanding memory operations that the input registers may
1609     // depend on. We can't track them and it's better to the wait after the
1610     // costly call sequence.
1611 
1612     // TODO: Could insert earlier and schedule more liberally with operations
1613     // that only use caller preserved registers.
1614     MachineBasicBlock &EntryBB = MF.front();
1615     if (ST->hasVscnt())
1616       BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(),
1617               TII->get(AMDGPU::S_WAITCNT_VSCNT))
1618       .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1619       .addImm(0);
1620     BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1621       .addImm(0);
1622 
1623     Modified = true;
1624   }
1625 
1626   return Modified;
1627 }
1628